[x86] fix assert with horizontal math + broadcast of vector (PR43402)
[llvm-core.git] / lib / CodeGen / MachineLICM.cpp
blob15c38da2fb9087f8734837390a5d003d98facef6
1 //===- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs loop invariant code motion on machine instructions. We
10 // attempt to remove as much code from the body of a loop as possible.
12 // This pass is not intended to be a replacement or a complete alternative
13 // for the LLVM-IR-level LICM pass. It is only designed to hoist simple
14 // constructs that are not exposed before lowering and instruction selection.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineDominators.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineLoopInfo.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/PseudoSourceValue.h"
36 #include "llvm/CodeGen/TargetInstrInfo.h"
37 #include "llvm/CodeGen/TargetLowering.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSchedule.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/MC/MCInstrDesc.h"
43 #include "llvm/MC/MCRegisterInfo.h"
44 #include "llvm/Pass.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <limits>
52 #include <vector>
54 using namespace llvm;
56 #define DEBUG_TYPE "machinelicm"
58 static cl::opt<bool>
59 AvoidSpeculation("avoid-speculation",
60 cl::desc("MachineLICM should avoid speculation"),
61 cl::init(true), cl::Hidden);
63 static cl::opt<bool>
64 HoistCheapInsts("hoist-cheap-insts",
65 cl::desc("MachineLICM should hoist even cheap instructions"),
66 cl::init(false), cl::Hidden);
68 static cl::opt<bool>
69 SinkInstsToAvoidSpills("sink-insts-to-avoid-spills",
70 cl::desc("MachineLICM should sink instructions into "
71 "loops to avoid register spills"),
72 cl::init(false), cl::Hidden);
73 static cl::opt<bool>
74 HoistConstStores("hoist-const-stores",
75 cl::desc("Hoist invariant stores"),
76 cl::init(true), cl::Hidden);
78 STATISTIC(NumHoisted,
79 "Number of machine instructions hoisted out of loops");
80 STATISTIC(NumLowRP,
81 "Number of instructions hoisted in low reg pressure situation");
82 STATISTIC(NumHighLatency,
83 "Number of high latency instructions hoisted");
84 STATISTIC(NumCSEed,
85 "Number of hoisted machine instructions CSEed");
86 STATISTIC(NumPostRAHoisted,
87 "Number of machine instructions hoisted out of loops post regalloc");
88 STATISTIC(NumStoreConst,
89 "Number of stores of const phys reg hoisted out of loops");
91 namespace {
93 class MachineLICMBase : public MachineFunctionPass {
94 const TargetInstrInfo *TII;
95 const TargetLoweringBase *TLI;
96 const TargetRegisterInfo *TRI;
97 const MachineFrameInfo *MFI;
98 MachineRegisterInfo *MRI;
99 TargetSchedModel SchedModel;
100 bool PreRegAlloc;
102 // Various analyses that we use...
103 AliasAnalysis *AA; // Alias analysis info.
104 MachineLoopInfo *MLI; // Current MachineLoopInfo
105 MachineDominatorTree *DT; // Machine dominator tree for the cur loop
107 // State that is updated as we process loops
108 bool Changed; // True if a loop is changed.
109 bool FirstInLoop; // True if it's the first LICM in the loop.
110 MachineLoop *CurLoop; // The current loop we are working on.
111 MachineBasicBlock *CurPreheader; // The preheader for CurLoop.
113 // Exit blocks for CurLoop.
114 SmallVector<MachineBasicBlock *, 8> ExitBlocks;
116 bool isExitBlock(const MachineBasicBlock *MBB) const {
117 return is_contained(ExitBlocks, MBB);
120 // Track 'estimated' register pressure.
121 SmallSet<unsigned, 32> RegSeen;
122 SmallVector<unsigned, 8> RegPressure;
124 // Register pressure "limit" per register pressure set. If the pressure
125 // is higher than the limit, then it's considered high.
126 SmallVector<unsigned, 8> RegLimit;
128 // Register pressure on path leading from loop preheader to current BB.
129 SmallVector<SmallVector<unsigned, 8>, 16> BackTrace;
131 // For each opcode, keep a list of potential CSE instructions.
132 DenseMap<unsigned, std::vector<const MachineInstr *>> CSEMap;
134 enum {
135 SpeculateFalse = 0,
136 SpeculateTrue = 1,
137 SpeculateUnknown = 2
140 // If a MBB does not dominate loop exiting blocks then it may not safe
141 // to hoist loads from this block.
142 // Tri-state: 0 - false, 1 - true, 2 - unknown
143 unsigned SpeculationState;
145 public:
146 MachineLICMBase(char &PassID, bool PreRegAlloc)
147 : MachineFunctionPass(PassID), PreRegAlloc(PreRegAlloc) {}
149 bool runOnMachineFunction(MachineFunction &MF) override;
151 void getAnalysisUsage(AnalysisUsage &AU) const override {
152 AU.addRequired<MachineLoopInfo>();
153 AU.addRequired<MachineDominatorTree>();
154 AU.addRequired<AAResultsWrapperPass>();
155 AU.addPreserved<MachineLoopInfo>();
156 AU.addPreserved<MachineDominatorTree>();
157 MachineFunctionPass::getAnalysisUsage(AU);
160 void releaseMemory() override {
161 RegSeen.clear();
162 RegPressure.clear();
163 RegLimit.clear();
164 BackTrace.clear();
165 CSEMap.clear();
168 private:
169 /// Keep track of information about hoisting candidates.
