1 //===- DAGCombiner.cpp - Implement a DAG node combiner --------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run
10 // both before and after the DAG is legalized.
12 // This pass is not a substitute for the LLVM IR instcombine pass. This pass is
13 // primarily intended to handle simplification opportunities that are implicit
14 // in the LLVM IR and exposed by the various codegen lowering phases.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/IntervalMap.h"
23 #include "llvm/ADT/None.h"
24 #include "llvm/ADT/Optional.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SetVector.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Analysis/AliasAnalysis.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/CodeGen/DAGCombine.h"
34 #include "llvm/CodeGen/ISDOpcodes.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/RuntimeLibcalls.h"
39 #include "llvm/CodeGen/SelectionDAG.h"
40 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
41 #include "llvm/CodeGen/SelectionDAGNodes.h"
42 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
43 #include "llvm/CodeGen/TargetLowering.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/ValueTypes.h"
47 #include "llvm/IR/Attributes.h"
48 #include "llvm/IR/Constant.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CodeGen.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Compiler.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/KnownBits.h"
61 #include "llvm/Support/MachineValueType.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Target/TargetMachine.h"
65 #include "llvm/Target/TargetOptions.h"
77 #define DEBUG_TYPE "dagcombine"
79 STATISTIC(NodesCombined
, "Number of dag nodes combined");
80 STATISTIC(PreIndexedNodes
, "Number of pre-indexed nodes created");
81 STATISTIC(PostIndexedNodes
, "Number of post-indexed nodes created");
82 STATISTIC(OpsNarrowed
, "Number of load/op/store narrowed");
83 STATISTIC(LdStFP2Int
, "Number of fp load/store pairs transformed to int");
84 STATISTIC(SlicedLoads
, "Number of load sliced");
85 STATISTIC(NumFPLogicOpsConv
, "Number of logic ops converted to fp ops");
88 CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden
,
89 cl::desc("Enable DAG combiner's use of IR alias analysis"));
92 UseTBAA("combiner-use-tbaa", cl::Hidden
, cl::init(true),
93 cl::desc("Enable DAG combiner's use of TBAA"));
96 static cl::opt
<std::string
>
97 CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden
,
98 cl::desc("Only use DAG-combiner alias analysis in this"
102 /// Hidden option to stress test load slicing, i.e., when this option
103 /// is enabled, load slicing bypasses most of its profitability guards.
105 StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden
,
106 cl::desc("Bypass the profitability model of load slicing"),
110 MaySplitLoadIndex("combiner-split-load-index", cl::Hidden
, cl::init(true),
111 cl::desc("DAG combiner may split indexing from loads"));
114 EnableStoreMerging("combiner-store-merging", cl::Hidden
, cl::init(true),
115 cl::desc("DAG combiner enable merging multiple stores "
116 "into a wider store"));
118 static cl::opt
<unsigned> TokenFactorInlineLimit(
119 "combiner-tokenfactor-inline-limit", cl::Hidden
, cl::init(2048),
120 cl::desc("Limit the number of operands to inline for Token Factors"));
122 static cl::opt
<unsigned> StoreMergeDependenceLimit(
123 "combiner-store-merge-dependence-limit", cl::Hidden
, cl::init(10),
124 cl::desc("Limit the number of times for the same StoreNode and RootNode "
125 "to bail out in store merging dependence check"));
131 const TargetLowering
&TLI
;
133 CodeGenOpt::Level OptLevel
;
134 bool LegalOperations
= false;
135 bool LegalTypes
= false;
138 /// Worklist of all of the nodes that need to be simplified.
140 /// This must behave as a stack -- new nodes to process are pushed onto the
141 /// back and when processing we pop off of the back.
143 /// The worklist will not contain duplicates but may contain null entries
144 /// due to nodes being deleted from the underlying DAG.
145 SmallVector
<SDNode
*, 64> Worklist
;
147 /// Mapping from an SDNode to its position on the worklist.
149 /// This is used to find and remove nodes from the worklist (by nulling
150 /// them) when they are deleted from the underlying DAG. It relies on
151 /// stable indices of nodes within the worklist.
152 DenseMap
<SDNode
*, unsigned> WorklistMap
;
153 /// This records all nodes attempted to add to the worklist since we
154 /// considered a new worklist entry. As we keep do not add duplicate nodes
155 /// in the worklist, this is different from the tail of the worklist.
156 SmallSetVector
<SDNode
*, 32> PruningList
;
158 /// Set of nodes which have been combined (at least once).
160 /// This is used to allow us to reliably add any operands of a DAG node
161 /// which have not yet been combined to the worklist.
162 SmallPtrSet
<SDNode
*, 32> CombinedNodes
;
164 /// Map from candidate StoreNode to the pair of RootNode and count.
165 /// The count is used to track how many times we have seen the StoreNode
166 /// with the same RootNode bail out in dependence check. If we have seen
167 /// the bail out for the same pair many times over a limit, we won't
168 /// consider the StoreNode with the same RootNode as store merging
170 DenseMap
<SDNode
*, std::pair
<SDNode
*, unsigned>> StoreRootCountMap
;
172 // AA - Used for DAG load/store alias analysis.
175 /// When an instruction is simplified, add all users of the instruction to
176 /// the work lists because they might get more simplified now.
177 void AddUsersToWorklist(SDNode
*N
) {
178 for (SDNode
*Node
: N
->uses())
182 // Prune potentially dangling nodes. This is called after
183 // any visit to a node, but should also be called during a visit after any
184 // failed combine which may have created a DAG node.
185 void clearAddedDanglingWorklistEntries() {
186 // Check any nodes added to the worklist to see if they are prunable.
187 while (!PruningList
.empty()) {
188 auto *N
= PruningList
.pop_back_val();
190 recursivelyDeleteUnusedNodes(N
);
194 SDNode
*getNextWorklistEntry() {
195 // Before we do any work, remove nodes that are not in use.
196 clearAddedDanglingWorklistEntries();
198 // The Worklist holds the SDNodes in order, but it may contain null
200 while (!N
&& !Worklist
.empty()) {
201 N
= Worklist
.pop_back_val();
205 bool GoodWorklistEntry
= WorklistMap
.erase(N
);
206 (void)GoodWorklistEntry
;
207 assert(GoodWorklistEntry
&&
208 "Found a worklist entry without a corresponding map entry!");
213 /// Call the node-specific routine that folds each particular type of node.
214 SDValue
visit(SDNode
*N
);
217 DAGCombiner(SelectionDAG
&D
, AliasAnalysis
*AA
, CodeGenOpt::Level OL
)
218 : DAG(D
), TLI(D
.getTargetLoweringInfo()), Level(BeforeLegalizeTypes
),
219 OptLevel(OL
), AA(AA
) {
220 ForCodeSize
= DAG
.getMachineFunction().getFunction().hasOptSize();
222 MaximumLegalStoreInBits
= 0;
223 for (MVT VT
: MVT::all_valuetypes())
224 if (EVT(VT
).isSimple() && VT
!= MVT::Other
&&
225 TLI
.isTypeLegal(EVT(VT
)) &&
226 VT
.getSizeInBits() >= MaximumLegalStoreInBits
)
227 MaximumLegalStoreInBits
= VT
.getSizeInBits();
230 void ConsiderForPruning(SDNode
*N
) {
231 // Mark this for potential pruning.
232 PruningList
.insert(N
);
235 /// Add to the worklist making sure its instance is at the back (next to be
237 void AddToWorklist(SDNode
*N
) {
238 assert(N
->getOpcode() != ISD::DELETED_NODE
&&
239 "Deleted Node added to Worklist");
241 // Skip handle nodes as they can't usefully be combined and confuse the
242 // zero-use deletion strategy.
243 if (N
->getOpcode() == ISD::HANDLENODE
)
246 ConsiderForPruning(N
);
248 if (WorklistMap
.insert(std::make_pair(N
, Worklist
.size())).second
)
249 Worklist
.push_back(N
);
252 /// Remove all instances of N from the worklist.
253 void removeFromWorklist(SDNode
*N
) {
254 CombinedNodes
.erase(N
);
255 PruningList
.remove(N
);
256 StoreRootCountMap
.erase(N
);
258 auto It
= WorklistMap
.find(N
);
259 if (It
== WorklistMap
.end())
260 return; // Not in the worklist.
262 // Null out the entry rather than erasing it to avoid a linear operation.
263 Worklist
[It
->second
] = nullptr;
264 WorklistMap
.erase(It
);
267 void deleteAndRecombine(SDNode
*N
);
268 bool recursivelyDeleteUnusedNodes(SDNode
*N
);
270 /// Replaces all uses of the results of one DAG node with new values.
271 SDValue
CombineTo(SDNode
*N
, const SDValue
*To
, unsigned NumTo
,
274 /// Replaces all uses of the results of one DAG node with new values.
275 SDValue
CombineTo(SDNode
*N
, SDValue Res
, bool AddTo
= true) {
276 return CombineTo(N
, &Res
, 1, AddTo
);
279 /// Replaces all uses of the results of one DAG node with new values.
280 SDValue
CombineTo(SDNode
*N
, SDValue Res0
, SDValue Res1
,
282 SDValue To
[] = { Res0
, Res1
};
283 return CombineTo(N
, To
, 2, AddTo
);
286 void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt
&TLO
);
289 unsigned MaximumLegalStoreInBits
;
291 /// Check the specified integer node value to see if it can be simplified or
292 /// if things it uses can be simplified by bit propagation.
293 /// If so, return true.
294 bool SimplifyDemandedBits(SDValue Op
) {
295 unsigned BitWidth
= Op
.getScalarValueSizeInBits();
296 APInt DemandedBits
= APInt::getAllOnesValue(BitWidth
);
297 return SimplifyDemandedBits(Op
, DemandedBits
);
300 bool SimplifyDemandedBits(SDValue Op
, const APInt
&DemandedBits
) {
301 EVT VT
= Op
.getValueType();
302 unsigned NumElts
= VT
.isVector() ? VT
.getVectorNumElements() : 1;
303 APInt DemandedElts
= APInt::getAllOnesValue(NumElts
);
304 return SimplifyDemandedBits(Op
, DemandedBits
, DemandedElts
);
307 /// Check the specified vector node value to see if it can be simplified or
308 /// if things it uses can be simplified as it only uses some of the
309 /// elements. If so, return true.
310 bool SimplifyDemandedVectorElts(SDValue Op
) {
311 unsigned NumElts
= Op
.getValueType().getVectorNumElements();
312 APInt DemandedElts
= APInt::getAllOnesValue(NumElts
);
313 return SimplifyDemandedVectorElts(Op
, DemandedElts
);
316 bool SimplifyDemandedBits(SDValue Op
, const APInt
&DemandedBits
,
317 const APInt
&DemandedElts
);
318 bool SimplifyDemandedVectorElts(SDValue Op
, const APInt
&DemandedElts
,
319 bool AssumeSingleUse
= false);
321 bool CombineToPreIndexedLoadStore(SDNode
*N
);
322 bool CombineToPostIndexedLoadStore(SDNode
*N
);
323 SDValue
SplitIndexingFromLoad(LoadSDNode
*LD
);
324 bool SliceUpLoad(SDNode
*N
);
326 // Scalars have size 0 to distinguish from singleton vectors.
327 SDValue
ForwardStoreValueToDirectLoad(LoadSDNode
*LD
);
328 bool getTruncatedStoreValue(StoreSDNode
*ST
, SDValue
&Val
);
329 bool extendLoadedValueToExtension(LoadSDNode
*LD
, SDValue
&Val
);
331 /// Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed
334 /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced.
335 /// \param InVecVT type of the input vector to EVE with bitcasts resolved.
336 /// \param EltNo index of the vector element to load.
337 /// \param OriginalLoad load that EVE came from to be replaced.
338 /// \returns EVE on success SDValue() on failure.
339 SDValue
scalarizeExtractedVectorLoad(SDNode
*EVE
, EVT InVecVT
,
341 LoadSDNode
*OriginalLoad
);
342 void ReplaceLoadWithPromotedLoad(SDNode
*Load
, SDNode
*ExtLoad
);
343 SDValue
PromoteOperand(SDValue Op
, EVT PVT
, bool &Replace
);
344 SDValue
SExtPromoteOperand(SDValue Op
, EVT PVT
);
345 SDValue
ZExtPromoteOperand(SDValue Op
, EVT PVT
);
346 SDValue
PromoteIntBinOp(SDValue Op
);
347 SDValue
PromoteIntShiftOp(SDValue Op
);
348 SDValue
PromoteExtend(SDValue Op
);
349 bool PromoteLoad(SDValue Op
);
351 /// Call the node-specific routine that knows how to fold each
352 /// particular type of node. If that doesn't do anything, try the
353 /// target-specific DAG combines.
354 SDValue
combine(SDNode
*N
);
356 // Visitation implementation - Implement dag node combining for different
357 // node types. The semantics are as follows:
359 // SDValue.getNode() == 0 - No change was made
360 // SDValue.getNode() == N - N was replaced, is dead and has been handled.
361 // otherwise - N should be replaced by the returned Operand.
363 SDValue
visitTokenFactor(SDNode
*N
);
364 SDValue
visitMERGE_VALUES(SDNode
*N
);
365 SDValue
visitADD(SDNode
*N
);
366 SDValue
visitADDLike(SDNode
*N
);
367 SDValue
visitADDLikeCommutative(SDValue N0
, SDValue N1
, SDNode
*LocReference
);
368 SDValue
visitSUB(SDNode
*N
);
369 SDValue
visitADDSAT(SDNode
*N
);
370 SDValue
visitSUBSAT(SDNode
*N
);
371 SDValue
visitADDC(SDNode
*N
);
372 SDValue
visitADDO(SDNode
*N
);
373 SDValue
visitUADDOLike(SDValue N0
, SDValue N1
, SDNode
*N
);
374 SDValue
visitSUBC(SDNode
*N
);
375 SDValue
visitSUBO(SDNode
*N
);
376 SDValue
visitADDE(SDNode
*N
);
377 SDValue
visitADDCARRY(SDNode
*N
);
378 SDValue
visitADDCARRYLike(SDValue N0
, SDValue N1
, SDValue CarryIn
, SDNode
*N
);
379 SDValue
visitSUBE(SDNode
*N
);
380 SDValue
visitSUBCARRY(SDNode
*N
);
381 SDValue
visitMUL(SDNode
*N
);
382 SDValue
visitMULFIX(SDNode
*N
);
383 SDValue
useDivRem(SDNode
*N
);
384 SDValue
visitSDIV(SDNode
*N
);
385 SDValue
visitSDIVLike(SDValue N0
, SDValue N1
, SDNode
*N
);
386 SDValue
visitUDIV(SDNode
*N
);
387 SDValue
visitUDIVLike(SDValue N0
, SDValue N1
, SDNode
*N
);
388 SDValue
visitREM(SDNode
*N
);
389 SDValue
visitMULHU(SDNode
*N
);
390 SDValue
visitMULHS(SDNode
*N
);
391 SDValue
visitSMUL_LOHI(SDNode
*N
);
392 SDValue
visitUMUL_LOHI(SDNode
*N
);
393 SDValue
visitMULO(SDNode
*N
);
394 SDValue
visitIMINMAX(SDNode
*N
);
395 SDValue
visitAND(SDNode
*N
);
396 SDValue
visitANDLike(SDValue N0
, SDValue N1
, SDNode
*N
);
397 SDValue
visitOR(SDNode
*N
);
398 SDValue
visitORLike(SDValue N0
, SDValue N1
, SDNode
*N
);
399 SDValue
visitXOR(SDNode
*N
);
400 SDValue
SimplifyVBinOp(SDNode
*N
);
401 SDValue
visitSHL(SDNode
*N
);
402 SDValue
visitSRA(SDNode
*N
);
403 SDValue
visitSRL(SDNode
*N
);
404 SDValue
visitFunnelShift(SDNode
*N
);
405 SDValue
visitRotate(SDNode
*N
);
406 SDValue
visitABS(SDNode
*N
);
407 SDValue
visitBSWAP(SDNode
*N
);
408 SDValue
visitBITREVERSE(SDNode
*N
);
409 SDValue
visitCTLZ(SDNode
*N
);
410 SDValue
visitCTLZ_ZERO_UNDEF(SDNode
*N
);
411 SDValue
visitCTTZ(SDNode
*N
);
412 SDValue
visitCTTZ_ZERO_UNDEF(SDNode
*N
);
413 SDValue
visitCTPOP(SDNode
*N
);
414 SDValue
visitSELECT(SDNode
*N
);
415 SDValue
visitVSELECT(SDNode
*N
);
416 SDValue
visitSELECT_CC(SDNode
*N
);
417 SDValue
visitSETCC(SDNode
*N
);
418 SDValue
visitSETCCCARRY(SDNode
*N
);
419 SDValue
visitSIGN_EXTEND(SDNode
*N
);
420 SDValue
visitZERO_EXTEND(SDNode
*N
);
421 SDValue
visitANY_EXTEND(SDNode
*N
);
422 SDValue
visitAssertExt(SDNode
*N
);
423 SDValue
visitSIGN_EXTEND_INREG(SDNode
*N
);
424 SDValue
visitSIGN_EXTEND_VECTOR_INREG(SDNode
*N
);
425 SDValue
visitZERO_EXTEND_VECTOR_INREG(SDNode
*N
);
426 SDValue
visitTRUNCATE(SDNode
*N
);
427 SDValue
visitBITCAST(SDNode
*N
);
428 SDValue
visitBUILD_PAIR(SDNode
*N
);
429 SDValue
visitFADD(SDNode
*N
);
430 SDValue
visitFSUB(SDNode
*N
);
431 SDValue
visitFMUL(SDNode
*N
);
432 SDValue
visitFMA(SDNode
*N
);
433 SDValue
visitFDIV(SDNode
*N
);
434 SDValue
visitFREM(SDNode
*N
);
435 SDValue
visitFSQRT(SDNode
*N
);
436 SDValue
visitFCOPYSIGN(SDNode
*N
);
437 SDValue
visitFPOW(SDNode
*N
);
438 SDValue
visitSINT_TO_FP(SDNode
*N
);
439 SDValue
visitUINT_TO_FP(SDNode
*N
);
440 SDValue
visitFP_TO_SINT(SDNode
*N
);
441 SDValue
visitFP_TO_UINT(SDNode
*N
);
442 SDValue
visitFP_ROUND(SDNode
*N
);
443 SDValue
visitFP_EXTEND(SDNode
*N
);
444 SDValue
visitFNEG(SDNode
*N
);
445 SDValue
visitFABS(SDNode
*N
);
446 SDValue
visitFCEIL(SDNode
*N
);
447 SDValue
visitFTRUNC(SDNode
*N
);
448 SDValue
visitFFLOOR(SDNode
*N
);
449 SDValue
visitFMINNUM(SDNode
*N
);
450 SDValue
visitFMAXNUM(SDNode
*N
);
451 SDValue
visitFMINIMUM(SDNode
*N
);
452 SDValue
visitFMAXIMUM(SDNode
*N
);
453 SDValue
visitBRCOND(SDNode
*N
);
454 SDValue
visitBR_CC(SDNode
*N
);
455 SDValue
visitLOAD(SDNode
*N
);
457 SDValue
replaceStoreChain(StoreSDNode
*ST
, SDValue BetterChain
);
458 SDValue
replaceStoreOfFPConstant(StoreSDNode
*ST
);
460 SDValue
visitSTORE(SDNode
*N
);
461 SDValue
visitLIFETIME_END(SDNode
*N
);
462 SDValue
visitINSERT_VECTOR_ELT(SDNode
*N
);
463 SDValue
visitEXTRACT_VECTOR_ELT(SDNode
*N
);
464 SDValue
visitBUILD_VECTOR(SDNode
*N
);
465 SDValue
visitCONCAT_VECTORS(SDNode
*N
);
466 SDValue
visitEXTRACT_SUBVECTOR(SDNode
*N
);
467 SDValue
visitVECTOR_SHUFFLE(SDNode
*N
);
468 SDValue
visitSCALAR_TO_VECTOR(SDNode
*N
);
469 SDValue
visitINSERT_SUBVECTOR(SDNode
*N
);
470 SDValue
visitMLOAD(SDNode
*N
);
471 SDValue
visitMSTORE(SDNode
*N
);
472 SDValue
visitMGATHER(SDNode
*N
);
473 SDValue
visitMSCATTER(SDNode
*N
);
474 SDValue
visitFP_TO_FP16(SDNode
*N
);
475 SDValue
visitFP16_TO_FP(SDNode
*N
);
476 SDValue
visitVECREDUCE(SDNode
*N
);
478 SDValue
visitFADDForFMACombine(SDNode
*N
);
479 SDValue
visitFSUBForFMACombine(SDNode
*N
);
480 SDValue
visitFMULForFMADistributiveCombine(SDNode
*N
);
482 SDValue
XformToShuffleWithZero(SDNode
*N
);
483 bool reassociationCanBreakAddressingModePattern(unsigned Opc
,
484 const SDLoc
&DL
, SDValue N0
,
486 SDValue
reassociateOpsCommutative(unsigned Opc
, const SDLoc
&DL
, SDValue N0
,
488 SDValue
reassociateOps(unsigned Opc
, const SDLoc
&DL
, SDValue N0
,
489 SDValue N1
, SDNodeFlags Flags
);
491 SDValue
visitShiftByConstant(SDNode
*N
);
493 SDValue
foldSelectOfConstants(SDNode
*N
);
494 SDValue
foldVSelectOfConstants(SDNode
*N
);
495 SDValue
foldBinOpIntoSelect(SDNode
*BO
);
496 bool SimplifySelectOps(SDNode
*SELECT
, SDValue LHS
, SDValue RHS
);
497 SDValue
hoistLogicOpWithSameOpcodeHands(SDNode
*N
);
498 SDValue
SimplifySelect(const SDLoc
&DL
, SDValue N0
, SDValue N1
, SDValue N2
);
499 SDValue
SimplifySelectCC(const SDLoc
&DL
, SDValue N0
, SDValue N1
,
500 SDValue N2
, SDValue N3
, ISD::CondCode CC
,
501 bool NotExtCompare
= false);
502 SDValue
convertSelectOfFPConstantsToLoadOffset(
503 const SDLoc
&DL
, SDValue N0
, SDValue N1
, SDValue N2
, SDValue N3
,
505 SDValue
foldSelectCCToShiftAnd(const SDLoc
&DL
, SDValue N0
, SDValue N1
,
506 SDValue N2
, SDValue N3
, ISD::CondCode CC
);
507 SDValue
foldLogicOfSetCCs(bool IsAnd
, SDValue N0
, SDValue N1
,
509 SDValue
unfoldMaskedMerge(SDNode
*N
);
510 SDValue
unfoldExtremeBitClearingToShifts(SDNode
*N
);
511 SDValue
SimplifySetCC(EVT VT
, SDValue N0
, SDValue N1
, ISD::CondCode Cond
,
512 const SDLoc
&DL
, bool foldBooleans
);
513 SDValue
rebuildSetCC(SDValue N
);
515 bool isSetCCEquivalent(SDValue N
, SDValue
&LHS
, SDValue
&RHS
,
517 bool isOneUseSetCC(SDValue N
) const;
518 bool isCheaperToUseNegatedFPOps(SDValue X
, SDValue Y
);
520 SDValue
SimplifyNodeWithTwoResults(SDNode
*N
, unsigned LoOp
,
522 SDValue
CombineConsecutiveLoads(SDNode
*N
, EVT VT
);
523 SDValue
CombineExtLoad(SDNode
*N
);
524 SDValue
CombineZExtLogicopShiftLoad(SDNode
*N
);
525 SDValue
combineRepeatedFPDivisors(SDNode
*N
);
526 SDValue
combineInsertEltToShuffle(SDNode
*N
, unsigned InsIndex
);
527 SDValue
ConstantFoldBITCASTofBUILD_VECTOR(SDNode
*, EVT
);
528 SDValue
BuildSDIV(SDNode
*N
);
529 SDValue
BuildSDIVPow2(SDNode
*N
);
530 SDValue
BuildUDIV(SDNode
*N
);
531 SDValue
BuildLogBase2(SDValue V
, const SDLoc
&DL
);
532 SDValue
BuildDivEstimate(SDValue N
, SDValue Op
, SDNodeFlags Flags
);
533 SDValue
buildRsqrtEstimate(SDValue Op
, SDNodeFlags Flags
);
534 SDValue
buildSqrtEstimate(SDValue Op
, SDNodeFlags Flags
);
535 SDValue
buildSqrtEstimateImpl(SDValue Op
, SDNodeFlags Flags
, bool Recip
);
536 SDValue
buildSqrtNROneConst(SDValue Arg
, SDValue Est
, unsigned Iterations
,
537 SDNodeFlags Flags
, bool Reciprocal
);
538 SDValue
buildSqrtNRTwoConst(SDValue Arg
, SDValue Est
, unsigned Iterations
,
539 SDNodeFlags Flags
, bool Reciprocal
);
540 SDValue
MatchBSwapHWordLow(SDNode
*N
, SDValue N0
, SDValue N1
,
541 bool DemandHighBits
= true);
542 SDValue
MatchBSwapHWord(SDNode
*N
, SDValue N0
, SDValue N1
);
543 SDNode
*MatchRotatePosNeg(SDValue Shifted
, SDValue Pos
, SDValue Neg
,
544 SDValue InnerPos
, SDValue InnerNeg
,
545 unsigned PosOpcode
, unsigned NegOpcode
,
547 SDNode
*MatchRotate(SDValue LHS
, SDValue RHS
, const SDLoc
&DL
);
548 SDValue
MatchLoadCombine(SDNode
*N
);
549 SDValue
MatchStoreCombine(StoreSDNode
*N
);
550 SDValue
ReduceLoadWidth(SDNode
*N
);
551 SDValue
ReduceLoadOpStoreWidth(SDNode
*N
);
552 SDValue
splitMergedValStore(StoreSDNode
*ST
);
553 SDValue
TransformFPLoadStorePair(SDNode
*N
);
554 SDValue
convertBuildVecZextToZext(SDNode
*N
);
555 SDValue
reduceBuildVecExtToExtBuildVec(SDNode
*N
);
556 SDValue
reduceBuildVecToShuffle(SDNode
*N
);
557 SDValue
createBuildVecShuffle(const SDLoc
&DL
, SDNode
*N
,
558 ArrayRef
<int> VectorMask
, SDValue VecIn1
,
559 SDValue VecIn2
, unsigned LeftIdx
,
561 SDValue
matchVSelectOpSizesWithSetCC(SDNode
*Cast
);
563 /// Walk up chain skipping non-aliasing memory nodes,
564 /// looking for aliasing nodes and adding them to the Aliases vector.
565 void GatherAllAliases(SDNode
*N
, SDValue OriginalChain
,
566 SmallVectorImpl
<SDValue
> &Aliases
);
568 /// Return true if there is any possibility that the two addresses overlap.
569 bool isAlias(SDNode
*Op0
, SDNode
*Op1
) const;
571 /// Walk up chain skipping non-aliasing memory nodes, looking for a better
572 /// chain (aliasing node.)
573 SDValue
FindBetterChain(SDNode
*N
, SDValue Chain
);
575 /// Try to replace a store and any possibly adjacent stores on
576 /// consecutive chains with better chains. Return true only if St is
579 /// Notice that other chains may still be replaced even if the function
581 bool findBetterNeighborChains(StoreSDNode
*St
);
583 // Helper for findBetterNeighborChains. Walk up store chain add additional
584 // chained stores that do not overlap and can be parallelized.
585 bool parallelizeChainedStores(StoreSDNode
*St
);
587 /// Holds a pointer to an LSBaseSDNode as well as information on where it
588 /// is located in a sequence of memory operations connected by a chain.
590 // Ptr to the mem node.
591 LSBaseSDNode
*MemNode
;
593 // Offset from the base ptr.
594 int64_t OffsetFromBase
;
596 MemOpLink(LSBaseSDNode
*N
, int64_t Offset
)
597 : MemNode(N
), OffsetFromBase(Offset
) {}
600 /// This is a helper function for visitMUL to check the profitability
601 /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
602 /// MulNode is the original multiply, AddNode is (add x, c1),
603 /// and ConstNode is c2.
604 bool isMulAddWithConstProfitable(SDNode
*MulNode
,
608 /// This is a helper function for visitAND and visitZERO_EXTEND. Returns
609 /// true if the (and (load x) c) pattern matches an extload. ExtVT returns
610 /// the type of the loaded value to be extended.
611 bool isAndLoadExtLoad(ConstantSDNode
*AndC
, LoadSDNode
*LoadN
,
612 EVT LoadResultTy
, EVT
&ExtVT
);
614 /// Helper function to calculate whether the given Load/Store can have its
615 /// width reduced to ExtVT.
616 bool isLegalNarrowLdSt(LSBaseSDNode
*LDSTN
, ISD::LoadExtType ExtType
,
617 EVT
&MemVT
, unsigned ShAmt
= 0);
619 /// Used by BackwardsPropagateMask to find suitable loads.
620 bool SearchForAndLoads(SDNode
*N
, SmallVectorImpl
<LoadSDNode
*> &Loads
,
621 SmallPtrSetImpl
<SDNode
*> &NodesWithConsts
,
622 ConstantSDNode
*Mask
, SDNode
*&NodeToMask
);
623 /// Attempt to propagate a given AND node back to load leaves so that they
624 /// can be combined into narrow loads.
625 bool BackwardsPropagateMask(SDNode
*N
, SelectionDAG
&DAG
);
627 /// Helper function for MergeConsecutiveStores which merges the
628 /// component store chains.
629 SDValue
getMergeStoreChains(SmallVectorImpl
<MemOpLink
> &StoreNodes
,
632 /// This is a helper function for MergeConsecutiveStores. When the
633 /// source elements of the consecutive stores are all constants or
634 /// all extracted vector elements, try to merge them into one
635 /// larger store introducing bitcasts if necessary. \return True
636 /// if a merged store was created.
637 bool MergeStoresOfConstantsOrVecElts(SmallVectorImpl
<MemOpLink
> &StoreNodes
,
638 EVT MemVT
, unsigned NumStores
,
639 bool IsConstantSrc
, bool UseVector
,
642 /// This is a helper function for MergeConsecutiveStores. Stores
643 /// that potentially may be merged with St are placed in
644 /// StoreNodes. RootNode is a chain predecessor to all store
646 void getStoreMergeCandidates(StoreSDNode
*St
,
647 SmallVectorImpl
<MemOpLink
> &StoreNodes
,
650 /// Helper function for MergeConsecutiveStores. Checks if
651 /// candidate stores have indirect dependency through their
652 /// operands. RootNode is the predecessor to all stores calculated
653 /// by getStoreMergeCandidates and is used to prune the dependency check.
654 /// \return True if safe to merge.
655 bool checkMergeStoreCandidatesForDependencies(
656 SmallVectorImpl
<MemOpLink
> &StoreNodes
, unsigned NumStores
,
659 /// Merge consecutive store operations into a wide store.
660 /// This optimization uses wide integers or vectors when possible.
661 /// \return number of stores that were merged into a merged store (the
662 /// affected nodes are stored as a prefix in \p StoreNodes).
663 bool MergeConsecutiveStores(StoreSDNode
*St
);
665 /// Try to transform a truncation where C is a constant:
666 /// (trunc (and X, C)) -> (and (trunc X), (trunc C))
668 /// \p N needs to be a truncation and its first operand an AND. Other
669 /// requirements are checked by the function (e.g. that trunc is
670 /// single-use) and if missed an empty SDValue is returned.
671 SDValue
distributeTruncateThroughAnd(SDNode
*N
);
673 /// Helper function to determine whether the target supports operation
674 /// given by \p Opcode for type \p VT, that is, whether the operation
675 /// is legal or custom before legalizing operations, and whether is
676 /// legal (but not custom) after legalization.
677 bool hasOperation(unsigned Opcode
, EVT VT
) {
679 return TLI
.isOperationLegal(Opcode
, VT
);
680 return TLI
.isOperationLegalOrCustom(Opcode
, VT
);
684 /// Runs the dag combiner on all nodes in the work list
685 void Run(CombineLevel AtLevel
);
687 SelectionDAG
&getDAG() const { return DAG
; }
689 /// Returns a type large enough to hold any valid shift amount - before type
690 /// legalization these can be huge.
691 EVT
getShiftAmountTy(EVT LHSTy
) {
692 assert(LHSTy
.isInteger() && "Shift amount is not an integer type!");
693 return TLI
.getShiftAmountTy(LHSTy
, DAG
.getDataLayout(), LegalTypes
);
696 /// This method returns true if we are running before type legalization or
697 /// if the specified VT is legal.
698 bool isTypeLegal(const EVT
&VT
) {
699 if (!LegalTypes
) return true;
700 return TLI
.isTypeLegal(VT
);
703 /// Convenience wrapper around TargetLowering::getSetCCResultType
704 EVT
getSetCCResultType(EVT VT
) const {
705 return TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
708 void ExtendSetCCUses(const SmallVectorImpl
<SDNode
*> &SetCCs
,
709 SDValue OrigLoad
, SDValue ExtLoad
,
710 ISD::NodeType ExtType
);
713 /// This class is a DAGUpdateListener that removes any deleted
714 /// nodes from the worklist.
715 class WorklistRemover
: public SelectionDAG::DAGUpdateListener
{
719 explicit WorklistRemover(DAGCombiner
&dc
)
720 : SelectionDAG::DAGUpdateListener(dc
.getDAG()), DC(dc
) {}
722 void NodeDeleted(SDNode
*N
, SDNode
*E
) override
{
723 DC
.removeFromWorklist(N
);
727 class WorklistInserter
: public SelectionDAG::DAGUpdateListener
{
731 explicit WorklistInserter(DAGCombiner
&dc
)
732 : SelectionDAG::DAGUpdateListener(dc
.getDAG()), DC(dc
) {}
734 // FIXME: Ideally we could add N to the worklist, but this causes exponential
735 // compile time costs in large DAGs, e.g. Halide.
736 void NodeInserted(SDNode
*N
) override
{ DC
.ConsiderForPruning(N
); }
739 } // end anonymous namespace
741 //===----------------------------------------------------------------------===//
742 // TargetLowering::DAGCombinerInfo implementation
743 //===----------------------------------------------------------------------===//
745 void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode
*N
) {
746 ((DAGCombiner
*)DC
)->AddToWorklist(N
);
749 SDValue
TargetLowering::DAGCombinerInfo::
750 CombineTo(SDNode
*N
, ArrayRef
<SDValue
> To
, bool AddTo
) {
751 return ((DAGCombiner
*)DC
)->CombineTo(N
, &To
[0], To
.size(), AddTo
);
754 SDValue
TargetLowering::DAGCombinerInfo::
755 CombineTo(SDNode
*N
, SDValue Res
, bool AddTo
) {
756 return ((DAGCombiner
*)DC
)->CombineTo(N
, Res
, AddTo
);
759 SDValue
TargetLowering::DAGCombinerInfo::
760 CombineTo(SDNode
*N
, SDValue Res0
, SDValue Res1
, bool AddTo
) {
761 return ((DAGCombiner
*)DC
)->CombineTo(N
, Res0
, Res1
, AddTo
);
764 void TargetLowering::DAGCombinerInfo::
765 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt
&TLO
) {
766 return ((DAGCombiner
*)DC
)->CommitTargetLoweringOpt(TLO
);
769 //===----------------------------------------------------------------------===//
771 //===----------------------------------------------------------------------===//
773 void DAGCombiner::deleteAndRecombine(SDNode
*N
) {
774 removeFromWorklist(N
);
776 // If the operands of this node are only used by the node, they will now be
777 // dead. Make sure to re-visit them and recursively delete dead nodes.
778 for (const SDValue
&Op
: N
->ops())
779 // For an operand generating multiple values, one of the values may
780 // become dead allowing further simplification (e.g. split index
781 // arithmetic from an indexed load).
782 if (Op
->hasOneUse() || Op
->getNumValues() > 1)
783 AddToWorklist(Op
.getNode());
788 // APInts must be the same size for most operations, this helper
789 // function zero extends the shorter of the pair so that they match.
790 // We provide an Offset so that we can create bitwidths that won't overflow.
791 static void zeroExtendToMatch(APInt
&LHS
, APInt
&RHS
, unsigned Offset
= 0) {
792 unsigned Bits
= Offset
+ std::max(LHS
.getBitWidth(), RHS
.getBitWidth());
793 LHS
= LHS
.zextOrSelf(Bits
);
794 RHS
= RHS
.zextOrSelf(Bits
);
797 // Return true if this node is a setcc, or is a select_cc
798 // that selects between the target values used for true and false, making it
799 // equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to
800 // the appropriate nodes based on the type of node we are checking. This
801 // simplifies life a bit for the callers.
802 bool DAGCombiner::isSetCCEquivalent(SDValue N
, SDValue
&LHS
, SDValue
&RHS
,
804 if (N
.getOpcode() == ISD::SETCC
) {
805 LHS
= N
.getOperand(0);
806 RHS
= N
.getOperand(1);
807 CC
= N
.getOperand(2);
811 if (N
.getOpcode() != ISD::SELECT_CC
||
812 !TLI
.isConstTrueVal(N
.getOperand(2).getNode()) ||
813 !TLI
.isConstFalseVal(N
.getOperand(3).getNode()))
816 if (TLI
.getBooleanContents(N
.getValueType()) ==
817 TargetLowering::UndefinedBooleanContent
)
820 LHS
= N
.getOperand(0);
821 RHS
= N
.getOperand(1);
822 CC
= N
.getOperand(4);
826 /// Return true if this is a SetCC-equivalent operation with only one use.
827 /// If this is true, it allows the users to invert the operation for free when
828 /// it is profitable to do so.
829 bool DAGCombiner::isOneUseSetCC(SDValue N
) const {
831 if (isSetCCEquivalent(N
, N0
, N1
, N2
) && N
.getNode()->hasOneUse())
836 // Returns the SDNode if it is a constant float BuildVector
837 // or constant float.
838 static SDNode
*isConstantFPBuildVectorOrConstantFP(SDValue N
) {
839 if (isa
<ConstantFPSDNode
>(N
))
841 if (ISD::isBuildVectorOfConstantFPSDNodes(N
.getNode()))
846 // Determines if it is a constant integer or a build vector of constant
847 // integers (and undefs).
848 // Do not permit build vector implicit truncation.
849 static bool isConstantOrConstantVector(SDValue N
, bool NoOpaques
= false) {
850 if (ConstantSDNode
*Const
= dyn_cast
<ConstantSDNode
>(N
))
851 return !(Const
->isOpaque() && NoOpaques
);
852 if (N
.getOpcode() != ISD::BUILD_VECTOR
)
854 unsigned BitWidth
= N
.getScalarValueSizeInBits();
855 for (const SDValue
&Op
: N
->op_values()) {
858 ConstantSDNode
*Const
= dyn_cast
<ConstantSDNode
>(Op
);
859 if (!Const
|| Const
->getAPIntValue().getBitWidth() != BitWidth
||
860 (Const
->isOpaque() && NoOpaques
))
866 // Determines if a BUILD_VECTOR is composed of all-constants possibly mixed with
868 static bool isAnyConstantBuildVector(SDValue V
, bool NoOpaques
= false) {
869 if (V
.getOpcode() != ISD::BUILD_VECTOR
)
871 return isConstantOrConstantVector(V
, NoOpaques
) ||
872 ISD::isBuildVectorOfConstantFPSDNodes(V
.getNode());
875 bool DAGCombiner::reassociationCanBreakAddressingModePattern(unsigned Opc
,
879 // Currently this only tries to ensure we don't undo the GEP splits done by
880 // CodeGenPrepare when shouldConsiderGEPOffsetSplit is true. To ensure this,
881 // we check if the following transformation would be problematic:
882 // (load/store (add, (add, x, offset1), offset2)) ->
883 // (load/store (add, x, offset1+offset2)).
885 if (Opc
!= ISD::ADD
|| N0
.getOpcode() != ISD::ADD
)
891 auto *C1
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
892 auto *C2
= dyn_cast
<ConstantSDNode
>(N1
);
896 const APInt
&C1APIntVal
= C1
->getAPIntValue();
897 const APInt
&C2APIntVal
= C2
->getAPIntValue();
898 if (C1APIntVal
.getBitWidth() > 64 || C2APIntVal
.getBitWidth() > 64)
901 const APInt CombinedValueIntVal
= C1APIntVal
+ C2APIntVal
;
902 if (CombinedValueIntVal
.getBitWidth() > 64)
904 const int64_t CombinedValue
= CombinedValueIntVal
.getSExtValue();
906 for (SDNode
*Node
: N0
->uses()) {
907 auto LoadStore
= dyn_cast
<MemSDNode
>(Node
);
909 // Is x[offset2] already not a legal addressing mode? If so then
910 // reassociating the constants breaks nothing (we test offset2 because
911 // that's the one we hope to fold into the load or store).
912 TargetLoweringBase::AddrMode AM
;
913 AM
.HasBaseReg
= true;
914 AM
.BaseOffs
= C2APIntVal
.getSExtValue();
915 EVT VT
= LoadStore
->getMemoryVT();
916 unsigned AS
= LoadStore
->getAddressSpace();
917 Type
*AccessTy
= VT
.getTypeForEVT(*DAG
.getContext());
918 if (!TLI
.isLegalAddressingMode(DAG
.getDataLayout(), AM
, AccessTy
, AS
))
921 // Would x[offset1+offset2] still be a legal addressing mode?
922 AM
.BaseOffs
= CombinedValue
;
923 if (!TLI
.isLegalAddressingMode(DAG
.getDataLayout(), AM
, AccessTy
, AS
))
931 // Helper for DAGCombiner::reassociateOps. Try to reassociate an expression
932 // such as (Opc N0, N1), if \p N0 is the same kind of operation as \p Opc.
933 SDValue
DAGCombiner::reassociateOpsCommutative(unsigned Opc
, const SDLoc
&DL
,
934 SDValue N0
, SDValue N1
) {
935 EVT VT
= N0
.getValueType();
937 if (N0
.getOpcode() != Opc
)
940 // Don't reassociate reductions.
941 if (N0
->getFlags().hasVectorReduction())
944 if (SDNode
*C1
= DAG
.isConstantIntBuildVectorOrConstantInt(N0
.getOperand(1))) {
945 if (SDNode
*C2
= DAG
.isConstantIntBuildVectorOrConstantInt(N1
)) {
946 // Reassociate: (op (op x, c1), c2) -> (op x, (op c1, c2))
947 if (SDValue OpNode
= DAG
.FoldConstantArithmetic(Opc
, DL
, VT
, C1
, C2
))
948 return DAG
.getNode(Opc
, DL
, VT
, N0
.getOperand(0), OpNode
);
951 if (N0
.hasOneUse()) {
952 // Reassociate: (op (op x, c1), y) -> (op (op x, y), c1)
953 // iff (op x, c1) has one use
954 SDValue OpNode
= DAG
.getNode(Opc
, SDLoc(N0
), VT
, N0
.getOperand(0), N1
);
955 if (!OpNode
.getNode())
957 return DAG
.getNode(Opc
, DL
, VT
, OpNode
, N0
.getOperand(1));
963 // Try to reassociate commutative binops.
964 SDValue
DAGCombiner::reassociateOps(unsigned Opc
, const SDLoc
&DL
, SDValue N0
,
965 SDValue N1
, SDNodeFlags Flags
) {
966 assert(TLI
.isCommutativeBinOp(Opc
) && "Operation not commutative.");
967 // Don't reassociate reductions.
968 if (Flags
.hasVectorReduction())
971 // Floating-point reassociation is not allowed without loose FP math.
972 if (N0
.getValueType().isFloatingPoint() ||
973 N1
.getValueType().isFloatingPoint())
974 if (!Flags
.hasAllowReassociation() || !Flags
.hasNoSignedZeros())
977 if (SDValue Combined
= reassociateOpsCommutative(Opc
, DL
, N0
, N1
))
979 if (SDValue Combined
= reassociateOpsCommutative(Opc
, DL
, N1
, N0
))
984 SDValue
DAGCombiner::CombineTo(SDNode
*N
, const SDValue
*To
, unsigned NumTo
,
986 assert(N
->getNumValues() == NumTo
&& "Broken CombineTo call!");
988 LLVM_DEBUG(dbgs() << "\nReplacing.1 "; N
->dump(&DAG
); dbgs() << "\nWith: ";
989 To
[0].getNode()->dump(&DAG
);
990 dbgs() << " and " << NumTo
- 1 << " other values\n");
991 for (unsigned i
= 0, e
= NumTo
; i
!= e
; ++i
)
992 assert((!To
[i
].getNode() ||
993 N
->getValueType(i
) == To
[i
].getValueType()) &&
994 "Cannot combine value to value of different type!");
996 WorklistRemover
DeadNodes(*this);
997 DAG
.ReplaceAllUsesWith(N
, To
);
999 // Push the new nodes and any users onto the worklist
1000 for (unsigned i
= 0, e
= NumTo
; i
!= e
; ++i
) {
1001 if (To
[i
].getNode()) {
1002 AddToWorklist(To
[i
].getNode());
1003 AddUsersToWorklist(To
[i
].getNode());
1008 // Finally, if the node is now dead, remove it from the graph. The node
1009 // may not be dead if the replacement process recursively simplified to
1010 // something else needing this node.
1012 deleteAndRecombine(N
);
1013 return SDValue(N
, 0);
1017 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt
&TLO
) {
1018 // Replace all uses. If any nodes become isomorphic to other nodes and
1019 // are deleted, make sure to remove them from our worklist.
1020 WorklistRemover
DeadNodes(*this);
1021 DAG
.ReplaceAllUsesOfValueWith(TLO
.Old
, TLO
.New
);
1023 // Push the new node and any (possibly new) users onto the worklist.
1024 AddToWorklist(TLO
.New
.getNode());
1025 AddUsersToWorklist(TLO
.New
.getNode());
1027 // Finally, if the node is now dead, remove it from the graph. The node
1028 // may not be dead if the replacement process recursively simplified to
1029 // something else needing this node.
1030 if (TLO
.Old
.getNode()->use_empty())
1031 deleteAndRecombine(TLO
.Old
.getNode());
1034 /// Check the specified integer node value to see if it can be simplified or if
1035 /// things it uses can be simplified by bit propagation. If so, return true.
1036 bool DAGCombiner::SimplifyDemandedBits(SDValue Op
, const APInt
&DemandedBits
,
1037 const APInt
&DemandedElts
) {
1038 TargetLowering::TargetLoweringOpt
TLO(DAG
, LegalTypes
, LegalOperations
);
1040 if (!TLI
.SimplifyDemandedBits(Op
, DemandedBits
, DemandedElts
, Known
, TLO
))
1043 // Revisit the node.
1044 AddToWorklist(Op
.getNode());
1046 // Replace the old value with the new one.
1048 LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO
.Old
.getNode()->dump(&DAG
);
1049 dbgs() << "\nWith: "; TLO
.New
.getNode()->dump(&DAG
);
1052 CommitTargetLoweringOpt(TLO
);
1056 /// Check the specified vector node value to see if it can be simplified or
1057 /// if things it uses can be simplified as it only uses some of the elements.
1058 /// If so, return true.
1059 bool DAGCombiner::SimplifyDemandedVectorElts(SDValue Op
,
1060 const APInt
&DemandedElts
,
1061 bool AssumeSingleUse
) {
1062 TargetLowering::TargetLoweringOpt
TLO(DAG
, LegalTypes
, LegalOperations
);
1063 APInt KnownUndef
, KnownZero
;
1064 if (!TLI
.SimplifyDemandedVectorElts(Op
, DemandedElts
, KnownUndef
, KnownZero
,
1065 TLO
, 0, AssumeSingleUse
))
1068 // Revisit the node.
1069 AddToWorklist(Op
.getNode());
1071 // Replace the old value with the new one.
1073 LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO
.Old
.getNode()->dump(&DAG
);
1074 dbgs() << "\nWith: "; TLO
.New
.getNode()->dump(&DAG
);
1077 CommitTargetLoweringOpt(TLO
);
1081 void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode
*Load
, SDNode
*ExtLoad
) {
1083 EVT VT
= Load
->getValueType(0);
1084 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, SDValue(ExtLoad
, 0));
1086 LLVM_DEBUG(dbgs() << "\nReplacing.9 "; Load
->dump(&DAG
); dbgs() << "\nWith: ";
1087 Trunc
.getNode()->dump(&DAG
); dbgs() << '\n');
1088 WorklistRemover
DeadNodes(*this);
1089 DAG
.ReplaceAllUsesOfValueWith(SDValue(Load
, 0), Trunc
);
1090 DAG
.ReplaceAllUsesOfValueWith(SDValue(Load
, 1), SDValue(ExtLoad
, 1));
1091 deleteAndRecombine(Load
);
1092 AddToWorklist(Trunc
.getNode());
1095 SDValue
DAGCombiner::PromoteOperand(SDValue Op
, EVT PVT
, bool &Replace
) {
1098 if (ISD::isUNINDEXEDLoad(Op
.getNode())) {
1099 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
);
1100 EVT MemVT
= LD
->getMemoryVT();
1101 ISD::LoadExtType ExtType
= ISD::isNON_EXTLoad(LD
) ? ISD::EXTLOAD
1102 : LD
->getExtensionType();
1104 return DAG
.getExtLoad(ExtType
, DL
, PVT
,
1105 LD
->getChain(), LD
->getBasePtr(),
1106 MemVT
, LD
->getMemOperand());
1109 unsigned Opc
= Op
.getOpcode();
1112 case ISD::AssertSext
:
1113 if (SDValue Op0
= SExtPromoteOperand(Op
.getOperand(0), PVT
))
1114 return DAG
.getNode(ISD::AssertSext
, DL
, PVT
, Op0
, Op
.getOperand(1));
1116 case ISD::AssertZext
:
1117 if (SDValue Op0
= ZExtPromoteOperand(Op
.getOperand(0), PVT
))
1118 return DAG
.getNode(ISD::AssertZext
, DL
, PVT
, Op0
, Op
.getOperand(1));
1120 case ISD::Constant
: {
1122 Op
.getValueType().isByteSized() ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
1123 return DAG
.getNode(ExtOpc
, DL
, PVT
, Op
);
1127 if (!TLI
.isOperationLegal(ISD::ANY_EXTEND
, PVT
))
1129 return DAG
.getNode(ISD::ANY_EXTEND
, DL
, PVT
, Op
);
1132 SDValue
DAGCombiner::SExtPromoteOperand(SDValue Op
, EVT PVT
) {
1133 if (!TLI
.isOperationLegal(ISD::SIGN_EXTEND_INREG
, PVT
))
1135 EVT OldVT
= Op
.getValueType();
1137 bool Replace
= false;
1138 SDValue NewOp
= PromoteOperand(Op
, PVT
, Replace
);
1139 if (!NewOp
.getNode())
1141 AddToWorklist(NewOp
.getNode());
1144 ReplaceLoadWithPromotedLoad(Op
.getNode(), NewOp
.getNode());
1145 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, NewOp
.getValueType(), NewOp
,
1146 DAG
.getValueType(OldVT
));
1149 SDValue
DAGCombiner::ZExtPromoteOperand(SDValue Op
, EVT PVT
) {
1150 EVT OldVT
= Op
.getValueType();
1152 bool Replace
= false;
1153 SDValue NewOp
= PromoteOperand(Op
, PVT
, Replace
);
1154 if (!NewOp
.getNode())
1156 AddToWorklist(NewOp
.getNode());
1159 ReplaceLoadWithPromotedLoad(Op
.getNode(), NewOp
.getNode());
1160 return DAG
.getZeroExtendInReg(NewOp
, DL
, OldVT
);
1163 /// Promote the specified integer binary operation if the target indicates it is
1164 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to
1165 /// i32 since i16 instructions are longer.
1166 SDValue
DAGCombiner::PromoteIntBinOp(SDValue Op
) {
1167 if (!LegalOperations
)
1170 EVT VT
= Op
.getValueType();
1171 if (VT
.isVector() || !VT
.isInteger())
1174 // If operation type is 'undesirable', e.g. i16 on x86, consider
1176 unsigned Opc
= Op
.getOpcode();
1177 if (TLI
.isTypeDesirableForOp(Opc
, VT
))
1181 // Consult target whether it is a good idea to promote this operation and
1182 // what's the right type to promote it to.
1183 if (TLI
.IsDesirableToPromoteOp(Op
, PVT
)) {
1184 assert(PVT
!= VT
&& "Don't know what type to promote to!");
1186 LLVM_DEBUG(dbgs() << "\nPromoting "; Op
.getNode()->dump(&DAG
));
1188 bool Replace0
= false;
1189 SDValue N0
= Op
.getOperand(0);
1190 SDValue NN0
= PromoteOperand(N0
, PVT
, Replace0
);
1192 bool Replace1
= false;
1193 SDValue N1
= Op
.getOperand(1);
1194 SDValue NN1
= PromoteOperand(N1
, PVT
, Replace1
);
1198 DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, DAG
.getNode(Opc
, DL
, PVT
, NN0
, NN1
));
1200 // We are always replacing N0/N1's use in N and only need
1201 // additional replacements if there are additional uses.
1202 Replace0
&= !N0
->hasOneUse();
1203 Replace1
&= (N0
!= N1
) && !N1
->hasOneUse();
1205 // Combine Op here so it is preserved past replacements.
1206 CombineTo(Op
.getNode(), RV
);
1208 // If operands have a use ordering, make sure we deal with
1209 // predecessor first.
1210 if (Replace0
&& Replace1
&& N0
.getNode()->isPredecessorOf(N1
.getNode())) {
1212 std::swap(NN0
, NN1
);
1216 AddToWorklist(NN0
.getNode());
1217 ReplaceLoadWithPromotedLoad(N0
.getNode(), NN0
.getNode());
1220 AddToWorklist(NN1
.getNode());
1221 ReplaceLoadWithPromotedLoad(N1
.getNode(), NN1
.getNode());
1228 /// Promote the specified integer shift operation if the target indicates it is
1229 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to
1230 /// i32 since i16 instructions are longer.
1231 SDValue
DAGCombiner::PromoteIntShiftOp(SDValue Op
) {
1232 if (!LegalOperations
)
1235 EVT VT
= Op
.getValueType();
1236 if (VT
.isVector() || !VT
.isInteger())
1239 // If operation type is 'undesirable', e.g. i16 on x86, consider
1241 unsigned Opc
= Op
.getOpcode();
1242 if (TLI
.isTypeDesirableForOp(Opc
, VT
))
1246 // Consult target whether it is a good idea to promote this operation and
1247 // what's the right type to promote it to.
1248 if (TLI
.IsDesirableToPromoteOp(Op
, PVT
)) {
1249 assert(PVT
!= VT
&& "Don't know what type to promote to!");
1251 LLVM_DEBUG(dbgs() << "\nPromoting "; Op
.getNode()->dump(&DAG
));
1253 bool Replace
= false;
1254 SDValue N0
= Op
.getOperand(0);
1255 SDValue N1
= Op
.getOperand(1);
1256 if (Opc
== ISD::SRA
)
1257 N0
= SExtPromoteOperand(N0
, PVT
);
1258 else if (Opc
== ISD::SRL
)
1259 N0
= ZExtPromoteOperand(N0
, PVT
);
1261 N0
= PromoteOperand(N0
, PVT
, Replace
);
1268 DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, DAG
.getNode(Opc
, DL
, PVT
, N0
, N1
));
1271 ReplaceLoadWithPromotedLoad(Op
.getOperand(0).getNode(), N0
.getNode());
1273 // Deal with Op being deleted.
1274 if (Op
&& Op
.getOpcode() != ISD::DELETED_NODE
)
1280 SDValue
DAGCombiner::PromoteExtend(SDValue Op
) {
1281 if (!LegalOperations
)
1284 EVT VT
= Op
.getValueType();
1285 if (VT
.isVector() || !VT
.isInteger())
1288 // If operation type is 'undesirable', e.g. i16 on x86, consider
1290 unsigned Opc
= Op
.getOpcode();
1291 if (TLI
.isTypeDesirableForOp(Opc
, VT
))
1295 // Consult target whether it is a good idea to promote this operation and
1296 // what's the right type to promote it to.
1297 if (TLI
.IsDesirableToPromoteOp(Op
, PVT
)) {
1298 assert(PVT
!= VT
&& "Don't know what type to promote to!");
1299 // fold (aext (aext x)) -> (aext x)
1300 // fold (aext (zext x)) -> (zext x)
1301 // fold (aext (sext x)) -> (sext x)
1302 LLVM_DEBUG(dbgs() << "\nPromoting "; Op
.getNode()->dump(&DAG
));
1303 return DAG
.getNode(Op
.getOpcode(), SDLoc(Op
), VT
, Op
.getOperand(0));
1308 bool DAGCombiner::PromoteLoad(SDValue Op
) {
1309 if (!LegalOperations
)
1312 if (!ISD::isUNINDEXEDLoad(Op
.getNode()))
1315 EVT VT
= Op
.getValueType();
1316 if (VT
.isVector() || !VT
.isInteger())
1319 // If operation type is 'undesirable', e.g. i16 on x86, consider
1321 unsigned Opc
= Op
.getOpcode();
1322 if (TLI
.isTypeDesirableForOp(Opc
, VT
))
1326 // Consult target whether it is a good idea to promote this operation and
1327 // what's the right type to promote it to.
1328 if (TLI
.IsDesirableToPromoteOp(Op
, PVT
)) {
1329 assert(PVT
!= VT
&& "Don't know what type to promote to!");
1332 SDNode
*N
= Op
.getNode();
1333 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
1334 EVT MemVT
= LD
->getMemoryVT();
1335 ISD::LoadExtType ExtType
= ISD::isNON_EXTLoad(LD
) ? ISD::EXTLOAD
1336 : LD
->getExtensionType();
1337 SDValue NewLD
= DAG
.getExtLoad(ExtType
, DL
, PVT
,
1338 LD
->getChain(), LD
->getBasePtr(),
1339 MemVT
, LD
->getMemOperand());
1340 SDValue Result
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, NewLD
);
1342 LLVM_DEBUG(dbgs() << "\nPromoting "; N
->dump(&DAG
); dbgs() << "\nTo: ";
1343 Result
.getNode()->dump(&DAG
); dbgs() << '\n');
1344 WorklistRemover
DeadNodes(*this);
1345 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
);
1346 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), NewLD
.getValue(1));
1347 deleteAndRecombine(N
);
1348 AddToWorklist(Result
.getNode());
1354 /// Recursively delete a node which has no uses and any operands for
1355 /// which it is the only use.
1357 /// Note that this both deletes the nodes and removes them from the worklist.
1358 /// It also adds any nodes who have had a user deleted to the worklist as they
1359 /// may now have only one use and subject to other combines.
1360 bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode
*N
) {
1361 if (!N
->use_empty())
1364 SmallSetVector
<SDNode
*, 16> Nodes
;
1367 N
= Nodes
.pop_back_val();
1371 if (N
->use_empty()) {
1372 for (const SDValue
&ChildN
: N
->op_values())
1373 Nodes
.insert(ChildN
.getNode());
1375 removeFromWorklist(N
);
1380 } while (!Nodes
.empty());
1384 //===----------------------------------------------------------------------===//
1385 // Main DAG Combiner implementation
1386 //===----------------------------------------------------------------------===//
1388 void DAGCombiner::Run(CombineLevel AtLevel
) {
1389 // set the instance variables, so that the various visit routines may use it.
1391 LegalOperations
= Level
>= AfterLegalizeVectorOps
;
1392 LegalTypes
= Level
>= AfterLegalizeTypes
;
1394 WorklistInserter
AddNodes(*this);
1396 // Add all the dag nodes to the worklist.
1397 for (SDNode
&Node
: DAG
.allnodes())
1398 AddToWorklist(&Node
);
1400 // Create a dummy node (which is not added to allnodes), that adds a reference
1401 // to the root node, preventing it from being deleted, and tracking any
1402 // changes of the root.
1403 HandleSDNode
Dummy(DAG
.getRoot());
1405 // While we have a valid worklist entry node, try to combine it.
1406 while (SDNode
*N
= getNextWorklistEntry()) {
1407 // If N has no uses, it is dead. Make sure to revisit all N's operands once
1408 // N is deleted from the DAG, since they too may now be dead or may have a
1409 // reduced number of uses, allowing other xforms.
1410 if (recursivelyDeleteUnusedNodes(N
))
1413 WorklistRemover
DeadNodes(*this);
1415 // If this combine is running after legalizing the DAG, re-legalize any
1416 // nodes pulled off the worklist.
1417 if (Level
== AfterLegalizeDAG
) {
1418 SmallSetVector
<SDNode
*, 16> UpdatedNodes
;
1419 bool NIsValid
= DAG
.LegalizeOp(N
, UpdatedNodes
);
1421 for (SDNode
*LN
: UpdatedNodes
) {
1422 AddUsersToWorklist(LN
);
1429 LLVM_DEBUG(dbgs() << "\nCombining: "; N
->dump(&DAG
));
1431 // Add any operands of the new node which have not yet been combined to the
1432 // worklist as well. Because the worklist uniques things already, this
1433 // won't repeatedly process the same operand.
1434 CombinedNodes
.insert(N
);
1435 for (const SDValue
&ChildN
: N
->op_values())
1436 if (!CombinedNodes
.count(ChildN
.getNode()))
1437 AddToWorklist(ChildN
.getNode());
1439 SDValue RV
= combine(N
);
1446 // If we get back the same node we passed in, rather than a new node or
1447 // zero, we know that the node must have defined multiple values and
1448 // CombineTo was used. Since CombineTo takes care of the worklist
1449 // mechanics for us, we have no work to do in this case.
1450 if (RV
.getNode() == N
)
1453 assert(N
->getOpcode() != ISD::DELETED_NODE
&&
1454 RV
.getOpcode() != ISD::DELETED_NODE
&&
1455 "Node was deleted but visit returned new node!");
1457 LLVM_DEBUG(dbgs() << " ... into: "; RV
.getNode()->dump(&DAG
));
1459 if (N
->getNumValues() == RV
.getNode()->getNumValues())
1460 DAG
.ReplaceAllUsesWith(N
, RV
.getNode());
1462 assert(N
->getValueType(0) == RV
.getValueType() &&
1463 N
->getNumValues() == 1 && "Type mismatch");
1464 DAG
.ReplaceAllUsesWith(N
, &RV
);
1467 // Push the new node and any users onto the worklist
1468 AddToWorklist(RV
.getNode());
1469 AddUsersToWorklist(RV
.getNode());
1471 // Finally, if the node is now dead, remove it from the graph. The node
1472 // may not be dead if the replacement process recursively simplified to
1473 // something else needing this node. This will also take care of adding any
1474 // operands which have lost a user to the worklist.
1475 recursivelyDeleteUnusedNodes(N
);
1478 // If the root changed (e.g. it was a dead load, update the root).
1479 DAG
.setRoot(Dummy
.getValue());
1480 DAG
.RemoveDeadNodes();
1483 SDValue
DAGCombiner::visit(SDNode
*N
) {
1484 switch (N
->getOpcode()) {
1486 case ISD::TokenFactor
: return visitTokenFactor(N
);
1487 case ISD::MERGE_VALUES
: return visitMERGE_VALUES(N
);
1488 case ISD::ADD
: return visitADD(N
);
1489 case ISD::SUB
: return visitSUB(N
);
1491 case ISD::UADDSAT
: return visitADDSAT(N
);
1493 case ISD::USUBSAT
: return visitSUBSAT(N
);
1494 case ISD::ADDC
: return visitADDC(N
);
1496 case ISD::UADDO
: return visitADDO(N
);
1497 case ISD::SUBC
: return visitSUBC(N
);
1499 case ISD::USUBO
: return visitSUBO(N
);
1500 case ISD::ADDE
: return visitADDE(N
);
1501 case ISD::ADDCARRY
: return visitADDCARRY(N
);
1502 case ISD::SUBE
: return visitSUBE(N
);
1503 case ISD::SUBCARRY
: return visitSUBCARRY(N
);
1505 case ISD::SMULFIXSAT
:
1507 case ISD::UMULFIXSAT
: return visitMULFIX(N
);
1508 case ISD::MUL
: return visitMUL(N
);
1509 case ISD::SDIV
: return visitSDIV(N
);
1510 case ISD::UDIV
: return visitUDIV(N
);
1512 case ISD::UREM
: return visitREM(N
);
1513 case ISD::MULHU
: return visitMULHU(N
);
1514 case ISD::MULHS
: return visitMULHS(N
);
1515 case ISD::SMUL_LOHI
: return visitSMUL_LOHI(N
);
1516 case ISD::UMUL_LOHI
: return visitUMUL_LOHI(N
);
1518 case ISD::UMULO
: return visitMULO(N
);
1522 case ISD::UMAX
: return visitIMINMAX(N
);
1523 case ISD::AND
: return visitAND(N
);
1524 case ISD::OR
: return visitOR(N
);
1525 case ISD::XOR
: return visitXOR(N
);
1526 case ISD::SHL
: return visitSHL(N
);
1527 case ISD::SRA
: return visitSRA(N
);
1528 case ISD::SRL
: return visitSRL(N
);
1530 case ISD::ROTL
: return visitRotate(N
);
1532 case ISD::FSHR
: return visitFunnelShift(N
);
1533 case ISD::ABS
: return visitABS(N
);
1534 case ISD::BSWAP
: return visitBSWAP(N
);
1535 case ISD::BITREVERSE
: return visitBITREVERSE(N
);
1536 case ISD::CTLZ
: return visitCTLZ(N
);
1537 case ISD::CTLZ_ZERO_UNDEF
: return visitCTLZ_ZERO_UNDEF(N
);
1538 case ISD::CTTZ
: return visitCTTZ(N
);
1539 case ISD::CTTZ_ZERO_UNDEF
: return visitCTTZ_ZERO_UNDEF(N
);
1540 case ISD::CTPOP
: return visitCTPOP(N
);
1541 case ISD::SELECT
: return visitSELECT(N
);
1542 case ISD::VSELECT
: return visitVSELECT(N
);
1543 case ISD::SELECT_CC
: return visitSELECT_CC(N
);
1544 case ISD::SETCC
: return visitSETCC(N
);
1545 case ISD::SETCCCARRY
: return visitSETCCCARRY(N
);
1546 case ISD::SIGN_EXTEND
: return visitSIGN_EXTEND(N
);
1547 case ISD::ZERO_EXTEND
: return visitZERO_EXTEND(N
);
1548 case ISD::ANY_EXTEND
: return visitANY_EXTEND(N
);
1549 case ISD::AssertSext
:
1550 case ISD::AssertZext
: return visitAssertExt(N
);
1551 case ISD::SIGN_EXTEND_INREG
: return visitSIGN_EXTEND_INREG(N
);
1552 case ISD::SIGN_EXTEND_VECTOR_INREG
: return visitSIGN_EXTEND_VECTOR_INREG(N
);
1553 case ISD::ZERO_EXTEND_VECTOR_INREG
: return visitZERO_EXTEND_VECTOR_INREG(N
);
1554 case ISD::TRUNCATE
: return visitTRUNCATE(N
);
1555 case ISD::BITCAST
: return visitBITCAST(N
);
1556 case ISD::BUILD_PAIR
: return visitBUILD_PAIR(N
);
1557 case ISD::FADD
: return visitFADD(N
);
1558 case ISD::FSUB
: return visitFSUB(N
);
1559 case ISD::FMUL
: return visitFMUL(N
);
1560 case ISD::FMA
: return visitFMA(N
);
1561 case ISD::FDIV
: return visitFDIV(N
);
1562 case ISD::FREM
: return visitFREM(N
);
1563 case ISD::FSQRT
: return visitFSQRT(N
);
1564 case ISD::FCOPYSIGN
: return visitFCOPYSIGN(N
);
1565 case ISD::FPOW
: return visitFPOW(N
);
1566 case ISD::SINT_TO_FP
: return visitSINT_TO_FP(N
);
1567 case ISD::UINT_TO_FP
: return visitUINT_TO_FP(N
);
1568 case ISD::FP_TO_SINT
: return visitFP_TO_SINT(N
);
1569 case ISD::FP_TO_UINT
: return visitFP_TO_UINT(N
);
1570 case ISD::FP_ROUND
: return visitFP_ROUND(N
);
1571 case ISD::FP_EXTEND
: return visitFP_EXTEND(N
);
1572 case ISD::FNEG
: return visitFNEG(N
);
1573 case ISD::FABS
: return visitFABS(N
);
1574 case ISD::FFLOOR
: return visitFFLOOR(N
);
1575 case ISD::FMINNUM
: return visitFMINNUM(N
);
1576 case ISD::FMAXNUM
: return visitFMAXNUM(N
);
1577 case ISD::FMINIMUM
: return visitFMINIMUM(N
);
1578 case ISD::FMAXIMUM
: return visitFMAXIMUM(N
);
1579 case ISD::FCEIL
: return visitFCEIL(N
);
1580 case ISD::FTRUNC
: return visitFTRUNC(N
);
1581 case ISD::BRCOND
: return visitBRCOND(N
);
1582 case ISD::BR_CC
: return visitBR_CC(N
);
1583 case ISD::LOAD
: return visitLOAD(N
);
1584 case ISD::STORE
: return visitSTORE(N
);
1585 case ISD::INSERT_VECTOR_ELT
: return visitINSERT_VECTOR_ELT(N
);
1586 case ISD::EXTRACT_VECTOR_ELT
: return visitEXTRACT_VECTOR_ELT(N
);
1587 case ISD::BUILD_VECTOR
: return visitBUILD_VECTOR(N
);
1588 case ISD::CONCAT_VECTORS
: return visitCONCAT_VECTORS(N
);
1589 case ISD::EXTRACT_SUBVECTOR
: return visitEXTRACT_SUBVECTOR(N
);
1590 case ISD::VECTOR_SHUFFLE
: return visitVECTOR_SHUFFLE(N
);
1591 case ISD::SCALAR_TO_VECTOR
: return visitSCALAR_TO_VECTOR(N
);
1592 case ISD::INSERT_SUBVECTOR
: return visitINSERT_SUBVECTOR(N
);
1593 case ISD::MGATHER
: return visitMGATHER(N
);
1594 case ISD::MLOAD
: return visitMLOAD(N
);
1595 case ISD::MSCATTER
: return visitMSCATTER(N
);
1596 case ISD::MSTORE
: return visitMSTORE(N
);
1597 case ISD::LIFETIME_END
: return visitLIFETIME_END(N
);
1598 case ISD::FP_TO_FP16
: return visitFP_TO_FP16(N
);
1599 case ISD::FP16_TO_FP
: return visitFP16_TO_FP(N
);
1600 case ISD::VECREDUCE_FADD
:
1601 case ISD::VECREDUCE_FMUL
:
1602 case ISD::VECREDUCE_ADD
:
1603 case ISD::VECREDUCE_MUL
:
1604 case ISD::VECREDUCE_AND
:
1605 case ISD::VECREDUCE_OR
:
1606 case ISD::VECREDUCE_XOR
:
1607 case ISD::VECREDUCE_SMAX
:
1608 case ISD::VECREDUCE_SMIN
:
1609 case ISD::VECREDUCE_UMAX
:
1610 case ISD::VECREDUCE_UMIN
:
1611 case ISD::VECREDUCE_FMAX
:
1612 case ISD::VECREDUCE_FMIN
: return visitVECREDUCE(N
);
1617 SDValue
DAGCombiner::combine(SDNode
*N
) {
1618 SDValue RV
= visit(N
);
1620 // If nothing happened, try a target-specific DAG combine.
1621 if (!RV
.getNode()) {
1622 assert(N
->getOpcode() != ISD::DELETED_NODE
&&
1623 "Node was deleted but visit returned NULL!");
1625 if (N
->getOpcode() >= ISD::BUILTIN_OP_END
||
1626 TLI
.hasTargetDAGCombine((ISD::NodeType
)N
->getOpcode())) {
1628 // Expose the DAG combiner to the target combiner impls.
1629 TargetLowering::DAGCombinerInfo
1630 DagCombineInfo(DAG
, Level
, false, this);
1632 RV
= TLI
.PerformDAGCombine(N
, DagCombineInfo
);
1636 // If nothing happened still, try promoting the operation.
1637 if (!RV
.getNode()) {
1638 switch (N
->getOpcode()) {
1646 RV
= PromoteIntBinOp(SDValue(N
, 0));
1651 RV
= PromoteIntShiftOp(SDValue(N
, 0));
1653 case ISD::SIGN_EXTEND
:
1654 case ISD::ZERO_EXTEND
:
1655 case ISD::ANY_EXTEND
:
1656 RV
= PromoteExtend(SDValue(N
, 0));
1659 if (PromoteLoad(SDValue(N
, 0)))
1665 // If N is a commutative binary node, try to eliminate it if the commuted
1666 // version is already present in the DAG.
1667 if (!RV
.getNode() && TLI
.isCommutativeBinOp(N
->getOpcode()) &&
1668 N
->getNumValues() == 1) {
1669 SDValue N0
= N
->getOperand(0);
1670 SDValue N1
= N
->getOperand(1);
1672 // Constant operands are canonicalized to RHS.
1673 if (N0
!= N1
&& (isa
<ConstantSDNode
>(N0
) || !isa
<ConstantSDNode
>(N1
))) {
1674 SDValue Ops
[] = {N1
, N0
};
1675 SDNode
*CSENode
= DAG
.getNodeIfExists(N
->getOpcode(), N
->getVTList(), Ops
,
1678 return SDValue(CSENode
, 0);
1685 /// Given a node, return its input chain if it has one, otherwise return a null
1687 static SDValue
getInputChainForNode(SDNode
*N
) {
1688 if (unsigned NumOps
= N
->getNumOperands()) {
1689 if (N
->getOperand(0).getValueType() == MVT::Other
)
1690 return N
->getOperand(0);
1691 if (N
->getOperand(NumOps
-1).getValueType() == MVT::Other
)
1692 return N
->getOperand(NumOps
-1);
1693 for (unsigned i
= 1; i
< NumOps
-1; ++i
)
1694 if (N
->getOperand(i
).getValueType() == MVT::Other
)
1695 return N
->getOperand(i
);
1700 SDValue
DAGCombiner::visitTokenFactor(SDNode
*N
) {
1701 // If N has two operands, where one has an input chain equal to the other,
1702 // the 'other' chain is redundant.
1703 if (N
->getNumOperands() == 2) {
1704 if (getInputChainForNode(N
->getOperand(0).getNode()) == N
->getOperand(1))
1705 return N
->getOperand(0);
1706 if (getInputChainForNode(N
->getOperand(1).getNode()) == N
->getOperand(0))
1707 return N
->getOperand(1);
1710 // Don't simplify token factors if optnone.
1711 if (OptLevel
== CodeGenOpt::None
)
1714 // If the sole user is a token factor, we should make sure we have a
1715 // chance to merge them together. This prevents TF chains from inhibiting
1717 if (N
->hasOneUse() && N
->use_begin()->getOpcode() == ISD::TokenFactor
)
1718 AddToWorklist(*(N
->use_begin()));
1720 SmallVector
<SDNode
*, 8> TFs
; // List of token factors to visit.
1721 SmallVector
<SDValue
, 8> Ops
; // Ops for replacing token factor.
1722 SmallPtrSet
<SDNode
*, 16> SeenOps
;
1723 bool Changed
= false; // If we should replace this token factor.
1725 // Start out with this token factor.
1728 // Iterate through token factors. The TFs grows when new token factors are
1730 for (unsigned i
= 0; i
< TFs
.size(); ++i
) {
1731 // Limit number of nodes to inline, to avoid quadratic compile times.
1732 // We have to add the outstanding Token Factors to Ops, otherwise we might
1733 // drop Ops from the resulting Token Factors.
1734 if (Ops
.size() > TokenFactorInlineLimit
) {
1735 for (unsigned j
= i
; j
< TFs
.size(); j
++)
1736 Ops
.emplace_back(TFs
[j
], 0);
1737 // Drop unprocessed Token Factors from TFs, so we do not add them to the
1738 // combiner worklist later.
1743 SDNode
*TF
= TFs
[i
];
1744 // Check each of the operands.
1745 for (const SDValue
&Op
: TF
->op_values()) {
1746 switch (Op
.getOpcode()) {
1747 case ISD::EntryToken
:
1748 // Entry tokens don't need to be added to the list. They are
1753 case ISD::TokenFactor
:
1754 if (Op
.hasOneUse() && !is_contained(TFs
, Op
.getNode())) {
1755 // Queue up for processing.
1756 TFs
.push_back(Op
.getNode());
1763 // Only add if it isn't already in the list.
1764 if (SeenOps
.insert(Op
.getNode()).second
)
1773 // Re-visit inlined Token Factors, to clean them up in case they have been
1774 // removed. Skip the first Token Factor, as this is the current node.
1775 for (unsigned i
= 1, e
= TFs
.size(); i
< e
; i
++)
1776 AddToWorklist(TFs
[i
]);
1778 // Remove Nodes that are chained to another node in the list. Do so
1779 // by walking up chains breath-first stopping when we've seen
1780 // another operand. In general we must climb to the EntryNode, but we can exit
1781 // early if we find all remaining work is associated with just one operand as
1782 // no further pruning is possible.
1784 // List of nodes to search through and original Ops from which they originate.
1785 SmallVector
<std::pair
<SDNode
*, unsigned>, 8> Worklist
;
1786 SmallVector
<unsigned, 8> OpWorkCount
; // Count of work for each Op.
1787 SmallPtrSet
<SDNode
*, 16> SeenChains
;
1788 bool DidPruneOps
= false;
1790 unsigned NumLeftToConsider
= 0;
1791 for (const SDValue
&Op
: Ops
) {
1792 Worklist
.push_back(std::make_pair(Op
.getNode(), NumLeftToConsider
++));
1793 OpWorkCount
.push_back(1);
1796 auto AddToWorklist
= [&](unsigned CurIdx
, SDNode
*Op
, unsigned OpNumber
) {
1797 // If this is an Op, we can remove the op from the list. Remark any
1798 // search associated with it as from the current OpNumber.
