1 //===- llvm/CodeGen/GlobalISel/RegisterBankInfo.cpp --------------*- C++ -*-==//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 /// This file implements the RegisterBankInfo class.
10 //===----------------------------------------------------------------------===//
12 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
13 #include "llvm/ADT/SmallString.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
18 #include "llvm/CodeGen/MachineBasicBlock.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetOpcodes.h"
22 #include "llvm/CodeGen/TargetRegisterInfo.h"
23 #include "llvm/CodeGen/TargetSubtargetInfo.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/Type.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/raw_ostream.h"
29 #include <algorithm> // For std::max.
31 #define DEBUG_TYPE "registerbankinfo"
35 STATISTIC(NumPartialMappingsCreated
,
36 "Number of partial mappings dynamically created");
37 STATISTIC(NumPartialMappingsAccessed
,
38 "Number of partial mappings dynamically accessed");
39 STATISTIC(NumValueMappingsCreated
,
40 "Number of value mappings dynamically created");
41 STATISTIC(NumValueMappingsAccessed
,
42 "Number of value mappings dynamically accessed");
43 STATISTIC(NumOperandsMappingsCreated
,
44 "Number of operands mappings dynamically created");
45 STATISTIC(NumOperandsMappingsAccessed
,
46 "Number of operands mappings dynamically accessed");
47 STATISTIC(NumInstructionMappingsCreated
,
48 "Number of instruction mappings dynamically created");
49 STATISTIC(NumInstructionMappingsAccessed
,
50 "Number of instruction mappings dynamically accessed");
52 const unsigned RegisterBankInfo::DefaultMappingID
= UINT_MAX
;
53 const unsigned RegisterBankInfo::InvalidMappingID
= UINT_MAX
- 1;
55 //------------------------------------------------------------------------------
56 // RegisterBankInfo implementation.
57 //------------------------------------------------------------------------------
58 RegisterBankInfo::RegisterBankInfo(RegisterBank
**RegBanks
,
60 : RegBanks(RegBanks
), NumRegBanks(NumRegBanks
) {
62 for (unsigned Idx
= 0, End
= getNumRegBanks(); Idx
!= End
; ++Idx
) {
63 assert(RegBanks
[Idx
] != nullptr && "Invalid RegisterBank");
64 assert(RegBanks
[Idx
]->isValid() && "RegisterBank should be valid");
69 bool RegisterBankInfo::verify(const TargetRegisterInfo
&TRI
) const {
71 for (unsigned Idx
= 0, End
= getNumRegBanks(); Idx
!= End
; ++Idx
) {
72 const RegisterBank
&RegBank
= getRegBank(Idx
);
73 assert(Idx
== RegBank
.getID() &&
74 "ID does not match the index in the array");
75 LLVM_DEBUG(dbgs() << "Verify " << RegBank
<< '\n');
76 assert(RegBank
.verify(TRI
) && "RegBank is invalid");
83 RegisterBankInfo::getRegBank(Register Reg
, const MachineRegisterInfo
&MRI
,
84 const TargetRegisterInfo
&TRI
) const {
85 if (Register::isPhysicalRegister(Reg
))
86 return &getRegBankFromRegClass(getMinimalPhysRegClass(Reg
, TRI
));
88 assert(Reg
&& "NoRegister does not have a register bank");
89 const RegClassOrRegBank
&RegClassOrBank
= MRI
.getRegClassOrRegBank(Reg
);
90 if (auto *RB
= RegClassOrBank
.dyn_cast
<const RegisterBank
*>())
92 if (auto *RC
= RegClassOrBank
.dyn_cast
<const TargetRegisterClass
*>())
93 return &getRegBankFromRegClass(*RC
);
97 const TargetRegisterClass
&
98 RegisterBankInfo::getMinimalPhysRegClass(Register Reg
,
99 const TargetRegisterInfo
&TRI
) const {
100 assert(Register::isPhysicalRegister(Reg
) && "Reg must be a physreg");
101 const auto &RegRCIt
= PhysRegMinimalRCs
.find(Reg
);
102 if (RegRCIt
!= PhysRegMinimalRCs
.end())
103 return *RegRCIt
->second
;
104 const TargetRegisterClass
*PhysRC
= TRI
.getMinimalPhysRegClass(Reg
);
105 PhysRegMinimalRCs
[Reg
] = PhysRC
;
109 const RegisterBank
*RegisterBankInfo::getRegBankFromConstraints(
110 const MachineInstr
&MI
, unsigned OpIdx
, const TargetInstrInfo
&TII
,
111 const TargetRegisterInfo
&TRI
) const {
112 // The mapping of the registers may be available via the
113 // register class constraints.