170 struct CandidateInfo {
171 MachineInstr *MI;
172 unsigned Def;
173 int FI;
175 CandidateInfo(MachineInstr *mi, unsigned def, int fi)
176 : MI(mi), Def(def), FI(fi) {}
179 void HoistRegionPostRA();
181 void HoistPostRA(MachineInstr *MI, unsigned Def);
183 void ProcessMI(MachineInstr *MI, BitVector &PhysRegDefs,
184 BitVector &PhysRegClobbers, SmallSet<int, 32> &StoredFIs,
185 SmallVectorImpl<CandidateInfo> &Candidates);
187 void AddToLiveIns(unsigned Reg);
189 bool IsLICMCandidate(MachineInstr &I);
191 bool IsLoopInvariantInst(MachineInstr &I);
193 bool HasLoopPHIUse(const MachineInstr *MI) const;
195 bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx,
196 unsigned Reg) const;
198 bool IsCheapInstruction(MachineInstr &MI) const;
200 bool CanCauseHighRegPressure(const DenseMap<unsigned, int> &Cost,
201 bool Cheap);
203 void UpdateBackTraceRegPressure(const MachineInstr *MI);
205 bool IsProfitableToHoist(MachineInstr &MI);
207 bool IsGuaranteedToExecute(MachineBasicBlock *BB);
209 void EnterScope(MachineBasicBlock *MBB);
211 void ExitScope(MachineBasicBlock *MBB);
213 void ExitScopeIfDone(
214 MachineDomTreeNode *Node,
215 DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren,
216 DenseMap<MachineDomTreeNode *, MachineDomTreeNode *> &ParentMap);
218 void HoistOutOfLoop(MachineDomTreeNode *HeaderN);
220 void HoistRegion(MachineDomTreeNode *N, bool IsHeader);
222 void SinkIntoLoop();
224 void InitRegPressure(MachineBasicBlock *BB);
226 DenseMap<unsigned, int> calcRegisterCost(const MachineInstr *MI,
227 bool ConsiderSeen,
228 bool ConsiderUnseenAsDef);
230 void UpdateRegPressure(const MachineInstr *MI,
231 bool ConsiderUnseenAsDef = false);
233 MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
235 const MachineInstr *
236 LookForDuplicate(const MachineInstr *MI,
237 std::vector<const MachineInstr *> &PrevMIs);
239 bool EliminateCSE(
240 MachineInstr *MI,
241 DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator &CI);
243 bool MayCSE(MachineInstr *MI);
245 bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader);
247 void InitCSEMap(MachineBasicBlock *BB);
249 MachineBasicBlock *getCurPreheader();
252 class MachineLICM : public MachineLICMBase {
253 public:
254 static char ID;
255 MachineLICM() : MachineLICMBase(ID, false) {
256 initializeMachineLICMPass(*PassRegistry::getPassRegistry());
260 class EarlyMachineLICM : public MachineLICMBase {
261 public:
262 static char ID;
263 EarlyMachineLICM() : MachineLICMBase(ID, true) {
264 initializeEarlyMachineLICMPass(*PassRegistry::getPassRegistry());
268 } // end anonymous namespace
270 char MachineLICM::ID;
271 char EarlyMachineLICM::ID;
273 char &llvm::MachineLICMID = MachineLICM::ID;
274 char &llvm::EarlyMachineLICMID = EarlyMachineLICM::ID;
276 INITIALIZE_PASS_BEGIN(MachineLICM, DEBUG_TYPE,
277 "Machine Loop Invariant Code Motion", false, false)
278 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
279 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
280 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
281 INITIALIZE_PASS_END(MachineLICM, DEBUG_TYPE,
282 "Machine Loop Invariant Code Motion", false, false)
284 INITIALIZE_PASS_BEGIN(EarlyMachineLICM, "early-machinelicm",
285 "Early Machine Loop Invariant Code Motion", false, false)
286 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
287 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
288 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
289 INITIALIZE_PASS_END(EarlyMachineLICM, "early-machinelicm",
290 "Early Machine Loop Invariant Code Motion", false, false)
292 /// Test if the given loop is the outer-most loop that has a unique predecessor.
293 static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) {
294 // Check whether this loop even has a unique predecessor.
295 if (!CurLoop->getLoopPredecessor())
296 return false;
297 // Ok, now check to see if any of its outer loops do.
298 for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
299 if (L->getLoopPredecessor())
300 return false;
301 // None of them did, so this is the outermost with a unique predecessor.
302 return true;
305 bool MachineLICMBase::runOnMachineFunction(MachineFunction &MF) {
306 if (skipFunction(MF.getFunction()))
307 return false;
309 Changed = FirstInLoop = false;
310 const TargetSubtargetInfo &ST = MF.getSubtarget();
311 TII = ST.getInstrInfo();
312 TLI = ST.getTargetLowering();
313 TRI = ST.getRegisterInfo();
314 MFI = &MF.getFrameInfo();
315 MRI = &MF.getRegInfo();
316 SchedModel.init(&ST);
318 PreRegAlloc = MRI->isSSA();
320 if (PreRegAlloc)
321 LLVM_DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: ");
322 else
323 LLVM_DEBUG(dbgs() << "******** Post-regalloc Machine LICM: ");
324 LLVM_DEBUG(dbgs() << MF.getName() << " ********\n");
326 if (PreRegAlloc) {
327 // Estimate register pressure during pre-regalloc pass.
328 unsigned NumRPS = TRI->getNumRegPressureSets();
329 RegPressure.resize(NumRPS);
330 std::fill(RegPressure.begin(), RegPressure.end(), 0);
331 RegLimit.resize(NumRPS);
332 for (unsigned i = 0, e = NumRPS; i != e; ++i)
333 RegLimit[i] = TRI->getRegPressureSetLimit(MF, i);
336 // Get our Loop information...
337 MLI = &getAnalysis<MachineLoopInfo>();
338 DT = &getAnalysis<MachineDominatorTree>();
339 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
341 SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end());
342 while (!Worklist.empty()) {
343 CurLoop = Worklist.pop_back_val();
344 CurPreheader = nullptr;
345 ExitBlocks.clear();
347 // If this is done before regalloc, only visit outer-most preheader-sporting
348 // loops.
349 if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) {
350 Worklist.append(CurLoop->begin(), CurLoop->end());
351 continue;
354 CurLoop->getExitBlocks(ExitBlocks);
356 if (!PreRegAlloc)
357 HoistRegionPostRA();
358 else {
359 // CSEMap is initialized for loop header when the first instruction is
360 // being hoisted.
361 MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader());
362 FirstInLoop = true;
363 HoistOutOfLoop(N);
364 CSEMap.clear();
366 if (SinkInstsToAvoidSpills)
367 SinkIntoLoop();
371 return Changed;
374 /// Return true if instruction stores to the specified frame.
375 static bool InstructionStoresToFI(const MachineInstr *MI, int FI) {
376 // Check mayStore before memory operands so that e.g. DBG_VALUEs will return
377 // true since they have no memory operands.
378 if (!MI->mayStore())
379 return false;
380 // If we lost memory operands, conservatively assume that the instruction
381 // writes to all slots.
382 if (MI->memoperands_empty())
383 return true;
384 for (const MachineMemOperand *MemOp : MI->memoperands()) {
385 if (!MemOp->isStore() || !MemOp->getPseudoValue())
386 continue;
387 if (const FixedStackPseudoSourceValue *Value =
388 dyn_cast<FixedStackPseudoSourceValue>(MemOp->getPseudoValue())) {
389 if (Value->getFrameIndex() == FI)
390 return true;
393 return false;
396 /// Examine the instruction for potentai LICM candidate. Also
397 /// gather register def and frame object update information.
398 void MachineLICMBase::ProcessMI(MachineInstr *MI,
399 BitVector &PhysRegDefs,
400 BitVector &PhysRegClobbers,
401 SmallSet<int, 32> &StoredFIs,
402 SmallVectorImpl<CandidateInfo> &Candidates) {
403 bool RuledOut = false;
404 bool HasNonInvariantUse = false;
405 unsigned Def = 0;
406 for (const MachineOperand &MO : MI->operands()) {
407 if (MO.isFI()) {
408 // Remember if the instruction stores to the frame index.