1799 if (SeenOps
.count(Op
) != 0) {
1802 unsigned OrigOpNumber
= 0;
1803 while (OrigOpNumber
< Ops
.size() && Ops
[OrigOpNumber
].getNode() != Op
)
1805 assert((OrigOpNumber
!= Ops
.size()) &&
1806 "expected to find TokenFactor Operand");
1807 // Re-mark worklist from OrigOpNumber to OpNumber
1808 for (unsigned i
= CurIdx
+ 1; i
< Worklist
.size(); ++i
) {
1809 if (Worklist
[i
].second
== OrigOpNumber
) {
1810 Worklist
[i
].second
= OpNumber
;
1813 OpWorkCount
[OpNumber
] += OpWorkCount
[OrigOpNumber
];
1814 OpWorkCount
[OrigOpNumber
] = 0;
1815 NumLeftToConsider
--;
1817 // Add if it's a new chain
1818 if (SeenChains
.insert(Op
).second
) {
1819 OpWorkCount
[OpNumber
]++;
1820 Worklist
.push_back(std::make_pair(Op
, OpNumber
));
1824 for (unsigned i
= 0; i
< Worklist
.size() && i
< 1024; ++i
) {
1825 // We need at least be consider at least 2 Ops to prune.
1826 if (NumLeftToConsider
<= 1)
1828 auto CurNode
= Worklist
[i
].first
;
1829 auto CurOpNumber
= Worklist
[i
].second
;
1830 assert((OpWorkCount
[CurOpNumber
] > 0) &&
1831 "Node should not appear in worklist");
1832 switch (CurNode
->getOpcode()) {
1833 case ISD::EntryToken
:
1834 // Hitting EntryToken is the only way for the search to terminate without
1836 // another operand's search. Prevent us from marking this operand
1838 NumLeftToConsider
++;
1840 case ISD::TokenFactor
:
1841 for (const SDValue
&Op
: CurNode
->op_values())
1842 AddToWorklist(i
, Op
.getNode(), CurOpNumber
);
1844 case ISD::LIFETIME_START
:
1845 case ISD::LIFETIME_END
:
1846 case ISD::CopyFromReg
:
1847 case ISD::CopyToReg
:
1848 AddToWorklist(i
, CurNode
->getOperand(0).getNode(), CurOpNumber
);
1851 if (auto *MemNode
= dyn_cast
<MemSDNode
>(CurNode
))
1852 AddToWorklist(i
, MemNode
->getChain().getNode(), CurOpNumber
);
1855 OpWorkCount
[CurOpNumber
]--;
1856 if (OpWorkCount
[CurOpNumber
] == 0)
1857 NumLeftToConsider
--;
1860 // If we've changed things around then replace token factor.
1864 // The entry token is the only possible outcome.
1865 Result
= DAG
.getEntryNode();
1868 SmallVector
<SDValue
, 8> PrunedOps
;
1870 for (const SDValue
&Op
: Ops
) {
1871 if (SeenChains
.count(Op
.getNode()) == 0)
1872 PrunedOps
.push_back(Op
);
1874 Result
= DAG
.getTokenFactor(SDLoc(N
), PrunedOps
);
1876 Result
= DAG
.getTokenFactor(SDLoc(N
), Ops
);
1884 /// MERGE_VALUES can always be eliminated.
1885 SDValue
DAGCombiner::visitMERGE_VALUES(SDNode
*N
) {
1886 WorklistRemover
DeadNodes(*this);
1887 // Replacing results may cause a different MERGE_VALUES to suddenly
1888 // be CSE'd with N, and carry its uses with it. Iterate until no
1889 // uses remain, to ensure that the node can be safely deleted.
1890 // First add the users of this node to the work list so that they
1891 // can be tried again once they have new operands.
1892 AddUsersToWorklist(N
);
1894 // Do as a single replacement to avoid rewalking use lists.
1895 SmallVector
<SDValue
, 8> Ops
;
1896 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
1897 Ops
.push_back(N
->getOperand(i
));
1898 DAG
.ReplaceAllUsesWith(N
, Ops
.data());
1899 } while (!N
->use_empty());
1900 deleteAndRecombine(N
);
1901 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
1904 /// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a
1905 /// ConstantSDNode pointer else nullptr.
1906 static ConstantSDNode
*getAsNonOpaqueConstant(SDValue N
) {
1907 ConstantSDNode
*Const
= dyn_cast
<ConstantSDNode
>(N
);
1908 return Const
!= nullptr && !Const
->isOpaque() ? Const
: nullptr;
1911 SDValue
DAGCombiner::foldBinOpIntoSelect(SDNode
*BO
) {
1912 assert(TLI
.isBinOp(BO
->getOpcode()) && BO
->getNumValues() == 1 &&
1913 "Unexpected binary operator");
1915 // Don't do this unless the old select is going away. We want to eliminate the
1916 // binary operator, not replace a binop with a select.
1917 // TODO: Handle ISD::SELECT_CC.
1918 unsigned SelOpNo
= 0;
1919 SDValue Sel
= BO
->getOperand(0);
1920 if (Sel
.getOpcode() != ISD::SELECT
|| !Sel
.hasOneUse()) {
1922 Sel
= BO
->getOperand(1);
1925 if (Sel
.getOpcode() != ISD::SELECT
|| !Sel
.hasOneUse())
1928 SDValue CT
= Sel
.getOperand(1);
1929 if (!isConstantOrConstantVector(CT
, true) &&
1930 !isConstantFPBuildVectorOrConstantFP(CT
))
1933 SDValue CF
= Sel
.getOperand(2);
1934 if (!isConstantOrConstantVector(CF
, true) &&
1935 !isConstantFPBuildVectorOrConstantFP(CF
))
1938 // Bail out if any constants are opaque because we can't constant fold those.
1939 // The exception is "and" and "or" with either 0 or -1 in which case we can
1940 // propagate non constant operands into select. I.e.:
1941 // and (select Cond, 0, -1), X --> select Cond, 0, X
1942 // or X, (select Cond, -1, 0) --> select Cond, -1, X
1943 auto BinOpcode
= BO
->getOpcode();
1944 bool CanFoldNonConst
=
1945 (BinOpcode
== ISD::AND
|| BinOpcode
== ISD::OR
) &&
1946 (isNullOrNullSplat(CT
) || isAllOnesOrAllOnesSplat(CT
)) &&
1947 (isNullOrNullSplat(CF
) || isAllOnesOrAllOnesSplat(CF
));
1949 SDValue CBO
= BO
->getOperand(SelOpNo
^ 1);
1950 if (!CanFoldNonConst
&&
1951 !isConstantOrConstantVector(CBO
, true) &&
1952 !isConstantFPBuildVectorOrConstantFP(CBO
))
1955 EVT VT
= Sel
.getValueType();
1957 // In case of shift value and shift amount may have different VT. For instance
1958 // on x86 shift amount is i8 regardles of LHS type. Bail out if we have
1959 // swapped operands and value types do not match. NB: x86 is fine if operands
1960 // are not swapped with shift amount VT being not bigger than shifted value.
1961 // TODO: that is possible to check for a shift operation, correct VTs and
1962 // still perform optimization on x86 if needed.
1963 if (SelOpNo
&& VT
!= CBO
.getValueType())
1966 // We have a select-of-constants followed by a binary operator with a
1967 // constant. Eliminate the binop by pulling the constant math into the select.
1968 // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO
1970 SDValue NewCT
= SelOpNo
? DAG
.getNode(BinOpcode
, DL
, VT
, CBO
, CT
)
1971 : DAG
.getNode(BinOpcode
, DL
, VT
, CT
, CBO
);
1972 if (!CanFoldNonConst
&& !NewCT
.isUndef() &&
1973 !isConstantOrConstantVector(NewCT
, true) &&
1974 !isConstantFPBuildVectorOrConstantFP(NewCT
))
1977 SDValue NewCF
= SelOpNo
? DAG
.getNode(BinOpcode
, DL
, VT
, CBO
, CF
)
1978 : DAG
.getNode(BinOpcode
, DL
, VT
, CF
, CBO
);
1979 if (!CanFoldNonConst
&& !NewCF
.isUndef() &&
1980 !isConstantOrConstantVector(NewCF
, true) &&
1981 !isConstantFPBuildVectorOrConstantFP(NewCF
))
1984 SDValue SelectOp
= DAG
.getSelect(DL
, VT
, Sel
.getOperand(0), NewCT
, NewCF
);
1985 SelectOp
->setFlags(BO
->getFlags());
1989 static SDValue
foldAddSubBoolOfMaskedVal(SDNode
*N
, SelectionDAG
&DAG
) {
1990 assert((N
->getOpcode() == ISD::ADD
|| N
->getOpcode() == ISD::SUB
) &&
1991 "Expecting add or sub");
1993 // Match a constant operand and a zext operand for the math instruction:
1996 bool IsAdd
= N
->getOpcode() == ISD::ADD
;
1997 SDValue C
= IsAdd
? N
->getOperand(1) : N
->getOperand(0);
1998 SDValue Z
= IsAdd
? N
->getOperand(0) : N
->getOperand(1);
1999 auto *CN
= dyn_cast
<ConstantSDNode
>(C
);
2000 if (!CN
|| Z
.getOpcode() != ISD::ZERO_EXTEND
)
2003 // Match the zext operand as a setcc of a boolean.
2004 if (Z
.getOperand(0).getOpcode() != ISD::SETCC
||
2005 Z
.getOperand(0).getValueType() != MVT::i1
)
2008 // Match the compare as: setcc (X & 1), 0, eq.
2009 SDValue SetCC
= Z
.getOperand(0);
2010 ISD::CondCode CC
= cast
<CondCodeSDNode
>(SetCC
->getOperand(2))->get();
2011 if (CC
!= ISD::SETEQ
|| !isNullConstant(SetCC
.getOperand(1)) ||
2012 SetCC
.getOperand(0).getOpcode() != ISD::AND
||
2013 !isOneConstant(SetCC
.getOperand(0).getOperand(1)))
2016 // We are adding/subtracting a constant and an inverted low bit. Turn that
2017 // into a subtract/add of the low bit with incremented/decremented constant:
2018 // add (zext i1 (seteq (X & 1), 0)), C --> sub C+1, (zext (X & 1))
2019 // sub C, (zext i1 (seteq (X & 1), 0)) --> add C-1, (zext (X & 1))
2020 EVT VT
= C
.getValueType();
2022 SDValue LowBit
= DAG
.getZExtOrTrunc(SetCC
.getOperand(0), DL
, VT
);
2023 SDValue C1
= IsAdd
? DAG
.getConstant(CN
->getAPIntValue() + 1, DL
, VT
) :
2024 DAG
.getConstant(CN
->getAPIntValue() - 1, DL
, VT
);
2025 return DAG
.getNode(IsAdd
? ISD::SUB
: ISD::ADD
, DL
, VT
, C1
, LowBit
);
2028 /// Try to fold a 'not' shifted sign-bit with add/sub with constant operand into
2029 /// a shift and add with a different constant.
2030 static SDValue
foldAddSubOfSignBit(SDNode
*N
, SelectionDAG
&DAG
) {
2031 assert((N
->getOpcode() == ISD::ADD
|| N
->getOpcode() == ISD::SUB
) &&
2032 "Expecting add or sub");
2034 // We need a constant operand for the add/sub, and the other operand is a
2035 // logical shift right: add (srl), C or sub C, (srl).
2036 // TODO - support non-uniform vector amounts.
2037 bool IsAdd
= N
->getOpcode() == ISD::ADD
;
2038 SDValue ConstantOp
= IsAdd
? N
->getOperand(1) : N
->getOperand(0);
2039 SDValue ShiftOp
= IsAdd
? N
->getOperand(0) : N
->getOperand(1);
2040 ConstantSDNode
*C
= isConstOrConstSplat(ConstantOp
);
2041 if (!C
|| ShiftOp
.getOpcode() != ISD::SRL
)
2044 // The shift must be of a 'not' value.
2045 SDValue Not
= ShiftOp
.getOperand(0);
2046 if (!Not
.hasOneUse() || !isBitwiseNot(Not
))
2049 // The shift must be moving the sign bit to the least-significant-bit.
2050 EVT VT
= ShiftOp
.getValueType();
2051 SDValue ShAmt
= ShiftOp
.getOperand(1);
2052 ConstantSDNode
*ShAmtC
= isConstOrConstSplat(ShAmt
);
2053 if (!ShAmtC
|| ShAmtC
->getAPIntValue() != (VT
.getScalarSizeInBits() - 1))
2056 // Eliminate the 'not' by adjusting the shift and add/sub constant:
2057 // add (srl (not X), 31), C --> add (sra X, 31), (C + 1)
2058 // sub C, (srl (not X), 31) --> add (srl X, 31), (C - 1)
2060 auto ShOpcode
= IsAdd
? ISD::SRA
: ISD::SRL
;
2061 SDValue NewShift
= DAG
.getNode(ShOpcode
, DL
, VT
, Not
.getOperand(0), ShAmt
);
2062 APInt NewC
= IsAdd
? C
->getAPIntValue() + 1 : C
->getAPIntValue() - 1;
2063 return DAG
.getNode(ISD::ADD
, DL
, VT
, NewShift
, DAG
.getConstant(NewC
, DL
, VT
));
2066 /// Try to fold a node that behaves like an ADD (note that N isn't necessarily
2067 /// an ISD::ADD here, it could for example be an ISD::OR if we know that there
2068 /// are no common bits set in the operands).
2069 SDValue
DAGCombiner::visitADDLike(SDNode
*N
) {
2070 SDValue N0
= N
->getOperand(0);
2071 SDValue N1
= N
->getOperand(1);
2072 EVT VT
= N0
.getValueType();
2076 if (VT
.isVector()) {
2077 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
2080 // fold (add x, 0) -> x, vector edition
2081 if (ISD::isBuildVectorAllZeros(N1
.getNode()))
2083 if (ISD::isBuildVectorAllZeros(N0
.getNode()))
2087 // fold (add x, undef) -> undef
2094 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
)) {
2095 // canonicalize constant to RHS
2096 if (!DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
2097 return DAG
.getNode(ISD::ADD
, DL
, VT
, N1
, N0
);
2098 // fold (add c1, c2) -> c1+c2
2099 return DAG
.FoldConstantArithmetic(ISD::ADD
, DL
, VT
, N0
.getNode(),
2103 // fold (add x, 0) -> x
2104 if (isNullConstant(N1
))
2107 if (isConstantOrConstantVector(N1
, /* NoOpaque */ true)) {
2108 // fold ((A-c1)+c2) -> (A+(c2-c1))
2109 if (N0
.getOpcode() == ISD::SUB
&&
2110 isConstantOrConstantVector(N0
.getOperand(1), /* NoOpaque */ true)) {
2111 SDValue Sub
= DAG
.FoldConstantArithmetic(ISD::SUB
, DL
, VT
, N1
.getNode(),
2112 N0
.getOperand(1).getNode());
2113 assert(Sub
&& "Constant folding failed");
2114 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(0), Sub
);
2117 // fold ((c1-A)+c2) -> (c1+c2)-A
2118 if (N0
.getOpcode() == ISD::SUB
&&
2119 isConstantOrConstantVector(N0
.getOperand(0), /* NoOpaque */ true)) {
2120 SDValue Add
= DAG
.FoldConstantArithmetic(ISD::ADD
, DL
, VT
, N1
.getNode(),
2121 N0
.getOperand(0).getNode());
2122 assert(Add
&& "Constant folding failed");
2123 return DAG
.getNode(ISD::SUB
, DL
, VT
, Add
, N0
.getOperand(1));
2126 // add (sext i1 X), 1 -> zext (not i1 X)
2127 // We don't transform this pattern:
2128 // add (zext i1 X), -1 -> sext (not i1 X)
2129 // because most (?) targets generate better code for the zext form.
2130 if (N0
.getOpcode() == ISD::SIGN_EXTEND
&& N0
.hasOneUse() &&
2131 isOneOrOneSplat(N1
)) {
2132 SDValue X
= N0
.getOperand(0);
2133 if ((!LegalOperations
||
2134 (TLI
.isOperationLegal(ISD::XOR
, X
.getValueType()) &&
2135 TLI
.isOperationLegal(ISD::ZERO_EXTEND
, VT
))) &&
2136 X
.getScalarValueSizeInBits() == 1) {
2137 SDValue Not
= DAG
.getNOT(DL
, X
, X
.getValueType());
2138 return DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, Not
);
2142 // Undo the add -> or combine to merge constant offsets from a frame index.
2143 if (N0
.getOpcode() == ISD::OR
&&
2144 isa
<FrameIndexSDNode
>(N0
.getOperand(0)) &&
2145 isa
<ConstantSDNode
>(N0
.getOperand(1)) &&
2146 DAG
.haveNoCommonBitsSet(N0
.getOperand(0), N0
.getOperand(1))) {
2147 SDValue Add0
= DAG
.getNode(ISD::ADD
, DL
, VT
, N1
, N0
.getOperand(1));
2148 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(0), Add0
);
2152 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
2156 if (!reassociationCanBreakAddressingModePattern(ISD::ADD
, DL
, N0
, N1
)) {
2157 if (SDValue RADD
= reassociateOps(ISD::ADD
, DL
, N0
, N1
, N
->getFlags()))
2160 // fold ((0-A) + B) -> B-A
2161 if (N0
.getOpcode() == ISD::SUB
&& isNullOrNullSplat(N0
.getOperand(0)))
2162 return DAG
.getNode(ISD::SUB
, DL
, VT
, N1
, N0
.getOperand(1));
2164 // fold (A + (0-B)) -> A-B
2165 if (N1
.getOpcode() == ISD::SUB
&& isNullOrNullSplat(N1
.getOperand(0)))
2166 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, N1
.getOperand(1));
2168 // fold (A+(B-A)) -> B
2169 if (N1
.getOpcode() == ISD::SUB
&& N0
== N1
.getOperand(1))
2170 return N1
.getOperand(0);
2172 // fold ((B-A)+A) -> B
2173 if (N0
.getOpcode() == ISD::SUB
&& N1
== N0
.getOperand(1))
2174 return N0
.getOperand(0);
2176 // fold ((A-B)+(C-A)) -> (C-B)
2177 if (N0
.getOpcode() == ISD::SUB
&& N1
.getOpcode() == ISD::SUB
&&
2178 N0
.getOperand(0) == N1
.getOperand(1))
2179 return DAG
.getNode(ISD::SUB
, DL
, VT
, N1
.getOperand(0),
2182 // fold ((A-B)+(B-C)) -> (A-C)
2183 if (N0
.getOpcode() == ISD::SUB
&& N1
.getOpcode() == ISD::SUB
&&
2184 N0
.getOperand(1) == N1
.getOperand(0))
2185 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
.getOperand(0),
2188 // fold (A+(B-(A+C))) to (B-C)
2189 if (N1
.getOpcode() == ISD::SUB
&& N1
.getOperand(1).getOpcode() == ISD::ADD
&&
2190 N0
== N1
.getOperand(1).getOperand(0))
2191 return DAG
.getNode(ISD::SUB
, DL
, VT
, N1
.getOperand(0),
2192 N1
.getOperand(1).getOperand(1));
2194 // fold (A+(B-(C+A))) to (B-C)
2195 if (N1
.getOpcode() == ISD::SUB
&& N1
.getOperand(1).getOpcode() == ISD::ADD
&&
2196 N0
== N1
.getOperand(1).getOperand(1))
2197 return DAG
.getNode(ISD::SUB
, DL
, VT
, N1
.getOperand(0),
2198 N1
.getOperand(1).getOperand(0));
2200 // fold (A+((B-A)+or-C)) to (B+or-C)
2201 if ((N1
.getOpcode() == ISD::SUB
|| N1
.getOpcode() == ISD::ADD
) &&
2202 N1
.getOperand(0).getOpcode() == ISD::SUB
&&
2203 N0
== N1
.getOperand(0).getOperand(1))
2204 return DAG
.getNode(N1
.getOpcode(), DL
, VT
, N1
.getOperand(0).getOperand(0),
2207 // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
2208 if (N0
.getOpcode() == ISD::SUB
&& N1
.getOpcode() == ISD::SUB
) {
2209 SDValue N00
= N0
.getOperand(0);
2210 SDValue N01
= N0
.getOperand(1);
2211 SDValue N10
= N1
.getOperand(0);
2212 SDValue N11
= N1
.getOperand(1);
2214 if (isConstantOrConstantVector(N00
) || isConstantOrConstantVector(N10
))
2215 return DAG
.getNode(ISD::SUB
, DL
, VT
,
2216 DAG
.getNode(ISD::ADD
, SDLoc(N0
), VT
, N00
, N10
),
2217 DAG
.getNode(ISD::ADD
, SDLoc(N1
), VT
, N01
, N11
));
2220 // fold (add (umax X, C), -C) --> (usubsat X, C)
2221 if (N0
.getOpcode() == ISD::UMAX
&& hasOperation(ISD::USUBSAT
, VT
)) {
2222 auto MatchUSUBSAT
= [](ConstantSDNode
*Max
, ConstantSDNode
*Op
) {
2223 return (!Max
&& !Op
) ||
2224 (Max
&& Op
&& Max
->getAPIntValue() == (-Op
->getAPIntValue()));
2226 if (ISD::matchBinaryPredicate(N0
.getOperand(1), N1
, MatchUSUBSAT
,
2227 /*AllowUndefs*/ true))
2228 return DAG
.getNode(ISD::USUBSAT
, DL
, VT
, N0
.getOperand(0),
2232 if (SimplifyDemandedBits(SDValue(N
, 0)))
2233 return SDValue(N
, 0);
2235 if (isOneOrOneSplat(N1
)) {
2236 // fold (add (xor a, -1), 1) -> (sub 0, a)
2237 if (isBitwiseNot(N0
))
2238 return DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
),
2241 // fold (add (add (xor a, -1), b), 1) -> (sub b, a)
2242 if (N0
.getOpcode() == ISD::ADD
||
2243 N0
.getOpcode() == ISD::UADDO
||
2244 N0
.getOpcode() == ISD::SADDO
) {
2247 if (isBitwiseNot(N0
.getOperand(0))) {
2248 A
= N0
.getOperand(1);
2249 Xor
= N0
.getOperand(0);
2250 } else if (isBitwiseNot(N0
.getOperand(1))) {
2251 A
= N0
.getOperand(0);
2252 Xor
= N0
.getOperand(1);
2256 return DAG
.getNode(ISD::SUB
, DL
, VT
, A
, Xor
.getOperand(0));
2260 // add (add x, y), 1
2261 // And if the target does not like this form then turn into:
2262 // sub y, (xor x, -1)
2263 if (!TLI
.preferIncOfAddToSubOfNot(VT
) && N0
.hasOneUse() &&
2264 N0
.getOpcode() == ISD::ADD
) {
2265 SDValue Not
= DAG
.getNode(ISD::XOR
, DL
, VT
, N0
.getOperand(0),
2266 DAG
.getAllOnesConstant(DL
, VT
));
2267 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
.getOperand(1), Not
);
2271 // (x - y) + -1 -> add (xor y, -1), x
2272 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::SUB
&&
2273 isAllOnesOrAllOnesSplat(N1
)) {
2274 SDValue Xor
= DAG
.getNode(ISD::XOR
, DL
, VT
, N0
.getOperand(1), N1
);
2275 return DAG
.getNode(ISD::ADD
, DL
, VT
, Xor
, N0
.getOperand(0));
2278 if (SDValue Combined
= visitADDLikeCommutative(N0
, N1
, N
))
2281 if (SDValue Combined
= visitADDLikeCommutative(N1
, N0
, N
))
2287 SDValue
DAGCombiner::visitADD(SDNode
*N
) {
2288 SDValue N0
= N
->getOperand(0);
2289 SDValue N1
= N
->getOperand(1);
2290 EVT VT
= N0
.getValueType();
2293 if (SDValue Combined
= visitADDLike(N
))
2296 if (SDValue V
= foldAddSubBoolOfMaskedVal(N
, DAG
))
2299 if (SDValue V
= foldAddSubOfSignBit(N
, DAG
))
2302 // fold (a+b) -> (a|b) iff a and b share no bits.
2303 if ((!LegalOperations
|| TLI
.isOperationLegal(ISD::OR
, VT
)) &&
2304 DAG
.haveNoCommonBitsSet(N0
, N1
))
2305 return DAG
.getNode(ISD::OR
, DL
, VT
, N0
, N1
);
2310 SDValue
DAGCombiner::visitADDSAT(SDNode
*N
) {
2311 unsigned Opcode
= N
->getOpcode();
2312 SDValue N0
= N
->getOperand(0);
2313 SDValue N1
= N
->getOperand(1);
2314 EVT VT
= N0
.getValueType();
2318 if (VT
.isVector()) {
2319 // TODO SimplifyVBinOp
2321 // fold (add_sat x, 0) -> x, vector edition
2322 if (ISD::isBuildVectorAllZeros(N1
.getNode()))
2324 if (ISD::isBuildVectorAllZeros(N0
.getNode()))
2328 // fold (add_sat x, undef) -> -1
2329 if (N0
.isUndef() || N1
.isUndef())
2330 return DAG
.getAllOnesConstant(DL
, VT
);
2332 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
)) {
2333 // canonicalize constant to RHS
2334 if (!DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
2335 return DAG
.getNode(Opcode
, DL
, VT
, N1
, N0
);
2336 // fold (add_sat c1, c2) -> c3
2337 return DAG
.FoldConstantArithmetic(Opcode
, DL
, VT
, N0
.getNode(),
2341 // fold (add_sat x, 0) -> x
2342 if (isNullConstant(N1
))
2345 // If it cannot overflow, transform into an add.
2346 if (Opcode
== ISD::UADDSAT
)
2347 if (DAG
.computeOverflowKind(N0
, N1
) == SelectionDAG::OFK_Never
)
2348 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
);
2353 static SDValue
getAsCarry(const TargetLowering
&TLI
, SDValue V
) {
2354 bool Masked
= false;
2356 // First, peel away TRUNCATE/ZERO_EXTEND/AND nodes due to legalization.
2358 if (V
.getOpcode() == ISD::TRUNCATE
|| V
.getOpcode() == ISD::ZERO_EXTEND
) {
2359 V
= V
.getOperand(0);
2363 if (V
.getOpcode() == ISD::AND
&& isOneConstant(V
.getOperand(1))) {
2365 V
= V
.getOperand(0);
2372 // If this is not a carry, return.
2373 if (V
.getResNo() != 1)
2376 if (V
.getOpcode() != ISD::ADDCARRY
&& V
.getOpcode() != ISD::SUBCARRY
&&
2377 V
.getOpcode() != ISD::UADDO
&& V
.getOpcode() != ISD::USUBO
)
2380 EVT VT
= V
.getNode()->getValueType(0);
2381 if (!TLI
.isOperationLegalOrCustom(V
.getOpcode(), VT
))
2384 // If the result is masked, then no matter what kind of bool it is we can
2385 // return. If it isn't, then we need to make sure the bool type is either 0 or
2386 // 1 and not other values.
2388 TLI
.getBooleanContents(V
.getValueType()) ==
2389 TargetLoweringBase::ZeroOrOneBooleanContent
)
2395 /// Given the operands of an add/sub operation, see if the 2nd operand is a
2396 /// masked 0/1 whose source operand is actually known to be 0/-1. If so, invert
2397 /// the opcode and bypass the mask operation.
2398 static SDValue
foldAddSubMasked1(bool IsAdd
, SDValue N0
, SDValue N1
,
2399 SelectionDAG
&DAG
, const SDLoc
&DL
) {
2400 if (N1
.getOpcode() != ISD::AND
|| !isOneOrOneSplat(N1
->getOperand(1)))
2403 EVT VT
= N0
.getValueType();
2404 if (DAG
.ComputeNumSignBits(N1
.getOperand(0)) != VT
.getScalarSizeInBits())
2407 // add N0, (and (AssertSext X, i1), 1) --> sub N0, X
2408 // sub N0, (and (AssertSext X, i1), 1) --> add N0, X
2409 return DAG
.getNode(IsAdd
? ISD::SUB
: ISD::ADD
, DL
, VT
, N0
, N1
.getOperand(0));
2412 /// Helper for doing combines based on N0 and N1 being added to each other.
2413 SDValue
DAGCombiner::visitADDLikeCommutative(SDValue N0
, SDValue N1
,
2414 SDNode
*LocReference
) {
2415 EVT VT
= N0
.getValueType();
2416 SDLoc
DL(LocReference
);
2418 // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
2419 if (N1
.getOpcode() == ISD::SHL
&& N1
.getOperand(0).getOpcode() == ISD::SUB
&&
2420 isNullOrNullSplat(N1
.getOperand(0).getOperand(0)))
2421 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
,
2422 DAG
.getNode(ISD::SHL
, DL
, VT
,
2423 N1
.getOperand(0).getOperand(1),
2426 if (SDValue V
= foldAddSubMasked1(true, N0
, N1
, DAG
, DL
))
2430 // add (add x, 1), y
2431 // And if the target does not like this form then turn into:
2432 // sub y, (xor x, -1)
2433 if (!TLI
.preferIncOfAddToSubOfNot(VT
) && N0
.hasOneUse() &&
2434 N0
.getOpcode() == ISD::ADD
&& isOneOrOneSplat(N0
.getOperand(1))) {
2435 SDValue Not
= DAG
.getNode(ISD::XOR
, DL
, VT
, N0
.getOperand(0),
2436 DAG
.getAllOnesConstant(DL
, VT
));
2437 return DAG
.getNode(ISD::SUB
, DL
, VT
, N1
, Not
);
2440 // Hoist one-use subtraction by non-opaque constant:
2441 // (x - C) + y -> (x + y) - C
2442 // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors.
2443 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::SUB
&&
2444 isConstantOrConstantVector(N0
.getOperand(1), /*NoOpaques=*/true)) {
2445 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(0), N1
);
2446 return DAG
.getNode(ISD::SUB
, DL
, VT
, Add
, N0
.getOperand(1));
2448 // Hoist one-use subtraction from non-opaque constant:
2449 // (C - x) + y -> (y - x) + C
2450 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::SUB
&&
2451 isConstantOrConstantVector(N0
.getOperand(0), /*NoOpaques=*/true)) {
2452 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, N1
, N0
.getOperand(1));
2453 return DAG
.getNode(ISD::ADD
, DL
, VT
, Sub
, N0
.getOperand(0));
2456 // If the target's bool is represented as 0/1, prefer to make this 'sub 0/1'
2457 // rather than 'add 0/-1' (the zext should get folded).
2458 // add (sext i1 Y), X --> sub X, (zext i1 Y)
2459 if (N0
.getOpcode() == ISD::SIGN_EXTEND
&&
2460 N0
.getOperand(0).getScalarValueSizeInBits() == 1 &&
2461 TLI
.getBooleanContents(VT
) == TargetLowering::ZeroOrOneBooleanContent
) {
2462 SDValue ZExt
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, N0
.getOperand(0));
2463 return DAG
.getNode(ISD::SUB
, DL
, VT
, N1
, ZExt
);
2466 // add X, (sextinreg Y i1) -> sub X, (and Y 1)
2467 if (N1
.getOpcode() == ISD::SIGN_EXTEND_INREG
) {
2468 VTSDNode
*TN
= cast
<VTSDNode
>(N1
.getOperand(1));
2469 if (TN
->getVT() == MVT::i1
) {
2470 SDValue ZExt
= DAG
.getNode(ISD::AND
, DL
, VT
, N1
.getOperand(0),
2471 DAG
.getConstant(1, DL
, VT
));
2472 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, ZExt
);
2476 // (add X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry)
2477 if (N1
.getOpcode() == ISD::ADDCARRY
&& isNullConstant(N1
.getOperand(1)) &&
2479 return DAG
.getNode(ISD::ADDCARRY
, DL
, N1
->getVTList(),
2480 N0
, N1
.getOperand(0), N1
.getOperand(2));
2482 // (add X, Carry) -> (addcarry X, 0, Carry)
2483 if (TLI
.isOperationLegalOrCustom(ISD::ADDCARRY
, VT
))
2484 if (SDValue Carry
= getAsCarry(TLI
, N1
))
2485 return DAG
.getNode(ISD::ADDCARRY
, DL
,
2486 DAG
.getVTList(VT
, Carry
.getValueType()), N0
,
2487 DAG
.getConstant(0, DL
, VT
), Carry
);
2492 SDValue
DAGCombiner::visitADDC(SDNode
*N
) {
2493 SDValue N0
= N
->getOperand(0);
2494 SDValue N1
= N
->getOperand(1);
2495 EVT VT
= N0
.getValueType();
2498 // If the flag result is dead, turn this into an ADD.
2499 if (!N
->hasAnyUseOfValue(1))
2500 return CombineTo(N
, DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
),
2501 DAG
.getNode(ISD::CARRY_FALSE
, DL
, MVT::Glue
));
2503 // canonicalize constant to RHS.
2504 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2505 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2507 return DAG
.getNode(ISD::ADDC
, DL
, N
->getVTList(), N1
, N0
);
2509 // fold (addc x, 0) -> x + no carry out
2510 if (isNullConstant(N1
))
2511 return CombineTo(N
, N0
, DAG
.getNode(ISD::CARRY_FALSE
,
2514 // If it cannot overflow, transform into an add.
2515 if (DAG
.computeOverflowKind(N0
, N1
) == SelectionDAG::OFK_Never
)
2516 return CombineTo(N
, DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
),
2517 DAG
.getNode(ISD::CARRY_FALSE
, DL
, MVT::Glue
));
2522 static SDValue
flipBoolean(SDValue V
, const SDLoc
&DL
,
2523 SelectionDAG
&DAG
, const TargetLowering
&TLI
) {
2524 EVT VT
= V
.getValueType();
2527 switch (TLI
.getBooleanContents(VT
)) {
2528 case TargetLowering::ZeroOrOneBooleanContent
:
2529 case TargetLowering::UndefinedBooleanContent
:
2530 Cst
= DAG
.getConstant(1, DL
, VT
);
2532 case TargetLowering::ZeroOrNegativeOneBooleanContent
:
2533 Cst
= DAG
.getAllOnesConstant(DL
, VT
);
2537 return DAG
.getNode(ISD::XOR
, DL
, VT
, V
, Cst
);
2541 * Flips a boolean if it is cheaper to compute. If the Force parameters is set,
2542 * then the flip also occurs if computing the inverse is the same cost.
2543 * This function returns an empty SDValue in case it cannot flip the boolean
2544 * without increasing the cost of the computation. If you want to flip a boolean
2545 * no matter what, use flipBoolean.
2547 static SDValue
extractBooleanFlip(SDValue V
, SelectionDAG
&DAG
,
2548 const TargetLowering
&TLI
,
2550 if (Force
&& isa
<ConstantSDNode
>(V
))
2551 return flipBoolean(V
, SDLoc(V
), DAG
, TLI
);
2553 if (V
.getOpcode() != ISD::XOR
)
2556 ConstantSDNode
*Const
= isConstOrConstSplat(V
.getOperand(1), false);
2560 EVT VT
= V
.getValueType();
2562 bool IsFlip
= false;
2563 switch(TLI
.getBooleanContents(VT
)) {
2564 case TargetLowering::ZeroOrOneBooleanContent
:
2565 IsFlip
= Const
->isOne();
2567 case TargetLowering::ZeroOrNegativeOneBooleanContent
:
2568 IsFlip
= Const
->isAllOnesValue();
2570 case TargetLowering::UndefinedBooleanContent
:
2571 IsFlip
= (Const
->getAPIntValue() & 0x01) == 1;
2576 return V
.getOperand(0);
2578 return flipBoolean(V
, SDLoc(V
), DAG
, TLI
);
2582 SDValue
DAGCombiner::visitADDO(SDNode
*N
) {
2583 SDValue N0
= N
->getOperand(0);
2584 SDValue N1
= N
->getOperand(1);
2585 EVT VT
= N0
.getValueType();
2586 bool IsSigned
= (ISD::SADDO
== N
->getOpcode());
2588 EVT CarryVT
= N
->getValueType(1);
2591 // If the flag result is dead, turn this into an ADD.
2592 if (!N
->hasAnyUseOfValue(1))
2593 return CombineTo(N
, DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
),
2594 DAG
.getUNDEF(CarryVT
));
2596 // canonicalize constant to RHS.
2597 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
2598 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
2599 return DAG
.getNode(N
->getOpcode(), DL
, N
->getVTList(), N1
, N0
);
2601 // fold (addo x, 0) -> x + no carry out
2602 if (isNullOrNullSplat(N1
))
2603 return CombineTo(N
, N0
, DAG
.getConstant(0, DL
, CarryVT
));
2606 // If it cannot overflow, transform into an add.
2607 if (DAG
.computeOverflowKind(N0
, N1
) == SelectionDAG::OFK_Never
)
2608 return CombineTo(N
, DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
),
2609 DAG
.getConstant(0, DL
, CarryVT
));
2611 // fold (uaddo (xor a, -1), 1) -> (usub 0, a) and flip carry.
2612 if (isBitwiseNot(N0
) && isOneOrOneSplat(N1
)) {
2613 SDValue Sub
= DAG
.getNode(ISD::USUBO
, DL
, N
->getVTList(),
2614 DAG
.getConstant(0, DL
, VT
), N0
.getOperand(0));
2615 return CombineTo(N
, Sub
,
2616 flipBoolean(Sub
.getValue(1), DL
, DAG
, TLI
));
2619 if (SDValue Combined
= visitUADDOLike(N0
, N1
, N
))
2622 if (SDValue Combined
= visitUADDOLike(N1
, N0
, N
))
2629 SDValue
DAGCombiner::visitUADDOLike(SDValue N0
, SDValue N1
, SDNode
*N
) {
2630 EVT VT
= N0
.getValueType();
2634 // (uaddo X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry)
2635 // If Y + 1 cannot overflow.
2636 if (N1
.getOpcode() == ISD::ADDCARRY
&& isNullConstant(N1
.getOperand(1))) {
2637 SDValue Y
= N1
.getOperand(0);
2638 SDValue One
= DAG
.getConstant(1, SDLoc(N
), Y
.getValueType());
2639 if (DAG
.computeOverflowKind(Y
, One
) == SelectionDAG::OFK_Never
)
2640 return DAG
.getNode(ISD::ADDCARRY
, SDLoc(N
), N
->getVTList(), N0
, Y
,
2644 // (uaddo X, Carry) -> (addcarry X, 0, Carry)
2645 if (TLI
.isOperationLegalOrCustom(ISD::ADDCARRY
, VT
))
2646 if (SDValue Carry
= getAsCarry(TLI
, N1
))
2647 return DAG
.getNode(ISD::ADDCARRY
, SDLoc(N
), N
->getVTList(), N0
,
2648 DAG
.getConstant(0, SDLoc(N
), VT
), Carry
);
2653 SDValue
DAGCombiner::visitADDE(SDNode
*N
) {
2654 SDValue N0
= N
->getOperand(0);
2655 SDValue N1
= N
->getOperand(1);
2656 SDValue CarryIn
= N
->getOperand(2);
2658 // canonicalize constant to RHS
2659 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2660 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2662 return DAG
.getNode(ISD::ADDE
, SDLoc(N
), N
->getVTList(),
2665 // fold (adde x, y, false) -> (addc x, y)
2666 if (CarryIn
.getOpcode() == ISD::CARRY_FALSE
)
2667 return DAG
.getNode(ISD::ADDC
, SDLoc(N
), N
->getVTList(), N0
, N1
);
2672 SDValue
DAGCombiner::visitADDCARRY(SDNode
*N
) {
2673 SDValue N0
= N
->getOperand(0);
2674 SDValue N1
= N
->getOperand(1);
2675 SDValue CarryIn
= N
->getOperand(2);
2678 // canonicalize constant to RHS
2679 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2680 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2682 return DAG
.getNode(ISD::ADDCARRY
, DL
, N
->getVTList(), N1
, N0
, CarryIn
);
2684 // fold (addcarry x, y, false) -> (uaddo x, y)
2685 if (isNullConstant(CarryIn
)) {
2686 if (!LegalOperations
||
2687 TLI
.isOperationLegalOrCustom(ISD::UADDO
, N
->getValueType(0)))
2688 return DAG
.getNode(ISD::UADDO
, DL
, N
->getVTList(), N0
, N1
);
2691 // fold (addcarry 0, 0, X) -> (and (ext/trunc X), 1) and no carry.
2692 if (isNullConstant(N0
) && isNullConstant(N1
)) {
2693 EVT VT
= N0
.getValueType();
2694 EVT CarryVT
= CarryIn
.getValueType();
2695 SDValue CarryExt
= DAG
.getBoolExtOrTrunc(CarryIn
, DL
, VT
, CarryVT
);
2696 AddToWorklist(CarryExt
.getNode());
2697 return CombineTo(N
, DAG
.getNode(ISD::AND
, DL
, VT
, CarryExt
,
2698 DAG
.getConstant(1, DL
, VT
)),
2699 DAG
.getConstant(0, DL
, CarryVT
));
2702 if (SDValue Combined
= visitADDCARRYLike(N0
, N1
, CarryIn
, N
))
2705 if (SDValue Combined
= visitADDCARRYLike(N1
, N0
, CarryIn
, N
))
2712 * If we are facing some sort of diamond carry propapagtion pattern try to
2713 * break it up to generate something like:
2714 * (addcarry X, 0, (addcarry A, B, Z):Carry)
2716 * The end result is usually an increase in operation required, but because the
2717 * carry is now linearized, other tranforms can kick in and optimize the DAG.
2719 * Patterns typically look something like
2724 * | (addcarry *, 0, Z)
2728 * (addcarry X, *, *)
2730 * But numerous variation exist. Our goal is to identify A, B, X and Z and
2731 * produce a combine with a single path for carry propagation.
2733 static SDValue
combineADDCARRYDiamond(DAGCombiner
&Combiner
, SelectionDAG
&DAG
,
2734 SDValue X
, SDValue Carry0
, SDValue Carry1
,
2736 if (Carry1
.getResNo() != 1 || Carry0
.getResNo() != 1)
2738 if (Carry1
.getOpcode() != ISD::UADDO
)
2744 * First look for a suitable Z. It will present itself in the form of
2745 * (addcarry Y, 0, Z) or its equivalent (uaddo Y, 1) for Z=true
2747 if (Carry0
.getOpcode() == ISD::ADDCARRY
&&
2748 isNullConstant(Carry0
.getOperand(1))) {
2749 Z
= Carry0
.getOperand(2);
2750 } else if (Carry0
.getOpcode() == ISD::UADDO
&&
2751 isOneConstant(Carry0
.getOperand(1))) {
2752 EVT VT
= Combiner
.getSetCCResultType(Carry0
.getValueType());
2753 Z
= DAG
.getConstant(1, SDLoc(Carry0
.getOperand(1)), VT
);
2755 // We couldn't find a suitable Z.
2760 auto cancelDiamond
= [&](SDValue A
,SDValue B
) {
2762 SDValue NewY
= DAG
.getNode(ISD::ADDCARRY
, DL
, Carry0
->getVTList(), A
, B
, Z
);
2763 Combiner
.AddToWorklist(NewY
.getNode());
2764 return DAG
.getNode(ISD::ADDCARRY
, DL
, N
->getVTList(), X
,
2765 DAG
.getConstant(0, DL
, X
.getValueType()),
2774 * (addcarry *, 0, Z)
2776 if (Carry0
.getOperand(0) == Carry1
.getValue(0)) {
2777 return cancelDiamond(Carry1
.getOperand(0), Carry1
.getOperand(1));
2781 * (addcarry A, 0, Z)
2787 if (Carry1
.getOperand(0) == Carry0
.getValue(0)) {
2788 return cancelDiamond(Carry0
.getOperand(0), Carry1
.getOperand(1));
2791 if (Carry1
.getOperand(1) == Carry0
.getValue(0)) {
2792 return cancelDiamond(Carry1
.getOperand(0), Carry0
.getOperand(0));
2798 SDValue
DAGCombiner::visitADDCARRYLike(SDValue N0
, SDValue N1
, SDValue CarryIn
,
2800 // fold (addcarry (xor a, -1), b, c) -> (subcarry b, a, !c) and flip carry.
2801 if (isBitwiseNot(N0
))
2802 if (SDValue NotC
= extractBooleanFlip(CarryIn
, DAG
, TLI
, true)) {
2804 SDValue Sub
= DAG
.getNode(ISD::SUBCARRY
, DL
, N
->getVTList(), N1
,
2805 N0
.getOperand(0), NotC
);
2806 return CombineTo(N
, Sub
,
2807 flipBoolean(Sub
.getValue(1), DL
, DAG
, TLI
));
2810 // Iff the flag result is dead:
2811 // (addcarry (add|uaddo X, Y), 0, Carry) -> (addcarry X, Y, Carry)
2812 // Don't do this if the Carry comes from the uaddo. It won't remove the uaddo
2813 // or the dependency between the instructions.
2814 if ((N0
.getOpcode() == ISD::ADD
||
2815 (N0
.getOpcode() == ISD::UADDO
&& N0
.getResNo() == 0 &&
2816 N0
.getValue(1) != CarryIn
)) &&
2817 isNullConstant(N1
) && !N
->hasAnyUseOfValue(1))
2818 return DAG
.getNode(ISD::ADDCARRY
, SDLoc(N
), N
->getVTList(),
2819 N0
.getOperand(0), N0
.getOperand(1), CarryIn
);
2822 * When one of the addcarry argument is itself a carry, we may be facing
2823 * a diamond carry propagation. In which case we try to transform the DAG
2824 * to ensure linear carry propagation if that is possible.
2826 if (auto Y
= getAsCarry(TLI
, N1
)) {
2827 // Because both are carries, Y and Z can be swapped.
2828 if (auto R
= combineADDCARRYDiamond(*this, DAG
, N0
, Y
, CarryIn
, N
))
2830 if (auto R
= combineADDCARRYDiamond(*this, DAG
, N0
, CarryIn
, Y
, N
))
2837 // Since it may not be valid to emit a fold to zero for vector initializers
2838 // check if we can before folding.
2839 static SDValue
tryFoldToZero(const SDLoc
&DL
, const TargetLowering
&TLI
, EVT VT
,
2840 SelectionDAG
&DAG
, bool LegalOperations
) {
2842 return DAG
.getConstant(0, DL
, VT
);
2843 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::BUILD_VECTOR
, VT
))
2844 return DAG
.getConstant(0, DL
, VT
);
2848 SDValue
DAGCombiner::visitSUB(SDNode
*N
) {
2849 SDValue N0
= N
->getOperand(0);
2850 SDValue N1
= N
->getOperand(1);
2851 EVT VT
= N0
.getValueType();
2855 if (VT
.isVector()) {
2856 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
2859 // fold (sub x, 0) -> x, vector edition
2860 if (ISD::isBuildVectorAllZeros(N1
.getNode()))
2864 // fold (sub x, x) -> 0
2865 // FIXME: Refactor this and xor and other similar operations together.
2867 return tryFoldToZero(DL
, TLI
, VT
, DAG
, LegalOperations
);
2868 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
2869 DAG
.isConstantIntBuildVectorOrConstantInt(N1
)) {
2870 // fold (sub c1, c2) -> c1-c2
2871 return DAG
.FoldConstantArithmetic(ISD::SUB
, DL
, VT
, N0
.getNode(),
2875 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
2878 ConstantSDNode
*N1C
= getAsNonOpaqueConstant(N1
);
2880 // fold (sub x, c) -> (add x, -c)
2882 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
,
2883 DAG
.getConstant(-N1C
->getAPIntValue(), DL
, VT
));
2886 if (isNullOrNullSplat(N0
)) {
2887 unsigned BitWidth
= VT
.getScalarSizeInBits();
2888 // Right-shifting everything out but the sign bit followed by negation is
2889 // the same as flipping arithmetic/logical shift type without the negation:
2890 // -(X >>u 31) -> (X >>s 31)
2891 // -(X >>s 31) -> (X >>u 31)
2892 if (N1
->getOpcode() == ISD::SRA
|| N1
->getOpcode() == ISD::SRL
) {
2893 ConstantSDNode
*ShiftAmt
= isConstOrConstSplat(N1
.getOperand(1));
2894 if (ShiftAmt
&& ShiftAmt
->getAPIntValue() == (BitWidth
- 1)) {
2895 auto NewSh
= N1
->getOpcode() == ISD::SRA
? ISD::SRL
: ISD::SRA
;
2896 if (!LegalOperations
|| TLI
.isOperationLegal(NewSh
, VT
))
2897 return DAG
.getNode(NewSh
, DL
, VT
, N1
.getOperand(0), N1
.getOperand(1));
2901 // 0 - X --> 0 if the sub is NUW.
2902 if (N
->getFlags().hasNoUnsignedWrap())
2905 if (DAG
.MaskedValueIsZero(N1
, ~APInt::getSignMask(BitWidth
))) {
2906 // N1 is either 0 or the minimum signed value. If the sub is NSW, then
2907 // N1 must be 0 because negating the minimum signed value is undefined.
2908 if (N
->getFlags().hasNoSignedWrap())
2911 // 0 - X --> X if X is 0 or the minimum signed value.
2916 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
2917 if (isAllOnesOrAllOnesSplat(N0
))
2918 return DAG
.getNode(ISD::XOR
, DL
, VT
, N1
, N0
);
2920 // fold (A - (0-B)) -> A+B
2921 if (N1
.getOpcode() == ISD::SUB
&& isNullOrNullSplat(N1
.getOperand(0)))
2922 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
.getOperand(1));
2924 // fold A-(A-B) -> B
2925 if (N1
.getOpcode() == ISD::SUB
&& N0
== N1
.getOperand(0))
2926 return N1
.getOperand(1);
2928 // fold (A+B)-A -> B
2929 if (N0
.getOpcode() == ISD::ADD
&& N0
.getOperand(0) == N1
)
2930 return N0
.getOperand(1);
2932 // fold (A+B)-B -> A
2933 if (N0
.getOpcode() == ISD::ADD
&& N0
.getOperand(1) == N1
)
2934 return N0
.getOperand(0);
2936 // fold (A+C1)-C2 -> A+(C1-C2)
2937 if (N0
.getOpcode() == ISD::ADD
&&
2938 isConstantOrConstantVector(N1
, /* NoOpaques */ true) &&
2939 isConstantOrConstantVector(N0
.getOperand(1), /* NoOpaques */ true)) {
2940 SDValue NewC
= DAG
.FoldConstantArithmetic(
2941 ISD::SUB
, DL
, VT
, N0
.getOperand(1).getNode(), N1
.getNode());
2942 assert(NewC
&& "Constant folding failed");
2943 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(0), NewC
);
2946 // fold C2-(A+C1) -> (C2-C1)-A
2947 if (N1
.getOpcode() == ISD::ADD
) {
2948 SDValue N11
= N1
.getOperand(1);
2949 if (isConstantOrConstantVector(N0
, /* NoOpaques */ true) &&
2950 isConstantOrConstantVector(N11
, /* NoOpaques */ true)) {
2951 SDValue NewC
= DAG
.FoldConstantArithmetic(ISD::SUB
, DL
, VT
, N0
.getNode(),
2953 assert(NewC
&& "Constant folding failed");
2954 return DAG
.getNode(ISD::SUB
, DL
, VT
, NewC
, N1
.getOperand(0));
2958 // fold (A-C1)-C2 -> A-(C1+C2)
2959 if (N0
.getOpcode() == ISD::SUB
&&
2960 isConstantOrConstantVector(N1
, /* NoOpaques */ true) &&
2961 isConstantOrConstantVector(N0
.getOperand(1), /* NoOpaques */ true)) {
2962 SDValue NewC
= DAG
.FoldConstantArithmetic(
2963 ISD::ADD
, DL
, VT
, N0
.getOperand(1).getNode(), N1
.getNode());
2964 assert(NewC
&& "Constant folding failed");
2965 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
.getOperand(0), NewC
);
2968 // fold (c1-A)-c2 -> (c1-c2)-A
2969 if (N0
.getOpcode() == ISD::SUB
&&
2970 isConstantOrConstantVector(N1
, /* NoOpaques */ true) &&
2971 isConstantOrConstantVector(N0
.getOperand(0), /* NoOpaques */ true)) {
2972 SDValue NewC
= DAG
.FoldConstantArithmetic(
2973 ISD::SUB
, DL
, VT
, N0
.getOperand(0).getNode(), N1
.getNode());
2974 assert(NewC
&& "Constant folding failed");
2975 return DAG
.getNode(ISD::SUB
, DL
, VT
, NewC
, N0
.getOperand(1));
2978 // fold ((A+(B+or-C))-B) -> A+or-C
2979 if (N0
.getOpcode() == ISD::ADD
&&
2980 (N0
.getOperand(1).getOpcode() == ISD::SUB
||
2981 N0
.getOperand(1).getOpcode() == ISD::ADD
) &&
2982 N0
.getOperand(1).getOperand(0) == N1
)
2983 return DAG
.getNode(N0
.getOperand(1).getOpcode(), DL
, VT
, N0
.getOperand(0),
2984 N0
.getOperand(1).getOperand(1));
2986 // fold ((A+(C+B))-B) -> A+C
2987 if (N0
.getOpcode() == ISD::ADD
&& N0
.getOperand(1).getOpcode() == ISD::ADD
&&
2988 N0
.getOperand(1).getOperand(1) == N1
)
2989 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(0),
2990 N0
.getOperand(1).getOperand(0));
2992 // fold ((A-(B-C))-C) -> A-B
2993 if (N0
.getOpcode() == ISD::SUB
&& N0
.getOperand(1).getOpcode() == ISD::SUB
&&
2994 N0
.getOperand(1).getOperand(1) == N1
)
2995 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
.getOperand(0),
2996 N0
.getOperand(1).getOperand(0));
2998 // fold (A-(B-C)) -> A+(C-B)
2999 if (N1
.getOpcode() == ISD::SUB
&& N1
.hasOneUse())
3000 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
,
3001 DAG
.getNode(ISD::SUB
, DL
, VT
, N1
.getOperand(1),
3004 // fold (X - (-Y * Z)) -> (X + (Y * Z))
3005 if (N1
.getOpcode() == ISD::MUL
&& N1
.hasOneUse()) {
3006 if (N1
.getOperand(0).getOpcode() == ISD::SUB
&&
3007 isNullOrNullSplat(N1
.getOperand(0).getOperand(0))) {
3008 SDValue Mul
= DAG
.getNode(ISD::MUL
, DL
, VT
,
3009 N1
.getOperand(0).getOperand(1),
3011 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, Mul
);
3013 if (N1
.getOperand(1).getOpcode() == ISD::SUB
&&
3014 isNullOrNullSplat(N1
.getOperand(1).getOperand(0))) {
3015 SDValue Mul
= DAG
.getNode(ISD::MUL
, DL
, VT
,
3017 N1
.getOperand(1).getOperand(1));
3018 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, Mul
);
3022 // If either operand of a sub is undef, the result is undef
3028 if (SDValue V
= foldAddSubBoolOfMaskedVal(N
, DAG
))
3031 if (SDValue V
= foldAddSubOfSignBit(N
, DAG
))
3034 if (SDValue V
= foldAddSubMasked1(false, N0
, N1
, DAG
, SDLoc(N
)))
3037 // (x - y) - 1 -> add (xor y, -1), x
3038 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::SUB
&& isOneOrOneSplat(N1
)) {
3039 SDValue Xor
= DAG
.getNode(ISD::XOR
, DL
, VT
, N0
.getOperand(1),
3040 DAG
.getAllOnesConstant(DL
, VT
));
3041 return DAG
.getNode(ISD::ADD
, DL
, VT
, Xor
, N0
.getOperand(0));
3045 // sub y, (xor x, -1)
3046 // And if the target does not like this form then turn into:
3047 // add (add x, y), 1
3048 if (TLI
.preferIncOfAddToSubOfNot(VT
) && N1
.hasOneUse() && isBitwiseNot(N1
)) {
3049 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
.getOperand(0));
3050 return DAG
.getNode(ISD::ADD
, DL
, VT
, Add
, DAG
.getConstant(1, DL
, VT
));
3053 // Hoist one-use addition by non-opaque constant:
3054 // (x + C) - y -> (x - y) + C
3055 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::ADD
&&
3056 isConstantOrConstantVector(N0
.getOperand(1), /*NoOpaques=*/true)) {
3057 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, N0
.getOperand(0), N1
);
3058 return DAG
.getNode(ISD::ADD
, DL
, VT
, Sub
, N0
.getOperand(1));
3060 // y - (x + C) -> (y - x) - C
3061 if (N1
.hasOneUse() && N1
.getOpcode() == ISD::ADD
&&
3062 isConstantOrConstantVector(N1
.getOperand(1), /*NoOpaques=*/true)) {
3063 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, N1
.getOperand(0));
3064 return DAG
.getNode(ISD::SUB
, DL
, VT
, Sub
, N1
.getOperand(1));
3066 // (x - C) - y -> (x - y) - C
3067 // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors.
3068 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::SUB
&&
3069 isConstantOrConstantVector(N0
.getOperand(1), /*NoOpaques=*/true)) {
3070 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, N0
.getOperand(0), N1
);
3071 return DAG
.getNode(ISD::SUB
, DL
, VT
, Sub
, N0
.getOperand(1));
3073 // (C - x) - y -> C - (x + y)
3074 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::SUB
&&
3075 isConstantOrConstantVector(N0
.getOperand(0), /*NoOpaques=*/true)) {
3076 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(1), N1
);
3077 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
.getOperand(0), Add
);
3080 // If the target's bool is represented as 0/-1, prefer to make this 'add 0/-1'
3081 // rather than 'sub 0/1' (the sext should get folded).
3082 // sub X, (zext i1 Y) --> add X, (sext i1 Y)
3083 if (N1
.getOpcode() == ISD::ZERO_EXTEND
&&
3084 N1
.getOperand(0).getScalarValueSizeInBits() == 1 &&
3085 TLI
.getBooleanContents(VT
) ==
3086 TargetLowering::ZeroOrNegativeOneBooleanContent
) {
3087 SDValue SExt
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, N1
.getOperand(0));
3088 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, SExt
);
3091 // fold Y = sra (X, size(X)-1); sub (xor (X, Y), Y) -> (abs X)
3092 if (TLI
.isOperationLegalOrCustom(ISD::ABS
, VT
)) {
3093 if (N0
.getOpcode() == ISD::XOR
&& N1
.getOpcode() == ISD::SRA
) {
3094 SDValue X0
= N0
.getOperand(0), X1
= N0
.getOperand(1);
3095 SDValue S0
= N1
.getOperand(0);
3096 if ((X0
== S0
&& X1
== N1
) || (X0
== N1
&& X1
== S0
)) {
3097 unsigned OpSizeInBits
= VT
.getScalarSizeInBits();
3098 if (ConstantSDNode
*C
= isConstOrConstSplat(N1
.getOperand(1)))
3099 if (C
->getAPIntValue() == (OpSizeInBits
- 1))
3100 return DAG
.getNode(ISD::ABS
, SDLoc(N
), VT
, S0
);
3105 // If the relocation model supports it, consider symbol offsets.
3106 if (GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(N0
))
3107 if (!LegalOperations
&& TLI
.isOffsetFoldingLegal(GA
)) {
3108 // fold (sub Sym, c) -> Sym-c
3109 if (N1C
&& GA
->getOpcode() == ISD::GlobalAddress
)
3110 return DAG
.getGlobalAddress(GA
->getGlobal(), SDLoc(N1C
), VT
,
3112 (uint64_t)N1C
->getSExtValue());
3113 // fold (sub Sym+c1, Sym+c2) -> c1-c2
3114 if (GlobalAddressSDNode
*GB
= dyn_cast
<GlobalAddressSDNode
>(N1
))
3115 if (GA
->getGlobal() == GB
->getGlobal())
3116 return DAG
.getConstant((uint64_t)GA
->getOffset() - GB
->getOffset(),
3120 // sub X, (sextinreg Y i1) -> add X, (and Y 1)
3121 if (N1
.getOpcode() == ISD::SIGN_EXTEND_INREG
) {
3122 VTSDNode
*TN
= cast
<VTSDNode
>(N1
.getOperand(1));
3123 if (TN
->getVT() == MVT::i1
) {
3124 SDValue ZExt
= DAG
.getNode(ISD::AND
, DL
, VT
, N1
.getOperand(0),
3125 DAG
.getConstant(1, DL
, VT
));
3126 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, ZExt
);
3130 // Prefer an add for more folding potential and possibly better codegen:
3131 // sub N0, (lshr N10, width-1) --> add N0, (ashr N10, width-1)
3132 if (!LegalOperations
&& N1
.getOpcode() == ISD::SRL
&& N1
.hasOneUse()) {
3133 SDValue ShAmt
= N1
.getOperand(1);
3134 ConstantSDNode
*ShAmtC
= isConstOrConstSplat(ShAmt
);
3136 ShAmtC
->getAPIntValue() == (N1
.getScalarValueSizeInBits() - 1)) {
3137 SDValue SRA
= DAG
.getNode(ISD::SRA
, DL
, VT
, N1
.getOperand(0), ShAmt
);
3138 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, SRA
);
3142 if (TLI
.isOperationLegalOrCustom(ISD::ADDCARRY
, VT
)) {
3143 // (sub Carry, X) -> (addcarry (sub 0, X), 0, Carry)
3144 if (SDValue Carry
= getAsCarry(TLI
, N0
)) {
3146 SDValue Zero
= DAG
.getConstant(0, DL
, VT
);
3147 SDValue NegX
= DAG
.getNode(ISD::SUB
, DL
, VT
, Zero
, X
);
3148 return DAG
.getNode(ISD::ADDCARRY
, DL
,
3149 DAG
.getVTList(VT
, Carry
.getValueType()), NegX
, Zero
,
3157 SDValue
DAGCombiner::visitSUBSAT(SDNode
*N
) {
3158 SDValue N0
= N
->getOperand(0);
3159 SDValue N1
= N
->getOperand(1);
3160 EVT VT
= N0
.getValueType();
3164 if (VT
.isVector()) {
3165 // TODO SimplifyVBinOp
3167 // fold (sub_sat x, 0) -> x, vector edition
3168 if (ISD::isBuildVectorAllZeros(N1
.getNode()))
3172 // fold (sub_sat x, undef) -> 0
3173 if (N0
.isUndef() || N1
.isUndef())
3174 return DAG
.getConstant(0, DL
, VT
);
3176 // fold (sub_sat x, x) -> 0
3178 return DAG
.getConstant(0, DL
, VT
);
3180 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
3181 DAG
.isConstantIntBuildVectorOrConstantInt(N1
)) {
3182 // fold (sub_sat c1, c2) -> c3
3183 return DAG
.FoldConstantArithmetic(N
->getOpcode(), DL
, VT
, N0
.getNode(),
3187 // fold (sub_sat x, 0) -> x
3188 if (isNullConstant(N1
))
3194 SDValue
DAGCombiner::visitSUBC(SDNode
*N
) {
3195 SDValue N0
= N
->getOperand(0);
3196 SDValue N1
= N
->getOperand(1);
3197 EVT VT
= N0
.getValueType();
3200 // If the flag result is dead, turn this into an SUB.
3201 if (!N
->hasAnyUseOfValue(1))
3202 return CombineTo(N
, DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, N1
),
3203 DAG
.getNode(ISD::CARRY_FALSE
, DL
, MVT::Glue
));
3205 // fold (subc x, x) -> 0 + no borrow
3207 return CombineTo(N
, DAG
.getConstant(0, DL
, VT
),
3208 DAG
.getNode(ISD::CARRY_FALSE
, DL
, MVT::Glue
));
3210 // fold (subc x, 0) -> x + no borrow
3211 if (isNullConstant(N1
))
3212 return CombineTo(N
, N0
, DAG
.getNode(ISD::CARRY_FALSE
, DL
, MVT::Glue
));
3214 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
3215 if (isAllOnesConstant(N0
))
3216 return CombineTo(N
, DAG
.getNode(ISD::XOR
, DL
, VT
, N1
, N0
),
3217 DAG
.getNode(ISD::CARRY_FALSE
, DL
, MVT::Glue
));
3222 SDValue
DAGCombiner::visitSUBO(SDNode
*N
) {
3223 SDValue N0
= N
->getOperand(0);
3224 SDValue N1
= N
->getOperand(1);
3225 EVT VT
= N0
.getValueType();
3226 bool IsSigned
= (ISD::SSUBO
== N
->getOpcode());
3228 EVT CarryVT
= N
->getValueType(1);
3231 // If the flag result is dead, turn this into an SUB.
3232 if (!N
->hasAnyUseOfValue(1))
3233 return CombineTo(N
, DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, N1
),
3234 DAG
.getUNDEF(CarryVT
));
3236 // fold (subo x, x) -> 0 + no borrow
3238 return CombineTo(N
, DAG
.getConstant(0, DL
, VT
),
3239 DAG
.getConstant(0, DL
, CarryVT
));
3241 ConstantSDNode
*N1C
= getAsNonOpaqueConstant(N1
);
3243 // fold (subox, c) -> (addo x, -c)
3244 if (IsSigned
&& N1C
&& !N1C
->getAPIntValue().isMinSignedValue()) {
3245 return DAG
.getNode(ISD::SADDO
, DL
, N
->getVTList(), N0
,
3246 DAG
.getConstant(-N1C
->getAPIntValue(), DL
, VT
));
3249 // fold (subo x, 0) -> x + no borrow
3250 if (isNullOrNullSplat(N1
))
3251 return CombineTo(N
, N0
, DAG
.getConstant(0, DL
, CarryVT
));
3253 // Canonicalize (usubo -1, x) -> ~x, i.e. (xor x, -1) + no borrow
3254 if (!IsSigned
&& isAllOnesOrAllOnesSplat(N0
))
3255 return CombineTo(N
, DAG
.getNode(ISD::XOR
, DL
, VT
, N1
, N0
),
3256 DAG
.getConstant(0, DL
, CarryVT
));
3261 SDValue
DAGCombiner::visitSUBE(SDNode
*N
) {
3262 SDValue N0
= N
->getOperand(0);
3263 SDValue N1
= N
->getOperand(1);
3264 SDValue CarryIn
= N
->getOperand(2);
3266 // fold (sube x, y, false) -> (subc x, y)
3267 if (CarryIn
.getOpcode() == ISD::CARRY_FALSE
)
3268 return DAG
.getNode(ISD::SUBC
, SDLoc(N
), N
->getVTList(), N0
, N1
);
3273 SDValue
DAGCombiner::visitSUBCARRY(SDNode
*N
) {
3274 SDValue N0
= N
->getOperand(0);
3275 SDValue N1
= N
->getOperand(1);
3276 SDValue CarryIn
= N
->getOperand(2);
3278 // fold (subcarry x, y, false) -> (usubo x, y)
3279 if (isNullConstant(CarryIn
)) {
3280 if (!LegalOperations
||
3281 TLI
.isOperationLegalOrCustom(ISD::USUBO
, N
->getValueType(0)))
3282 return DAG
.getNode(ISD::USUBO
, SDLoc(N
), N
->getVTList(), N0
, N1
);
3288 // Notice that "mulfix" can be any of SMULFIX, SMULFIXSAT, UMULFIX and
3290 SDValue
DAGCombiner::visitMULFIX(SDNode
*N
) {
3291 SDValue N0
= N
->getOperand(0);
3292 SDValue N1
= N
->getOperand(1);
3293 SDValue Scale
= N
->getOperand(2);
3294 EVT VT
= N0
.getValueType();
3296 // fold (mulfix x, undef, scale) -> 0
3297 if (N0
.isUndef() || N1
.isUndef())
3298 return DAG
.getConstant(0, SDLoc(N
), VT
);
3300 // Canonicalize constant to RHS (vector doesn't have to splat)
3301 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
3302 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
3303 return DAG
.getNode(N
->getOpcode(), SDLoc(N
), VT
, N1
, N0
, Scale
);
3305 // fold (mulfix x, 0, scale) -> 0
3306 if (isNullConstant(N1
))
3307 return DAG
.getConstant(0, SDLoc(N
), VT
);
3312 SDValue
DAGCombiner::visitMUL(SDNode
*N
) {
3313 SDValue N0
= N
->getOperand(0);
3314 SDValue N1
= N
->getOperand(1);
3315 EVT VT
= N0
.getValueType();
3317 // fold (mul x, undef) -> 0
3318 if (N0
.isUndef() || N1
.isUndef())
3319 return DAG
.getConstant(0, SDLoc(N
), VT
);
3321 bool N0IsConst
= false;
3322 bool N1IsConst
= false;
3323 bool N1IsOpaqueConst
= false;
3324 bool N0IsOpaqueConst
= false;
3325 APInt ConstValue0
, ConstValue1
;
3327 if (VT
.isVector()) {
3328 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
3331 N0IsConst
= ISD::isConstantSplatVector(N0
.getNode(), ConstValue0
);
3332 N1IsConst
= ISD::isConstantSplatVector(N1
.getNode(), ConstValue1
);
3333 assert((!N0IsConst
||
3334 ConstValue0
.getBitWidth() == VT
.getScalarSizeInBits()) &&
3335 "Splat APInt should be element width");
3336 assert((!N1IsConst
||
3337 ConstValue1
.getBitWidth() == VT
.getScalarSizeInBits()) &&
3338 "Splat APInt should be element width");
3340 N0IsConst
= isa
<ConstantSDNode
>(N0
);
3342 ConstValue0
= cast
<ConstantSDNode
>(N0
)->getAPIntValue();
3343 N0IsOpaqueConst
= cast
<ConstantSDNode
>(N0
)->isOpaque();
3345 N1IsConst
= isa
<ConstantSDNode
>(N1
);
3347 ConstValue1
= cast
<ConstantSDNode
>(N1
)->getAPIntValue();
3348 N1IsOpaqueConst
= cast
<ConstantSDNode
>(N1
)->isOpaque();
3352 // fold (mul c1, c2) -> c1*c2
3353 if (N0IsConst
&& N1IsConst
&& !N0IsOpaqueConst
&& !N1IsOpaqueConst
)
3354 return DAG
.FoldConstantArithmetic(ISD::MUL
, SDLoc(N
), VT
,
3355 N0
.getNode(), N1
.getNode());
3357 // canonicalize constant to RHS (vector doesn't have to splat)
3358 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
3359 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
3360 return DAG
.getNode(ISD::MUL
, SDLoc(N
), VT
, N1
, N0
);
3361 // fold (mul x, 0) -> 0
3362 if (N1IsConst
&& ConstValue1
.isNullValue())
3364 // fold (mul x, 1) -> x
3365 if (N1IsConst
&& ConstValue1
.isOneValue())
3368 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
3371 // fold (mul x, -1) -> 0-x
3372 if (N1IsConst
&& ConstValue1
.isAllOnesValue()) {
3374 return DAG
.getNode(ISD::SUB
, DL
, VT
,
3375 DAG
.getConstant(0, DL
, VT
), N0
);
3377 // fold (mul x, (1 << c)) -> x << c
3378 if (isConstantOrConstantVector(N1
, /*NoOpaques*/ true) &&
3379 DAG
.isKnownToBeAPowerOfTwo(N1
) &&
3380 (!VT
.isVector() || Level
<= AfterLegalizeVectorOps
)) {
3382 SDValue LogBase2
= BuildLogBase2(N1
, DL
);
3383 EVT ShiftVT
= getShiftAmountTy(N0
.getValueType());
3384 SDValue Trunc
= DAG
.getZExtOrTrunc(LogBase2
, DL
, ShiftVT
);
3385 return DAG
.getNode(ISD::SHL
, DL
, VT
, N0
, Trunc
);
3387 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
3388 if (N1IsConst
&& !N1IsOpaqueConst
&& (-ConstValue1
).isPowerOf2()) {
3389 unsigned Log2Val
= (-ConstValue1
).logBase2();
3391 // FIXME: If the input is something that is easily negated (e.g. a
3392 // single-use add), we should put the negate there.
3393 return DAG
.getNode(ISD::SUB
, DL
, VT
,
3394 DAG
.getConstant(0, DL
, VT
),
3395 DAG
.getNode(ISD::SHL
, DL
, VT
, N0
,
3396 DAG
.getConstant(Log2Val
, DL
,
3397 getShiftAmountTy(N0
.getValueType()))));
3400 // Try to transform multiply-by-(power-of-2 +/- 1) into shift and add/sub.
3401 // mul x, (2^N + 1) --> add (shl x, N), x
3402 // mul x, (2^N - 1) --> sub (shl x, N), x
3403 // Examples: x * 33 --> (x << 5) + x
3404 // x * 15 --> (x << 4) - x
3405 // x * -33 --> -((x << 5) + x)
3406 // x * -15 --> -((x << 4) - x) ; this reduces --> x - (x << 4)
3407 if (N1IsConst
&& TLI
.decomposeMulByConstant(*DAG
.getContext(), VT
, N1
)) {
3408 // TODO: We could handle more general decomposition of any constant by
3409 // having the target set a limit on number of ops and making a
3410 // callback to determine that sequence (similar to sqrt expansion).
3411 unsigned MathOp
= ISD::DELETED_NODE
;
3412 APInt MulC
= ConstValue1
.abs();
3413 if ((MulC
- 1).isPowerOf2())
3415 else if ((MulC
+ 1).isPowerOf2())
3418 if (MathOp
!= ISD::DELETED_NODE
) {
3420 MathOp
== ISD::ADD
? (MulC
- 1).logBase2() : (MulC
+ 1).logBase2();
3421 assert(ShAmt
< VT
.getScalarSizeInBits() &&
3422 "multiply-by-constant generated out of bounds shift");
3425 DAG
.getNode(ISD::SHL
, DL
, VT
, N0
, DAG
.getConstant(ShAmt
, DL
, VT
));
3426 SDValue R
= DAG
.getNode(MathOp
, DL
, VT
, Shl
, N0
);
3427 if (ConstValue1
.isNegative())
3428 R
= DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
), R
);
3433 // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
3434 if (N0
.getOpcode() == ISD::SHL
&&
3435 isConstantOrConstantVector(N1
, /* NoOpaques */ true) &&
3436 isConstantOrConstantVector(N0
.getOperand(1), /* NoOpaques */ true)) {
3437 SDValue C3
= DAG
.getNode(ISD::SHL
, SDLoc(N
), VT
, N1
, N0
.getOperand(1));
3438 if (isConstantOrConstantVector(C3
))
3439 return DAG
.getNode(ISD::MUL
, SDLoc(N
), VT
, N0
.getOperand(0), C3
);
3442 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
3445 SDValue
Sh(nullptr, 0), Y(nullptr, 0);
3447 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)).
3448 if (N0
.getOpcode() == ISD::SHL
&&
3449 isConstantOrConstantVector(N0
.getOperand(1)) &&
3450 N0
.getNode()->hasOneUse()) {
3452 } else if (N1
.getOpcode() == ISD::SHL
&&
3453 isConstantOrConstantVector(N1
.getOperand(1)) &&
3454 N1
.getNode()->hasOneUse()) {
3459 SDValue Mul
= DAG
.getNode(ISD::MUL
, SDLoc(N
), VT
, Sh
.getOperand(0), Y
);
3460 return DAG
.getNode(ISD::SHL
, SDLoc(N
), VT
, Mul
, Sh
.getOperand(1));
3464 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
3465 if (DAG
.isConstantIntBuildVectorOrConstantInt(N1
) &&
3466 N0
.getOpcode() == ISD::ADD
&&
3467 DAG
.isConstantIntBuildVectorOrConstantInt(N0
.getOperand(1)) &&
3468 isMulAddWithConstProfitable(N
, N0
, N1
))
3469 return DAG
.getNode(ISD::ADD
, SDLoc(N
), VT
,
3470 DAG
.getNode(ISD::MUL
, SDLoc(N0
), VT
,
3471 N0
.getOperand(0), N1
),
3472 DAG
.getNode(ISD::MUL
, SDLoc(N1
), VT
,
3473 N0
.getOperand(1), N1
));
3476 if (SDValue RMUL
= reassociateOps(ISD::MUL
, SDLoc(N
), N0
, N1
, N
->getFlags()))
3482 /// Return true if divmod libcall is available.
3483 static bool isDivRemLibcallAvailable(SDNode
*Node
, bool isSigned
,
3484 const TargetLowering
&TLI
) {
3486 EVT NodeType
= Node
->getValueType(0);
3487 if (!NodeType
.isSimple())
3489 switch (NodeType
.getSimpleVT().SimpleTy
) {
3490 default: return false; // No libcall for vector types.
3491 case MVT::i8
: LC
= isSigned
? RTLIB::SDIVREM_I8
: RTLIB::UDIVREM_I8
; break;
3492 case MVT::i16
: LC
= isSigned
? RTLIB::SDIVREM_I16
: RTLIB::UDIVREM_I16
; break;
3493 case MVT::i32
: LC
= isSigned
? RTLIB::SDIVREM_I32
: RTLIB::UDIVREM_I32
; break;
3494 case MVT::i64
: LC
= isSigned
? RTLIB::SDIVREM_I64
: RTLIB::UDIVREM_I64
; break;
3495 case MVT::i128
: LC
= isSigned
? RTLIB::SDIVREM_I128
:RTLIB::UDIVREM_I128
; break;
3498 return TLI
.getLibcallName(LC
) != nullptr;
3501 /// Issue divrem if both quotient and remainder are needed.
3502 SDValue
DAGCombiner::useDivRem(SDNode
*Node
) {
3503 if (Node
->use_empty())
3504 return SDValue(); // This is a dead node, leave it alone.
3506 unsigned Opcode
= Node
->getOpcode();
3507 bool isSigned
= (Opcode
== ISD::SDIV
) || (Opcode
== ISD::SREM
);
3508 unsigned DivRemOpc
= isSigned
? ISD::SDIVREM
: ISD::UDIVREM
;
3510 // DivMod lib calls can still work on non-legal types if using lib-calls.
3511 EVT VT
= Node
->getValueType(0);
3512 if (VT
.isVector() || !VT
.isInteger())
3515 if (!TLI
.isTypeLegal(VT
) && !TLI
.isOperationCustom(DivRemOpc
, VT
))
3518 // If DIVREM is going to get expanded into a libcall,
3519 // but there is no libcall available, then don't combine.
3520 if (!TLI
.isOperationLegalOrCustom(DivRemOpc
, VT
) &&
3521 !isDivRemLibcallAvailable(Node
, isSigned
, TLI
))
3524 // If div is legal, it's better to do the normal expansion
3525 unsigned OtherOpcode
= 0;
3526 if ((Opcode
== ISD::SDIV
) || (Opcode
== ISD::UDIV
)) {
3527 OtherOpcode
= isSigned
? ISD::SREM
: ISD::UREM
;
3528 if (TLI
.isOperationLegalOrCustom(Opcode
, VT
))
3531 OtherOpcode
= isSigned
? ISD::SDIV
: ISD::UDIV
;
3532 if (TLI
.isOperationLegalOrCustom(OtherOpcode
, VT
))
3536 SDValue Op0
= Node
->getOperand(0);
3537 SDValue Op1
= Node
->getOperand(1);
3539 for (SDNode::use_iterator UI
= Op0
.getNode()->use_begin(),
3540 UE
= Op0
.getNode()->use_end(); UI
!= UE
; ++UI
) {
3542 if (User
== Node
|| User
->getOpcode() == ISD::DELETED_NODE
||
3545 // Convert the other matching node(s), too;
3546 // otherwise, the DIVREM may get target-legalized into something
3547 // target-specific that we won't be able to recognize.