114 const TargetRegisterClass
*RC
= MI
.getRegClassConstraint(OpIdx
, &TII
, &TRI
);
119 const RegisterBank
&RegBank
= getRegBankFromRegClass(*RC
);
120 // Sanity check that the target properly implemented getRegBankFromRegClass.
121 assert(RegBank
.covers(*RC
) &&
122 "The mapping of the register bank does not make sense");
126 const TargetRegisterClass
*RegisterBankInfo::constrainGenericRegister(
127 Register Reg
, const TargetRegisterClass
&RC
, MachineRegisterInfo
&MRI
) {
129 // If the register already has a class, fallback to MRI::constrainRegClass.
130 auto &RegClassOrBank
= MRI
.getRegClassOrRegBank(Reg
);
131 if (RegClassOrBank
.is
<const TargetRegisterClass
*>())
132 return MRI
.constrainRegClass(Reg
, &RC
);
134 const RegisterBank
*RB
= RegClassOrBank
.get
<const RegisterBank
*>();
135 // Otherwise, all we can do is ensure the bank covers the class, and set it.
136 if (RB
&& !RB
->covers(RC
))
139 // If nothing was set or the class is simply compatible, set it.
140 MRI
.setRegClass(Reg
, &RC
);
144 /// Check whether or not \p MI should be treated like a copy
145 /// for the mappings.
146 /// Copy like instruction are special for mapping because
147 /// they don't have actual register constraints. Moreover,
148 /// they sometimes have register classes assigned and we can
149 /// just use that instead of failing to provide a generic mapping.
150 static bool isCopyLike(const MachineInstr
&MI
) {
151 return MI
.isCopy() || MI
.isPHI() ||
152 MI
.getOpcode() == TargetOpcode::REG_SEQUENCE
;
155 const RegisterBankInfo::InstructionMapping
&
156 RegisterBankInfo::getInstrMappingImpl(const MachineInstr
&MI
) const {
157 // For copies we want to walk over the operands and try to find one
158 // that has a register bank since the instruction itself will not get
159 // us any constraint.
160 bool IsCopyLike
= isCopyLike(MI
);
161 // For copy like instruction, only the mapping of the definition
162 // is important. The rest is not constrained.
163 unsigned NumOperandsForMapping
= IsCopyLike
? 1 : MI
.getNumOperands();
165 const MachineFunction
&MF
= *MI
.getMF();
166 const TargetSubtargetInfo
&STI
= MF
.getSubtarget();
167 const TargetRegisterInfo
&TRI
= *STI
.getRegisterInfo();
168 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
169 // We may need to query the instruction encoding to guess the mapping.
170 const TargetInstrInfo
&TII
= *STI
.getInstrInfo();
172 // Before doing anything complicated check if the mapping is not
173 // directly available.
174 bool CompleteMapping
= true;
176 SmallVector
<const ValueMapping
*, 8> OperandsMapping(NumOperandsForMapping
);
177 for (unsigned OpIdx
= 0, EndIdx
= MI
.getNumOperands(); OpIdx
!= EndIdx
;
179 const MachineOperand
&MO
= MI
.getOperand(OpIdx
);
182 Register Reg
= MO
.getReg();
185 // The register bank of Reg is just a side effect of the current
186 // excution and in particular, there is no reason to believe this
187 // is the best default mapping for the current instruction. Keep
188 // it as an alternative register bank if we cannot figure out
190 const RegisterBank
*AltRegBank
= getRegBank(Reg
, MRI
, TRI
);
191 // For copy-like instruction, we want to reuse the register bank
192 // that is already set on Reg, if any, since those instructions do
193 // not have any constraints.
194 const RegisterBank
*CurRegBank
= IsCopyLike
? AltRegBank
: nullptr;
196 // If this is a target specific instruction, we can deduce
197 // the register bank from the encoding constraints.