409 int FI = MO.getIndex();
410 if (!StoredFIs.count(FI) &&
411 MFI->isSpillSlotObjectIndex(FI) &&
412 InstructionStoresToFI(MI, FI))
413 StoredFIs.insert(FI);
414 HasNonInvariantUse = true;
415 continue;
418 // We can't hoist an instruction defining a physreg that is clobbered in
419 // the loop.
420 if (MO.isRegMask()) {
421 PhysRegClobbers.setBitsNotInMask(MO.getRegMask());
422 continue;
425 if (!MO.isReg())
426 continue;
427 Register Reg = MO.getReg();
428 if (!Reg)
429 continue;
430 assert(Register::isPhysicalRegister(Reg) &&
431 "Not expecting virtual register!");
433 if (!MO.isDef()) {
434 if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg)))
435 // If it's using a non-loop-invariant register, then it's obviously not
436 // safe to hoist.
437 HasNonInvariantUse = true;
438 continue;
441 if (MO.isImplicit()) {
442 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
443 PhysRegClobbers.set(*AI);
444 if (!MO.isDead())
445 // Non-dead implicit def? This cannot be hoisted.
446 RuledOut = true;
447 // No need to check if a dead implicit def is also defined by
448 // another instruction.
449 continue;
452 // FIXME: For now, avoid instructions with multiple defs, unless
453 // it's a dead implicit def.
454 if (Def)
455 RuledOut = true;
456 else
457 Def = Reg;
459 // If we have already seen another instruction that defines the same
460 // register, then this is not safe. Two defs is indicated by setting a
461 // PhysRegClobbers bit.
462 for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) {
463 if (PhysRegDefs.test(*AS))
464 PhysRegClobbers.set(*AS);
466 // Need a second loop because MCRegAliasIterator can visit the same
467 // register twice.
468 for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS)
469 PhysRegDefs.set(*AS);
471 if (PhysRegClobbers.test(Reg))
472 // MI defined register is seen defined by another instruction in
473 // the loop, it cannot be a LICM candidate.
474 RuledOut = true;
477 // Only consider reloads for now and remats which do not have register
478 // operands. FIXME: Consider unfold load folding instructions.
479 if (Def && !RuledOut) {
480 int FI = std::numeric_limits<int>::min();
481 if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) ||
482 (TII->isLoadFromStackSlot(*MI, FI) && MFI->isSpillSlotObjectIndex(FI)))
483 Candidates.push_back(CandidateInfo(MI, Def, FI));
487 /// Walk the specified region of the CFG and hoist loop invariants out to the
488 /// preheader.
489 void MachineLICMBase::HoistRegionPostRA() {
490 MachineBasicBlock *Preheader = getCurPreheader();
491 if (!Preheader)
492 return;
494 unsigned NumRegs = TRI->getNumRegs();
495 BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop.
496 BitVector PhysRegClobbers(NumRegs); // Regs defined more than once.
498 SmallVector<CandidateInfo, 32> Candidates;
499 SmallSet<int, 32> StoredFIs;
501 // Walk the entire region, count number of defs for each register, and
502 // collect potential LICM candidates.
503 for (MachineBasicBlock *BB : CurLoop->getBlocks()) {
504 // If the header of the loop containing this basic block is a landing pad,
505 // then don't try to hoist instructions out of this loop.
506 const MachineLoop *ML = MLI->getLoopFor(BB);
507 if (ML && ML->getHeader()->isEHPad()) continue;
509 // Conservatively treat live-in's as an external def.
510 // FIXME: That means a reload that're reused in successor block(s) will not
511 // be LICM'ed.
512 for (const auto &LI : BB->liveins()) {
513 for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI)
514 PhysRegDefs.set(*AI);
517 SpeculationState = SpeculateUnknown;
518 for (MachineInstr &MI : *BB)
519 ProcessMI(&MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates);
522 // Gather the registers read / clobbered by the terminator.
523 BitVector TermRegs(NumRegs);
524 MachineBasicBlock::iterator TI = Preheader->getFirstTerminator();
525 if (TI != Preheader->end()) {
526 for (const MachineOperand &MO : TI->operands()) {
527 if (!MO.isReg())
528 continue;
529 Register Reg = MO.getReg();
530 if (!Reg)
531 continue;
532 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
533 TermRegs.set(*AI);
537 // Now evaluate whether the potential candidates qualify.
538 // 1. Check if the candidate defined register is defined by another
539 // instruction in the loop.
540 // 2. If the candidate is a load from stack slot (always true for now),
541 // check if the slot is stored anywhere in the loop.
542 // 3. Make sure candidate def should not clobber
543 // registers read by the terminator. Similarly its def should not be
544 // clobbered by the terminator.
545 for (CandidateInfo &Candidate : Candidates) {
546 if (Candidate.FI != std::numeric_limits<int>::min() &&
547 StoredFIs.count(Candidate.FI))
548 continue;
550 unsigned Def = Candidate.Def;
551 if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) {
552 bool Safe = true;
553 MachineInstr *MI = Candidate.MI;
554 for (const MachineOperand &MO : MI->operands()) {
555 if (!MO.isReg() || MO.isDef() || !MO.getReg())
556 continue;
557 Register Reg = MO.getReg();
558 if (PhysRegDefs.test(Reg) ||
559 PhysRegClobbers.test(Reg)) {
560 // If it's using a non-loop-invariant register, then it's obviously
561 // not safe to hoist.
562 Safe = false;
563 break;
566 if (Safe)
567 HoistPostRA(MI, Candidate.Def);
572 /// Add register 'Reg' to the livein sets of BBs in the current loop, and make
573 /// sure it is not killed by any instructions in the loop.
574 void MachineLICMBase::AddToLiveIns(unsigned Reg) {
575 for (MachineBasicBlock *BB : CurLoop->getBlocks()) {
576 if (!BB->isLiveIn(Reg))
577 BB->addLiveIn(Reg);
578 for (MachineInstr &MI : *BB) {
579 for (MachineOperand &MO : MI.operands()) {
580 if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue;
581 if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg()))
582 MO.setIsKill(false);
588 /// When an instruction is found to only use loop invariant operands that is
589 /// safe to hoist, this instruction is called to do the dirty work.
590 void MachineLICMBase::HoistPostRA(MachineInstr *MI, unsigned Def) {
591 MachineBasicBlock *Preheader = getCurPreheader();
593 // Now move the instructions to the predecessor, inserting it before any
594 // terminator instructions.
595 LLVM_DEBUG(dbgs() << "Hoisting to " << printMBBReference(*Preheader)
596 << " from " << printMBBReference(*MI->getParent()) << ": "
597 << *MI);
599 // Splice the instruction to the preheader.
600 MachineBasicBlock *MBB = MI->getParent();
601 Preheader->splice(Preheader->getFirstTerminator(), MBB, MI);
603 // Add register to livein list to all the BBs in the current loop since a
604 // loop invariant must be kept live throughout the whole loop. This is
605 // important to ensure later passes do not scavenge the def register.