3548 unsigned UserOpc
= User
->getOpcode();
3549 if ((UserOpc
== Opcode
|| UserOpc
== OtherOpcode
|| UserOpc
== DivRemOpc
) &&
3550 User
->getOperand(0) == Op0
&&
3551 User
->getOperand(1) == Op1
) {
3553 if (UserOpc
== OtherOpcode
) {
3554 SDVTList VTs
= DAG
.getVTList(VT
, VT
);
3555 combined
= DAG
.getNode(DivRemOpc
, SDLoc(Node
), VTs
, Op0
, Op1
);
3556 } else if (UserOpc
== DivRemOpc
) {
3557 combined
= SDValue(User
, 0);
3559 assert(UserOpc
== Opcode
);
3563 if (UserOpc
== ISD::SDIV
|| UserOpc
== ISD::UDIV
)
3564 CombineTo(User
, combined
);
3565 else if (UserOpc
== ISD::SREM
|| UserOpc
== ISD::UREM
)
3566 CombineTo(User
, combined
.getValue(1));
3572 static SDValue
simplifyDivRem(SDNode
*N
, SelectionDAG
&DAG
) {
3573 SDValue N0
= N
->getOperand(0);
3574 SDValue N1
= N
->getOperand(1);
3575 EVT VT
= N
->getValueType(0);
3578 unsigned Opc
= N
->getOpcode();
3579 bool IsDiv
= (ISD::SDIV
== Opc
) || (ISD::UDIV
== Opc
);
3580 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
3582 // X / undef -> undef
3583 // X % undef -> undef
3586 // NOTE: This includes vectors where any divisor element is zero/undef.
3587 if (DAG
.isUndef(Opc
, {N0
, N1
}))
3588 return DAG
.getUNDEF(VT
);
3593 return DAG
.getConstant(0, DL
, VT
);
3597 ConstantSDNode
*N0C
= isConstOrConstSplat(N0
);
3598 if (N0C
&& N0C
->isNullValue())
3604 return DAG
.getConstant(IsDiv
? 1 : 0, DL
, VT
);
3608 // If this is a boolean op (single-bit element type), we can't have
3609 // division-by-zero or remainder-by-zero, so assume the divisor is 1.
3610 // TODO: Similarly, if we're zero-extending a boolean divisor, then assume
3612 if ((N1C
&& N1C
->isOne()) || (VT
.getScalarType() == MVT::i1
))
3613 return IsDiv
? N0
: DAG
.getConstant(0, DL
, VT
);
3618 SDValue
DAGCombiner::visitSDIV(SDNode
*N
) {
3619 SDValue N0
= N
->getOperand(0);
3620 SDValue N1
= N
->getOperand(1);
3621 EVT VT
= N
->getValueType(0);
3622 EVT CCVT
= getSetCCResultType(VT
);
3626 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
3631 // fold (sdiv c1, c2) -> c1/c2
3632 ConstantSDNode
*N0C
= isConstOrConstSplat(N0
);
3633 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
3634 if (N0C
&& N1C
&& !N0C
->isOpaque() && !N1C
->isOpaque())
3635 return DAG
.FoldConstantArithmetic(ISD::SDIV
, DL
, VT
, N0C
, N1C
);
3636 // fold (sdiv X, -1) -> 0-X
3637 if (N1C
&& N1C
->isAllOnesValue())
3638 return DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
), N0
);
3639 // fold (sdiv X, MIN_SIGNED) -> select(X == MIN_SIGNED, 1, 0)
3640 if (N1C
&& N1C
->getAPIntValue().isMinSignedValue())
3641 return DAG
.getSelect(DL
, VT
, DAG
.getSetCC(DL
, CCVT
, N0
, N1
, ISD::SETEQ
),
3642 DAG
.getConstant(1, DL
, VT
),
3643 DAG
.getConstant(0, DL
, VT
));
3645 if (SDValue V
= simplifyDivRem(N
, DAG
))
3648 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
3651 // If we know the sign bits of both operands are zero, strength reduce to a
3652 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2
3653 if (DAG
.SignBitIsZero(N1
) && DAG
.SignBitIsZero(N0
))
3654 return DAG
.getNode(ISD::UDIV
, DL
, N1
.getValueType(), N0
, N1
);
3656 if (SDValue V
= visitSDIVLike(N0
, N1
, N
)) {
3657 // If the corresponding remainder node exists, update its users with
3658 // (Dividend - (Quotient * Divisor).
3659 if (SDNode
*RemNode
= DAG
.getNodeIfExists(ISD::SREM
, N
->getVTList(),
3661 SDValue Mul
= DAG
.getNode(ISD::MUL
, DL
, VT
, V
, N1
);
3662 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, Mul
);
3663 AddToWorklist(Mul
.getNode());
3664 AddToWorklist(Sub
.getNode());
3665 CombineTo(RemNode
, Sub
);
3670 // sdiv, srem -> sdivrem
3671 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is
3672 // true. Otherwise, we break the simplification logic in visitREM().
3673 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
3674 if (!N1C
|| TLI
.isIntDivCheap(N
->getValueType(0), Attr
))
3675 if (SDValue DivRem
= useDivRem(N
))
3681 SDValue
DAGCombiner::visitSDIVLike(SDValue N0
, SDValue N1
, SDNode
*N
) {
3683 EVT VT
= N
->getValueType(0);
3684 EVT CCVT
= getSetCCResultType(VT
);
3685 unsigned BitWidth
= VT
.getScalarSizeInBits();
3687 // Helper for determining whether a value is a power-2 constant scalar or a
3688 // vector of such elements.
3689 auto IsPowerOfTwo
= [](ConstantSDNode
*C
) {
3690 if (C
->isNullValue() || C
->isOpaque())
3692 if (C
->getAPIntValue().isPowerOf2())
3694 if ((-C
->getAPIntValue()).isPowerOf2())
3699 // fold (sdiv X, pow2) -> simple ops after legalize
3700 // FIXME: We check for the exact bit here because the generic lowering gives
3701 // better results in that case. The target-specific lowering should learn how
3702 // to handle exact sdivs efficiently.
3703 if (!N
->getFlags().hasExact() && ISD::matchUnaryPredicate(N1
, IsPowerOfTwo
)) {
3704 // Target-specific implementation of sdiv x, pow2.
3705 if (SDValue Res
= BuildSDIVPow2(N
))
3708 // Create constants that are functions of the shift amount value.
3709 EVT ShiftAmtTy
= getShiftAmountTy(N0
.getValueType());
3710 SDValue Bits
= DAG
.getConstant(BitWidth
, DL
, ShiftAmtTy
);
3711 SDValue C1
= DAG
.getNode(ISD::CTTZ
, DL
, VT
, N1
);
3712 C1
= DAG
.getZExtOrTrunc(C1
, DL
, ShiftAmtTy
);
3713 SDValue Inexact
= DAG
.getNode(ISD::SUB
, DL
, ShiftAmtTy
, Bits
, C1
);
3714 if (!isConstantOrConstantVector(Inexact
))
3717 // Splat the sign bit into the register
3718 SDValue Sign
= DAG
.getNode(ISD::SRA
, DL
, VT
, N0
,
3719 DAG
.getConstant(BitWidth
- 1, DL
, ShiftAmtTy
));
3720 AddToWorklist(Sign
.getNode());
3722 // Add (N0 < 0) ? abs2 - 1 : 0;
3723 SDValue Srl
= DAG
.getNode(ISD::SRL
, DL
, VT
, Sign
, Inexact
);
3724 AddToWorklist(Srl
.getNode());
3725 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, Srl
);
3726 AddToWorklist(Add
.getNode());
3727 SDValue Sra
= DAG
.getNode(ISD::SRA
, DL
, VT
, Add
, C1
);
3728 AddToWorklist(Sra
.getNode());
3730 // Special case: (sdiv X, 1) -> X
3731 // Special Case: (sdiv X, -1) -> 0-X
3732 SDValue One
= DAG
.getConstant(1, DL
, VT
);
3733 SDValue AllOnes
= DAG
.getAllOnesConstant(DL
, VT
);
3734 SDValue IsOne
= DAG
.getSetCC(DL
, CCVT
, N1
, One
, ISD::SETEQ
);
3735 SDValue IsAllOnes
= DAG
.getSetCC(DL
, CCVT
, N1
, AllOnes
, ISD::SETEQ
);
3736 SDValue IsOneOrAllOnes
= DAG
.getNode(ISD::OR
, DL
, CCVT
, IsOne
, IsAllOnes
);
3737 Sra
= DAG
.getSelect(DL
, VT
, IsOneOrAllOnes
, N0
, Sra
);
3739 // If dividing by a positive value, we're done. Otherwise, the result must
3741 SDValue Zero
= DAG
.getConstant(0, DL
, VT
);
3742 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, Zero
, Sra
);
3744 // FIXME: Use SELECT_CC once we improve SELECT_CC constant-folding.
3745 SDValue IsNeg
= DAG
.getSetCC(DL
, CCVT
, N1
, Zero
, ISD::SETLT
);
3746 SDValue Res
= DAG
.getSelect(DL
, VT
, IsNeg
, Sub
, Sra
);
3750 // If integer divide is expensive and we satisfy the requirements, emit an
3751 // alternate sequence. Targets may check function attributes for size/speed
3753 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
3754 if (isConstantOrConstantVector(N1
) &&
3755 !TLI
.isIntDivCheap(N
->getValueType(0), Attr
))
3756 if (SDValue Op
= BuildSDIV(N
))
3762 SDValue
DAGCombiner::visitUDIV(SDNode
*N
) {
3763 SDValue N0
= N
->getOperand(0);
3764 SDValue N1
= N
->getOperand(1);
3765 EVT VT
= N
->getValueType(0);
3766 EVT CCVT
= getSetCCResultType(VT
);
3770 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
3775 // fold (udiv c1, c2) -> c1/c2
3776 ConstantSDNode
*N0C
= isConstOrConstSplat(N0
);
3777 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
3779 if (SDValue Folded
= DAG
.FoldConstantArithmetic(ISD::UDIV
, DL
, VT
,
3782 // fold (udiv X, -1) -> select(X == -1, 1, 0)
3783 if (N1C
&& N1C
->getAPIntValue().isAllOnesValue())
3784 return DAG
.getSelect(DL
, VT
, DAG
.getSetCC(DL
, CCVT
, N0
, N1
, ISD::SETEQ
),
3785 DAG
.getConstant(1, DL
, VT
),
3786 DAG
.getConstant(0, DL
, VT
));
3788 if (SDValue V
= simplifyDivRem(N
, DAG
))
3791 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
3794 if (SDValue V
= visitUDIVLike(N0
, N1
, N
)) {
3795 // If the corresponding remainder node exists, update its users with
3796 // (Dividend - (Quotient * Divisor).
3797 if (SDNode
*RemNode
= DAG
.getNodeIfExists(ISD::UREM
, N
->getVTList(),
3799 SDValue Mul
= DAG
.getNode(ISD::MUL
, DL
, VT
, V
, N1
);
3800 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, Mul
);
3801 AddToWorklist(Mul
.getNode());
3802 AddToWorklist(Sub
.getNode());
3803 CombineTo(RemNode
, Sub
);
3808 // sdiv, srem -> sdivrem
3809 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is
3810 // true. Otherwise, we break the simplification logic in visitREM().
3811 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
3812 if (!N1C
|| TLI
.isIntDivCheap(N
->getValueType(0), Attr
))
3813 if (SDValue DivRem
= useDivRem(N
))
3819 SDValue
DAGCombiner::visitUDIVLike(SDValue N0
, SDValue N1
, SDNode
*N
) {
3821 EVT VT
= N
->getValueType(0);
3823 // fold (udiv x, (1 << c)) -> x >>u c
3824 if (isConstantOrConstantVector(N1
, /*NoOpaques*/ true) &&
3825 DAG
.isKnownToBeAPowerOfTwo(N1
)) {
3826 SDValue LogBase2
= BuildLogBase2(N1
, DL
);
3827 AddToWorklist(LogBase2
.getNode());
3829 EVT ShiftVT
= getShiftAmountTy(N0
.getValueType());
3830 SDValue Trunc
= DAG
.getZExtOrTrunc(LogBase2
, DL
, ShiftVT
);
3831 AddToWorklist(Trunc
.getNode());
3832 return DAG
.getNode(ISD::SRL
, DL
, VT
, N0
, Trunc
);
3835 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
3836 if (N1
.getOpcode() == ISD::SHL
) {
3837 SDValue N10
= N1
.getOperand(0);
3838 if (isConstantOrConstantVector(N10
, /*NoOpaques*/ true) &&
3839 DAG
.isKnownToBeAPowerOfTwo(N10
)) {
3840 SDValue LogBase2
= BuildLogBase2(N10
, DL
);
3841 AddToWorklist(LogBase2
.getNode());
3843 EVT ADDVT
= N1
.getOperand(1).getValueType();
3844 SDValue Trunc
= DAG
.getZExtOrTrunc(LogBase2
, DL
, ADDVT
);
3845 AddToWorklist(Trunc
.getNode());
3846 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, ADDVT
, N1
.getOperand(1), Trunc
);
3847 AddToWorklist(Add
.getNode());
3848 return DAG
.getNode(ISD::SRL
, DL
, VT
, N0
, Add
);
3852 // fold (udiv x, c) -> alternate
3853 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
3854 if (isConstantOrConstantVector(N1
) &&
3855 !TLI
.isIntDivCheap(N
->getValueType(0), Attr
))
3856 if (SDValue Op
= BuildUDIV(N
))
3862 // handles ISD::SREM and ISD::UREM
3863 SDValue
DAGCombiner::visitREM(SDNode
*N
) {
3864 unsigned Opcode
= N
->getOpcode();
3865 SDValue N0
= N
->getOperand(0);
3866 SDValue N1
= N
->getOperand(1);
3867 EVT VT
= N
->getValueType(0);
3868 EVT CCVT
= getSetCCResultType(VT
);
3870 bool isSigned
= (Opcode
== ISD::SREM
);
3873 // fold (rem c1, c2) -> c1%c2
3874 ConstantSDNode
*N0C
= isConstOrConstSplat(N0
);
3875 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
3877 if (SDValue Folded
= DAG
.FoldConstantArithmetic(Opcode
, DL
, VT
, N0C
, N1C
))
3879 // fold (urem X, -1) -> select(X == -1, 0, x)
3880 if (!isSigned
&& N1C
&& N1C
->getAPIntValue().isAllOnesValue())
3881 return DAG
.getSelect(DL
, VT
, DAG
.getSetCC(DL
, CCVT
, N0
, N1
, ISD::SETEQ
),
3882 DAG
.getConstant(0, DL
, VT
), N0
);
3884 if (SDValue V
= simplifyDivRem(N
, DAG
))
3887 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
3891 // If we know the sign bits of both operands are zero, strength reduce to a
3892 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15
3893 if (DAG
.SignBitIsZero(N1
) && DAG
.SignBitIsZero(N0
))
3894 return DAG
.getNode(ISD::UREM
, DL
, VT
, N0
, N1
);
3896 SDValue NegOne
= DAG
.getAllOnesConstant(DL
, VT
);
3897 if (DAG
.isKnownToBeAPowerOfTwo(N1
)) {
3898 // fold (urem x, pow2) -> (and x, pow2-1)
3899 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, N1
, NegOne
);
3900 AddToWorklist(Add
.getNode());
3901 return DAG
.getNode(ISD::AND
, DL
, VT
, N0
, Add
);
3903 if (N1
.getOpcode() == ISD::SHL
&&
3904 DAG
.isKnownToBeAPowerOfTwo(N1
.getOperand(0))) {
3905 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
3906 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, N1
, NegOne
);
3907 AddToWorklist(Add
.getNode());
3908 return DAG
.getNode(ISD::AND
, DL
, VT
, N0
, Add
);
3912 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
3914 // If X/C can be simplified by the division-by-constant logic, lower
3915 // X%C to the equivalent of X-X/C*C.
3916 // Reuse the SDIVLike/UDIVLike combines - to avoid mangling nodes, the
3917 // speculative DIV must not cause a DIVREM conversion. We guard against this
3918 // by skipping the simplification if isIntDivCheap(). When div is not cheap,
3919 // combine will not return a DIVREM. Regardless, checking cheapness here
3920 // makes sense since the simplification results in fatter code.
3921 if (DAG
.isKnownNeverZero(N1
) && !TLI
.isIntDivCheap(VT
, Attr
)) {
3922 SDValue OptimizedDiv
=
3923 isSigned
? visitSDIVLike(N0
, N1
, N
) : visitUDIVLike(N0
, N1
, N
);
3924 if (OptimizedDiv
.getNode()) {
3925 // If the equivalent Div node also exists, update its users.
3926 unsigned DivOpcode
= isSigned
? ISD::SDIV
: ISD::UDIV
;
3927 if (SDNode
*DivNode
= DAG
.getNodeIfExists(DivOpcode
, N
->getVTList(),
3929 CombineTo(DivNode
, OptimizedDiv
);
3930 SDValue Mul
= DAG
.getNode(ISD::MUL
, DL
, VT
, OptimizedDiv
, N1
);
3931 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, Mul
);
3932 AddToWorklist(OptimizedDiv
.getNode());
3933 AddToWorklist(Mul
.getNode());
3938 // sdiv, srem -> sdivrem
3939 if (SDValue DivRem
= useDivRem(N
))
3940 return DivRem
.getValue(1);
3945 SDValue
DAGCombiner::visitMULHS(SDNode
*N
) {
3946 SDValue N0
= N
->getOperand(0);
3947 SDValue N1
= N
->getOperand(1);
3948 EVT VT
= N
->getValueType(0);
3951 if (VT
.isVector()) {
3952 // fold (mulhs x, 0) -> 0
3953 // do not return N0/N1, because undef node may exist.
3954 if (ISD::isBuildVectorAllZeros(N0
.getNode()) ||
3955 ISD::isBuildVectorAllZeros(N1
.getNode()))
3956 return DAG
.getConstant(0, DL
, VT
);
3959 // fold (mulhs x, 0) -> 0
3960 if (isNullConstant(N1
))
3962 // fold (mulhs x, 1) -> (sra x, size(x)-1)
3963 if (isOneConstant(N1
))
3964 return DAG
.getNode(ISD::SRA
, DL
, N0
.getValueType(), N0
,
3965 DAG
.getConstant(N0
.getScalarValueSizeInBits() - 1, DL
,
3966 getShiftAmountTy(N0
.getValueType())));
3968 // fold (mulhs x, undef) -> 0
3969 if (N0
.isUndef() || N1
.isUndef())
3970 return DAG
.getConstant(0, DL
, VT
);
3972 // If the type twice as wide is legal, transform the mulhs to a wider multiply
3974 if (VT
.isSimple() && !VT
.isVector()) {
3975 MVT Simple
= VT
.getSimpleVT();
3976 unsigned SimpleSize
= Simple
.getSizeInBits();
3977 EVT NewVT
= EVT::getIntegerVT(*DAG
.getContext(), SimpleSize
*2);
3978 if (TLI
.isOperationLegal(ISD::MUL
, NewVT
)) {
3979 N0
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, NewVT
, N0
);
3980 N1
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, NewVT
, N1
);
3981 N1
= DAG
.getNode(ISD::MUL
, DL
, NewVT
, N0
, N1
);
3982 N1
= DAG
.getNode(ISD::SRL
, DL
, NewVT
, N1
,
3983 DAG
.getConstant(SimpleSize
, DL
,
3984 getShiftAmountTy(N1
.getValueType())));
3985 return DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, N1
);
3992 SDValue
DAGCombiner::visitMULHU(SDNode
*N
) {
3993 SDValue N0
= N
->getOperand(0);
3994 SDValue N1
= N
->getOperand(1);
3995 EVT VT
= N
->getValueType(0);
3998 if (VT
.isVector()) {
3999 // fold (mulhu x, 0) -> 0
4000 // do not return N0/N1, because undef node may exist.
4001 if (ISD::isBuildVectorAllZeros(N0
.getNode()) ||
4002 ISD::isBuildVectorAllZeros(N1
.getNode()))
4003 return DAG
.getConstant(0, DL
, VT
);
4006 // fold (mulhu x, 0) -> 0
4007 if (isNullConstant(N1
))
4009 // fold (mulhu x, 1) -> 0
4010 if (isOneConstant(N1
))
4011 return DAG
.getConstant(0, DL
, N0
.getValueType());
4012 // fold (mulhu x, undef) -> 0
4013 if (N0
.isUndef() || N1
.isUndef())
4014 return DAG
.getConstant(0, DL
, VT
);
4016 // fold (mulhu x, (1 << c)) -> x >> (bitwidth - c)
4017 if (isConstantOrConstantVector(N1
, /*NoOpaques*/ true) &&
4018 DAG
.isKnownToBeAPowerOfTwo(N1
) && hasOperation(ISD::SRL
, VT
)) {
4019 unsigned NumEltBits
= VT
.getScalarSizeInBits();
4020 SDValue LogBase2
= BuildLogBase2(N1
, DL
);
4021 SDValue SRLAmt
= DAG
.getNode(
4022 ISD::SUB
, DL
, VT
, DAG
.getConstant(NumEltBits
, DL
, VT
), LogBase2
);
4023 EVT ShiftVT
= getShiftAmountTy(N0
.getValueType());
4024 SDValue Trunc
= DAG
.getZExtOrTrunc(SRLAmt
, DL
, ShiftVT
);
4025 return DAG
.getNode(ISD::SRL
, DL
, VT
, N0
, Trunc
);
4028 // If the type twice as wide is legal, transform the mulhu to a wider multiply
4030 if (VT
.isSimple() && !VT
.isVector()) {
4031 MVT Simple
= VT
.getSimpleVT();
4032 unsigned SimpleSize
= Simple
.getSizeInBits();
4033 EVT NewVT
= EVT::getIntegerVT(*DAG
.getContext(), SimpleSize
*2);
4034 if (TLI
.isOperationLegal(ISD::MUL
, NewVT
)) {
4035 N0
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, NewVT
, N0
);
4036 N1
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, NewVT
, N1
);
4037 N1
= DAG
.getNode(ISD::MUL
, DL
, NewVT
, N0
, N1
);
4038 N1
= DAG
.getNode(ISD::SRL
, DL
, NewVT
, N1
,
4039 DAG
.getConstant(SimpleSize
, DL
,
4040 getShiftAmountTy(N1
.getValueType())));
4041 return DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, N1
);
4048 /// Perform optimizations common to nodes that compute two values. LoOp and HiOp
4049 /// give the opcodes for the two computations that are being performed. Return
4050 /// true if a simplification was made.
4051 SDValue
DAGCombiner::SimplifyNodeWithTwoResults(SDNode
*N
, unsigned LoOp
,
4053 // If the high half is not needed, just compute the low half.
4054 bool HiExists
= N
->hasAnyUseOfValue(1);
4055 if (!HiExists
&& (!LegalOperations
||
4056 TLI
.isOperationLegalOrCustom(LoOp
, N
->getValueType(0)))) {
4057 SDValue Res
= DAG
.getNode(LoOp
, SDLoc(N
), N
->getValueType(0), N
->ops());
4058 return CombineTo(N
, Res
, Res
);
4061 // If the low half is not needed, just compute the high half.
4062 bool LoExists
= N
->hasAnyUseOfValue(0);
4063 if (!LoExists
&& (!LegalOperations
||
4064 TLI
.isOperationLegalOrCustom(HiOp
, N
->getValueType(1)))) {
4065 SDValue Res
= DAG
.getNode(HiOp
, SDLoc(N
), N
->getValueType(1), N
->ops());
4066 return CombineTo(N
, Res
, Res
);
4069 // If both halves are used, return as it is.
4070 if (LoExists
&& HiExists
)
4073 // If the two computed results can be simplified separately, separate them.
4075 SDValue Lo
= DAG
.getNode(LoOp
, SDLoc(N
), N
->getValueType(0), N
->ops());
4076 AddToWorklist(Lo
.getNode());
4077 SDValue LoOpt
= combine(Lo
.getNode());
4078 if (LoOpt
.getNode() && LoOpt
.getNode() != Lo
.getNode() &&
4079 (!LegalOperations
||
4080 TLI
.isOperationLegalOrCustom(LoOpt
.getOpcode(), LoOpt
.getValueType())))
4081 return CombineTo(N
, LoOpt
, LoOpt
);
4085 SDValue Hi
= DAG
.getNode(HiOp
, SDLoc(N
), N
->getValueType(1), N
->ops());
4086 AddToWorklist(Hi
.getNode());
4087 SDValue HiOpt
= combine(Hi
.getNode());
4088 if (HiOpt
.getNode() && HiOpt
!= Hi
&&
4089 (!LegalOperations
||
4090 TLI
.isOperationLegalOrCustom(HiOpt
.getOpcode(), HiOpt
.getValueType())))
4091 return CombineTo(N
, HiOpt
, HiOpt
);
4097 SDValue
DAGCombiner::visitSMUL_LOHI(SDNode
*N
) {
4098 if (SDValue Res
= SimplifyNodeWithTwoResults(N
, ISD::MUL
, ISD::MULHS
))
4101 EVT VT
= N
->getValueType(0);
4104 // If the type is twice as wide is legal, transform the mulhu to a wider
4105 // multiply plus a shift.
4106 if (VT
.isSimple() && !VT
.isVector()) {
4107 MVT Simple
= VT
.getSimpleVT();
4108 unsigned SimpleSize
= Simple
.getSizeInBits();
4109 EVT NewVT
= EVT::getIntegerVT(*DAG
.getContext(), SimpleSize
*2);
4110 if (TLI
.isOperationLegal(ISD::MUL
, NewVT
)) {
4111 SDValue Lo
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, NewVT
, N
->getOperand(0));
4112 SDValue Hi
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, NewVT
, N
->getOperand(1));
4113 Lo
= DAG
.getNode(ISD::MUL
, DL
, NewVT
, Lo
, Hi
);
4114 // Compute the high part as N1.
4115 Hi
= DAG
.getNode(ISD::SRL
, DL
, NewVT
, Lo
,
4116 DAG
.getConstant(SimpleSize
, DL
,
4117 getShiftAmountTy(Lo
.getValueType())));
4118 Hi
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, Hi
);
4119 // Compute the low part as N0.
4120 Lo
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, Lo
);
4121 return CombineTo(N
, Lo
, Hi
);
4128 SDValue
DAGCombiner::visitUMUL_LOHI(SDNode
*N
) {
4129 if (SDValue Res
= SimplifyNodeWithTwoResults(N
, ISD::MUL
, ISD::MULHU
))
4132 EVT VT
= N
->getValueType(0);
4135 // (umul_lohi N0, 0) -> (0, 0)
4136 if (isNullConstant(N
->getOperand(1))) {
4137 SDValue Zero
= DAG
.getConstant(0, DL
, VT
);
4138 return CombineTo(N
, Zero
, Zero
);
4141 // (umul_lohi N0, 1) -> (N0, 0)
4142 if (isOneConstant(N
->getOperand(1))) {
4143 SDValue Zero
= DAG
.getConstant(0, DL
, VT
);
4144 return CombineTo(N
, N
->getOperand(0), Zero
);
4147 // If the type is twice as wide is legal, transform the mulhu to a wider
4148 // multiply plus a shift.
4149 if (VT
.isSimple() && !VT
.isVector()) {
4150 MVT Simple
= VT
.getSimpleVT();
4151 unsigned SimpleSize
= Simple
.getSizeInBits();
4152 EVT NewVT
= EVT::getIntegerVT(*DAG
.getContext(), SimpleSize
*2);
4153 if (TLI
.isOperationLegal(ISD::MUL
, NewVT
)) {
4154 SDValue Lo
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, NewVT
, N
->getOperand(0));
4155 SDValue Hi
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, NewVT
, N
->getOperand(1));
4156 Lo
= DAG
.getNode(ISD::MUL
, DL
, NewVT
, Lo
, Hi
);
4157 // Compute the high part as N1.
4158 Hi
= DAG
.getNode(ISD::SRL
, DL
, NewVT
, Lo
,
4159 DAG
.getConstant(SimpleSize
, DL
,
4160 getShiftAmountTy(Lo
.getValueType())));
4161 Hi
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, Hi
);
4162 // Compute the low part as N0.
4163 Lo
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, Lo
);
4164 return CombineTo(N
, Lo
, Hi
);
4171 SDValue
DAGCombiner::visitMULO(SDNode
*N
) {
4172 SDValue N0
= N
->getOperand(0);
4173 SDValue N1
= N
->getOperand(1);
4174 EVT VT
= N0
.getValueType();
4175 bool IsSigned
= (ISD::SMULO
== N
->getOpcode());
4177 EVT CarryVT
= N
->getValueType(1);
4180 // canonicalize constant to RHS.
4181 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
4182 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
4183 return DAG
.getNode(N
->getOpcode(), DL
, N
->getVTList(), N1
, N0
);
4185 // fold (mulo x, 0) -> 0 + no carry out
4186 if (isNullOrNullSplat(N1
))
4187 return CombineTo(N
, DAG
.getConstant(0, DL
, VT
),
4188 DAG
.getConstant(0, DL
, CarryVT
));
4190 // (mulo x, 2) -> (addo x, x)
4191 if (ConstantSDNode
*C2
= isConstOrConstSplat(N1
))
4192 if (C2
->getAPIntValue() == 2)
4193 return DAG
.getNode(IsSigned
? ISD::SADDO
: ISD::UADDO
, DL
,
4194 N
->getVTList(), N0
, N0
);
4199 SDValue
DAGCombiner::visitIMINMAX(SDNode
*N
) {
4200 SDValue N0
= N
->getOperand(0);
4201 SDValue N1
= N
->getOperand(1);
4202 EVT VT
= N0
.getValueType();
4206 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
4209 // fold operation with constant operands.
4210 ConstantSDNode
*N0C
= getAsNonOpaqueConstant(N0
);
4211 ConstantSDNode
*N1C
= getAsNonOpaqueConstant(N1
);
4213 return DAG
.FoldConstantArithmetic(N
->getOpcode(), SDLoc(N
), VT
, N0C
, N1C
);
4215 // canonicalize constant to RHS
4216 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
4217 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
4218 return DAG
.getNode(N
->getOpcode(), SDLoc(N
), VT
, N1
, N0
);
4220 // Is sign bits are zero, flip between UMIN/UMAX and SMIN/SMAX.
4221 // Only do this if the current op isn't legal and the flipped is.
4222 unsigned Opcode
= N
->getOpcode();
4223 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4224 if (!TLI
.isOperationLegal(Opcode
, VT
) &&
4225 (N0
.isUndef() || DAG
.SignBitIsZero(N0
)) &&
4226 (N1
.isUndef() || DAG
.SignBitIsZero(N1
))) {
4229 case ISD::SMIN
: AltOpcode
= ISD::UMIN
; break;
4230 case ISD::SMAX
: AltOpcode
= ISD::UMAX
; break;
4231 case ISD::UMIN
: AltOpcode
= ISD::SMIN
; break;
4232 case ISD::UMAX
: AltOpcode
= ISD::SMAX
; break;
4233 default: llvm_unreachable("Unknown MINMAX opcode");
4235 if (TLI
.isOperationLegal(AltOpcode
, VT
))
4236 return DAG
.getNode(AltOpcode
, SDLoc(N
), VT
, N0
, N1
);
4242 /// If this is a bitwise logic instruction and both operands have the same
4243 /// opcode, try to sink the other opcode after the logic instruction.
4244 SDValue
DAGCombiner::hoistLogicOpWithSameOpcodeHands(SDNode
*N
) {
4245 SDValue N0
= N
->getOperand(0), N1
= N
->getOperand(1);
4246 EVT VT
= N0
.getValueType();
4247 unsigned LogicOpcode
= N
->getOpcode();
4248 unsigned HandOpcode
= N0
.getOpcode();
4249 assert((LogicOpcode
== ISD::AND
|| LogicOpcode
== ISD::OR
||
4250 LogicOpcode
== ISD::XOR
) && "Expected logic opcode");
4251 assert(HandOpcode
== N1
.getOpcode() && "Bad input!");
4253 // Bail early if none of these transforms apply.
4254 if (N0
.getNumOperands() == 0)
4257 // FIXME: We should check number of uses of the operands to not increase
4258 // the instruction count for all transforms.
4260 // Handle size-changing casts.
4261 SDValue X
= N0
.getOperand(0);
4262 SDValue Y
= N1
.getOperand(0);
4263 EVT XVT
= X
.getValueType();
4265 if (HandOpcode
== ISD::ANY_EXTEND
|| HandOpcode
== ISD::ZERO_EXTEND
||
4266 HandOpcode
== ISD::SIGN_EXTEND
) {
4267 // If both operands have other uses, this transform would create extra
4268 // instructions without eliminating anything.
4269 if (!N0
.hasOneUse() && !N1
.hasOneUse())
4271 // We need matching integer source types.
4272 if (XVT
!= Y
.getValueType())
4274 // Don't create an illegal op during or after legalization. Don't ever
4275 // create an unsupported vector op.
4276 if ((VT
.isVector() || LegalOperations
) &&
4277 !TLI
.isOperationLegalOrCustom(LogicOpcode
, XVT
))
4279 // Avoid infinite looping with PromoteIntBinOp.
4280 // TODO: Should we apply desirable/legal constraints to all opcodes?
4281 if (HandOpcode
== ISD::ANY_EXTEND
&& LegalTypes
&&
4282 !TLI
.isTypeDesirableForOp(LogicOpcode
, XVT
))
4284 // logic_op (hand_op X), (hand_op Y) --> hand_op (logic_op X, Y)
4285 SDValue Logic
= DAG
.getNode(LogicOpcode
, DL
, XVT
, X
, Y
);
4286 return DAG
.getNode(HandOpcode
, DL
, VT
, Logic
);
4289 // logic_op (truncate x), (truncate y) --> truncate (logic_op x, y)
4290 if (HandOpcode
== ISD::TRUNCATE
) {
4291 // If both operands have other uses, this transform would create extra
4292 // instructions without eliminating anything.
4293 if (!N0
.hasOneUse() && !N1
.hasOneUse())
4295 // We need matching source types.
4296 if (XVT
!= Y
.getValueType())
4298 // Don't create an illegal op during or after legalization.
4299 if (LegalOperations
&& !TLI
.isOperationLegal(LogicOpcode
, XVT
))
4301 // Be extra careful sinking truncate. If it's free, there's no benefit in
4302 // widening a binop. Also, don't create a logic op on an illegal type.
4303 if (TLI
.isZExtFree(VT
, XVT
) && TLI
.isTruncateFree(XVT
, VT
))
4305 if (!TLI
.isTypeLegal(XVT
))
4307 SDValue Logic
= DAG
.getNode(LogicOpcode
, DL
, XVT
, X
, Y
);
4308 return DAG
.getNode(HandOpcode
, DL
, VT
, Logic
);
4311 // For binops SHL/SRL/SRA/AND:
4312 // logic_op (OP x, z), (OP y, z) --> OP (logic_op x, y), z
4313 if ((HandOpcode
== ISD::SHL
|| HandOpcode
== ISD::SRL
||
4314 HandOpcode
== ISD::SRA
|| HandOpcode
== ISD::AND
) &&
4315 N0
.getOperand(1) == N1
.getOperand(1)) {
4316 // If either operand has other uses, this transform is not an improvement.
4317 if (!N0
.hasOneUse() || !N1
.hasOneUse())
4319 SDValue Logic
= DAG
.getNode(LogicOpcode
, DL
, XVT
, X
, Y
);
4320 return DAG
.getNode(HandOpcode
, DL
, VT
, Logic
, N0
.getOperand(1));
4323 // Unary ops: logic_op (bswap x), (bswap y) --> bswap (logic_op x, y)
4324 if (HandOpcode
== ISD::BSWAP
) {
4325 // If either operand has other uses, this transform is not an improvement.
4326 if (!N0
.hasOneUse() || !N1
.hasOneUse())
4328 SDValue Logic
= DAG
.getNode(LogicOpcode
, DL
, XVT
, X
, Y
);
4329 return DAG
.getNode(HandOpcode
, DL
, VT
, Logic
);
4332 // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
4333 // Only perform this optimization up until type legalization, before
4334 // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
4335 // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
4336 // we don't want to undo this promotion.
4337 // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
4339 if ((HandOpcode
== ISD::BITCAST
|| HandOpcode
== ISD::SCALAR_TO_VECTOR
) &&
4340 Level
<= AfterLegalizeTypes
) {
4341 // Input types must be integer and the same.
4342 if (XVT
.isInteger() && XVT
== Y
.getValueType()) {
4343 SDValue Logic
= DAG
.getNode(LogicOpcode
, DL
, XVT
, X
, Y
);
4344 return DAG
.getNode(HandOpcode
, DL
, VT
, Logic
);
4348 // Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
4349 // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
4350 // If both shuffles use the same mask, and both shuffle within a single
4351 // vector, then it is worthwhile to move the swizzle after the operation.
4352 // The type-legalizer generates this pattern when loading illegal
4353 // vector types from memory. In many cases this allows additional shuffle
4355 // There are other cases where moving the shuffle after the xor/and/or
4356 // is profitable even if shuffles don't perform a swizzle.
4357 // If both shuffles use the same mask, and both shuffles have the same first
4358 // or second operand, then it might still be profitable to move the shuffle
4359 // after the xor/and/or operation.
4360 if (HandOpcode
== ISD::VECTOR_SHUFFLE
&& Level
< AfterLegalizeDAG
) {
4361 auto *SVN0
= cast
<ShuffleVectorSDNode
>(N0
);
4362 auto *SVN1
= cast
<ShuffleVectorSDNode
>(N1
);
4363 assert(X
.getValueType() == Y
.getValueType() &&
4364 "Inputs to shuffles are not the same type");
4366 // Check that both shuffles use the same mask. The masks are known to be of
4367 // the same length because the result vector type is the same.
4368 // Check also that shuffles have only one use to avoid introducing extra
4370 if (!SVN0
->hasOneUse() || !SVN1
->hasOneUse() ||
4371 !SVN0
->getMask().equals(SVN1
->getMask()))
4374 // Don't try to fold this node if it requires introducing a
4375 // build vector of all zeros that might be illegal at this stage.
4376 SDValue ShOp
= N0
.getOperand(1);
4377 if (LogicOpcode
== ISD::XOR
&& !ShOp
.isUndef())
4378 ShOp
= tryFoldToZero(DL
, TLI
, VT
, DAG
, LegalOperations
);
4380 // (logic_op (shuf (A, C), shuf (B, C))) --> shuf (logic_op (A, B), C)
4381 if (N0
.getOperand(1) == N1
.getOperand(1) && ShOp
.getNode()) {
4382 SDValue Logic
= DAG
.getNode(LogicOpcode
, DL
, VT
,
4383 N0
.getOperand(0), N1
.getOperand(0));
4384 return DAG
.getVectorShuffle(VT
, DL
, Logic
, ShOp
, SVN0
->getMask());
4387 // Don't try to fold this node if it requires introducing a
4388 // build vector of all zeros that might be illegal at this stage.
4389 ShOp
= N0
.getOperand(0);
4390 if (LogicOpcode
== ISD::XOR
&& !ShOp
.isUndef())
4391 ShOp
= tryFoldToZero(DL
, TLI
, VT
, DAG
, LegalOperations
);
4393 // (logic_op (shuf (C, A), shuf (C, B))) --> shuf (C, logic_op (A, B))
4394 if (N0
.getOperand(0) == N1
.getOperand(0) && ShOp
.getNode()) {
4395 SDValue Logic
= DAG
.getNode(LogicOpcode
, DL
, VT
, N0
.getOperand(1),
4397 return DAG
.getVectorShuffle(VT
, DL
, ShOp
, Logic
, SVN0
->getMask());
4404 /// Try to make (and/or setcc (LL, LR), setcc (RL, RR)) more efficient.
4405 SDValue
DAGCombiner::foldLogicOfSetCCs(bool IsAnd
, SDValue N0
, SDValue N1
,
4407 SDValue LL
, LR
, RL
, RR
, N0CC
, N1CC
;
4408 if (!isSetCCEquivalent(N0
, LL
, LR
, N0CC
) ||
4409 !isSetCCEquivalent(N1
, RL
, RR
, N1CC
))
4412 assert(N0
.getValueType() == N1
.getValueType() &&
4413 "Unexpected operand types for bitwise logic op");
4414 assert(LL
.getValueType() == LR
.getValueType() &&
4415 RL
.getValueType() == RR
.getValueType() &&
4416 "Unexpected operand types for setcc");
4418 // If we're here post-legalization or the logic op type is not i1, the logic
4419 // op type must match a setcc result type. Also, all folds require new
4420 // operations on the left and right operands, so those types must match.
4421 EVT VT
= N0
.getValueType();
4422 EVT OpVT
= LL
.getValueType();
4423 if (LegalOperations
|| VT
.getScalarType() != MVT::i1
)
4424 if (VT
!= getSetCCResultType(OpVT
))
4426 if (OpVT
!= RL
.getValueType())
4429 ISD::CondCode CC0
= cast
<CondCodeSDNode
>(N0CC
)->get();
4430 ISD::CondCode CC1
= cast
<CondCodeSDNode
>(N1CC
)->get();
4431 bool IsInteger
= OpVT
.isInteger();
4432 if (LR
== RR
&& CC0
== CC1
&& IsInteger
) {
4433 bool IsZero
= isNullOrNullSplat(LR
);
4434 bool IsNeg1
= isAllOnesOrAllOnesSplat(LR
);
4437 bool AndEqZero
= IsAnd
&& CC1
== ISD::SETEQ
&& IsZero
;
4438 // All sign bits clear?
4439 bool AndGtNeg1
= IsAnd
&& CC1
== ISD::SETGT
&& IsNeg1
;
4441 bool OrNeZero
= !IsAnd
&& CC1
== ISD::SETNE
&& IsZero
;
4442 // Any sign bits set?
4443 bool OrLtZero
= !IsAnd
&& CC1
== ISD::SETLT
&& IsZero
;
4445 // (and (seteq X, 0), (seteq Y, 0)) --> (seteq (or X, Y), 0)
4446 // (and (setgt X, -1), (setgt Y, -1)) --> (setgt (or X, Y), -1)
4447 // (or (setne X, 0), (setne Y, 0)) --> (setne (or X, Y), 0)
4448 // (or (setlt X, 0), (setlt Y, 0)) --> (setlt (or X, Y), 0)
4449 if (AndEqZero
|| AndGtNeg1
|| OrNeZero
|| OrLtZero
) {
4450 SDValue Or
= DAG
.getNode(ISD::OR
, SDLoc(N0
), OpVT
, LL
, RL
);
4451 AddToWorklist(Or
.getNode());
4452 return DAG
.getSetCC(DL
, VT
, Or
, LR
, CC1
);
4456 bool AndEqNeg1
= IsAnd
&& CC1
== ISD::SETEQ
&& IsNeg1
;
4457 // All sign bits set?
4458 bool AndLtZero
= IsAnd
&& CC1
== ISD::SETLT
&& IsZero
;
4460 bool OrNeNeg1
= !IsAnd
&& CC1
== ISD::SETNE
&& IsNeg1
;
4461 // Any sign bits clear?
4462 bool OrGtNeg1
= !IsAnd
&& CC1
== ISD::SETGT
&& IsNeg1
;
4464 // (and (seteq X, -1), (seteq Y, -1)) --> (seteq (and X, Y), -1)
4465 // (and (setlt X, 0), (setlt Y, 0)) --> (setlt (and X, Y), 0)
4466 // (or (setne X, -1), (setne Y, -1)) --> (setne (and X, Y), -1)
4467 // (or (setgt X, -1), (setgt Y -1)) --> (setgt (and X, Y), -1)
4468 if (AndEqNeg1
|| AndLtZero
|| OrNeNeg1
|| OrGtNeg1
) {
4469 SDValue And
= DAG
.getNode(ISD::AND
, SDLoc(N0
), OpVT
, LL
, RL
);
4470 AddToWorklist(And
.getNode());
4471 return DAG
.getSetCC(DL
, VT
, And
, LR
, CC1
);
4475 // TODO: What is the 'or' equivalent of this fold?
4476 // (and (setne X, 0), (setne X, -1)) --> (setuge (add X, 1), 2)
4477 if (IsAnd
&& LL
== RL
&& CC0
== CC1
&& OpVT
.getScalarSizeInBits() > 1 &&
4478 IsInteger
&& CC0
== ISD::SETNE
&&
4479 ((isNullConstant(LR
) && isAllOnesConstant(RR
)) ||
4480 (isAllOnesConstant(LR
) && isNullConstant(RR
)))) {
4481 SDValue One
= DAG
.getConstant(1, DL
, OpVT
);
4482 SDValue Two
= DAG
.getConstant(2, DL
, OpVT
);
4483 SDValue Add
= DAG
.getNode(ISD::ADD
, SDLoc(N0
), OpVT
, LL
, One
);
4484 AddToWorklist(Add
.getNode());
4485 return DAG
.getSetCC(DL
, VT
, Add
, Two
, ISD::SETUGE
);
4488 // Try more general transforms if the predicates match and the only user of
4489 // the compares is the 'and' or 'or'.
4490 if (IsInteger
&& TLI
.convertSetCCLogicToBitwiseLogic(OpVT
) && CC0
== CC1
&&
4491 N0
.hasOneUse() && N1
.hasOneUse()) {
4492 // and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0
4493 // or (setne A, B), (setne C, D) --> setne (or (xor A, B), (xor C, D)), 0
4494 if ((IsAnd
&& CC1
== ISD::SETEQ
) || (!IsAnd
&& CC1
== ISD::SETNE
)) {
4495 SDValue XorL
= DAG
.getNode(ISD::XOR
, SDLoc(N0
), OpVT
, LL
, LR
);
4496 SDValue XorR
= DAG
.getNode(ISD::XOR
, SDLoc(N1
), OpVT
, RL
, RR
);
4497 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, OpVT
, XorL
, XorR
);
4498 SDValue Zero
= DAG
.getConstant(0, DL
, OpVT
);
4499 return DAG
.getSetCC(DL
, VT
, Or
, Zero
, CC1
);
4502 // Turn compare of constants whose difference is 1 bit into add+and+setcc.
4503 // TODO - support non-uniform vector amounts.
4504 if ((IsAnd
&& CC1
== ISD::SETNE
) || (!IsAnd
&& CC1
== ISD::SETEQ
)) {
4505 // Match a shared variable operand and 2 non-opaque constant operands.
4506 ConstantSDNode
*C0
= isConstOrConstSplat(LR
);
4507 ConstantSDNode
*C1
= isConstOrConstSplat(RR
);
4508 if (LL
== RL
&& C0
&& C1
&& !C0
->isOpaque() && !C1
->isOpaque()) {
4509 // Canonicalize larger constant as C0.
4510 if (C1
->getAPIntValue().ugt(C0
->getAPIntValue()))
4513 // The difference of the constants must be a single bit.
4514 const APInt
&C0Val
= C0
->getAPIntValue();
4515 const APInt
&C1Val
= C1
->getAPIntValue();
4516 if ((C0Val
- C1Val
).isPowerOf2()) {
4517 // and/or (setcc X, C0, ne), (setcc X, C1, ne/eq) -->
4518 // setcc ((add X, -C1), ~(C0 - C1)), 0, ne/eq
4519 SDValue OffsetC
= DAG
.getConstant(-C1Val
, DL
, OpVT
);
4520 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, OpVT
, LL
, OffsetC
);
4521 SDValue MaskC
= DAG
.getConstant(~(C0Val
- C1Val
), DL
, OpVT
);
4522 SDValue And
= DAG
.getNode(ISD::AND
, DL
, OpVT
, Add
, MaskC
);
4523 SDValue Zero
= DAG
.getConstant(0, DL
, OpVT
);
4524 return DAG
.getSetCC(DL
, VT
, And
, Zero
, CC0
);
4530 // Canonicalize equivalent operands to LL == RL.
4531 if (LL
== RR
&& LR
== RL
) {
4532 CC1
= ISD::getSetCCSwappedOperands(CC1
);
4536 // (and (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC)
4537 // (or (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC)
4538 if (LL
== RL
&& LR
== RR
) {
4539 ISD::CondCode NewCC
= IsAnd
? ISD::getSetCCAndOperation(CC0
, CC1
, IsInteger
)
4540 : ISD::getSetCCOrOperation(CC0
, CC1
, IsInteger
);
4541 if (NewCC
!= ISD::SETCC_INVALID
&&
4542 (!LegalOperations
||
4543 (TLI
.isCondCodeLegal(NewCC
, LL
.getSimpleValueType()) &&
4544 TLI
.isOperationLegal(ISD::SETCC
, OpVT
))))
4545 return DAG
.getSetCC(DL
, VT
, LL
, LR
, NewCC
);
4551 /// This contains all DAGCombine rules which reduce two values combined by
4552 /// an And operation to a single value. This makes them reusable in the context
4553 /// of visitSELECT(). Rules involving constants are not included as
4554 /// visitSELECT() already handles those cases.
4555 SDValue
DAGCombiner::visitANDLike(SDValue N0
, SDValue N1
, SDNode
*N
) {
4556 EVT VT
= N1
.getValueType();
4559 // fold (and x, undef) -> 0
4560 if (N0
.isUndef() || N1
.isUndef())
4561 return DAG
.getConstant(0, DL
, VT
);
4563 if (SDValue V
= foldLogicOfSetCCs(true, N0
, N1
, DL
))
4566 if (N0
.getOpcode() == ISD::ADD
&& N1
.getOpcode() == ISD::SRL
&&
4567 VT
.getSizeInBits() <= 64) {
4568 if (ConstantSDNode
*ADDI
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
4569 if (ConstantSDNode
*SRLI
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1))) {
4570 // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
4571 // immediate for an add, but it is legal if its top c2 bits are set,
4572 // transform the ADD so the immediate doesn't need to be materialized
4574 APInt ADDC
= ADDI
->getAPIntValue();
4575 APInt SRLC
= SRLI
->getAPIntValue();
4576 if (ADDC
.getMinSignedBits() <= 64 &&
4577 SRLC
.ult(VT
.getSizeInBits()) &&
4578 !TLI
.isLegalAddImmediate(ADDC
.getSExtValue())) {
4579 APInt Mask
= APInt::getHighBitsSet(VT
.getSizeInBits(),
4580 SRLC
.getZExtValue());
4581 if (DAG
.MaskedValueIsZero(N0
.getOperand(1), Mask
)) {
4583 if (TLI
.isLegalAddImmediate(ADDC
.getSExtValue())) {
4586 DAG
.getNode(ISD::ADD
, DL0
, VT
,
4587 N0
.getOperand(0), DAG
.getConstant(ADDC
, DL
, VT
));
4588 CombineTo(N0
.getNode(), NewAdd
);
4589 // Return N so it doesn't get rechecked!
4590 return SDValue(N
, 0);
4598 // Reduce bit extract of low half of an integer to the narrower type.
4599 // (and (srl i64:x, K), KMask) ->
4600 // (i64 zero_extend (and (srl (i32 (trunc i64:x)), K)), KMask)
4601 if (N0
.getOpcode() == ISD::SRL
&& N0
.hasOneUse()) {
4602 if (ConstantSDNode
*CAnd
= dyn_cast
<ConstantSDNode
>(N1
)) {
4603 if (ConstantSDNode
*CShift
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
4604 unsigned Size
= VT
.getSizeInBits();
4605 const APInt
&AndMask
= CAnd
->getAPIntValue();
4606 unsigned ShiftBits
= CShift
->getZExtValue();
4608 // Bail out, this node will probably disappear anyway.
4612 unsigned MaskBits
= AndMask
.countTrailingOnes();
4613 EVT HalfVT
= EVT::getIntegerVT(*DAG
.getContext(), Size
/ 2);
4615 if (AndMask
.isMask() &&
4616 // Required bits must not span the two halves of the integer and
4617 // must fit in the half size type.
4618 (ShiftBits
+ MaskBits
<= Size
/ 2) &&
4619 TLI
.isNarrowingProfitable(VT
, HalfVT
) &&
4620 TLI
.isTypeDesirableForOp(ISD::AND
, HalfVT
) &&
4621 TLI
.isTypeDesirableForOp(ISD::SRL
, HalfVT
) &&
4622 TLI
.isTruncateFree(VT
, HalfVT
) &&
4623 TLI
.isZExtFree(HalfVT
, VT
)) {
4624 // The isNarrowingProfitable is to avoid regressions on PPC and
4625 // AArch64 which match a few 64-bit bit insert / bit extract patterns
4626 // on downstream users of this. Those patterns could probably be
4627 // extended to handle extensions mixed in.
4630 assert(MaskBits
<= Size
);
4632 // Extracting the highest bit of the low half.
4633 EVT ShiftVT
= TLI
.getShiftAmountTy(HalfVT
, DAG
.getDataLayout());
4634 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SL
, HalfVT
,
4637 SDValue NewMask
= DAG
.getConstant(AndMask
.trunc(Size
/ 2), SL
, HalfVT
);
4638 SDValue ShiftK
= DAG
.getConstant(ShiftBits
, SL
, ShiftVT
);
4639 SDValue Shift
= DAG
.getNode(ISD::SRL
, SL
, HalfVT
, Trunc
, ShiftK
);
4640 SDValue And
= DAG
.getNode(ISD::AND
, SL
, HalfVT
, Shift
, NewMask
);
4641 return DAG
.getNode(ISD::ZERO_EXTEND
, SL
, VT
, And
);
4650 bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode
*AndC
, LoadSDNode
*LoadN
,
4651 EVT LoadResultTy
, EVT
&ExtVT
) {
4652 if (!AndC
->getAPIntValue().isMask())
4655 unsigned ActiveBits
= AndC
->getAPIntValue().countTrailingOnes();
4657 ExtVT
= EVT::getIntegerVT(*DAG
.getContext(), ActiveBits
);
4658 EVT LoadedVT
= LoadN
->getMemoryVT();
4660 if (ExtVT
== LoadedVT
&&
4661 (!LegalOperations
||
4662 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, LoadResultTy
, ExtVT
))) {
4663 // ZEXTLOAD will match without needing to change the size of the value being
4668 // Do not change the width of a volatile or atomic loads.
4669 if (!LoadN
->isSimple())
4672 // Do not generate loads of non-round integer types since these can
4673 // be expensive (and would be wrong if the type is not byte sized).
4674 if (!LoadedVT
.bitsGT(ExtVT
) || !ExtVT
.isRound())
4677 if (LegalOperations
&&
4678 !TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, LoadResultTy
, ExtVT
))
4681 if (!TLI
.shouldReduceLoadWidth(LoadN
, ISD::ZEXTLOAD
, ExtVT
))
4687 bool DAGCombiner::isLegalNarrowLdSt(LSBaseSDNode
*LDST
,
4688 ISD::LoadExtType ExtType
, EVT
&MemVT
,
4692 // Only allow byte offsets.
4696 // Do not generate loads of non-round integer types since these can
4697 // be expensive (and would be wrong if the type is not byte sized).
4698 if (!MemVT
.isRound())
4701 // Don't change the width of a volatile or atomic loads.
4702 if (!LDST
->isSimple())
4705 // Verify that we are actually reducing a load width here.
4706 if (LDST
->getMemoryVT().getSizeInBits() < MemVT
.getSizeInBits())
4709 // Ensure that this isn't going to produce an unsupported unaligned access.
4711 !TLI
.allowsMemoryAccess(*DAG
.getContext(), DAG
.getDataLayout(), MemVT
,
4712 LDST
->getAddressSpace(), ShAmt
/ 8,
4713 LDST
->getMemOperand()->getFlags()))
4716 // It's not possible to generate a constant of extended or untyped type.
4717 EVT PtrType
= LDST
->getBasePtr().getValueType();
4718 if (PtrType
== MVT::Untyped
|| PtrType
.isExtended())
4721 if (isa
<LoadSDNode
>(LDST
)) {
4722 LoadSDNode
*Load
= cast
<LoadSDNode
>(LDST
);
4723 // Don't transform one with multiple uses, this would require adding a new
4725 if (!SDValue(Load
, 0).hasOneUse())
4728 if (LegalOperations
&&
4729 !TLI
.isLoadExtLegal(ExtType
, Load
->getValueType(0), MemVT
))
4732 // For the transform to be legal, the load must produce only two values
4733 // (the value loaded and the chain). Don't transform a pre-increment
4734 // load, for example, which produces an extra value. Otherwise the
4735 // transformation is not equivalent, and the downstream logic to replace
4736 // uses gets things wrong.
4737 if (Load
->getNumValues() > 2)
4740 // If the load that we're shrinking is an extload and we're not just
4741 // discarding the extension we can't simply shrink the load. Bail.
4742 // TODO: It would be possible to merge the extensions in some cases.
4743 if (Load
->getExtensionType() != ISD::NON_EXTLOAD
&&
4744 Load
->getMemoryVT().getSizeInBits() < MemVT
.getSizeInBits() + ShAmt
)
4747 if (!TLI
.shouldReduceLoadWidth(Load
, ExtType
, MemVT
))
4750 assert(isa
<StoreSDNode
>(LDST
) && "It is not a Load nor a Store SDNode");
4751 StoreSDNode
*Store
= cast
<StoreSDNode
>(LDST
);
4752 // Can't write outside the original store
4753 if (Store
->getMemoryVT().getSizeInBits() < MemVT
.getSizeInBits() + ShAmt
)
4756 if (LegalOperations
&&
4757 !TLI
.isTruncStoreLegal(Store
->getValue().getValueType(), MemVT
))
4763 bool DAGCombiner::SearchForAndLoads(SDNode
*N
,
4764 SmallVectorImpl
<LoadSDNode
*> &Loads
,
4765 SmallPtrSetImpl
<SDNode
*> &NodesWithConsts
,
4766 ConstantSDNode
*Mask
,
4767 SDNode
*&NodeToMask
) {
4768 // Recursively search for the operands, looking for loads which can be
4770 for (SDValue Op
: N
->op_values()) {
4771 if (Op
.getValueType().isVector())
4774 // Some constants may need fixing up later if they are too large.
4775 if (auto *C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4776 if ((N
->getOpcode() == ISD::OR
|| N
->getOpcode() == ISD::XOR
) &&
4777 (Mask
->getAPIntValue() & C
->getAPIntValue()) != C
->getAPIntValue())
4778 NodesWithConsts
.insert(N
);
4782 if (!Op
.hasOneUse())
4785 switch(Op
.getOpcode()) {
4787 auto *Load
= cast
<LoadSDNode
>(Op
);
4789 if (isAndLoadExtLoad(Mask
, Load
, Load
->getValueType(0), ExtVT
) &&
4790 isLegalNarrowLdSt(Load
, ISD::ZEXTLOAD
, ExtVT
)) {
4792 // ZEXTLOAD is already small enough.
4793 if (Load
->getExtensionType() == ISD::ZEXTLOAD
&&
4794 ExtVT
.bitsGE(Load
->getMemoryVT()))
4797 // Use LE to convert equal sized loads to zext.
4798 if (ExtVT
.bitsLE(Load
->getMemoryVT()))
4799 Loads
.push_back(Load
);
4805 case ISD::ZERO_EXTEND
:
4806 case ISD::AssertZext
: {
4807 unsigned ActiveBits
= Mask
->getAPIntValue().countTrailingOnes();
4808 EVT ExtVT
= EVT::getIntegerVT(*DAG
.getContext(), ActiveBits
);
4809 EVT VT
= Op
.getOpcode() == ISD::AssertZext
?
4810 cast
<VTSDNode
>(Op
.getOperand(1))->getVT() :
4811 Op
.getOperand(0).getValueType();
4813 // We can accept extending nodes if the mask is wider or an equal
4814 // width to the original type.
4815 if (ExtVT
.bitsGE(VT
))
4822 if (!SearchForAndLoads(Op
.getNode(), Loads
, NodesWithConsts
, Mask
,
4828 // Allow one node which will masked along with any loads found.
4832 // Also ensure that the node to be masked only produces one data result.
4833 NodeToMask
= Op
.getNode();
4834 if (NodeToMask
->getNumValues() > 1) {
4835 bool HasValue
= false;
4836 for (unsigned i
= 0, e
= NodeToMask
->getNumValues(); i
< e
; ++i
) {
4837 MVT VT
= SDValue(NodeToMask
, i
).getSimpleValueType();
4838 if (VT
!= MVT::Glue
&& VT
!= MVT::Other
) {
4840 NodeToMask
= nullptr;
4846 assert(HasValue
&& "Node to be masked has no data result?");
4852 bool DAGCombiner::BackwardsPropagateMask(SDNode
*N
, SelectionDAG
&DAG
) {
4853 auto *Mask
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
4857 if (!Mask
->getAPIntValue().isMask())
4860 // No need to do anything if the and directly uses a load.
4861 if (isa
<LoadSDNode
>(N
->getOperand(0)))
4864 SmallVector
<LoadSDNode
*, 8> Loads
;
4865 SmallPtrSet
<SDNode
*, 2> NodesWithConsts
;
4866 SDNode
*FixupNode
= nullptr;
4867 if (SearchForAndLoads(N
, Loads
, NodesWithConsts
, Mask
, FixupNode
)) {
4868 if (Loads
.size() == 0)
4871 LLVM_DEBUG(dbgs() << "Backwards propagate AND: "; N
->dump());
4872 SDValue MaskOp
= N
->getOperand(1);
4874 // If it exists, fixup the single node we allow in the tree that needs
4877 LLVM_DEBUG(dbgs() << "First, need to fix up: "; FixupNode
->dump());
4878 SDValue And
= DAG
.getNode(ISD::AND
, SDLoc(FixupNode
),
4879 FixupNode
->getValueType(0),
4880 SDValue(FixupNode
, 0), MaskOp
);
4881 DAG
.ReplaceAllUsesOfValueWith(SDValue(FixupNode
, 0), And
);
4882 if (And
.getOpcode() == ISD ::AND
)
4883 DAG
.UpdateNodeOperands(And
.getNode(), SDValue(FixupNode
, 0), MaskOp
);
4886 // Narrow any constants that need it.
4887 for (auto *LogicN
: NodesWithConsts
) {
4888 SDValue Op0
= LogicN
->getOperand(0);
4889 SDValue Op1
= LogicN
->getOperand(1);
4891 if (isa
<ConstantSDNode
>(Op0
))
4892 std::swap(Op0
, Op1
);
4894 SDValue And
= DAG
.getNode(ISD::AND
, SDLoc(Op1
), Op1
.getValueType(),
4897 DAG
.UpdateNodeOperands(LogicN
, Op0
, And
);
4900 // Create narrow loads.
4901 for (auto *Load
: Loads
) {
4902 LLVM_DEBUG(dbgs() << "Propagate AND back to: "; Load
->dump());
4903 SDValue And
= DAG
.getNode(ISD::AND
, SDLoc(Load
), Load
->getValueType(0),
4904 SDValue(Load
, 0), MaskOp
);
4905 DAG
.ReplaceAllUsesOfValueWith(SDValue(Load
, 0), And
);
4906 if (And
.getOpcode() == ISD ::AND
)
4908 DAG
.UpdateNodeOperands(And
.getNode(), SDValue(Load
, 0), MaskOp
), 0);
4909 SDValue NewLoad
= ReduceLoadWidth(And
.getNode());
4911 "Shouldn't be masking the load if it can't be narrowed");
4912 CombineTo(Load
, NewLoad
, NewLoad
.getValue(1));
4914 DAG
.ReplaceAllUsesWith(N
, N
->getOperand(0).getNode());
4921 // x & (-1 'logical shift' y)
4923 // (x 'opposite logical shift' y) 'logical shift' y
4924 // if it is better for performance.
4925 SDValue
DAGCombiner::unfoldExtremeBitClearingToShifts(SDNode
*N
) {
4926 assert(N
->getOpcode() == ISD::AND
);
4928 SDValue N0
= N
->getOperand(0);
4929 SDValue N1
= N
->getOperand(1);
4931 // Do we actually prefer shifts over mask?
4932 if (!TLI
.shouldFoldMaskToVariableShiftPair(N0
))
4935 // Try to match (-1 '[outer] logical shift' y)
4936 unsigned OuterShift
;
4937 unsigned InnerShift
; // The opposite direction to the OuterShift.
4938 SDValue Y
; // Shift amount.
4939 auto matchMask
= [&OuterShift
, &InnerShift
, &Y
](SDValue M
) -> bool {
4942 OuterShift
= M
->getOpcode();
4943 if (OuterShift
== ISD::SHL
)
4944 InnerShift
= ISD::SRL
;
4945 else if (OuterShift
== ISD::SRL
)
4946 InnerShift
= ISD::SHL
;
4949 if (!isAllOnesConstant(M
->getOperand(0)))
4951 Y
= M
->getOperand(1);
4958 else if (matchMask(N0
))
4964 EVT VT
= N
->getValueType(0);
4966 // tmp = x 'opposite logical shift' y
4967 SDValue T0
= DAG
.getNode(InnerShift
, DL
, VT
, X
, Y
);
4968 // ret = tmp 'logical shift' y
4969 SDValue T1
= DAG
.getNode(OuterShift
, DL
, VT
, T0
, Y
);
4974 /// Try to replace shift/logic that tests if a bit is clear with mask + setcc.
4975 /// For a target with a bit test, this is expected to become test + set and save
4976 /// at least 1 instruction.
4977 static SDValue
combineShiftAnd1ToBitTest(SDNode
*And
, SelectionDAG
&DAG
) {
4978 assert(And
->getOpcode() == ISD::AND
&& "Expected an 'and' op");
4980 // This is probably not worthwhile without a supported type.
4981 EVT VT
= And
->getValueType(0);
4982 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4983 if (!TLI
.isTypeLegal(VT
))
4986 // Look through an optional extension and find a 'not'.
4987 // TODO: Should we favor test+set even without the 'not' op?
4988 SDValue Not
= And
->getOperand(0), And1
= And
->getOperand(1);
4989 if (Not
.getOpcode() == ISD::ANY_EXTEND
)
4990 Not
= Not
.getOperand(0);
4991 if (!isBitwiseNot(Not
) || !Not
.hasOneUse() || !isOneConstant(And1
))
4994 // Look though an optional truncation. The source operand may not be the same
4995 // type as the original 'and', but that is ok because we are masking off
4996 // everything but the low bit.
4997 SDValue Srl
= Not
.getOperand(0);
4998 if (Srl
.getOpcode() == ISD::TRUNCATE
)
4999 Srl
= Srl
.getOperand(0);
5001 // Match a shift-right by constant.
5002 if (Srl
.getOpcode() != ISD::SRL
|| !Srl
.hasOneUse() ||
5003 !isa
<ConstantSDNode
>(Srl
.getOperand(1)))
5006 // We might have looked through casts that make this transform invalid.
5007 // TODO: If the source type is wider than the result type, do the mask and
5008 // compare in the source type.
5009 const APInt
&ShiftAmt
= Srl
.getConstantOperandAPInt(1);
5010 unsigned VTBitWidth
= VT
.getSizeInBits();
5011 if (ShiftAmt
.uge(VTBitWidth
))
5014 // Turn this into a bit-test pattern using mask op + setcc:
5015 // and (not (srl X, C)), 1 --> (and X, 1<<C) == 0
5017 SDValue X
= DAG
.getZExtOrTrunc(Srl
.getOperand(0), DL
, VT
);
5018 EVT CCVT
= TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
5019 SDValue Mask
= DAG
.getConstant(
5020 APInt::getOneBitSet(VTBitWidth
, ShiftAmt
.getZExtValue()), DL
, VT
);
5021 SDValue NewAnd
= DAG
.getNode(ISD::AND
, DL
, VT
, X
, Mask
);
5022 SDValue Zero
= DAG
.getConstant(0, DL
, VT
);
5023 SDValue Setcc
= DAG
.getSetCC(DL
, CCVT
, NewAnd
, Zero
, ISD::SETEQ
);
5024 return DAG
.getZExtOrTrunc(Setcc
, DL
, VT
);
5027 SDValue
DAGCombiner::visitAND(SDNode
*N
) {
5028 SDValue N0
= N
->getOperand(0);
5029 SDValue N1
= N
->getOperand(1);
5030 EVT VT
= N1
.getValueType();
5037 if (VT
.isVector()) {
5038 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
5041 // fold (and x, 0) -> 0, vector edition
5042 if (ISD::isBuildVectorAllZeros(N0
.getNode()))
5043 // do not return N0, because undef node may exist in N0
5044 return DAG
.getConstant(APInt::getNullValue(N0
.getScalarValueSizeInBits()),
5045 SDLoc(N
), N0
.getValueType());
5046 if (ISD::isBuildVectorAllZeros(N1
.getNode()))
5047 // do not return N1, because undef node may exist in N1
5048 return DAG
.getConstant(APInt::getNullValue(N1
.getScalarValueSizeInBits()),
5049 SDLoc(N
), N1
.getValueType());
5051 // fold (and x, -1) -> x, vector edition
5052 if (ISD::isBuildVectorAllOnes(N0
.getNode()))
5054 if (ISD::isBuildVectorAllOnes(N1
.getNode()))
5058 // fold (and c1, c2) -> c1&c2
5059 ConstantSDNode
*N0C
= getAsNonOpaqueConstant(N0
);
5060 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
5061 if (N0C
&& N1C
&& !N1C
->isOpaque())
5062 return DAG
.FoldConstantArithmetic(ISD::AND
, SDLoc(N
), VT
, N0C
, N1C
);
5063 // canonicalize constant to RHS
5064 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
5065 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
5066 return DAG
.getNode(ISD::AND
, SDLoc(N
), VT
, N1
, N0
);
5067 // fold (and x, -1) -> x
5068 if (isAllOnesConstant(N1
))
5070 // if (and x, c) is known to be zero, return 0
5071 unsigned BitWidth
= VT
.getScalarSizeInBits();
5072 if (N1C
&& DAG
.MaskedValueIsZero(SDValue(N
, 0),
5073 APInt::getAllOnesValue(BitWidth
)))
5074 return DAG
.getConstant(0, SDLoc(N
), VT
);
5076 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
5080 if (SDValue RAND
= reassociateOps(ISD::AND
, SDLoc(N
), N0
, N1
, N
->getFlags()))
5083 // Try to convert a constant mask AND into a shuffle clear mask.
5085 if (SDValue Shuffle
= XformToShuffleWithZero(N
))
5088 // fold (and (or x, C), D) -> D if (C & D) == D
5089 auto MatchSubset
= [](ConstantSDNode
*LHS
, ConstantSDNode
*RHS
) {
5090 return RHS
->getAPIntValue().isSubsetOf(LHS
->getAPIntValue());
5092 if (N0
.getOpcode() == ISD::OR
&&
5093 ISD::matchBinaryPredicate(N0
.getOperand(1), N1
, MatchSubset
))
5095 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
5096 if (N1C
&& N0
.getOpcode() == ISD::ANY_EXTEND
) {
5097 SDValue N0Op0
= N0
.getOperand(0);
5098 APInt Mask
= ~N1C
->getAPIntValue();
5099 Mask
= Mask
.trunc(N0Op0
.getScalarValueSizeInBits());
5100 if (DAG
.MaskedValueIsZero(N0Op0
, Mask
)) {
5101 SDValue Zext
= DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N
),
5102 N0
.getValueType(), N0Op0
);
5104 // Replace uses of the AND with uses of the Zero extend node.
5107 // We actually want to replace all uses of the any_extend with the
5108 // zero_extend, to avoid duplicating things. This will later cause this
5109 // AND to be folded.
5110 CombineTo(N0
.getNode(), Zext
);
5111 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
5115 // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
5116 // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
5117 // already be zero by virtue of the width of the base type of the load.
5119 // the 'X' node here can either be nothing or an extract_vector_elt to catch
5121 if ((N0
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
5122 N0
.getValueSizeInBits() == N0
.getOperand(0).getScalarValueSizeInBits() &&
5123 N0
.getOperand(0).getOpcode() == ISD::LOAD
&&
5124 N0
.getOperand(0).getResNo() == 0) ||
5125 (N0
.getOpcode() == ISD::LOAD
&& N0
.getResNo() == 0)) {
5126 LoadSDNode
*Load
= cast
<LoadSDNode
>( (N0
.getOpcode() == ISD::LOAD
) ?
5127 N0
: N0
.getOperand(0) );
5129 // Get the constant (if applicable) the zero'th operand is being ANDed with.
5130 // This can be a pure constant or a vector splat, in which case we treat the
5131 // vector as a scalar and use the splat value.
5132 APInt Constant
= APInt::getNullValue(1);
5133 if (const ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N1
)) {
5134 Constant
= C
->getAPIntValue();
5135 } else if (BuildVectorSDNode
*Vector
= dyn_cast
<BuildVectorSDNode
>(N1
)) {
5136 APInt SplatValue
, SplatUndef
;
5137 unsigned SplatBitSize
;
5139 bool IsSplat
= Vector
->isConstantSplat(SplatValue
, SplatUndef
,
5140 SplatBitSize
, HasAnyUndefs
);
5142 // Undef bits can contribute to a possible optimisation if set, so
5144 SplatValue
|= SplatUndef
;
5146 // The splat value may be something like "0x00FFFFFF", which means 0 for
5147 // the first vector value and FF for the rest, repeating. We need a mask
5148 // that will apply equally to all members of the vector, so AND all the
5149 // lanes of the constant together.
5150 unsigned EltBitWidth
= Vector
->getValueType(0).getScalarSizeInBits();
5152 // If the splat value has been compressed to a bitlength lower
5153 // than the size of the vector lane, we need to re-expand it to
5155 if (EltBitWidth
> SplatBitSize
)
5156 for (SplatValue
= SplatValue
.zextOrTrunc(EltBitWidth
);
5157 SplatBitSize
< EltBitWidth
; SplatBitSize
= SplatBitSize
* 2)
5158 SplatValue
|= SplatValue
.shl(SplatBitSize
);
5160 // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a
5161 // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value.
5162 if ((SplatBitSize
% EltBitWidth
) == 0) {
5163 Constant
= APInt::getAllOnesValue(EltBitWidth
);
5164 for (unsigned i
= 0, n
= (SplatBitSize
/ EltBitWidth
); i
< n
; ++i
)
5165 Constant
&= SplatValue
.extractBits(EltBitWidth
, i
* EltBitWidth
);
5170 // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
5171 // actually legal and isn't going to get expanded, else this is a false
5173 bool CanZextLoadProfitably
= TLI
.isLoadExtLegal(ISD::ZEXTLOAD
,
5174 Load
->getValueType(0),
5175 Load
->getMemoryVT());
5177 // Resize the constant to the same size as the original memory access before
5178 // extension. If it is still the AllOnesValue then this AND is completely
5180 Constant
= Constant
.zextOrTrunc(Load
->getMemoryVT().getScalarSizeInBits());
5183 switch (Load
->getExtensionType()) {
5184 default: B
= false; break;
5185 case ISD::EXTLOAD
: B
= CanZextLoadProfitably
; break;
5187 case ISD::NON_EXTLOAD
: B
= true; break;
5190 if (B
&& Constant
.isAllOnesValue()) {
5191 // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
5192 // preserve semantics once we get rid of the AND.
5193 SDValue
NewLoad(Load
, 0);
5195 // Fold the AND away. NewLoad may get replaced immediately.
5196 CombineTo(N
, (N0
.getNode() == Load
) ? NewLoad
: N0
);
5198 if (Load
->getExtensionType() == ISD::EXTLOAD
) {
5199 NewLoad
= DAG
.getLoad(Load
->getAddressingMode(), ISD::ZEXTLOAD
,
5200 Load
->getValueType(0), SDLoc(Load
),
5201 Load
->getChain(), Load
->getBasePtr(),
5202 Load
->getOffset(), Load
->getMemoryVT(),
5203 Load
->getMemOperand());
5204 // Replace uses of the EXTLOAD with the new ZEXTLOAD.
5205 if (Load
->getNumValues() == 3) {
5206 // PRE/POST_INC loads have 3 values.
5207 SDValue To
[] = { NewLoad
.getValue(0), NewLoad
.getValue(1),
5208 NewLoad
.getValue(2) };
5209 CombineTo(Load
, To
, 3, true);
5211 CombineTo(Load
, NewLoad
.getValue(0), NewLoad
.getValue(1));
5215 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
5219 // fold (and (load x), 255) -> (zextload x, i8)
5220 // fold (and (extload x, i16), 255) -> (zextload x, i8)
5221 // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
5222 if (!VT
.isVector() && N1C
&& (N0
.getOpcode() == ISD::LOAD
||
5223 (N0
.getOpcode() == ISD::ANY_EXTEND
&&
5224 N0
.getOperand(0).getOpcode() == ISD::LOAD
))) {
5225 if (SDValue Res
= ReduceLoadWidth(N
)) {
5226 LoadSDNode
*LN0
= N0
->getOpcode() == ISD::ANY_EXTEND
5227 ? cast
<LoadSDNode
>(N0
.getOperand(0)) : cast
<LoadSDNode
>(N0
);
5229 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN0
, 0), Res
);
5230 return SDValue(N
, 0);
5234 if (Level
>= AfterLegalizeTypes
) {
5235 // Attempt to propagate the AND back up to the leaves which, if they're
5236 // loads, can be combined to narrow loads and the AND node can be removed.
5237 // Perform after legalization so that extend nodes will already be
5238 // combined into the loads.
5239 if (BackwardsPropagateMask(N
, DAG
)) {
5240 return SDValue(N
, 0);
5244 if (SDValue Combined
= visitANDLike(N0
, N1
, N
))
5247 // Simplify: (and (op x...), (op y...)) -> (op (and x, y))
5248 if (N0
.getOpcode() == N1
.getOpcode())
5249 if (SDValue V
= hoistLogicOpWithSameOpcodeHands(N
))
5252 // Masking the negated extension of a boolean is just the zero-extended
5254 // and (sub 0, zext(bool X)), 1 --> zext(bool X)
5255 // and (sub 0, sext(bool X)), 1 --> zext(bool X)
5257 // Note: the SimplifyDemandedBits fold below can make an information-losing
5258 // transform, and then we have no way to find this better fold.
5259 if (N1C
&& N1C
->isOne() && N0
.getOpcode() == ISD::SUB
) {
5260 if (isNullOrNullSplat(N0
.getOperand(0))) {
5261 SDValue SubRHS
= N0
.getOperand(1);
5262 if (SubRHS
.getOpcode() == ISD::ZERO_EXTEND
&&
5263 SubRHS
.getOperand(0).getScalarValueSizeInBits() == 1)
5265 if (SubRHS
.getOpcode() == ISD::SIGN_EXTEND
&&
5266 SubRHS
.getOperand(0).getScalarValueSizeInBits() == 1)
5267 return DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N
), VT
, SubRHS
.getOperand(0));
5271 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
5272 // fold (and (sra)) -> (and (srl)) when possible.