198 CurRegBank
= getRegBankFromConstraints(MI
, OpIdx
, TII
, TRI
);
200 // All our attempts failed, give up.
201 CompleteMapping
= false;
204 // MI does not carry enough information to guess the mapping.
205 return getInvalidInstructionMapping();
210 unsigned Size
= getSizeInBits(Reg
, MRI
, TRI
);
211 const ValueMapping
*ValMapping
= &getValueMapping(0, Size
, *CurRegBank
);
213 if (!OperandsMapping
[0]) {
214 if (MI
.isRegSequence()) {
215 // For reg_sequence, the result size does not match the input.
216 unsigned ResultSize
= getSizeInBits(MI
.getOperand(0).getReg(),
218 OperandsMapping
[0] = &getValueMapping(0, ResultSize
, *CurRegBank
);
220 OperandsMapping
[0] = ValMapping
;
224 // The default handling assumes any register bank can be copied to any
225 // other. If this isn't the case, the target should specially deal with
226 // reg_sequence/phi. There may also be unsatisfiable copies.
227 for (; OpIdx
!= EndIdx
; ++OpIdx
) {
228 const MachineOperand
&MO
= MI
.getOperand(OpIdx
);
231 Register Reg
= MO
.getReg();
235 const RegisterBank
*AltRegBank
= getRegBank(Reg
, MRI
, TRI
);
237 cannotCopy(*CurRegBank
, *AltRegBank
, getSizeInBits(Reg
, MRI
, TRI
)))
238 return getInvalidInstructionMapping();
241 CompleteMapping
= true;
245 OperandsMapping
[OpIdx
] = ValMapping
;
248 if (IsCopyLike
&& !CompleteMapping
) {
249 // No way to deduce the type from what we have.
250 return getInvalidInstructionMapping();
253 assert(CompleteMapping
&& "Setting an uncomplete mapping");
254 return getInstructionMapping(
255 DefaultMappingID
, /*Cost*/ 1,
256 /*OperandsMapping*/ getOperandsMapping(OperandsMapping
),
257 NumOperandsForMapping
);
260 /// Hashing function for PartialMapping.
261 static hash_code
hashPartialMapping(unsigned StartIdx
, unsigned Length
,
262 const RegisterBank
*RegBank
) {
263 return hash_combine(StartIdx
, Length
, RegBank
? RegBank
->getID() : 0);
266 /// Overloaded version of hash_value for a PartialMapping.
268 llvm::hash_value(const RegisterBankInfo::PartialMapping
&PartMapping
) {
269 return hashPartialMapping(PartMapping
.StartIdx
, PartMapping
.Length
,
270 PartMapping
.RegBank
);
273 const RegisterBankInfo::PartialMapping
&
274 RegisterBankInfo::getPartialMapping(unsigned StartIdx
, unsigned Length
,
275 const RegisterBank
&RegBank
) const {
276 ++NumPartialMappingsAccessed
;
278 hash_code Hash
= hashPartialMapping(StartIdx
, Length
, &RegBank
);
279 const auto &It
= MapOfPartialMappings
.find(Hash
);
280 if (It
!= MapOfPartialMappings
.end())
283 ++NumPartialMappingsCreated
;
285 auto &PartMapping
= MapOfPartialMappings
[Hash
];
286 PartMapping
= std::make_unique
<PartialMapping
>(StartIdx
, Length
, RegBank
);
290 const RegisterBankInfo::ValueMapping
&
291 RegisterBankInfo::getValueMapping(unsigned StartIdx
, unsigned Length
,
292 const RegisterBank
&RegBank
) const {
293 return getValueMapping(&getPartialMapping(StartIdx
, Length
, RegBank
), 1);
297 hashValueMapping(const RegisterBankInfo::PartialMapping
*BreakDown
,
298 unsigned NumBreakDowns
) {
299 if (LLVM_LIKELY(NumBreakDowns
== 1))
300 return hash_value(*BreakDown
);
301 SmallVector
<size_t, 8> Hashes(NumBreakDowns
);
302 for (unsigned Idx
= 0; Idx
!= NumBreakDowns
; ++Idx
)
303 Hashes
.push_back(hash_value(BreakDown
[Idx
]));
304 return hash_combine_range(Hashes
.begin(), Hashes
.end());
307 const RegisterBankInfo::ValueMapping
&
308 RegisterBankInfo::getValueMapping(const PartialMapping
*BreakDown
,
309 unsigned NumBreakDowns
) const {
310 ++NumValueMappingsAccessed
;
312 hash_code Hash
= hashValueMapping(BreakDown
, NumBreakDowns
);
313 const auto &It
= MapOfValueMappings
.find(Hash
);
314 if (It
!= MapOfValueMappings
.end())
317 ++NumValueMappingsCreated
;
319 auto &ValMapping
= MapOfValueMappings
[Hash
];
320 ValMapping
= std::make_unique
<ValueMapping
>(BreakDown
, NumBreakDowns
);
324 template <typename Iterator
>
325 const RegisterBankInfo::ValueMapping
*
326 RegisterBankInfo::getOperandsMapping(Iterator Begin
, Iterator End
) const {
328 ++NumOperandsMappingsAccessed
;
330 // The addresses of the value mapping are unique.