606 AddToLiveIns(Def);
608 ++NumPostRAHoisted;
609 Changed = true;
612 /// Check if this mbb is guaranteed to execute. If not then a load from this mbb
613 /// may not be safe to hoist.
614 bool MachineLICMBase::IsGuaranteedToExecute(MachineBasicBlock *BB) {
615 if (SpeculationState != SpeculateUnknown)
616 return SpeculationState == SpeculateFalse;
618 if (BB != CurLoop->getHeader()) {
619 // Check loop exiting blocks.
620 SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks;
621 CurLoop->getExitingBlocks(CurrentLoopExitingBlocks);
622 for (MachineBasicBlock *CurrentLoopExitingBlock : CurrentLoopExitingBlocks)
623 if (!DT->dominates(BB, CurrentLoopExitingBlock)) {
624 SpeculationState = SpeculateTrue;
625 return false;
629 SpeculationState = SpeculateFalse;
630 return true;
633 void MachineLICMBase::EnterScope(MachineBasicBlock *MBB) {
634 LLVM_DEBUG(dbgs() << "Entering " << printMBBReference(*MBB) << '\n');
636 // Remember livein register pressure.
637 BackTrace.push_back(RegPressure);
640 void MachineLICMBase::ExitScope(MachineBasicBlock *MBB) {
641 LLVM_DEBUG(dbgs() << "Exiting " << printMBBReference(*MBB) << '\n');
642 BackTrace.pop_back();
645 /// Destroy scope for the MBB that corresponds to the given dominator tree node
646 /// if its a leaf or all of its children are done. Walk up the dominator tree to
647 /// destroy ancestors which are now done.
648 void MachineLICMBase::ExitScopeIfDone(MachineDomTreeNode *Node,
649 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
650 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) {
651 if (OpenChildren[Node])
652 return;
654 // Pop scope.
655 ExitScope(Node->getBlock());
657 // Now traverse upwards to pop ancestors whose offsprings are all done.
658 while (MachineDomTreeNode *Parent = ParentMap[Node]) {
659 unsigned Left = --OpenChildren[Parent];
660 if (Left != 0)
661 break;
662 ExitScope(Parent->getBlock());
663 Node = Parent;
667 /// Walk the specified loop in the CFG (defined by all blocks dominated by the
668 /// specified header block, and that are in the current loop) in depth first
669 /// order w.r.t the DominatorTree. This allows us to visit definitions before
670 /// uses, allowing us to hoist a loop body in one pass without iteration.
671 void MachineLICMBase::HoistOutOfLoop(MachineDomTreeNode *HeaderN) {
672 MachineBasicBlock *Preheader = getCurPreheader();
673 if (!Preheader)
674 return;
676 SmallVector<MachineDomTreeNode*, 32> Scopes;
677 SmallVector<MachineDomTreeNode*, 8> WorkList;
678 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap;
679 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
681 // Perform a DFS walk to determine the order of visit.
682 WorkList.push_back(HeaderN);
683 while (!WorkList.empty()) {
684 MachineDomTreeNode *Node = WorkList.pop_back_val();
685 assert(Node && "Null dominator tree node?");
686 MachineBasicBlock *BB = Node->getBlock();
688 // If the header of the loop containing this basic block is a landing pad,
689 // then don't try to hoist instructions out of this loop.
690 const MachineLoop *ML = MLI->getLoopFor(BB);
691 if (ML && ML->getHeader()->isEHPad())
692 continue;
694 // If this subregion is not in the top level loop at all, exit.
695 if (!CurLoop->contains(BB))
696 continue;
698 Scopes.push_back(Node);
699 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
700 unsigned NumChildren = Children.size();
702 // Don't hoist things out of a large switch statement. This often causes
703 // code to be hoisted that wasn't going to be executed, and increases
704 // register pressure in a situation where it's likely to matter.
705 if (BB->succ_size() >= 25)
706 NumChildren = 0;
708 OpenChildren[Node] = NumChildren;
709 // Add children in reverse order as then the next popped worklist node is
710 // the first child of this node. This means we ultimately traverse the
711 // DOM tree in exactly the same order as if we'd recursed.
712 for (int i = (int)NumChildren-1; i >= 0; --i) {
713 MachineDomTreeNode *Child = Children[i];
714 ParentMap[Child] = Node;
715 WorkList.push_back(Child);
719 if (Scopes.size() == 0)
720 return;
722 // Compute registers which are livein into the loop headers.
723 RegSeen.clear();
724 BackTrace.clear();
725 InitRegPressure(Preheader);
727 // Now perform LICM.
728 for (MachineDomTreeNode *Node : Scopes) {
729 MachineBasicBlock *MBB = Node->getBlock();
731 EnterScope(MBB);
733 // Process the block
734 SpeculationState = SpeculateUnknown;
735 for (MachineBasicBlock::iterator
736 MII = MBB->begin(), E = MBB->end(); MII != E; ) {
737 MachineBasicBlock::iterator NextMII = MII; ++NextMII;
738 MachineInstr *MI = &*MII;
739 if (!Hoist(MI, Preheader))
740 UpdateRegPressure(MI);
741 // If we have hoisted an instruction that may store, it can only be a
742 // constant store.
743 MII = NextMII;
746 // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
747 ExitScopeIfDone(Node, OpenChildren, ParentMap);
751 /// Sink instructions into loops if profitable. This especially tries to prevent
752 /// register spills caused by register pressure if there is little to no
753 /// overhead moving instructions into loops.
754 void MachineLICMBase::SinkIntoLoop() {
755 MachineBasicBlock *Preheader = getCurPreheader();
756 if (!Preheader)
757 return;
759 SmallVector<MachineInstr *, 8> Candidates;
760 for (MachineBasicBlock::instr_iterator I = Preheader->instr_begin();
761 I != Preheader->instr_end(); ++I) {
762 // We need to ensure that we can safely move this instruction into the loop.
763 // As such, it must not have side-effects, e.g. such as a call has.
764 if (IsLoopInvariantInst(*I) && !HasLoopPHIUse(&*I))
765 Candidates.push_back(&*I);
768 for (MachineInstr *I : Candidates) {
769 const MachineOperand &MO = I->getOperand(0);
770 if (!MO.isDef() || !MO.isReg() || !MO.getReg())
771 continue;
772 if (!MRI->hasOneDef(MO.getReg()))
773 continue;
774 bool CanSink = true;
775 MachineBasicBlock *B = nullptr;
776 for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) {
777 // FIXME: Come up with a proper cost model that estimates whether sinking
778 // the instruction (and thus possibly executing it on every loop
779 // iteration) is more expensive than a register.
780 // For now assumes that copies are cheap and thus almost always worth it.
781 if (!MI.isCopy()) {
782 CanSink = false;
783 break;
785 if (!B) {
786 B = MI.getParent();
787 continue;
789 B = DT->findNearestCommonDominator(B, MI.getParent());
790 if (!B) {
791 CanSink = false;
792 break;
795 if (!CanSink || !B || B == Preheader)
796 continue;
797 B->splice(B->getFirstNonPHI(), Preheader, I);
801 static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) {
802 return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg());
805 /// Find all virtual register references that are liveout of the preheader to
806 /// initialize the starting "register pressure". Note this does not count live
807 /// through (livein but not used) registers.