5273 if (SimplifyDemandedBits(SDValue(N
, 0)))
5274 return SDValue(N
, 0);
5276 // fold (zext_inreg (extload x)) -> (zextload x)
5277 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
5278 if (ISD::isUNINDEXEDLoad(N0
.getNode()) &&
5279 (ISD::isEXTLoad(N0
.getNode()) ||
5280 (ISD::isSEXTLoad(N0
.getNode()) && N0
.hasOneUse()))) {
5281 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
5282 EVT MemVT
= LN0
->getMemoryVT();
5283 // If we zero all the possible extended bits, then we can turn this into
5284 // a zextload if we are running before legalize or the operation is legal.
5285 unsigned ExtBitSize
= N1
.getScalarValueSizeInBits();
5286 unsigned MemBitSize
= MemVT
.getScalarSizeInBits();
5287 APInt ExtBits
= APInt::getHighBitsSet(ExtBitSize
, ExtBitSize
- MemBitSize
);
5288 if (DAG
.MaskedValueIsZero(N1
, ExtBits
) &&
5289 ((!LegalOperations
&& LN0
->isSimple()) ||
5290 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, VT
, MemVT
))) {
5292 DAG
.getExtLoad(ISD::ZEXTLOAD
, SDLoc(N0
), VT
, LN0
->getChain(),
5293 LN0
->getBasePtr(), MemVT
, LN0
->getMemOperand());
5295 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
5296 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
5300 // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const)
5301 if (N1C
&& N1C
->getAPIntValue() == 0xffff && N0
.getOpcode() == ISD::OR
) {
5302 if (SDValue BSwap
= MatchBSwapHWordLow(N0
.getNode(), N0
.getOperand(0),
5303 N0
.getOperand(1), false))
5307 if (SDValue Shifts
= unfoldExtremeBitClearingToShifts(N
))
5310 if (TLI
.hasBitTest(N0
, N1
))
5311 if (SDValue V
= combineShiftAnd1ToBitTest(N
, DAG
))
5317 /// Match (a >> 8) | (a << 8) as (bswap a) >> 16.
5318 SDValue
DAGCombiner::MatchBSwapHWordLow(SDNode
*N
, SDValue N0
, SDValue N1
,
5319 bool DemandHighBits
) {
5320 if (!LegalOperations
)
5323 EVT VT
= N
->getValueType(0);
5324 if (VT
!= MVT::i64
&& VT
!= MVT::i32
&& VT
!= MVT::i16
)
5326 if (!TLI
.isOperationLegalOrCustom(ISD::BSWAP
, VT
))
5329 // Recognize (and (shl a, 8), 0xff00), (and (srl a, 8), 0xff)
5330 bool LookPassAnd0
= false;
5331 bool LookPassAnd1
= false;
5332 if (N0
.getOpcode() == ISD::AND
&& N0
.getOperand(0).getOpcode() == ISD::SRL
)
5334 if (N1
.getOpcode() == ISD::AND
&& N1
.getOperand(0).getOpcode() == ISD::SHL
)
5336 if (N0
.getOpcode() == ISD::AND
) {
5337 if (!N0
.getNode()->hasOneUse())
5339 ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
5340 // Also handle 0xffff since the LHS is guaranteed to have zeros there.
5341 // This is needed for X86.
5342 if (!N01C
|| (N01C
->getZExtValue() != 0xFF00 &&
5343 N01C
->getZExtValue() != 0xFFFF))
5345 N0
= N0
.getOperand(0);
5346 LookPassAnd0
= true;
5349 if (N1
.getOpcode() == ISD::AND
) {
5350 if (!N1
.getNode()->hasOneUse())
5352 ConstantSDNode
*N11C
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1));
5353 if (!N11C
|| N11C
->getZExtValue() != 0xFF)
5355 N1
= N1
.getOperand(0);
5356 LookPassAnd1
= true;
5359 if (N0
.getOpcode() == ISD::SRL
&& N1
.getOpcode() == ISD::SHL
)
5361 if (N0
.getOpcode() != ISD::SHL
|| N1
.getOpcode() != ISD::SRL
)
5363 if (!N0
.getNode()->hasOneUse() || !N1
.getNode()->hasOneUse())
5366 ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
5367 ConstantSDNode
*N11C
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1));
5370 if (N01C
->getZExtValue() != 8 || N11C
->getZExtValue() != 8)
5373 // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
5374 SDValue N00
= N0
->getOperand(0);
5375 if (!LookPassAnd0
&& N00
.getOpcode() == ISD::AND
) {
5376 if (!N00
.getNode()->hasOneUse())
5378 ConstantSDNode
*N001C
= dyn_cast
<ConstantSDNode
>(N00
.getOperand(1));
5379 if (!N001C
|| N001C
->getZExtValue() != 0xFF)
5381 N00
= N00
.getOperand(0);
5382 LookPassAnd0
= true;
5385 SDValue N10
= N1
->getOperand(0);
5386 if (!LookPassAnd1
&& N10
.getOpcode() == ISD::AND
) {
5387 if (!N10
.getNode()->hasOneUse())
5389 ConstantSDNode
*N101C
= dyn_cast
<ConstantSDNode
>(N10
.getOperand(1));
5390 // Also allow 0xFFFF since the bits will be shifted out. This is needed
5392 if (!N101C
|| (N101C
->getZExtValue() != 0xFF00 &&
5393 N101C
->getZExtValue() != 0xFFFF))
5395 N10
= N10
.getOperand(0);
5396 LookPassAnd1
= true;
5402 // Make sure everything beyond the low halfword gets set to zero since the SRL
5403 // 16 will clear the top bits.
5404 unsigned OpSizeInBits
= VT
.getSizeInBits();
5405 if (DemandHighBits
&& OpSizeInBits
> 16) {
5406 // If the left-shift isn't masked out then the only way this is a bswap is
5407 // if all bits beyond the low 8 are 0. In that case the entire pattern
5408 // reduces to a left shift anyway: leave it for other parts of the combiner.
5412 // However, if the right shift isn't masked out then it might be because
5413 // it's not needed. See if we can spot that too.
5414 if (!LookPassAnd1
&&
5415 !DAG
.MaskedValueIsZero(
5416 N10
, APInt::getHighBitsSet(OpSizeInBits
, OpSizeInBits
- 16)))
5420 SDValue Res
= DAG
.getNode(ISD::BSWAP
, SDLoc(N
), VT
, N00
);
5421 if (OpSizeInBits
> 16) {
5423 Res
= DAG
.getNode(ISD::SRL
, DL
, VT
, Res
,
5424 DAG
.getConstant(OpSizeInBits
- 16, DL
,
5425 getShiftAmountTy(VT
)));
5430 /// Return true if the specified node is an element that makes up a 32-bit
5431 /// packed halfword byteswap.
5432 /// ((x & 0x000000ff) << 8) |
5433 /// ((x & 0x0000ff00) >> 8) |
5434 /// ((x & 0x00ff0000) << 8) |
5435 /// ((x & 0xff000000) >> 8)
5436 static bool isBSwapHWordElement(SDValue N
, MutableArrayRef
<SDNode
*> Parts
) {
5437 if (!N
.getNode()->hasOneUse())
5440 unsigned Opc
= N
.getOpcode();
5441 if (Opc
!= ISD::AND
&& Opc
!= ISD::SHL
&& Opc
!= ISD::SRL
)
5444 SDValue N0
= N
.getOperand(0);
5445 unsigned Opc0
= N0
.getOpcode();
5446 if (Opc0
!= ISD::AND
&& Opc0
!= ISD::SHL
&& Opc0
!= ISD::SRL
)
5449 ConstantSDNode
*N1C
= nullptr;
5450 // SHL or SRL: look upstream for AND mask operand
5451 if (Opc
== ISD::AND
)
5452 N1C
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
5453 else if (Opc0
== ISD::AND
)
5454 N1C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
5458 unsigned MaskByteOffset
;
5459 switch (N1C
->getZExtValue()) {
5462 case 0xFF: MaskByteOffset
= 0; break;
5463 case 0xFF00: MaskByteOffset
= 1; break;
5465 // In case demanded bits didn't clear the bits that will be shifted out.
5466 // This is needed for X86.
5467 if (Opc
== ISD::SRL
|| (Opc
== ISD::AND
&& Opc0
== ISD::SHL
)) {
5472 case 0xFF0000: MaskByteOffset
= 2; break;
5473 case 0xFF000000: MaskByteOffset
= 3; break;
5476 // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
5477 if (Opc
== ISD::AND
) {
5478 if (MaskByteOffset
== 0 || MaskByteOffset
== 2) {
5480 // (x >> 8) & 0xff0000
5481 if (Opc0
!= ISD::SRL
)
5483 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
5484 if (!C
|| C
->getZExtValue() != 8)
5487 // (x << 8) & 0xff00
5488 // (x << 8) & 0xff000000
5489 if (Opc0
!= ISD::SHL
)
5491 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
5492 if (!C
|| C
->getZExtValue() != 8)
5495 } else if (Opc
== ISD::SHL
) {
5497 // (x & 0xff0000) << 8
5498 if (MaskByteOffset
!= 0 && MaskByteOffset
!= 2)
5500 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
5501 if (!C
|| C
->getZExtValue() != 8)
5503 } else { // Opc == ISD::SRL
5504 // (x & 0xff00) >> 8
5505 // (x & 0xff000000) >> 8
5506 if (MaskByteOffset
!= 1 && MaskByteOffset
!= 3)
5508 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
5509 if (!C
|| C
->getZExtValue() != 8)
5513 if (Parts
[MaskByteOffset
])
5516 Parts
[MaskByteOffset
] = N0
.getOperand(0).getNode();
5520 /// Match a 32-bit packed halfword bswap. That is
5521 /// ((x & 0x000000ff) << 8) |
5522 /// ((x & 0x0000ff00) >> 8) |
5523 /// ((x & 0x00ff0000) << 8) |
5524 /// ((x & 0xff000000) >> 8)
5525 /// => (rotl (bswap x), 16)
5526 SDValue
DAGCombiner::MatchBSwapHWord(SDNode
*N
, SDValue N0
, SDValue N1
) {
5527 if (!LegalOperations
)
5530 EVT VT
= N
->getValueType(0);
5533 if (!TLI
.isOperationLegalOrCustom(ISD::BSWAP
, VT
))
5537 // (or (or (and), (and)), (or (and), (and)))
5538 // (or (or (or (and), (and)), (and)), (and))
5539 if (N0
.getOpcode() != ISD::OR
)
5541 SDValue N00
= N0
.getOperand(0);
5542 SDValue N01
= N0
.getOperand(1);
5543 SDNode
*Parts
[4] = {};
5545 if (N1
.getOpcode() == ISD::OR
&&
5546 N00
.getNumOperands() == 2 && N01
.getNumOperands() == 2) {
5547 // (or (or (and), (and)), (or (and), (and)))
5548 if (!isBSwapHWordElement(N00
, Parts
))
5551 if (!isBSwapHWordElement(N01
, Parts
))
5553 SDValue N10
= N1
.getOperand(0);
5554 if (!isBSwapHWordElement(N10
, Parts
))
5556 SDValue N11
= N1
.getOperand(1);
5557 if (!isBSwapHWordElement(N11
, Parts
))
5560 // (or (or (or (and), (and)), (and)), (and))
5561 if (!isBSwapHWordElement(N1
, Parts
))
5563 if (!isBSwapHWordElement(N01
, Parts
))
5565 if (N00
.getOpcode() != ISD::OR
)
5567 SDValue N000
= N00
.getOperand(0);
5568 if (!isBSwapHWordElement(N000
, Parts
))
5570 SDValue N001
= N00
.getOperand(1);
5571 if (!isBSwapHWordElement(N001
, Parts
))
5575 // Make sure the parts are all coming from the same node.
5576 if (Parts
[0] != Parts
[1] || Parts
[0] != Parts
[2] || Parts
[0] != Parts
[3])
5580 SDValue BSwap
= DAG
.getNode(ISD::BSWAP
, DL
, VT
,
5581 SDValue(Parts
[0], 0));
5583 // Result of the bswap should be rotated by 16. If it's not legal, then
5584 // do (x << 16) | (x >> 16).
5585 SDValue ShAmt
= DAG
.getConstant(16, DL
, getShiftAmountTy(VT
));
5586 if (TLI
.isOperationLegalOrCustom(ISD::ROTL
, VT
))
5587 return DAG
.getNode(ISD::ROTL
, DL
, VT
, BSwap
, ShAmt
);
5588 if (TLI
.isOperationLegalOrCustom(ISD::ROTR
, VT
))
5589 return DAG
.getNode(ISD::ROTR
, DL
, VT
, BSwap
, ShAmt
);
5590 return DAG
.getNode(ISD::OR
, DL
, VT
,
5591 DAG
.getNode(ISD::SHL
, DL
, VT
, BSwap
, ShAmt
),
5592 DAG
.getNode(ISD::SRL
, DL
, VT
, BSwap
, ShAmt
));
5595 /// This contains all DAGCombine rules which reduce two values combined by
5596 /// an Or operation to a single value \see visitANDLike().
5597 SDValue
DAGCombiner::visitORLike(SDValue N0
, SDValue N1
, SDNode
*N
) {
5598 EVT VT
= N1
.getValueType();
5601 // fold (or x, undef) -> -1
5602 if (!LegalOperations
&& (N0
.isUndef() || N1
.isUndef()))
5603 return DAG
.getAllOnesConstant(DL
, VT
);
5605 if (SDValue V
= foldLogicOfSetCCs(false, N0
, N1
, DL
))
5608 // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible.
5609 if (N0
.getOpcode() == ISD::AND
&& N1
.getOpcode() == ISD::AND
&&
5610 // Don't increase # computations.
5611 (N0
.getNode()->hasOneUse() || N1
.getNode()->hasOneUse())) {
5612 // We can only do this xform if we know that bits from X that are set in C2
5613 // but not in C1 are already zero. Likewise for Y.
5614 if (const ConstantSDNode
*N0O1C
=
5615 getAsNonOpaqueConstant(N0
.getOperand(1))) {
5616 if (const ConstantSDNode
*N1O1C
=
5617 getAsNonOpaqueConstant(N1
.getOperand(1))) {
5618 // We can only do this xform if we know that bits from X that are set in
5619 // C2 but not in C1 are already zero. Likewise for Y.
5620 const APInt
&LHSMask
= N0O1C
->getAPIntValue();
5621 const APInt
&RHSMask
= N1O1C
->getAPIntValue();
5623 if (DAG
.MaskedValueIsZero(N0
.getOperand(0), RHSMask
&~LHSMask
) &&
5624 DAG
.MaskedValueIsZero(N1
.getOperand(0), LHSMask
&~RHSMask
)) {
5625 SDValue X
= DAG
.getNode(ISD::OR
, SDLoc(N0
), VT
,
5626 N0
.getOperand(0), N1
.getOperand(0));
5627 return DAG
.getNode(ISD::AND
, DL
, VT
, X
,
5628 DAG
.getConstant(LHSMask
| RHSMask
, DL
, VT
));
5634 // (or (and X, M), (and X, N)) -> (and X, (or M, N))
5635 if (N0
.getOpcode() == ISD::AND
&&
5636 N1
.getOpcode() == ISD::AND
&&
5637 N0
.getOperand(0) == N1
.getOperand(0) &&
5638 // Don't increase # computations.
5639 (N0
.getNode()->hasOneUse() || N1
.getNode()->hasOneUse())) {
5640 SDValue X
= DAG
.getNode(ISD::OR
, SDLoc(N0
), VT
,
5641 N0
.getOperand(1), N1
.getOperand(1));
5642 return DAG
.getNode(ISD::AND
, DL
, VT
, N0
.getOperand(0), X
);
5648 /// OR combines for which the commuted variant will be tried as well.
5649 static SDValue
visitORCommutative(
5650 SelectionDAG
&DAG
, SDValue N0
, SDValue N1
, SDNode
*N
) {
5651 EVT VT
= N0
.getValueType();
5652 if (N0
.getOpcode() == ISD::AND
) {
5653 // fold (or (and X, (xor Y, -1)), Y) -> (or X, Y)
5654 if (isBitwiseNot(N0
.getOperand(1)) && N0
.getOperand(1).getOperand(0) == N1
)
5655 return DAG
.getNode(ISD::OR
, SDLoc(N
), VT
, N0
.getOperand(0), N1
);
5657 // fold (or (and (xor Y, -1), X), Y) -> (or X, Y)
5658 if (isBitwiseNot(N0
.getOperand(0)) && N0
.getOperand(0).getOperand(0) == N1
)
5659 return DAG
.getNode(ISD::OR
, SDLoc(N
), VT
, N0
.getOperand(1), N1
);
5665 SDValue
DAGCombiner::visitOR(SDNode
*N
) {
5666 SDValue N0
= N
->getOperand(0);
5667 SDValue N1
= N
->getOperand(1);
5668 EVT VT
= N1
.getValueType();
5675 if (VT
.isVector()) {
5676 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
5679 // fold (or x, 0) -> x, vector edition
5680 if (ISD::isBuildVectorAllZeros(N0
.getNode()))
5682 if (ISD::isBuildVectorAllZeros(N1
.getNode()))
5685 // fold (or x, -1) -> -1, vector edition
5686 if (ISD::isBuildVectorAllOnes(N0
.getNode()))
5687 // do not return N0, because undef node may exist in N0
5688 return DAG
.getAllOnesConstant(SDLoc(N
), N0
.getValueType());
5689 if (ISD::isBuildVectorAllOnes(N1
.getNode()))
5690 // do not return N1, because undef node may exist in N1
5691 return DAG
.getAllOnesConstant(SDLoc(N
), N1
.getValueType());
5693 // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask)
5694 // Do this only if the resulting shuffle is legal.
5695 if (isa
<ShuffleVectorSDNode
>(N0
) &&
5696 isa
<ShuffleVectorSDNode
>(N1
) &&
5697 // Avoid folding a node with illegal type.
5698 TLI
.isTypeLegal(VT
)) {
5699 bool ZeroN00
= ISD::isBuildVectorAllZeros(N0
.getOperand(0).getNode());
5700 bool ZeroN01
= ISD::isBuildVectorAllZeros(N0
.getOperand(1).getNode());
5701 bool ZeroN10
= ISD::isBuildVectorAllZeros(N1
.getOperand(0).getNode());
5702 bool ZeroN11
= ISD::isBuildVectorAllZeros(N1
.getOperand(1).getNode());
5703 // Ensure both shuffles have a zero input.
5704 if ((ZeroN00
!= ZeroN01
) && (ZeroN10
!= ZeroN11
)) {
5705 assert((!ZeroN00
|| !ZeroN01
) && "Both inputs zero!");
5706 assert((!ZeroN10
|| !ZeroN11
) && "Both inputs zero!");
5707 const ShuffleVectorSDNode
*SV0
= cast
<ShuffleVectorSDNode
>(N0
);
5708 const ShuffleVectorSDNode
*SV1
= cast
<ShuffleVectorSDNode
>(N1
);
5709 bool CanFold
= true;
5710 int NumElts
= VT
.getVectorNumElements();
5711 SmallVector
<int, 4> Mask(NumElts
);
5713 for (int i
= 0; i
!= NumElts
; ++i
) {
5714 int M0
= SV0
->getMaskElt(i
);
5715 int M1
= SV1
->getMaskElt(i
);
5717 // Determine if either index is pointing to a zero vector.
5718 bool M0Zero
= M0
< 0 || (ZeroN00
== (M0
< NumElts
));
5719 bool M1Zero
= M1
< 0 || (ZeroN10
== (M1
< NumElts
));
5721 // If one element is zero and the otherside is undef, keep undef.
5722 // This also handles the case that both are undef.
5723 if ((M0Zero
&& M1
< 0) || (M1Zero
&& M0
< 0)) {
5728 // Make sure only one of the elements is zero.
5729 if (M0Zero
== M1Zero
) {
5734 assert((M0
>= 0 || M1
>= 0) && "Undef index!");
5736 // We have a zero and non-zero element. If the non-zero came from
5737 // SV0 make the index a LHS index. If it came from SV1, make it
5738 // a RHS index. We need to mod by NumElts because we don't care
5739 // which operand it came from in the original shuffles.
5740 Mask
[i
] = M1Zero
? M0
% NumElts
: (M1
% NumElts
) + NumElts
;
5744 SDValue NewLHS
= ZeroN00
? N0
.getOperand(1) : N0
.getOperand(0);
5745 SDValue NewRHS
= ZeroN10
? N1
.getOperand(1) : N1
.getOperand(0);
5747 SDValue LegalShuffle
=
5748 TLI
.buildLegalVectorShuffle(VT
, SDLoc(N
), NewLHS
, NewRHS
,
5751 return LegalShuffle
;
5757 // fold (or c1, c2) -> c1|c2
5758 ConstantSDNode
*N0C
= getAsNonOpaqueConstant(N0
);
5759 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
5760 if (N0C
&& N1C
&& !N1C
->isOpaque())
5761 return DAG
.FoldConstantArithmetic(ISD::OR
, SDLoc(N
), VT
, N0C
, N1C
);
5762 // canonicalize constant to RHS
5763 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
5764 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
5765 return DAG
.getNode(ISD::OR
, SDLoc(N
), VT
, N1
, N0
);
5766 // fold (or x, 0) -> x
5767 if (isNullConstant(N1
))
5769 // fold (or x, -1) -> -1
5770 if (isAllOnesConstant(N1
))
5773 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
5776 // fold (or x, c) -> c iff (x & ~c) == 0
5777 if (N1C
&& DAG
.MaskedValueIsZero(N0
, ~N1C
->getAPIntValue()))
5780 if (SDValue Combined
= visitORLike(N0
, N1
, N
))
5783 // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
5784 if (SDValue BSwap
= MatchBSwapHWord(N
, N0
, N1
))
5786 if (SDValue BSwap
= MatchBSwapHWordLow(N
, N0
, N1
))
5790 if (SDValue ROR
= reassociateOps(ISD::OR
, SDLoc(N
), N0
, N1
, N
->getFlags()))
5793 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
5794 // iff (c1 & c2) != 0 or c1/c2 are undef.
5795 auto MatchIntersect
= [](ConstantSDNode
*C1
, ConstantSDNode
*C2
) {
5796 return !C1
|| !C2
|| C1
->getAPIntValue().intersects(C2
->getAPIntValue());
5798 if (N0
.getOpcode() == ISD::AND
&& N0
.getNode()->hasOneUse() &&
5799 ISD::matchBinaryPredicate(N0
.getOperand(1), N1
, MatchIntersect
, true)) {
5800 if (SDValue COR
= DAG
.FoldConstantArithmetic(
5801 ISD::OR
, SDLoc(N1
), VT
, N1
.getNode(), N0
.getOperand(1).getNode())) {
5802 SDValue IOR
= DAG
.getNode(ISD::OR
, SDLoc(N0
), VT
, N0
.getOperand(0), N1
);
5803 AddToWorklist(IOR
.getNode());
5804 return DAG
.getNode(ISD::AND
, SDLoc(N
), VT
, COR
, IOR
);
5808 if (SDValue Combined
= visitORCommutative(DAG
, N0
, N1
, N
))
5810 if (SDValue Combined
= visitORCommutative(DAG
, N1
, N0
, N
))
5813 // Simplify: (or (op x...), (op y...)) -> (op (or x, y))
5814 if (N0
.getOpcode() == N1
.getOpcode())
5815 if (SDValue V
= hoistLogicOpWithSameOpcodeHands(N
))
5818 // See if this is some rotate idiom.
5819 if (SDNode
*Rot
= MatchRotate(N0
, N1
, SDLoc(N
)))
5820 return SDValue(Rot
, 0);
5822 if (SDValue Load
= MatchLoadCombine(N
))
5825 // Simplify the operands using demanded-bits information.
5826 if (SimplifyDemandedBits(SDValue(N
, 0)))
5827 return SDValue(N
, 0);
5829 // If OR can be rewritten into ADD, try combines based on ADD.
5830 if ((!LegalOperations
|| TLI
.isOperationLegal(ISD::ADD
, VT
)) &&
5831 DAG
.haveNoCommonBitsSet(N0
, N1
))
5832 if (SDValue Combined
= visitADDLike(N
))
5838 static SDValue
stripConstantMask(SelectionDAG
&DAG
, SDValue Op
, SDValue
&Mask
) {
5839 if (Op
.getOpcode() == ISD::AND
&&
5840 DAG
.isConstantIntBuildVectorOrConstantInt(Op
.getOperand(1))) {
5841 Mask
= Op
.getOperand(1);
5842 return Op
.getOperand(0);
5847 /// Match "(X shl/srl V1) & V2" where V2 may not be present.
5848 static bool matchRotateHalf(SelectionDAG
&DAG
, SDValue Op
, SDValue
&Shift
,
5850 Op
= stripConstantMask(DAG
, Op
, Mask
);
5851 if (Op
.getOpcode() == ISD::SRL
|| Op
.getOpcode() == ISD::SHL
) {
5858 /// Helper function for visitOR to extract the needed side of a rotate idiom
5859 /// from a shl/srl/mul/udiv. This is meant to handle cases where
5860 /// InstCombine merged some outside op with one of the shifts from
5861 /// the rotate pattern.
5862 /// \returns An empty \c SDValue if the needed shift couldn't be extracted.
5863 /// Otherwise, returns an expansion of \p ExtractFrom based on the following
5866 /// (or (add v v) (shrl v bitwidth-1)):
5867 /// expands (add v v) -> (shl v 1)
5869 /// (or (mul v c0) (shrl (mul v c1) c2)):
5870 /// expands (mul v c0) -> (shl (mul v c1) c3)
5872 /// (or (udiv v c0) (shl (udiv v c1) c2)):
5873 /// expands (udiv v c0) -> (shrl (udiv v c1) c3)
5875 /// (or (shl v c0) (shrl (shl v c1) c2)):
5876 /// expands (shl v c0) -> (shl (shl v c1) c3)
5878 /// (or (shrl v c0) (shl (shrl v c1) c2)):
5879 /// expands (shrl v c0) -> (shrl (shrl v c1) c3)
5881 /// Such that in all cases, c3+c2==bitwidth(op v c1).
5882 static SDValue
extractShiftForRotate(SelectionDAG
&DAG
, SDValue OppShift
,
5883 SDValue ExtractFrom
, SDValue
&Mask
,
5885 assert(OppShift
&& ExtractFrom
&& "Empty SDValue");
5887 (OppShift
.getOpcode() == ISD::SHL
|| OppShift
.getOpcode() == ISD::SRL
) &&
5888 "Existing shift must be valid as a rotate half");
5890 ExtractFrom
= stripConstantMask(DAG
, ExtractFrom
, Mask
);
5892 // Value and Type of the shift.
5893 SDValue OppShiftLHS
= OppShift
.getOperand(0);
5894 EVT ShiftedVT
= OppShiftLHS
.getValueType();
5896 // Amount of the existing shift.
5897 ConstantSDNode
*OppShiftCst
= isConstOrConstSplat(OppShift
.getOperand(1));
5899 // (add v v) -> (shl v 1)
5900 if (OppShift
.getOpcode() == ISD::SRL
&& OppShiftCst
&&
5901 ExtractFrom
.getOpcode() == ISD::ADD
&&
5902 ExtractFrom
.getOperand(0) == ExtractFrom
.getOperand(1) &&
5903 ExtractFrom
.getOperand(0) == OppShiftLHS
&&
5904 OppShiftCst
->getAPIntValue() == ShiftedVT
.getScalarSizeInBits() - 1)
5905 return DAG
.getNode(ISD::SHL
, DL
, ShiftedVT
, OppShiftLHS
,
5906 DAG
.getShiftAmountConstant(1, ShiftedVT
, DL
));
5909 // (or (op0 v c0) (shiftl/r (op0 v c1) c2))
5911 // Find opcode of the needed shift to be extracted from (op0 v c0).
5912 unsigned Opcode
= ISD::DELETED_NODE
;
5913 bool IsMulOrDiv
= false;
5914 // Set Opcode and IsMulOrDiv if the extract opcode matches the needed shift
5915 // opcode or its arithmetic (mul or udiv) variant.
5916 auto SelectOpcode
= [&](unsigned NeededShift
, unsigned MulOrDivVariant
) {
5917 IsMulOrDiv
= ExtractFrom
.getOpcode() == MulOrDivVariant
;
5918 if (!IsMulOrDiv
&& ExtractFrom
.getOpcode() != NeededShift
)
5920 Opcode
= NeededShift
;
5923 // op0 must be either the needed shift opcode or the mul/udiv equivalent
5924 // that the needed shift can be extracted from.
5925 if ((OppShift
.getOpcode() != ISD::SRL
|| !SelectOpcode(ISD::SHL
, ISD::MUL
)) &&
5926 (OppShift
.getOpcode() != ISD::SHL
|| !SelectOpcode(ISD::SRL
, ISD::UDIV
)))
5929 // op0 must be the same opcode on both sides, have the same LHS argument,
5930 // and produce the same value type.
5931 if (OppShiftLHS
.getOpcode() != ExtractFrom
.getOpcode() ||
5932 OppShiftLHS
.getOperand(0) != ExtractFrom
.getOperand(0) ||
5933 ShiftedVT
!= ExtractFrom
.getValueType())
5936 // Constant mul/udiv/shift amount from the RHS of the shift's LHS op.
5937 ConstantSDNode
*OppLHSCst
= isConstOrConstSplat(OppShiftLHS
.getOperand(1));
5938 // Constant mul/udiv/shift amount from the RHS of the ExtractFrom op.
5939 ConstantSDNode
*ExtractFromCst
=
5940 isConstOrConstSplat(ExtractFrom
.getOperand(1));
5941 // TODO: We should be able to handle non-uniform constant vectors for these values
5942 // Check that we have constant values.
5943 if (!OppShiftCst
|| !OppShiftCst
->getAPIntValue() ||
5944 !OppLHSCst
|| !OppLHSCst
->getAPIntValue() ||
5945 !ExtractFromCst
|| !ExtractFromCst
->getAPIntValue())
5948 // Compute the shift amount we need to extract to complete the rotate.
5949 const unsigned VTWidth
= ShiftedVT
.getScalarSizeInBits();
5950 if (OppShiftCst
->getAPIntValue().ugt(VTWidth
))
5952 APInt NeededShiftAmt
= VTWidth
- OppShiftCst
->getAPIntValue();
5953 // Normalize the bitwidth of the two mul/udiv/shift constant operands.
5954 APInt ExtractFromAmt
= ExtractFromCst
->getAPIntValue();
5955 APInt OppLHSAmt
= OppLHSCst
->getAPIntValue();
5956 zeroExtendToMatch(ExtractFromAmt
, OppLHSAmt
);
5958 // Now try extract the needed shift from the ExtractFrom op and see if the
5959 // result matches up with the existing shift's LHS op.
5961 // Op to extract from is a mul or udiv by a constant.
5963 // c2 / (1 << (bitwidth(op0 v c0) - c1)) == c0
5964 // c2 % (1 << (bitwidth(op0 v c0) - c1)) == 0
5965 const APInt ExtractDiv
= APInt::getOneBitSet(ExtractFromAmt
.getBitWidth(),
5966 NeededShiftAmt
.getZExtValue());
5969 APInt::udivrem(ExtractFromAmt
, ExtractDiv
, ResultAmt
, Rem
);
5970 if (Rem
!= 0 || ResultAmt
!= OppLHSAmt
)
5973 // Op to extract from is a shift by a constant.
5975 // c2 - (bitwidth(op0 v c0) - c1) == c0
5976 if (OppLHSAmt
!= ExtractFromAmt
- NeededShiftAmt
.zextOrTrunc(
5977 ExtractFromAmt
.getBitWidth()))
5981 // Return the expanded shift op that should allow a rotate to be formed.
5982 EVT ShiftVT
= OppShift
.getOperand(1).getValueType();
5983 EVT ResVT
= ExtractFrom
.getValueType();
5984 SDValue NewShiftNode
= DAG
.getConstant(NeededShiftAmt
, DL
, ShiftVT
);
5985 return DAG
.getNode(Opcode
, DL
, ResVT
, OppShiftLHS
, NewShiftNode
);
5988 // Return true if we can prove that, whenever Neg and Pos are both in the
5989 // range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos). This means that
5990 // for two opposing shifts shift1 and shift2 and a value X with OpBits bits:
5992 // (or (shift1 X, Neg), (shift2 X, Pos))
5994 // reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate
5995 // in direction shift1 by Neg. The range [0, EltSize) means that we only need
5996 // to consider shift amounts with defined behavior.
5997 static bool matchRotateSub(SDValue Pos
, SDValue Neg
, unsigned EltSize
,
5998 SelectionDAG
&DAG
) {
5999 // If EltSize is a power of 2 then:
6001 // (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1)
6002 // (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize).
6004 // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check
6005 // for the stronger condition:
6007 // Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1) [A]
6009 // for all Neg and Pos. Since Neg & (EltSize - 1) == Neg' & (EltSize - 1)
6010 // we can just replace Neg with Neg' for the rest of the function.
6012 // In other cases we check for the even stronger condition:
6014 // Neg == EltSize - Pos [B]
6016 // for all Neg and Pos. Note that the (or ...) then invokes undefined
6017 // behavior if Pos == 0 (and consequently Neg == EltSize).
6019 // We could actually use [A] whenever EltSize is a power of 2, but the
6020 // only extra cases that it would match are those uninteresting ones
6021 // where Neg and Pos are never in range at the same time. E.g. for
6022 // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos)
6023 // as well as (sub 32, Pos), but:
6025 // (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos))
6027 // always invokes undefined behavior for 32-bit X.
6029 // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise.
6030 unsigned MaskLoBits
= 0;
6031 if (Neg
.getOpcode() == ISD::AND
&& isPowerOf2_64(EltSize
)) {
6032 if (ConstantSDNode
*NegC
= isConstOrConstSplat(Neg
.getOperand(1))) {
6033 KnownBits Known
= DAG
.computeKnownBits(Neg
.getOperand(0));
6034 unsigned Bits
= Log2_64(EltSize
);
6035 if (NegC
->getAPIntValue().getActiveBits() <= Bits
&&
6036 ((NegC
->getAPIntValue() | Known
.Zero
).countTrailingOnes() >= Bits
)) {
6037 Neg
= Neg
.getOperand(0);
6043 // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1.
6044 if (Neg
.getOpcode() != ISD::SUB
)
6046 ConstantSDNode
*NegC
= isConstOrConstSplat(Neg
.getOperand(0));
6049 SDValue NegOp1
= Neg
.getOperand(1);
6051 // On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with
6052 // Pos'. The truncation is redundant for the purpose of the equality.
6053 if (MaskLoBits
&& Pos
.getOpcode() == ISD::AND
) {
6054 if (ConstantSDNode
*PosC
= isConstOrConstSplat(Pos
.getOperand(1))) {
6055 KnownBits Known
= DAG
.computeKnownBits(Pos
.getOperand(0));
6056 if (PosC
->getAPIntValue().getActiveBits() <= MaskLoBits
&&
6057 ((PosC
->getAPIntValue() | Known
.Zero
).countTrailingOnes() >=
6059 Pos
= Pos
.getOperand(0);
6063 // The condition we need is now:
6065 // (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask
6067 // If NegOp1 == Pos then we need:
6069 // EltSize & Mask == NegC & Mask
6071 // (because "x & Mask" is a truncation and distributes through subtraction).
6074 Width
= NegC
->getAPIntValue();
6076 // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC.
6077 // Then the condition we want to prove becomes:
6079 // (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask
6081 // which, again because "x & Mask" is a truncation, becomes:
6083 // NegC & Mask == (EltSize - PosC) & Mask
6084 // EltSize & Mask == (NegC + PosC) & Mask
6085 else if (Pos
.getOpcode() == ISD::ADD
&& Pos
.getOperand(0) == NegOp1
) {
6086 if (ConstantSDNode
*PosC
= isConstOrConstSplat(Pos
.getOperand(1)))
6087 Width
= PosC
->getAPIntValue() + NegC
->getAPIntValue();
6093 // Now we just need to check that EltSize & Mask == Width & Mask.
6095 // EltSize & Mask is 0 since Mask is EltSize - 1.
6096 return Width
.getLoBits(MaskLoBits
) == 0;
6097 return Width
== EltSize
;
6100 // A subroutine of MatchRotate used once we have found an OR of two opposite
6101 // shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces
6102 // to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the
6103 // former being preferred if supported. InnerPos and InnerNeg are Pos and
6104 // Neg with outer conversions stripped away.
6105 SDNode
*DAGCombiner::MatchRotatePosNeg(SDValue Shifted
, SDValue Pos
,
6106 SDValue Neg
, SDValue InnerPos
,
6107 SDValue InnerNeg
, unsigned PosOpcode
,
6108 unsigned NegOpcode
, const SDLoc
&DL
) {
6109 // fold (or (shl x, (*ext y)),
6110 // (srl x, (*ext (sub 32, y)))) ->
6111 // (rotl x, y) or (rotr x, (sub 32, y))
6113 // fold (or (shl x, (*ext (sub 32, y))),
6114 // (srl x, (*ext y))) ->
6115 // (rotr x, y) or (rotl x, (sub 32, y))
6116 EVT VT
= Shifted
.getValueType();
6117 if (matchRotateSub(InnerPos
, InnerNeg
, VT
.getScalarSizeInBits(), DAG
)) {
6118 bool HasPos
= TLI
.isOperationLegalOrCustom(PosOpcode
, VT
);
6119 return DAG
.getNode(HasPos
? PosOpcode
: NegOpcode
, DL
, VT
, Shifted
,
6120 HasPos
? Pos
: Neg
).getNode();
6126 // MatchRotate - Handle an 'or' of two operands. If this is one of the many
6127 // idioms for rotate, and if the target supports rotation instructions, generate
6129 SDNode
*DAGCombiner::MatchRotate(SDValue LHS
, SDValue RHS
, const SDLoc
&DL
) {
6130 // Must be a legal type. Expanded 'n promoted things won't work with rotates.
6131 EVT VT
= LHS
.getValueType();
6132 if (!TLI
.isTypeLegal(VT
)) return nullptr;
6134 // The target must have at least one rotate flavor.
6135 bool HasROTL
= hasOperation(ISD::ROTL
, VT
);
6136 bool HasROTR
= hasOperation(ISD::ROTR
, VT
);
6137 if (!HasROTL
&& !HasROTR
) return nullptr;
6139 // Check for truncated rotate.
6140 if (LHS
.getOpcode() == ISD::TRUNCATE
&& RHS
.getOpcode() == ISD::TRUNCATE
&&
6141 LHS
.getOperand(0).getValueType() == RHS
.getOperand(0).getValueType()) {
6142 assert(LHS
.getValueType() == RHS
.getValueType());
6143 if (SDNode
*Rot
= MatchRotate(LHS
.getOperand(0), RHS
.getOperand(0), DL
)) {
6144 return DAG
.getNode(ISD::TRUNCATE
, SDLoc(LHS
), LHS
.getValueType(),
6145 SDValue(Rot
, 0)).getNode();
6149 // Match "(X shl/srl V1) & V2" where V2 may not be present.
6150 SDValue LHSShift
; // The shift.
6151 SDValue LHSMask
; // AND value if any.
6152 matchRotateHalf(DAG
, LHS
, LHSShift
, LHSMask
);
6154 SDValue RHSShift
; // The shift.
6155 SDValue RHSMask
; // AND value if any.
6156 matchRotateHalf(DAG
, RHS
, RHSShift
, RHSMask
);
6158 // If neither side matched a rotate half, bail
6159 if (!LHSShift
&& !RHSShift
)
6162 // InstCombine may have combined a constant shl, srl, mul, or udiv with one
6163 // side of the rotate, so try to handle that here. In all cases we need to
6164 // pass the matched shift from the opposite side to compute the opcode and
6165 // needed shift amount to extract. We still want to do this if both sides
6166 // matched a rotate half because one half may be a potential overshift that
6167 // can be broken down (ie if InstCombine merged two shl or srl ops into a
6170 // Have LHS side of the rotate, try to extract the needed shift from the RHS.
6172 if (SDValue NewRHSShift
=
6173 extractShiftForRotate(DAG
, LHSShift
, RHS
, RHSMask
, DL
))
6174 RHSShift
= NewRHSShift
;
6175 // Have RHS side of the rotate, try to extract the needed shift from the LHS.
6177 if (SDValue NewLHSShift
=
6178 extractShiftForRotate(DAG
, RHSShift
, LHS
, LHSMask
, DL
))
6179 LHSShift
= NewLHSShift
;
6181 // If a side is still missing, nothing else we can do.
6182 if (!RHSShift
|| !LHSShift
)
6185 // At this point we've matched or extracted a shift op on each side.
6187 if (LHSShift
.getOperand(0) != RHSShift
.getOperand(0))
6188 return nullptr; // Not shifting the same value.
6190 if (LHSShift
.getOpcode() == RHSShift
.getOpcode())
6191 return nullptr; // Shifts must disagree.
6193 // Canonicalize shl to left side in a shl/srl pair.
6194 if (RHSShift
.getOpcode() == ISD::SHL
) {
6195 std::swap(LHS
, RHS
);
6196 std::swap(LHSShift
, RHSShift
);
6197 std::swap(LHSMask
, RHSMask
);
6200 unsigned EltSizeInBits
= VT
.getScalarSizeInBits();
6201 SDValue LHSShiftArg
= LHSShift
.getOperand(0);
6202 SDValue LHSShiftAmt
= LHSShift
.getOperand(1);
6203 SDValue RHSShiftArg
= RHSShift
.getOperand(0);
6204 SDValue RHSShiftAmt
= RHSShift
.getOperand(1);
6206 // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
6207 // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
6208 auto MatchRotateSum
= [EltSizeInBits
](ConstantSDNode
*LHS
,
6209 ConstantSDNode
*RHS
) {
6210 return (LHS
->getAPIntValue() + RHS
->getAPIntValue()) == EltSizeInBits
;
6212 if (ISD::matchBinaryPredicate(LHSShiftAmt
, RHSShiftAmt
, MatchRotateSum
)) {
6213 SDValue Rot
= DAG
.getNode(HasROTL
? ISD::ROTL
: ISD::ROTR
, DL
, VT
,
6214 LHSShiftArg
, HasROTL
? LHSShiftAmt
: RHSShiftAmt
);
6216 // If there is an AND of either shifted operand, apply it to the result.
6217 if (LHSMask
.getNode() || RHSMask
.getNode()) {
6218 SDValue AllOnes
= DAG
.getAllOnesConstant(DL
, VT
);
6219 SDValue Mask
= AllOnes
;
6221 if (LHSMask
.getNode()) {
6222 SDValue RHSBits
= DAG
.getNode(ISD::SRL
, DL
, VT
, AllOnes
, RHSShiftAmt
);
6223 Mask
= DAG
.getNode(ISD::AND
, DL
, VT
, Mask
,
6224 DAG
.getNode(ISD::OR
, DL
, VT
, LHSMask
, RHSBits
));
6226 if (RHSMask
.getNode()) {
6227 SDValue LHSBits
= DAG
.getNode(ISD::SHL
, DL
, VT
, AllOnes
, LHSShiftAmt
);
6228 Mask
= DAG
.getNode(ISD::AND
, DL
, VT
, Mask
,
6229 DAG
.getNode(ISD::OR
, DL
, VT
, RHSMask
, LHSBits
));
6232 Rot
= DAG
.getNode(ISD::AND
, DL
, VT
, Rot
, Mask
);
6235 return Rot
.getNode();
6238 // If there is a mask here, and we have a variable shift, we can't be sure
6239 // that we're masking out the right stuff.
6240 if (LHSMask
.getNode() || RHSMask
.getNode())
6243 // If the shift amount is sign/zext/any-extended just peel it off.
6244 SDValue LExtOp0
= LHSShiftAmt
;
6245 SDValue RExtOp0
= RHSShiftAmt
;
6246 if ((LHSShiftAmt
.getOpcode() == ISD::SIGN_EXTEND
||
6247 LHSShiftAmt
.getOpcode() == ISD::ZERO_EXTEND
||
6248 LHSShiftAmt
.getOpcode() == ISD::ANY_EXTEND
||
6249 LHSShiftAmt
.getOpcode() == ISD::TRUNCATE
) &&
6250 (RHSShiftAmt
.getOpcode() == ISD::SIGN_EXTEND
||
6251 RHSShiftAmt
.getOpcode() == ISD::ZERO_EXTEND
||
6252 RHSShiftAmt
.getOpcode() == ISD::ANY_EXTEND
||
6253 RHSShiftAmt
.getOpcode() == ISD::TRUNCATE
)) {
6254 LExtOp0
= LHSShiftAmt
.getOperand(0);
6255 RExtOp0
= RHSShiftAmt
.getOperand(0);
6258 SDNode
*TryL
= MatchRotatePosNeg(LHSShiftArg
, LHSShiftAmt
, RHSShiftAmt
,
6259 LExtOp0
, RExtOp0
, ISD::ROTL
, ISD::ROTR
, DL
);
6263 SDNode
*TryR
= MatchRotatePosNeg(RHSShiftArg
, RHSShiftAmt
, LHSShiftAmt
,
6264 RExtOp0
, LExtOp0
, ISD::ROTR
, ISD::ROTL
, DL
);
6273 /// Represents known origin of an individual byte in load combine pattern. The
6274 /// value of the byte is either constant zero or comes from memory.
6275 struct ByteProvider
{
6276 // For constant zero providers Load is set to nullptr. For memory providers
6277 // Load represents the node which loads the byte from memory.
6278 // ByteOffset is the offset of the byte in the value produced by the load.
6279 LoadSDNode
*Load
= nullptr;
6280 unsigned ByteOffset
= 0;
6282 ByteProvider() = default;
6284 static ByteProvider
getMemory(LoadSDNode
*Load
, unsigned ByteOffset
) {
6285 return ByteProvider(Load
, ByteOffset
);
6288 static ByteProvider
getConstantZero() { return ByteProvider(nullptr, 0); }
6290 bool isConstantZero() const { return !Load
; }
6291 bool isMemory() const { return Load
; }
6293 bool operator==(const ByteProvider
&Other
) const {
6294 return Other
.Load
== Load
&& Other
.ByteOffset
== ByteOffset
;
6298 ByteProvider(LoadSDNode
*Load
, unsigned ByteOffset
)
6299 : Load(Load
), ByteOffset(ByteOffset
) {}
6302 } // end anonymous namespace
6304 /// Recursively traverses the expression calculating the origin of the requested
6305 /// byte of the given value. Returns None if the provider can't be calculated.
6307 /// For all the values except the root of the expression verifies that the value
6308 /// has exactly one use and if it's not true return None. This way if the origin
6309 /// of the byte is returned it's guaranteed that the values which contribute to
6310 /// the byte are not used outside of this expression.
6312 /// Because the parts of the expression are not allowed to have more than one
6313 /// use this function iterates over trees, not DAGs. So it never visits the same
6314 /// node more than once.
6315 static const Optional
<ByteProvider
>
6316 calculateByteProvider(SDValue Op
, unsigned Index
, unsigned Depth
,
6317 bool Root
= false) {
6318 // Typical i64 by i8 pattern requires recursion up to 8 calls depth
6322 if (!Root
&& !Op
.hasOneUse())
6325 assert(Op
.getValueType().isScalarInteger() && "can't handle other types");
6326 unsigned BitWidth
= Op
.getValueSizeInBits();
6327 if (BitWidth
% 8 != 0)
6329 unsigned ByteWidth
= BitWidth
/ 8;
6330 assert(Index
< ByteWidth
&& "invalid index requested");
6333 switch (Op
.getOpcode()) {
6335 auto LHS
= calculateByteProvider(Op
->getOperand(0), Index
, Depth
+ 1);
6338 auto RHS
= calculateByteProvider(Op
->getOperand(1), Index
, Depth
+ 1);
6342 if (LHS
->isConstantZero())
6344 if (RHS
->isConstantZero())
6349 auto ShiftOp
= dyn_cast
<ConstantSDNode
>(Op
->getOperand(1));
6353 uint64_t BitShift
= ShiftOp
->getZExtValue();
6354 if (BitShift
% 8 != 0)
6356 uint64_t ByteShift
= BitShift
/ 8;
6358 return Index
< ByteShift
6359 ? ByteProvider::getConstantZero()
6360 : calculateByteProvider(Op
->getOperand(0), Index
- ByteShift
,
6363 case ISD::ANY_EXTEND
:
6364 case ISD::SIGN_EXTEND
:
6365 case ISD::ZERO_EXTEND
: {
6366 SDValue NarrowOp
= Op
->getOperand(0);
6367 unsigned NarrowBitWidth
= NarrowOp
.getScalarValueSizeInBits();
6368 if (NarrowBitWidth
% 8 != 0)
6370 uint64_t NarrowByteWidth
= NarrowBitWidth
/ 8;
6372 if (Index
>= NarrowByteWidth
)
6373 return Op
.getOpcode() == ISD::ZERO_EXTEND
6374 ? Optional
<ByteProvider
>(ByteProvider::getConstantZero())
6376 return calculateByteProvider(NarrowOp
, Index
, Depth
+ 1);
6379 return calculateByteProvider(Op
->getOperand(0), ByteWidth
- Index
- 1,
6382 auto L
= cast
<LoadSDNode
>(Op
.getNode());
6383 if (!L
->isSimple() || L
->isIndexed())
6386 unsigned NarrowBitWidth
= L
->getMemoryVT().getSizeInBits();
6387 if (NarrowBitWidth
% 8 != 0)
6389 uint64_t NarrowByteWidth
= NarrowBitWidth
/ 8;
6391 if (Index
>= NarrowByteWidth
)
6392 return L
->getExtensionType() == ISD::ZEXTLOAD
6393 ? Optional
<ByteProvider
>(ByteProvider::getConstantZero())
6395 return ByteProvider::getMemory(L
, Index
);
6402 static unsigned LittleEndianByteAt(unsigned BW
, unsigned i
) {
6406 static unsigned BigEndianByteAt(unsigned BW
, unsigned i
) {
6410 // Check if the bytes offsets we are looking at match with either big or
6411 // little endian value loaded. Return true for big endian, false for little
6412 // endian, and None if match failed.
6413 static Optional
<bool> isBigEndian(const SmallVector
<int64_t, 4> &ByteOffsets
,
6414 int64_t FirstOffset
) {
6415 // The endian can be decided only when it is 2 bytes at least.
6416 unsigned Width
= ByteOffsets
.size();
6420 bool BigEndian
= true, LittleEndian
= true;
6421 for (unsigned i
= 0; i
< Width
; i
++) {
6422 int64_t CurrentByteOffset
= ByteOffsets
[i
] - FirstOffset
;
6423 LittleEndian
&= CurrentByteOffset
== LittleEndianByteAt(Width
, i
);
6424 BigEndian
&= CurrentByteOffset
== BigEndianByteAt(Width
, i
);
6425 if (!BigEndian
&& !LittleEndian
)
6429 assert((BigEndian
!= LittleEndian
) && "It should be either big endian or"
6434 static SDValue
stripTruncAndExt(SDValue Value
) {
6435 switch (Value
.getOpcode()) {
6437 case ISD::ZERO_EXTEND
:
6438 case ISD::SIGN_EXTEND
:
6439 case ISD::ANY_EXTEND
:
6440 return stripTruncAndExt(Value
.getOperand(0));
6445 /// Match a pattern where a wide type scalar value is stored by several narrow
6446 /// stores. Fold it into a single store or a BSWAP and a store if the targets
6449 /// Assuming little endian target:
6452 /// p[0] = (val >> 0) & 0xFF;
6453 /// p[1] = (val >> 8) & 0xFF;
6454 /// p[2] = (val >> 16) & 0xFF;
6455 /// p[3] = (val >> 24) & 0xFF;
6457 /// *((i32)p) = val;
6461 /// p[0] = (val >> 24) & 0xFF;
6462 /// p[1] = (val >> 16) & 0xFF;
6463 /// p[2] = (val >> 8) & 0xFF;
6464 /// p[3] = (val >> 0) & 0xFF;
6466 /// *((i32)p) = BSWAP(val);
6467 SDValue
DAGCombiner::MatchStoreCombine(StoreSDNode
*N
) {
6468 // Collect all the stores in the chain.
6470 SmallVector
<StoreSDNode
*, 8> Stores
;
6471 for (StoreSDNode
*Store
= N
; Store
; Store
= dyn_cast
<StoreSDNode
>(Chain
)) {
6472 // TODO: Allow unordered atomics when wider type is legal (see D66309)
6473 if (Store
->getMemoryVT() != MVT::i8
||
6474 !Store
->isSimple() || Store
->isIndexed())
6476 Stores
.push_back(Store
);
6477 Chain
= Store
->getChain();
6479 // Handle the simple type only.
6480 unsigned Width
= Stores
.size();
6481 EVT VT
= EVT::getIntegerVT(
6482 *DAG
.getContext(), Width
* N
->getMemoryVT().getSizeInBits());
6483 if (VT
!= MVT::i16
&& VT
!= MVT::i32
&& VT
!= MVT::i64
)
6486 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
6487 if (LegalOperations
&& !TLI
.isOperationLegal(ISD::STORE
, VT
))
6490 // Check if all the bytes of the combined value we are looking at are stored
6491 // to the same base address. Collect bytes offsets from Base address into
6493 SDValue CombinedValue
;
6494 SmallVector
<int64_t, 4> ByteOffsets(Width
, INT64_MAX
);
6495 int64_t FirstOffset
= INT64_MAX
;
6496 StoreSDNode
*FirstStore
= nullptr;
6497 Optional
<BaseIndexOffset
> Base
;
6498 for (auto Store
: Stores
) {
6499 // All the stores store different byte of the CombinedValue. A truncate is
6500 // required to get that byte value.
6501 SDValue Trunc
= Store
->getValue();
6502 if (Trunc
.getOpcode() != ISD::TRUNCATE
)
6504 // A shift operation is required to get the right byte offset, except the
6507 SDValue Value
= Trunc
.getOperand(0);
6508 if (Value
.getOpcode() == ISD::SRL
||
6509 Value
.getOpcode() == ISD::SRA
) {
6510 ConstantSDNode
*ShiftOffset
=
6511 dyn_cast
<ConstantSDNode
>(Value
.getOperand(1));
6512 // Trying to match the following pattern. The shift offset must be
6513 // a constant and a multiple of 8. It is the byte offset in "y".
6515 // x = srl y, offset
6518 if (!ShiftOffset
|| (ShiftOffset
->getSExtValue() % 8))
6521 Offset
= ShiftOffset
->getSExtValue()/8;
6522 Value
= Value
.getOperand(0);
6525 // Stores must share the same combined value with different offsets.
6527 CombinedValue
= Value
;
6528 else if (stripTruncAndExt(CombinedValue
) != stripTruncAndExt(Value
))
6531 // The trunc and all the extend operation should be stripped to get the
6532 // real value we are stored.
6533 else if (CombinedValue
.getValueType() != VT
) {
6534 if (Value
.getValueType() == VT
||
6535 Value
.getValueSizeInBits() > CombinedValue
.getValueSizeInBits())
6536 CombinedValue
= Value
;
6537 // Give up if the combined value type is smaller than the store size.
6538 if (CombinedValue
.getValueSizeInBits() < VT
.getSizeInBits())
6542 // Stores must share the same base address
6543 BaseIndexOffset Ptr
= BaseIndexOffset::match(Store
, DAG
);
6544 int64_t ByteOffsetFromBase
= 0;
6547 else if (!Base
->equalBaseIndex(Ptr
, DAG
, ByteOffsetFromBase
))
6550 // Remember the first byte store
6551 if (ByteOffsetFromBase
< FirstOffset
) {
6553 FirstOffset
= ByteOffsetFromBase
;
6555 // Map the offset in the store and the offset in the combined value, and
6556 // early return if it has been set before.
6557 if (Offset
< 0 || Offset
>= Width
|| ByteOffsets
[Offset
] != INT64_MAX
)
6559 ByteOffsets
[Offset
] = ByteOffsetFromBase
;
6562 assert(FirstOffset
!= INT64_MAX
&& "First byte offset must be set");
6563 assert(FirstStore
&& "First store must be set");
6565 // Check if the bytes of the combined value we are looking at match with
6566 // either big or little endian value store.
6567 Optional
<bool> IsBigEndian
= isBigEndian(ByteOffsets
, FirstOffset
);
6568 if (!IsBigEndian
.hasValue())
6571 // The node we are looking at matches with the pattern, check if we can
6572 // replace it with a single bswap if needed and store.
6574 // If the store needs byte swap check if the target supports it
6575 bool NeedsBswap
= DAG
.getDataLayout().isBigEndian() != *IsBigEndian
;
6577 // Before legalize we can introduce illegal bswaps which will be later
6578 // converted to an explicit bswap sequence. This way we end up with a single
6579 // store and byte shuffling instead of several stores and byte shuffling.
6580 if (NeedsBswap
&& LegalOperations
&& !TLI
.isOperationLegal(ISD::BSWAP
, VT
))
6583 // Check that a store of the wide type is both allowed and fast on the target
6586 TLI
.allowsMemoryAccess(*DAG
.getContext(), DAG
.getDataLayout(), VT
,
6587 *FirstStore
->getMemOperand(), &Fast
);
6588 if (!Allowed
|| !Fast
)
6591 if (VT
!= CombinedValue
.getValueType()) {
6592 assert(CombinedValue
.getValueType().getSizeInBits() > VT
.getSizeInBits() &&
6593 "Get unexpected store value to combine");
6594 CombinedValue
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), VT
,
6599 CombinedValue
= DAG
.getNode(ISD::BSWAP
, SDLoc(N
), VT
, CombinedValue
);
6602 DAG
.getStore(Chain
, SDLoc(N
), CombinedValue
, FirstStore
->getBasePtr(),
6603 FirstStore
->getPointerInfo(), FirstStore
->getAlignment());
6605 // Rely on other DAG combine rules to remove the other individual stores.
6606 DAG
.ReplaceAllUsesWith(N
, NewStore
.getNode());
6610 /// Match a pattern where a wide type scalar value is loaded by several narrow
6611 /// loads and combined by shifts and ors. Fold it into a single load or a load
6612 /// and a BSWAP if the targets supports it.
6614 /// Assuming little endian target:
6616 /// i32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24)
6618 /// i32 val = *((i32)a)
6621 /// i32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3]
6623 /// i32 val = BSWAP(*((i32)a))
6625 /// TODO: This rule matches complex patterns with OR node roots and doesn't
6626 /// interact well with the worklist mechanism. When a part of the pattern is
6627 /// updated (e.g. one of the loads) its direct users are put into the worklist,
6628 /// but the root node of the pattern which triggers the load combine is not
6629 /// necessarily a direct user of the changed node. For example, once the address
6630 /// of t28 load is reassociated load combine won't be triggered:
6631 /// t25: i32 = add t4, Constant:i32<2>
6632 /// t26: i64 = sign_extend t25
6633 /// t27: i64 = add t2, t26
6634 /// t28: i8,ch = load<LD1[%tmp9]> t0, t27, undef:i64
6635 /// t29: i32 = zero_extend t28
6636 /// t32: i32 = shl t29, Constant:i8<8>
6637 /// t33: i32 = or t23, t32
6638 /// As a possible fix visitLoad can check if the load can be a part of a load
6639 /// combine pattern and add corresponding OR roots to the worklist.
6640 SDValue
DAGCombiner::MatchLoadCombine(SDNode
*N
) {
6641 assert(N
->getOpcode() == ISD::OR
&&
6642 "Can only match load combining against OR nodes");
6644 // Handles simple types only
6645 EVT VT
= N
->getValueType(0);
6646 if (VT
!= MVT::i16
&& VT
!= MVT::i32
&& VT
!= MVT::i64
)
6648 unsigned ByteWidth
= VT
.getSizeInBits() / 8;
6650 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
6651 // Before legalize we can introduce too wide illegal loads which will be later
6652 // split into legal sized loads. This enables us to combine i64 load by i8
6653 // patterns to a couple of i32 loads on 32 bit targets.
6654 if (LegalOperations
&& !TLI
.isOperationLegal(ISD::LOAD
, VT
))
6657 bool IsBigEndianTarget
= DAG
.getDataLayout().isBigEndian();
6658 auto MemoryByteOffset
= [&] (ByteProvider P
) {
6659 assert(P
.isMemory() && "Must be a memory byte provider");
6660 unsigned LoadBitWidth
= P
.Load
->getMemoryVT().getSizeInBits();
6661 assert(LoadBitWidth
% 8 == 0 &&
6662 "can only analyze providers for individual bytes not bit");
6663 unsigned LoadByteWidth
= LoadBitWidth
/ 8;
6664 return IsBigEndianTarget
6665 ? BigEndianByteAt(LoadByteWidth
, P
.ByteOffset
)
6666 : LittleEndianByteAt(LoadByteWidth
, P
.ByteOffset
);
6669 Optional
<BaseIndexOffset
> Base
;
6672 SmallPtrSet
<LoadSDNode
*, 8> Loads
;
6673 Optional
<ByteProvider
> FirstByteProvider
;
6674 int64_t FirstOffset
= INT64_MAX
;
6676 // Check if all the bytes of the OR we are looking at are loaded from the same
6677 // base address. Collect bytes offsets from Base address in ByteOffsets.
6678 SmallVector
<int64_t, 4> ByteOffsets(ByteWidth
);
6679 for (unsigned i
= 0; i
< ByteWidth
; i
++) {
6680 auto P
= calculateByteProvider(SDValue(N
, 0), i
, 0, /*Root=*/true);
6681 if (!P
|| !P
->isMemory()) // All the bytes must be loaded from memory
6684 LoadSDNode
*L
= P
->Load
;
6685 assert(L
->hasNUsesOfValue(1, 0) && L
->isSimple() &&
6687 "Must be enforced by calculateByteProvider");
6688 assert(L
->getOffset().isUndef() && "Unindexed load must have undef offset");
6690 // All loads must share the same chain
6691 SDValue LChain
= L
->getChain();
6694 else if (Chain
!= LChain
)
6697 // Loads must share the same base address
6698 BaseIndexOffset Ptr
= BaseIndexOffset::match(L
, DAG
);
6699 int64_t ByteOffsetFromBase
= 0;
6702 else if (!Base
->equalBaseIndex(Ptr
, DAG
, ByteOffsetFromBase
))
6705 // Calculate the offset of the current byte from the base address
6706 ByteOffsetFromBase
+= MemoryByteOffset(*P
);
6707 ByteOffsets
[i
] = ByteOffsetFromBase
;
6709 // Remember the first byte load
6710 if (ByteOffsetFromBase
< FirstOffset
) {
6711 FirstByteProvider
= P
;
6712 FirstOffset
= ByteOffsetFromBase
;
6717 assert(!Loads
.empty() && "All the bytes of the value must be loaded from "
6718 "memory, so there must be at least one load which produces the value");
6719 assert(Base
&& "Base address of the accessed memory location must be set");
6720 assert(FirstOffset
!= INT64_MAX
&& "First byte offset must be set");
6722 // Check if the bytes of the OR we are looking at match with either big or
6723 // little endian value load
6724 Optional
<bool> IsBigEndian
= isBigEndian(ByteOffsets
, FirstOffset
);
6725 if (!IsBigEndian
.hasValue())
6728 assert(FirstByteProvider
&& "must be set");
6730 // Ensure that the first byte is loaded from zero offset of the first load.
6731 // So the combined value can be loaded from the first load address.
6732 if (MemoryByteOffset(*FirstByteProvider
) != 0)
6734 LoadSDNode
*FirstLoad
= FirstByteProvider
->Load
;
6736 // The node we are looking at matches with the pattern, check if we can
6737 // replace it with a single load and bswap if needed.
6739 // If the load needs byte swap check if the target supports it
6740 bool NeedsBswap
= IsBigEndianTarget
!= *IsBigEndian
;
6742 // Before legalize we can introduce illegal bswaps which will be later
6743 // converted to an explicit bswap sequence. This way we end up with a single
6744 // load and byte shuffling instead of several loads and byte shuffling.
6745 if (NeedsBswap
&& LegalOperations
&& !TLI
.isOperationLegal(ISD::BSWAP
, VT
))
6748 // Check that a load of the wide type is both allowed and fast on the target
6750 bool Allowed
= TLI
.allowsMemoryAccess(*DAG
.getContext(), DAG
.getDataLayout(),
6751 VT
, *FirstLoad
->getMemOperand(), &Fast
);
6752 if (!Allowed
|| !Fast
)
6756 DAG
.getLoad(VT
, SDLoc(N
), Chain
, FirstLoad
->getBasePtr(),
6757 FirstLoad
->getPointerInfo(), FirstLoad
->getAlignment());
6759 // Transfer chain users from old loads to the new load.
6760 for (LoadSDNode
*L
: Loads
)
6761 DAG
.ReplaceAllUsesOfValueWith(SDValue(L
, 1), SDValue(NewLoad
.getNode(), 1));
6763 return NeedsBswap
? DAG
.getNode(ISD::BSWAP
, SDLoc(N
), VT
, NewLoad
) : NewLoad
;
6766 // If the target has andn, bsl, or a similar bit-select instruction,
6767 // we want to unfold masked merge, with canonical pattern of:
6769 // ((x ^ y) & m) ^ y
6772 // (x & m) | (y & ~m)
6773 // If y is a constant, and the 'andn' does not work with immediates,
6774 // we unfold into a different pattern:
6775 // ~(~x & m) & (m | y)
6776 // NOTE: we don't unfold the pattern if 'xor' is actually a 'not', because at
6777 // the very least that breaks andnpd / andnps patterns, and because those
6778 // patterns are simplified in IR and shouldn't be created in the DAG
6779 SDValue
DAGCombiner::unfoldMaskedMerge(SDNode
*N
) {
6780 assert(N
->getOpcode() == ISD::XOR
);
6782 // Don't touch 'not' (i.e. where y = -1).
6783 if (isAllOnesOrAllOnesSplat(N
->getOperand(1)))
6786 EVT VT
= N
->getValueType(0);
6788 // There are 3 commutable operators in the pattern,
6789 // so we have to deal with 8 possible variants of the basic pattern.
6791 auto matchAndXor
= [&X
, &Y
, &M
](SDValue And
, unsigned XorIdx
, SDValue Other
) {
6792 if (And
.getOpcode() != ISD::AND
|| !And
.hasOneUse())
6794 SDValue Xor
= And
.getOperand(XorIdx
);
6795 if (Xor
.getOpcode() != ISD::XOR
|| !Xor
.hasOneUse())
6797 SDValue Xor0
= Xor
.getOperand(0);
6798 SDValue Xor1
= Xor
.getOperand(1);
6799 // Don't touch 'not' (i.e. where y = -1).
6800 if (isAllOnesOrAllOnesSplat(Xor1
))
6803 std::swap(Xor0
, Xor1
);
6808 M
= And
.getOperand(XorIdx
? 0 : 1);
6812 SDValue N0
= N
->getOperand(0);
6813 SDValue N1
= N
->getOperand(1);
6814 if (!matchAndXor(N0
, 0, N1
) && !matchAndXor(N0
, 1, N1
) &&
6815 !matchAndXor(N1
, 0, N0
) && !matchAndXor(N1
, 1, N0
))
6818 // Don't do anything if the mask is constant. This should not be reachable.
6819 // InstCombine should have already unfolded this pattern, and DAGCombiner
6820 // probably shouldn't produce it, too.
6821 if (isa
<ConstantSDNode
>(M
.getNode()))
6824 // We can transform if the target has AndNot
6825 if (!TLI
.hasAndNot(M
))
6830 // If Y is a constant, check that 'andn' works with immediates.
6831 if (!TLI
.hasAndNot(Y
)) {
6832 assert(TLI
.hasAndNot(X
) && "Only mask is a variable? Unreachable.");
6833 // If not, we need to do a bit more work to make sure andn is still used.
6834 SDValue NotX
= DAG
.getNOT(DL
, X
, VT
);
6835 SDValue LHS
= DAG
.getNode(ISD::AND
, DL
, VT
, NotX
, M
);
6836 SDValue NotLHS
= DAG
.getNOT(DL
, LHS
, VT
);
6837 SDValue RHS
= DAG
.getNode(ISD::OR
, DL
, VT
, M
, Y
);
6838 return DAG
.getNode(ISD::AND
, DL
, VT
, NotLHS
, RHS
);
6841 SDValue LHS
= DAG
.getNode(ISD::AND
, DL
, VT
, X
, M
);
6842 SDValue NotM
= DAG
.getNOT(DL
, M
, VT
);
6843 SDValue RHS
= DAG
.getNode(ISD::AND
, DL
, VT
, Y
, NotM
);
6845 return DAG
.getNode(ISD::OR
, DL
, VT
, LHS
, RHS
);
6848 SDValue
DAGCombiner::visitXOR(SDNode
*N
) {
6849 SDValue N0
= N
->getOperand(0);
6850 SDValue N1
= N
->getOperand(1);
6851 EVT VT
= N0
.getValueType();
6854 if (VT
.isVector()) {
6855 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
6858 // fold (xor x, 0) -> x, vector edition
6859 if (ISD::isBuildVectorAllZeros(N0
.getNode()))
6861 if (ISD::isBuildVectorAllZeros(N1
.getNode()))
6865 // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
6867 if (N0
.isUndef() && N1
.isUndef())
6868 return DAG
.getConstant(0, DL
, VT
);
6869 // fold (xor x, undef) -> undef
6874 // fold (xor c1, c2) -> c1^c2
6875 ConstantSDNode
*N0C
= getAsNonOpaqueConstant(N0
);
6876 ConstantSDNode
*N1C
= getAsNonOpaqueConstant(N1
);
6878 return DAG
.FoldConstantArithmetic(ISD::XOR
, DL
, VT
, N0C
, N1C
);
6879 // canonicalize constant to RHS
6880 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
6881 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
6882 return DAG
.getNode(ISD::XOR
, DL
, VT
, N1
, N0
);
6883 // fold (xor x, 0) -> x
6884 if (isNullConstant(N1
))
6887 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
6891 if (SDValue RXOR
= reassociateOps(ISD::XOR
, DL
, N0
, N1
, N
->getFlags()))
6894 // fold !(x cc y) -> (x !cc y)
6895 unsigned N0Opcode
= N0
.getOpcode();
6896 SDValue LHS
, RHS
, CC
;
6897 if (TLI
.isConstTrueVal(N1
.getNode()) && isSetCCEquivalent(N0
, LHS
, RHS
, CC
)) {
6898 ISD::CondCode NotCC
= ISD::getSetCCInverse(cast
<CondCodeSDNode
>(CC
)->get(),
6899 LHS
.getValueType().isInteger());
6900 if (!LegalOperations
||
6901 TLI
.isCondCodeLegal(NotCC
, LHS
.getSimpleValueType())) {
6904 llvm_unreachable("Unhandled SetCC Equivalent!");
6906 return DAG
.getSetCC(SDLoc(N0
), VT
, LHS
, RHS
, NotCC
);
6907 case ISD::SELECT_CC
:
6908 return DAG
.getSelectCC(SDLoc(N0
), LHS
, RHS
, N0
.getOperand(2),
6909 N0
.getOperand(3), NotCC
);
6914 // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
6915 if (isOneConstant(N1
) && N0Opcode
== ISD::ZERO_EXTEND
&& N0
.hasOneUse() &&
6916 isSetCCEquivalent(N0
.getOperand(0), LHS
, RHS
, CC
)){
6917 SDValue V
= N0
.getOperand(0);
6919 V
= DAG
.getNode(ISD::XOR
, DL0
, V
.getValueType(), V
,
6920 DAG
.getConstant(1, DL0
, V
.getValueType()));
6921 AddToWorklist(V
.getNode());
6922 return DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, V
);
6925 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
6926 if (isOneConstant(N1
) && VT
== MVT::i1
&& N0
.hasOneUse() &&
6927 (N0Opcode
== ISD::OR
|| N0Opcode
== ISD::AND
)) {
6928 SDValue N00
= N0
.getOperand(0), N01
= N0
.getOperand(1);
6929 if (isOneUseSetCC(N01
) || isOneUseSetCC(N00
)) {
6930 unsigned NewOpcode
= N0Opcode
== ISD::AND
? ISD::OR
: ISD::AND
;
6931 N00
= DAG
.getNode(ISD::XOR
, SDLoc(N00
), VT
, N00
, N1
); // N00 = ~N00
6932 N01
= DAG
.getNode(ISD::XOR
, SDLoc(N01
), VT
, N01
, N1
); // N01 = ~N01
6933 AddToWorklist(N00
.getNode()); AddToWorklist(N01
.getNode());
6934 return DAG
.getNode(NewOpcode
, DL
, VT
, N00
, N01
);
6937 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
6938 if (isAllOnesConstant(N1
) && N0
.hasOneUse() &&
6939 (N0Opcode
== ISD::OR
|| N0Opcode
== ISD::AND
)) {
6940 SDValue N00
= N0
.getOperand(0), N01
= N0
.getOperand(1);
6941 if (isa
<ConstantSDNode
>(N01
) || isa
<ConstantSDNode
>(N00
)) {
6942 unsigned NewOpcode
= N0Opcode
== ISD::AND
? ISD::OR
: ISD::AND
;
6943 N00
= DAG
.getNode(ISD::XOR
, SDLoc(N00
), VT
, N00
, N1
); // N00 = ~N00
6944 N01
= DAG
.getNode(ISD::XOR
, SDLoc(N01
), VT
, N01
, N1
); // N01 = ~N01
6945 AddToWorklist(N00
.getNode()); AddToWorklist(N01
.getNode());
6946 return DAG
.getNode(NewOpcode
, DL
, VT
, N00
, N01
);
6950 // fold (not (neg x)) -> (add X, -1)
6951 // FIXME: This can be generalized to (not (sub Y, X)) -> (add X, ~Y) if
6952 // Y is a constant or the subtract has a single use.
6953 if (isAllOnesConstant(N1
) && N0
.getOpcode() == ISD::SUB
&&
6954 isNullConstant(N0
.getOperand(0))) {
6955 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(1),
6956 DAG
.getAllOnesConstant(DL
, VT
));
6959 // fold (xor (and x, y), y) -> (and (not x), y)
6960 if (N0Opcode
== ISD::AND
&& N0
.hasOneUse() && N0
->getOperand(1) == N1
) {
6961 SDValue X
= N0
.getOperand(0);
6962 SDValue NotX
= DAG
.getNOT(SDLoc(X
), X
, VT
);
6963 AddToWorklist(NotX
.getNode());
6964 return DAG
.getNode(ISD::AND
, DL
, VT
, NotX
, N1
);
6967 if ((N0Opcode
== ISD::SRL
|| N0Opcode
== ISD::SHL
) && N0
.hasOneUse()) {
6968 ConstantSDNode
*XorC
= isConstOrConstSplat(N1
);
6969 ConstantSDNode
*ShiftC
= isConstOrConstSplat(N0
.getOperand(1));
6970 unsigned BitWidth
= VT
.getScalarSizeInBits();
6971 if (XorC
&& ShiftC
) {
6972 // Don't crash on an oversized shift. We can not guarantee that a bogus
6973 // shift has been simplified to undef.
6974 uint64_t ShiftAmt
= ShiftC
->getLimitedValue();
6975 if (ShiftAmt
< BitWidth
) {
6976 APInt Ones
= APInt::getAllOnesValue(BitWidth
);
6977 Ones
= N0Opcode
== ISD::SHL
? Ones
.shl(ShiftAmt
) : Ones
.lshr(ShiftAmt
);
6978 if (XorC
->getAPIntValue() == Ones
) {
6979 // If the xor constant is a shifted -1, do a 'not' before the shift:
6980 // xor (X << ShiftC), XorC --> (not X) << ShiftC
6981 // xor (X >> ShiftC), XorC --> (not X) >> ShiftC
6982 SDValue Not
= DAG
.getNOT(DL
, N0
.getOperand(0), VT
);
6983 return DAG
.getNode(N0Opcode
, DL
, VT
, Not
, N0
.getOperand(1));
6989 // fold Y = sra (X, size(X)-1); xor (add (X, Y), Y) -> (abs X)
6990 if (TLI
.isOperationLegalOrCustom(ISD::ABS
, VT
)) {
6991 SDValue A
= N0Opcode
== ISD::ADD
? N0
: N1
;
6992 SDValue S
= N0Opcode
== ISD::SRA
? N0
: N1
;
6993 if (A
.getOpcode() == ISD::ADD
&& S
.getOpcode() == ISD::SRA
) {
6994 SDValue A0
= A
.getOperand(0), A1
= A
.getOperand(1);
6995 SDValue S0
= S
.getOperand(0);
6996 if ((A0
== S
&& A1
== S0
) || (A1
== S
&& A0
== S0
)) {
6997 unsigned OpSizeInBits
= VT
.getScalarSizeInBits();
6998 if (ConstantSDNode
*C
= isConstOrConstSplat(S
.getOperand(1)))
6999 if (C
->getAPIntValue() == (OpSizeInBits
- 1))
7000 return DAG
.getNode(ISD::ABS
, DL
, VT
, S0
);
7005 // fold (xor x, x) -> 0
7007 return tryFoldToZero(DL
, TLI
, VT
, DAG
, LegalOperations
);
7009 // fold (xor (shl 1, x), -1) -> (rotl ~1, x)
7010 // Here is a concrete example of this equivalence:
7012 // i16 shl == 1 << 14 == 16384 == 0b0100000000000000
7013 // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111
7017 // i16 ~1 == 0b1111111111111110
7018 // i16 rol(~1, 14) == 0b1011111111111111
7020 // Some additional tips to help conceptualize this transform:
7021 // - Try to see the operation as placing a single zero in a value of all ones.
7022 // - There exists no value for x which would allow the result to contain zero.
7023 // - Values of x larger than the bitwidth are undefined and do not require a
7024 // consistent result.
7025 // - Pushing the zero left requires shifting one bits in from the right.
7026 // A rotate left of ~1 is a nice way of achieving the desired result.