331 // Therefore, we can use them directly to hash the operand mapping.
332 hash_code Hash
= hash_combine_range(Begin
, End
);
333 auto &Res
= MapOfOperandsMappings
[Hash
];
337 ++NumOperandsMappingsCreated
;
339 // Create the array of ValueMapping.
340 // Note: this array will not hash to this instance of operands
341 // mapping, because we use the pointer of the ValueMapping
342 // to hash and we expect them to uniquely identify an instance
344 Res
= std::make_unique
<ValueMapping
[]>(std::distance(Begin
, End
));
346 for (Iterator It
= Begin
; It
!= End
; ++It
, ++Idx
) {
347 const ValueMapping
*ValMap
= *It
;
355 const RegisterBankInfo::ValueMapping
*RegisterBankInfo::getOperandsMapping(
356 const SmallVectorImpl
<const RegisterBankInfo::ValueMapping
*> &OpdsMapping
)
358 return getOperandsMapping(OpdsMapping
.begin(), OpdsMapping
.end());
361 const RegisterBankInfo::ValueMapping
*RegisterBankInfo::getOperandsMapping(
362 std::initializer_list
<const RegisterBankInfo::ValueMapping
*> OpdsMapping
)
364 return getOperandsMapping(OpdsMapping
.begin(), OpdsMapping
.end());
368 hashInstructionMapping(unsigned ID
, unsigned Cost
,
369 const RegisterBankInfo::ValueMapping
*OperandsMapping
,
370 unsigned NumOperands
) {
371 return hash_combine(ID
, Cost
, OperandsMapping
, NumOperands
);
374 const RegisterBankInfo::InstructionMapping
&
375 RegisterBankInfo::getInstructionMappingImpl(
376 bool IsInvalid
, unsigned ID
, unsigned Cost
,
377 const RegisterBankInfo::ValueMapping
*OperandsMapping
,
378 unsigned NumOperands
) const {
379 assert(((IsInvalid
&& ID
== InvalidMappingID
&& Cost
== 0 &&
380 OperandsMapping
== nullptr && NumOperands
== 0) ||
382 "Mismatch argument for invalid input");
383 ++NumInstructionMappingsAccessed
;
386 hashInstructionMapping(ID
, Cost
, OperandsMapping
, NumOperands
);
387 const auto &It
= MapOfInstructionMappings
.find(Hash
);
388 if (It
!= MapOfInstructionMappings
.end())
391 ++NumInstructionMappingsCreated
;
393 auto &InstrMapping
= MapOfInstructionMappings
[Hash
];
394 InstrMapping
= std::make_unique
<InstructionMapping
>(
395 ID
, Cost
, OperandsMapping
, NumOperands
);
396 return *InstrMapping
;
399 const RegisterBankInfo::InstructionMapping
&
400 RegisterBankInfo::getInstrMapping(const MachineInstr
&MI
) const {
401 const RegisterBankInfo::InstructionMapping
&Mapping
= getInstrMappingImpl(MI
);
402 if (Mapping
.isValid())
404 llvm_unreachable("The target must implement this");
407 RegisterBankInfo::InstructionMappings
408 RegisterBankInfo::getInstrPossibleMappings(const MachineInstr
&MI
) const {
409 InstructionMappings PossibleMappings
;
410 const auto &Mapping
= getInstrMapping(MI
);
411 if (Mapping
.isValid()) {
412 // Put the default mapping first.