808 void MachineLICMBase::InitRegPressure(MachineBasicBlock *BB) {
809 std::fill(RegPressure.begin(), RegPressure.end(), 0);
811 // If the preheader has only a single predecessor and it ends with a
812 // fallthrough or an unconditional branch, then scan its predecessor for live
813 // defs as well. This happens whenever the preheader is created by splitting
814 // the critical edge from the loop predecessor to the loop header.
815 if (BB->pred_size() == 1) {
816 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
817 SmallVector<MachineOperand, 4> Cond;
818 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty())
819 InitRegPressure(*BB->pred_begin());
822 for (const MachineInstr &MI : *BB)
823 UpdateRegPressure(&MI, /*ConsiderUnseenAsDef=*/true);
826 /// Update estimate of register pressure after the specified instruction.
827 void MachineLICMBase::UpdateRegPressure(const MachineInstr *MI,
828 bool ConsiderUnseenAsDef) {
829 auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/true, ConsiderUnseenAsDef);
830 for (const auto &RPIdAndCost : Cost) {
831 unsigned Class = RPIdAndCost.first;
832 if (static_cast<int>(RegPressure[Class]) < -RPIdAndCost.second)
833 RegPressure[Class] = 0;
834 else
835 RegPressure[Class] += RPIdAndCost.second;
839 /// Calculate the additional register pressure that the registers used in MI
840 /// cause.
842 /// If 'ConsiderSeen' is true, updates 'RegSeen' and uses the information to
843 /// figure out which usages are live-ins.
844 /// FIXME: Figure out a way to consider 'RegSeen' from all code paths.
845 DenseMap<unsigned, int>
846 MachineLICMBase::calcRegisterCost(const MachineInstr *MI, bool ConsiderSeen,
847 bool ConsiderUnseenAsDef) {
848 DenseMap<unsigned, int> Cost;
849 if (MI->isImplicitDef())
850 return Cost;
851 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
852 const MachineOperand &MO = MI->getOperand(i);
853 if (!MO.isReg() || MO.isImplicit())
854 continue;
855 Register Reg = MO.getReg();
856 if (!Register::isVirtualRegister(Reg))
857 continue;
859 // FIXME: It seems bad to use RegSeen only for some of these calculations.
860 bool isNew = ConsiderSeen ? RegSeen.insert(Reg).second : false;
861 const TargetRegisterClass *RC = MRI->getRegClass(Reg);
863 RegClassWeight W = TRI->getRegClassWeight(RC);
864 int RCCost = 0;
865 if (MO.isDef())
866 RCCost = W.RegWeight;
867 else {
868 bool isKill = isOperandKill(MO, MRI);
869 if (isNew && !isKill && ConsiderUnseenAsDef)
870 // Haven't seen this, it must be a livein.
871 RCCost = W.RegWeight;
872 else if (!isNew && isKill)
873 RCCost = -W.RegWeight;
875 if (RCCost == 0)
876 continue;
877 const int *PS = TRI->getRegClassPressureSets(RC);
878 for (; *PS != -1; ++PS) {
879 if (Cost.find(*PS) == Cost.end())
880 Cost[*PS] = RCCost;
881 else
882 Cost[*PS] += RCCost;
885 return Cost;
888 /// Return true if this machine instruction loads from global offset table or
889 /// constant pool.
890 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) {
891 assert(MI.mayLoad() && "Expected MI that loads!");
893 // If we lost memory operands, conservatively assume that the instruction
894 // reads from everything..
895 if (MI.memoperands_empty())
896 return true;
898 for (MachineMemOperand *MemOp : MI.memoperands())
899 if (const PseudoSourceValue *PSV = MemOp->getPseudoValue())
900 if (PSV->isGOT() || PSV->isConstantPool())
901 return true;
903 return false;
906 // This function iterates through all the operands of the input store MI and
907 // checks that each register operand statisfies isCallerPreservedPhysReg.
908 // This means, the value being stored and the address where it is being stored
909 // is constant throughout the body of the function (not including prologue and
910 // epilogue). When called with an MI that isn't a store, it returns false.
911 // A future improvement can be to check if the store registers are constant
912 // throughout the loop rather than throughout the funtion.
913 static bool isInvariantStore(const MachineInstr &MI,
914 const TargetRegisterInfo *TRI,
915 const MachineRegisterInfo *MRI) {
917 bool FoundCallerPresReg = false;
918 if (!MI.mayStore() || MI.hasUnmodeledSideEffects() ||
919 (MI.getNumOperands() == 0))
920 return false;
922 // Check that all register operands are caller-preserved physical registers.
923 for (const MachineOperand &MO : MI.operands()) {
924 if (MO.isReg()) {
925 Register Reg = MO.getReg();
926 // If operand is a virtual register, check if it comes from a copy of a
927 // physical register.
928 if (Register::isVirtualRegister(Reg))
929 Reg = TRI->lookThruCopyLike(MO.getReg(), MRI);
930 if (Register::isVirtualRegister(Reg))
931 return false;
932 if (!TRI->isCallerPreservedPhysReg(Reg, *MI.getMF()))
933 return false;
934 else
935 FoundCallerPresReg = true;
936 } else if (!MO.isImm()) {
937 return false;
940 return FoundCallerPresReg;
943 // Return true if the input MI is a copy instruction that feeds an invariant
944 // store instruction. This means that the src of the copy has to satisfy
945 // isCallerPreservedPhysReg and atleast one of it's users should satisfy
946 // isInvariantStore.
947 static bool isCopyFeedingInvariantStore(const MachineInstr &MI,
948 const MachineRegisterInfo *MRI,
949 const TargetRegisterInfo *TRI) {
951 // FIXME: If targets would like to look through instructions that aren't
952 // pure copies, this can be updated to a query.
953 if (!MI.isCopy())
954 return false;
956 const MachineFunction *MF = MI.getMF();
957 // Check that we are copying a constant physical register.
958 Register CopySrcReg = MI.getOperand(1).getReg();
959 if (Register::isVirtualRegister(CopySrcReg))
960 return false;
962 if (!TRI->isCallerPreservedPhysReg(CopySrcReg, *MF))
963 return false;
965 Register CopyDstReg = MI.getOperand(0).getReg();
966 // Check if any of the uses of the copy are invariant stores.
967 assert(Register::isVirtualRegister(CopyDstReg) &&
968 "copy dst is not a virtual reg");
970 for (MachineInstr &UseMI : MRI->use_instructions(CopyDstReg)) {
971 if (UseMI.mayStore() && isInvariantStore(UseMI, TRI, MRI))
972 return true;
974 return false;
977 /// Returns true if the instruction may be a suitable candidate for LICM.