7027 if (TLI
.isOperationLegalOrCustom(ISD::ROTL
, VT
) && N0Opcode
== ISD::SHL
&&
7028 isAllOnesConstant(N1
) && isOneConstant(N0
.getOperand(0))) {
7029 return DAG
.getNode(ISD::ROTL
, DL
, VT
, DAG
.getConstant(~1, DL
, VT
),
7033 // Simplify: xor (op x...), (op y...) -> (op (xor x, y))
7034 if (N0Opcode
== N1
.getOpcode())
7035 if (SDValue V
= hoistLogicOpWithSameOpcodeHands(N
))
7038 // Unfold ((x ^ y) & m) ^ y into (x & m) | (y & ~m) if profitable
7039 if (SDValue MM
= unfoldMaskedMerge(N
))
7042 // Simplify the expression using non-local knowledge.
7043 if (SimplifyDemandedBits(SDValue(N
, 0)))
7044 return SDValue(N
, 0);
7049 /// If we have a shift-by-constant of a bitwise logic op that itself has a
7050 /// shift-by-constant operand with identical opcode, we may be able to convert
7051 /// that into 2 independent shifts followed by the logic op. This is a
7052 /// throughput improvement.
7053 static SDValue
combineShiftOfShiftedLogic(SDNode
*Shift
, SelectionDAG
&DAG
) {
7054 // Match a one-use bitwise logic op.
7055 SDValue LogicOp
= Shift
->getOperand(0);
7056 if (!LogicOp
.hasOneUse())
7059 unsigned LogicOpcode
= LogicOp
.getOpcode();
7060 if (LogicOpcode
!= ISD::AND
&& LogicOpcode
!= ISD::OR
&&
7061 LogicOpcode
!= ISD::XOR
)
7064 // Find a matching one-use shift by constant.
7065 unsigned ShiftOpcode
= Shift
->getOpcode();
7066 SDValue C1
= Shift
->getOperand(1);
7067 ConstantSDNode
*C1Node
= isConstOrConstSplat(C1
);
7068 assert(C1Node
&& "Expected a shift with constant operand");
7069 const APInt
&C1Val
= C1Node
->getAPIntValue();
7070 auto matchFirstShift
= [&](SDValue V
, SDValue
&ShiftOp
,
7071 const APInt
*&ShiftAmtVal
) {
7072 if (V
.getOpcode() != ShiftOpcode
|| !V
.hasOneUse())
7075 ConstantSDNode
*ShiftCNode
= isConstOrConstSplat(V
.getOperand(1));
7079 // Capture the shifted operand and shift amount value.
7080 ShiftOp
= V
.getOperand(0);
7081 ShiftAmtVal
= &ShiftCNode
->getAPIntValue();
7083 // Shift amount types do not have to match their operand type, so check that
7084 // the constants are the same width.
7085 if (ShiftAmtVal
->getBitWidth() != C1Val
.getBitWidth())
7088 // The fold is not valid if the sum of the shift values exceeds bitwidth.
7089 if ((*ShiftAmtVal
+ C1Val
).uge(V
.getScalarValueSizeInBits()))
7095 // Logic ops are commutative, so check each operand for a match.
7098 if (matchFirstShift(LogicOp
.getOperand(0), X
, C0Val
))
7099 Y
= LogicOp
.getOperand(1);
7100 else if (matchFirstShift(LogicOp
.getOperand(1), X
, C0Val
))
7101 Y
= LogicOp
.getOperand(0);
7105 // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1)
7107 EVT VT
= Shift
->getValueType(0);
7108 EVT ShiftAmtVT
= Shift
->getOperand(1).getValueType();
7109 SDValue ShiftSumC
= DAG
.getConstant(*C0Val
+ C1Val
, DL
, ShiftAmtVT
);
7110 SDValue NewShift1
= DAG
.getNode(ShiftOpcode
, DL
, VT
, X
, ShiftSumC
);
7111 SDValue NewShift2
= DAG
.getNode(ShiftOpcode
, DL
, VT
, Y
, C1
);
7112 return DAG
.getNode(LogicOpcode
, DL
, VT
, NewShift1
, NewShift2
);
7115 /// Handle transforms common to the three shifts, when the shift amount is a
7117 /// We are looking for: (shift being one of shl/sra/srl)
7118 /// shift (binop X, C0), C1
7119 /// And want to transform into:
7120 /// binop (shift X, C1), (shift C0, C1)
7121 SDValue
DAGCombiner::visitShiftByConstant(SDNode
*N
) {
7122 assert(isConstOrConstSplat(N
->getOperand(1)) && "Expected constant operand");
7124 // Do not turn a 'not' into a regular xor.
7125 if (isBitwiseNot(N
->getOperand(0)))
7128 // The inner binop must be one-use, since we want to replace it.
7129 SDValue LHS
= N
->getOperand(0);
7130 if (!LHS
.hasOneUse() || !TLI
.isDesirableToCommuteWithShift(N
, Level
))
7133 // TODO: This is limited to early combining because it may reveal regressions
7134 // otherwise. But since we just checked a target hook to see if this is
7135 // desirable, that should have filtered out cases where this interferes
7136 // with some other pattern matching.
7138 if (SDValue R
= combineShiftOfShiftedLogic(N
, DAG
))
7141 // We want to pull some binops through shifts, so that we have (and (shift))
7142 // instead of (shift (and)), likewise for add, or, xor, etc. This sort of
7143 // thing happens with address calculations, so it's important to canonicalize
7145 switch (LHS
.getOpcode()) {
7153 if (N
->getOpcode() != ISD::SHL
)
7154 return SDValue(); // only shl(add) not sr[al](add).
7158 // We require the RHS of the binop to be a constant and not opaque as well.
7159 ConstantSDNode
*BinOpCst
= getAsNonOpaqueConstant(LHS
.getOperand(1));
7163 // FIXME: disable this unless the input to the binop is a shift by a constant
7164 // or is copy/select. Enable this in other cases when figure out it's exactly
7166 SDValue BinOpLHSVal
= LHS
.getOperand(0);
7167 bool IsShiftByConstant
= (BinOpLHSVal
.getOpcode() == ISD::SHL
||
7168 BinOpLHSVal
.getOpcode() == ISD::SRA
||
7169 BinOpLHSVal
.getOpcode() == ISD::SRL
) &&
7170 isa
<ConstantSDNode
>(BinOpLHSVal
.getOperand(1));
7171 bool IsCopyOrSelect
= BinOpLHSVal
.getOpcode() == ISD::CopyFromReg
||
7172 BinOpLHSVal
.getOpcode() == ISD::SELECT
;
7174 if (!IsShiftByConstant
&& !IsCopyOrSelect
)
7177 if (IsCopyOrSelect
&& N
->hasOneUse())
7180 // Fold the constants, shifting the binop RHS by the shift amount.
7182 EVT VT
= N
->getValueType(0);
7183 SDValue NewRHS
= DAG
.getNode(N
->getOpcode(), DL
, VT
, LHS
.getOperand(1),
7185 assert(isa
<ConstantSDNode
>(NewRHS
) && "Folding was not successful!");
7187 SDValue NewShift
= DAG
.getNode(N
->getOpcode(), DL
, VT
, LHS
.getOperand(0),
7189 return DAG
.getNode(LHS
.getOpcode(), DL
, VT
, NewShift
, NewRHS
);
7192 SDValue
DAGCombiner::distributeTruncateThroughAnd(SDNode
*N
) {
7193 assert(N
->getOpcode() == ISD::TRUNCATE
);
7194 assert(N
->getOperand(0).getOpcode() == ISD::AND
);
7196 // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC)
7197 EVT TruncVT
= N
->getValueType(0);
7198 if (N
->hasOneUse() && N
->getOperand(0).hasOneUse() &&
7199 TLI
.isTypeDesirableForOp(ISD::AND
, TruncVT
)) {
7200 SDValue N01
= N
->getOperand(0).getOperand(1);
7201 if (isConstantOrConstantVector(N01
, /* NoOpaques */ true)) {
7203 SDValue N00
= N
->getOperand(0).getOperand(0);
7204 SDValue Trunc00
= DAG
.getNode(ISD::TRUNCATE
, DL
, TruncVT
, N00
);
7205 SDValue Trunc01
= DAG
.getNode(ISD::TRUNCATE
, DL
, TruncVT
, N01
);
7206 AddToWorklist(Trunc00
.getNode());
7207 AddToWorklist(Trunc01
.getNode());
7208 return DAG
.getNode(ISD::AND
, DL
, TruncVT
, Trunc00
, Trunc01
);
7215 SDValue
DAGCombiner::visitRotate(SDNode
*N
) {
7217 SDValue N0
= N
->getOperand(0);
7218 SDValue N1
= N
->getOperand(1);
7219 EVT VT
= N
->getValueType(0);
7220 unsigned Bitsize
= VT
.getScalarSizeInBits();
7222 // fold (rot x, 0) -> x
7223 if (isNullOrNullSplat(N1
))
7226 // fold (rot x, c) -> x iff (c % BitSize) == 0
7227 if (isPowerOf2_32(Bitsize
) && Bitsize
> 1) {
7228 APInt
ModuloMask(N1
.getScalarValueSizeInBits(), Bitsize
- 1);
7229 if (DAG
.MaskedValueIsZero(N1
, ModuloMask
))
7233 // fold (rot x, c) -> (rot x, c % BitSize)
7234 // TODO - support non-uniform vector amounts.
7235 if (ConstantSDNode
*Cst
= isConstOrConstSplat(N1
)) {
7236 if (Cst
->getAPIntValue().uge(Bitsize
)) {
7237 uint64_t RotAmt
= Cst
->getAPIntValue().urem(Bitsize
);
7238 return DAG
.getNode(N
->getOpcode(), dl
, VT
, N0
,
7239 DAG
.getConstant(RotAmt
, dl
, N1
.getValueType()));
7243 // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))).
7244 if (N1
.getOpcode() == ISD::TRUNCATE
&&
7245 N1
.getOperand(0).getOpcode() == ISD::AND
) {
7246 if (SDValue NewOp1
= distributeTruncateThroughAnd(N1
.getNode()))
7247 return DAG
.getNode(N
->getOpcode(), dl
, VT
, N0
, NewOp1
);
7250 unsigned NextOp
= N0
.getOpcode();
7251 // fold (rot* (rot* x, c2), c1) -> (rot* x, c1 +- c2 % bitsize)
7252 if (NextOp
== ISD::ROTL
|| NextOp
== ISD::ROTR
) {
7253 SDNode
*C1
= DAG
.isConstantIntBuildVectorOrConstantInt(N1
);
7254 SDNode
*C2
= DAG
.isConstantIntBuildVectorOrConstantInt(N0
.getOperand(1));
7255 if (C1
&& C2
&& C1
->getValueType(0) == C2
->getValueType(0)) {
7256 EVT ShiftVT
= C1
->getValueType(0);
7257 bool SameSide
= (N
->getOpcode() == NextOp
);
7258 unsigned CombineOp
= SameSide
? ISD::ADD
: ISD::SUB
;
7259 if (SDValue CombinedShift
=
7260 DAG
.FoldConstantArithmetic(CombineOp
, dl
, ShiftVT
, C1
, C2
)) {
7261 SDValue BitsizeC
= DAG
.getConstant(Bitsize
, dl
, ShiftVT
);
7262 SDValue CombinedShiftNorm
= DAG
.FoldConstantArithmetic(
7263 ISD::SREM
, dl
, ShiftVT
, CombinedShift
.getNode(),
7264 BitsizeC
.getNode());
7265 return DAG
.getNode(N
->getOpcode(), dl
, VT
, N0
->getOperand(0),
7273 SDValue
DAGCombiner::visitSHL(SDNode
*N
) {
7274 SDValue N0
= N
->getOperand(0);
7275 SDValue N1
= N
->getOperand(1);
7276 if (SDValue V
= DAG
.simplifyShift(N0
, N1
))
7279 EVT VT
= N0
.getValueType();
7280 EVT ShiftVT
= N1
.getValueType();
7281 unsigned OpSizeInBits
= VT
.getScalarSizeInBits();
7284 if (VT
.isVector()) {
7285 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
7288 BuildVectorSDNode
*N1CV
= dyn_cast
<BuildVectorSDNode
>(N1
);
7289 // If setcc produces all-one true value then:
7290 // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV)
7291 if (N1CV
&& N1CV
->isConstant()) {
7292 if (N0
.getOpcode() == ISD::AND
) {
7293 SDValue N00
= N0
->getOperand(0);
7294 SDValue N01
= N0
->getOperand(1);
7295 BuildVectorSDNode
*N01CV
= dyn_cast
<BuildVectorSDNode
>(N01
);
7297 if (N01CV
&& N01CV
->isConstant() && N00
.getOpcode() == ISD::SETCC
&&
7298 TLI
.getBooleanContents(N00
.getOperand(0).getValueType()) ==
7299 TargetLowering::ZeroOrNegativeOneBooleanContent
) {
7300 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::SHL
, SDLoc(N
), VT
,
7302 return DAG
.getNode(ISD::AND
, SDLoc(N
), VT
, N00
, C
);
7308 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
7310 // fold (shl c1, c2) -> c1<<c2
7311 // TODO - support non-uniform vector shift amounts.
7312 ConstantSDNode
*N0C
= getAsNonOpaqueConstant(N0
);
7313 if (N0C
&& N1C
&& !N1C
->isOpaque())
7314 return DAG
.FoldConstantArithmetic(ISD::SHL
, SDLoc(N
), VT
, N0C
, N1C
);
7316 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
7319 // if (shl x, c) is known to be zero, return 0
7320 if (DAG
.MaskedValueIsZero(SDValue(N
, 0),
7321 APInt::getAllOnesValue(OpSizeInBits
)))
7322 return DAG
.getConstant(0, SDLoc(N
), VT
);
7324 // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
7325 if (N1
.getOpcode() == ISD::TRUNCATE
&&
7326 N1
.getOperand(0).getOpcode() == ISD::AND
) {
7327 if (SDValue NewOp1
= distributeTruncateThroughAnd(N1
.getNode()))
7328 return DAG
.getNode(ISD::SHL
, SDLoc(N
), VT
, N0
, NewOp1
);
7331 // TODO - support non-uniform vector shift amounts.
7332 if (N1C
&& SimplifyDemandedBits(SDValue(N
, 0)))
7333 return SDValue(N
, 0);
7335 // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
7336 if (N0
.getOpcode() == ISD::SHL
) {
7337 auto MatchOutOfRange
= [OpSizeInBits
](ConstantSDNode
*LHS
,
7338 ConstantSDNode
*RHS
) {
7339 APInt c1
= LHS
->getAPIntValue();
7340 APInt c2
= RHS
->getAPIntValue();
7341 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
7342 return (c1
+ c2
).uge(OpSizeInBits
);
7344 if (ISD::matchBinaryPredicate(N1
, N0
.getOperand(1), MatchOutOfRange
))
7345 return DAG
.getConstant(0, SDLoc(N
), VT
);
7347 auto MatchInRange
= [OpSizeInBits
](ConstantSDNode
*LHS
,
7348 ConstantSDNode
*RHS
) {
7349 APInt c1
= LHS
->getAPIntValue();
7350 APInt c2
= RHS
->getAPIntValue();
7351 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
7352 return (c1
+ c2
).ult(OpSizeInBits
);
7354 if (ISD::matchBinaryPredicate(N1
, N0
.getOperand(1), MatchInRange
)) {
7356 SDValue Sum
= DAG
.getNode(ISD::ADD
, DL
, ShiftVT
, N1
, N0
.getOperand(1));
7357 return DAG
.getNode(ISD::SHL
, DL
, VT
, N0
.getOperand(0), Sum
);
7361 // fold (shl (ext (shl x, c1)), c2) -> (shl (ext x), (add c1, c2))
7362 // For this to be valid, the second form must not preserve any of the bits
7363 // that are shifted out by the inner shift in the first form. This means
7364 // the outer shift size must be >= the number of bits added by the ext.
7365 // As a corollary, we don't care what kind of ext it is.
7366 if ((N0
.getOpcode() == ISD::ZERO_EXTEND
||
7367 N0
.getOpcode() == ISD::ANY_EXTEND
||
7368 N0
.getOpcode() == ISD::SIGN_EXTEND
) &&
7369 N0
.getOperand(0).getOpcode() == ISD::SHL
) {
7370 SDValue N0Op0
= N0
.getOperand(0);
7371 SDValue InnerShiftAmt
= N0Op0
.getOperand(1);
7372 EVT InnerVT
= N0Op0
.getValueType();
7373 uint64_t InnerBitwidth
= InnerVT
.getScalarSizeInBits();
7375 auto MatchOutOfRange
= [OpSizeInBits
, InnerBitwidth
](ConstantSDNode
*LHS
,
7376 ConstantSDNode
*RHS
) {
7377 APInt c1
= LHS
->getAPIntValue();
7378 APInt c2
= RHS
->getAPIntValue();
7379 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
7380 return c2
.uge(OpSizeInBits
- InnerBitwidth
) &&
7381 (c1
+ c2
).uge(OpSizeInBits
);
7383 if (ISD::matchBinaryPredicate(InnerShiftAmt
, N1
, MatchOutOfRange
,
7384 /*AllowUndefs*/ false,
7385 /*AllowTypeMismatch*/ true))
7386 return DAG
.getConstant(0, SDLoc(N
), VT
);
7388 auto MatchInRange
= [OpSizeInBits
, InnerBitwidth
](ConstantSDNode
*LHS
,
7389 ConstantSDNode
*RHS
) {
7390 APInt c1
= LHS
->getAPIntValue();
7391 APInt c2
= RHS
->getAPIntValue();
7392 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
7393 return c2
.uge(OpSizeInBits
- InnerBitwidth
) &&
7394 (c1
+ c2
).ult(OpSizeInBits
);
7396 if (ISD::matchBinaryPredicate(InnerShiftAmt
, N1
, MatchInRange
,
7397 /*AllowUndefs*/ false,
7398 /*AllowTypeMismatch*/ true)) {
7400 SDValue Ext
= DAG
.getNode(N0
.getOpcode(), DL
, VT
, N0Op0
.getOperand(0));
7401 SDValue Sum
= DAG
.getZExtOrTrunc(InnerShiftAmt
, DL
, ShiftVT
);
7402 Sum
= DAG
.getNode(ISD::ADD
, DL
, ShiftVT
, Sum
, N1
);
7403 return DAG
.getNode(ISD::SHL
, DL
, VT
, Ext
, Sum
);
7407 // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C))
7408 // Only fold this if the inner zext has no other uses to avoid increasing
7409 // the total number of instructions.
7410 if (N0
.getOpcode() == ISD::ZERO_EXTEND
&& N0
.hasOneUse() &&
7411 N0
.getOperand(0).getOpcode() == ISD::SRL
) {
7412 SDValue N0Op0
= N0
.getOperand(0);
7413 SDValue InnerShiftAmt
= N0Op0
.getOperand(1);
7415 auto MatchEqual
= [VT
](ConstantSDNode
*LHS
, ConstantSDNode
*RHS
) {
7416 APInt c1
= LHS
->getAPIntValue();
7417 APInt c2
= RHS
->getAPIntValue();
7418 zeroExtendToMatch(c1
, c2
);
7419 return c1
.ult(VT
.getScalarSizeInBits()) && (c1
== c2
);
7421 if (ISD::matchBinaryPredicate(InnerShiftAmt
, N1
, MatchEqual
,
7422 /*AllowUndefs*/ false,
7423 /*AllowTypeMismatch*/ true)) {
7425 EVT InnerShiftAmtVT
= N0Op0
.getOperand(1).getValueType();
7426 SDValue NewSHL
= DAG
.getZExtOrTrunc(N1
, DL
, InnerShiftAmtVT
);
7427 NewSHL
= DAG
.getNode(ISD::SHL
, DL
, N0Op0
.getValueType(), N0Op0
, NewSHL
);
7428 AddToWorklist(NewSHL
.getNode());
7429 return DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N0
), VT
, NewSHL
);
7433 // fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2
7434 // fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 > C2
7435 // TODO - support non-uniform vector shift amounts.
7436 if (N1C
&& (N0
.getOpcode() == ISD::SRL
|| N0
.getOpcode() == ISD::SRA
) &&
7437 N0
->getFlags().hasExact()) {
7438 if (ConstantSDNode
*N0C1
= isConstOrConstSplat(N0
.getOperand(1))) {
7439 uint64_t C1
= N0C1
->getZExtValue();
7440 uint64_t C2
= N1C
->getZExtValue();
7443 return DAG
.getNode(ISD::SHL
, DL
, VT
, N0
.getOperand(0),
7444 DAG
.getConstant(C2
- C1
, DL
, ShiftVT
));
7445 return DAG
.getNode(N0
.getOpcode(), DL
, VT
, N0
.getOperand(0),
7446 DAG
.getConstant(C1
- C2
, DL
, ShiftVT
));
7450 // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
7451 // (and (srl x, (sub c1, c2), MASK)
7452 // Only fold this if the inner shift has no other uses -- if it does, folding
7453 // this will increase the total number of instructions.
7454 // TODO - drop hasOneUse requirement if c1 == c2?
7455 // TODO - support non-uniform vector shift amounts.
7456 if (N1C
&& N0
.getOpcode() == ISD::SRL
&& N0
.hasOneUse() &&
7457 TLI
.shouldFoldConstantShiftPairToMask(N
, Level
)) {
7458 if (ConstantSDNode
*N0C1
= isConstOrConstSplat(N0
.getOperand(1))) {
7459 if (N0C1
->getAPIntValue().ult(OpSizeInBits
)) {
7460 uint64_t c1
= N0C1
->getZExtValue();
7461 uint64_t c2
= N1C
->getZExtValue();
7462 APInt Mask
= APInt::getHighBitsSet(OpSizeInBits
, OpSizeInBits
- c1
);
7467 Shift
= DAG
.getNode(ISD::SHL
, DL
, VT
, N0
.getOperand(0),
7468 DAG
.getConstant(c2
- c1
, DL
, ShiftVT
));
7470 Mask
.lshrInPlace(c1
- c2
);
7472 Shift
= DAG
.getNode(ISD::SRL
, DL
, VT
, N0
.getOperand(0),
7473 DAG
.getConstant(c1
- c2
, DL
, ShiftVT
));
7476 return DAG
.getNode(ISD::AND
, DL
, VT
, Shift
,
7477 DAG
.getConstant(Mask
, DL
, VT
));
7482 // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
7483 if (N0
.getOpcode() == ISD::SRA
&& N1
== N0
.getOperand(1) &&
7484 isConstantOrConstantVector(N1
, /* No Opaques */ true)) {
7486 SDValue AllBits
= DAG
.getAllOnesConstant(DL
, VT
);
7487 SDValue HiBitsMask
= DAG
.getNode(ISD::SHL
, DL
, VT
, AllBits
, N1
);
7488 return DAG
.getNode(ISD::AND
, DL
, VT
, N0
.getOperand(0), HiBitsMask
);
7491 // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
7492 // fold (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
7493 // Variant of version done on multiply, except mul by a power of 2 is turned
7495 if ((N0
.getOpcode() == ISD::ADD
|| N0
.getOpcode() == ISD::OR
) &&
7496 N0
.getNode()->hasOneUse() &&
7497 isConstantOrConstantVector(N1
, /* No Opaques */ true) &&
7498 isConstantOrConstantVector(N0
.getOperand(1), /* No Opaques */ true) &&
7499 TLI
.isDesirableToCommuteWithShift(N
, Level
)) {
7500 SDValue Shl0
= DAG
.getNode(ISD::SHL
, SDLoc(N0
), VT
, N0
.getOperand(0), N1
);
7501 SDValue Shl1
= DAG
.getNode(ISD::SHL
, SDLoc(N1
), VT
, N0
.getOperand(1), N1
);
7502 AddToWorklist(Shl0
.getNode());
7503 AddToWorklist(Shl1
.getNode());
7504 return DAG
.getNode(N0
.getOpcode(), SDLoc(N
), VT
, Shl0
, Shl1
);
7507 // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2)
7508 if (N0
.getOpcode() == ISD::MUL
&& N0
.getNode()->hasOneUse() &&
7509 isConstantOrConstantVector(N1
, /* No Opaques */ true) &&
7510 isConstantOrConstantVector(N0
.getOperand(1), /* No Opaques */ true)) {
7511 SDValue Shl
= DAG
.getNode(ISD::SHL
, SDLoc(N1
), VT
, N0
.getOperand(1), N1
);
7512 if (isConstantOrConstantVector(Shl
))
7513 return DAG
.getNode(ISD::MUL
, SDLoc(N
), VT
, N0
.getOperand(0), Shl
);
7516 if (N1C
&& !N1C
->isOpaque())
7517 if (SDValue NewSHL
= visitShiftByConstant(N
))
7523 SDValue
DAGCombiner::visitSRA(SDNode
*N
) {
7524 SDValue N0
= N
->getOperand(0);
7525 SDValue N1
= N
->getOperand(1);
7526 if (SDValue V
= DAG
.simplifyShift(N0
, N1
))
7529 EVT VT
= N0
.getValueType();
7530 unsigned OpSizeInBits
= VT
.getScalarSizeInBits();
7532 // Arithmetic shifting an all-sign-bit value is a no-op.
7533 // fold (sra 0, x) -> 0
7534 // fold (sra -1, x) -> -1
7535 if (DAG
.ComputeNumSignBits(N0
) == OpSizeInBits
)
7540 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
7543 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
7545 // fold (sra c1, c2) -> (sra c1, c2)
7546 // TODO - support non-uniform vector shift amounts.
7547 ConstantSDNode
*N0C
= getAsNonOpaqueConstant(N0
);
7548 if (N0C
&& N1C
&& !N1C
->isOpaque())
7549 return DAG
.FoldConstantArithmetic(ISD::SRA
, SDLoc(N
), VT
, N0C
, N1C
);
7551 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
7554 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
7556 if (N1C
&& N0
.getOpcode() == ISD::SHL
&& N1
== N0
.getOperand(1)) {
7557 unsigned LowBits
= OpSizeInBits
- (unsigned)N1C
->getZExtValue();
7558 EVT ExtVT
= EVT::getIntegerVT(*DAG
.getContext(), LowBits
);
7560 ExtVT
= EVT::getVectorVT(*DAG
.getContext(),
7561 ExtVT
, VT
.getVectorNumElements());
7562 if ((!LegalOperations
||
7563 TLI
.isOperationLegal(ISD::SIGN_EXTEND_INREG
, ExtVT
)))
7564 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, SDLoc(N
), VT
,
7565 N0
.getOperand(0), DAG
.getValueType(ExtVT
));
7568 // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
7569 // clamp (add c1, c2) to max shift.
7570 if (N0
.getOpcode() == ISD::SRA
) {
7572 EVT ShiftVT
= N1
.getValueType();
7573 EVT ShiftSVT
= ShiftVT
.getScalarType();
7574 SmallVector
<SDValue
, 16> ShiftValues
;
7576 auto SumOfShifts
= [&](ConstantSDNode
*LHS
, ConstantSDNode
*RHS
) {
7577 APInt c1
= LHS
->getAPIntValue();
7578 APInt c2
= RHS
->getAPIntValue();
7579 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
7580 APInt Sum
= c1
+ c2
;
7582 Sum
.uge(OpSizeInBits
) ? (OpSizeInBits
- 1) : Sum
.getZExtValue();
7583 ShiftValues
.push_back(DAG
.getConstant(ShiftSum
, DL
, ShiftSVT
));
7586 if (ISD::matchBinaryPredicate(N1
, N0
.getOperand(1), SumOfShifts
)) {
7589 ShiftValue
= DAG
.getBuildVector(ShiftVT
, DL
, ShiftValues
);
7591 ShiftValue
= ShiftValues
[0];
7592 return DAG
.getNode(ISD::SRA
, DL
, VT
, N0
.getOperand(0), ShiftValue
);
7596 // fold (sra (shl X, m), (sub result_size, n))
7597 // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
7598 // result_size - n != m.
7599 // If truncate is free for the target sext(shl) is likely to result in better
7601 if (N0
.getOpcode() == ISD::SHL
&& N1C
) {
7602 // Get the two constanst of the shifts, CN0 = m, CN = n.
7603 const ConstantSDNode
*N01C
= isConstOrConstSplat(N0
.getOperand(1));
7605 LLVMContext
&Ctx
= *DAG
.getContext();
7606 // Determine what the truncate's result bitsize and type would be.
7607 EVT TruncVT
= EVT::getIntegerVT(Ctx
, OpSizeInBits
- N1C
->getZExtValue());
7610 TruncVT
= EVT::getVectorVT(Ctx
, TruncVT
, VT
.getVectorNumElements());
7612 // Determine the residual right-shift amount.
7613 int ShiftAmt
= N1C
->getZExtValue() - N01C
->getZExtValue();
7615 // If the shift is not a no-op (in which case this should be just a sign
7616 // extend already), the truncated to type is legal, sign_extend is legal
7617 // on that type, and the truncate to that type is both legal and free,
7618 // perform the transform.
7619 if ((ShiftAmt
> 0) &&
7620 TLI
.isOperationLegalOrCustom(ISD::SIGN_EXTEND
, TruncVT
) &&
7621 TLI
.isOperationLegalOrCustom(ISD::TRUNCATE
, VT
) &&
7622 TLI
.isTruncateFree(VT
, TruncVT
)) {
7624 SDValue Amt
= DAG
.getConstant(ShiftAmt
, DL
,
7625 getShiftAmountTy(N0
.getOperand(0).getValueType()));
7626 SDValue Shift
= DAG
.getNode(ISD::SRL
, DL
, VT
,
7627 N0
.getOperand(0), Amt
);
7628 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, DL
, TruncVT
,
7630 return DAG
.getNode(ISD::SIGN_EXTEND
, DL
,
7631 N
->getValueType(0), Trunc
);
7636 // We convert trunc/ext to opposing shifts in IR, but casts may be cheaper.
7637 // sra (add (shl X, N1C), AddC), N1C -->
7638 // sext (add (trunc X to (width - N1C)), AddC')
7639 if (!LegalTypes
&& N0
.getOpcode() == ISD::ADD
&& N0
.hasOneUse() && N1C
&&
7640 N0
.getOperand(0).getOpcode() == ISD::SHL
&&
7641 N0
.getOperand(0).getOperand(1) == N1
&& N0
.getOperand(0).hasOneUse()) {
7642 if (ConstantSDNode
*AddC
= isConstOrConstSplat(N0
.getOperand(1))) {
7643 SDValue Shl
= N0
.getOperand(0);
7644 // Determine what the truncate's type would be and ask the target if that
7645 // is a free operation.
7646 LLVMContext
&Ctx
= *DAG
.getContext();
7647 unsigned ShiftAmt
= N1C
->getZExtValue();
7648 EVT TruncVT
= EVT::getIntegerVT(Ctx
, OpSizeInBits
- ShiftAmt
);
7650 TruncVT
= EVT::getVectorVT(Ctx
, TruncVT
, VT
.getVectorNumElements());
7652 // TODO: The simple type check probably belongs in the default hook
7653 // implementation and/or target-specific overrides (because
7654 // non-simple types likely require masking when legalized), but that
7655 // restriction may conflict with other transforms.
7656 if (TruncVT
.isSimple() && TLI
.isTruncateFree(VT
, TruncVT
)) {
7658 SDValue Trunc
= DAG
.getZExtOrTrunc(Shl
.getOperand(0), DL
, TruncVT
);
7659 SDValue ShiftC
= DAG
.getConstant(AddC
->getAPIntValue().lshr(ShiftAmt
).
7660 trunc(TruncVT
.getScalarSizeInBits()), DL
, TruncVT
);
7661 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, TruncVT
, Trunc
, ShiftC
);
7662 return DAG
.getSExtOrTrunc(Add
, DL
, VT
);
7667 // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
7668 if (N1
.getOpcode() == ISD::TRUNCATE
&&
7669 N1
.getOperand(0).getOpcode() == ISD::AND
) {
7670 if (SDValue NewOp1
= distributeTruncateThroughAnd(N1
.getNode()))
7671 return DAG
.getNode(ISD::SRA
, SDLoc(N
), VT
, N0
, NewOp1
);
7674 // fold (sra (trunc (sra x, c1)), c2) -> (trunc (sra x, c1 + c2))
7675 // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2))
7676 // if c1 is equal to the number of bits the trunc removes
7677 // TODO - support non-uniform vector shift amounts.
7678 if (N0
.getOpcode() == ISD::TRUNCATE
&&
7679 (N0
.getOperand(0).getOpcode() == ISD::SRL
||
7680 N0
.getOperand(0).getOpcode() == ISD::SRA
) &&
7681 N0
.getOperand(0).hasOneUse() &&
7682 N0
.getOperand(0).getOperand(1).hasOneUse() && N1C
) {
7683 SDValue N0Op0
= N0
.getOperand(0);
7684 if (ConstantSDNode
*LargeShift
= isConstOrConstSplat(N0Op0
.getOperand(1))) {
7685 EVT LargeVT
= N0Op0
.getValueType();
7686 unsigned TruncBits
= LargeVT
.getScalarSizeInBits() - OpSizeInBits
;
7687 if (LargeShift
->getAPIntValue() == TruncBits
) {
7689 SDValue Amt
= DAG
.getConstant(N1C
->getZExtValue() + TruncBits
, DL
,
7690 getShiftAmountTy(LargeVT
));
7692 DAG
.getNode(ISD::SRA
, DL
, LargeVT
, N0Op0
.getOperand(0), Amt
);
7693 return DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, SRA
);
7698 // Simplify, based on bits shifted out of the LHS.
7699 // TODO - support non-uniform vector shift amounts.
7700 if (N1C
&& SimplifyDemandedBits(SDValue(N
, 0)))
7701 return SDValue(N
, 0);
7703 // If the sign bit is known to be zero, switch this to a SRL.
7704 if (DAG
.SignBitIsZero(N0
))
7705 return DAG
.getNode(ISD::SRL
, SDLoc(N
), VT
, N0
, N1
);
7707 if (N1C
&& !N1C
->isOpaque())
7708 if (SDValue NewSRA
= visitShiftByConstant(N
))
7714 SDValue
DAGCombiner::visitSRL(SDNode
*N
) {
7715 SDValue N0
= N
->getOperand(0);
7716 SDValue N1
= N
->getOperand(1);
7717 if (SDValue V
= DAG
.simplifyShift(N0
, N1
))
7720 EVT VT
= N0
.getValueType();
7721 unsigned OpSizeInBits
= VT
.getScalarSizeInBits();
7725 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
7728 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
7730 // fold (srl c1, c2) -> c1 >>u c2
7731 // TODO - support non-uniform vector shift amounts.
7732 ConstantSDNode
*N0C
= getAsNonOpaqueConstant(N0
);
7733 if (N0C
&& N1C
&& !N1C
->isOpaque())
7734 return DAG
.FoldConstantArithmetic(ISD::SRL
, SDLoc(N
), VT
, N0C
, N1C
);
7736 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
7739 // if (srl x, c) is known to be zero, return 0
7740 if (N1C
&& DAG
.MaskedValueIsZero(SDValue(N
, 0),
7741 APInt::getAllOnesValue(OpSizeInBits
)))
7742 return DAG
.getConstant(0, SDLoc(N
), VT
);
7744 // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
7745 if (N0
.getOpcode() == ISD::SRL
) {
7746 auto MatchOutOfRange
= [OpSizeInBits
](ConstantSDNode
*LHS
,
7747 ConstantSDNode
*RHS
) {
7748 APInt c1
= LHS
->getAPIntValue();
7749 APInt c2
= RHS
->getAPIntValue();
7750 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
7751 return (c1
+ c2
).uge(OpSizeInBits
);
7753 if (ISD::matchBinaryPredicate(N1
, N0
.getOperand(1), MatchOutOfRange
))
7754 return DAG
.getConstant(0, SDLoc(N
), VT
);
7756 auto MatchInRange
= [OpSizeInBits
](ConstantSDNode
*LHS
,
7757 ConstantSDNode
*RHS
) {
7758 APInt c1
= LHS
->getAPIntValue();
7759 APInt c2
= RHS
->getAPIntValue();
7760 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
7761 return (c1
+ c2
).ult(OpSizeInBits
);
7763 if (ISD::matchBinaryPredicate(N1
, N0
.getOperand(1), MatchInRange
)) {
7765 EVT ShiftVT
= N1
.getValueType();
7766 SDValue Sum
= DAG
.getNode(ISD::ADD
, DL
, ShiftVT
, N1
, N0
.getOperand(1));
7767 return DAG
.getNode(ISD::SRL
, DL
, VT
, N0
.getOperand(0), Sum
);
7771 // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2)))
7772 // TODO - support non-uniform vector shift amounts.
7773 if (N1C
&& N0
.getOpcode() == ISD::TRUNCATE
&&
7774 N0
.getOperand(0).getOpcode() == ISD::SRL
) {
7775 if (auto N001C
= isConstOrConstSplat(N0
.getOperand(0).getOperand(1))) {
7776 uint64_t c1
= N001C
->getZExtValue();
7777 uint64_t c2
= N1C
->getZExtValue();
7778 EVT InnerShiftVT
= N0
.getOperand(0).getValueType();
7779 EVT ShiftCountVT
= N0
.getOperand(0).getOperand(1).getValueType();
7780 uint64_t InnerShiftSize
= InnerShiftVT
.getScalarSizeInBits();
7781 // This is only valid if the OpSizeInBits + c1 = size of inner shift.
7782 if (c1
+ OpSizeInBits
== InnerShiftSize
) {
7784 if (c1
+ c2
>= InnerShiftSize
)
7785 return DAG
.getConstant(0, DL
, VT
);
7786 return DAG
.getNode(ISD::TRUNCATE
, DL
, VT
,
7787 DAG
.getNode(ISD::SRL
, DL
, InnerShiftVT
,
7788 N0
.getOperand(0).getOperand(0),
7789 DAG
.getConstant(c1
+ c2
, DL
,
7795 // fold (srl (shl x, c), c) -> (and x, cst2)
7796 // TODO - (srl (shl x, c1), c2).
7797 if (N0
.getOpcode() == ISD::SHL
&& N0
.getOperand(1) == N1
&&
7798 isConstantOrConstantVector(N1
, /* NoOpaques */ true)) {
7801 DAG
.getNode(ISD::SRL
, DL
, VT
, DAG
.getAllOnesConstant(DL
, VT
), N1
);
7802 AddToWorklist(Mask
.getNode());
7803 return DAG
.getNode(ISD::AND
, DL
, VT
, N0
.getOperand(0), Mask
);
7806 // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask)
7807 // TODO - support non-uniform vector shift amounts.
7808 if (N1C
&& N0
.getOpcode() == ISD::ANY_EXTEND
) {
7809 // Shifting in all undef bits?
7810 EVT SmallVT
= N0
.getOperand(0).getValueType();
7811 unsigned BitSize
= SmallVT
.getScalarSizeInBits();
7812 if (N1C
->getAPIntValue().uge(BitSize
))
7813 return DAG
.getUNDEF(VT
);
7815 if (!LegalTypes
|| TLI
.isTypeDesirableForOp(ISD::SRL
, SmallVT
)) {
7816 uint64_t ShiftAmt
= N1C
->getZExtValue();
7818 SDValue SmallShift
= DAG
.getNode(ISD::SRL
, DL0
, SmallVT
,
7820 DAG
.getConstant(ShiftAmt
, DL0
,
7821 getShiftAmountTy(SmallVT
)));
7822 AddToWorklist(SmallShift
.getNode());
7823 APInt Mask
= APInt::getLowBitsSet(OpSizeInBits
, OpSizeInBits
- ShiftAmt
);
7825 return DAG
.getNode(ISD::AND
, DL
, VT
,
7826 DAG
.getNode(ISD::ANY_EXTEND
, DL
, VT
, SmallShift
),
7827 DAG
.getConstant(Mask
, DL
, VT
));
7831 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign
7832 // bit, which is unmodified by sra.
7833 if (N1C
&& N1C
->getAPIntValue() == (OpSizeInBits
- 1)) {
7834 if (N0
.getOpcode() == ISD::SRA
)
7835 return DAG
.getNode(ISD::SRL
, SDLoc(N
), VT
, N0
.getOperand(0), N1
);
7838 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit).
7839 if (N1C
&& N0
.getOpcode() == ISD::CTLZ
&&
7840 N1C
->getAPIntValue() == Log2_32(OpSizeInBits
)) {
7841 KnownBits Known
= DAG
.computeKnownBits(N0
.getOperand(0));
7843 // If any of the input bits are KnownOne, then the input couldn't be all
7844 // zeros, thus the result of the srl will always be zero.
7845 if (Known
.One
.getBoolValue()) return DAG
.getConstant(0, SDLoc(N0
), VT
);
7847 // If all of the bits input the to ctlz node are known to be zero, then
7848 // the result of the ctlz is "32" and the result of the shift is one.
7849 APInt UnknownBits
= ~Known
.Zero
;
7850 if (UnknownBits
== 0) return DAG
.getConstant(1, SDLoc(N0
), VT
);
7852 // Otherwise, check to see if there is exactly one bit input to the ctlz.
7853 if (UnknownBits
.isPowerOf2()) {
7854 // Okay, we know that only that the single bit specified by UnknownBits
7855 // could be set on input to the CTLZ node. If this bit is set, the SRL
7856 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
7857 // to an SRL/XOR pair, which is likely to simplify more.
7858 unsigned ShAmt
= UnknownBits
.countTrailingZeros();
7859 SDValue Op
= N0
.getOperand(0);
7863 Op
= DAG
.getNode(ISD::SRL
, DL
, VT
, Op
,
7864 DAG
.getConstant(ShAmt
, DL
,
7865 getShiftAmountTy(Op
.getValueType())));
7866 AddToWorklist(Op
.getNode());
7870 return DAG
.getNode(ISD::XOR
, DL
, VT
,
7871 Op
, DAG
.getConstant(1, DL
, VT
));
7875 // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
7876 if (N1
.getOpcode() == ISD::TRUNCATE
&&
7877 N1
.getOperand(0).getOpcode() == ISD::AND
) {
7878 if (SDValue NewOp1
= distributeTruncateThroughAnd(N1
.getNode()))
7879 return DAG
.getNode(ISD::SRL
, SDLoc(N
), VT
, N0
, NewOp1
);
7882 // fold operands of srl based on knowledge that the low bits are not
7884 // TODO - support non-uniform vector shift amounts.
7885 if (N1C
&& SimplifyDemandedBits(SDValue(N
, 0)))
7886 return SDValue(N
, 0);
7888 if (N1C
&& !N1C
->isOpaque())
7889 if (SDValue NewSRL
= visitShiftByConstant(N
))
7892 // Attempt to convert a srl of a load into a narrower zero-extending load.
7893 if (SDValue NarrowLoad
= ReduceLoadWidth(N
))
7896 // Here is a common situation. We want to optimize:
7899 // %b = and i32 %a, 2
7900 // %c = srl i32 %b, 1
7901 // brcond i32 %c ...
7907 // %c = setcc eq %b, 0
7910 // However when after the source operand of SRL is optimized into AND, the SRL
7911 // itself may not be optimized further. Look for it and add the BRCOND into
7913 if (N
->hasOneUse()) {
7914 SDNode
*Use
= *N
->use_begin();
7915 if (Use
->getOpcode() == ISD::BRCOND
)
7917 else if (Use
->getOpcode() == ISD::TRUNCATE
&& Use
->hasOneUse()) {
7918 // Also look pass the truncate.
7919 Use
= *Use
->use_begin();
7920 if (Use
->getOpcode() == ISD::BRCOND
)
7928 SDValue
DAGCombiner::visitFunnelShift(SDNode
*N
) {
7929 EVT VT
= N
->getValueType(0);
7930 SDValue N0
= N
->getOperand(0);
7931 SDValue N1
= N
->getOperand(1);
7932 SDValue N2
= N
->getOperand(2);
7933 bool IsFSHL
= N
->getOpcode() == ISD::FSHL
;
7934 unsigned BitWidth
= VT
.getScalarSizeInBits();
7936 // fold (fshl N0, N1, 0) -> N0
7937 // fold (fshr N0, N1, 0) -> N1
7938 if (isPowerOf2_32(BitWidth
))
7939 if (DAG
.MaskedValueIsZero(
7940 N2
, APInt(N2
.getScalarValueSizeInBits(), BitWidth
- 1)))
7941 return IsFSHL
? N0
: N1
;
7943 auto IsUndefOrZero
= [](SDValue V
) {
7944 return V
.isUndef() || isNullOrNullSplat(V
, /*AllowUndefs*/ true);
7947 // TODO - support non-uniform vector shift amounts.
7948 if (ConstantSDNode
*Cst
= isConstOrConstSplat(N2
)) {
7949 EVT ShAmtTy
= N2
.getValueType();
7951 // fold (fsh* N0, N1, c) -> (fsh* N0, N1, c % BitWidth)
7952 if (Cst
->getAPIntValue().uge(BitWidth
)) {
7953 uint64_t RotAmt
= Cst
->getAPIntValue().urem(BitWidth
);
7954 return DAG
.getNode(N
->getOpcode(), SDLoc(N
), VT
, N0
, N1
,
7955 DAG
.getConstant(RotAmt
, SDLoc(N
), ShAmtTy
));
7958 unsigned ShAmt
= Cst
->getZExtValue();
7960 return IsFSHL
? N0
: N1
;
7962 // fold fshl(undef_or_zero, N1, C) -> lshr(N1, BW-C)
7963 // fold fshr(undef_or_zero, N1, C) -> lshr(N1, C)
7964 // fold fshl(N0, undef_or_zero, C) -> shl(N0, C)
7965 // fold fshr(N0, undef_or_zero, C) -> shl(N0, BW-C)
7966 if (IsUndefOrZero(N0
))
7967 return DAG
.getNode(ISD::SRL
, SDLoc(N
), VT
, N1
,
7968 DAG
.getConstant(IsFSHL
? BitWidth
- ShAmt
: ShAmt
,
7969 SDLoc(N
), ShAmtTy
));
7970 if (IsUndefOrZero(N1
))
7971 return DAG
.getNode(ISD::SHL
, SDLoc(N
), VT
, N0
,
7972 DAG
.getConstant(IsFSHL
? ShAmt
: BitWidth
- ShAmt
,
7973 SDLoc(N
), ShAmtTy
));
7976 // fold fshr(undef_or_zero, N1, N2) -> lshr(N1, N2)
7977 // fold fshl(N0, undef_or_zero, N2) -> shl(N0, N2)
7978 // iff We know the shift amount is in range.
7979 // TODO: when is it worth doing SUB(BW, N2) as well?
7980 if (isPowerOf2_32(BitWidth
)) {
7981 APInt
ModuloBits(N2
.getScalarValueSizeInBits(), BitWidth
- 1);
7982 if (IsUndefOrZero(N0
) && !IsFSHL
&& DAG
.MaskedValueIsZero(N2
, ~ModuloBits
))
7983 return DAG
.getNode(ISD::SRL
, SDLoc(N
), VT
, N1
, N2
);
7984 if (IsUndefOrZero(N1
) && IsFSHL
&& DAG
.MaskedValueIsZero(N2
, ~ModuloBits
))
7985 return DAG
.getNode(ISD::SHL
, SDLoc(N
), VT
, N0
, N2
);
7988 // fold (fshl N0, N0, N2) -> (rotl N0, N2)
7989 // fold (fshr N0, N0, N2) -> (rotr N0, N2)
7990 // TODO: Investigate flipping this rotate if only one is legal, if funnel shift
7991 // is legal as well we might be better off avoiding non-constant (BW - N2).
7992 unsigned RotOpc
= IsFSHL
? ISD::ROTL
: ISD::ROTR
;
7993 if (N0
== N1
&& hasOperation(RotOpc
, VT
))
7994 return DAG
.getNode(RotOpc
, SDLoc(N
), VT
, N0
, N2
);
7996 // Simplify, based on bits shifted out of N0/N1.
7997 if (SimplifyDemandedBits(SDValue(N
, 0)))
7998 return SDValue(N
, 0);
8003 SDValue
DAGCombiner::visitABS(SDNode
*N
) {
8004 SDValue N0
= N
->getOperand(0);
8005 EVT VT
= N
->getValueType(0);
8007 // fold (abs c1) -> c2
8008 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
8009 return DAG
.getNode(ISD::ABS
, SDLoc(N
), VT
, N0
);
8010 // fold (abs (abs x)) -> (abs x)
8011 if (N0
.getOpcode() == ISD::ABS
)
8013 // fold (abs x) -> x iff not-negative
8014 if (DAG
.SignBitIsZero(N0
))
8019 SDValue
DAGCombiner::visitBSWAP(SDNode
*N
) {
8020 SDValue N0
= N
->getOperand(0);
8021 EVT VT
= N
->getValueType(0);
8023 // fold (bswap c1) -> c2
8024 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
8025 return DAG
.getNode(ISD::BSWAP
, SDLoc(N
), VT
, N0
);
8026 // fold (bswap (bswap x)) -> x
8027 if (N0
.getOpcode() == ISD::BSWAP
)
8028 return N0
->getOperand(0);
8032 SDValue
DAGCombiner::visitBITREVERSE(SDNode
*N
) {
8033 SDValue N0
= N
->getOperand(0);
8034 EVT VT
= N
->getValueType(0);
8036 // fold (bitreverse c1) -> c2
8037 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
8038 return DAG
.getNode(ISD::BITREVERSE
, SDLoc(N
), VT
, N0
);
8039 // fold (bitreverse (bitreverse x)) -> x
8040 if (N0
.getOpcode() == ISD::BITREVERSE
)
8041 return N0
.getOperand(0);
8045 SDValue
DAGCombiner::visitCTLZ(SDNode
*N
) {
8046 SDValue N0
= N
->getOperand(0);
8047 EVT VT
= N
->getValueType(0);
8049 // fold (ctlz c1) -> c2
8050 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
8051 return DAG
.getNode(ISD::CTLZ
, SDLoc(N
), VT
, N0
);
8053 // If the value is known never to be zero, switch to the undef version.
8054 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::CTLZ_ZERO_UNDEF
, VT
)) {
8055 if (DAG
.isKnownNeverZero(N0
))
8056 return DAG
.getNode(ISD::CTLZ_ZERO_UNDEF
, SDLoc(N
), VT
, N0
);
8062 SDValue
DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode
*N
) {
8063 SDValue N0
= N
->getOperand(0);
8064 EVT VT
= N
->getValueType(0);
8066 // fold (ctlz_zero_undef c1) -> c2
8067 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
8068 return DAG
.getNode(ISD::CTLZ_ZERO_UNDEF
, SDLoc(N
), VT
, N0
);
8072 SDValue
DAGCombiner::visitCTTZ(SDNode
*N
) {
8073 SDValue N0
= N
->getOperand(0);
8074 EVT VT
= N
->getValueType(0);
8076 // fold (cttz c1) -> c2
8077 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
8078 return DAG
.getNode(ISD::CTTZ
, SDLoc(N
), VT
, N0
);
8080 // If the value is known never to be zero, switch to the undef version.
8081 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::CTTZ_ZERO_UNDEF
, VT
)) {
8082 if (DAG
.isKnownNeverZero(N0
))
8083 return DAG
.getNode(ISD::CTTZ_ZERO_UNDEF
, SDLoc(N
), VT
, N0
);
8089 SDValue
DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode
*N
) {
8090 SDValue N0
= N
->getOperand(0);
8091 EVT VT
= N
->getValueType(0);
8093 // fold (cttz_zero_undef c1) -> c2
8094 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
8095 return DAG
.getNode(ISD::CTTZ_ZERO_UNDEF
, SDLoc(N
), VT
, N0
);
8099 SDValue
DAGCombiner::visitCTPOP(SDNode
*N
) {
8100 SDValue N0
= N
->getOperand(0);
8101 EVT VT
= N
->getValueType(0);
8103 // fold (ctpop c1) -> c2
8104 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
8105 return DAG
.getNode(ISD::CTPOP
, SDLoc(N
), VT
, N0
);
8109 // FIXME: This should be checking for no signed zeros on individual operands, as
8111 static bool isLegalToCombineMinNumMaxNum(SelectionDAG
&DAG
, SDValue LHS
,
8113 const TargetLowering
&TLI
) {
8114 const TargetOptions
&Options
= DAG
.getTarget().Options
;
8115 EVT VT
= LHS
.getValueType();
8117 return Options
.NoSignedZerosFPMath
&& VT
.isFloatingPoint() &&
8118 TLI
.isProfitableToCombineMinNumMaxNum(VT
) &&
8119 DAG
.isKnownNeverNaN(LHS
) && DAG
.isKnownNeverNaN(RHS
);
8122 /// Generate Min/Max node
8123 static SDValue
combineMinNumMaxNum(const SDLoc
&DL
, EVT VT
, SDValue LHS
,
8124 SDValue RHS
, SDValue True
, SDValue False
,
8125 ISD::CondCode CC
, const TargetLowering
&TLI
,
8126 SelectionDAG
&DAG
) {
8127 if (!(LHS
== True
&& RHS
== False
) && !(LHS
== False
&& RHS
== True
))
8130 EVT TransformVT
= TLI
.getTypeToTransformTo(*DAG
.getContext(), VT
);
8138 // Since it's known never nan to get here already, either fminnum or
8139 // fminnum_ieee are OK. Try the ieee version first, since it's fminnum is
8140 // expanded in terms of it.
8141 unsigned IEEEOpcode
= (LHS
== True
) ? ISD::FMINNUM_IEEE
: ISD::FMAXNUM_IEEE
;
8142 if (TLI
.isOperationLegalOrCustom(IEEEOpcode
, VT
))
8143 return DAG
.getNode(IEEEOpcode
, DL
, VT
, LHS
, RHS
);
8145 unsigned Opcode
= (LHS
== True
) ? ISD::FMINNUM
: ISD::FMAXNUM
;
8146 if (TLI
.isOperationLegalOrCustom(Opcode
, TransformVT
))
8147 return DAG
.getNode(Opcode
, DL
, VT
, LHS
, RHS
);
8156 unsigned IEEEOpcode
= (LHS
== True
) ? ISD::FMAXNUM_IEEE
: ISD::FMINNUM_IEEE
;
8157 if (TLI
.isOperationLegalOrCustom(IEEEOpcode
, VT
))
8158 return DAG
.getNode(IEEEOpcode
, DL
, VT
, LHS
, RHS
);
8160 unsigned Opcode
= (LHS
== True
) ? ISD::FMAXNUM
: ISD::FMINNUM
;
8161 if (TLI
.isOperationLegalOrCustom(Opcode
, TransformVT
))
8162 return DAG
.getNode(Opcode
, DL
, VT
, LHS
, RHS
);
8170 SDValue
DAGCombiner::foldSelectOfConstants(SDNode
*N
) {
8171 SDValue Cond
= N
->getOperand(0);
8172 SDValue N1
= N
->getOperand(1);
8173 SDValue N2
= N
->getOperand(2);
8174 EVT VT
= N
->getValueType(0);
8175 EVT CondVT
= Cond
.getValueType();
8178 if (!VT
.isInteger())
8181 auto *C1
= dyn_cast
<ConstantSDNode
>(N1
);
8182 auto *C2
= dyn_cast
<ConstantSDNode
>(N2
);
8186 // Only do this before legalization to avoid conflicting with target-specific
8187 // transforms in the other direction (create a select from a zext/sext). There
8188 // is also a target-independent combine here in DAGCombiner in the other
8189 // direction for (select Cond, -1, 0) when the condition is not i1.
8190 if (CondVT
== MVT::i1
&& !LegalOperations
) {
8191 if (C1
->isNullValue() && C2
->isOne()) {
8192 // select Cond, 0, 1 --> zext (!Cond)
8193 SDValue NotCond
= DAG
.getNOT(DL
, Cond
, MVT::i1
);
8195 NotCond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, NotCond
);
8198 if (C1
->isNullValue() && C2
->isAllOnesValue()) {
8199 // select Cond, 0, -1 --> sext (!Cond)
8200 SDValue NotCond
= DAG
.getNOT(DL
, Cond
, MVT::i1
);
8202 NotCond
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, NotCond
);
8205 if (C1
->isOne() && C2
->isNullValue()) {
8206 // select Cond, 1, 0 --> zext (Cond)
8208 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, Cond
);
8211 if (C1
->isAllOnesValue() && C2
->isNullValue()) {
8212 // select Cond, -1, 0 --> sext (Cond)
8214 Cond
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, Cond
);
8218 // For any constants that differ by 1, we can transform the select into an
8219 // extend and add. Use a target hook because some targets may prefer to
8220 // transform in the other direction.
8221 if (TLI
.convertSelectOfConstantsToMath(VT
)) {
8222 if (C1
->getAPIntValue() - 1 == C2
->getAPIntValue()) {
8223 // select Cond, C1, C1-1 --> add (zext Cond), C1-1
8225 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, Cond
);
8226 return DAG
.getNode(ISD::ADD
, DL
, VT
, Cond
, N2
);
8228 if (C1
->getAPIntValue() + 1 == C2
->getAPIntValue()) {
8229 // select Cond, C1, C1+1 --> add (sext Cond), C1+1
8231 Cond
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, Cond
);
8232 return DAG
.getNode(ISD::ADD
, DL
, VT
, Cond
, N2
);
8239 // fold (select Cond, 0, 1) -> (xor Cond, 1)
8240 // We can't do this reliably if integer based booleans have different contents
8241 // to floating point based booleans. This is because we can't tell whether we
8242 // have an integer-based boolean or a floating-point-based boolean unless we
8243 // can find the SETCC that produced it and inspect its operands. This is
8244 // fairly easy if C is the SETCC node, but it can potentially be
8245 // undiscoverable (or not reasonably discoverable). For example, it could be
8246 // in another basic block or it could require searching a complicated
8248 if (CondVT
.isInteger() &&
8249 TLI
.getBooleanContents(/*isVec*/false, /*isFloat*/true) ==
8250 TargetLowering::ZeroOrOneBooleanContent
&&
8251 TLI
.getBooleanContents(/*isVec*/false, /*isFloat*/false) ==
8252 TargetLowering::ZeroOrOneBooleanContent
&&
8253 C1
->isNullValue() && C2
->isOne()) {
8255 DAG
.getNode(ISD::XOR
, DL
, CondVT
, Cond
, DAG
.getConstant(1, DL
, CondVT
));
8256 if (VT
.bitsEq(CondVT
))
8258 return DAG
.getZExtOrTrunc(NotCond
, DL
, VT
);
8264 SDValue
DAGCombiner::visitSELECT(SDNode
*N
) {
8265 SDValue N0
= N
->getOperand(0);
8266 SDValue N1
= N
->getOperand(1);
8267 SDValue N2
= N
->getOperand(2);
8268 EVT VT
= N
->getValueType(0);
8269 EVT VT0
= N0
.getValueType();
8271 SDNodeFlags Flags
= N
->getFlags();
8273 if (SDValue V
= DAG
.simplifySelect(N0
, N1
, N2
))
8276 // fold (select X, X, Y) -> (or X, Y)
8277 // fold (select X, 1, Y) -> (or C, Y)
8278 if (VT
== VT0
&& VT
== MVT::i1
&& (N0
== N1
|| isOneConstant(N1
)))
8279 return DAG
.getNode(ISD::OR
, DL
, VT
, N0
, N2
);
8281 if (SDValue V
= foldSelectOfConstants(N
))
8284 // fold (select C, 0, X) -> (and (not C), X)
8285 if (VT
== VT0
&& VT
== MVT::i1
&& isNullConstant(N1
)) {
8286 SDValue NOTNode
= DAG
.getNOT(SDLoc(N0
), N0
, VT
);
8287 AddToWorklist(NOTNode
.getNode());
8288 return DAG
.getNode(ISD::AND
, DL
, VT
, NOTNode
, N2
);
8290 // fold (select C, X, 1) -> (or (not C), X)
8291 if (VT
== VT0
&& VT
== MVT::i1
&& isOneConstant(N2
)) {
8292 SDValue NOTNode
= DAG
.getNOT(SDLoc(N0
), N0
, VT
);
8293 AddToWorklist(NOTNode
.getNode());
8294 return DAG
.getNode(ISD::OR
, DL
, VT
, NOTNode
, N1
);
8296 // fold (select X, Y, X) -> (and X, Y)
8297 // fold (select X, Y, 0) -> (and X, Y)
8298 if (VT
== VT0
&& VT
== MVT::i1
&& (N0
== N2
|| isNullConstant(N2
)))
8299 return DAG
.getNode(ISD::AND
, DL
, VT
, N0
, N1
);
8301 // If we can fold this based on the true/false value, do so.
8302 if (SimplifySelectOps(N
, N1
, N2
))
8303 return SDValue(N
, 0); // Don't revisit N.
8305 if (VT0
== MVT::i1
) {
8306 // The code in this block deals with the following 2 equivalences:
8307 // select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y))
8308 // select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y)
8309 // The target can specify its preferred form with the
8310 // shouldNormalizeToSelectSequence() callback. However we always transform
8311 // to the right anyway if we find the inner select exists in the DAG anyway
8312 // and we always transform to the left side if we know that we can further
8313 // optimize the combination of the conditions.
8314 bool normalizeToSequence
=
8315 TLI
.shouldNormalizeToSelectSequence(*DAG
.getContext(), VT
);
8316 // select (and Cond0, Cond1), X, Y
8317 // -> select Cond0, (select Cond1, X, Y), Y
8318 if (N0
->getOpcode() == ISD::AND
&& N0
->hasOneUse()) {
8319 SDValue Cond0
= N0
->getOperand(0);
8320 SDValue Cond1
= N0
->getOperand(1);
8321 SDValue InnerSelect
=
8322 DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), Cond1
, N1
, N2
, Flags
);
8323 if (normalizeToSequence
|| !InnerSelect
.use_empty())
8324 return DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), Cond0
,
8325 InnerSelect
, N2
, Flags
);
8326 // Cleanup on failure.
8327 if (InnerSelect
.use_empty())
8328 recursivelyDeleteUnusedNodes(InnerSelect
.getNode());
8330 // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y)
8331 if (N0
->getOpcode() == ISD::OR
&& N0
->hasOneUse()) {
8332 SDValue Cond0
= N0
->getOperand(0);
8333 SDValue Cond1
= N0
->getOperand(1);
8334 SDValue InnerSelect
= DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(),
8335 Cond1
, N1
, N2
, Flags
);
8336 if (normalizeToSequence
|| !InnerSelect
.use_empty())
8337 return DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), Cond0
, N1
,
8338 InnerSelect
, Flags
);
8339 // Cleanup on failure.
8340 if (InnerSelect
.use_empty())
8341 recursivelyDeleteUnusedNodes(InnerSelect
.getNode());
8344 // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y
8345 if (N1
->getOpcode() == ISD::SELECT
&& N1
->hasOneUse()) {
8346 SDValue N1_0
= N1
->getOperand(0);
8347 SDValue N1_1
= N1
->getOperand(1);
8348 SDValue N1_2
= N1
->getOperand(2);
8349 if (N1_2
== N2
&& N0
.getValueType() == N1_0
.getValueType()) {
8350 // Create the actual and node if we can generate good code for it.
8351 if (!normalizeToSequence
) {
8352 SDValue And
= DAG
.getNode(ISD::AND
, DL
, N0
.getValueType(), N0
, N1_0
);
8353 return DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), And
, N1_1
,
8356 // Otherwise see if we can optimize the "and" to a better pattern.
8357 if (SDValue Combined
= visitANDLike(N0
, N1_0
, N
)) {
8358 return DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), Combined
, N1_1
,
8363 // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y
8364 if (N2
->getOpcode() == ISD::SELECT
&& N2
->hasOneUse()) {
8365 SDValue N2_0
= N2
->getOperand(0);
8366 SDValue N2_1
= N2
->getOperand(1);
8367 SDValue N2_2
= N2
->getOperand(2);
8368 if (N2_1
== N1
&& N0
.getValueType() == N2_0
.getValueType()) {
8369 // Create the actual or node if we can generate good code for it.
8370 if (!normalizeToSequence
) {
8371 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, N0
.getValueType(), N0
, N2_0
);
8372 return DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), Or
, N1
,
8375 // Otherwise see if we can optimize to a better pattern.
8376 if (SDValue Combined
= visitORLike(N0
, N2_0
, N
))
8377 return DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), Combined
, N1
,
8383 // select (not Cond), N1, N2 -> select Cond, N2, N1
8384 if (SDValue F
= extractBooleanFlip(N0
, DAG
, TLI
, false)) {
8385 SDValue SelectOp
= DAG
.getSelect(DL
, VT
, F
, N2
, N1
);
8386 SelectOp
->setFlags(Flags
);
8390 // Fold selects based on a setcc into other things, such as min/max/abs.
8391 if (N0
.getOpcode() == ISD::SETCC
) {
8392 SDValue Cond0
= N0
.getOperand(0), Cond1
= N0
.getOperand(1);
8393 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N0
.getOperand(2))->get();
8395 // select (fcmp lt x, y), x, y -> fminnum x, y
8396 // select (fcmp gt x, y), x, y -> fmaxnum x, y
8398 // This is OK if we don't care what happens if either operand is a NaN.
8399 if (N0
.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG
, N1
, N2
, TLI
))
8400 if (SDValue FMinMax
= combineMinNumMaxNum(DL
, VT
, Cond0
, Cond1
, N1
, N2
,
8404 // Use 'unsigned add with overflow' to optimize an unsigned saturating add.
8405 // This is conservatively limited to pre-legal-operations to give targets
8406 // a chance to reverse the transform if they want to do that. Also, it is
8407 // unlikely that the pattern would be formed late, so it's probably not
8408 // worth going through the other checks.
8409 if (!LegalOperations
&& TLI
.isOperationLegalOrCustom(ISD::UADDO
, VT
) &&
8410 CC
== ISD::SETUGT
&& N0
.hasOneUse() && isAllOnesConstant(N1
) &&
8411 N2
.getOpcode() == ISD::ADD
&& Cond0
== N2
.getOperand(0)) {
8412 auto *C
= dyn_cast
<ConstantSDNode
>(N2
.getOperand(1));
8413 auto *NotC
= dyn_cast
<ConstantSDNode
>(Cond1
);
8414 if (C
&& NotC
&& C
->getAPIntValue() == ~NotC
->getAPIntValue()) {
8415 // select (setcc Cond0, ~C, ugt), -1, (add Cond0, C) -->
8416 // uaddo Cond0, C; select uaddo.1, -1, uaddo.0
8418 // The IR equivalent of this transform would have this form:
8420 // %c = icmp ugt %x, ~C
8421 // %r = select %c, -1, %a
8423 // %u = call {iN,i1} llvm.uadd.with.overflow(%x, C)
8424 // %u0 = extractvalue %u, 0
8425 // %u1 = extractvalue %u, 1
8426 // %r = select %u1, -1, %u0
8427 SDVTList VTs
= DAG
.getVTList(VT
, VT0
);
8428 SDValue UAO
= DAG
.getNode(ISD::UADDO
, DL
, VTs
, Cond0
, N2
.getOperand(1));
8429 return DAG
.getSelect(DL
, VT
, UAO
.getValue(1), N1
, UAO
.getValue(0));
8433 if (TLI
.isOperationLegal(ISD::SELECT_CC
, VT
) ||
8434 (!LegalOperations
&&
8435 TLI
.isOperationLegalOrCustom(ISD::SELECT_CC
, VT
))) {
8436 // Any flags available in a select/setcc fold will be on the setcc as they
8437 // migrated from fcmp
8438 Flags
= N0
.getNode()->getFlags();
8439 SDValue SelectNode
= DAG
.getNode(ISD::SELECT_CC
, DL
, VT
, Cond0
, Cond1
, N1
,
8440 N2
, N0
.getOperand(2));
8441 SelectNode
->setFlags(Flags
);
8445 return SimplifySelect(DL
, N0
, N1
, N2
);
8451 // This function assumes all the vselect's arguments are CONCAT_VECTOR
8452 // nodes and that the condition is a BV of ConstantSDNodes (or undefs).
8453 static SDValue
ConvertSelectToConcatVector(SDNode
*N
, SelectionDAG
&DAG
) {
8455 SDValue Cond
= N
->getOperand(0);
8456 SDValue LHS
= N
->getOperand(1);
8457 SDValue RHS
= N
->getOperand(2);
8458 EVT VT
= N
->getValueType(0);
8459 int NumElems
= VT
.getVectorNumElements();
8460 assert(LHS
.getOpcode() == ISD::CONCAT_VECTORS
&&
8461 RHS
.getOpcode() == ISD::CONCAT_VECTORS
&&
8462 Cond
.getOpcode() == ISD::BUILD_VECTOR
);
8464 // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about
8465 // binary ones here.
8466 if (LHS
->getNumOperands() != 2 || RHS
->getNumOperands() != 2)
8469 // We're sure we have an even number of elements due to the
8470 // concat_vectors we have as arguments to vselect.
8471 // Skip BV elements until we find one that's not an UNDEF
8472 // After we find an UNDEF element, keep looping until we get to half the
8473 // length of the BV and see if all the non-undef nodes are the same.
8474 ConstantSDNode
*BottomHalf
= nullptr;
8475 for (int i
= 0; i
< NumElems
/ 2; ++i
) {
8476 if (Cond
->getOperand(i
)->isUndef())
8479 if (BottomHalf
== nullptr)
8480 BottomHalf
= cast
<ConstantSDNode
>(Cond
.getOperand(i
));
8481 else if (Cond
->getOperand(i
).getNode() != BottomHalf
)
8485 // Do the same for the second half of the BuildVector
8486 ConstantSDNode
*TopHalf
= nullptr;
8487 for (int i
= NumElems
/ 2; i
< NumElems
; ++i
) {
8488 if (Cond
->getOperand(i
)->isUndef())
8491 if (TopHalf
== nullptr)
8492 TopHalf
= cast
<ConstantSDNode
>(Cond
.getOperand(i
));
8493 else if (Cond
->getOperand(i
).getNode() != TopHalf
)
8497 assert(TopHalf
&& BottomHalf
&&
8498 "One half of the selector was all UNDEFs and the other was all the "
8499 "same value. This should have been addressed before this function.");
8501 ISD::CONCAT_VECTORS
, DL
, VT
,
8502 BottomHalf
->isNullValue() ? RHS
->getOperand(0) : LHS
->getOperand(0),
8503 TopHalf
->isNullValue() ? RHS
->getOperand(1) : LHS
->getOperand(1));
8506 SDValue
DAGCombiner::visitMSCATTER(SDNode
*N
) {
8507 MaskedScatterSDNode
*MSC
= cast
<MaskedScatterSDNode
>(N
);
8508 SDValue Mask
= MSC
->getMask();
8509 SDValue Chain
= MSC
->getChain();
8512 // Zap scatters with a zero mask.
8513 if (ISD::isBuildVectorAllZeros(Mask
.getNode()))
8519 SDValue
DAGCombiner::visitMSTORE(SDNode
*N
) {
8520 MaskedStoreSDNode
*MST
= cast
<MaskedStoreSDNode
>(N
);
8521 SDValue Mask
= MST
->getMask();
8522 SDValue Chain
= MST
->getChain();
8525 // Zap masked stores with a zero mask.
8526 if (ISD::isBuildVectorAllZeros(Mask
.getNode()))
8532 SDValue
DAGCombiner::visitMGATHER(SDNode
*N
) {
8533 MaskedGatherSDNode
*MGT
= cast
<MaskedGatherSDNode
>(N
);
8534 SDValue Mask
= MGT
->getMask();
8537 // Zap gathers with a zero mask.
8538 if (ISD::isBuildVectorAllZeros(Mask
.getNode()))
8539 return CombineTo(N
, MGT
->getPassThru(), MGT
->getChain());
8544 SDValue
DAGCombiner::visitMLOAD(SDNode
*N
) {
8545 MaskedLoadSDNode
*MLD
= cast
<MaskedLoadSDNode
>(N
);
8546 SDValue Mask
= MLD
->getMask();
8549 // Zap masked loads with a zero mask.
8550 if (ISD::isBuildVectorAllZeros(Mask
.getNode()))
8551 return CombineTo(N
, MLD
->getPassThru(), MLD
->getChain());
8556 /// A vector select of 2 constant vectors can be simplified to math/logic to
8557 /// avoid a variable select instruction and possibly avoid constant loads.
8558 SDValue
DAGCombiner::foldVSelectOfConstants(SDNode
*N
) {
8559 SDValue Cond
= N
->getOperand(0);
8560 SDValue N1
= N
->getOperand(1);
8561 SDValue N2
= N
->getOperand(2);
8562 EVT VT
= N
->getValueType(0);
8563 if (!Cond
.hasOneUse() || Cond
.getScalarValueSizeInBits() != 1 ||
8564 !TLI
.convertSelectOfConstantsToMath(VT
) ||
8565 !ISD::isBuildVectorOfConstantSDNodes(N1
.getNode()) ||
8566 !ISD::isBuildVectorOfConstantSDNodes(N2
.getNode()))
8569 // Check if we can use the condition value to increment/decrement a single
8570 // constant value. This simplifies a select to an add and removes a constant
8571 // load/materialization from the general case.
8572 bool AllAddOne
= true;
8573 bool AllSubOne
= true;
8574 unsigned Elts
= VT
.getVectorNumElements();
8575 for (unsigned i
= 0; i
!= Elts
; ++i
) {
8576 SDValue N1Elt
= N1
.getOperand(i
);
8577 SDValue N2Elt
= N2
.getOperand(i
);
8578 if (N1Elt
.isUndef() || N2Elt
.isUndef())
8581 const APInt
&C1
= cast
<ConstantSDNode
>(N1Elt
)->getAPIntValue();
8582 const APInt
&C2
= cast
<ConstantSDNode
>(N2Elt
)->getAPIntValue();
8589 // Further simplifications for the extra-special cases where the constants are
8590 // all 0 or all -1 should be implemented as folds of these patterns.
8592 if (AllAddOne
|| AllSubOne
) {
8593 // vselect <N x i1> Cond, C+1, C --> add (zext Cond), C
8594 // vselect <N x i1> Cond, C-1, C --> add (sext Cond), C
8595 auto ExtendOpcode
= AllAddOne
? ISD::ZERO_EXTEND
: ISD::SIGN_EXTEND
;
8596 SDValue ExtendedCond
= DAG
.getNode(ExtendOpcode
, DL
, VT
, Cond
);
8597 return DAG
.getNode(ISD::ADD
, DL
, VT
, ExtendedCond
, N2
);
8600 // The general case for select-of-constants:
8601 // vselect <N x i1> Cond, C1, C2 --> xor (and (sext Cond), (C1^C2)), C2
8602 // ...but that only makes sense if a vselect is slower than 2 logic ops, so
8603 // leave that to a machine-specific pass.
8607 SDValue
DAGCombiner::visitVSELECT(SDNode
*N
) {
8608 SDValue N0
= N
->getOperand(0);
8609 SDValue N1
= N
->getOperand(1);
8610 SDValue N2
= N
->getOperand(2);
8611 EVT VT
= N
->getValueType(0);
8614 if (SDValue V
= DAG
.simplifySelect(N0
, N1
, N2
))
8617 // vselect (not Cond), N1, N2 -> vselect Cond, N2, N1
8618 if (SDValue F
= extractBooleanFlip(N0
, DAG
, TLI
, false))
8619 return DAG
.getSelect(DL
, VT
, F
, N2
, N1
);
8621 // Canonicalize integer abs.
8622 // vselect (setg[te] X, 0), X, -X ->
8623 // vselect (setgt X, -1), X, -X ->
8624 // vselect (setl[te] X, 0), -X, X ->
8625 // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
8626 if (N0
.getOpcode() == ISD::SETCC
) {
8627 SDValue LHS
= N0
.getOperand(0), RHS
= N0
.getOperand(1);
8628 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N0
.getOperand(2))->get();
8630 bool RHSIsAllZeros
= ISD::isBuildVectorAllZeros(RHS
.getNode());
8632 if (((RHSIsAllZeros
&& (CC
== ISD::SETGT
|| CC
== ISD::SETGE
)) ||
8633 (ISD::isBuildVectorAllOnes(RHS
.getNode()) && CC
== ISD::SETGT
)) &&
8634 N1
== LHS
&& N2
.getOpcode() == ISD::SUB
&& N1
== N2
.getOperand(1))
8635 isAbs
= ISD::isBuildVectorAllZeros(N2
.getOperand(0).getNode());
8636 else if ((RHSIsAllZeros
&& (CC
== ISD::SETLT
|| CC
== ISD::SETLE
)) &&
8637 N2
== LHS
&& N1
.getOpcode() == ISD::SUB
&& N2
== N1
.getOperand(1))
8638 isAbs
= ISD::isBuildVectorAllZeros(N1
.getOperand(0).getNode());
8641 if (TLI
.isOperationLegalOrCustom(ISD::ABS
, VT
))
8642 return DAG
.getNode(ISD::ABS
, DL
, VT
, LHS
);
8644 SDValue Shift
= DAG
.getNode(ISD::SRA
, DL
, VT
, LHS
,
8645 DAG
.getConstant(VT
.getScalarSizeInBits() - 1,
8646 DL
, getShiftAmountTy(VT
)));
8647 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, LHS
, Shift
);
8648 AddToWorklist(Shift
.getNode());
8649 AddToWorklist(Add
.getNode());
8650 return DAG
.getNode(ISD::XOR
, DL
, VT
, Add
, Shift
);
8653 // vselect x, y (fcmp lt x, y) -> fminnum x, y
8654 // vselect x, y (fcmp gt x, y) -> fmaxnum x, y
8656 // This is OK if we don't care about what happens if either operand is a
8659 if (N0
.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG
, LHS
, RHS
, TLI
)) {
8660 if (SDValue FMinMax
=
8661 combineMinNumMaxNum(DL
, VT
, LHS
, RHS
, N1
, N2
, CC
, TLI
, DAG
))
8665 // If this select has a condition (setcc) with narrower operands than the
8666 // select, try to widen the compare to match the select width.
8667 // TODO: This should be extended to handle any constant.
8668 // TODO: This could be extended to handle non-loading patterns, but that
8669 // requires thorough testing to avoid regressions.