413 PossibleMappings
.push_back(&Mapping
);
416 // Then the alternative mapping, if any.
417 InstructionMappings AltMappings
= getInstrAlternativeMappings(MI
);
418 for (const InstructionMapping
*AltMapping
: AltMappings
)
419 PossibleMappings
.push_back(AltMapping
);
421 for (const InstructionMapping
*Mapping
: PossibleMappings
)
422 assert(Mapping
->verify(MI
) && "Mapping is invalid");
424 return PossibleMappings
;
427 RegisterBankInfo::InstructionMappings
428 RegisterBankInfo::getInstrAlternativeMappings(const MachineInstr
&MI
) const {
429 // No alternative for MI.
430 return InstructionMappings();
433 void RegisterBankInfo::applyDefaultMapping(const OperandsMapper
&OpdMapper
) {
434 MachineInstr
&MI
= OpdMapper
.getMI();
435 MachineRegisterInfo
&MRI
= OpdMapper
.getMRI();
436 LLVM_DEBUG(dbgs() << "Applying default-like mapping\n");
437 for (unsigned OpIdx
= 0,
438 EndIdx
= OpdMapper
.getInstrMapping().getNumOperands();
439 OpIdx
!= EndIdx
; ++OpIdx
) {
440 LLVM_DEBUG(dbgs() << "OpIdx " << OpIdx
);
441 MachineOperand
&MO
= MI
.getOperand(OpIdx
);
443 LLVM_DEBUG(dbgs() << " is not a register, nothing to be done\n");
447 LLVM_DEBUG(dbgs() << " is %%noreg, nothing to be done\n");
450 assert(OpdMapper
.getInstrMapping().getOperandMapping(OpIdx
).NumBreakDowns
!=
453 assert(OpdMapper
.getInstrMapping().getOperandMapping(OpIdx
).NumBreakDowns
==
455 "This mapping is too complex for this function");
456 iterator_range
<SmallVectorImpl
<Register
>::const_iterator
> NewRegs
=
457 OpdMapper
.getVRegs(OpIdx
);
458 if (empty(NewRegs
)) {
459 LLVM_DEBUG(dbgs() << " has not been repaired, nothing to be done\n");
462 Register OrigReg
= MO
.getReg();
463 Register NewReg
= *NewRegs
.begin();
464 LLVM_DEBUG(dbgs() << " changed, replace " << printReg(OrigReg
, nullptr));
466 LLVM_DEBUG(dbgs() << " with " << printReg(NewReg
, nullptr));
468 // The OperandsMapper creates plain scalar, we may have to fix that.
469 // Check if the types match and if not, fix that.
470 LLT OrigTy
= MRI
.getType(OrigReg
);
471 LLT NewTy
= MRI
.getType(NewReg
);
472 if (OrigTy
!= NewTy
) {
473 // The default mapping is not supposed to change the size of
474 // the storage. However, right now we don't necessarily bump all
475 // the types to storage size. For instance, we can consider
476 // s16 G_AND legal whereas the storage size is going to be 32.
477 assert(OrigTy
.getSizeInBits() <= NewTy
.getSizeInBits() &&
478 "Types with difference size cannot be handled by the default "
480 LLVM_DEBUG(dbgs() << "\nChange type of new opd from " << NewTy
<< " to "
482 MRI
.setType(NewReg
, OrigTy
);
484 LLVM_DEBUG(dbgs() << '\n');
488 unsigned RegisterBankInfo::getSizeInBits(Register Reg
,
489 const MachineRegisterInfo
&MRI
,
490 const TargetRegisterInfo
&TRI
) const {
491 if (Register::isPhysicalRegister(Reg
)) {
492 // The size is not directly available for physical registers.
493 // Instead, we need to access a register class that contains Reg and
494 // get the size of that register class.
495 // Because this is expensive, we'll cache the register class by calling
496 auto *RC
= &getMinimalPhysRegClass(Reg
, TRI
);
497 assert(RC
&& "Expecting Register class");
498 return TRI
.getRegSizeInBits(*RC
);
500 return TRI
.getRegSizeInBits(Reg
, MRI
);
503 //------------------------------------------------------------------------------
504 // Helper classes implementation.