978 /// e.g. If the instruction is a call, then it's obviously not safe to hoist it.
979 bool MachineLICMBase::IsLICMCandidate(MachineInstr &I) {
980 // Check if it's safe to move the instruction.
981 bool DontMoveAcrossStore = true;
982 if ((!I.isSafeToMove(AA, DontMoveAcrossStore)) &&
983 !(HoistConstStores && isInvariantStore(I, TRI, MRI))) {
984 return false;
987 // If it is load then check if it is guaranteed to execute by making sure that
988 // it dominates all exiting blocks. If it doesn't, then there is a path out of
989 // the loop which does not execute this load, so we can't hoist it. Loads
990 // from constant memory are not safe to speculate all the time, for example
991 // indexed load from a jump table.
992 // Stores and side effects are already checked by isSafeToMove.
993 if (I.mayLoad() && !mayLoadFromGOTOrConstantPool(I) &&
994 !IsGuaranteedToExecute(I.getParent()))
995 return false;
997 return true;
1000 /// Returns true if the instruction is loop invariant.
1001 /// I.e., all virtual register operands are defined outside of the loop,
1002 /// physical registers aren't accessed explicitly, and there are no side
1003 /// effects that aren't captured by the operands or other flags.
1004 bool MachineLICMBase::IsLoopInvariantInst(MachineInstr &I) {
1005 if (!IsLICMCandidate(I))
1006 return false;
1008 // The instruction is loop invariant if all of its operands are.
1009 for (const MachineOperand &MO : I.operands()) {
1010 if (!MO.isReg())
1011 continue;
1013 Register Reg = MO.getReg();
1014 if (Reg == 0) continue;
1016 // Don't hoist an instruction that uses or defines a physical register.
1017 if (Register::isPhysicalRegister(Reg)) {
1018 if (MO.isUse()) {
1019 // If the physreg has no defs anywhere, it's just an ambient register
1020 // and we can freely move its uses. Alternatively, if it's allocatable,
1021 // it could get allocated to something with a def during allocation.
1022 // However, if the physreg is known to always be caller saved/restored
1023 // then this use is safe to hoist.
1024 if (!MRI->isConstantPhysReg(Reg) &&
1025 !(TRI->isCallerPreservedPhysReg(Reg, *I.getMF())))
1026 return false;
1027 // Otherwise it's safe to move.
1028 continue;
1029 } else if (!MO.isDead()) {
1030 // A def that isn't dead. We can't move it.
1031 return false;
1032 } else if (CurLoop->getHeader()->isLiveIn(Reg)) {
1033 // If the reg is live into the loop, we can't hoist an instruction
1034 // which would clobber it.
1035 return false;
1039 if (!MO.isUse())
1040 continue;
1042 assert(MRI->getVRegDef(Reg) &&
1043 "Machine instr not mapped for this vreg?!");
1045 // If the loop contains the definition of an operand, then the instruction
1046 // isn't loop invariant.
1047 if (CurLoop->contains(MRI->getVRegDef(Reg)))
1048 return false;
1051 // If we got this far, the instruction is loop invariant!
1052 return true;
1055 /// Return true if the specified instruction is used by a phi node and hoisting
1056 /// it could cause a copy to be inserted.
1057 bool MachineLICMBase::HasLoopPHIUse(const MachineInstr *MI) const {
1058 SmallVector<const MachineInstr*, 8> Work(1, MI);
1059 do {
1060 MI = Work.pop_back_val();
1061 for (const MachineOperand &MO : MI->operands()) {
1062 if (!MO.isReg() || !MO.isDef())
1063 continue;
1064 Register Reg = MO.getReg();
1065 if (!Register::isVirtualRegister(Reg))
1066 continue;
1067 for (MachineInstr &UseMI : MRI->use_instructions(Reg)) {
1068 // A PHI may cause a copy to be inserted.
1069 if (UseMI.isPHI()) {
1070 // A PHI inside the loop causes a copy because the live range of Reg is
1071 // extended across the PHI.
1072 if (CurLoop->contains(&UseMI))
1073 return true;
1074 // A PHI in an exit block can cause a copy to be inserted if the PHI
1075 // has multiple predecessors in the loop with different values.
1076 // For now, approximate by rejecting all exit blocks.
1077 if (isExitBlock(UseMI.getParent()))
1078 return true;
1079 continue;
1081 // Look past copies as well.
1082 if (UseMI.isCopy() && CurLoop->contains(&UseMI))
1083 Work.push_back(&UseMI);
1086 } while (!Work.empty());
1087 return false;
1090 /// Compute operand latency between a def of 'Reg' and an use in the current
1091 /// loop, return true if the target considered it high.
1092 bool MachineLICMBase::HasHighOperandLatency(MachineInstr &MI,
1093 unsigned DefIdx,
1094 unsigned Reg) const {
1095 if (MRI->use_nodbg_empty(Reg))
1096 return false;
1098 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) {
1099 if (UseMI.isCopyLike())
1100 continue;
1101 if (!CurLoop->contains(UseMI.getParent()))
1102 continue;
1103 for (unsigned i = 0, e = UseMI.getNumOperands(); i != e; ++i) {
1104 const MachineOperand &MO = UseMI.getOperand(i);
1105 if (!MO.isReg() || !MO.isUse())
1106 continue;
1107 Register MOReg = MO.getReg();
1108 if (MOReg != Reg)
1109 continue;
1111 if (TII->hasHighOperandLatency(SchedModel, MRI, MI, DefIdx, UseMI, i))
1112 return true;
1115 // Only look at the first in loop use.
1116 break;
1119 return false;
1122 /// Return true if the instruction is marked "cheap" or the operand latency
1123 /// between its def and a use is one or less.
1124 bool MachineLICMBase::IsCheapInstruction(MachineInstr &MI) const {
1125 if (TII->isAsCheapAsAMove(MI) || MI.isCopyLike())
1126 return true;
1128 bool isCheap = false;
1129 unsigned NumDefs = MI.getDesc().getNumDefs();
1130 for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) {
1131 MachineOperand &DefMO = MI.getOperand(i);
1132 if (!DefMO.isReg() || !DefMO.isDef())
1133 continue;
1134 --NumDefs;
1135 Register Reg = DefMO.getReg();
1136 if (Register::isPhysicalRegister(Reg))
1137 continue;
1139 if (!TII->hasLowDefLatency(SchedModel, MI, i))
1140 return false;
1141 isCheap = true;
1144 return isCheap;
1147 /// Visit BBs from header to current BB, check if hoisting an instruction of the
1148 /// given cost matrix can cause high register pressure.
1149 bool
1150 MachineLICMBase::CanCauseHighRegPressure(const DenseMap<unsigned, int>& Cost,
1151 bool CheapInstr) {
1152 for (const auto &RPIdAndCost : Cost) {
1153 if (RPIdAndCost.second <= 0)
1154 continue;
1156 unsigned Class = RPIdAndCost.first;
1157 int Limit = RegLimit[Class];
1159 // Don't hoist cheap instructions if they would increase register pressure,
1160 // even if we're under the limit.