8670 if (isNullOrNullSplat(RHS
)) {
8671 EVT NarrowVT
= LHS
.getValueType();
8672 EVT WideVT
= N1
.getValueType().changeVectorElementTypeToInteger();
8673 EVT SetCCVT
= getSetCCResultType(LHS
.getValueType());
8674 unsigned SetCCWidth
= SetCCVT
.getScalarSizeInBits();
8675 unsigned WideWidth
= WideVT
.getScalarSizeInBits();
8676 bool IsSigned
= isSignedIntSetCC(CC
);
8677 auto LoadExtOpcode
= IsSigned
? ISD::SEXTLOAD
: ISD::ZEXTLOAD
;
8678 if (LHS
.getOpcode() == ISD::LOAD
&& LHS
.hasOneUse() &&
8679 SetCCWidth
!= 1 && SetCCWidth
< WideWidth
&&
8680 TLI
.isLoadExtLegalOrCustom(LoadExtOpcode
, WideVT
, NarrowVT
) &&
8681 TLI
.isOperationLegalOrCustom(ISD::SETCC
, WideVT
)) {
8682 // Both compare operands can be widened for free. The LHS can use an
8683 // extended load, and the RHS is a constant:
8684 // vselect (ext (setcc load(X), C)), N1, N2 -->
8685 // vselect (setcc extload(X), C'), N1, N2
8686 auto ExtOpcode
= IsSigned
? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
8687 SDValue WideLHS
= DAG
.getNode(ExtOpcode
, DL
, WideVT
, LHS
);
8688 SDValue WideRHS
= DAG
.getNode(ExtOpcode
, DL
, WideVT
, RHS
);
8689 EVT WideSetCCVT
= getSetCCResultType(WideVT
);
8690 SDValue WideSetCC
= DAG
.getSetCC(DL
, WideSetCCVT
, WideLHS
, WideRHS
, CC
);
8691 return DAG
.getSelect(DL
, N1
.getValueType(), WideSetCC
, N1
, N2
);
8696 if (SimplifySelectOps(N
, N1
, N2
))
8697 return SDValue(N
, 0); // Don't revisit N.
8699 // Fold (vselect (build_vector all_ones), N1, N2) -> N1
8700 if (ISD::isBuildVectorAllOnes(N0
.getNode()))
8702 // Fold (vselect (build_vector all_zeros), N1, N2) -> N2
8703 if (ISD::isBuildVectorAllZeros(N0
.getNode()))
8706 // The ConvertSelectToConcatVector function is assuming both the above
8707 // checks for (vselect (build_vector all{ones,zeros) ...) have been made
8709 if (N1
.getOpcode() == ISD::CONCAT_VECTORS
&&
8710 N2
.getOpcode() == ISD::CONCAT_VECTORS
&&
8711 ISD::isBuildVectorOfConstantSDNodes(N0
.getNode())) {
8712 if (SDValue CV
= ConvertSelectToConcatVector(N
, DAG
))
8716 if (SDValue V
= foldVSelectOfConstants(N
))
8722 SDValue
DAGCombiner::visitSELECT_CC(SDNode
*N
) {
8723 SDValue N0
= N
->getOperand(0);
8724 SDValue N1
= N
->getOperand(1);
8725 SDValue N2
= N
->getOperand(2);
8726 SDValue N3
= N
->getOperand(3);
8727 SDValue N4
= N
->getOperand(4);
8728 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N4
)->get();
8730 // fold select_cc lhs, rhs, x, x, cc -> x
8734 // Determine if the condition we're dealing with is constant
8735 if (SDValue SCC
= SimplifySetCC(getSetCCResultType(N0
.getValueType()), N0
, N1
,
8736 CC
, SDLoc(N
), false)) {
8737 AddToWorklist(SCC
.getNode());
8739 if (ConstantSDNode
*SCCC
= dyn_cast
<ConstantSDNode
>(SCC
.getNode())) {
8740 if (!SCCC
->isNullValue())
8741 return N2
; // cond always true -> true val
8743 return N3
; // cond always false -> false val
8744 } else if (SCC
->isUndef()) {
8745 // When the condition is UNDEF, just return the first operand. This is
8746 // coherent the DAG creation, no setcc node is created in this case
8748 } else if (SCC
.getOpcode() == ISD::SETCC
) {
8749 // Fold to a simpler select_cc
8750 SDValue SelectOp
= DAG
.getNode(
8751 ISD::SELECT_CC
, SDLoc(N
), N2
.getValueType(), SCC
.getOperand(0),
8752 SCC
.getOperand(1), N2
, N3
, SCC
.getOperand(2));
8753 SelectOp
->setFlags(SCC
->getFlags());
8758 // If we can fold this based on the true/false value, do so.
8759 if (SimplifySelectOps(N
, N2
, N3
))
8760 return SDValue(N
, 0); // Don't revisit N.
8762 // fold select_cc into other things, such as min/max/abs
8763 return SimplifySelectCC(SDLoc(N
), N0
, N1
, N2
, N3
, CC
);
8766 SDValue
DAGCombiner::visitSETCC(SDNode
*N
) {
8767 // setcc is very commonly used as an argument to brcond. This pattern
8768 // also lend itself to numerous combines and, as a result, it is desired
8769 // we keep the argument to a brcond as a setcc as much as possible.
8771 N
->hasOneUse() && N
->use_begin()->getOpcode() == ISD::BRCOND
;
8773 SDValue Combined
= SimplifySetCC(
8774 N
->getValueType(0), N
->getOperand(0), N
->getOperand(1),
8775 cast
<CondCodeSDNode
>(N
->getOperand(2))->get(), SDLoc(N
), !PreferSetCC
);
8780 // If we prefer to have a setcc, and we don't, we'll try our best to
8781 // recreate one using rebuildSetCC.
8782 if (PreferSetCC
&& Combined
.getOpcode() != ISD::SETCC
) {
8783 SDValue NewSetCC
= rebuildSetCC(Combined
);
8785 // We don't have anything interesting to combine to.
8786 if (NewSetCC
.getNode() == N
)
8796 SDValue
DAGCombiner::visitSETCCCARRY(SDNode
*N
) {
8797 SDValue LHS
= N
->getOperand(0);
8798 SDValue RHS
= N
->getOperand(1);
8799 SDValue Carry
= N
->getOperand(2);
8800 SDValue Cond
= N
->getOperand(3);
8802 // If Carry is false, fold to a regular SETCC.
8803 if (isNullConstant(Carry
))
8804 return DAG
.getNode(ISD::SETCC
, SDLoc(N
), N
->getVTList(), LHS
, RHS
, Cond
);
8809 /// Try to fold a sext/zext/aext dag node into a ConstantSDNode or
8810 /// a build_vector of constants.
8811 /// This function is called by the DAGCombiner when visiting sext/zext/aext
8812 /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND).
8813 /// Vector extends are not folded if operations are legal; this is to
8814 /// avoid introducing illegal build_vector dag nodes.
8815 static SDValue
tryToFoldExtendOfConstant(SDNode
*N
, const TargetLowering
&TLI
,
8816 SelectionDAG
&DAG
, bool LegalTypes
) {
8817 unsigned Opcode
= N
->getOpcode();
8818 SDValue N0
= N
->getOperand(0);
8819 EVT VT
= N
->getValueType(0);
8822 assert((Opcode
== ISD::SIGN_EXTEND
|| Opcode
== ISD::ZERO_EXTEND
||
8823 Opcode
== ISD::ANY_EXTEND
|| Opcode
== ISD::SIGN_EXTEND_VECTOR_INREG
||
8824 Opcode
== ISD::ZERO_EXTEND_VECTOR_INREG
)
8825 && "Expected EXTEND dag node in input!");
8827 // fold (sext c1) -> c1
8828 // fold (zext c1) -> c1
8829 // fold (aext c1) -> c1
8830 if (isa
<ConstantSDNode
>(N0
))
8831 return DAG
.getNode(Opcode
, DL
, VT
, N0
);
8833 // fold (sext (select cond, c1, c2)) -> (select cond, sext c1, sext c2)
8834 // fold (zext (select cond, c1, c2)) -> (select cond, zext c1, zext c2)
8835 // fold (aext (select cond, c1, c2)) -> (select cond, sext c1, sext c2)
8836 if (N0
->getOpcode() == ISD::SELECT
) {
8837 SDValue Op1
= N0
->getOperand(1);
8838 SDValue Op2
= N0
->getOperand(2);
8839 if (isa
<ConstantSDNode
>(Op1
) && isa
<ConstantSDNode
>(Op2
) &&
8840 (Opcode
!= ISD::ZERO_EXTEND
|| !TLI
.isZExtFree(N0
.getValueType(), VT
))) {
8841 // For any_extend, choose sign extension of the constants to allow a
8842 // possible further transform to sign_extend_inreg.i.e.
8844 // t1: i8 = select t0, Constant:i8<-1>, Constant:i8<0>
8845 // t2: i64 = any_extend t1
8847 // t3: i64 = select t0, Constant:i64<-1>, Constant:i64<0>
8849 // t4: i64 = sign_extend_inreg t3
8850 unsigned FoldOpc
= Opcode
;
8851 if (FoldOpc
== ISD::ANY_EXTEND
)
8852 FoldOpc
= ISD::SIGN_EXTEND
;
8853 return DAG
.getSelect(DL
, VT
, N0
->getOperand(0),
8854 DAG
.getNode(FoldOpc
, DL
, VT
, Op1
),
8855 DAG
.getNode(FoldOpc
, DL
, VT
, Op2
));
8859 // fold (sext (build_vector AllConstants) -> (build_vector AllConstants)
8860 // fold (zext (build_vector AllConstants) -> (build_vector AllConstants)
8861 // fold (aext (build_vector AllConstants) -> (build_vector AllConstants)
8862 EVT SVT
= VT
.getScalarType();
8863 if (!(VT
.isVector() && (!LegalTypes
|| TLI
.isTypeLegal(SVT
)) &&
8864 ISD::isBuildVectorOfConstantSDNodes(N0
.getNode())))
8867 // We can fold this node into a build_vector.
8868 unsigned VTBits
= SVT
.getSizeInBits();
8869 unsigned EVTBits
= N0
->getValueType(0).getScalarSizeInBits();
8870 SmallVector
<SDValue
, 8> Elts
;
8871 unsigned NumElts
= VT
.getVectorNumElements();
8873 // For zero-extensions, UNDEF elements still guarantee to have the upper
8874 // bits set to zero.
8876 Opcode
== ISD::ZERO_EXTEND
|| Opcode
== ISD::ZERO_EXTEND_VECTOR_INREG
;
8878 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
8879 SDValue Op
= N0
.getOperand(i
);
8881 Elts
.push_back(IsZext
? DAG
.getConstant(0, DL
, SVT
) : DAG
.getUNDEF(SVT
));
8886 // Get the constant value and if needed trunc it to the size of the type.
8887 // Nodes like build_vector might have constants wider than the scalar type.
8888 APInt C
= cast
<ConstantSDNode
>(Op
)->getAPIntValue().zextOrTrunc(EVTBits
);
8889 if (Opcode
== ISD::SIGN_EXTEND
|| Opcode
== ISD::SIGN_EXTEND_VECTOR_INREG
)
8890 Elts
.push_back(DAG
.getConstant(C
.sext(VTBits
), DL
, SVT
));
8892 Elts
.push_back(DAG
.getConstant(C
.zext(VTBits
), DL
, SVT
));
8895 return DAG
.getBuildVector(VT
, DL
, Elts
);
8898 // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
8899 // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
8900 // transformation. Returns true if extension are possible and the above
8901 // mentioned transformation is profitable.
8902 static bool ExtendUsesToFormExtLoad(EVT VT
, SDNode
*N
, SDValue N0
,
8904 SmallVectorImpl
<SDNode
*> &ExtendNodes
,
8905 const TargetLowering
&TLI
) {
8906 bool HasCopyToRegUses
= false;
8907 bool isTruncFree
= TLI
.isTruncateFree(VT
, N0
.getValueType());
8908 for (SDNode::use_iterator UI
= N0
.getNode()->use_begin(),
8909 UE
= N0
.getNode()->use_end();
8914 if (UI
.getUse().getResNo() != N0
.getResNo())
8916 // FIXME: Only extend SETCC N, N and SETCC N, c for now.
8917 if (ExtOpc
!= ISD::ANY_EXTEND
&& User
->getOpcode() == ISD::SETCC
) {
8918 ISD::CondCode CC
= cast
<CondCodeSDNode
>(User
->getOperand(2))->get();
8919 if (ExtOpc
== ISD::ZERO_EXTEND
&& ISD::isSignedIntSetCC(CC
))
8920 // Sign bits will be lost after a zext.
8923 for (unsigned i
= 0; i
!= 2; ++i
) {
8924 SDValue UseOp
= User
->getOperand(i
);
8927 if (!isa
<ConstantSDNode
>(UseOp
))
8932 ExtendNodes
.push_back(User
);
8935 // If truncates aren't free and there are users we can't
8936 // extend, it isn't worthwhile.
8939 // Remember if this value is live-out.
8940 if (User
->getOpcode() == ISD::CopyToReg
)
8941 HasCopyToRegUses
= true;
8944 if (HasCopyToRegUses
) {
8945 bool BothLiveOut
= false;
8946 for (SDNode::use_iterator UI
= N
->use_begin(), UE
= N
->use_end();
8948 SDUse
&Use
= UI
.getUse();
8949 if (Use
.getResNo() == 0 && Use
.getUser()->getOpcode() == ISD::CopyToReg
) {
8955 // Both unextended and extended values are live out. There had better be
8956 // a good reason for the transformation.
8957 return ExtendNodes
.size();
8962 void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl
<SDNode
*> &SetCCs
,
8963 SDValue OrigLoad
, SDValue ExtLoad
,
8964 ISD::NodeType ExtType
) {
8965 // Extend SetCC uses if necessary.
8967 for (SDNode
*SetCC
: SetCCs
) {
8968 SmallVector
<SDValue
, 4> Ops
;
8970 for (unsigned j
= 0; j
!= 2; ++j
) {
8971 SDValue SOp
= SetCC
->getOperand(j
);
8972 if (SOp
== OrigLoad
)
8973 Ops
.push_back(ExtLoad
);
8975 Ops
.push_back(DAG
.getNode(ExtType
, DL
, ExtLoad
->getValueType(0), SOp
));
8978 Ops
.push_back(SetCC
->getOperand(2));
8979 CombineTo(SetCC
, DAG
.getNode(ISD::SETCC
, DL
, SetCC
->getValueType(0), Ops
));
8983 // FIXME: Bring more similar combines here, common to sext/zext (maybe aext?).
8984 SDValue
DAGCombiner::CombineExtLoad(SDNode
*N
) {
8985 SDValue N0
= N
->getOperand(0);
8986 EVT DstVT
= N
->getValueType(0);
8987 EVT SrcVT
= N0
.getValueType();
8989 assert((N
->getOpcode() == ISD::SIGN_EXTEND
||
8990 N
->getOpcode() == ISD::ZERO_EXTEND
) &&
8991 "Unexpected node type (not an extend)!");
8993 // fold (sext (load x)) to multiple smaller sextloads; same for zext.
8994 // For example, on a target with legal v4i32, but illegal v8i32, turn:
8995 // (v8i32 (sext (v8i16 (load x))))
8997 // (v8i32 (concat_vectors (v4i32 (sextload x)),
8998 // (v4i32 (sextload (x + 16)))))
8999 // Where uses of the original load, i.e.:
9001 // are replaced with:
9003 // (v8i32 (concat_vectors (v4i32 (sextload x)),
9004 // (v4i32 (sextload (x + 16)))))))
9006 // This combine is only applicable to illegal, but splittable, vectors.
9007 // All legal types, and illegal non-vector types, are handled elsewhere.
9008 // This combine is controlled by TargetLowering::isVectorLoadExtDesirable.
9010 if (N0
->getOpcode() != ISD::LOAD
)
9013 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
9015 if (!ISD::isNON_EXTLoad(LN0
) || !ISD::isUNINDEXEDLoad(LN0
) ||
9016 !N0
.hasOneUse() || !LN0
->isSimple() ||
9017 !DstVT
.isVector() || !DstVT
.isPow2VectorType() ||
9018 !TLI
.isVectorLoadExtDesirable(SDValue(N
, 0)))
9021 SmallVector
<SDNode
*, 4> SetCCs
;
9022 if (!ExtendUsesToFormExtLoad(DstVT
, N
, N0
, N
->getOpcode(), SetCCs
, TLI
))
9025 ISD::LoadExtType ExtType
=
9026 N
->getOpcode() == ISD::SIGN_EXTEND
? ISD::SEXTLOAD
: ISD::ZEXTLOAD
;
9028 // Try to split the vector types to get down to legal types.
9029 EVT SplitSrcVT
= SrcVT
;
9030 EVT SplitDstVT
= DstVT
;
9031 while (!TLI
.isLoadExtLegalOrCustom(ExtType
, SplitDstVT
, SplitSrcVT
) &&
9032 SplitSrcVT
.getVectorNumElements() > 1) {
9033 SplitDstVT
= DAG
.GetSplitDestVTs(SplitDstVT
).first
;
9034 SplitSrcVT
= DAG
.GetSplitDestVTs(SplitSrcVT
).first
;
9037 if (!TLI
.isLoadExtLegalOrCustom(ExtType
, SplitDstVT
, SplitSrcVT
))
9041 const unsigned NumSplits
=
9042 DstVT
.getVectorNumElements() / SplitDstVT
.getVectorNumElements();
9043 const unsigned Stride
= SplitSrcVT
.getStoreSize();
9044 SmallVector
<SDValue
, 4> Loads
;
9045 SmallVector
<SDValue
, 4> Chains
;
9047 SDValue BasePtr
= LN0
->getBasePtr();
9048 for (unsigned Idx
= 0; Idx
< NumSplits
; Idx
++) {
9049 const unsigned Offset
= Idx
* Stride
;
9050 const unsigned Align
= MinAlign(LN0
->getAlignment(), Offset
);
9052 SDValue SplitLoad
= DAG
.getExtLoad(
9053 ExtType
, SDLoc(LN0
), SplitDstVT
, LN0
->getChain(), BasePtr
,
9054 LN0
->getPointerInfo().getWithOffset(Offset
), SplitSrcVT
, Align
,
9055 LN0
->getMemOperand()->getFlags(), LN0
->getAAInfo());
9057 BasePtr
= DAG
.getNode(ISD::ADD
, DL
, BasePtr
.getValueType(), BasePtr
,
9058 DAG
.getConstant(Stride
, DL
, BasePtr
.getValueType()));
9060 Loads
.push_back(SplitLoad
.getValue(0));
9061 Chains
.push_back(SplitLoad
.getValue(1));
9064 SDValue NewChain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Chains
);
9065 SDValue NewValue
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, DstVT
, Loads
);
9068 AddToWorklist(NewChain
.getNode());
9070 CombineTo(N
, NewValue
);
9072 // Replace uses of the original load (before extension)
9073 // with a truncate of the concatenated sextloaded vectors.
9075 DAG
.getNode(ISD::TRUNCATE
, SDLoc(N0
), N0
.getValueType(), NewValue
);
9076 ExtendSetCCUses(SetCCs
, N0
, NewValue
, (ISD::NodeType
)N
->getOpcode());
9077 CombineTo(N0
.getNode(), Trunc
, NewChain
);
9078 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
9081 // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) ->
9082 // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst))
9083 SDValue
DAGCombiner::CombineZExtLogicopShiftLoad(SDNode
*N
) {
9084 assert(N
->getOpcode() == ISD::ZERO_EXTEND
);
9085 EVT VT
= N
->getValueType(0);
9086 EVT OrigVT
= N
->getOperand(0).getValueType();
9087 if (TLI
.isZExtFree(OrigVT
, VT
))
9091 SDValue N0
= N
->getOperand(0);
9092 if (!(N0
.getOpcode() == ISD::AND
|| N0
.getOpcode() == ISD::OR
||
9093 N0
.getOpcode() == ISD::XOR
) ||
9094 N0
.getOperand(1).getOpcode() != ISD::Constant
||
9095 (LegalOperations
&& !TLI
.isOperationLegal(N0
.getOpcode(), VT
)))
9099 SDValue N1
= N0
->getOperand(0);
9100 if (!(N1
.getOpcode() == ISD::SHL
|| N1
.getOpcode() == ISD::SRL
) ||
9101 N1
.getOperand(1).getOpcode() != ISD::Constant
||
9102 (LegalOperations
&& !TLI
.isOperationLegal(N1
.getOpcode(), VT
)))
9106 if (!isa
<LoadSDNode
>(N1
.getOperand(0)))
9108 LoadSDNode
*Load
= cast
<LoadSDNode
>(N1
.getOperand(0));
9109 EVT MemVT
= Load
->getMemoryVT();
9110 if (!TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, VT
, MemVT
) ||
9111 Load
->getExtensionType() == ISD::SEXTLOAD
|| Load
->isIndexed())
9115 // If the shift op is SHL, the logic op must be AND, otherwise the result
9117 if (N1
.getOpcode() == ISD::SHL
&& N0
.getOpcode() != ISD::AND
)
9120 if (!N0
.hasOneUse() || !N1
.hasOneUse())
9123 SmallVector
<SDNode
*, 4> SetCCs
;
9124 if (!ExtendUsesToFormExtLoad(VT
, N1
.getNode(), N1
.getOperand(0),
9125 ISD::ZERO_EXTEND
, SetCCs
, TLI
))
9128 // Actually do the transformation.
9129 SDValue ExtLoad
= DAG
.getExtLoad(ISD::ZEXTLOAD
, SDLoc(Load
), VT
,
9130 Load
->getChain(), Load
->getBasePtr(),
9131 Load
->getMemoryVT(), Load
->getMemOperand());
9134 SDValue Shift
= DAG
.getNode(N1
.getOpcode(), DL1
, VT
, ExtLoad
,
9137 APInt Mask
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue();
9138 Mask
= Mask
.zext(VT
.getSizeInBits());
9140 SDValue And
= DAG
.getNode(N0
.getOpcode(), DL0
, VT
, Shift
,
9141 DAG
.getConstant(Mask
, DL0
, VT
));
9143 ExtendSetCCUses(SetCCs
, N1
.getOperand(0), ExtLoad
, ISD::ZERO_EXTEND
);
9145 if (SDValue(Load
, 0).hasOneUse()) {
9146 DAG
.ReplaceAllUsesOfValueWith(SDValue(Load
, 1), ExtLoad
.getValue(1));
9148 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(Load
),
9149 Load
->getValueType(0), ExtLoad
);
9150 CombineTo(Load
, Trunc
, ExtLoad
.getValue(1));
9153 // N0 is dead at this point.
9154 recursivelyDeleteUnusedNodes(N0
.getNode());
9156 return SDValue(N
,0); // Return N so it doesn't get rechecked!
9159 /// If we're narrowing or widening the result of a vector select and the final
9160 /// size is the same size as a setcc (compare) feeding the select, then try to
9161 /// apply the cast operation to the select's operands because matching vector
9162 /// sizes for a select condition and other operands should be more efficient.
9163 SDValue
DAGCombiner::matchVSelectOpSizesWithSetCC(SDNode
*Cast
) {
9164 unsigned CastOpcode
= Cast
->getOpcode();
9165 assert((CastOpcode
== ISD::SIGN_EXTEND
|| CastOpcode
== ISD::ZERO_EXTEND
||
9166 CastOpcode
== ISD::TRUNCATE
|| CastOpcode
== ISD::FP_EXTEND
||
9167 CastOpcode
== ISD::FP_ROUND
) &&
9168 "Unexpected opcode for vector select narrowing/widening");
9170 // We only do this transform before legal ops because the pattern may be
9171 // obfuscated by target-specific operations after legalization. Do not create
9172 // an illegal select op, however, because that may be difficult to lower.
9173 EVT VT
= Cast
->getValueType(0);
9174 if (LegalOperations
|| !TLI
.isOperationLegalOrCustom(ISD::VSELECT
, VT
))
9177 SDValue VSel
= Cast
->getOperand(0);
9178 if (VSel
.getOpcode() != ISD::VSELECT
|| !VSel
.hasOneUse() ||
9179 VSel
.getOperand(0).getOpcode() != ISD::SETCC
)
9182 // Does the setcc have the same vector size as the casted select?
9183 SDValue SetCC
= VSel
.getOperand(0);
9184 EVT SetCCVT
= getSetCCResultType(SetCC
.getOperand(0).getValueType());
9185 if (SetCCVT
.getSizeInBits() != VT
.getSizeInBits())
9188 // cast (vsel (setcc X), A, B) --> vsel (setcc X), (cast A), (cast B)
9189 SDValue A
= VSel
.getOperand(1);
9190 SDValue B
= VSel
.getOperand(2);
9191 SDValue CastA
, CastB
;
9193 if (CastOpcode
== ISD::FP_ROUND
) {
9194 // FP_ROUND (fptrunc) has an extra flag operand to pass along.
9195 CastA
= DAG
.getNode(CastOpcode
, DL
, VT
, A
, Cast
->getOperand(1));
9196 CastB
= DAG
.getNode(CastOpcode
, DL
, VT
, B
, Cast
->getOperand(1));
9198 CastA
= DAG
.getNode(CastOpcode
, DL
, VT
, A
);
9199 CastB
= DAG
.getNode(CastOpcode
, DL
, VT
, B
);
9201 return DAG
.getNode(ISD::VSELECT
, DL
, VT
, SetCC
, CastA
, CastB
);
9204 // fold ([s|z]ext ([s|z]extload x)) -> ([s|z]ext (truncate ([s|z]extload x)))
9205 // fold ([s|z]ext ( extload x)) -> ([s|z]ext (truncate ([s|z]extload x)))
9206 static SDValue
tryToFoldExtOfExtload(SelectionDAG
&DAG
, DAGCombiner
&Combiner
,
9207 const TargetLowering
&TLI
, EVT VT
,
9208 bool LegalOperations
, SDNode
*N
,
9209 SDValue N0
, ISD::LoadExtType ExtLoadType
) {
9210 SDNode
*N0Node
= N0
.getNode();
9211 bool isAExtLoad
= (ExtLoadType
== ISD::SEXTLOAD
) ? ISD::isSEXTLoad(N0Node
)
9212 : ISD::isZEXTLoad(N0Node
);
9213 if ((!isAExtLoad
&& !ISD::isEXTLoad(N0Node
)) ||
9214 !ISD::isUNINDEXEDLoad(N0Node
) || !N0
.hasOneUse())
9217 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
9218 EVT MemVT
= LN0
->getMemoryVT();
9219 if ((LegalOperations
|| !LN0
->isSimple() ||
9221 !TLI
.isLoadExtLegal(ExtLoadType
, VT
, MemVT
))
9225 DAG
.getExtLoad(ExtLoadType
, SDLoc(LN0
), VT
, LN0
->getChain(),
9226 LN0
->getBasePtr(), MemVT
, LN0
->getMemOperand());
9227 Combiner
.CombineTo(N
, ExtLoad
);
9228 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN0
, 1), ExtLoad
.getValue(1));
9229 if (LN0
->use_empty())
9230 Combiner
.recursivelyDeleteUnusedNodes(LN0
);
9231 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
9234 // fold ([s|z]ext (load x)) -> ([s|z]ext (truncate ([s|z]extload x)))
9235 // Only generate vector extloads when 1) they're legal, and 2) they are
9236 // deemed desirable by the target.
9237 static SDValue
tryToFoldExtOfLoad(SelectionDAG
&DAG
, DAGCombiner
&Combiner
,
9238 const TargetLowering
&TLI
, EVT VT
,
9239 bool LegalOperations
, SDNode
*N
, SDValue N0
,
9240 ISD::LoadExtType ExtLoadType
,
9241 ISD::NodeType ExtOpc
) {
9242 if (!ISD::isNON_EXTLoad(N0
.getNode()) ||
9243 !ISD::isUNINDEXEDLoad(N0
.getNode()) ||
9244 ((LegalOperations
|| VT
.isVector() ||
9245 !cast
<LoadSDNode
>(N0
)->isSimple()) &&
9246 !TLI
.isLoadExtLegal(ExtLoadType
, VT
, N0
.getValueType())))
9249 bool DoXform
= true;
9250 SmallVector
<SDNode
*, 4> SetCCs
;
9251 if (!N0
.hasOneUse())
9252 DoXform
= ExtendUsesToFormExtLoad(VT
, N
, N0
, ExtOpc
, SetCCs
, TLI
);
9254 DoXform
&= TLI
.isVectorLoadExtDesirable(SDValue(N
, 0));
9258 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
9259 SDValue ExtLoad
= DAG
.getExtLoad(ExtLoadType
, SDLoc(LN0
), VT
, LN0
->getChain(),
9260 LN0
->getBasePtr(), N0
.getValueType(),
9261 LN0
->getMemOperand());
9262 Combiner
.ExtendSetCCUses(SetCCs
, N0
, ExtLoad
, ExtOpc
);
9263 // If the load value is used only by N, replace it via CombineTo N.
9264 bool NoReplaceTrunc
= SDValue(LN0
, 0).hasOneUse();
9265 Combiner
.CombineTo(N
, ExtLoad
);
9266 if (NoReplaceTrunc
) {
9267 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN0
, 1), ExtLoad
.getValue(1));
9268 Combiner
.recursivelyDeleteUnusedNodes(LN0
);
9271 DAG
.getNode(ISD::TRUNCATE
, SDLoc(N0
), N0
.getValueType(), ExtLoad
);
9272 Combiner
.CombineTo(LN0
, Trunc
, ExtLoad
.getValue(1));
9274 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
9277 static SDValue
foldExtendedSignBitTest(SDNode
*N
, SelectionDAG
&DAG
,
9278 bool LegalOperations
) {
9279 assert((N
->getOpcode() == ISD::SIGN_EXTEND
||
9280 N
->getOpcode() == ISD::ZERO_EXTEND
) && "Expected sext or zext");
9282 SDValue SetCC
= N
->getOperand(0);
9283 if (LegalOperations
|| SetCC
.getOpcode() != ISD::SETCC
||
9284 !SetCC
.hasOneUse() || SetCC
.getValueType() != MVT::i1
)
9287 SDValue X
= SetCC
.getOperand(0);
9288 SDValue Ones
= SetCC
.getOperand(1);
9289 ISD::CondCode CC
= cast
<CondCodeSDNode
>(SetCC
.getOperand(2))->get();
9290 EVT VT
= N
->getValueType(0);
9291 EVT XVT
= X
.getValueType();
9292 // setge X, C is canonicalized to setgt, so we do not need to match that
9293 // pattern. The setlt sibling is folded in SimplifySelectCC() because it does
9294 // not require the 'not' op.
9295 if (CC
== ISD::SETGT
&& isAllOnesConstant(Ones
) && VT
== XVT
) {
9296 // Invert and smear/shift the sign bit:
9297 // sext i1 (setgt iN X, -1) --> sra (not X), (N - 1)
9298 // zext i1 (setgt iN X, -1) --> srl (not X), (N - 1)
9300 SDValue NotX
= DAG
.getNOT(DL
, X
, VT
);
9301 SDValue ShiftAmount
= DAG
.getConstant(VT
.getSizeInBits() - 1, DL
, VT
);
9302 auto ShiftOpcode
= N
->getOpcode() == ISD::SIGN_EXTEND
? ISD::SRA
: ISD::SRL
;
9303 return DAG
.getNode(ShiftOpcode
, DL
, VT
, NotX
, ShiftAmount
);
9308 SDValue
DAGCombiner::visitSIGN_EXTEND(SDNode
*N
) {
9309 SDValue N0
= N
->getOperand(0);
9310 EVT VT
= N
->getValueType(0);
9313 if (SDValue Res
= tryToFoldExtendOfConstant(N
, TLI
, DAG
, LegalTypes
))
9316 // fold (sext (sext x)) -> (sext x)
9317 // fold (sext (aext x)) -> (sext x)
9318 if (N0
.getOpcode() == ISD::SIGN_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
)
9319 return DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, N0
.getOperand(0));
9321 if (N0
.getOpcode() == ISD::TRUNCATE
) {
9322 // fold (sext (truncate (load x))) -> (sext (smaller load x))
9323 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
9324 if (SDValue NarrowLoad
= ReduceLoadWidth(N0
.getNode())) {
9325 SDNode
*oye
= N0
.getOperand(0).getNode();
9326 if (NarrowLoad
.getNode() != N0
.getNode()) {
9327 CombineTo(N0
.getNode(), NarrowLoad
);
9328 // CombineTo deleted the truncate, if needed, but not what's under it.
9331 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
9334 // See if the value being truncated is already sign extended. If so, just
9335 // eliminate the trunc/sext pair.
9336 SDValue Op
= N0
.getOperand(0);
9337 unsigned OpBits
= Op
.getScalarValueSizeInBits();
9338 unsigned MidBits
= N0
.getScalarValueSizeInBits();
9339 unsigned DestBits
= VT
.getScalarSizeInBits();
9340 unsigned NumSignBits
= DAG
.ComputeNumSignBits(Op
);
9342 if (OpBits
== DestBits
) {
9343 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
9344 // bits, it is already ready.
9345 if (NumSignBits
> DestBits
-MidBits
)
9347 } else if (OpBits
< DestBits
) {
9348 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
9349 // bits, just sext from i32.
9350 if (NumSignBits
> OpBits
-MidBits
)
9351 return DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, Op
);
9353 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
9354 // bits, just truncate to i32.
9355 if (NumSignBits
> OpBits
-MidBits
)
9356 return DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, Op
);
9359 // fold (sext (truncate x)) -> (sextinreg x).
9360 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::SIGN_EXTEND_INREG
,
9361 N0
.getValueType())) {
9362 if (OpBits
< DestBits
)
9363 Op
= DAG
.getNode(ISD::ANY_EXTEND
, SDLoc(N0
), VT
, Op
);
9364 else if (OpBits
> DestBits
)
9365 Op
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(N0
), VT
, Op
);
9366 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, VT
, Op
,
9367 DAG
.getValueType(N0
.getValueType()));
9371 // Try to simplify (sext (load x)).
9372 if (SDValue foldedExt
=
9373 tryToFoldExtOfLoad(DAG
, *this, TLI
, VT
, LegalOperations
, N
, N0
,
9374 ISD::SEXTLOAD
, ISD::SIGN_EXTEND
))
9377 // fold (sext (load x)) to multiple smaller sextloads.
9378 // Only on illegal but splittable vectors.
9379 if (SDValue ExtLoad
= CombineExtLoad(N
))
9382 // Try to simplify (sext (sextload x)).
9383 if (SDValue foldedExt
= tryToFoldExtOfExtload(
9384 DAG
, *this, TLI
, VT
, LegalOperations
, N
, N0
, ISD::SEXTLOAD
))
9387 // fold (sext (and/or/xor (load x), cst)) ->
9388 // (and/or/xor (sextload x), (sext cst))
9389 if ((N0
.getOpcode() == ISD::AND
|| N0
.getOpcode() == ISD::OR
||
9390 N0
.getOpcode() == ISD::XOR
) &&
9391 isa
<LoadSDNode
>(N0
.getOperand(0)) &&
9392 N0
.getOperand(1).getOpcode() == ISD::Constant
&&
9393 (!LegalOperations
&& TLI
.isOperationLegal(N0
.getOpcode(), VT
))) {
9394 LoadSDNode
*LN00
= cast
<LoadSDNode
>(N0
.getOperand(0));
9395 EVT MemVT
= LN00
->getMemoryVT();
9396 if (TLI
.isLoadExtLegal(ISD::SEXTLOAD
, VT
, MemVT
) &&
9397 LN00
->getExtensionType() != ISD::ZEXTLOAD
&& LN00
->isUnindexed()) {
9398 SmallVector
<SDNode
*, 4> SetCCs
;
9399 bool DoXform
= ExtendUsesToFormExtLoad(VT
, N0
.getNode(), N0
.getOperand(0),
9400 ISD::SIGN_EXTEND
, SetCCs
, TLI
);
9402 SDValue ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, SDLoc(LN00
), VT
,
9403 LN00
->getChain(), LN00
->getBasePtr(),
9404 LN00
->getMemoryVT(),
9405 LN00
->getMemOperand());
9406 APInt Mask
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue();
9407 Mask
= Mask
.sext(VT
.getSizeInBits());
9408 SDValue And
= DAG
.getNode(N0
.getOpcode(), DL
, VT
,
9409 ExtLoad
, DAG
.getConstant(Mask
, DL
, VT
));
9410 ExtendSetCCUses(SetCCs
, N0
.getOperand(0), ExtLoad
, ISD::SIGN_EXTEND
);
9411 bool NoReplaceTruncAnd
= !N0
.hasOneUse();
9412 bool NoReplaceTrunc
= SDValue(LN00
, 0).hasOneUse();
9414 // If N0 has multiple uses, change other uses as well.
9415 if (NoReplaceTruncAnd
) {
9417 DAG
.getNode(ISD::TRUNCATE
, DL
, N0
.getValueType(), And
);
9418 CombineTo(N0
.getNode(), TruncAnd
);
9420 if (NoReplaceTrunc
) {
9421 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN00
, 1), ExtLoad
.getValue(1));
9423 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(LN00
),
9424 LN00
->getValueType(0), ExtLoad
);
9425 CombineTo(LN00
, Trunc
, ExtLoad
.getValue(1));
9427 return SDValue(N
,0); // Return N so it doesn't get rechecked!
9432 if (SDValue V
= foldExtendedSignBitTest(N
, DAG
, LegalOperations
))
9435 if (N0
.getOpcode() == ISD::SETCC
) {
9436 SDValue N00
= N0
.getOperand(0);
9437 SDValue N01
= N0
.getOperand(1);
9438 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N0
.getOperand(2))->get();
9439 EVT N00VT
= N0
.getOperand(0).getValueType();
9441 // sext(setcc) -> sext_in_reg(vsetcc) for vectors.
9442 // Only do this before legalize for now.
9443 if (VT
.isVector() && !LegalOperations
&&
9444 TLI
.getBooleanContents(N00VT
) ==
9445 TargetLowering::ZeroOrNegativeOneBooleanContent
) {
9446 // On some architectures (such as SSE/NEON/etc) the SETCC result type is
9447 // of the same size as the compared operands. Only optimize sext(setcc())
9448 // if this is the case.
9449 EVT SVT
= getSetCCResultType(N00VT
);
9451 // If we already have the desired type, don't change it.
9452 if (SVT
!= N0
.getValueType()) {
9453 // We know that the # elements of the results is the same as the
9454 // # elements of the compare (and the # elements of the compare result
9455 // for that matter). Check to see that they are the same size. If so,
9456 // we know that the element size of the sext'd result matches the
9457 // element size of the compare operands.
9458 if (VT
.getSizeInBits() == SVT
.getSizeInBits())
9459 return DAG
.getSetCC(DL
, VT
, N00
, N01
, CC
);
9461 // If the desired elements are smaller or larger than the source
9462 // elements, we can use a matching integer vector type and then
9463 // truncate/sign extend.
9464 EVT MatchingVecType
= N00VT
.changeVectorElementTypeToInteger();
9465 if (SVT
== MatchingVecType
) {
9466 SDValue VsetCC
= DAG
.getSetCC(DL
, MatchingVecType
, N00
, N01
, CC
);
9467 return DAG
.getSExtOrTrunc(VsetCC
, DL
, VT
);
9472 // sext(setcc x, y, cc) -> (select (setcc x, y, cc), T, 0)
9473 // Here, T can be 1 or -1, depending on the type of the setcc and
9474 // getBooleanContents().
9475 unsigned SetCCWidth
= N0
.getScalarValueSizeInBits();
9477 // To determine the "true" side of the select, we need to know the high bit
9478 // of the value returned by the setcc if it evaluates to true.
9479 // If the type of the setcc is i1, then the true case of the select is just
9480 // sext(i1 1), that is, -1.
9481 // If the type of the setcc is larger (say, i8) then the value of the high
9482 // bit depends on getBooleanContents(), so ask TLI for a real "true" value
9483 // of the appropriate width.
9484 SDValue ExtTrueVal
= (SetCCWidth
== 1)
9485 ? DAG
.getAllOnesConstant(DL
, VT
)
9486 : DAG
.getBoolConstant(true, DL
, VT
, N00VT
);
9487 SDValue Zero
= DAG
.getConstant(0, DL
, VT
);
9489 SimplifySelectCC(DL
, N00
, N01
, ExtTrueVal
, Zero
, CC
, true))
9492 if (!VT
.isVector() && !TLI
.convertSelectOfConstantsToMath(VT
)) {
9493 EVT SetCCVT
= getSetCCResultType(N00VT
);
9494 // Don't do this transform for i1 because there's a select transform
9495 // that would reverse it.
9496 // TODO: We should not do this transform at all without a target hook
9497 // because a sext is likely cheaper than a select?
9498 if (SetCCVT
.getScalarSizeInBits() != 1 &&
9499 (!LegalOperations
|| TLI
.isOperationLegal(ISD::SETCC
, N00VT
))) {
9500 SDValue SetCC
= DAG
.getSetCC(DL
, SetCCVT
, N00
, N01
, CC
);
9501 return DAG
.getSelect(DL
, VT
, SetCC
, ExtTrueVal
, Zero
);
9506 // fold (sext x) -> (zext x) if the sign bit is known zero.
9507 if ((!LegalOperations
|| TLI
.isOperationLegal(ISD::ZERO_EXTEND
, VT
)) &&
9508 DAG
.SignBitIsZero(N0
))
9509 return DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, N0
);
9511 if (SDValue NewVSel
= matchVSelectOpSizesWithSetCC(N
))
9514 // Eliminate this sign extend by doing a negation in the destination type:
9515 // sext i32 (0 - (zext i8 X to i32)) to i64 --> 0 - (zext i8 X to i64)
9516 if (N0
.getOpcode() == ISD::SUB
&& N0
.hasOneUse() &&
9517 isNullOrNullSplat(N0
.getOperand(0)) &&
9518 N0
.getOperand(1).getOpcode() == ISD::ZERO_EXTEND
&&
9519 TLI
.isOperationLegalOrCustom(ISD::SUB
, VT
)) {
9520 SDValue Zext
= DAG
.getZExtOrTrunc(N0
.getOperand(1).getOperand(0), DL
, VT
);
9521 return DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
), Zext
);
9523 // Eliminate this sign extend by doing a decrement in the destination type:
9524 // sext i32 ((zext i8 X to i32) + (-1)) to i64 --> (zext i8 X to i64) + (-1)
9525 if (N0
.getOpcode() == ISD::ADD
&& N0
.hasOneUse() &&
9526 isAllOnesOrAllOnesSplat(N0
.getOperand(1)) &&
9527 N0
.getOperand(0).getOpcode() == ISD::ZERO_EXTEND
&&
9528 TLI
.isOperationLegalOrCustom(ISD::ADD
, VT
)) {
9529 SDValue Zext
= DAG
.getZExtOrTrunc(N0
.getOperand(0).getOperand(0), DL
, VT
);
9530 return DAG
.getNode(ISD::ADD
, DL
, VT
, Zext
, DAG
.getAllOnesConstant(DL
, VT
));
9536 // isTruncateOf - If N is a truncate of some other value, return true, record
9537 // the value being truncated in Op and which of Op's bits are zero/one in Known.
9538 // This function computes KnownBits to avoid a duplicated call to
9539 // computeKnownBits in the caller.
9540 static bool isTruncateOf(SelectionDAG
&DAG
, SDValue N
, SDValue
&Op
,
9542 if (N
->getOpcode() == ISD::TRUNCATE
) {
9543 Op
= N
->getOperand(0);
9544 Known
= DAG
.computeKnownBits(Op
);
9548 if (N
.getOpcode() != ISD::SETCC
||
9549 N
.getValueType().getScalarType() != MVT::i1
||
9550 cast
<CondCodeSDNode
>(N
.getOperand(2))->get() != ISD::SETNE
)
9553 SDValue Op0
= N
->getOperand(0);
9554 SDValue Op1
= N
->getOperand(1);
9555 assert(Op0
.getValueType() == Op1
.getValueType());
9557 if (isNullOrNullSplat(Op0
))
9559 else if (isNullOrNullSplat(Op1
))
9564 Known
= DAG
.computeKnownBits(Op
);
9566 return (Known
.Zero
| 1).isAllOnesValue();
9569 SDValue
DAGCombiner::visitZERO_EXTEND(SDNode
*N
) {
9570 SDValue N0
= N
->getOperand(0);
9571 EVT VT
= N
->getValueType(0);
9573 if (SDValue Res
= tryToFoldExtendOfConstant(N
, TLI
, DAG
, LegalTypes
))
9576 // fold (zext (zext x)) -> (zext x)
9577 // fold (zext (aext x)) -> (zext x)
9578 if (N0
.getOpcode() == ISD::ZERO_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
)
9579 return DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N
), VT
,
9582 // fold (zext (truncate x)) -> (zext x) or
9583 // (zext (truncate x)) -> (truncate x)
9584 // This is valid when the truncated bits of x are already zero.
9587 if (isTruncateOf(DAG
, N0
, Op
, Known
)) {
9588 APInt TruncatedBits
=
9589 (Op
.getScalarValueSizeInBits() == N0
.getScalarValueSizeInBits()) ?
9590 APInt(Op
.getScalarValueSizeInBits(), 0) :
9591 APInt::getBitsSet(Op
.getScalarValueSizeInBits(),
9592 N0
.getScalarValueSizeInBits(),
9593 std::min(Op
.getScalarValueSizeInBits(),
9594 VT
.getScalarSizeInBits()));
9595 if (TruncatedBits
.isSubsetOf(Known
.Zero
))
9596 return DAG
.getZExtOrTrunc(Op
, SDLoc(N
), VT
);
9599 // fold (zext (truncate x)) -> (and x, mask)
9600 if (N0
.getOpcode() == ISD::TRUNCATE
) {
9601 // fold (zext (truncate (load x))) -> (zext (smaller load x))
9602 // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
9603 if (SDValue NarrowLoad
= ReduceLoadWidth(N0
.getNode())) {
9604 SDNode
*oye
= N0
.getOperand(0).getNode();
9605 if (NarrowLoad
.getNode() != N0
.getNode()) {
9606 CombineTo(N0
.getNode(), NarrowLoad
);
9607 // CombineTo deleted the truncate, if needed, but not what's under it.
9610 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
9613 EVT SrcVT
= N0
.getOperand(0).getValueType();
9614 EVT MinVT
= N0
.getValueType();
9616 // Try to mask before the extension to avoid having to generate a larger mask,
9617 // possibly over several sub-vectors.
9618 if (SrcVT
.bitsLT(VT
) && VT
.isVector()) {
9619 if (!LegalOperations
|| (TLI
.isOperationLegal(ISD::AND
, SrcVT
) &&
9620 TLI
.isOperationLegal(ISD::ZERO_EXTEND
, VT
))) {
9621 SDValue Op
= N0
.getOperand(0);
9622 Op
= DAG
.getZeroExtendInReg(Op
, SDLoc(N
), MinVT
.getScalarType());
9623 AddToWorklist(Op
.getNode());
9624 SDValue ZExtOrTrunc
= DAG
.getZExtOrTrunc(Op
, SDLoc(N
), VT
);
9625 // Transfer the debug info; the new node is equivalent to N0.
9626 DAG
.transferDbgValues(N0
, ZExtOrTrunc
);
9631 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::AND
, VT
)) {
9632 SDValue Op
= DAG
.getAnyExtOrTrunc(N0
.getOperand(0), SDLoc(N
), VT
);
9633 AddToWorklist(Op
.getNode());
9634 SDValue And
= DAG
.getZeroExtendInReg(Op
, SDLoc(N
), MinVT
.getScalarType());
9635 // We may safely transfer the debug info describing the truncate node over
9636 // to the equivalent and operation.
9637 DAG
.transferDbgValues(N0
, And
);
9642 // Fold (zext (and (trunc x), cst)) -> (and x, cst),
9643 // if either of the casts is not free.
9644 if (N0
.getOpcode() == ISD::AND
&&
9645 N0
.getOperand(0).getOpcode() == ISD::TRUNCATE
&&
9646 N0
.getOperand(1).getOpcode() == ISD::Constant
&&
9647 (!TLI
.isTruncateFree(N0
.getOperand(0).getOperand(0).getValueType(),
9648 N0
.getValueType()) ||
9649 !TLI
.isZExtFree(N0
.getValueType(), VT
))) {
9650 SDValue X
= N0
.getOperand(0).getOperand(0);
9651 X
= DAG
.getAnyExtOrTrunc(X
, SDLoc(X
), VT
);
9652 APInt Mask
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue();
9653 Mask
= Mask
.zext(VT
.getSizeInBits());
9655 return DAG
.getNode(ISD::AND
, DL
, VT
,
9656 X
, DAG
.getConstant(Mask
, DL
, VT
));
9659 // Try to simplify (zext (load x)).
9660 if (SDValue foldedExt
=
9661 tryToFoldExtOfLoad(DAG
, *this, TLI
, VT
, LegalOperations
, N
, N0
,
9662 ISD::ZEXTLOAD
, ISD::ZERO_EXTEND
))
9665 // fold (zext (load x)) to multiple smaller zextloads.
9666 // Only on illegal but splittable vectors.
9667 if (SDValue ExtLoad
= CombineExtLoad(N
))
9670 // fold (zext (and/or/xor (load x), cst)) ->
9671 // (and/or/xor (zextload x), (zext cst))
9672 // Unless (and (load x) cst) will match as a zextload already and has
9673 // additional users.
9674 if ((N0
.getOpcode() == ISD::AND
|| N0
.getOpcode() == ISD::OR
||
9675 N0
.getOpcode() == ISD::XOR
) &&
9676 isa
<LoadSDNode
>(N0
.getOperand(0)) &&
9677 N0
.getOperand(1).getOpcode() == ISD::Constant
&&
9678 (!LegalOperations
&& TLI
.isOperationLegal(N0
.getOpcode(), VT
))) {
9679 LoadSDNode
*LN00
= cast
<LoadSDNode
>(N0
.getOperand(0));
9680 EVT MemVT
= LN00
->getMemoryVT();
9681 if (TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, VT
, MemVT
) &&
9682 LN00
->getExtensionType() != ISD::SEXTLOAD
&& LN00
->isUnindexed()) {
9683 bool DoXform
= true;
9684 SmallVector
<SDNode
*, 4> SetCCs
;
9685 if (!N0
.hasOneUse()) {
9686 if (N0
.getOpcode() == ISD::AND
) {
9687 auto *AndC
= cast
<ConstantSDNode
>(N0
.getOperand(1));
9688 EVT LoadResultTy
= AndC
->getValueType(0);
9690 if (isAndLoadExtLoad(AndC
, LN00
, LoadResultTy
, ExtVT
))
9695 DoXform
= ExtendUsesToFormExtLoad(VT
, N0
.getNode(), N0
.getOperand(0),
9696 ISD::ZERO_EXTEND
, SetCCs
, TLI
);
9698 SDValue ExtLoad
= DAG
.getExtLoad(ISD::ZEXTLOAD
, SDLoc(LN00
), VT
,
9699 LN00
->getChain(), LN00
->getBasePtr(),
9700 LN00
->getMemoryVT(),
9701 LN00
->getMemOperand());
9702 APInt Mask
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue();
9703 Mask
= Mask
.zext(VT
.getSizeInBits());
9705 SDValue And
= DAG
.getNode(N0
.getOpcode(), DL
, VT
,
9706 ExtLoad
, DAG
.getConstant(Mask
, DL
, VT
));
9707 ExtendSetCCUses(SetCCs
, N0
.getOperand(0), ExtLoad
, ISD::ZERO_EXTEND
);
9708 bool NoReplaceTruncAnd
= !N0
.hasOneUse();
9709 bool NoReplaceTrunc
= SDValue(LN00
, 0).hasOneUse();
9711 // If N0 has multiple uses, change other uses as well.
9712 if (NoReplaceTruncAnd
) {
9714 DAG
.getNode(ISD::TRUNCATE
, DL
, N0
.getValueType(), And
);
9715 CombineTo(N0
.getNode(), TruncAnd
);
9717 if (NoReplaceTrunc
) {
9718 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN00
, 1), ExtLoad
.getValue(1));
9720 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(LN00
),
9721 LN00
->getValueType(0), ExtLoad
);
9722 CombineTo(LN00
, Trunc
, ExtLoad
.getValue(1));
9724 return SDValue(N
,0); // Return N so it doesn't get rechecked!
9729 // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) ->
9730 // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst))
9731 if (SDValue ZExtLoad
= CombineZExtLogicopShiftLoad(N
))
9734 // Try to simplify (zext (zextload x)).
9735 if (SDValue foldedExt
= tryToFoldExtOfExtload(
9736 DAG
, *this, TLI
, VT
, LegalOperations
, N
, N0
, ISD::ZEXTLOAD
))
9739 if (SDValue V
= foldExtendedSignBitTest(N
, DAG
, LegalOperations
))
9742 if (N0
.getOpcode() == ISD::SETCC
) {
9743 // Only do this before legalize for now.
9744 if (!LegalOperations
&& VT
.isVector() &&
9745 N0
.getValueType().getVectorElementType() == MVT::i1
) {
9746 EVT N00VT
= N0
.getOperand(0).getValueType();
9747 if (getSetCCResultType(N00VT
) == N0
.getValueType())
9750 // We know that the # elements of the results is the same as the #
9751 // elements of the compare (and the # elements of the compare result for
9752 // that matter). Check to see that they are the same size. If so, we know
9753 // that the element size of the sext'd result matches the element size of
9754 // the compare operands.
9756 SDValue VecOnes
= DAG
.getConstant(1, DL
, VT
);
9757 if (VT
.getSizeInBits() == N00VT
.getSizeInBits()) {
9758 // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors.
9759 SDValue VSetCC
= DAG
.getNode(ISD::SETCC
, DL
, VT
, N0
.getOperand(0),
9760 N0
.getOperand(1), N0
.getOperand(2));
9761 return DAG
.getNode(ISD::AND
, DL
, VT
, VSetCC
, VecOnes
);
9764 // If the desired elements are smaller or larger than the source
9765 // elements we can use a matching integer vector type and then
9766 // truncate/sign extend.
9767 EVT MatchingVectorType
= N00VT
.changeVectorElementTypeToInteger();
9769 DAG
.getNode(ISD::SETCC
, DL
, MatchingVectorType
, N0
.getOperand(0),
9770 N0
.getOperand(1), N0
.getOperand(2));
9771 return DAG
.getNode(ISD::AND
, DL
, VT
, DAG
.getSExtOrTrunc(VsetCC
, DL
, VT
),
9775 // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
9777 if (SDValue SCC
= SimplifySelectCC(
9778 DL
, N0
.getOperand(0), N0
.getOperand(1), DAG
.getConstant(1, DL
, VT
),
9779 DAG
.getConstant(0, DL
, VT
),
9780 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get(), true))
9784 // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
9785 if ((N0
.getOpcode() == ISD::SHL
|| N0
.getOpcode() == ISD::SRL
) &&
9786 isa
<ConstantSDNode
>(N0
.getOperand(1)) &&
9787 N0
.getOperand(0).getOpcode() == ISD::ZERO_EXTEND
&&
9789 SDValue ShAmt
= N0
.getOperand(1);
9790 if (N0
.getOpcode() == ISD::SHL
) {
9791 SDValue InnerZExt
= N0
.getOperand(0);
9792 // If the original shl may be shifting out bits, do not perform this
9794 unsigned KnownZeroBits
= InnerZExt
.getValueSizeInBits() -
9795 InnerZExt
.getOperand(0).getValueSizeInBits();
9796 if (cast
<ConstantSDNode
>(ShAmt
)->getAPIntValue().ugt(KnownZeroBits
))
9802 // Ensure that the shift amount is wide enough for the shifted value.
9803 if (VT
.getSizeInBits() >= 256)
9804 ShAmt
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, MVT::i32
, ShAmt
);
9806 return DAG
.getNode(N0
.getOpcode(), DL
, VT
,
9807 DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, N0
.getOperand(0)),
9811 if (SDValue NewVSel
= matchVSelectOpSizesWithSetCC(N
))
9817 SDValue
DAGCombiner::visitANY_EXTEND(SDNode
*N
) {
9818 SDValue N0
= N
->getOperand(0);
9819 EVT VT
= N
->getValueType(0);
9821 if (SDValue Res
= tryToFoldExtendOfConstant(N
, TLI
, DAG
, LegalTypes
))
9824 // fold (aext (aext x)) -> (aext x)
9825 // fold (aext (zext x)) -> (zext x)
9826 // fold (aext (sext x)) -> (sext x)
9827 if (N0
.getOpcode() == ISD::ANY_EXTEND
||
9828 N0
.getOpcode() == ISD::ZERO_EXTEND
||
9829 N0
.getOpcode() == ISD::SIGN_EXTEND
)
9830 return DAG
.getNode(N0
.getOpcode(), SDLoc(N
), VT
, N0
.getOperand(0));
9832 // fold (aext (truncate (load x))) -> (aext (smaller load x))
9833 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
9834 if (N0
.getOpcode() == ISD::TRUNCATE
) {
9835 if (SDValue NarrowLoad
= ReduceLoadWidth(N0
.getNode())) {
9836 SDNode
*oye
= N0
.getOperand(0).getNode();
9837 if (NarrowLoad
.getNode() != N0
.getNode()) {
9838 CombineTo(N0
.getNode(), NarrowLoad
);
9839 // CombineTo deleted the truncate, if needed, but not what's under it.
9842 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
9846 // fold (aext (truncate x))
9847 if (N0
.getOpcode() == ISD::TRUNCATE
)
9848 return DAG
.getAnyExtOrTrunc(N0
.getOperand(0), SDLoc(N
), VT
);
9850 // Fold (aext (and (trunc x), cst)) -> (and x, cst)
9851 // if the trunc is not free.
9852 if (N0
.getOpcode() == ISD::AND
&&
9853 N0
.getOperand(0).getOpcode() == ISD::TRUNCATE
&&
9854 N0
.getOperand(1).getOpcode() == ISD::Constant
&&
9855 !TLI
.isTruncateFree(N0
.getOperand(0).getOperand(0).getValueType(),
9856 N0
.getValueType())) {
9858 SDValue X
= N0
.getOperand(0).getOperand(0);
9859 X
= DAG
.getAnyExtOrTrunc(X
, DL
, VT
);
9860 APInt Mask
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue();
9861 Mask
= Mask
.zext(VT
.getSizeInBits());
9862 return DAG
.getNode(ISD::AND
, DL
, VT
,
9863 X
, DAG
.getConstant(Mask
, DL
, VT
));
9866 // fold (aext (load x)) -> (aext (truncate (extload x)))
9867 // None of the supported targets knows how to perform load and any_ext
9868 // on vectors in one instruction. We only perform this transformation on
9870 if (ISD::isNON_EXTLoad(N0
.getNode()) && !VT
.isVector() &&
9871 ISD::isUNINDEXEDLoad(N0
.getNode()) &&
9872 TLI
.isLoadExtLegal(ISD::EXTLOAD
, VT
, N0
.getValueType())) {
9873 bool DoXform
= true;
9874 SmallVector
<SDNode
*, 4> SetCCs
;
9875 if (!N0
.hasOneUse())
9876 DoXform
= ExtendUsesToFormExtLoad(VT
, N
, N0
, ISD::ANY_EXTEND
, SetCCs
,
9879 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
9880 SDValue ExtLoad
= DAG
.getExtLoad(ISD::EXTLOAD
, SDLoc(N
), VT
,
9882 LN0
->getBasePtr(), N0
.getValueType(),
9883 LN0
->getMemOperand());
9884 ExtendSetCCUses(SetCCs
, N0
, ExtLoad
, ISD::ANY_EXTEND
);
9885 // If the load value is used only by N, replace it via CombineTo N.
9886 bool NoReplaceTrunc
= N0
.hasOneUse();
9887 CombineTo(N
, ExtLoad
);
9888 if (NoReplaceTrunc
) {
9889 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN0
, 1), ExtLoad
.getValue(1));
9890 recursivelyDeleteUnusedNodes(LN0
);
9892 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(N0
),
9893 N0
.getValueType(), ExtLoad
);
9894 CombineTo(LN0
, Trunc
, ExtLoad
.getValue(1));
9896 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
9900 // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
9901 // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
9902 // fold (aext ( extload x)) -> (aext (truncate (extload x)))
9903 if (N0
.getOpcode() == ISD::LOAD
&& !ISD::isNON_EXTLoad(N0
.getNode()) &&
9904 ISD::isUNINDEXEDLoad(N0
.getNode()) && N0
.hasOneUse()) {
9905 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
9906 ISD::LoadExtType ExtType
= LN0
->getExtensionType();
9907 EVT MemVT
= LN0
->getMemoryVT();
9908 if (!LegalOperations
|| TLI
.isLoadExtLegal(ExtType
, VT
, MemVT
)) {
9909 SDValue ExtLoad
= DAG
.getExtLoad(ExtType
, SDLoc(N
),
9910 VT
, LN0
->getChain(), LN0
->getBasePtr(),
9911 MemVT
, LN0
->getMemOperand());
9912 CombineTo(N
, ExtLoad
);
9913 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN0
, 1), ExtLoad
.getValue(1));
9914 recursivelyDeleteUnusedNodes(LN0
);
9915 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
9919 if (N0
.getOpcode() == ISD::SETCC
) {
9921 // aext(setcc) -> vsetcc
9922 // aext(setcc) -> truncate(vsetcc)
9923 // aext(setcc) -> aext(vsetcc)
9924 // Only do this before legalize for now.
9925 if (VT
.isVector() && !LegalOperations
) {
9926 EVT N00VT
= N0
.getOperand(0).getValueType();
9927 if (getSetCCResultType(N00VT
) == N0
.getValueType())
9930 // We know that the # elements of the results is the same as the
9931 // # elements of the compare (and the # elements of the compare result
9932 // for that matter). Check to see that they are the same size. If so,
9933 // we know that the element size of the sext'd result matches the
9934 // element size of the compare operands.
9935 if (VT
.getSizeInBits() == N00VT
.getSizeInBits())
9936 return DAG
.getSetCC(SDLoc(N
), VT
, N0
.getOperand(0),
9938 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get());
9940 // If the desired elements are smaller or larger than the source
9941 // elements we can use a matching integer vector type and then
9942 // truncate/any extend
9943 EVT MatchingVectorType
= N00VT
.changeVectorElementTypeToInteger();
9945 DAG
.getSetCC(SDLoc(N
), MatchingVectorType
, N0
.getOperand(0),
9947 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get());
9948 return DAG
.getAnyExtOrTrunc(VsetCC
, SDLoc(N
), VT
);
9951 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
9953 if (SDValue SCC
= SimplifySelectCC(
9954 DL
, N0
.getOperand(0), N0
.getOperand(1), DAG
.getConstant(1, DL
, VT
),
9955 DAG
.getConstant(0, DL
, VT
),
9956 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get(), true))
9963 SDValue
DAGCombiner::visitAssertExt(SDNode
*N
) {
9964 unsigned Opcode
= N
->getOpcode();
9965 SDValue N0
= N
->getOperand(0);
9966 SDValue N1
= N
->getOperand(1);
9967 EVT AssertVT
= cast
<VTSDNode
>(N1
)->getVT();
9969 // fold (assert?ext (assert?ext x, vt), vt) -> (assert?ext x, vt)
9970 if (N0
.getOpcode() == Opcode
&&
9971 AssertVT
== cast
<VTSDNode
>(N0
.getOperand(1))->getVT())
9974 if (N0
.getOpcode() == ISD::TRUNCATE
&& N0
.hasOneUse() &&
9975 N0
.getOperand(0).getOpcode() == Opcode
) {
9976 // We have an assert, truncate, assert sandwich. Make one stronger assert
9977 // by asserting on the smallest asserted type to the larger source type.
9978 // This eliminates the later assert:
9979 // assert (trunc (assert X, i8) to iN), i1 --> trunc (assert X, i1) to iN
9980 // assert (trunc (assert X, i1) to iN), i8 --> trunc (assert X, i1) to iN
9981 SDValue BigA
= N0
.getOperand(0);
9982 EVT BigA_AssertVT
= cast
<VTSDNode
>(BigA
.getOperand(1))->getVT();
9983 assert(BigA_AssertVT
.bitsLE(N0
.getValueType()) &&
9984 "Asserting zero/sign-extended bits to a type larger than the "
9985 "truncated destination does not provide information");
9988 EVT MinAssertVT
= AssertVT
.bitsLT(BigA_AssertVT
) ? AssertVT
: BigA_AssertVT
;
9989 SDValue MinAssertVTVal
= DAG
.getValueType(MinAssertVT
);
9990 SDValue NewAssert
= DAG
.getNode(Opcode
, DL
, BigA
.getValueType(),
9991 BigA
.getOperand(0), MinAssertVTVal
);
9992 return DAG
.getNode(ISD::TRUNCATE
, DL
, N
->getValueType(0), NewAssert
);
9995 // If we have (AssertZext (truncate (AssertSext X, iX)), iY) and Y is smaller
9996 // than X. Just move the AssertZext in front of the truncate and drop the
9998 if (N0
.getOpcode() == ISD::TRUNCATE
&& N0
.hasOneUse() &&
9999 N0
.getOperand(0).getOpcode() == ISD::AssertSext
&&
10000 Opcode
== ISD::AssertZext
) {
10001 SDValue BigA
= N0
.getOperand(0);
10002 EVT BigA_AssertVT
= cast
<VTSDNode
>(BigA
.getOperand(1))->getVT();
10003 assert(BigA_AssertVT
.bitsLE(N0
.getValueType()) &&
10004 "Asserting zero/sign-extended bits to a type larger than the "
10005 "truncated destination does not provide information");
10007 if (AssertVT
.bitsLT(BigA_AssertVT
)) {
10009 SDValue NewAssert
= DAG
.getNode(Opcode
, DL
, BigA
.getValueType(),
10010 BigA
.getOperand(0), N1
);
10011 return DAG
.getNode(ISD::TRUNCATE
, DL
, N
->getValueType(0), NewAssert
);
10018 /// If the result of a wider load is shifted to right of N bits and then
10019 /// truncated to a narrower type and where N is a multiple of number of bits of
10020 /// the narrower type, transform it to a narrower load from address + N / num of
10021 /// bits of new type. Also narrow the load if the result is masked with an AND
10022 /// to effectively produce a smaller type. If the result is to be extended, also
10023 /// fold the extension to form a extending load.
10024 SDValue
DAGCombiner::ReduceLoadWidth(SDNode
*N
) {
10025 unsigned Opc
= N
->getOpcode();
10027 ISD::LoadExtType ExtType
= ISD::NON_EXTLOAD
;
10028 SDValue N0
= N
->getOperand(0);
10029 EVT VT
= N
->getValueType(0);
10032 // This transformation isn't valid for vector loads.
10036 unsigned ShAmt
= 0;
10037 bool HasShiftedOffset
= false;
10038 // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
10040 if (Opc
== ISD::SIGN_EXTEND_INREG
) {
10041 ExtType
= ISD::SEXTLOAD
;
10042 ExtVT
= cast
<VTSDNode
>(N
->getOperand(1))->getVT();
10043 } else if (Opc
== ISD::SRL
) {
10044 // Another special-case: SRL is basically zero-extending a narrower value,
10045 // or it maybe shifting a higher subword, half or byte into the lowest
10047 ExtType
= ISD::ZEXTLOAD
;
10048 N0
= SDValue(N
, 0);
10050 auto *LN0
= dyn_cast
<LoadSDNode
>(N0
.getOperand(0));
10051 auto *N01
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
10055 uint64_t ShiftAmt
= N01
->getZExtValue();
10056 uint64_t MemoryWidth
= LN0
->getMemoryVT().getSizeInBits();
10057 if (LN0
->getExtensionType() != ISD::SEXTLOAD
&& MemoryWidth
> ShiftAmt
)
10058 ExtVT
= EVT::getIntegerVT(*DAG
.getContext(), MemoryWidth
- ShiftAmt
);
10060 ExtVT
= EVT::getIntegerVT(*DAG
.getContext(),
10061 VT
.getSizeInBits() - ShiftAmt
);
10062 } else if (Opc
== ISD::AND
) {
10063 // An AND with a constant mask is the same as a truncate + zero-extend.
10064 auto AndC
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
10068 const APInt
&Mask
= AndC
->getAPIntValue();
10069 unsigned ActiveBits
= 0;
10070 if (Mask
.isMask()) {
10071 ActiveBits
= Mask
.countTrailingOnes();
10072 } else if (Mask
.isShiftedMask()) {
10073 ShAmt
= Mask
.countTrailingZeros();
10074 APInt ShiftedMask
= Mask
.lshr(ShAmt
);
10075 ActiveBits
= ShiftedMask
.countTrailingOnes();
10076 HasShiftedOffset
= true;
10080 ExtType
= ISD::ZEXTLOAD
;
10081 ExtVT
= EVT::getIntegerVT(*DAG
.getContext(), ActiveBits
);
10084 if (N0
.getOpcode() == ISD::SRL
&& N0
.hasOneUse()) {
10086 if (auto *ConstShift
= dyn_cast
<ConstantSDNode
>(SRL
.getOperand(1))) {
10087 ShAmt
= ConstShift
->getZExtValue();
10088 unsigned EVTBits
= ExtVT
.getSizeInBits();
10089 // Is the shift amount a multiple of size of VT?
10090 if ((ShAmt
& (EVTBits
-1)) == 0) {
10091 N0
= N0
.getOperand(0);
10092 // Is the load width a multiple of size of VT?
10093 if ((N0
.getValueSizeInBits() & (EVTBits
-1)) != 0)
10097 // At this point, we must have a load or else we can't do the transform.
10098 if (!isa
<LoadSDNode
>(N0
)) return SDValue();
10100 auto *LN0
= cast
<LoadSDNode
>(N0
);
10102 // Because a SRL must be assumed to *need* to zero-extend the high bits
10103 // (as opposed to anyext the high bits), we can't combine the zextload
10104 // lowering of SRL and an sextload.
10105 if (LN0
->getExtensionType() == ISD::SEXTLOAD
)
10108 // If the shift amount is larger than the input type then we're not
10109 // accessing any of the loaded bytes. If the load was a zextload/extload
10110 // then the result of the shift+trunc is zero/undef (handled elsewhere).
10111 if (ShAmt
>= LN0
->getMemoryVT().getSizeInBits())
10114 // If the SRL is only used by a masking AND, we may be able to adjust
10115 // the ExtVT to make the AND redundant.
10116 SDNode
*Mask
= *(SRL
->use_begin());
10117 if (Mask
->getOpcode() == ISD::AND
&&
10118 isa
<ConstantSDNode
>(Mask
->getOperand(1))) {
10119 const APInt
&ShiftMask
=
10120 cast
<ConstantSDNode
>(Mask
->getOperand(1))->getAPIntValue();
10121 if (ShiftMask
.isMask()) {
10122 EVT MaskedVT
= EVT::getIntegerVT(*DAG
.getContext(),
10123 ShiftMask
.countTrailingOnes());
10124 // If the mask is smaller, recompute the type.
10125 if ((ExtVT
.getSizeInBits() > MaskedVT
.getSizeInBits()) &&
10126 TLI
.isLoadExtLegal(ExtType
, N0
.getValueType(), MaskedVT
))
10133 // If the load is shifted left (and the result isn't shifted back right),
10134 // we can fold the truncate through the shift.
10135 unsigned ShLeftAmt
= 0;
10136 if (ShAmt
== 0 && N0
.getOpcode() == ISD::SHL
&& N0
.hasOneUse() &&
10137 ExtVT
== VT
&& TLI
.isNarrowingProfitable(N0
.getValueType(), VT
)) {
10138 if (ConstantSDNode
*N01
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
10139 ShLeftAmt
= N01
->getZExtValue();
10140 N0
= N0
.getOperand(0);
10144 // If we haven't found a load, we can't narrow it.
10145 if (!isa
<LoadSDNode
>(N0
))
10148 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
10149 if (!isLegalNarrowLdSt(LN0
, ExtType
, ExtVT
, ShAmt
))
10152 auto AdjustBigEndianShift
= [&](unsigned ShAmt
) {
10153 unsigned LVTStoreBits
= LN0
->getMemoryVT().getStoreSizeInBits();
10154 unsigned EVTStoreBits
= ExtVT
.getStoreSizeInBits();
10155 return LVTStoreBits
- EVTStoreBits
- ShAmt
;
10158 // For big endian targets, we need to adjust the offset to the pointer to
10159 // load the correct bytes.
10160 if (DAG
.getDataLayout().isBigEndian())
10161 ShAmt
= AdjustBigEndianShift(ShAmt
);
10163 EVT PtrType
= N0
.getOperand(1).getValueType();
10164 uint64_t PtrOff
= ShAmt
/ 8;
10165 unsigned NewAlign
= MinAlign(LN0
->getAlignment(), PtrOff
);
10167 // The original load itself didn't wrap, so an offset within it doesn't.
10169 Flags
.setNoUnsignedWrap(true);
10170 SDValue NewPtr
= DAG
.getNode(ISD::ADD
, DL
,
10171 PtrType
, LN0
->getBasePtr(),
10172 DAG
.getConstant(PtrOff
, DL
, PtrType
),
10174 AddToWorklist(NewPtr
.getNode());
10177 if (ExtType
== ISD::NON_EXTLOAD
)
10178 Load
= DAG
.getLoad(VT
, DL
, LN0
->getChain(), NewPtr
,
10179 LN0
->getPointerInfo().getWithOffset(PtrOff
), NewAlign
,
10180 LN0
->getMemOperand()->getFlags(), LN0
->getAAInfo());
10182 Load
= DAG
.getExtLoad(ExtType
, DL
, VT
, LN0
->getChain(), NewPtr
,
10183 LN0
->getPointerInfo().getWithOffset(PtrOff
), ExtVT
,
10184 NewAlign
, LN0
->getMemOperand()->getFlags(),
10187 // Replace the old load's chain with the new load's chain.
10188 WorklistRemover
DeadNodes(*this);
10189 DAG
.ReplaceAllUsesOfValueWith(N0
.getValue(1), Load
.getValue(1));
10191 // Shift the result left, if we've swallowed a left shift.
10192 SDValue Result
= Load
;
10193 if (ShLeftAmt
!= 0) {
10194 EVT ShImmTy
= getShiftAmountTy(Result
.getValueType());
10195 if (!isUIntN(ShImmTy
.getSizeInBits(), ShLeftAmt
))
10197 // If the shift amount is as large as the result size (but, presumably,
10198 // no larger than the source) then the useful bits of the result are
10199 // zero; we can't simply return the shortened shift, because the result
10200 // of that operation is undefined.
10201 if (ShLeftAmt
>= VT
.getSizeInBits())
10202 Result
= DAG
.getConstant(0, DL
, VT
);
10204 Result
= DAG
.getNode(ISD::SHL
, DL
, VT
,
10205 Result
, DAG
.getConstant(ShLeftAmt
, DL
, ShImmTy
));
10208 if (HasShiftedOffset
) {
10209 // Recalculate the shift amount after it has been altered to calculate
10211 if (DAG
.getDataLayout().isBigEndian())
10212 ShAmt
= AdjustBigEndianShift(ShAmt
);
10214 // We're using a shifted mask, so the load now has an offset. This means
10215 // that data has been loaded into the lower bytes than it would have been
10216 // before, so we need to shl the loaded data into the correct position in the
10218 SDValue ShiftC
= DAG
.getConstant(ShAmt
, DL
, VT
);
10219 Result
= DAG
.getNode(ISD::SHL
, DL
, VT
, Result
, ShiftC
);
10220 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
);
10223 // Return the new loaded value.
10227 SDValue
DAGCombiner::visitSIGN_EXTEND_INREG(SDNode
*N
) {
10228 SDValue N0
= N
->getOperand(0);
10229 SDValue N1
= N
->getOperand(1);
10230 EVT VT
= N
->getValueType(0);
10231 EVT EVT
= cast
<VTSDNode
>(N1
)->getVT();
10232 unsigned VTBits
= VT
.getScalarSizeInBits();
10233 unsigned EVTBits
= EVT
.getScalarSizeInBits();
10236 return DAG
.getUNDEF(VT
);
10238 // fold (sext_in_reg c1) -> c1
10239 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
10240 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, SDLoc(N
), VT
, N0
, N1
);
10242 // If the input is already sign extended, just drop the extension.
10243 if (DAG
.ComputeNumSignBits(N0
) >= VTBits
-EVTBits
+1)
10246 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
10247 if (N0
.getOpcode() == ISD::SIGN_EXTEND_INREG
&&
10248 EVT
.bitsLT(cast
<VTSDNode
>(N0
.getOperand(1))->getVT()))
10249 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, SDLoc(N
), VT
,
10250 N0
.getOperand(0), N1
);
10252 // fold (sext_in_reg (sext x)) -> (sext x)
10253 // fold (sext_in_reg (aext x)) -> (sext x)
10254 // if x is small enough or if we know that x has more than 1 sign bit and the
10255 // sign_extend_inreg is extending from one of them.
10256 if (N0
.getOpcode() == ISD::SIGN_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
) {
10257 SDValue N00
= N0
.getOperand(0);
10258 unsigned N00Bits
= N00
.getScalarValueSizeInBits();
10259 if ((N00Bits
<= EVTBits
||
10260 (N00Bits
- DAG
.ComputeNumSignBits(N00
)) < EVTBits
) &&
10261 (!LegalOperations
|| TLI
.isOperationLegal(ISD::SIGN_EXTEND
, VT
)))
10262 return DAG
.getNode(ISD::SIGN_EXTEND
, SDLoc(N
), VT
, N00
);
10265 // fold (sext_in_reg (*_extend_vector_inreg x)) -> (sext_vector_inreg x)
10266 if ((N0
.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG
||
10267 N0
.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG
||
10268 N0
.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG
) &&
10269 N0
.getOperand(0).getScalarValueSizeInBits() == EVTBits
) {
10270 if (!LegalOperations
||
10271 TLI
.isOperationLegal(ISD::SIGN_EXTEND_VECTOR_INREG
, VT
))
10272 return DAG
.getNode(ISD::SIGN_EXTEND_VECTOR_INREG
, SDLoc(N
), VT
,
10276 // fold (sext_in_reg (zext x)) -> (sext x)
10277 // iff we are extending the source sign bit.
10278 if (N0
.getOpcode() == ISD::ZERO_EXTEND
) {
10279 SDValue N00
= N0
.getOperand(0);
10280 if (N00
.getScalarValueSizeInBits() == EVTBits
&&
10281 (!LegalOperations
|| TLI
.isOperationLegal(ISD::SIGN_EXTEND
, VT
)))
10282 return DAG
.getNode(ISD::SIGN_EXTEND
, SDLoc(N
), VT
, N00
, N1
);
10285 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
10286 if (DAG
.MaskedValueIsZero(N0
, APInt::getOneBitSet(VTBits
, EVTBits
- 1)))
10287 return DAG
.getZeroExtendInReg(N0
, SDLoc(N
), EVT
.getScalarType());
10289 // fold operands of sext_in_reg based on knowledge that the top bits are not
10291 if (SimplifyDemandedBits(SDValue(N
, 0)))
10292 return SDValue(N
, 0);
10294 // fold (sext_in_reg (load x)) -> (smaller sextload x)
10295 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
10296 if (SDValue NarrowLoad
= ReduceLoadWidth(N
))
10299 // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
10300 // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
10301 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
10302 if (N0
.getOpcode() == ISD::SRL
) {
10303 if (auto *ShAmt
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1)))
10304 if (ShAmt
->getAPIntValue().ule(VTBits
- EVTBits
)) {
10305 // We can turn this into an SRA iff the input to the SRL is already sign
10306 // extended enough.