505 //------------------------------------------------------------------------------
506 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
507 LLVM_DUMP_METHOD
void RegisterBankInfo::PartialMapping::dump() const {
513 bool RegisterBankInfo::PartialMapping::verify() const {
514 assert(RegBank
&& "Register bank not set");
515 assert(Length
&& "Empty mapping");
516 assert((StartIdx
<= getHighBitIdx()) && "Overflow, switch to APInt?");
517 // Check if the minimum width fits into RegBank.
518 assert(RegBank
->getSize() >= Length
&& "Register bank too small for Mask");
522 void RegisterBankInfo::PartialMapping::print(raw_ostream
&OS
) const {
523 OS
<< "[" << StartIdx
<< ", " << getHighBitIdx() << "], RegBank = ";
530 bool RegisterBankInfo::ValueMapping::partsAllUniform() const {
531 if (NumBreakDowns
< 2)
534 const PartialMapping
*First
= begin();
535 for (const PartialMapping
*Part
= First
+ 1; Part
!= end(); ++Part
) {
536 if (Part
->Length
!= First
->Length
|| Part
->RegBank
!= First
->RegBank
)
543 bool RegisterBankInfo::ValueMapping::verify(unsigned MeaningfulBitWidth
) const {
544 assert(NumBreakDowns
&& "Value mapped nowhere?!");
545 unsigned OrigValueBitWidth
= 0;
546 for (const RegisterBankInfo::PartialMapping
&PartMap
: *this) {
547 // Check that each register bank is big enough to hold the partial value:
548 // this check is done by PartialMapping::verify
549 assert(PartMap
.verify() && "Partial mapping is invalid");
550 // The original value should completely be mapped.
551 // Thus the maximum accessed index + 1 is the size of the original value.
553 std::max(OrigValueBitWidth
, PartMap
.getHighBitIdx() + 1);
555 assert(OrigValueBitWidth
>= MeaningfulBitWidth
&&
556 "Meaningful bits not covered by the mapping");
557 APInt
ValueMask(OrigValueBitWidth
, 0);
558 for (const RegisterBankInfo::PartialMapping
&PartMap
: *this) {
559 // Check that the union of the partial mappings covers the whole value,
561 // The high bit is exclusive in the APInt API, thus getHighBitIdx + 1.
562 APInt PartMapMask
= APInt::getBitsSet(OrigValueBitWidth
, PartMap
.StartIdx
,
563 PartMap
.getHighBitIdx() + 1);
564 ValueMask
^= PartMapMask
;
565 assert((ValueMask
& PartMapMask
) == PartMapMask
&&
566 "Some partial mappings overlap");
568 assert(ValueMask
.isAllOnesValue() && "Value is not fully mapped");
572 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
573 LLVM_DUMP_METHOD
void RegisterBankInfo::ValueMapping::dump() const {
579 void RegisterBankInfo::ValueMapping::print(raw_ostream
&OS
) const {
580 OS
<< "#BreakDown: " << NumBreakDowns
<< " ";
582 for (const PartialMapping
&PartMap
: *this) {
585 OS
<< '[' << PartMap
<< ']';
590 bool RegisterBankInfo::InstructionMapping::verify(
591 const MachineInstr
&MI
) const {
592 // Check that all the register operands are properly mapped.
593 // Check the constructor invariant.
594 // For PHI, we only care about mapping the definition.
595 assert(NumOperands
== (isCopyLike(MI
) ? 1 : MI
.getNumOperands()) &&
596 "NumOperands must match, see constructor");
597 assert(MI
.getParent() && MI
.getMF() &&
598 "MI must be connected to a MachineFunction");
599 const MachineFunction
&MF
= *MI
.getMF();
600 const RegisterBankInfo
*RBI
= MF
.getSubtarget().getRegBankInfo();
603 for (unsigned Idx
= 0; Idx
< NumOperands
; ++Idx
) {
604 const MachineOperand
&MO
= MI
.getOperand(Idx
);
606 assert(!getOperandMapping(Idx
).isValid() &&
607 "We should not care about non-reg mapping");
610 Register Reg
= MO
.getReg();
613 assert(getOperandMapping(Idx
).isValid() &&
614 "We must have a mapping for reg operands");
615 const RegisterBankInfo::ValueMapping
&MOMapping
= getOperandMapping(Idx
);
617 // Register size in bits.