1161 if (CheapInstr && !HoistCheapInsts)
1162 return true;
1164 for (const auto &RP : BackTrace)
1165 if (static_cast<int>(RP[Class]) + RPIdAndCost.second >= Limit)
1166 return true;
1169 return false;
1172 /// Traverse the back trace from header to the current block and update their
1173 /// register pressures to reflect the effect of hoisting MI from the current
1174 /// block to the preheader.
1175 void MachineLICMBase::UpdateBackTraceRegPressure(const MachineInstr *MI) {
1176 // First compute the 'cost' of the instruction, i.e. its contribution
1177 // to register pressure.
1178 auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/false,
1179 /*ConsiderUnseenAsDef=*/false);
1181 // Update register pressure of blocks from loop header to current block.
1182 for (auto &RP : BackTrace)
1183 for (const auto &RPIdAndCost : Cost)
1184 RP[RPIdAndCost.first] += RPIdAndCost.second;
1187 /// Return true if it is potentially profitable to hoist the given loop
1188 /// invariant.
1189 bool MachineLICMBase::IsProfitableToHoist(MachineInstr &MI) {
1190 if (MI.isImplicitDef())
1191 return true;
1193 // Besides removing computation from the loop, hoisting an instruction has
1194 // these effects:
1196 // - The value defined by the instruction becomes live across the entire
1197 // loop. This increases register pressure in the loop.
1199 // - If the value is used by a PHI in the loop, a copy will be required for
1200 // lowering the PHI after extending the live range.
1202 // - When hoisting the last use of a value in the loop, that value no longer
1203 // needs to be live in the loop. This lowers register pressure in the loop.
1205 if (HoistConstStores && isCopyFeedingInvariantStore(MI, MRI, TRI))
1206 return true;
1208 bool CheapInstr = IsCheapInstruction(MI);
1209 bool CreatesCopy = HasLoopPHIUse(&MI);
1211 // Don't hoist a cheap instruction if it would create a copy in the loop.
1212 if (CheapInstr && CreatesCopy) {
1213 LLVM_DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI);
1214 return false;
1217 // Rematerializable instructions should always be hoisted since the register
1218 // allocator can just pull them down again when needed.
1219 if (TII->isTriviallyReMaterializable(MI, AA))
1220 return true;
1222 // FIXME: If there are long latency loop-invariant instructions inside the
1223 // loop at this point, why didn't the optimizer's LICM hoist them?
1224 for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
1225 const MachineOperand &MO = MI.getOperand(i);
1226 if (!MO.isReg() || MO.isImplicit())
1227 continue;
1228 Register Reg = MO.getReg();
1229 if (!Register::isVirtualRegister(Reg))
1230 continue;
1231 if (MO.isDef() && HasHighOperandLatency(MI, i, Reg)) {
1232 LLVM_DEBUG(dbgs() << "Hoist High Latency: " << MI);
1233 ++NumHighLatency;
1234 return true;
1238 // Estimate register pressure to determine whether to LICM the instruction.
1239 // In low register pressure situation, we can be more aggressive about
1240 // hoisting. Also, favors hoisting long latency instructions even in
1241 // moderately high pressure situation.
1242 // Cheap instructions will only be hoisted if they don't increase register
1243 // pressure at all.
1244 auto Cost = calcRegisterCost(&MI, /*ConsiderSeen=*/false,
1245 /*ConsiderUnseenAsDef=*/false);
1247 // Visit BBs from header to current BB, if hoisting this doesn't cause
1248 // high register pressure, then it's safe to proceed.
1249 if (!CanCauseHighRegPressure(Cost, CheapInstr)) {
1250 LLVM_DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI);
1251 ++NumLowRP;
1252 return true;
1255 // Don't risk increasing register pressure if it would create copies.
1256 if (CreatesCopy) {
1257 LLVM_DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI);
1258 return false;
1261 // Do not "speculate" in high register pressure situation. If an
1262 // instruction is not guaranteed to be executed in the loop, it's best to be
1263 // conservative.
1264 if (AvoidSpeculation &&
1265 (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) {
1266 LLVM_DEBUG(dbgs() << "Won't speculate: " << MI);
1267 return false;
1270 // High register pressure situation, only hoist if the instruction is going
1271 // to be remat'ed.
1272 if (!TII->isTriviallyReMaterializable(MI, AA) &&
1273 !MI.isDereferenceableInvariantLoad(AA)) {
1274 LLVM_DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI);
1275 return false;
1278 return true;
1281 /// Unfold a load from the given machineinstr if the load itself could be
1282 /// hoisted. Return the unfolded and hoistable load, or null if the load
1283 /// couldn't be unfolded or if it wouldn't be hoistable.
1284 MachineInstr *MachineLICMBase::ExtractHoistableLoad(MachineInstr *MI) {
1285 // Don't unfold simple loads.
1286 if (MI->canFoldAsLoad())
1287 return nullptr;
1289 // If not, we may be able to unfold a load and hoist that.
1290 // First test whether the instruction is loading from an amenable
1291 // memory location.
1292 if (!MI->isDereferenceableInvariantLoad(AA))
1293 return nullptr;
1295 // Next determine the register class for a temporary register.
1296 unsigned LoadRegIndex;
1297 unsigned NewOpc =
1298 TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
1299 /*UnfoldLoad=*/true,
1300 /*UnfoldStore=*/false,
1301 &LoadRegIndex);
1302 if (NewOpc == 0) return nullptr;
1303 const MCInstrDesc &MID = TII->get(NewOpc);
1304 MachineFunction &MF = *MI->getMF();
1305 const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF);
1306 // Ok, we're unfolding. Create a temporary register and do the unfold.
1307 Register Reg = MRI->createVirtualRegister(RC);
1309 SmallVector<MachineInstr *, 2> NewMIs;
1310 bool Success = TII->unfoldMemoryOperand(MF, *MI, Reg,
1311 /*UnfoldLoad=*/true,
1312 /*UnfoldStore=*/false, NewMIs);
1313 (void)Success;
1314 assert(Success &&
1315 "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
1316 "succeeded!");
1317 assert(NewMIs.size() == 2 &&
1318 "Unfolded a load into multiple instructions!");
1319 MachineBasicBlock *MBB = MI->getParent();
1320 MachineBasicBlock::iterator Pos = MI;
1321 MBB->insert(Pos, NewMIs[0]);
1322 MBB->insert(Pos, NewMIs[1]);
1323 // If unfolding produced a load that wasn't loop-invariant or profitable to
1324 // hoist, discard the new instructions and bail.
1325 if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
1326 NewMIs[0]->eraseFromParent();
1327 NewMIs[1]->eraseFromParent();
1328 return nullptr;
1331 // Update register pressure for the unfolded instruction.
1332 UpdateRegPressure(NewMIs[1]);
1334 // Otherwise we successfully unfolded a load that we can hoist.