10307 unsigned InSignBits
= DAG
.ComputeNumSignBits(N0
.getOperand(0));
10308 if (((VTBits
- EVTBits
) - ShAmt
->getZExtValue()) < InSignBits
)
10309 return DAG
.getNode(ISD::SRA
, SDLoc(N
), VT
, N0
.getOperand(0),
10314 // fold (sext_inreg (extload x)) -> (sextload x)
10315 // If sextload is not supported by target, we can only do the combine when
10316 // load has one use. Doing otherwise can block folding the extload with other
10317 // extends that the target does support.
10318 if (ISD::isEXTLoad(N0
.getNode()) &&
10319 ISD::isUNINDEXEDLoad(N0
.getNode()) &&
10320 EVT
== cast
<LoadSDNode
>(N0
)->getMemoryVT() &&
10321 ((!LegalOperations
&& cast
<LoadSDNode
>(N0
)->isSimple() &&
10323 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, VT
, EVT
))) {
10324 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
10325 SDValue ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, SDLoc(N
), VT
,
10327 LN0
->getBasePtr(), EVT
,
10328 LN0
->getMemOperand());
10329 CombineTo(N
, ExtLoad
);
10330 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
10331 AddToWorklist(ExtLoad
.getNode());
10332 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
10334 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
10335 if (ISD::isZEXTLoad(N0
.getNode()) && ISD::isUNINDEXEDLoad(N0
.getNode()) &&
10337 EVT
== cast
<LoadSDNode
>(N0
)->getMemoryVT() &&
10338 ((!LegalOperations
&& cast
<LoadSDNode
>(N0
)->isSimple()) &&
10339 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, VT
, EVT
))) {
10340 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
10341 SDValue ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, SDLoc(N
), VT
,
10343 LN0
->getBasePtr(), EVT
,
10344 LN0
->getMemOperand());
10345 CombineTo(N
, ExtLoad
);
10346 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
10347 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
10350 // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
10351 if (EVTBits
<= 16 && N0
.getOpcode() == ISD::OR
) {
10352 if (SDValue BSwap
= MatchBSwapHWordLow(N0
.getNode(), N0
.getOperand(0),
10353 N0
.getOperand(1), false))
10354 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, SDLoc(N
), VT
,
10361 SDValue
DAGCombiner::visitSIGN_EXTEND_VECTOR_INREG(SDNode
*N
) {
10362 SDValue N0
= N
->getOperand(0);
10363 EVT VT
= N
->getValueType(0);
10366 return DAG
.getUNDEF(VT
);
10368 if (SDValue Res
= tryToFoldExtendOfConstant(N
, TLI
, DAG
, LegalTypes
))
10371 if (SimplifyDemandedVectorElts(SDValue(N
, 0)))
10372 return SDValue(N
, 0);
10377 SDValue
DAGCombiner::visitZERO_EXTEND_VECTOR_INREG(SDNode
*N
) {
10378 SDValue N0
= N
->getOperand(0);
10379 EVT VT
= N
->getValueType(0);
10382 return DAG
.getUNDEF(VT
);
10384 if (SDValue Res
= tryToFoldExtendOfConstant(N
, TLI
, DAG
, LegalTypes
))
10387 if (SimplifyDemandedVectorElts(SDValue(N
, 0)))
10388 return SDValue(N
, 0);
10393 SDValue
DAGCombiner::visitTRUNCATE(SDNode
*N
) {
10394 SDValue N0
= N
->getOperand(0);
10395 EVT VT
= N
->getValueType(0);
10396 EVT SrcVT
= N0
.getValueType();
10397 bool isLE
= DAG
.getDataLayout().isLittleEndian();
10403 // fold (truncate (truncate x)) -> (truncate x)
10404 if (N0
.getOpcode() == ISD::TRUNCATE
)
10405 return DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), VT
, N0
.getOperand(0));
10407 // fold (truncate c1) -> c1
10408 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
)) {
10409 SDValue C
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), VT
, N0
);
10410 if (C
.getNode() != N
)
10414 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
10415 if (N0
.getOpcode() == ISD::ZERO_EXTEND
||
10416 N0
.getOpcode() == ISD::SIGN_EXTEND
||
10417 N0
.getOpcode() == ISD::ANY_EXTEND
) {
10418 // if the source is smaller than the dest, we still need an extend.
10419 if (N0
.getOperand(0).getValueType().bitsLT(VT
))
10420 return DAG
.getNode(N0
.getOpcode(), SDLoc(N
), VT
, N0
.getOperand(0));
10421 // if the source is larger than the dest, than we just need the truncate.
10422 if (N0
.getOperand(0).getValueType().bitsGT(VT
))
10423 return DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), VT
, N0
.getOperand(0));
10424 // if the source and dest are the same type, we can drop both the extend
10425 // and the truncate.
10426 return N0
.getOperand(0);
10429 // If this is anyext(trunc), don't fold it, allow ourselves to be folded.
10430 if (N
->hasOneUse() && (N
->use_begin()->getOpcode() == ISD::ANY_EXTEND
))
10433 // Fold extract-and-trunc into a narrow extract. For example:
10434 // i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
10435 // i32 y = TRUNCATE(i64 x)
10437 // v16i8 b = BITCAST (v2i64 val)
10438 // i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
10440 // Note: We only run this optimization after type legalization (which often
10441 // creates this pattern) and before operation legalization after which
10442 // we need to be more careful about the vector instructions that we generate.
10443 if (N0
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
10444 LegalTypes
&& !LegalOperations
&& N0
->hasOneUse() && VT
!= MVT::i1
) {
10445 EVT VecTy
= N0
.getOperand(0).getValueType();
10446 EVT ExTy
= N0
.getValueType();
10447 EVT TrTy
= N
->getValueType(0);
10449 unsigned NumElem
= VecTy
.getVectorNumElements();
10450 unsigned SizeRatio
= ExTy
.getSizeInBits()/TrTy
.getSizeInBits();
10452 EVT NVT
= EVT::getVectorVT(*DAG
.getContext(), TrTy
, SizeRatio
* NumElem
);
10453 assert(NVT
.getSizeInBits() == VecTy
.getSizeInBits() && "Invalid Size");
10455 SDValue EltNo
= N0
->getOperand(1);
10456 if (isa
<ConstantSDNode
>(EltNo
) && isTypeLegal(NVT
)) {
10457 int Elt
= cast
<ConstantSDNode
>(EltNo
)->getZExtValue();
10458 EVT IndexTy
= TLI
.getVectorIdxTy(DAG
.getDataLayout());
10459 int Index
= isLE
? (Elt
*SizeRatio
) : (Elt
*SizeRatio
+ (SizeRatio
-1));
10462 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, TrTy
,
10463 DAG
.getBitcast(NVT
, N0
.getOperand(0)),
10464 DAG
.getConstant(Index
, DL
, IndexTy
));
10468 // trunc (select c, a, b) -> select c, (trunc a), (trunc b)
10469 if (N0
.getOpcode() == ISD::SELECT
&& N0
.hasOneUse()) {
10470 if ((!LegalOperations
|| TLI
.isOperationLegal(ISD::SELECT
, SrcVT
)) &&
10471 TLI
.isTruncateFree(SrcVT
, VT
)) {
10473 SDValue Cond
= N0
.getOperand(0);
10474 SDValue TruncOp0
= DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, N0
.getOperand(1));
10475 SDValue TruncOp1
= DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, N0
.getOperand(2));
10476 return DAG
.getNode(ISD::SELECT
, SDLoc(N
), VT
, Cond
, TruncOp0
, TruncOp1
);
10480 // trunc (shl x, K) -> shl (trunc x), K => K < VT.getScalarSizeInBits()
10481 if (N0
.getOpcode() == ISD::SHL
&& N0
.hasOneUse() &&
10482 (!LegalOperations
|| TLI
.isOperationLegal(ISD::SHL
, VT
)) &&
10483 TLI
.isTypeDesirableForOp(ISD::SHL
, VT
)) {
10484 SDValue Amt
= N0
.getOperand(1);
10485 KnownBits Known
= DAG
.computeKnownBits(Amt
);
10486 unsigned Size
= VT
.getScalarSizeInBits();
10487 if (Known
.getBitWidth() - Known
.countMinLeadingZeros() <= Log2_32(Size
)) {
10489 EVT AmtVT
= TLI
.getShiftAmountTy(VT
, DAG
.getDataLayout());
10491 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, N0
.getOperand(0));
10492 if (AmtVT
!= Amt
.getValueType()) {
10493 Amt
= DAG
.getZExtOrTrunc(Amt
, SL
, AmtVT
);
10494 AddToWorklist(Amt
.getNode());
10496 return DAG
.getNode(ISD::SHL
, SL
, VT
, Trunc
, Amt
);
10500 // Attempt to pre-truncate BUILD_VECTOR sources.
10501 if (N0
.getOpcode() == ISD::BUILD_VECTOR
&& !LegalOperations
&&
10502 TLI
.isTruncateFree(SrcVT
.getScalarType(), VT
.getScalarType())) {
10504 EVT SVT
= VT
.getScalarType();
10505 SmallVector
<SDValue
, 8> TruncOps
;
10506 for (const SDValue
&Op
: N0
->op_values()) {
10507 SDValue TruncOp
= DAG
.getNode(ISD::TRUNCATE
, DL
, SVT
, Op
);
10508 TruncOps
.push_back(TruncOp
);
10510 return DAG
.getBuildVector(VT
, DL
, TruncOps
);
10513 // Fold a series of buildvector, bitcast, and truncate if possible.
10514 // For example fold
10515 // (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to
10516 // (2xi32 (buildvector x, y)).
10517 if (Level
== AfterLegalizeVectorOps
&& VT
.isVector() &&
10518 N0
.getOpcode() == ISD::BITCAST
&& N0
.hasOneUse() &&
10519 N0
.getOperand(0).getOpcode() == ISD::BUILD_VECTOR
&&
10520 N0
.getOperand(0).hasOneUse()) {
10521 SDValue BuildVect
= N0
.getOperand(0);
10522 EVT BuildVectEltTy
= BuildVect
.getValueType().getVectorElementType();
10523 EVT TruncVecEltTy
= VT
.getVectorElementType();
10525 // Check that the element types match.
10526 if (BuildVectEltTy
== TruncVecEltTy
) {
10527 // Now we only need to compute the offset of the truncated elements.
10528 unsigned BuildVecNumElts
= BuildVect
.getNumOperands();
10529 unsigned TruncVecNumElts
= VT
.getVectorNumElements();
10530 unsigned TruncEltOffset
= BuildVecNumElts
/ TruncVecNumElts
;
10532 assert((BuildVecNumElts
% TruncVecNumElts
) == 0 &&
10533 "Invalid number of elements");
10535 SmallVector
<SDValue
, 8> Opnds
;
10536 for (unsigned i
= 0, e
= BuildVecNumElts
; i
!= e
; i
+= TruncEltOffset
)
10537 Opnds
.push_back(BuildVect
.getOperand(i
));
10539 return DAG
.getBuildVector(VT
, SDLoc(N
), Opnds
);
10543 // See if we can simplify the input to this truncate through knowledge that
10544 // only the low bits are being used.
10545 // For example "trunc (or (shl x, 8), y)" // -> trunc y
10546 // Currently we only perform this optimization on scalars because vectors
10547 // may have different active low bits.
10548 if (!VT
.isVector()) {
10550 APInt::getLowBitsSet(N0
.getValueSizeInBits(), VT
.getSizeInBits());
10551 if (SDValue Shorter
= DAG
.GetDemandedBits(N0
, Mask
))
10552 return DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), VT
, Shorter
);
10555 // fold (truncate (load x)) -> (smaller load x)
10556 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
10557 if (!LegalTypes
|| TLI
.isTypeDesirableForOp(N0
.getOpcode(), VT
)) {
10558 if (SDValue Reduced
= ReduceLoadWidth(N
))
10561 // Handle the case where the load remains an extending load even
10562 // after truncation.
10563 if (N0
.hasOneUse() && ISD::isUNINDEXEDLoad(N0
.getNode())) {
10564 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
10565 if (LN0
->isSimple() &&
10566 LN0
->getMemoryVT().getStoreSizeInBits() < VT
.getSizeInBits()) {
10567 SDValue NewLoad
= DAG
.getExtLoad(LN0
->getExtensionType(), SDLoc(LN0
),
10568 VT
, LN0
->getChain(), LN0
->getBasePtr(),
10569 LN0
->getMemoryVT(),
10570 LN0
->getMemOperand());
10571 DAG
.ReplaceAllUsesOfValueWith(N0
.getValue(1), NewLoad
.getValue(1));
10577 // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
10578 // where ... are all 'undef'.
10579 if (N0
.getOpcode() == ISD::CONCAT_VECTORS
&& !LegalTypes
) {
10580 SmallVector
<EVT
, 8> VTs
;
10583 unsigned NumDefs
= 0;
10585 for (unsigned i
= 0, e
= N0
.getNumOperands(); i
!= e
; ++i
) {
10586 SDValue X
= N0
.getOperand(i
);
10587 if (!X
.isUndef()) {
10592 // Stop if more than one members are non-undef.
10595 VTs
.push_back(EVT::getVectorVT(*DAG
.getContext(),
10596 VT
.getVectorElementType(),
10597 X
.getValueType().getVectorNumElements()));
10601 return DAG
.getUNDEF(VT
);
10603 if (NumDefs
== 1) {
10604 assert(V
.getNode() && "The single defined operand is empty!");
10605 SmallVector
<SDValue
, 8> Opnds
;
10606 for (unsigned i
= 0, e
= VTs
.size(); i
!= e
; ++i
) {
10608 Opnds
.push_back(DAG
.getUNDEF(VTs
[i
]));
10611 SDValue NV
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(V
), VTs
[i
], V
);
10612 AddToWorklist(NV
.getNode());
10613 Opnds
.push_back(NV
);
10615 return DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
, Opnds
);
10619 // Fold truncate of a bitcast of a vector to an extract of the low vector
10622 // e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, idx
10623 if (N0
.getOpcode() == ISD::BITCAST
&& !VT
.isVector()) {
10624 SDValue VecSrc
= N0
.getOperand(0);
10625 EVT SrcVT
= VecSrc
.getValueType();
10626 if (SrcVT
.isVector() && SrcVT
.getScalarType() == VT
&&
10627 (!LegalOperations
||
10628 TLI
.isOperationLegal(ISD::EXTRACT_VECTOR_ELT
, SrcVT
))) {
10631 EVT IdxVT
= TLI
.getVectorIdxTy(DAG
.getDataLayout());
10632 unsigned Idx
= isLE
? 0 : SrcVT
.getVectorNumElements() - 1;
10633 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, VT
,
10634 VecSrc
, DAG
.getConstant(Idx
, SL
, IdxVT
));
10638 // Simplify the operands using demanded-bits information.
10639 if (!VT
.isVector() &&
10640 SimplifyDemandedBits(SDValue(N
, 0)))
10641 return SDValue(N
, 0);
10643 // (trunc adde(X, Y, Carry)) -> (adde trunc(X), trunc(Y), Carry)
10644 // (trunc addcarry(X, Y, Carry)) -> (addcarry trunc(X), trunc(Y), Carry)
10645 // When the adde's carry is not used.
10646 if ((N0
.getOpcode() == ISD::ADDE
|| N0
.getOpcode() == ISD::ADDCARRY
) &&
10647 N0
.hasOneUse() && !N0
.getNode()->hasAnyUseOfValue(1) &&
10648 // We only do for addcarry before legalize operation
10649 ((!LegalOperations
&& N0
.getOpcode() == ISD::ADDCARRY
) ||
10650 TLI
.isOperationLegal(N0
.getOpcode(), VT
))) {
10652 auto X
= DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, N0
.getOperand(0));
10653 auto Y
= DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, N0
.getOperand(1));
10654 auto VTs
= DAG
.getVTList(VT
, N0
->getValueType(1));
10655 return DAG
.getNode(N0
.getOpcode(), SL
, VTs
, X
, Y
, N0
.getOperand(2));
10658 // fold (truncate (extract_subvector(ext x))) ->
10659 // (extract_subvector x)
10660 // TODO: This can be generalized to cover cases where the truncate and extract
10661 // do not fully cancel each other out.
10662 if (!LegalTypes
&& N0
.getOpcode() == ISD::EXTRACT_SUBVECTOR
) {
10663 SDValue N00
= N0
.getOperand(0);
10664 if (N00
.getOpcode() == ISD::SIGN_EXTEND
||
10665 N00
.getOpcode() == ISD::ZERO_EXTEND
||
10666 N00
.getOpcode() == ISD::ANY_EXTEND
) {
10667 if (N00
.getOperand(0)->getValueType(0).getVectorElementType() ==
10668 VT
.getVectorElementType())
10669 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, SDLoc(N0
->getOperand(0)), VT
,
10670 N00
.getOperand(0), N0
.getOperand(1));
10674 if (SDValue NewVSel
= matchVSelectOpSizesWithSetCC(N
))
10677 // Narrow a suitable binary operation with a non-opaque constant operand by
10678 // moving it ahead of the truncate. This is limited to pre-legalization
10679 // because targets may prefer a wider type during later combines and invert
10681 switch (N0
.getOpcode()) {
10688 if (!LegalOperations
&& N0
.hasOneUse() &&
10689 (isConstantOrConstantVector(N0
.getOperand(0), true) ||
10690 isConstantOrConstantVector(N0
.getOperand(1), true))) {
10691 // TODO: We already restricted this to pre-legalization, but for vectors
10692 // we are extra cautious to not create an unsupported operation.
10693 // Target-specific changes are likely needed to avoid regressions here.
10694 if (VT
.isScalarInteger() || TLI
.isOperationLegal(N0
.getOpcode(), VT
)) {
10696 SDValue NarrowL
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, N0
.getOperand(0));
10697 SDValue NarrowR
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, N0
.getOperand(1));
10698 return DAG
.getNode(N0
.getOpcode(), DL
, VT
, NarrowL
, NarrowR
);
10706 static SDNode
*getBuildPairElt(SDNode
*N
, unsigned i
) {
10707 SDValue Elt
= N
->getOperand(i
);
10708 if (Elt
.getOpcode() != ISD::MERGE_VALUES
)
10709 return Elt
.getNode();
10710 return Elt
.getOperand(Elt
.getResNo()).getNode();
10713 /// build_pair (load, load) -> load
10714 /// if load locations are consecutive.
10715 SDValue
DAGCombiner::CombineConsecutiveLoads(SDNode
*N
, EVT VT
) {
10716 assert(N
->getOpcode() == ISD::BUILD_PAIR
);
10718 LoadSDNode
*LD1
= dyn_cast
<LoadSDNode
>(getBuildPairElt(N
, 0));
10719 LoadSDNode
*LD2
= dyn_cast
<LoadSDNode
>(getBuildPairElt(N
, 1));
10721 // A BUILD_PAIR is always having the least significant part in elt 0 and the
10722 // most significant part in elt 1. So when combining into one large load, we
10723 // need to consider the endianness.
10724 if (DAG
.getDataLayout().isBigEndian())
10725 std::swap(LD1
, LD2
);
10727 if (!LD1
|| !LD2
|| !ISD::isNON_EXTLoad(LD1
) || !LD1
->hasOneUse() ||
10728 LD1
->getAddressSpace() != LD2
->getAddressSpace())
10730 EVT LD1VT
= LD1
->getValueType(0);
10731 unsigned LD1Bytes
= LD1VT
.getStoreSize();
10732 if (ISD::isNON_EXTLoad(LD2
) && LD2
->hasOneUse() &&
10733 DAG
.areNonVolatileConsecutiveLoads(LD2
, LD1
, LD1Bytes
, 1)) {
10734 unsigned Align
= LD1
->getAlignment();
10735 unsigned NewAlign
= DAG
.getDataLayout().getABITypeAlignment(
10736 VT
.getTypeForEVT(*DAG
.getContext()));
10738 if (NewAlign
<= Align
&&
10739 (!LegalOperations
|| TLI
.isOperationLegal(ISD::LOAD
, VT
)))
10740 return DAG
.getLoad(VT
, SDLoc(N
), LD1
->getChain(), LD1
->getBasePtr(),
10741 LD1
->getPointerInfo(), Align
);
10747 static unsigned getPPCf128HiElementSelector(const SelectionDAG
&DAG
) {
10748 // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi
10749 // and Lo parts; on big-endian machines it doesn't.
10750 return DAG
.getDataLayout().isBigEndian() ? 1 : 0;
10753 static SDValue
foldBitcastedFPLogic(SDNode
*N
, SelectionDAG
&DAG
,
10754 const TargetLowering
&TLI
) {
10755 // If this is not a bitcast to an FP type or if the target doesn't have
10756 // IEEE754-compliant FP logic, we're done.
10757 EVT VT
= N
->getValueType(0);
10758 if (!VT
.isFloatingPoint() || !TLI
.hasBitPreservingFPLogic(VT
))
10761 // TODO: Handle cases where the integer constant is a different scalar
10762 // bitwidth to the FP.
10763 SDValue N0
= N
->getOperand(0);
10764 EVT SourceVT
= N0
.getValueType();
10765 if (VT
.getScalarSizeInBits() != SourceVT
.getScalarSizeInBits())
10770 switch (N0
.getOpcode()) {
10772 FPOpcode
= ISD::FABS
;
10773 SignMask
= ~APInt::getSignMask(SourceVT
.getScalarSizeInBits());
10776 FPOpcode
= ISD::FNEG
;
10777 SignMask
= APInt::getSignMask(SourceVT
.getScalarSizeInBits());
10780 FPOpcode
= ISD::FABS
;
10781 SignMask
= APInt::getSignMask(SourceVT
.getScalarSizeInBits());
10787 // Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X
10788 // Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X
10789 // Fold (bitcast int (or (bitcast fp X to int), 0x8000...) to fp) ->
10791 SDValue LogicOp0
= N0
.getOperand(0);
10792 ConstantSDNode
*LogicOp1
= isConstOrConstSplat(N0
.getOperand(1), true);
10793 if (LogicOp1
&& LogicOp1
->getAPIntValue() == SignMask
&&
10794 LogicOp0
.getOpcode() == ISD::BITCAST
&&
10795 LogicOp0
.getOperand(0).getValueType() == VT
) {
10796 SDValue FPOp
= DAG
.getNode(FPOpcode
, SDLoc(N
), VT
, LogicOp0
.getOperand(0));
10797 NumFPLogicOpsConv
++;
10798 if (N0
.getOpcode() == ISD::OR
)
10799 return DAG
.getNode(ISD::FNEG
, SDLoc(N
), VT
, FPOp
);
10806 SDValue
DAGCombiner::visitBITCAST(SDNode
*N
) {
10807 SDValue N0
= N
->getOperand(0);
10808 EVT VT
= N
->getValueType(0);
10811 return DAG
.getUNDEF(VT
);
10813 // If the input is a BUILD_VECTOR with all constant elements, fold this now.
10814 // Only do this before legalize types, unless both types are integer and the
10815 // scalar type is legal. Only do this before legalize ops, since the target
10816 // maybe depending on the bitcast.
10817 // First check to see if this is all constant.
10818 // TODO: Support FP bitcasts after legalize types.
10819 if (VT
.isVector() &&
10821 (!LegalOperations
&& VT
.isInteger() && N0
.getValueType().isInteger() &&
10822 TLI
.isTypeLegal(VT
.getVectorElementType()))) &&
10823 N0
.getOpcode() == ISD::BUILD_VECTOR
&& N0
.getNode()->hasOneUse() &&
10824 cast
<BuildVectorSDNode
>(N0
)->isConstant())
10825 return ConstantFoldBITCASTofBUILD_VECTOR(N0
.getNode(),
10826 VT
.getVectorElementType());
10828 // If the input is a constant, let getNode fold it.
10829 if (isa
<ConstantSDNode
>(N0
) || isa
<ConstantFPSDNode
>(N0
)) {
10830 // If we can't allow illegal operations, we need to check that this is just
10831 // a fp -> int or int -> conversion and that the resulting operation will
10833 if (!LegalOperations
||
10834 (isa
<ConstantSDNode
>(N0
) && VT
.isFloatingPoint() && !VT
.isVector() &&
10835 TLI
.isOperationLegal(ISD::ConstantFP
, VT
)) ||
10836 (isa
<ConstantFPSDNode
>(N0
) && VT
.isInteger() && !VT
.isVector() &&
10837 TLI
.isOperationLegal(ISD::Constant
, VT
))) {
10838 SDValue C
= DAG
.getBitcast(VT
, N0
);
10839 if (C
.getNode() != N
)
10844 // (conv (conv x, t1), t2) -> (conv x, t2)
10845 if (N0
.getOpcode() == ISD::BITCAST
)
10846 return DAG
.getBitcast(VT
, N0
.getOperand(0));
10848 // fold (conv (load x)) -> (load (conv*)x)
10849 // If the resultant load doesn't need a higher alignment than the original!
10850 if (ISD::isNormalLoad(N0
.getNode()) && N0
.hasOneUse() &&
10851 // Do not remove the cast if the types differ in endian layout.
10852 TLI
.hasBigEndianPartOrdering(N0
.getValueType(), DAG
.getDataLayout()) ==
10853 TLI
.hasBigEndianPartOrdering(VT
, DAG
.getDataLayout()) &&
10854 // If the load is volatile, we only want to change the load type if the
10855 // resulting load is legal. Otherwise we might increase the number of
10856 // memory accesses. We don't care if the original type was legal or not
10857 // as we assume software couldn't rely on the number of accesses of an
10859 ((!LegalOperations
&& cast
<LoadSDNode
>(N0
)->isSimple()) ||
10860 TLI
.isOperationLegal(ISD::LOAD
, VT
))) {
10861 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
10863 if (TLI
.isLoadBitCastBeneficial(N0
.getValueType(), VT
, DAG
,
10864 *LN0
->getMemOperand())) {
10866 DAG
.getLoad(VT
, SDLoc(N
), LN0
->getChain(), LN0
->getBasePtr(),
10867 LN0
->getPointerInfo(), LN0
->getAlignment(),
10868 LN0
->getMemOperand()->getFlags(), LN0
->getAAInfo());
10869 DAG
.ReplaceAllUsesOfValueWith(N0
.getValue(1), Load
.getValue(1));
10874 if (SDValue V
= foldBitcastedFPLogic(N
, DAG
, TLI
))
10877 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
10878 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
10881 // fold (bitcast (fneg x)) ->
10882 // flipbit = signbit
10883 // (xor (bitcast x) (build_pair flipbit, flipbit))
10885 // fold (bitcast (fabs x)) ->
10886 // flipbit = (and (extract_element (bitcast x), 0), signbit)
10887 // (xor (bitcast x) (build_pair flipbit, flipbit))
10888 // This often reduces constant pool loads.
10889 if (((N0
.getOpcode() == ISD::FNEG
&& !TLI
.isFNegFree(N0
.getValueType())) ||
10890 (N0
.getOpcode() == ISD::FABS
&& !TLI
.isFAbsFree(N0
.getValueType()))) &&
10891 N0
.getNode()->hasOneUse() && VT
.isInteger() &&
10892 !VT
.isVector() && !N0
.getValueType().isVector()) {
10893 SDValue NewConv
= DAG
.getBitcast(VT
, N0
.getOperand(0));
10894 AddToWorklist(NewConv
.getNode());
10897 if (N0
.getValueType() == MVT::ppcf128
&& !LegalTypes
) {
10898 assert(VT
.getSizeInBits() == 128);
10899 SDValue SignBit
= DAG
.getConstant(
10900 APInt::getSignMask(VT
.getSizeInBits() / 2), SDLoc(N0
), MVT::i64
);
10902 if (N0
.getOpcode() == ISD::FNEG
) {
10904 AddToWorklist(FlipBit
.getNode());
10906 assert(N0
.getOpcode() == ISD::FABS
);
10908 DAG
.getNode(ISD::EXTRACT_ELEMENT
, SDLoc(NewConv
), MVT::i64
, NewConv
,
10909 DAG
.getIntPtrConstant(getPPCf128HiElementSelector(DAG
),
10911 AddToWorklist(Hi
.getNode());
10912 FlipBit
= DAG
.getNode(ISD::AND
, SDLoc(N0
), MVT::i64
, Hi
, SignBit
);
10913 AddToWorklist(FlipBit
.getNode());
10916 DAG
.getNode(ISD::BUILD_PAIR
, SDLoc(N0
), VT
, FlipBit
, FlipBit
);
10917 AddToWorklist(FlipBits
.getNode());
10918 return DAG
.getNode(ISD::XOR
, DL
, VT
, NewConv
, FlipBits
);
10920 APInt SignBit
= APInt::getSignMask(VT
.getSizeInBits());
10921 if (N0
.getOpcode() == ISD::FNEG
)
10922 return DAG
.getNode(ISD::XOR
, DL
, VT
,
10923 NewConv
, DAG
.getConstant(SignBit
, DL
, VT
));
10924 assert(N0
.getOpcode() == ISD::FABS
);
10925 return DAG
.getNode(ISD::AND
, DL
, VT
,
10926 NewConv
, DAG
.getConstant(~SignBit
, DL
, VT
));
10929 // fold (bitconvert (fcopysign cst, x)) ->
10930 // (or (and (bitconvert x), sign), (and cst, (not sign)))
10931 // Note that we don't handle (copysign x, cst) because this can always be
10932 // folded to an fneg or fabs.
10935 // fold (bitcast (fcopysign cst, x)) ->
10936 // flipbit = (and (extract_element
10937 // (xor (bitcast cst), (bitcast x)), 0),
10939 // (xor (bitcast cst) (build_pair flipbit, flipbit))
10940 if (N0
.getOpcode() == ISD::FCOPYSIGN
&& N0
.getNode()->hasOneUse() &&
10941 isa
<ConstantFPSDNode
>(N0
.getOperand(0)) &&
10942 VT
.isInteger() && !VT
.isVector()) {
10943 unsigned OrigXWidth
= N0
.getOperand(1).getValueSizeInBits();
10944 EVT IntXVT
= EVT::getIntegerVT(*DAG
.getContext(), OrigXWidth
);
10945 if (isTypeLegal(IntXVT
)) {
10946 SDValue X
= DAG
.getBitcast(IntXVT
, N0
.getOperand(1));
10947 AddToWorklist(X
.getNode());
10949 // If X has a different width than the result/lhs, sext it or truncate it.
10950 unsigned VTWidth
= VT
.getSizeInBits();
10951 if (OrigXWidth
< VTWidth
) {
10952 X
= DAG
.getNode(ISD::SIGN_EXTEND
, SDLoc(N
), VT
, X
);
10953 AddToWorklist(X
.getNode());
10954 } else if (OrigXWidth
> VTWidth
) {
10955 // To get the sign bit in the right place, we have to shift it right
10956 // before truncating.
10958 X
= DAG
.getNode(ISD::SRL
, DL
,
10959 X
.getValueType(), X
,
10960 DAG
.getConstant(OrigXWidth
-VTWidth
, DL
,
10961 X
.getValueType()));
10962 AddToWorklist(X
.getNode());
10963 X
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(X
), VT
, X
);
10964 AddToWorklist(X
.getNode());
10967 if (N0
.getValueType() == MVT::ppcf128
&& !LegalTypes
) {
10968 APInt SignBit
= APInt::getSignMask(VT
.getSizeInBits() / 2);
10969 SDValue Cst
= DAG
.getBitcast(VT
, N0
.getOperand(0));
10970 AddToWorklist(Cst
.getNode());
10971 SDValue X
= DAG
.getBitcast(VT
, N0
.getOperand(1));
10972 AddToWorklist(X
.getNode());
10973 SDValue XorResult
= DAG
.getNode(ISD::XOR
, SDLoc(N0
), VT
, Cst
, X
);
10974 AddToWorklist(XorResult
.getNode());
10975 SDValue XorResult64
= DAG
.getNode(
10976 ISD::EXTRACT_ELEMENT
, SDLoc(XorResult
), MVT::i64
, XorResult
,
10977 DAG
.getIntPtrConstant(getPPCf128HiElementSelector(DAG
),
10978 SDLoc(XorResult
)));
10979 AddToWorklist(XorResult64
.getNode());
10981 DAG
.getNode(ISD::AND
, SDLoc(XorResult64
), MVT::i64
, XorResult64
,
10982 DAG
.getConstant(SignBit
, SDLoc(XorResult64
), MVT::i64
));
10983 AddToWorklist(FlipBit
.getNode());
10985 DAG
.getNode(ISD::BUILD_PAIR
, SDLoc(N0
), VT
, FlipBit
, FlipBit
);
10986 AddToWorklist(FlipBits
.getNode());
10987 return DAG
.getNode(ISD::XOR
, SDLoc(N
), VT
, Cst
, FlipBits
);
10989 APInt SignBit
= APInt::getSignMask(VT
.getSizeInBits());
10990 X
= DAG
.getNode(ISD::AND
, SDLoc(X
), VT
,
10991 X
, DAG
.getConstant(SignBit
, SDLoc(X
), VT
));
10992 AddToWorklist(X
.getNode());
10994 SDValue Cst
= DAG
.getBitcast(VT
, N0
.getOperand(0));
10995 Cst
= DAG
.getNode(ISD::AND
, SDLoc(Cst
), VT
,
10996 Cst
, DAG
.getConstant(~SignBit
, SDLoc(Cst
), VT
));
10997 AddToWorklist(Cst
.getNode());
10999 return DAG
.getNode(ISD::OR
, SDLoc(N
), VT
, X
, Cst
);
11003 // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
11004 if (N0
.getOpcode() == ISD::BUILD_PAIR
)
11005 if (SDValue CombineLD
= CombineConsecutiveLoads(N0
.getNode(), VT
))
11008 // Remove double bitcasts from shuffles - this is often a legacy of
11009 // XformToShuffleWithZero being used to combine bitmaskings (of
11010 // float vectors bitcast to integer vectors) into shuffles.
11011 // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1)
11012 if (Level
< AfterLegalizeDAG
&& TLI
.isTypeLegal(VT
) && VT
.isVector() &&
11013 N0
->getOpcode() == ISD::VECTOR_SHUFFLE
&& N0
.hasOneUse() &&
11014 VT
.getVectorNumElements() >= N0
.getValueType().getVectorNumElements() &&
11015 !(VT
.getVectorNumElements() % N0
.getValueType().getVectorNumElements())) {
11016 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N0
);
11018 // If operands are a bitcast, peek through if it casts the original VT.
11019 // If operands are a constant, just bitcast back to original VT.
11020 auto PeekThroughBitcast
= [&](SDValue Op
) {
11021 if (Op
.getOpcode() == ISD::BITCAST
&&
11022 Op
.getOperand(0).getValueType() == VT
)
11023 return SDValue(Op
.getOperand(0));
11024 if (Op
.isUndef() || ISD::isBuildVectorOfConstantSDNodes(Op
.getNode()) ||
11025 ISD::isBuildVectorOfConstantFPSDNodes(Op
.getNode()))
11026 return DAG
.getBitcast(VT
, Op
);
11030 // FIXME: If either input vector is bitcast, try to convert the shuffle to
11031 // the result type of this bitcast. This would eliminate at least one
11032 // bitcast. See the transform in InstCombine.
11033 SDValue SV0
= PeekThroughBitcast(N0
->getOperand(0));
11034 SDValue SV1
= PeekThroughBitcast(N0
->getOperand(1));
11039 VT
.getVectorNumElements() / N0
.getValueType().getVectorNumElements();
11040 SmallVector
<int, 8> NewMask
;
11041 for (int M
: SVN
->getMask())
11042 for (int i
= 0; i
!= MaskScale
; ++i
)
11043 NewMask
.push_back(M
< 0 ? -1 : M
* MaskScale
+ i
);
11045 SDValue LegalShuffle
=
11046 TLI
.buildLegalVectorShuffle(VT
, SDLoc(N
), SV0
, SV1
, NewMask
, DAG
);
11048 return LegalShuffle
;
11054 SDValue
DAGCombiner::visitBUILD_PAIR(SDNode
*N
) {
11055 EVT VT
= N
->getValueType(0);
11056 return CombineConsecutiveLoads(N
, VT
);
11059 /// We know that BV is a build_vector node with Constant, ConstantFP or Undef
11060 /// operands. DstEltVT indicates the destination element value type.
11061 SDValue
DAGCombiner::
11062 ConstantFoldBITCASTofBUILD_VECTOR(SDNode
*BV
, EVT DstEltVT
) {
11063 EVT SrcEltVT
= BV
->getValueType(0).getVectorElementType();
11065 // If this is already the right type, we're done.
11066 if (SrcEltVT
== DstEltVT
) return SDValue(BV
, 0);
11068 unsigned SrcBitSize
= SrcEltVT
.getSizeInBits();
11069 unsigned DstBitSize
= DstEltVT
.getSizeInBits();
11071 // If this is a conversion of N elements of one type to N elements of another
11072 // type, convert each element. This handles FP<->INT cases.
11073 if (SrcBitSize
== DstBitSize
) {
11074 SmallVector
<SDValue
, 8> Ops
;
11075 for (SDValue Op
: BV
->op_values()) {
11076 // If the vector element type is not legal, the BUILD_VECTOR operands
11077 // are promoted and implicitly truncated. Make that explicit here.
11078 if (Op
.getValueType() != SrcEltVT
)
11079 Op
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(BV
), SrcEltVT
, Op
);
11080 Ops
.push_back(DAG
.getBitcast(DstEltVT
, Op
));
11081 AddToWorklist(Ops
.back().getNode());
11083 EVT VT
= EVT::getVectorVT(*DAG
.getContext(), DstEltVT
,
11084 BV
->getValueType(0).getVectorNumElements());
11085 return DAG
.getBuildVector(VT
, SDLoc(BV
), Ops
);
11088 // Otherwise, we're growing or shrinking the elements. To avoid having to
11089 // handle annoying details of growing/shrinking FP values, we convert them to
11091 if (SrcEltVT
.isFloatingPoint()) {
11092 // Convert the input float vector to a int vector where the elements are the
11094 EVT IntVT
= EVT::getIntegerVT(*DAG
.getContext(), SrcEltVT
.getSizeInBits());
11095 BV
= ConstantFoldBITCASTofBUILD_VECTOR(BV
, IntVT
).getNode();
11099 // Now we know the input is an integer vector. If the output is a FP type,
11100 // convert to integer first, then to FP of the right size.
11101 if (DstEltVT
.isFloatingPoint()) {
11102 EVT TmpVT
= EVT::getIntegerVT(*DAG
.getContext(), DstEltVT
.getSizeInBits());
11103 SDNode
*Tmp
= ConstantFoldBITCASTofBUILD_VECTOR(BV
, TmpVT
).getNode();
11105 // Next, convert to FP elements of the same size.
11106 return ConstantFoldBITCASTofBUILD_VECTOR(Tmp
, DstEltVT
);
11111 // Okay, we know the src/dst types are both integers of differing types.
11112 // Handling growing first.
11113 assert(SrcEltVT
.isInteger() && DstEltVT
.isInteger());
11114 if (SrcBitSize
< DstBitSize
) {
11115 unsigned NumInputsPerOutput
= DstBitSize
/SrcBitSize
;
11117 SmallVector
<SDValue
, 8> Ops
;
11118 for (unsigned i
= 0, e
= BV
->getNumOperands(); i
!= e
;
11119 i
+= NumInputsPerOutput
) {
11120 bool isLE
= DAG
.getDataLayout().isLittleEndian();
11121 APInt NewBits
= APInt(DstBitSize
, 0);
11122 bool EltIsUndef
= true;
11123 for (unsigned j
= 0; j
!= NumInputsPerOutput
; ++j
) {
11124 // Shift the previously computed bits over.
11125 NewBits
<<= SrcBitSize
;
11126 SDValue Op
= BV
->getOperand(i
+ (isLE
? (NumInputsPerOutput
-j
-1) : j
));
11127 if (Op
.isUndef()) continue;
11128 EltIsUndef
= false;
11130 NewBits
|= cast
<ConstantSDNode
>(Op
)->getAPIntValue().
11131 zextOrTrunc(SrcBitSize
).zext(DstBitSize
);
11135 Ops
.push_back(DAG
.getUNDEF(DstEltVT
));
11137 Ops
.push_back(DAG
.getConstant(NewBits
, DL
, DstEltVT
));
11140 EVT VT
= EVT::getVectorVT(*DAG
.getContext(), DstEltVT
, Ops
.size());
11141 return DAG
.getBuildVector(VT
, DL
, Ops
);
11144 // Finally, this must be the case where we are shrinking elements: each input
11145 // turns into multiple outputs.
11146 unsigned NumOutputsPerInput
= SrcBitSize
/DstBitSize
;
11147 EVT VT
= EVT::getVectorVT(*DAG
.getContext(), DstEltVT
,
11148 NumOutputsPerInput
*BV
->getNumOperands());
11149 SmallVector
<SDValue
, 8> Ops
;
11151 for (const SDValue
&Op
: BV
->op_values()) {
11152 if (Op
.isUndef()) {
11153 Ops
.append(NumOutputsPerInput
, DAG
.getUNDEF(DstEltVT
));
11157 APInt OpVal
= cast
<ConstantSDNode
>(Op
)->
11158 getAPIntValue().zextOrTrunc(SrcBitSize
);
11160 for (unsigned j
= 0; j
!= NumOutputsPerInput
; ++j
) {
11161 APInt ThisVal
= OpVal
.trunc(DstBitSize
);
11162 Ops
.push_back(DAG
.getConstant(ThisVal
, DL
, DstEltVT
));
11163 OpVal
.lshrInPlace(DstBitSize
);
11166 // For big endian targets, swap the order of the pieces of each element.
11167 if (DAG
.getDataLayout().isBigEndian())
11168 std::reverse(Ops
.end()-NumOutputsPerInput
, Ops
.end());
11171 return DAG
.getBuildVector(VT
, DL
, Ops
);
11174 static bool isContractable(SDNode
*N
) {
11175 SDNodeFlags F
= N
->getFlags();
11176 return F
.hasAllowContract() || F
.hasAllowReassociation();
11179 /// Try to perform FMA combining on a given FADD node.
11180 SDValue
DAGCombiner::visitFADDForFMACombine(SDNode
*N
) {
11181 SDValue N0
= N
->getOperand(0);
11182 SDValue N1
= N
->getOperand(1);
11183 EVT VT
= N
->getValueType(0);
11186 const TargetOptions
&Options
= DAG
.getTarget().Options
;
11188 // Floating-point multiply-add with intermediate rounding.
11189 bool HasFMAD
= (LegalOperations
&& TLI
.isOperationLegal(ISD::FMAD
, VT
));
11191 // Floating-point multiply-add without intermediate rounding.
11193 TLI
.isFMAFasterThanFMulAndFAdd(VT
) &&
11194 (!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::FMA
, VT
));
11196 // No valid opcode, do not combine.
11197 if (!HasFMAD
&& !HasFMA
)
11200 SDNodeFlags Flags
= N
->getFlags();
11201 bool CanFuse
= Options
.UnsafeFPMath
|| isContractable(N
);
11202 bool AllowFusionGlobally
= (Options
.AllowFPOpFusion
== FPOpFusion::Fast
||
11203 CanFuse
|| HasFMAD
);
11204 // If the addition is not contractable, do not combine.
11205 if (!AllowFusionGlobally
&& !isContractable(N
))
11208 const SelectionDAGTargetInfo
*STI
= DAG
.getSubtarget().getSelectionDAGInfo();
11209 if (STI
&& STI
->generateFMAsInMachineCombiner(OptLevel
))
11212 // Always prefer FMAD to FMA for precision.
11213 unsigned PreferredFusedOpcode
= HasFMAD
? ISD::FMAD
: ISD::FMA
;
11214 bool Aggressive
= TLI
.enableAggressiveFMAFusion(VT
);
11216 // Is the node an FMUL and contractable either due to global flags or
11218 auto isContractableFMUL
= [AllowFusionGlobally
](SDValue N
) {
11219 if (N
.getOpcode() != ISD::FMUL
)
11221 return AllowFusionGlobally
|| isContractable(N
.getNode());
11223 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
11224 // prefer to fold the multiply with fewer uses.
11225 if (Aggressive
&& isContractableFMUL(N0
) && isContractableFMUL(N1
)) {
11226 if (N0
.getNode()->use_size() > N1
.getNode()->use_size())
11230 // fold (fadd (fmul x, y), z) -> (fma x, y, z)
11231 if (isContractableFMUL(N0
) && (Aggressive
|| N0
->hasOneUse())) {
11232 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11233 N0
.getOperand(0), N0
.getOperand(1), N1
, Flags
);
11236 // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
11237 // Note: Commutes FADD operands.
11238 if (isContractableFMUL(N1
) && (Aggressive
|| N1
->hasOneUse())) {
11239 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11240 N1
.getOperand(0), N1
.getOperand(1), N0
, Flags
);
11243 // Look through FP_EXTEND nodes to do more combining.
11245 // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z)
11246 if (N0
.getOpcode() == ISD::FP_EXTEND
) {
11247 SDValue N00
= N0
.getOperand(0);
11248 if (isContractableFMUL(N00
) &&
11249 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N00
.getValueType())) {
11250 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11251 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11252 N00
.getOperand(0)),
11253 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11254 N00
.getOperand(1)), N1
, Flags
);
11258 // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x)
11259 // Note: Commutes FADD operands.
11260 if (N1
.getOpcode() == ISD::FP_EXTEND
) {
11261 SDValue N10
= N1
.getOperand(0);
11262 if (isContractableFMUL(N10
) &&
11263 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N10
.getValueType())) {
11264 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11265 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11266 N10
.getOperand(0)),
11267 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11268 N10
.getOperand(1)), N0
, Flags
);
11272 // More folding opportunities when target permits.
11274 // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y (fma u, v, z))
11276 N0
.getOpcode() == PreferredFusedOpcode
&&
11277 N0
.getOperand(2).getOpcode() == ISD::FMUL
&&
11278 N0
->hasOneUse() && N0
.getOperand(2)->hasOneUse()) {
11279 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11280 N0
.getOperand(0), N0
.getOperand(1),
11281 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11282 N0
.getOperand(2).getOperand(0),
11283 N0
.getOperand(2).getOperand(1),
11284 N1
, Flags
), Flags
);
11287 // fold (fadd x, (fma y, z, (fmul u, v)) -> (fma y, z (fma u, v, x))
11289 N1
->getOpcode() == PreferredFusedOpcode
&&
11290 N1
.getOperand(2).getOpcode() == ISD::FMUL
&&
11291 N1
->hasOneUse() && N1
.getOperand(2)->hasOneUse()) {
11292 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11293 N1
.getOperand(0), N1
.getOperand(1),
11294 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11295 N1
.getOperand(2).getOperand(0),
11296 N1
.getOperand(2).getOperand(1),
11297 N0
, Flags
), Flags
);
11301 // fold (fadd (fma x, y, (fpext (fmul u, v))), z)
11302 // -> (fma x, y, (fma (fpext u), (fpext v), z))
11303 auto FoldFAddFMAFPExtFMul
= [&] (
11304 SDValue X
, SDValue Y
, SDValue U
, SDValue V
, SDValue Z
,
11305 SDNodeFlags Flags
) {
11306 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, X
, Y
,
11307 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11308 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, U
),
11309 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, V
),
11312 if (N0
.getOpcode() == PreferredFusedOpcode
) {
11313 SDValue N02
= N0
.getOperand(2);
11314 if (N02
.getOpcode() == ISD::FP_EXTEND
) {
11315 SDValue N020
= N02
.getOperand(0);
11316 if (isContractableFMUL(N020
) &&
11317 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N020
.getValueType())) {
11318 return FoldFAddFMAFPExtFMul(N0
.getOperand(0), N0
.getOperand(1),
11319 N020
.getOperand(0), N020
.getOperand(1),
11325 // fold (fadd (fpext (fma x, y, (fmul u, v))), z)
11326 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z))
11327 // FIXME: This turns two single-precision and one double-precision
11328 // operation into two double-precision operations, which might not be
11329 // interesting for all targets, especially GPUs.
11330 auto FoldFAddFPExtFMAFMul
= [&] (
11331 SDValue X
, SDValue Y
, SDValue U
, SDValue V
, SDValue Z
,
11332 SDNodeFlags Flags
) {
11333 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11334 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, X
),
11335 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, Y
),
11336 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11337 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, U
),
11338 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, V
),
11341 if (N0
.getOpcode() == ISD::FP_EXTEND
) {
11342 SDValue N00
= N0
.getOperand(0);
11343 if (N00
.getOpcode() == PreferredFusedOpcode
) {
11344 SDValue N002
= N00
.getOperand(2);
11345 if (isContractableFMUL(N002
) &&
11346 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N00
.getValueType())) {
11347 return FoldFAddFPExtFMAFMul(N00
.getOperand(0), N00
.getOperand(1),
11348 N002
.getOperand(0), N002
.getOperand(1),
11354 // fold (fadd x, (fma y, z, (fpext (fmul u, v)))
11355 // -> (fma y, z, (fma (fpext u), (fpext v), x))
11356 if (N1
.getOpcode() == PreferredFusedOpcode
) {
11357 SDValue N12
= N1
.getOperand(2);
11358 if (N12
.getOpcode() == ISD::FP_EXTEND
) {
11359 SDValue N120
= N12
.getOperand(0);
11360 if (isContractableFMUL(N120
) &&
11361 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N120
.getValueType())) {
11362 return FoldFAddFMAFPExtFMul(N1
.getOperand(0), N1
.getOperand(1),
11363 N120
.getOperand(0), N120
.getOperand(1),
11369 // fold (fadd x, (fpext (fma y, z, (fmul u, v)))
11370 // -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x))
11371 // FIXME: This turns two single-precision and one double-precision
11372 // operation into two double-precision operations, which might not be
11373 // interesting for all targets, especially GPUs.
11374 if (N1
.getOpcode() == ISD::FP_EXTEND
) {
11375 SDValue N10
= N1
.getOperand(0);
11376 if (N10
.getOpcode() == PreferredFusedOpcode
) {
11377 SDValue N102
= N10
.getOperand(2);
11378 if (isContractableFMUL(N102
) &&
11379 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N10
.getValueType())) {
11380 return FoldFAddFPExtFMAFMul(N10
.getOperand(0), N10
.getOperand(1),
11381 N102
.getOperand(0), N102
.getOperand(1),
11391 /// Try to perform FMA combining on a given FSUB node.
11392 SDValue
DAGCombiner::visitFSUBForFMACombine(SDNode
*N
) {
11393 SDValue N0
= N
->getOperand(0);
11394 SDValue N1
= N
->getOperand(1);
11395 EVT VT
= N
->getValueType(0);
11398 const TargetOptions
&Options
= DAG
.getTarget().Options
;
11399 // Floating-point multiply-add with intermediate rounding.
11400 bool HasFMAD
= (LegalOperations
&& TLI
.isOperationLegal(ISD::FMAD
, VT
));
11402 // Floating-point multiply-add without intermediate rounding.
11404 TLI
.isFMAFasterThanFMulAndFAdd(VT
) &&
11405 (!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::FMA
, VT
));
11407 // No valid opcode, do not combine.
11408 if (!HasFMAD
&& !HasFMA
)
11411 const SDNodeFlags Flags
= N
->getFlags();
11412 bool CanFuse
= Options
.UnsafeFPMath
|| isContractable(N
);
11413 bool AllowFusionGlobally
= (Options
.AllowFPOpFusion
== FPOpFusion::Fast
||
11414 CanFuse
|| HasFMAD
);
11416 // If the subtraction is not contractable, do not combine.
11417 if (!AllowFusionGlobally
&& !isContractable(N
))
11420 const SelectionDAGTargetInfo
*STI
= DAG
.getSubtarget().getSelectionDAGInfo();
11421 if (STI
&& STI
->generateFMAsInMachineCombiner(OptLevel
))
11424 // Always prefer FMAD to FMA for precision.
11425 unsigned PreferredFusedOpcode
= HasFMAD
? ISD::FMAD
: ISD::FMA
;
11426 bool Aggressive
= TLI
.enableAggressiveFMAFusion(VT
);
11428 // Is the node an FMUL and contractable either due to global flags or
11430 auto isContractableFMUL
= [AllowFusionGlobally
](SDValue N
) {
11431 if (N
.getOpcode() != ISD::FMUL
)
11433 return AllowFusionGlobally
|| isContractable(N
.getNode());
11436 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
11437 if (isContractableFMUL(N0
) && (Aggressive
|| N0
->hasOneUse())) {
11438 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11439 N0
.getOperand(0), N0
.getOperand(1),
11440 DAG
.getNode(ISD::FNEG
, SL
, VT
, N1
), Flags
);
11443 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
11444 // Note: Commutes FSUB operands.
11445 if (isContractableFMUL(N1
) && (Aggressive
|| N1
->hasOneUse())) {
11446 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11447 DAG
.getNode(ISD::FNEG
, SL
, VT
,
11449 N1
.getOperand(1), N0
, Flags
);
11452 // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
11453 if (N0
.getOpcode() == ISD::FNEG
&& isContractableFMUL(N0
.getOperand(0)) &&
11454 (Aggressive
|| (N0
->hasOneUse() && N0
.getOperand(0).hasOneUse()))) {
11455 SDValue N00
= N0
.getOperand(0).getOperand(0);
11456 SDValue N01
= N0
.getOperand(0).getOperand(1);
11457 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11458 DAG
.getNode(ISD::FNEG
, SL
, VT
, N00
), N01
,
11459 DAG
.getNode(ISD::FNEG
, SL
, VT
, N1
), Flags
);
11462 // Look through FP_EXTEND nodes to do more combining.
11464 // fold (fsub (fpext (fmul x, y)), z)
11465 // -> (fma (fpext x), (fpext y), (fneg z))
11466 if (N0
.getOpcode() == ISD::FP_EXTEND
) {
11467 SDValue N00
= N0
.getOperand(0);
11468 if (isContractableFMUL(N00
) &&
11469 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N00
.getValueType())) {
11470 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11471 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11472 N00
.getOperand(0)),
11473 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11474 N00
.getOperand(1)),
11475 DAG
.getNode(ISD::FNEG
, SL
, VT
, N1
), Flags
);
11479 // fold (fsub x, (fpext (fmul y, z)))
11480 // -> (fma (fneg (fpext y)), (fpext z), x)
11481 // Note: Commutes FSUB operands.
11482 if (N1
.getOpcode() == ISD::FP_EXTEND
) {
11483 SDValue N10
= N1
.getOperand(0);
11484 if (isContractableFMUL(N10
) &&
11485 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N10
.getValueType())) {
11486 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11487 DAG
.getNode(ISD::FNEG
, SL
, VT
,
11488 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11489 N10
.getOperand(0))),
11490 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11491 N10
.getOperand(1)),
11496 // fold (fsub (fpext (fneg (fmul, x, y))), z)
11497 // -> (fneg (fma (fpext x), (fpext y), z))
11498 // Note: This could be removed with appropriate canonicalization of the
11499 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
11500 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
11501 // from implementing the canonicalization in visitFSUB.
11502 if (N0
.getOpcode() == ISD::FP_EXTEND
) {
11503 SDValue N00
= N0
.getOperand(0);
11504 if (N00
.getOpcode() == ISD::FNEG
) {
11505 SDValue N000
= N00
.getOperand(0);
11506 if (isContractableFMUL(N000
) &&
11507 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N00
.getValueType())) {
11508 return DAG
.getNode(ISD::FNEG
, SL
, VT
,
11509 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11510 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11511 N000
.getOperand(0)),
11512 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11513 N000
.getOperand(1)),
11519 // fold (fsub (fneg (fpext (fmul, x, y))), z)
11520 // -> (fneg (fma (fpext x)), (fpext y), z)
11521 // Note: This could be removed with appropriate canonicalization of the
11522 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
11523 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
11524 // from implementing the canonicalization in visitFSUB.
11525 if (N0
.getOpcode() == ISD::FNEG
) {
11526 SDValue N00
= N0
.getOperand(0);
11527 if (N00
.getOpcode() == ISD::FP_EXTEND
) {
11528 SDValue N000
= N00
.getOperand(0);
11529 if (isContractableFMUL(N000
) &&
11530 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N000
.getValueType())) {
11531 return DAG
.getNode(ISD::FNEG
, SL
, VT
,
11532 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11533 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11534 N000
.getOperand(0)),
11535 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11536 N000
.getOperand(1)),
11542 // More folding opportunities when target permits.
11544 // fold (fsub (fma x, y, (fmul u, v)), z)
11545 // -> (fma x, y (fma u, v, (fneg z)))
11546 if (CanFuse
&& N0
.getOpcode() == PreferredFusedOpcode
&&
11547 isContractableFMUL(N0
.getOperand(2)) && N0
->hasOneUse() &&
11548 N0
.getOperand(2)->hasOneUse()) {
11549 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11550 N0
.getOperand(0), N0
.getOperand(1),
11551 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11552 N0
.getOperand(2).getOperand(0),
11553 N0
.getOperand(2).getOperand(1),
11554 DAG
.getNode(ISD::FNEG
, SL
, VT
,
11555 N1
), Flags
), Flags
);
11558 // fold (fsub x, (fma y, z, (fmul u, v)))
11559 // -> (fma (fneg y), z, (fma (fneg u), v, x))
11560 if (CanFuse
&& N1
.getOpcode() == PreferredFusedOpcode
&&
11561 isContractableFMUL(N1
.getOperand(2))) {
11562 SDValue N20
= N1
.getOperand(2).getOperand(0);
11563 SDValue N21
= N1
.getOperand(2).getOperand(1);
11564 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11565 DAG
.getNode(ISD::FNEG
, SL
, VT
,
11568 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11569 DAG
.getNode(ISD::FNEG
, SL
, VT
, N20
),
11570 N21
, N0
, Flags
), Flags
);
11574 // fold (fsub (fma x, y, (fpext (fmul u, v))), z)
11575 // -> (fma x, y (fma (fpext u), (fpext v), (fneg z)))
11576 if (N0
.getOpcode() == PreferredFusedOpcode
) {
11577 SDValue N02
= N0
.getOperand(2);
11578 if (N02
.getOpcode() == ISD::FP_EXTEND
) {
11579 SDValue N020
= N02
.getOperand(0);
11580 if (isContractableFMUL(N020
) &&
11581 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N020
.getValueType())) {
11582 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11583 N0
.getOperand(0), N0
.getOperand(1),
11584 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11585 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11586 N020
.getOperand(0)),
11587 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11588 N020
.getOperand(1)),
11589 DAG
.getNode(ISD::FNEG
, SL
, VT
,
11590 N1
), Flags
), Flags
);
11595 // fold (fsub (fpext (fma x, y, (fmul u, v))), z)
11596 // -> (fma (fpext x), (fpext y),
11597 // (fma (fpext u), (fpext v), (fneg z)))
11598 // FIXME: This turns two single-precision and one double-precision
11599 // operation into two double-precision operations, which might not be
11600 // interesting for all targets, especially GPUs.
11601 if (N0
.getOpcode() == ISD::FP_EXTEND
) {
11602 SDValue N00
= N0
.getOperand(0);
11603 if (N00
.getOpcode() == PreferredFusedOpcode
) {
11604 SDValue N002
= N00
.getOperand(2);
11605 if (isContractableFMUL(N002
) &&
11606 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N00
.getValueType())) {
11607 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11608 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11609 N00
.getOperand(0)),
11610 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11611 N00
.getOperand(1)),
11612 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11613 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11614 N002
.getOperand(0)),
11615 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11616 N002
.getOperand(1)),
11617 DAG
.getNode(ISD::FNEG
, SL
, VT
,
11618 N1
), Flags
), Flags
);
11623 // fold (fsub x, (fma y, z, (fpext (fmul u, v))))
11624 // -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x))
11625 if (N1
.getOpcode() == PreferredFusedOpcode
&&
11626 N1
.getOperand(2).getOpcode() == ISD::FP_EXTEND
) {
11627 SDValue N120
= N1
.getOperand(2).getOperand(0);
11628 if (isContractableFMUL(N120
) &&
11629 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N120
.getValueType())) {
11630 SDValue N1200
= N120
.getOperand(0);
11631 SDValue N1201
= N120
.getOperand(1);
11632 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11633 DAG
.getNode(ISD::FNEG
, SL
, VT
, N1
.getOperand(0)),
11635 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11636 DAG
.getNode(ISD::FNEG
, SL
, VT
,
11637 DAG
.getNode(ISD::FP_EXTEND
, SL
,
11639 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11641 N0
, Flags
), Flags
);
11645 // fold (fsub x, (fpext (fma y, z, (fmul u, v))))
11646 // -> (fma (fneg (fpext y)), (fpext z),
11647 // (fma (fneg (fpext u)), (fpext v), x))
11648 // FIXME: This turns two single-precision and one double-precision
11649 // operation into two double-precision operations, which might not be
11650 // interesting for all targets, especially GPUs.
11651 if (N1
.getOpcode() == ISD::FP_EXTEND
&&
11652 N1
.getOperand(0).getOpcode() == PreferredFusedOpcode
) {
11653 SDValue CvtSrc
= N1
.getOperand(0);
11654 SDValue N100
= CvtSrc
.getOperand(0);
11655 SDValue N101
= CvtSrc
.getOperand(1);
11656 SDValue N102
= CvtSrc
.getOperand(2);
11657 if (isContractableFMUL(N102
) &&
11658 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, CvtSrc
.getValueType())) {
11659 SDValue N1020
= N102
.getOperand(0);
11660 SDValue N1021
= N102
.getOperand(1);
11661 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11662 DAG
.getNode(ISD::FNEG
, SL
, VT
,
11663 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11665 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N101
),
11666 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11667 DAG
.getNode(ISD::FNEG
, SL
, VT
,
11668 DAG
.getNode(ISD::FP_EXTEND
, SL
,
11670 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11672 N0
, Flags
), Flags
);
11680 /// Try to perform FMA combining on a given FMUL node based on the distributive
11681 /// law x * (y + 1) = x * y + x and variants thereof (commuted versions,
11682 /// subtraction instead of addition).
11683 SDValue
DAGCombiner::visitFMULForFMADistributiveCombine(SDNode
*N
) {
11684 SDValue N0
= N
->getOperand(0);
11685 SDValue N1
= N
->getOperand(1);
11686 EVT VT
= N
->getValueType(0);
11688 const SDNodeFlags Flags
= N
->getFlags();
11690 assert(N
->getOpcode() == ISD::FMUL
&& "Expected FMUL Operation");
11692 const TargetOptions
&Options
= DAG
.getTarget().Options
;
11694 // The transforms below are incorrect when x == 0 and y == inf, because the
11695 // intermediate multiplication produces a nan.
11696 if (!Options
.NoInfsFPMath
)
11699 // Floating-point multiply-add without intermediate rounding.
11701 (Options
.AllowFPOpFusion
== FPOpFusion::Fast
|| Options
.UnsafeFPMath
) &&
11702 TLI
.isFMAFasterThanFMulAndFAdd(VT
) &&
11703 (!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::FMA
, VT
));
11705 // Floating-point multiply-add with intermediate rounding. This can result
11706 // in a less precise result due to the changed rounding order.
11707 bool HasFMAD
= Options
.UnsafeFPMath
&&
11708 (LegalOperations
&& TLI
.isOperationLegal(ISD::FMAD
, VT
));
11710 // No valid opcode, do not combine.
11711 if (!HasFMAD
&& !HasFMA
)
11714 // Always prefer FMAD to FMA for precision.
11715 unsigned PreferredFusedOpcode
= HasFMAD
? ISD::FMAD
: ISD::FMA
;
11716 bool Aggressive
= TLI
.enableAggressiveFMAFusion(VT
);
11718 // fold (fmul (fadd x0, +1.0), y) -> (fma x0, y, y)
11719 // fold (fmul (fadd x0, -1.0), y) -> (fma x0, y, (fneg y))
11720 auto FuseFADD
= [&](SDValue X
, SDValue Y
, const SDNodeFlags Flags
) {
11721 if (X
.getOpcode() == ISD::FADD
&& (Aggressive
|| X
->hasOneUse())) {
11722 if (auto *C
= isConstOrConstSplatFP(X
.getOperand(1), true)) {
11723 if (C
->isExactlyValue(+1.0))
11724 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, X
.getOperand(0), Y
,
11726 if (C
->isExactlyValue(-1.0))
11727 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, X
.getOperand(0), Y
,
11728 DAG
.getNode(ISD::FNEG
, SL
, VT
, Y
), Flags
);
11734 if (SDValue FMA
= FuseFADD(N0
, N1
, Flags
))
11736 if (SDValue FMA
= FuseFADD(N1
, N0
, Flags
))
11739 // fold (fmul (fsub +1.0, x1), y) -> (fma (fneg x1), y, y)
11740 // fold (fmul (fsub -1.0, x1), y) -> (fma (fneg x1), y, (fneg y))
11741 // fold (fmul (fsub x0, +1.0), y) -> (fma x0, y, (fneg y))
11742 // fold (fmul (fsub x0, -1.0), y) -> (fma x0, y, y)
11743 auto FuseFSUB
= [&](SDValue X
, SDValue Y
, const SDNodeFlags Flags
) {
11744 if (X
.getOpcode() == ISD::FSUB
&& (Aggressive
|| X
->hasOneUse())) {
11745 if (auto *C0
= isConstOrConstSplatFP(X
.getOperand(0), true)) {
11746 if (C0
->isExactlyValue(+1.0))
11747 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11748 DAG
.getNode(ISD::FNEG
, SL
, VT
, X
.getOperand(1)), Y
,
11750 if (C0
->isExactlyValue(-1.0))
11751 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11752 DAG
.getNode(ISD::FNEG
, SL
, VT
, X
.getOperand(1)), Y
,
11753 DAG
.getNode(ISD::FNEG
, SL
, VT
, Y
), Flags
);
11755 if (auto *C1
= isConstOrConstSplatFP(X
.getOperand(1), true)) {
11756 if (C1
->isExactlyValue(+1.0))
11757 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, X
.getOperand(0), Y
,
11758 DAG
.getNode(ISD::FNEG
, SL
, VT
, Y
), Flags
);
11759 if (C1
->isExactlyValue(-1.0))
11760 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, X
.getOperand(0), Y
,
11767 if (SDValue FMA
= FuseFSUB(N0
, N1
, Flags
))
11769 if (SDValue FMA
= FuseFSUB(N1
, N0
, Flags
))
11775 SDValue
DAGCombiner::visitFADD(SDNode
*N
) {
11776 SDValue N0
= N
->getOperand(0);
11777 SDValue N1
= N
->getOperand(1);
11778 bool N0CFP
= isConstantFPBuildVectorOrConstantFP(N0
);
11779 bool N1CFP
= isConstantFPBuildVectorOrConstantFP(N1
);
11780 EVT VT
= N
->getValueType(0);
11782 const TargetOptions
&Options
= DAG
.getTarget().Options
;
11783 const SDNodeFlags Flags
= N
->getFlags();
11787 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
11790 // fold (fadd c1, c2) -> c1 + c2
11791 if (N0CFP
&& N1CFP
)
11792 return DAG
.getNode(ISD::FADD
, DL
, VT
, N0
, N1
, Flags
);
11794 // canonicalize constant to RHS
11795 if (N0CFP
&& !N1CFP
)
11796 return DAG
.getNode(ISD::FADD
, DL
, VT
, N1
, N0
, Flags
);
11798 // N0 + -0.0 --> N0 (also allowed with +0.0 and fast-math)
11799 ConstantFPSDNode
*N1C
= isConstOrConstSplatFP(N1
, true);
11800 if (N1C
&& N1C
->isZero())
11801 if (N1C
->isNegative() || Options
.NoSignedZerosFPMath
|| Flags
.hasNoSignedZeros())
11804 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
11807 // fold (fadd A, (fneg B)) -> (fsub A, B)
11808 if ((!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::FSUB
, VT
)) &&
11809 TLI
.isNegatibleForFree(N1
, DAG
, LegalOperations
, ForCodeSize
) == 2)
11810 return DAG
.getNode(
11811 ISD::FSUB
, DL
, VT
, N0
,
11812 TLI
.getNegatedExpression(N1
, DAG
, LegalOperations
, ForCodeSize
), Flags
);
11814 // fold (fadd (fneg A), B) -> (fsub B, A)
11815 if ((!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::FSUB
, VT
)) &&
11816 TLI
.isNegatibleForFree(N0
, DAG
, LegalOperations
, ForCodeSize
) == 2)
11817 return DAG
.getNode(
11818 ISD::FSUB
, DL
, VT
, N1
,
11819 TLI
.getNegatedExpression(N0
, DAG
, LegalOperations
, ForCodeSize
), Flags
);
11821 auto isFMulNegTwo
= [](SDValue FMul
) {
11822 if (!FMul
.hasOneUse() || FMul
.getOpcode() != ISD::FMUL
)
11824 auto *C
= isConstOrConstSplatFP(FMul
.getOperand(1), true);
11825 return C
&& C
->isExactlyValue(-2.0);
11828 // fadd (fmul B, -2.0), A --> fsub A, (fadd B, B)
11829 if (isFMulNegTwo(N0
)) {
11830 SDValue B
= N0
.getOperand(0);
11831 SDValue Add
= DAG
.getNode(ISD::FADD
, DL
, VT
, B
, B
, Flags
);
11832 return DAG
.getNode(ISD::FSUB
, DL
, VT
, N1
, Add
, Flags
);
11834 // fadd A, (fmul B, -2.0) --> fsub A, (fadd B, B)
11835 if (isFMulNegTwo(N1
)) {
11836 SDValue B
= N1
.getOperand(0);
11837 SDValue Add
= DAG
.getNode(ISD::FADD
, DL
, VT
, B
, B
, Flags
);
11838 return DAG
.getNode(ISD::FSUB
, DL
, VT
, N0
, Add
, Flags
);
11841 // No FP constant should be created after legalization as Instruction
11842 // Selection pass has a hard time dealing with FP constants.
11843 bool AllowNewConst
= (Level
< AfterLegalizeDAG
);
11845 // If nnan is enabled, fold lots of things.
11846 if ((Options
.NoNaNsFPMath
|| Flags
.hasNoNaNs()) && AllowNewConst
) {
11847 // If allowed, fold (fadd (fneg x), x) -> 0.0
11848 if (N0
.getOpcode() == ISD::FNEG
&& N0
.getOperand(0) == N1
)
11849 return DAG
.getConstantFP(0.0, DL
, VT
);
11851 // If allowed, fold (fadd x, (fneg x)) -> 0.0
11852 if (N1
.getOpcode() == ISD::FNEG
&& N1
.getOperand(0) == N0
)
11853 return DAG
.getConstantFP(0.0, DL
, VT
);
11856 // If 'unsafe math' or reassoc and nsz, fold lots of things.
11857 // TODO: break out portions of the transformations below for which Unsafe is
11858 // considered and which do not require both nsz and reassoc
11859 if (((Options
.UnsafeFPMath
&& Options
.NoSignedZerosFPMath
) ||
11860 (Flags
.hasAllowReassociation() && Flags
.hasNoSignedZeros())) &&
11862 // fadd (fadd x, c1), c2 -> fadd x, c1 + c2
11863 if (N1CFP
&& N0
.getOpcode() == ISD::FADD
&&
11864 isConstantFPBuildVectorOrConstantFP(N0
.getOperand(1))) {
11865 SDValue NewC
= DAG
.getNode(ISD::FADD
, DL
, VT
, N0
.getOperand(1), N1
, Flags
);
11866 return DAG
.getNode(ISD::FADD
, DL
, VT
, N0
.getOperand(0), NewC
, Flags
);
11869 // We can fold chains of FADD's of the same value into multiplications.
11870 // This transform is not safe in general because we are reducing the number
11871 // of rounding steps.
11872 if (TLI
.isOperationLegalOrCustom(ISD::FMUL
, VT
) && !N0CFP
&& !N1CFP
) {
11873 if (N0
.getOpcode() == ISD::FMUL
) {
11874 bool CFP00
= isConstantFPBuildVectorOrConstantFP(N0
.getOperand(0));
11875 bool CFP01
= isConstantFPBuildVectorOrConstantFP(N0
.getOperand(1));
11877 // (fadd (fmul x, c), x) -> (fmul x, c+1)
11878 if (CFP01
&& !CFP00
&& N0
.getOperand(0) == N1
) {
11879 SDValue NewCFP
= DAG
.getNode(ISD::FADD
, DL
, VT
, N0
.getOperand(1),
11880 DAG
.getConstantFP(1.0, DL
, VT
), Flags
);
11881 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N1
, NewCFP
, Flags
);
11884 // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2)
11885 if (CFP01
&& !CFP00
&& N1
.getOpcode() == ISD::FADD
&&
11886 N1
.getOperand(0) == N1
.getOperand(1) &&
11887 N0
.getOperand(0) == N1
.getOperand(0)) {
11888 SDValue NewCFP
= DAG
.getNode(ISD::FADD
, DL
, VT
, N0
.getOperand(1),
11889 DAG
.getConstantFP(2.0, DL
, VT
), Flags
);
11890 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
.getOperand(0), NewCFP
, Flags
);
11894 if (N1
.getOpcode() == ISD::FMUL
) {
11895 bool CFP10
= isConstantFPBuildVectorOrConstantFP(N1
.getOperand(0));
11896 bool CFP11
= isConstantFPBuildVectorOrConstantFP(N1
.getOperand(1));
11898 // (fadd x, (fmul x, c)) -> (fmul x, c+1)
11899 if (CFP11
&& !CFP10
&& N1
.getOperand(0) == N0
) {
11900 SDValue NewCFP
= DAG
.getNode(ISD::FADD
, DL
, VT
, N1
.getOperand(1),
11901 DAG
.getConstantFP(1.0, DL
, VT
), Flags
);
11902 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, NewCFP
, Flags
);
11905 // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2)
11906 if (CFP11
&& !CFP10
&& N0
.getOpcode() == ISD::FADD
&&
11907 N0
.getOperand(0) == N0
.getOperand(1) &&
11908 N1
.getOperand(0) == N0
.getOperand(0)) {
11909 SDValue NewCFP
= DAG
.getNode(ISD::FADD
, DL
, VT
, N1
.getOperand(1),
11910 DAG
.getConstantFP(2.0, DL
, VT
), Flags
);
11911 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N1
.getOperand(0), NewCFP
, Flags
);
11915 if (N0
.getOpcode() == ISD::FADD
) {
11916 bool CFP00
= isConstantFPBuildVectorOrConstantFP(N0
.getOperand(0));
11917 // (fadd (fadd x, x), x) -> (fmul x, 3.0)
11918 if (!CFP00
&& N0
.getOperand(0) == N0
.getOperand(1) &&
11919 (N0
.getOperand(0) == N1
)) {
11920 return DAG
.getNode(ISD::FMUL
, DL
, VT
,
11921 N1
, DAG
.getConstantFP(3.0, DL
, VT
), Flags
);
11925 if (N1
.getOpcode() == ISD::FADD
) {
11926 bool CFP10
= isConstantFPBuildVectorOrConstantFP(N1
.getOperand(0));
11927 // (fadd x, (fadd x, x)) -> (fmul x, 3.0)
11928 if (!CFP10
&& N1
.getOperand(0) == N1
.getOperand(1) &&
11929 N1
.getOperand(0) == N0
) {
11930 return DAG
.getNode(ISD::FMUL
, DL
, VT
,
11931 N0
, DAG
.getConstantFP(3.0, DL
, VT
), Flags
);
11935 // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0)
11936 if (N0
.getOpcode() == ISD::FADD
&& N1
.getOpcode() == ISD::FADD
&&
11937 N0
.getOperand(0) == N0
.getOperand(1) &&
11938 N1
.getOperand(0) == N1
.getOperand(1) &&
11939 N0
.getOperand(0) == N1
.getOperand(0)) {
11940 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
.getOperand(0),
11941 DAG
.getConstantFP(4.0, DL
, VT
), Flags
);
11944 } // enable-unsafe-fp-math
11946 // FADD -> FMA combines:
11947 if (SDValue Fused
= visitFADDForFMACombine(N
)) {
11948 AddToWorklist(Fused
.getNode());
11954 SDValue
DAGCombiner::visitFSUB(SDNode
*N
) {
11955 SDValue N0
= N
->getOperand(0);
11956 SDValue N1
= N
->getOperand(1);
11957 ConstantFPSDNode
*N0CFP
= isConstOrConstSplatFP(N0
, true);
11958 ConstantFPSDNode
*N1CFP
= isConstOrConstSplatFP(N1
, true);
11959 EVT VT
= N
->getValueType(0);
11961 const TargetOptions
&Options
= DAG
.getTarget().Options
;
11962 const SDNodeFlags Flags
= N
->getFlags();
11966 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
11969 // fold (fsub c1, c2) -> c1-c2
11970 if (N0CFP
&& N1CFP
)
11971 return DAG
.getNode(ISD::FSUB
, DL
, VT
, N0
, N1
, Flags
);
11973 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
11976 // (fsub A, 0) -> A
11977 if (N1CFP
&& N1CFP
->isZero()) {
11978 if (!N1CFP
->isNegative() || Options
.NoSignedZerosFPMath
||
11979 Flags
.hasNoSignedZeros()) {
11985 // (fsub x, x) -> 0.0
11986 if (Options
.NoNaNsFPMath
|| Flags
.hasNoNaNs())
11987 return DAG
.getConstantFP(0.0f
, DL
, VT
);
11990 // (fsub -0.0, N1) -> -N1
11991 // NOTE: It is safe to transform an FSUB(-0.0,X) into an FNEG(X), since the
11992 // FSUB does not specify the sign bit of a NaN. Also note that for
11993 // the same reason, the inverse transform is not safe, unless fast math
11994 // flags are in play.