618 // This size must match what the mapping expects.
619 assert(MOMapping
.verify(RBI
->getSizeInBits(
620 Reg
, MF
.getRegInfo(), *MF
.getSubtarget().getRegisterInfo())) &&
621 "Value mapping is invalid");
626 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
627 LLVM_DUMP_METHOD
void RegisterBankInfo::InstructionMapping::dump() const {
633 void RegisterBankInfo::InstructionMapping::print(raw_ostream
&OS
) const {
634 OS
<< "ID: " << getID() << " Cost: " << getCost() << " Mapping: ";
636 for (unsigned OpIdx
= 0; OpIdx
!= NumOperands
; ++OpIdx
) {
637 const ValueMapping
&ValMapping
= getOperandMapping(OpIdx
);
640 OS
<< "{ Idx: " << OpIdx
<< " Map: " << ValMapping
<< '}';
644 const int RegisterBankInfo::OperandsMapper::DontKnowIdx
= -1;
646 RegisterBankInfo::OperandsMapper::OperandsMapper(
647 MachineInstr
&MI
, const InstructionMapping
&InstrMapping
,
648 MachineRegisterInfo
&MRI
)
649 : MRI(MRI
), MI(MI
), InstrMapping(InstrMapping
) {
650 unsigned NumOpds
= InstrMapping
.getNumOperands();
651 OpToNewVRegIdx
.resize(NumOpds
, OperandsMapper::DontKnowIdx
);
652 assert(InstrMapping
.verify(MI
) && "Invalid mapping for MI");
655 iterator_range
<SmallVectorImpl
<Register
>::iterator
>
656 RegisterBankInfo::OperandsMapper::getVRegsMem(unsigned OpIdx
) {
657 assert(OpIdx
< getInstrMapping().getNumOperands() && "Out-of-bound access");
658 unsigned NumPartialVal
=
659 getInstrMapping().getOperandMapping(OpIdx
).NumBreakDowns
;
660 int StartIdx
= OpToNewVRegIdx
[OpIdx
];
662 if (StartIdx
== OperandsMapper::DontKnowIdx
) {
663 // This is the first time we try to access OpIdx.
664 // Create the cells that will hold all the partial values at the
665 // end of the list of NewVReg.
666 StartIdx
= NewVRegs
.size();
667 OpToNewVRegIdx
[OpIdx
] = StartIdx
;
668 for (unsigned i
= 0; i
< NumPartialVal
; ++i
)
669 NewVRegs
.push_back(0);
671 SmallVectorImpl
<Register
>::iterator End
=
672 getNewVRegsEnd(StartIdx
, NumPartialVal
);
674 return make_range(&NewVRegs
[StartIdx
], End
);
677 SmallVectorImpl
<Register
>::const_iterator
678 RegisterBankInfo::OperandsMapper::getNewVRegsEnd(unsigned StartIdx
,
679 unsigned NumVal
) const {
680 return const_cast<OperandsMapper
*>(this)->getNewVRegsEnd(StartIdx
, NumVal
);
682 SmallVectorImpl
<Register
>::iterator
683 RegisterBankInfo::OperandsMapper::getNewVRegsEnd(unsigned StartIdx
,
685 assert((NewVRegs
.size() == StartIdx
+ NumVal
||
686 NewVRegs
.size() > StartIdx
+ NumVal
) &&
687 "NewVRegs too small to contain all the partial mapping");
688 return NewVRegs
.size() <= StartIdx
+ NumVal
? NewVRegs
.end()
689 : &NewVRegs
[StartIdx
+ NumVal
];
692 void RegisterBankInfo::OperandsMapper::createVRegs(unsigned OpIdx
) {
693 assert(OpIdx
< getInstrMapping().getNumOperands() && "Out-of-bound access");
694 iterator_range
<SmallVectorImpl
<Register
>::iterator
> NewVRegsForOpIdx
=
696 const ValueMapping
&ValMapping
= getInstrMapping().getOperandMapping(OpIdx
);
697 const PartialMapping
*PartMap
= ValMapping
.begin();
698 for (Register
&NewVReg
: NewVRegsForOpIdx
) {
699 assert(PartMap
!= ValMapping
.end() && "Out-of-bound access");
700 assert(NewVReg
== 0 && "Register has already been created");
701 // The new registers are always bound to scalar with the right size.