1335 MI->eraseFromParent();
1336 return NewMIs[0];
1339 /// Initialize the CSE map with instructions that are in the current loop
1340 /// preheader that may become duplicates of instructions that are hoisted
1341 /// out of the loop.
1342 void MachineLICMBase::InitCSEMap(MachineBasicBlock *BB) {
1343 for (MachineInstr &MI : *BB)
1344 CSEMap[MI.getOpcode()].push_back(&MI);
1347 /// Find an instruction amount PrevMIs that is a duplicate of MI.
1348 /// Return this instruction if it's found.
1349 const MachineInstr*
1350 MachineLICMBase::LookForDuplicate(const MachineInstr *MI,
1351 std::vector<const MachineInstr*> &PrevMIs) {
1352 for (const MachineInstr *PrevMI : PrevMIs)
1353 if (TII->produceSameValue(*MI, *PrevMI, (PreRegAlloc ? MRI : nullptr)))
1354 return PrevMI;
1356 return nullptr;
1359 /// Given a LICM'ed instruction, look for an instruction on the preheader that
1360 /// computes the same value. If it's found, do a RAU on with the definition of
1361 /// the existing instruction rather than hoisting the instruction to the
1362 /// preheader.
1363 bool MachineLICMBase::EliminateCSE(MachineInstr *MI,
1364 DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator &CI) {
1365 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1366 // the undef property onto uses.
1367 if (CI == CSEMap.end() || MI->isImplicitDef())
1368 return false;
1370 if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
1371 LLVM_DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);
1373 // Replace virtual registers defined by MI by their counterparts defined
1374 // by Dup.
1375 SmallVector<unsigned, 2> Defs;
1376 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1377 const MachineOperand &MO = MI->getOperand(i);
1379 // Physical registers may not differ here.
1380 assert((!MO.isReg() || MO.getReg() == 0 ||
1381 !Register::isPhysicalRegister(MO.getReg()) ||
1382 MO.getReg() == Dup->getOperand(i).getReg()) &&
1383 "Instructions with different phys regs are not identical!");
1385 if (MO.isReg() && MO.isDef() &&
1386 !Register::isPhysicalRegister(MO.getReg()))
1387 Defs.push_back(i);
1390 SmallVector<const TargetRegisterClass*, 2> OrigRCs;
1391 for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
1392 unsigned Idx = Defs[i];
1393 Register Reg = MI->getOperand(Idx).getReg();
1394 Register DupReg = Dup->getOperand(Idx).getReg();
1395 OrigRCs.push_back(MRI->getRegClass(DupReg));
1397 if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) {
1398 // Restore old RCs if more than one defs.
1399 for (unsigned j = 0; j != i; ++j)
1400 MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]);
1401 return false;
1405 for (unsigned Idx : Defs) {
1406 Register Reg = MI->getOperand(Idx).getReg();
1407 Register DupReg = Dup->getOperand(Idx).getReg();
1408 MRI->replaceRegWith(Reg, DupReg);
1409 MRI->clearKillFlags(DupReg);
1412 MI->eraseFromParent();
1413 ++NumCSEed;
1414 return true;
1416 return false;
1419 /// Return true if the given instruction will be CSE'd if it's hoisted out of
1420 /// the loop.
1421 bool MachineLICMBase::MayCSE(MachineInstr *MI) {
1422 unsigned Opcode = MI->getOpcode();
1423 DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator
1424 CI = CSEMap.find(Opcode);
1425 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1426 // the undef property onto uses.
1427 if (CI == CSEMap.end() || MI->isImplicitDef())
1428 return false;
1430 return LookForDuplicate(MI, CI->second) != nullptr;
1433 /// When an instruction is found to use only loop invariant operands
1434 /// that are safe to hoist, this instruction is called to do the dirty work.
1435 /// It returns true if the instruction is hoisted.
1436 bool MachineLICMBase::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) {
1437 // First check whether we should hoist this instruction.
1438 if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
1439 // If not, try unfolding a hoistable load.
1440 MI = ExtractHoistableLoad(MI);
1441 if (!MI) return false;
1444 // If we have hoisted an instruction that may store, it can only be a constant
1445 // store.
1446 if (MI->mayStore())
1447 NumStoreConst++;
1449 // Now move the instructions to the predecessor, inserting it before any
1450 // terminator instructions.
1451 LLVM_DEBUG({
1452 dbgs() << "Hoisting " << *MI;
1453 if (MI->getParent()->getBasicBlock())
1454 dbgs() << " from " << printMBBReference(*MI->getParent());
1455 if (Preheader->getBasicBlock())
1456 dbgs() << " to " << printMBBReference(*Preheader);
1457 dbgs() << "\n";
1460 // If this is the first instruction being hoisted to the preheader,
1461 // initialize the CSE map with potential common expressions.
1462 if (FirstInLoop) {
1463 InitCSEMap(Preheader);
1464 FirstInLoop = false;
1467 // Look for opportunity to CSE the hoisted instruction.
1468 unsigned Opcode = MI->getOpcode();
1469 DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator
1470 CI = CSEMap.find(Opcode);
1471 if (!EliminateCSE(MI, CI)) {
1472 // Otherwise, splice the instruction to the preheader.
1473 Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI);
1475 // Since we are moving the instruction out of its basic block, we do not
1476 // retain its debug location. Doing so would degrade the debugging
1477 // experience and adversely affect the accuracy of profiling information.
1478 MI->setDebugLoc(DebugLoc());
1480 // Update register pressure for BBs from header to this block.
1481 UpdateBackTraceRegPressure(MI);
1483 // Clear the kill flags of any register this instruction defines,
1484 // since they may need to be live throughout the entire loop
1485 // rather than just live for part of it.
1486 for (MachineOperand &MO : MI->operands())
1487 if (MO.isReg() && MO.isDef() && !MO.isDead())
1488 MRI->clearKillFlags(MO.getReg());
1490 // Add to the CSE map.
1491 if (CI != CSEMap.end())
1492 CI->second.push_back(MI);
1493 else
1494 CSEMap[Opcode].push_back(MI);
1497 ++NumHoisted;
1498 Changed = true;
1500 return true;
1503 /// Get the preheader for the current loop, splitting a critical edge if needed.
1504 MachineBasicBlock *MachineLICMBase::getCurPreheader() {
1505 // Determine the block to which to hoist instructions. If we can't find a
1506 // suitable loop predecessor, we can't do any hoisting.
1508 // If we've tried to get a preheader and failed, don't try again.
1509 if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1))
1510 return nullptr;
1512 if (!CurPreheader) {
1513 CurPreheader = CurLoop->getLoopPreheader();
1514 if (!CurPreheader) {
1515 MachineBasicBlock *Pred = CurLoop->getLoopPredecessor();
1516 if (!Pred) {
1517 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1518 return nullptr;
1521 CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), *this);
1522 if (!CurPreheader) {
1523 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1524 return nullptr;
1528 return CurPreheader;