702 // The actual type has to be set when the target does the mapping
703 // of the instruction.
704 // The rationale is that this generic code cannot guess how the
705 // target plans to split the input type.
706 NewVReg
= MRI
.createGenericVirtualRegister(LLT::scalar(PartMap
->Length
));
707 MRI
.setRegBank(NewVReg
, *PartMap
->RegBank
);
712 void RegisterBankInfo::OperandsMapper::setVRegs(unsigned OpIdx
,
713 unsigned PartialMapIdx
,
715 assert(OpIdx
< getInstrMapping().getNumOperands() && "Out-of-bound access");
716 assert(getInstrMapping().getOperandMapping(OpIdx
).NumBreakDowns
>
718 "Out-of-bound access for partial mapping");
719 // Make sure the memory is initialized for that operand.
720 (void)getVRegsMem(OpIdx
);
721 assert(NewVRegs
[OpToNewVRegIdx
[OpIdx
] + PartialMapIdx
] == 0 &&
722 "This value is already set");
723 NewVRegs
[OpToNewVRegIdx
[OpIdx
] + PartialMapIdx
] = NewVReg
;
726 iterator_range
<SmallVectorImpl
<Register
>::const_iterator
>
727 RegisterBankInfo::OperandsMapper::getVRegs(unsigned OpIdx
,
728 bool ForDebug
) const {
730 assert(OpIdx
< getInstrMapping().getNumOperands() && "Out-of-bound access");
731 int StartIdx
= OpToNewVRegIdx
[OpIdx
];
733 if (StartIdx
== OperandsMapper::DontKnowIdx
)
734 return make_range(NewVRegs
.end(), NewVRegs
.end());
736 unsigned PartMapSize
=
737 getInstrMapping().getOperandMapping(OpIdx
).NumBreakDowns
;
738 SmallVectorImpl
<Register
>::const_iterator End
=
739 getNewVRegsEnd(StartIdx
, PartMapSize
);
740 iterator_range
<SmallVectorImpl
<Register
>::const_iterator
> Res
=
741 make_range(&NewVRegs
[StartIdx
], End
);
743 for (Register VReg
: Res
)
744 assert((VReg
|| ForDebug
) && "Some registers are uninitialized");
749 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
750 LLVM_DUMP_METHOD
void RegisterBankInfo::OperandsMapper::dump() const {
756 void RegisterBankInfo::OperandsMapper::print(raw_ostream
&OS
,
757 bool ForDebug
) const {
758 unsigned NumOpds
= getInstrMapping().getNumOperands();
760 OS
<< "Mapping for " << getMI() << "\nwith " << getInstrMapping() << '\n';
761 // Print out the internal state of the index table.
762 OS
<< "Populated indices (CellNumber, IndexInNewVRegs): ";
764 for (unsigned Idx
= 0; Idx
!= NumOpds
; ++Idx
) {
765 if (OpToNewVRegIdx
[Idx
] != DontKnowIdx
) {
768 OS
<< '(' << Idx
<< ", " << OpToNewVRegIdx
[Idx
] << ')';
774 OS
<< "Mapping ID: " << getInstrMapping().getID() << ' ';
776 OS
<< "Operand Mapping: ";
777 // If we have a function, we can pretty print the name of the registers.
778 // Otherwise we will print the raw numbers.
779 const TargetRegisterInfo
*TRI
=
780 getMI().getParent() && getMI().getMF()
781 ? getMI().getMF()->getSubtarget().getRegisterInfo()
784 for (unsigned Idx
= 0; Idx
!= NumOpds
; ++Idx
) {
785 if (OpToNewVRegIdx
[Idx
] == DontKnowIdx
)
790 OS
<< '(' << printReg(getMI().getOperand(Idx
).getReg(), TRI
) << ", [";
791 bool IsFirstNewVReg
= true;
792 for (Register VReg
: getVRegs(Idx
)) {
795 IsFirstNewVReg
= false;
796 OS
<< printReg(VReg
, TRI
);