11995 if (N0CFP
&& N0CFP
->isZero()) {
11996 if (N0CFP
->isNegative() ||
11997 (Options
.NoSignedZerosFPMath
|| Flags
.hasNoSignedZeros())) {
11998 if (TLI
.isNegatibleForFree(N1
, DAG
, LegalOperations
, ForCodeSize
))
11999 return TLI
.getNegatedExpression(N1
, DAG
, LegalOperations
, ForCodeSize
);
12000 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FNEG
, VT
))
12001 return DAG
.getNode(ISD::FNEG
, DL
, VT
, N1
, Flags
);
12005 if (((Options
.UnsafeFPMath
&& Options
.NoSignedZerosFPMath
) ||
12006 (Flags
.hasAllowReassociation() && Flags
.hasNoSignedZeros())) &&
12007 N1
.getOpcode() == ISD::FADD
) {
12008 // X - (X + Y) -> -Y
12009 if (N0
== N1
->getOperand(0))
12010 return DAG
.getNode(ISD::FNEG
, DL
, VT
, N1
->getOperand(1), Flags
);
12011 // X - (Y + X) -> -Y
12012 if (N0
== N1
->getOperand(1))
12013 return DAG
.getNode(ISD::FNEG
, DL
, VT
, N1
->getOperand(0), Flags
);
12016 // fold (fsub A, (fneg B)) -> (fadd A, B)
12017 if (TLI
.isNegatibleForFree(N1
, DAG
, LegalOperations
, ForCodeSize
))
12018 return DAG
.getNode(
12019 ISD::FADD
, DL
, VT
, N0
,
12020 TLI
.getNegatedExpression(N1
, DAG
, LegalOperations
, ForCodeSize
), Flags
);
12022 // FSUB -> FMA combines:
12023 if (SDValue Fused
= visitFSUBForFMACombine(N
)) {
12024 AddToWorklist(Fused
.getNode());
12031 /// Return true if both inputs are at least as cheap in negated form and at
12032 /// least one input is strictly cheaper in negated form.
12033 bool DAGCombiner::isCheaperToUseNegatedFPOps(SDValue X
, SDValue Y
) {
12035 TLI
.isNegatibleForFree(X
, DAG
, LegalOperations
, ForCodeSize
))
12037 TLI
.isNegatibleForFree(Y
, DAG
, LegalOperations
, ForCodeSize
))
12038 // Both negated operands are at least as cheap as their counterparts.
12039 // Check to see if at least one is cheaper negated.
12040 if (LHSNeg
== 2 || RHSNeg
== 2)
12046 SDValue
DAGCombiner::visitFMUL(SDNode
*N
) {
12047 SDValue N0
= N
->getOperand(0);
12048 SDValue N1
= N
->getOperand(1);
12049 ConstantFPSDNode
*N0CFP
= isConstOrConstSplatFP(N0
, true);
12050 ConstantFPSDNode
*N1CFP
= isConstOrConstSplatFP(N1
, true);
12051 EVT VT
= N
->getValueType(0);
12053 const TargetOptions
&Options
= DAG
.getTarget().Options
;
12054 const SDNodeFlags Flags
= N
->getFlags();
12057 if (VT
.isVector()) {
12058 // This just handles C1 * C2 for vectors. Other vector folds are below.
12059 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
12063 // fold (fmul c1, c2) -> c1*c2
12064 if (N0CFP
&& N1CFP
)
12065 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, N1
, Flags
);
12067 // canonicalize constant to RHS
12068 if (isConstantFPBuildVectorOrConstantFP(N0
) &&
12069 !isConstantFPBuildVectorOrConstantFP(N1
))
12070 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N1
, N0
, Flags
);
12072 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
12075 if ((Options
.NoNaNsFPMath
&& Options
.NoSignedZerosFPMath
) ||
12076 (Flags
.hasNoNaNs() && Flags
.hasNoSignedZeros())) {
12077 // fold (fmul A, 0) -> 0
12078 if (N1CFP
&& N1CFP
->isZero())
12082 if (Options
.UnsafeFPMath
|| Flags
.hasAllowReassociation()) {
12083 // fmul (fmul X, C1), C2 -> fmul X, C1 * C2
12084 if (isConstantFPBuildVectorOrConstantFP(N1
) &&
12085 N0
.getOpcode() == ISD::FMUL
) {
12086 SDValue N00
= N0
.getOperand(0);
12087 SDValue N01
= N0
.getOperand(1);
12088 // Avoid an infinite loop by making sure that N00 is not a constant
12089 // (the inner multiply has not been constant folded yet).
12090 if (isConstantFPBuildVectorOrConstantFP(N01
) &&
12091 !isConstantFPBuildVectorOrConstantFP(N00
)) {
12092 SDValue MulConsts
= DAG
.getNode(ISD::FMUL
, DL
, VT
, N01
, N1
, Flags
);
12093 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N00
, MulConsts
, Flags
);
12097 // Match a special-case: we convert X * 2.0 into fadd.
12098 // fmul (fadd X, X), C -> fmul X, 2.0 * C
12099 if (N0
.getOpcode() == ISD::FADD
&& N0
.hasOneUse() &&
12100 N0
.getOperand(0) == N0
.getOperand(1)) {
12101 const SDValue Two
= DAG
.getConstantFP(2.0, DL
, VT
);
12102 SDValue MulConsts
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Two
, N1
, Flags
);
12103 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
.getOperand(0), MulConsts
, Flags
);
12107 // fold (fmul X, 2.0) -> (fadd X, X)
12108 if (N1CFP
&& N1CFP
->isExactlyValue(+2.0))
12109 return DAG
.getNode(ISD::FADD
, DL
, VT
, N0
, N0
, Flags
);
12111 // fold (fmul X, -1.0) -> (fneg X)
12112 if (N1CFP
&& N1CFP
->isExactlyValue(-1.0))
12113 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FNEG
, VT
))
12114 return DAG
.getNode(ISD::FNEG
, DL
, VT
, N0
);
12116 // -N0 * -N1 --> N0 * N1
12117 if (isCheaperToUseNegatedFPOps(N0
, N1
)) {
12119 TLI
.getNegatedExpression(N0
, DAG
, LegalOperations
, ForCodeSize
);
12121 TLI
.getNegatedExpression(N1
, DAG
, LegalOperations
, ForCodeSize
);
12122 return DAG
.getNode(ISD::FMUL
, DL
, VT
, NegN0
, NegN1
, Flags
);
12125 // fold (fmul X, (select (fcmp X > 0.0), -1.0, 1.0)) -> (fneg (fabs X))
12126 // fold (fmul X, (select (fcmp X > 0.0), 1.0, -1.0)) -> (fabs X)
12127 if (Flags
.hasNoNaNs() && Flags
.hasNoSignedZeros() &&
12128 (N0
.getOpcode() == ISD::SELECT
|| N1
.getOpcode() == ISD::SELECT
) &&
12129 TLI
.isOperationLegal(ISD::FABS
, VT
)) {
12130 SDValue Select
= N0
, X
= N1
;
12131 if (Select
.getOpcode() != ISD::SELECT
)
12132 std::swap(Select
, X
);
12134 SDValue Cond
= Select
.getOperand(0);
12135 auto TrueOpnd
= dyn_cast
<ConstantFPSDNode
>(Select
.getOperand(1));
12136 auto FalseOpnd
= dyn_cast
<ConstantFPSDNode
>(Select
.getOperand(2));
12138 if (TrueOpnd
&& FalseOpnd
&&
12139 Cond
.getOpcode() == ISD::SETCC
&& Cond
.getOperand(0) == X
&&
12140 isa
<ConstantFPSDNode
>(Cond
.getOperand(1)) &&
12141 cast
<ConstantFPSDNode
>(Cond
.getOperand(1))->isExactlyValue(0.0)) {
12142 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Cond
.getOperand(2))->get();
12151 std::swap(TrueOpnd
, FalseOpnd
);
12159 if (TrueOpnd
->isExactlyValue(-1.0) && FalseOpnd
->isExactlyValue(1.0) &&
12160 TLI
.isOperationLegal(ISD::FNEG
, VT
))
12161 return DAG
.getNode(ISD::FNEG
, DL
, VT
,
12162 DAG
.getNode(ISD::FABS
, DL
, VT
, X
));
12163 if (TrueOpnd
->isExactlyValue(1.0) && FalseOpnd
->isExactlyValue(-1.0))
12164 return DAG
.getNode(ISD::FABS
, DL
, VT
, X
);
12171 // FMUL -> FMA combines:
12172 if (SDValue Fused
= visitFMULForFMADistributiveCombine(N
)) {
12173 AddToWorklist(Fused
.getNode());
12180 SDValue
DAGCombiner::visitFMA(SDNode
*N
) {
12181 SDValue N0
= N
->getOperand(0);
12182 SDValue N1
= N
->getOperand(1);
12183 SDValue N2
= N
->getOperand(2);
12184 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
12185 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
12186 EVT VT
= N
->getValueType(0);
12188 const TargetOptions
&Options
= DAG
.getTarget().Options
;
12190 // FMA nodes have flags that propagate to the created nodes.
12191 const SDNodeFlags Flags
= N
->getFlags();
12192 bool UnsafeFPMath
= Options
.UnsafeFPMath
|| isContractable(N
);
12194 // Constant fold FMA.
12195 if (isa
<ConstantFPSDNode
>(N0
) &&
12196 isa
<ConstantFPSDNode
>(N1
) &&
12197 isa
<ConstantFPSDNode
>(N2
)) {
12198 return DAG
.getNode(ISD::FMA
, DL
, VT
, N0
, N1
, N2
);
12201 // (-N0 * -N1) + N2 --> (N0 * N1) + N2
12202 if (isCheaperToUseNegatedFPOps(N0
, N1
)) {
12204 TLI
.getNegatedExpression(N0
, DAG
, LegalOperations
, ForCodeSize
);
12206 TLI
.getNegatedExpression(N1
, DAG
, LegalOperations
, ForCodeSize
);
12207 return DAG
.getNode(ISD::FMA
, DL
, VT
, NegN0
, NegN1
, N2
, Flags
);
12210 if (UnsafeFPMath
) {
12211 if (N0CFP
&& N0CFP
->isZero())
12213 if (N1CFP
&& N1CFP
->isZero())
12216 // TODO: The FMA node should have flags that propagate to these nodes.
12217 if (N0CFP
&& N0CFP
->isExactlyValue(1.0))
12218 return DAG
.getNode(ISD::FADD
, SDLoc(N
), VT
, N1
, N2
);
12219 if (N1CFP
&& N1CFP
->isExactlyValue(1.0))
12220 return DAG
.getNode(ISD::FADD
, SDLoc(N
), VT
, N0
, N2
);
12222 // Canonicalize (fma c, x, y) -> (fma x, c, y)
12223 if (isConstantFPBuildVectorOrConstantFP(N0
) &&
12224 !isConstantFPBuildVectorOrConstantFP(N1
))
12225 return DAG
.getNode(ISD::FMA
, SDLoc(N
), VT
, N1
, N0
, N2
);
12227 if (UnsafeFPMath
) {
12228 // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
12229 if (N2
.getOpcode() == ISD::FMUL
&& N0
== N2
.getOperand(0) &&
12230 isConstantFPBuildVectorOrConstantFP(N1
) &&
12231 isConstantFPBuildVectorOrConstantFP(N2
.getOperand(1))) {
12232 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
,
12233 DAG
.getNode(ISD::FADD
, DL
, VT
, N1
, N2
.getOperand(1),
12237 // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
12238 if (N0
.getOpcode() == ISD::FMUL
&&
12239 isConstantFPBuildVectorOrConstantFP(N1
) &&
12240 isConstantFPBuildVectorOrConstantFP(N0
.getOperand(1))) {
12241 return DAG
.getNode(ISD::FMA
, DL
, VT
,
12243 DAG
.getNode(ISD::FMUL
, DL
, VT
, N1
, N0
.getOperand(1),
12249 // (fma x, 1, y) -> (fadd x, y)
12250 // (fma x, -1, y) -> (fadd (fneg x), y)
12252 if (N1CFP
->isExactlyValue(1.0))
12253 // TODO: The FMA node should have flags that propagate to this node.
12254 return DAG
.getNode(ISD::FADD
, DL
, VT
, N0
, N2
);
12256 if (N1CFP
->isExactlyValue(-1.0) &&
12257 (!LegalOperations
|| TLI
.isOperationLegal(ISD::FNEG
, VT
))) {
12258 SDValue RHSNeg
= DAG
.getNode(ISD::FNEG
, DL
, VT
, N0
);
12259 AddToWorklist(RHSNeg
.getNode());
12260 // TODO: The FMA node should have flags that propagate to this node.
12261 return DAG
.getNode(ISD::FADD
, DL
, VT
, N2
, RHSNeg
);
12264 // fma (fneg x), K, y -> fma x -K, y
12265 if (N0
.getOpcode() == ISD::FNEG
&&
12266 (TLI
.isOperationLegal(ISD::ConstantFP
, VT
) ||
12267 (N1
.hasOneUse() && !TLI
.isFPImmLegal(N1CFP
->getValueAPF(), VT
,
12269 return DAG
.getNode(ISD::FMA
, DL
, VT
, N0
.getOperand(0),
12270 DAG
.getNode(ISD::FNEG
, DL
, VT
, N1
, Flags
), N2
);
12274 if (UnsafeFPMath
) {
12275 // (fma x, c, x) -> (fmul x, (c+1))
12276 if (N1CFP
&& N0
== N2
) {
12277 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
,
12278 DAG
.getNode(ISD::FADD
, DL
, VT
, N1
,
12279 DAG
.getConstantFP(1.0, DL
, VT
), Flags
),
12283 // (fma x, c, (fneg x)) -> (fmul x, (c-1))
12284 if (N1CFP
&& N2
.getOpcode() == ISD::FNEG
&& N2
.getOperand(0) == N0
) {
12285 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
,
12286 DAG
.getNode(ISD::FADD
, DL
, VT
, N1
,
12287 DAG
.getConstantFP(-1.0, DL
, VT
), Flags
),
12295 // Combine multiple FDIVs with the same divisor into multiple FMULs by the
12297 // E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip)
12298 // Notice that this is not always beneficial. One reason is different targets
12299 // may have different costs for FDIV and FMUL, so sometimes the cost of two
12300 // FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason
12301 // is the critical path is increased from "one FDIV" to "one FDIV + one FMUL".
12302 SDValue
DAGCombiner::combineRepeatedFPDivisors(SDNode
*N
) {
12303 // TODO: Limit this transform based on optsize/minsize - it always creates at
12304 // least 1 extra instruction. But the perf win may be substantial enough
12305 // that only minsize should restrict this.
12306 bool UnsafeMath
= DAG
.getTarget().Options
.UnsafeFPMath
;
12307 const SDNodeFlags Flags
= N
->getFlags();
12308 if (!UnsafeMath
&& !Flags
.hasAllowReciprocal())
12311 // Skip if current node is a reciprocal/fneg-reciprocal.
12312 SDValue N0
= N
->getOperand(0);
12313 ConstantFPSDNode
*N0CFP
= isConstOrConstSplatFP(N0
, /* AllowUndefs */ true);
12314 if (N0CFP
&& (N0CFP
->isExactlyValue(1.0) || N0CFP
->isExactlyValue(-1.0)))
12317 // Exit early if the target does not want this transform or if there can't
12318 // possibly be enough uses of the divisor to make the transform worthwhile.
12319 SDValue N1
= N
->getOperand(1);
12320 unsigned MinUses
= TLI
.combineRepeatedFPDivisors();
12322 // For splat vectors, scale the number of uses by the splat factor. If we can
12323 // convert the division into a scalar op, that will likely be much faster.
12324 unsigned NumElts
= 1;
12325 EVT VT
= N
->getValueType(0);
12326 if (VT
.isVector() && DAG
.isSplatValue(N1
))
12327 NumElts
= VT
.getVectorNumElements();
12329 if (!MinUses
|| (N1
->use_size() * NumElts
) < MinUses
)
12332 // Find all FDIV users of the same divisor.
12333 // Use a set because duplicates may be present in the user list.
12334 SetVector
<SDNode
*> Users
;
12335 for (auto *U
: N1
->uses()) {
12336 if (U
->getOpcode() == ISD::FDIV
&& U
->getOperand(1) == N1
) {
12337 // This division is eligible for optimization only if global unsafe math
12338 // is enabled or if this division allows reciprocal formation.
12339 if (UnsafeMath
|| U
->getFlags().hasAllowReciprocal())
12344 // Now that we have the actual number of divisor uses, make sure it meets
12345 // the minimum threshold specified by the target.
12346 if ((Users
.size() * NumElts
) < MinUses
)
12350 SDValue FPOne
= DAG
.getConstantFP(1.0, DL
, VT
);
12351 SDValue Reciprocal
= DAG
.getNode(ISD::FDIV
, DL
, VT
, FPOne
, N1
, Flags
);
12353 // Dividend / Divisor -> Dividend * Reciprocal
12354 for (auto *U
: Users
) {
12355 SDValue Dividend
= U
->getOperand(0);
12356 if (Dividend
!= FPOne
) {
12357 SDValue NewNode
= DAG
.getNode(ISD::FMUL
, SDLoc(U
), VT
, Dividend
,
12358 Reciprocal
, Flags
);
12359 CombineTo(U
, NewNode
);
12360 } else if (U
!= Reciprocal
.getNode()) {
12361 // In the absence of fast-math-flags, this user node is always the
12362 // same node as Reciprocal, but with FMF they may be different nodes.
12363 CombineTo(U
, Reciprocal
);
12366 return SDValue(N
, 0); // N was replaced.
12369 SDValue
DAGCombiner::visitFDIV(SDNode
*N
) {
12370 SDValue N0
= N
->getOperand(0);
12371 SDValue N1
= N
->getOperand(1);
12372 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
12373 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
12374 EVT VT
= N
->getValueType(0);
12376 const TargetOptions
&Options
= DAG
.getTarget().Options
;
12377 SDNodeFlags Flags
= N
->getFlags();
12381 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
12384 // fold (fdiv c1, c2) -> c1/c2
12385 if (N0CFP
&& N1CFP
)
12386 return DAG
.getNode(ISD::FDIV
, SDLoc(N
), VT
, N0
, N1
, Flags
);
12388 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
12391 if (SDValue V
= combineRepeatedFPDivisors(N
))
12394 if (Options
.UnsafeFPMath
|| Flags
.hasAllowReciprocal()) {
12395 // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
12397 // Compute the reciprocal 1.0 / c2.
12398 const APFloat
&N1APF
= N1CFP
->getValueAPF();
12399 APFloat
Recip(N1APF
.getSemantics(), 1); // 1.0
12400 APFloat::opStatus st
= Recip
.divide(N1APF
, APFloat::rmNearestTiesToEven
);
12401 // Only do the transform if the reciprocal is a legal fp immediate that
12402 // isn't too nasty (eg NaN, denormal, ...).
12403 if ((st
== APFloat::opOK
|| st
== APFloat::opInexact
) && // Not too nasty
12404 (!LegalOperations
||
12405 // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
12406 // backend)... we should handle this gracefully after Legalize.
12407 // TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT) ||
12408 TLI
.isOperationLegal(ISD::ConstantFP
, VT
) ||
12409 TLI
.isFPImmLegal(Recip
, VT
, ForCodeSize
)))
12410 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
,
12411 DAG
.getConstantFP(Recip
, DL
, VT
), Flags
);
12414 // If this FDIV is part of a reciprocal square root, it may be folded
12415 // into a target-specific square root estimate instruction.
12416 if (N1
.getOpcode() == ISD::FSQRT
) {
12417 if (SDValue RV
= buildRsqrtEstimate(N1
.getOperand(0), Flags
))
12418 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, RV
, Flags
);
12419 } else if (N1
.getOpcode() == ISD::FP_EXTEND
&&
12420 N1
.getOperand(0).getOpcode() == ISD::FSQRT
) {
12421 if (SDValue RV
= buildRsqrtEstimate(N1
.getOperand(0).getOperand(0),
12423 RV
= DAG
.getNode(ISD::FP_EXTEND
, SDLoc(N1
), VT
, RV
);
12424 AddToWorklist(RV
.getNode());
12425 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, RV
, Flags
);
12427 } else if (N1
.getOpcode() == ISD::FP_ROUND
&&
12428 N1
.getOperand(0).getOpcode() == ISD::FSQRT
) {
12429 if (SDValue RV
= buildRsqrtEstimate(N1
.getOperand(0).getOperand(0),
12431 RV
= DAG
.getNode(ISD::FP_ROUND
, SDLoc(N1
), VT
, RV
, N1
.getOperand(1));
12432 AddToWorklist(RV
.getNode());
12433 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, RV
, Flags
);
12435 } else if (N1
.getOpcode() == ISD::FMUL
) {
12436 // Look through an FMUL. Even though this won't remove the FDIV directly,
12437 // it's still worthwhile to get rid of the FSQRT if possible.
12440 if (N1
.getOperand(0).getOpcode() == ISD::FSQRT
) {
12441 SqrtOp
= N1
.getOperand(0);
12442 OtherOp
= N1
.getOperand(1);
12443 } else if (N1
.getOperand(1).getOpcode() == ISD::FSQRT
) {
12444 SqrtOp
= N1
.getOperand(1);
12445 OtherOp
= N1
.getOperand(0);
12447 if (SqrtOp
.getNode()) {
12448 // We found a FSQRT, so try to make this fold:
12449 // x / (y * sqrt(z)) -> x * (rsqrt(z) / y)
12450 if (SDValue RV
= buildRsqrtEstimate(SqrtOp
.getOperand(0), Flags
)) {
12451 RV
= DAG
.getNode(ISD::FDIV
, SDLoc(N1
), VT
, RV
, OtherOp
, Flags
);
12452 AddToWorklist(RV
.getNode());
12453 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, RV
, Flags
);
12458 // Fold into a reciprocal estimate and multiply instead of a real divide.
12459 if (SDValue RV
= BuildDivEstimate(N0
, N1
, Flags
))
12463 // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
12464 if (isCheaperToUseNegatedFPOps(N0
, N1
))
12465 return DAG
.getNode(
12466 ISD::FDIV
, SDLoc(N
), VT
,
12467 TLI
.getNegatedExpression(N0
, DAG
, LegalOperations
, ForCodeSize
),
12468 TLI
.getNegatedExpression(N1
, DAG
, LegalOperations
, ForCodeSize
), Flags
);
12473 SDValue
DAGCombiner::visitFREM(SDNode
*N
) {
12474 SDValue N0
= N
->getOperand(0);
12475 SDValue N1
= N
->getOperand(1);
12476 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
12477 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
12478 EVT VT
= N
->getValueType(0);
12480 // fold (frem c1, c2) -> fmod(c1,c2)
12481 if (N0CFP
&& N1CFP
)
12482 return DAG
.getNode(ISD::FREM
, SDLoc(N
), VT
, N0
, N1
, N
->getFlags());
12484 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
12490 SDValue
DAGCombiner::visitFSQRT(SDNode
*N
) {
12491 SDNodeFlags Flags
= N
->getFlags();
12492 if (!DAG
.getTarget().Options
.UnsafeFPMath
&&
12493 !Flags
.hasApproximateFuncs())
12496 SDValue N0
= N
->getOperand(0);
12497 if (TLI
.isFsqrtCheap(N0
, DAG
))
12500 // FSQRT nodes have flags that propagate to the created nodes.
12501 return buildSqrtEstimate(N0
, Flags
);
12504 /// copysign(x, fp_extend(y)) -> copysign(x, y)
12505 /// copysign(x, fp_round(y)) -> copysign(x, y)
12506 static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode
*N
) {
12507 SDValue N1
= N
->getOperand(1);
12508 if ((N1
.getOpcode() == ISD::FP_EXTEND
||
12509 N1
.getOpcode() == ISD::FP_ROUND
)) {
12510 // Do not optimize out type conversion of f128 type yet.
12511 // For some targets like x86_64, configuration is changed to keep one f128
12512 // value in one SSE register, but instruction selection cannot handle
12513 // FCOPYSIGN on SSE registers yet.
12514 EVT N1VT
= N1
->getValueType(0);
12515 EVT N1Op0VT
= N1
->getOperand(0).getValueType();
12516 return (N1VT
== N1Op0VT
|| N1Op0VT
!= MVT::f128
);
12521 SDValue
DAGCombiner::visitFCOPYSIGN(SDNode
*N
) {
12522 SDValue N0
= N
->getOperand(0);
12523 SDValue N1
= N
->getOperand(1);
12524 bool N0CFP
= isConstantFPBuildVectorOrConstantFP(N0
);
12525 bool N1CFP
= isConstantFPBuildVectorOrConstantFP(N1
);
12526 EVT VT
= N
->getValueType(0);
12528 if (N0CFP
&& N1CFP
) // Constant fold
12529 return DAG
.getNode(ISD::FCOPYSIGN
, SDLoc(N
), VT
, N0
, N1
);
12531 if (ConstantFPSDNode
*N1C
= isConstOrConstSplatFP(N
->getOperand(1))) {
12532 const APFloat
&V
= N1C
->getValueAPF();
12533 // copysign(x, c1) -> fabs(x) iff ispos(c1)
12534 // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
12535 if (!V
.isNegative()) {
12536 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FABS
, VT
))
12537 return DAG
.getNode(ISD::FABS
, SDLoc(N
), VT
, N0
);
12539 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FNEG
, VT
))
12540 return DAG
.getNode(ISD::FNEG
, SDLoc(N
), VT
,
12541 DAG
.getNode(ISD::FABS
, SDLoc(N0
), VT
, N0
));
12545 // copysign(fabs(x), y) -> copysign(x, y)
12546 // copysign(fneg(x), y) -> copysign(x, y)
12547 // copysign(copysign(x,z), y) -> copysign(x, y)
12548 if (N0
.getOpcode() == ISD::FABS
|| N0
.getOpcode() == ISD::FNEG
||
12549 N0
.getOpcode() == ISD::FCOPYSIGN
)
12550 return DAG
.getNode(ISD::FCOPYSIGN
, SDLoc(N
), VT
, N0
.getOperand(0), N1
);
12552 // copysign(x, abs(y)) -> abs(x)
12553 if (N1
.getOpcode() == ISD::FABS
)
12554 return DAG
.getNode(ISD::FABS
, SDLoc(N
), VT
, N0
);
12556 // copysign(x, copysign(y,z)) -> copysign(x, z)
12557 if (N1
.getOpcode() == ISD::FCOPYSIGN
)
12558 return DAG
.getNode(ISD::FCOPYSIGN
, SDLoc(N
), VT
, N0
, N1
.getOperand(1));
12560 // copysign(x, fp_extend(y)) -> copysign(x, y)
12561 // copysign(x, fp_round(y)) -> copysign(x, y)
12562 if (CanCombineFCOPYSIGN_EXTEND_ROUND(N
))
12563 return DAG
.getNode(ISD::FCOPYSIGN
, SDLoc(N
), VT
, N0
, N1
.getOperand(0));
12568 SDValue
DAGCombiner::visitFPOW(SDNode
*N
) {
12569 ConstantFPSDNode
*ExponentC
= isConstOrConstSplatFP(N
->getOperand(1));
12573 // Try to convert x ** (1/3) into cube root.
12574 // TODO: Handle the various flavors of long double.
12575 // TODO: Since we're approximating, we don't need an exact 1/3 exponent.
12576 // Some range near 1/3 should be fine.
12577 EVT VT
= N
->getValueType(0);
12578 if ((VT
== MVT::f32
&& ExponentC
->getValueAPF().isExactlyValue(1.0f
/3.0f
)) ||
12579 (VT
== MVT::f64
&& ExponentC
->getValueAPF().isExactlyValue(1.0/3.0))) {
12580 // pow(-0.0, 1/3) = +0.0; cbrt(-0.0) = -0.0.
12581 // pow(-inf, 1/3) = +inf; cbrt(-inf) = -inf.
12582 // pow(-val, 1/3) = nan; cbrt(-val) = -num.
12583 // For regular numbers, rounding may cause the results to differ.
12584 // Therefore, we require { nsz ninf nnan afn } for this transform.
12585 // TODO: We could select out the special cases if we don't have nsz/ninf.
12586 SDNodeFlags Flags
= N
->getFlags();
12587 if (!Flags
.hasNoSignedZeros() || !Flags
.hasNoInfs() || !Flags
.hasNoNaNs() ||
12588 !Flags
.hasApproximateFuncs())
12591 // Do not create a cbrt() libcall if the target does not have it, and do not
12592 // turn a pow that has lowering support into a cbrt() libcall.
12593 if (!DAG
.getLibInfo().has(LibFunc_cbrt
) ||
12594 (!DAG
.getTargetLoweringInfo().isOperationExpand(ISD::FPOW
, VT
) &&
12595 DAG
.getTargetLoweringInfo().isOperationExpand(ISD::FCBRT
, VT
)))
12598 return DAG
.getNode(ISD::FCBRT
, SDLoc(N
), VT
, N
->getOperand(0), Flags
);
12601 // Try to convert x ** (1/4) and x ** (3/4) into square roots.
12602 // x ** (1/2) is canonicalized to sqrt, so we do not bother with that case.
12603 // TODO: This could be extended (using a target hook) to handle smaller
12604 // power-of-2 fractional exponents.
12605 bool ExponentIs025
= ExponentC
->getValueAPF().isExactlyValue(0.25);
12606 bool ExponentIs075
= ExponentC
->getValueAPF().isExactlyValue(0.75);
12607 if (ExponentIs025
|| ExponentIs075
) {
12608 // pow(-0.0, 0.25) = +0.0; sqrt(sqrt(-0.0)) = -0.0.
12609 // pow(-inf, 0.25) = +inf; sqrt(sqrt(-inf)) = NaN.
12610 // pow(-0.0, 0.75) = +0.0; sqrt(-0.0) * sqrt(sqrt(-0.0)) = +0.0.
12611 // pow(-inf, 0.75) = +inf; sqrt(-inf) * sqrt(sqrt(-inf)) = NaN.
12612 // For regular numbers, rounding may cause the results to differ.
12613 // Therefore, we require { nsz ninf afn } for this transform.
12614 // TODO: We could select out the special cases if we don't have nsz/ninf.
12615 SDNodeFlags Flags
= N
->getFlags();
12617 // We only need no signed zeros for the 0.25 case.
12618 if ((!Flags
.hasNoSignedZeros() && ExponentIs025
) || !Flags
.hasNoInfs() ||
12619 !Flags
.hasApproximateFuncs())
12622 // Don't double the number of libcalls. We are trying to inline fast code.
12623 if (!DAG
.getTargetLoweringInfo().isOperationLegalOrCustom(ISD::FSQRT
, VT
))
12626 // Assume that libcalls are the smallest code.
12627 // TODO: This restriction should probably be lifted for vectors.
12628 if (DAG
.getMachineFunction().getFunction().hasOptSize())
12631 // pow(X, 0.25) --> sqrt(sqrt(X))
12633 SDValue Sqrt
= DAG
.getNode(ISD::FSQRT
, DL
, VT
, N
->getOperand(0), Flags
);
12634 SDValue SqrtSqrt
= DAG
.getNode(ISD::FSQRT
, DL
, VT
, Sqrt
, Flags
);
12637 // pow(X, 0.75) --> sqrt(X) * sqrt(sqrt(X))
12638 return DAG
.getNode(ISD::FMUL
, DL
, VT
, Sqrt
, SqrtSqrt
, Flags
);
12644 static SDValue
foldFPToIntToFP(SDNode
*N
, SelectionDAG
&DAG
,
12645 const TargetLowering
&TLI
) {
12646 // This optimization is guarded by a function attribute because it may produce
12647 // unexpected results. Ie, programs may be relying on the platform-specific
12648 // undefined behavior when the float-to-int conversion overflows.
12649 const Function
&F
= DAG
.getMachineFunction().getFunction();
12650 Attribute StrictOverflow
= F
.getFnAttribute("strict-float-cast-overflow");
12651 if (StrictOverflow
.getValueAsString().equals("false"))
12654 // We only do this if the target has legal ftrunc. Otherwise, we'd likely be
12655 // replacing casts with a libcall. We also must be allowed to ignore -0.0
12656 // because FTRUNC will return -0.0 for (-1.0, -0.0), but using integer
12657 // conversions would return +0.0.
12658 // FIXME: We should be able to use node-level FMF here.
12659 // TODO: If strict math, should we use FABS (+ range check for signed cast)?
12660 EVT VT
= N
->getValueType(0);
12661 if (!TLI
.isOperationLegal(ISD::FTRUNC
, VT
) ||
12662 !DAG
.getTarget().Options
.NoSignedZerosFPMath
)
12665 // fptosi/fptoui round towards zero, so converting from FP to integer and
12666 // back is the same as an 'ftrunc': [us]itofp (fpto[us]i X) --> ftrunc X
12667 SDValue N0
= N
->getOperand(0);
12668 if (N
->getOpcode() == ISD::SINT_TO_FP
&& N0
.getOpcode() == ISD::FP_TO_SINT
&&
12669 N0
.getOperand(0).getValueType() == VT
)
12670 return DAG
.getNode(ISD::FTRUNC
, SDLoc(N
), VT
, N0
.getOperand(0));
12672 if (N
->getOpcode() == ISD::UINT_TO_FP
&& N0
.getOpcode() == ISD::FP_TO_UINT
&&
12673 N0
.getOperand(0).getValueType() == VT
)
12674 return DAG
.getNode(ISD::FTRUNC
, SDLoc(N
), VT
, N0
.getOperand(0));
12679 SDValue
DAGCombiner::visitSINT_TO_FP(SDNode
*N
) {
12680 SDValue N0
= N
->getOperand(0);
12681 EVT VT
= N
->getValueType(0);
12682 EVT OpVT
= N0
.getValueType();
12684 // [us]itofp(undef) = 0, because the result value is bounded.
12686 return DAG
.getConstantFP(0.0, SDLoc(N
), VT
);
12688 // fold (sint_to_fp c1) -> c1fp
12689 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
12690 // ...but only if the target supports immediate floating-point values
12691 (!LegalOperations
||
12692 TLI
.isOperationLegalOrCustom(ISD::ConstantFP
, VT
)))
12693 return DAG
.getNode(ISD::SINT_TO_FP
, SDLoc(N
), VT
, N0
);
12695 // If the input is a legal type, and SINT_TO_FP is not legal on this target,
12696 // but UINT_TO_FP is legal on this target, try to convert.
12697 if (!hasOperation(ISD::SINT_TO_FP
, OpVT
) &&
12698 hasOperation(ISD::UINT_TO_FP
, OpVT
)) {
12699 // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
12700 if (DAG
.SignBitIsZero(N0
))
12701 return DAG
.getNode(ISD::UINT_TO_FP
, SDLoc(N
), VT
, N0
);
12704 // The next optimizations are desirable only if SELECT_CC can be lowered.
12705 if (TLI
.isOperationLegalOrCustom(ISD::SELECT_CC
, VT
) || !LegalOperations
) {
12706 // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
12707 if (N0
.getOpcode() == ISD::SETCC
&& N0
.getValueType() == MVT::i1
&&
12709 (!LegalOperations
||
12710 TLI
.isOperationLegalOrCustom(ISD::ConstantFP
, VT
))) {
12713 { N0
.getOperand(0), N0
.getOperand(1),
12714 DAG
.getConstantFP(-1.0, DL
, VT
), DAG
.getConstantFP(0.0, DL
, VT
),
12715 N0
.getOperand(2) };
12716 return DAG
.getNode(ISD::SELECT_CC
, DL
, VT
, Ops
);
12719 // fold (sint_to_fp (zext (setcc x, y, cc))) ->
12720 // (select_cc x, y, 1.0, 0.0,, cc)
12721 if (N0
.getOpcode() == ISD::ZERO_EXTEND
&&
12722 N0
.getOperand(0).getOpcode() == ISD::SETCC
&&!VT
.isVector() &&
12723 (!LegalOperations
||
12724 TLI
.isOperationLegalOrCustom(ISD::ConstantFP
, VT
))) {
12727 { N0
.getOperand(0).getOperand(0), N0
.getOperand(0).getOperand(1),
12728 DAG
.getConstantFP(1.0, DL
, VT
), DAG
.getConstantFP(0.0, DL
, VT
),
12729 N0
.getOperand(0).getOperand(2) };
12730 return DAG
.getNode(ISD::SELECT_CC
, DL
, VT
, Ops
);
12734 if (SDValue FTrunc
= foldFPToIntToFP(N
, DAG
, TLI
))
12740 SDValue
DAGCombiner::visitUINT_TO_FP(SDNode
*N
) {
12741 SDValue N0
= N
->getOperand(0);
12742 EVT VT
= N
->getValueType(0);
12743 EVT OpVT
= N0
.getValueType();
12745 // [us]itofp(undef) = 0, because the result value is bounded.
12747 return DAG
.getConstantFP(0.0, SDLoc(N
), VT
);
12749 // fold (uint_to_fp c1) -> c1fp
12750 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
12751 // ...but only if the target supports immediate floating-point values
12752 (!LegalOperations
||
12753 TLI
.isOperationLegalOrCustom(ISD::ConstantFP
, VT
)))
12754 return DAG
.getNode(ISD::UINT_TO_FP
, SDLoc(N
), VT
, N0
);
12756 // If the input is a legal type, and UINT_TO_FP is not legal on this target,
12757 // but SINT_TO_FP is legal on this target, try to convert.
12758 if (!hasOperation(ISD::UINT_TO_FP
, OpVT
) &&
12759 hasOperation(ISD::SINT_TO_FP
, OpVT
)) {
12760 // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
12761 if (DAG
.SignBitIsZero(N0
))
12762 return DAG
.getNode(ISD::SINT_TO_FP
, SDLoc(N
), VT
, N0
);
12765 // The next optimizations are desirable only if SELECT_CC can be lowered.
12766 if (TLI
.isOperationLegalOrCustom(ISD::SELECT_CC
, VT
) || !LegalOperations
) {
12767 // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
12768 if (N0
.getOpcode() == ISD::SETCC
&& !VT
.isVector() &&
12769 (!LegalOperations
||
12770 TLI
.isOperationLegalOrCustom(ISD::ConstantFP
, VT
))) {
12773 { N0
.getOperand(0), N0
.getOperand(1),
12774 DAG
.getConstantFP(1.0, DL
, VT
), DAG
.getConstantFP(0.0, DL
, VT
),
12775 N0
.getOperand(2) };
12776 return DAG
.getNode(ISD::SELECT_CC
, DL
, VT
, Ops
);
12780 if (SDValue FTrunc
= foldFPToIntToFP(N
, DAG
, TLI
))
12786 // Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x
12787 static SDValue
FoldIntToFPToInt(SDNode
*N
, SelectionDAG
&DAG
) {
12788 SDValue N0
= N
->getOperand(0);
12789 EVT VT
= N
->getValueType(0);
12791 if (N0
.getOpcode() != ISD::UINT_TO_FP
&& N0
.getOpcode() != ISD::SINT_TO_FP
)
12794 SDValue Src
= N0
.getOperand(0);
12795 EVT SrcVT
= Src
.getValueType();
12796 bool IsInputSigned
= N0
.getOpcode() == ISD::SINT_TO_FP
;
12797 bool IsOutputSigned
= N
->getOpcode() == ISD::FP_TO_SINT
;
12799 // We can safely assume the conversion won't overflow the output range,
12800 // because (for example) (uint8_t)18293.f is undefined behavior.
12802 // Since we can assume the conversion won't overflow, our decision as to
12803 // whether the input will fit in the float should depend on the minimum
12804 // of the input range and output range.
12806 // This means this is also safe for a signed input and unsigned output, since
12807 // a negative input would lead to undefined behavior.
12808 unsigned InputSize
= (int)SrcVT
.getScalarSizeInBits() - IsInputSigned
;
12809 unsigned OutputSize
= (int)VT
.getScalarSizeInBits() - IsOutputSigned
;
12810 unsigned ActualSize
= std::min(InputSize
, OutputSize
);
12811 const fltSemantics
&sem
= DAG
.EVTToAPFloatSemantics(N0
.getValueType());
12813 // We can only fold away the float conversion if the input range can be
12814 // represented exactly in the float range.
12815 if (APFloat::semanticsPrecision(sem
) >= ActualSize
) {
12816 if (VT
.getScalarSizeInBits() > SrcVT
.getScalarSizeInBits()) {
12817 unsigned ExtOp
= IsInputSigned
&& IsOutputSigned
? ISD::SIGN_EXTEND
12818 : ISD::ZERO_EXTEND
;
12819 return DAG
.getNode(ExtOp
, SDLoc(N
), VT
, Src
);
12821 if (VT
.getScalarSizeInBits() < SrcVT
.getScalarSizeInBits())
12822 return DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), VT
, Src
);
12823 return DAG
.getBitcast(VT
, Src
);
12828 SDValue
DAGCombiner::visitFP_TO_SINT(SDNode
*N
) {
12829 SDValue N0
= N
->getOperand(0);
12830 EVT VT
= N
->getValueType(0);
12832 // fold (fp_to_sint undef) -> undef
12834 return DAG
.getUNDEF(VT
);
12836 // fold (fp_to_sint c1fp) -> c1
12837 if (isConstantFPBuildVectorOrConstantFP(N0
))
12838 return DAG
.getNode(ISD::FP_TO_SINT
, SDLoc(N
), VT
, N0
);
12840 return FoldIntToFPToInt(N
, DAG
);
12843 SDValue
DAGCombiner::visitFP_TO_UINT(SDNode
*N
) {
12844 SDValue N0
= N
->getOperand(0);
12845 EVT VT
= N
->getValueType(0);
12847 // fold (fp_to_uint undef) -> undef
12849 return DAG
.getUNDEF(VT
);
12851 // fold (fp_to_uint c1fp) -> c1
12852 if (isConstantFPBuildVectorOrConstantFP(N0
))
12853 return DAG
.getNode(ISD::FP_TO_UINT
, SDLoc(N
), VT
, N0
);
12855 return FoldIntToFPToInt(N
, DAG
);
12858 SDValue
DAGCombiner::visitFP_ROUND(SDNode
*N
) {
12859 SDValue N0
= N
->getOperand(0);
12860 SDValue N1
= N
->getOperand(1);
12861 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
12862 EVT VT
= N
->getValueType(0);
12864 // fold (fp_round c1fp) -> c1fp
12866 return DAG
.getNode(ISD::FP_ROUND
, SDLoc(N
), VT
, N0
, N1
);
12868 // fold (fp_round (fp_extend x)) -> x
12869 if (N0
.getOpcode() == ISD::FP_EXTEND
&& VT
== N0
.getOperand(0).getValueType())
12870 return N0
.getOperand(0);
12872 // fold (fp_round (fp_round x)) -> (fp_round x)
12873 if (N0
.getOpcode() == ISD::FP_ROUND
) {
12874 const bool NIsTrunc
= N
->getConstantOperandVal(1) == 1;
12875 const bool N0IsTrunc
= N0
.getConstantOperandVal(1) == 1;
12877 // Skip this folding if it results in an fp_round from f80 to f16.
12879 // f80 to f16 always generates an expensive (and as yet, unimplemented)
12880 // libcall to __truncxfhf2 instead of selecting native f16 conversion
12881 // instructions from f32 or f64. Moreover, the first (value-preserving)
12882 // fp_round from f80 to either f32 or f64 may become a NOP in platforms like
12884 if (N0
.getOperand(0).getValueType() == MVT::f80
&& VT
== MVT::f16
)
12887 // If the first fp_round isn't a value preserving truncation, it might
12888 // introduce a tie in the second fp_round, that wouldn't occur in the
12889 // single-step fp_round we want to fold to.
12890 // In other words, double rounding isn't the same as rounding.
12891 // Also, this is a value preserving truncation iff both fp_round's are.
12892 if (DAG
.getTarget().Options
.UnsafeFPMath
|| N0IsTrunc
) {
12894 return DAG
.getNode(ISD::FP_ROUND
, DL
, VT
, N0
.getOperand(0),
12895 DAG
.getIntPtrConstant(NIsTrunc
&& N0IsTrunc
, DL
));
12899 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
12900 if (N0
.getOpcode() == ISD::FCOPYSIGN
&& N0
.getNode()->hasOneUse()) {
12901 SDValue Tmp
= DAG
.getNode(ISD::FP_ROUND
, SDLoc(N0
), VT
,
12902 N0
.getOperand(0), N1
);
12903 AddToWorklist(Tmp
.getNode());
12904 return DAG
.getNode(ISD::FCOPYSIGN
, SDLoc(N
), VT
,
12905 Tmp
, N0
.getOperand(1));
12908 if (SDValue NewVSel
= matchVSelectOpSizesWithSetCC(N
))
12914 SDValue
DAGCombiner::visitFP_EXTEND(SDNode
*N
) {
12915 SDValue N0
= N
->getOperand(0);
12916 EVT VT
= N
->getValueType(0);
12918 // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
12919 if (N
->hasOneUse() &&
12920 N
->use_begin()->getOpcode() == ISD::FP_ROUND
)
12923 // fold (fp_extend c1fp) -> c1fp
12924 if (isConstantFPBuildVectorOrConstantFP(N0
))
12925 return DAG
.getNode(ISD::FP_EXTEND
, SDLoc(N
), VT
, N0
);
12927 // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op)
12928 if (N0
.getOpcode() == ISD::FP16_TO_FP
&&
12929 TLI
.getOperationAction(ISD::FP16_TO_FP
, VT
) == TargetLowering::Legal
)
12930 return DAG
.getNode(ISD::FP16_TO_FP
, SDLoc(N
), VT
, N0
.getOperand(0));
12932 // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
12934 if (N0
.getOpcode() == ISD::FP_ROUND
12935 && N0
.getConstantOperandVal(1) == 1) {
12936 SDValue In
= N0
.getOperand(0);
12937 if (In
.getValueType() == VT
) return In
;
12938 if (VT
.bitsLT(In
.getValueType()))
12939 return DAG
.getNode(ISD::FP_ROUND
, SDLoc(N
), VT
,
12940 In
, N0
.getOperand(1));
12941 return DAG
.getNode(ISD::FP_EXTEND
, SDLoc(N
), VT
, In
);
12944 // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
12945 if (ISD::isNormalLoad(N0
.getNode()) && N0
.hasOneUse() &&
12946 TLI
.isLoadExtLegal(ISD::EXTLOAD
, VT
, N0
.getValueType())) {
12947 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
12948 SDValue ExtLoad
= DAG
.getExtLoad(ISD::EXTLOAD
, SDLoc(N
), VT
,
12950 LN0
->getBasePtr(), N0
.getValueType(),
12951 LN0
->getMemOperand());
12952 CombineTo(N
, ExtLoad
);
12953 CombineTo(N0
.getNode(),
12954 DAG
.getNode(ISD::FP_ROUND
, SDLoc(N0
),
12955 N0
.getValueType(), ExtLoad
,
12956 DAG
.getIntPtrConstant(1, SDLoc(N0
))),
12957 ExtLoad
.getValue(1));
12958 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
12961 if (SDValue NewVSel
= matchVSelectOpSizesWithSetCC(N
))
12967 SDValue
DAGCombiner::visitFCEIL(SDNode
*N
) {
12968 SDValue N0
= N
->getOperand(0);
12969 EVT VT
= N
->getValueType(0);
12971 // fold (fceil c1) -> fceil(c1)
12972 if (isConstantFPBuildVectorOrConstantFP(N0
))
12973 return DAG
.getNode(ISD::FCEIL
, SDLoc(N
), VT
, N0
);
12978 SDValue
DAGCombiner::visitFTRUNC(SDNode
*N
) {
12979 SDValue N0
= N
->getOperand(0);
12980 EVT VT
= N
->getValueType(0);
12982 // fold (ftrunc c1) -> ftrunc(c1)
12983 if (isConstantFPBuildVectorOrConstantFP(N0
))
12984 return DAG
.getNode(ISD::FTRUNC
, SDLoc(N
), VT
, N0
);
12986 // fold ftrunc (known rounded int x) -> x
12987 // ftrunc is a part of fptosi/fptoui expansion on some targets, so this is
12988 // likely to be generated to extract integer from a rounded floating value.
12989 switch (N0
.getOpcode()) {
12993 case ISD::FNEARBYINT
:
13002 SDValue
DAGCombiner::visitFFLOOR(SDNode
*N
) {
13003 SDValue N0
= N
->getOperand(0);
13004 EVT VT
= N
->getValueType(0);
13006 // fold (ffloor c1) -> ffloor(c1)
13007 if (isConstantFPBuildVectorOrConstantFP(N0
))
13008 return DAG
.getNode(ISD::FFLOOR
, SDLoc(N
), VT
, N0
);
13013 // FIXME: FNEG and FABS have a lot in common; refactor.
13014 SDValue
DAGCombiner::visitFNEG(SDNode
*N
) {
13015 SDValue N0
= N
->getOperand(0);
13016 EVT VT
= N
->getValueType(0);
13018 // Constant fold FNEG.
13019 if (isConstantFPBuildVectorOrConstantFP(N0
))
13020 return DAG
.getNode(ISD::FNEG
, SDLoc(N
), VT
, N0
);
13022 if (TLI
.isNegatibleForFree(N0
, DAG
, LegalOperations
, ForCodeSize
))
13023 return TLI
.getNegatedExpression(N0
, DAG
, LegalOperations
, ForCodeSize
);
13025 // Transform fneg(bitconvert(x)) -> bitconvert(x ^ sign) to avoid loading
13026 // constant pool values.
13027 if (!TLI
.isFNegFree(VT
) &&
13028 N0
.getOpcode() == ISD::BITCAST
&&
13029 N0
.getNode()->hasOneUse()) {
13030 SDValue Int
= N0
.getOperand(0);
13031 EVT IntVT
= Int
.getValueType();
13032 if (IntVT
.isInteger() && !IntVT
.isVector()) {
13034 if (N0
.getValueType().isVector()) {
13035 // For a vector, get a mask such as 0x80... per scalar element
13037 SignMask
= APInt::getSignMask(N0
.getScalarValueSizeInBits());
13038 SignMask
= APInt::getSplat(IntVT
.getSizeInBits(), SignMask
);
13040 // For a scalar, just generate 0x80...
13041 SignMask
= APInt::getSignMask(IntVT
.getSizeInBits());
13044 Int
= DAG
.getNode(ISD::XOR
, DL0
, IntVT
, Int
,
13045 DAG
.getConstant(SignMask
, DL0
, IntVT
));
13046 AddToWorklist(Int
.getNode());
13047 return DAG
.getBitcast(VT
, Int
);
13051 // (fneg (fmul c, x)) -> (fmul -c, x)
13052 if (N0
.getOpcode() == ISD::FMUL
&&
13053 (N0
.getNode()->hasOneUse() || !TLI
.isFNegFree(VT
))) {
13054 ConstantFPSDNode
*CFP1
= dyn_cast
<ConstantFPSDNode
>(N0
.getOperand(1));
13056 APFloat CVal
= CFP1
->getValueAPF();
13058 if (Level
>= AfterLegalizeDAG
&&
13059 (TLI
.isFPImmLegal(CVal
, VT
, ForCodeSize
) ||
13060 TLI
.isOperationLegal(ISD::ConstantFP
, VT
)))
13061 return DAG
.getNode(
13062 ISD::FMUL
, SDLoc(N
), VT
, N0
.getOperand(0),
13063 DAG
.getNode(ISD::FNEG
, SDLoc(N
), VT
, N0
.getOperand(1)),
13071 static SDValue
visitFMinMax(SelectionDAG
&DAG
, SDNode
*N
,
13072 APFloat (*Op
)(const APFloat
&, const APFloat
&)) {
13073 SDValue N0
= N
->getOperand(0);
13074 SDValue N1
= N
->getOperand(1);
13075 EVT VT
= N
->getValueType(0);
13076 const ConstantFPSDNode
*N0CFP
= isConstOrConstSplatFP(N0
);
13077 const ConstantFPSDNode
*N1CFP
= isConstOrConstSplatFP(N1
);
13079 if (N0CFP
&& N1CFP
) {
13080 const APFloat
&C0
= N0CFP
->getValueAPF();
13081 const APFloat
&C1
= N1CFP
->getValueAPF();
13082 return DAG
.getConstantFP(Op(C0
, C1
), SDLoc(N
), VT
);
13085 // Canonicalize to constant on RHS.
13086 if (isConstantFPBuildVectorOrConstantFP(N0
) &&
13087 !isConstantFPBuildVectorOrConstantFP(N1
))
13088 return DAG
.getNode(N
->getOpcode(), SDLoc(N
), VT
, N1
, N0
);
13093 SDValue
DAGCombiner::visitFMINNUM(SDNode
*N
) {
13094 return visitFMinMax(DAG
, N
, minnum
);
13097 SDValue
DAGCombiner::visitFMAXNUM(SDNode
*N
) {
13098 return visitFMinMax(DAG
, N
, maxnum
);
13101 SDValue
DAGCombiner::visitFMINIMUM(SDNode
*N
) {
13102 return visitFMinMax(DAG
, N
, minimum
);
13105 SDValue
DAGCombiner::visitFMAXIMUM(SDNode
*N
) {
13106 return visitFMinMax(DAG
, N
, maximum
);
13109 SDValue
DAGCombiner::visitFABS(SDNode
*N
) {
13110 SDValue N0
= N
->getOperand(0);
13111 EVT VT
= N
->getValueType(0);
13113 // fold (fabs c1) -> fabs(c1)
13114 if (isConstantFPBuildVectorOrConstantFP(N0
))
13115 return DAG
.getNode(ISD::FABS
, SDLoc(N
), VT
, N0
);
13117 // fold (fabs (fabs x)) -> (fabs x)
13118 if (N0
.getOpcode() == ISD::FABS
)
13119 return N
->getOperand(0);
13121 // fold (fabs (fneg x)) -> (fabs x)
13122 // fold (fabs (fcopysign x, y)) -> (fabs x)
13123 if (N0
.getOpcode() == ISD::FNEG
|| N0
.getOpcode() == ISD::FCOPYSIGN
)
13124 return DAG
.getNode(ISD::FABS
, SDLoc(N
), VT
, N0
.getOperand(0));
13126 // fabs(bitcast(x)) -> bitcast(x & ~sign) to avoid constant pool loads.
13127 if (!TLI
.isFAbsFree(VT
) && N0
.getOpcode() == ISD::BITCAST
&& N0
.hasOneUse()) {
13128 SDValue Int
= N0
.getOperand(0);
13129 EVT IntVT
= Int
.getValueType();
13130 if (IntVT
.isInteger() && !IntVT
.isVector()) {
13132 if (N0
.getValueType().isVector()) {
13133 // For a vector, get a mask such as 0x7f... per scalar element
13135 SignMask
= ~APInt::getSignMask(N0
.getScalarValueSizeInBits());
13136 SignMask
= APInt::getSplat(IntVT
.getSizeInBits(), SignMask
);
13138 // For a scalar, just generate 0x7f...
13139 SignMask
= ~APInt::getSignMask(IntVT
.getSizeInBits());
13142 Int
= DAG
.getNode(ISD::AND
, DL
, IntVT
, Int
,
13143 DAG
.getConstant(SignMask
, DL
, IntVT
));
13144 AddToWorklist(Int
.getNode());
13145 return DAG
.getBitcast(N
->getValueType(0), Int
);
13152 SDValue
DAGCombiner::visitBRCOND(SDNode
*N
) {
13153 SDValue Chain
= N
->getOperand(0);
13154 SDValue N1
= N
->getOperand(1);
13155 SDValue N2
= N
->getOperand(2);
13157 // If N is a constant we could fold this into a fallthrough or unconditional
13158 // branch. However that doesn't happen very often in normal code, because
13159 // Instcombine/SimplifyCFG should have handled the available opportunities.
13160 // If we did this folding here, it would be necessary to update the
13161 // MachineBasicBlock CFG, which is awkward.
13163 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
13165 if (N1
.getOpcode() == ISD::SETCC
&&
13166 TLI
.isOperationLegalOrCustom(ISD::BR_CC
,
13167 N1
.getOperand(0).getValueType())) {
13168 return DAG
.getNode(ISD::BR_CC
, SDLoc(N
), MVT::Other
,
13169 Chain
, N1
.getOperand(2),
13170 N1
.getOperand(0), N1
.getOperand(1), N2
);
13173 if (N1
.hasOneUse()) {
13174 if (SDValue NewN1
= rebuildSetCC(N1
))
13175 return DAG
.getNode(ISD::BRCOND
, SDLoc(N
), MVT::Other
, Chain
, NewN1
, N2
);
13181 SDValue
DAGCombiner::rebuildSetCC(SDValue N
) {
13182 if (N
.getOpcode() == ISD::SRL
||
13183 (N
.getOpcode() == ISD::TRUNCATE
&&
13184 (N
.getOperand(0).hasOneUse() &&
13185 N
.getOperand(0).getOpcode() == ISD::SRL
))) {
13186 // Look pass the truncate.
13187 if (N
.getOpcode() == ISD::TRUNCATE
)
13188 N
= N
.getOperand(0);
13190 // Match this pattern so that we can generate simpler code:
13193 // %b = and i32 %a, 2
13194 // %c = srl i32 %b, 1
13195 // brcond i32 %c ...
13200 // %b = and i32 %a, 2
13201 // %c = setcc eq %b, 0
13204 // This applies only when the AND constant value has one bit set and the
13205 // SRL constant is equal to the log2 of the AND constant. The back-end is
13206 // smart enough to convert the result into a TEST/JMP sequence.
13207 SDValue Op0
= N
.getOperand(0);
13208 SDValue Op1
= N
.getOperand(1);
13210 if (Op0
.getOpcode() == ISD::AND
&& Op1
.getOpcode() == ISD::Constant
) {
13211 SDValue AndOp1
= Op0
.getOperand(1);
13213 if (AndOp1
.getOpcode() == ISD::Constant
) {
13214 const APInt
&AndConst
= cast
<ConstantSDNode
>(AndOp1
)->getAPIntValue();
13216 if (AndConst
.isPowerOf2() &&
13217 cast
<ConstantSDNode
>(Op1
)->getAPIntValue() == AndConst
.logBase2()) {
13219 return DAG
.getSetCC(DL
, getSetCCResultType(Op0
.getValueType()),
13220 Op0
, DAG
.getConstant(0, DL
, Op0
.getValueType()),
13227 // Transform br(xor(x, y)) -> br(x != y)
13228 // Transform br(xor(xor(x,y), 1)) -> br (x == y)
13229 if (N
.getOpcode() == ISD::XOR
) {
13230 // Because we may call this on a speculatively constructed
13231 // SimplifiedSetCC Node, we need to simplify this node first.
13232 // Ideally this should be folded into SimplifySetCC and not
13233 // here. For now, grab a handle to N so we don't lose it from
13234 // replacements interal to the visit.
13235 HandleSDNode
XORHandle(N
);
13236 while (N
.getOpcode() == ISD::XOR
) {
13237 SDValue Tmp
= visitXOR(N
.getNode());
13238 // No simplification done.
13239 if (!Tmp
.getNode())
13241 // Returning N is form in-visit replacement that may invalidated
13242 // N. Grab value from Handle.
13243 if (Tmp
.getNode() == N
.getNode())
13244 N
= XORHandle
.getValue();
13245 else // Node simplified. Try simplifying again.
13249 if (N
.getOpcode() != ISD::XOR
)
13252 SDNode
*TheXor
= N
.getNode();
13254 SDValue Op0
= TheXor
->getOperand(0);
13255 SDValue Op1
= TheXor
->getOperand(1);
13257 if (Op0
.getOpcode() != ISD::SETCC
&& Op1
.getOpcode() != ISD::SETCC
) {
13258 bool Equal
= false;
13259 if (isOneConstant(Op0
) && Op0
.hasOneUse() &&
13260 Op0
.getOpcode() == ISD::XOR
) {
13261 TheXor
= Op0
.getNode();
13265 EVT SetCCVT
= N
.getValueType();
13267 SetCCVT
= getSetCCResultType(SetCCVT
);
13268 // Replace the uses of XOR with SETCC
13269 return DAG
.getSetCC(SDLoc(TheXor
), SetCCVT
, Op0
, Op1
,
13270 Equal
? ISD::SETEQ
: ISD::SETNE
);
13277 // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
13279 SDValue
DAGCombiner::visitBR_CC(SDNode
*N
) {
13280 CondCodeSDNode
*CC
= cast
<CondCodeSDNode
>(N
->getOperand(1));
13281 SDValue CondLHS
= N
->getOperand(2), CondRHS
= N
->getOperand(3);
13283 // If N is a constant we could fold this into a fallthrough or unconditional
13284 // branch. However that doesn't happen very often in normal code, because
13285 // Instcombine/SimplifyCFG should have handled the available opportunities.
13286 // If we did this folding here, it would be necessary to update the
13287 // MachineBasicBlock CFG, which is awkward.
13289 // Use SimplifySetCC to simplify SETCC's.
13290 SDValue Simp
= SimplifySetCC(getSetCCResultType(CondLHS
.getValueType()),
13291 CondLHS
, CondRHS
, CC
->get(), SDLoc(N
),
13293 if (Simp
.getNode()) AddToWorklist(Simp
.getNode());
13295 // fold to a simpler setcc
13296 if (Simp
.getNode() && Simp
.getOpcode() == ISD::SETCC
)
13297 return DAG
.getNode(ISD::BR_CC
, SDLoc(N
), MVT::Other
,
13298 N
->getOperand(0), Simp
.getOperand(2),
13299 Simp
.getOperand(0), Simp
.getOperand(1),
13305 /// Return true if 'Use' is a load or a store that uses N as its base pointer
13306 /// and that N may be folded in the load / store addressing mode.
13307 static bool canFoldInAddressingMode(SDNode
*N
, SDNode
*Use
,
13309 const TargetLowering
&TLI
) {
13313 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(Use
)) {
13314 if (LD
->isIndexed() || LD
->getBasePtr().getNode() != N
)
13316 VT
= LD
->getMemoryVT();
13317 AS
= LD
->getAddressSpace();
13318 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(Use
)) {
13319 if (ST
->isIndexed() || ST
->getBasePtr().getNode() != N
)
13321 VT
= ST
->getMemoryVT();
13322 AS
= ST
->getAddressSpace();
13326 TargetLowering::AddrMode AM
;
13327 if (N
->getOpcode() == ISD::ADD
) {
13328 AM
.HasBaseReg
= true;
13329 ConstantSDNode
*Offset
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
13332 AM
.BaseOffs
= Offset
->getSExtValue();
13336 } else if (N
->getOpcode() == ISD::SUB
) {
13337 AM
.HasBaseReg
= true;
13338 ConstantSDNode
*Offset
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
13341 AM
.BaseOffs
= -Offset
->getSExtValue();
13348 return TLI
.isLegalAddressingMode(DAG
.getDataLayout(), AM
,
13349 VT
.getTypeForEVT(*DAG
.getContext()), AS
);
13352 /// Try turning a load/store into a pre-indexed load/store when the base
13353 /// pointer is an add or subtract and it has other uses besides the load/store.
13354 /// After the transformation, the new indexed load/store has effectively folded
13355 /// the add/subtract in and all of its other uses are redirected to the
13356 /// new load/store.
13357 bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode
*N
) {
13358 if (Level
< AfterLegalizeDAG
)
13361 bool isLoad
= true;
13364 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
13365 if (LD
->isIndexed())
13367 VT
= LD
->getMemoryVT();
13368 if (!TLI
.isIndexedLoadLegal(ISD::PRE_INC
, VT
) &&
13369 !TLI
.isIndexedLoadLegal(ISD::PRE_DEC
, VT
))
13371 Ptr
= LD
->getBasePtr();
13372 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
13373 if (ST
->isIndexed())
13375 VT
= ST
->getMemoryVT();
13376 if (!TLI
.isIndexedStoreLegal(ISD::PRE_INC
, VT
) &&
13377 !TLI
.isIndexedStoreLegal(ISD::PRE_DEC
, VT
))
13379 Ptr
= ST
->getBasePtr();
13385 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
13386 // out. There is no reason to make this a preinc/predec.
13387 if ((Ptr
.getOpcode() != ISD::ADD
&& Ptr
.getOpcode() != ISD::SUB
) ||
13388 Ptr
.getNode()->hasOneUse())
13391 // Ask the target to do addressing mode selection.
13394 ISD::MemIndexedMode AM
= ISD::UNINDEXED
;
13395 if (!TLI
.getPreIndexedAddressParts(N
, BasePtr
, Offset
, AM
, DAG
))
13398 // Backends without true r+i pre-indexed forms may need to pass a
13399 // constant base with a variable offset so that constant coercion
13400 // will work with the patterns in canonical form.
13401 bool Swapped
= false;
13402 if (isa
<ConstantSDNode
>(BasePtr
)) {
13403 std::swap(BasePtr
, Offset
);
13407 // Don't create a indexed load / store with zero offset.
13408 if (isNullConstant(Offset
))
13411 // Try turning it into a pre-indexed load / store except when:
13412 // 1) The new base ptr is a frame index.
13413 // 2) If N is a store and the new base ptr is either the same as or is a
13414 // predecessor of the value being stored.
13415 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
13416 // that would create a cycle.
13417 // 4) All uses are load / store ops that use it as old base ptr.
13419 // Check #1. Preinc'ing a frame index would require copying the stack pointer
13420 // (plus the implicit offset) to a register to preinc anyway.
13421 if (isa
<FrameIndexSDNode
>(BasePtr
) || isa
<RegisterSDNode
>(BasePtr
))
13426 SDValue Val
= cast
<StoreSDNode
>(N
)->getValue();
13428 // Would require a copy.
13429 if (Val
== BasePtr
)
13432 // Would create a cycle.
13433 if (Val
== Ptr
|| Ptr
->isPredecessorOf(Val
.getNode()))
13437 // Caches for hasPredecessorHelper.
13438 SmallPtrSet
<const SDNode
*, 32> Visited
;
13439 SmallVector
<const SDNode
*, 16> Worklist
;
13440 Worklist
.push_back(N
);
13442 // If the offset is a constant, there may be other adds of constants that
13443 // can be folded with this one. We should do this to avoid having to keep
13444 // a copy of the original base pointer.
13445 SmallVector
<SDNode
*, 16> OtherUses
;
13446 if (isa
<ConstantSDNode
>(Offset
))
13447 for (SDNode::use_iterator UI
= BasePtr
.getNode()->use_begin(),
13448 UE
= BasePtr
.getNode()->use_end();
13450 SDUse
&Use
= UI
.getUse();
13451 // Skip the use that is Ptr and uses of other results from BasePtr's
13452 // node (important for nodes that return multiple results).
13453 if (Use
.getUser() == Ptr
.getNode() || Use
!= BasePtr
)
13456 if (SDNode::hasPredecessorHelper(Use
.getUser(), Visited
, Worklist
))
13459 if (Use
.getUser()->getOpcode() != ISD::ADD
&&
13460 Use
.getUser()->getOpcode() != ISD::SUB
) {
13465 SDValue Op1
= Use
.getUser()->getOperand((UI
.getOperandNo() + 1) & 1);
13466 if (!isa
<ConstantSDNode
>(Op1
)) {
13471 // FIXME: In some cases, we can be smarter about this.
13472 if (Op1
.getValueType() != Offset
.getValueType()) {
13477 OtherUses
.push_back(Use
.getUser());
13481 std::swap(BasePtr
, Offset
);
13483 // Now check for #3 and #4.
13484 bool RealUse
= false;
13486 for (SDNode
*Use
: Ptr
.getNode()->uses()) {
13489 if (SDNode::hasPredecessorHelper(Use
, Visited
, Worklist
))
13492 // If Ptr may be folded in addressing mode of other use, then it's
13493 // not profitable to do this transformation.
13494 if (!canFoldInAddressingMode(Ptr
.getNode(), Use
, DAG
, TLI
))
13503 Result
= DAG
.getIndexedLoad(SDValue(N
,0), SDLoc(N
),
13504 BasePtr
, Offset
, AM
);
13506 Result
= DAG
.getIndexedStore(SDValue(N
,0), SDLoc(N
),
13507 BasePtr
, Offset
, AM
);
13510 LLVM_DEBUG(dbgs() << "\nReplacing.4 "; N
->dump(&DAG
); dbgs() << "\nWith: ";
13511 Result
.getNode()->dump(&DAG
); dbgs() << '\n');
13512 WorklistRemover
DeadNodes(*this);
13514 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(0));
13515 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Result
.getValue(2));
13517 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(1));
13520 // Finally, since the node is now dead, remove it from the graph.
13521 deleteAndRecombine(N
);
13524 std::swap(BasePtr
, Offset
);
13526 // Replace other uses of BasePtr that can be updated to use Ptr
13527 for (unsigned i
= 0, e
= OtherUses
.size(); i
!= e
; ++i
) {
13528 unsigned OffsetIdx
= 1;
13529 if (OtherUses
[i
]->getOperand(OffsetIdx
).getNode() == BasePtr
.getNode())
13531 assert(OtherUses
[i
]->getOperand(!OffsetIdx
).getNode() ==
13532 BasePtr
.getNode() && "Expected BasePtr operand");
13534 // We need to replace ptr0 in the following expression:
13535 // x0 * offset0 + y0 * ptr0 = t0
13537 // x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store)
13539 // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the
13540 // indexed load/store and the expression that needs to be re-written.
13542 // Therefore, we have:
13543 // t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1
13545 ConstantSDNode
*CN
=
13546 cast
<ConstantSDNode
>(OtherUses
[i
]->getOperand(OffsetIdx
));
13547 int X0
, X1
, Y0
, Y1
;
13548 const APInt
&Offset0
= CN
->getAPIntValue();
13549 APInt Offset1
= cast
<ConstantSDNode
>(Offset
)->getAPIntValue();
13551 X0
= (OtherUses
[i
]->getOpcode() == ISD::SUB
&& OffsetIdx
== 1) ? -1 : 1;
13552 Y0
= (OtherUses
[i
]->getOpcode() == ISD::SUB
&& OffsetIdx
== 0) ? -1 : 1;
13553 X1
= (AM
== ISD::PRE_DEC
&& !Swapped
) ? -1 : 1;
13554 Y1
= (AM
== ISD::PRE_DEC
&& Swapped
) ? -1 : 1;
13556 unsigned Opcode
= (Y0
* Y1
< 0) ? ISD::SUB
: ISD::ADD
;
13558 APInt CNV
= Offset0
;
13559 if (X0
< 0) CNV
= -CNV
;
13560 if (X1
* Y0
* Y1
< 0) CNV
= CNV
+ Offset1
;
13561 else CNV
= CNV
- Offset1
;
13563 SDLoc
DL(OtherUses
[i
]);
13565 // We can now generate the new expression.
13566 SDValue NewOp1
= DAG
.getConstant(CNV
, DL
, CN
->getValueType(0));
13567 SDValue NewOp2
= Result
.getValue(isLoad
? 1 : 0);
13569 SDValue NewUse
= DAG
.getNode(Opcode
,
13571 OtherUses
[i
]->getValueType(0), NewOp1
, NewOp2
);
13572 DAG
.ReplaceAllUsesOfValueWith(SDValue(OtherUses
[i
], 0), NewUse
);
13573 deleteAndRecombine(OtherUses
[i
]);
13576 // Replace the uses of Ptr with uses of the updated base value.
13577 DAG
.ReplaceAllUsesOfValueWith(Ptr
, Result
.getValue(isLoad
? 1 : 0));
13578 deleteAndRecombine(Ptr
.getNode());
13579 AddToWorklist(Result
.getNode());
13584 /// Try to combine a load/store with a add/sub of the base pointer node into a
13585 /// post-indexed load/store. The transformation folded the add/subtract into the
13586 /// new indexed load/store effectively and all of its uses are redirected to the
13587 /// new load/store.
13588 bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode
*N
) {
13589 if (Level
< AfterLegalizeDAG
)
13592 bool isLoad
= true;
13595 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
13596 if (LD
->isIndexed())
13598 VT
= LD
->getMemoryVT();
13599 if (!TLI
.isIndexedLoadLegal(ISD::POST_INC
, VT
) &&
13600 !TLI
.isIndexedLoadLegal(ISD::POST_DEC
, VT
))
13602 Ptr
= LD
->getBasePtr();
13603 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
13604 if (ST
->isIndexed())
13606 VT
= ST
->getMemoryVT();
13607 if (!TLI
.isIndexedStoreLegal(ISD::POST_INC
, VT
) &&
13608 !TLI
.isIndexedStoreLegal(ISD::POST_DEC
, VT
))
13610 Ptr
= ST
->getBasePtr();
13616 if (Ptr
.getNode()->hasOneUse())
13619 for (SDNode
*Op
: Ptr
.getNode()->uses()) {
13621 (Op
->getOpcode() != ISD::ADD
&& Op
->getOpcode() != ISD::SUB
))
13626 ISD::MemIndexedMode AM
= ISD::UNINDEXED
;
13627 if (TLI
.getPostIndexedAddressParts(N
, Op
, BasePtr
, Offset
, AM
, DAG
)) {
13628 // Don't create a indexed load / store with zero offset.
13629 if (isNullConstant(Offset
))
13632 // Try turning it into a post-indexed load / store except when
13633 // 1) All uses are load / store ops that use it as base ptr (and
13634 // it may be folded as addressing mmode).
13635 // 2) Op must be independent of N, i.e. Op is neither a predecessor
13636 // nor a successor of N. Otherwise, if Op is folded that would
13639 if (isa
<FrameIndexSDNode
>(BasePtr
) || isa
<RegisterSDNode
>(BasePtr
))
13643 bool TryNext
= false;
13644 for (SDNode
*Use
: BasePtr
.getNode()->uses()) {
13645 if (Use
== Ptr
.getNode())
13648 // If all the uses are load / store addresses, then don't do the
13650 if (Use
->getOpcode() == ISD::ADD
|| Use
->getOpcode() == ISD::SUB
){
13651 bool RealUse
= false;
13652 for (SDNode
*UseUse
: Use
->uses()) {
13653 if (!canFoldInAddressingMode(Use
, UseUse
, DAG
, TLI
))
13668 SmallPtrSet
<const SDNode
*, 32> Visited
;
13669 SmallVector
<const SDNode
*, 8> Worklist
;
13670 // Ptr is predecessor to both N and Op.
13671 Visited
.insert(Ptr
.getNode());
13672 Worklist
.push_back(N
);
13673 Worklist
.push_back(Op
);
13674 if (!SDNode::hasPredecessorHelper(N
, Visited
, Worklist
) &&
13675 !SDNode::hasPredecessorHelper(Op
, Visited
, Worklist
)) {
13676 SDValue Result
= isLoad
13677 ? DAG
.getIndexedLoad(SDValue(N
,0), SDLoc(N
),
13678 BasePtr
, Offset
, AM
)
13679 : DAG
.getIndexedStore(SDValue(N
,0), SDLoc(N
),
13680 BasePtr
, Offset
, AM
);
13681 ++PostIndexedNodes
;
13683 LLVM_DEBUG(dbgs() << "\nReplacing.5 "; N
->dump(&DAG
);
13684 dbgs() << "\nWith: "; Result
.getNode()->dump(&DAG
);
13686 WorklistRemover
DeadNodes(*this);
13688 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(0));
13689 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Result
.getValue(2));
13691 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(1));
13694 // Finally, since the node is now dead, remove it from the graph.
13695 deleteAndRecombine(N
);
13697 // Replace the uses of Use with uses of the updated base value.
13698 DAG
.ReplaceAllUsesOfValueWith(SDValue(Op
, 0),
13699 Result
.getValue(isLoad
? 1 : 0));
13700 deleteAndRecombine(Op
);
13709 /// Return the base-pointer arithmetic from an indexed \p LD.
13710 SDValue
DAGCombiner::SplitIndexingFromLoad(LoadSDNode
*LD
) {
13711 ISD::MemIndexedMode AM
= LD
->getAddressingMode();
13712 assert(AM
!= ISD::UNINDEXED
);
13713 SDValue BP
= LD
->getOperand(1);
13714 SDValue Inc
= LD
->getOperand(2);
13716 // Some backends use TargetConstants for load offsets, but don't expect
13717 // TargetConstants in general ADD nodes. We can convert these constants into
13718 // regular Constants (if the constant is not opaque).
13719 assert((Inc
.getOpcode() != ISD::TargetConstant
||
13720 !cast
<ConstantSDNode
>(Inc
)->isOpaque()) &&
13721 "Cannot split out indexing using opaque target constants");
13722 if (Inc
.getOpcode() == ISD::TargetConstant
) {
13723 ConstantSDNode
*ConstInc
= cast
<ConstantSDNode
>(Inc
);
13724 Inc
= DAG
.getConstant(*ConstInc
->getConstantIntValue(), SDLoc(Inc
),
13725 ConstInc
->getValueType(0));
13729 (AM
== ISD::PRE_INC
|| AM
== ISD::POST_INC
? ISD::ADD
: ISD::SUB
);
13730 return DAG
.getNode(Opc
, SDLoc(LD
), BP
.getSimpleValueType(), BP
, Inc
);
13733 static inline int numVectorEltsOrZero(EVT T
) {
13734 return T
.isVector() ? T
.getVectorNumElements() : 0;
13737 bool DAGCombiner::getTruncatedStoreValue(StoreSDNode
*ST
, SDValue
&Val
) {
13738 Val
= ST
->getValue();
13739 EVT STType
= Val
.getValueType();
13740 EVT STMemType
= ST
->getMemoryVT();
13741 if (STType
== STMemType
)
13743 if (isTypeLegal(STMemType
))
13744 return false; // fail.
13745 if (STType
.isFloatingPoint() && STMemType
.isFloatingPoint() &&
13746 TLI
.isOperationLegal(ISD::FTRUNC
, STMemType
)) {
13747 Val
= DAG
.getNode(ISD::FTRUNC
, SDLoc(ST
), STMemType
, Val
);
13750 if (numVectorEltsOrZero(STType
) == numVectorEltsOrZero(STMemType
) &&
13751 STType
.isInteger() && STMemType
.isInteger()) {
13752 Val
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(ST
), STMemType
, Val
);
13755 if (STType
.getSizeInBits() == STMemType
.getSizeInBits()) {
13756 Val
= DAG
.getBitcast(STMemType
, Val
);
13759 return false; // fail.
13762 bool DAGCombiner::extendLoadedValueToExtension(LoadSDNode
*LD
, SDValue
&Val
) {
13763 EVT LDMemType
= LD
->getMemoryVT();
13764 EVT LDType
= LD
->getValueType(0);
13765 assert(Val
.getValueType() == LDMemType
&&
13766 "Attempting to extend value of non-matching type");
13767 if (LDType
== LDMemType
)
13769 if (LDMemType
.isInteger() && LDType
.isInteger()) {
13770 switch (LD
->getExtensionType()) {
13771 case ISD::NON_EXTLOAD
:
13772 Val
= DAG
.getBitcast(LDType
, Val
);
13775 Val
= DAG
.getNode(ISD::ANY_EXTEND
, SDLoc(LD
), LDType
, Val
);
13777 case ISD::SEXTLOAD
:
13778 Val
= DAG
.getNode(ISD::SIGN_EXTEND
, SDLoc(LD
), LDType
, Val
);
13780 case ISD::ZEXTLOAD
:
13781 Val
= DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(LD
), LDType
, Val
);
13788 SDValue
DAGCombiner::ForwardStoreValueToDirectLoad(LoadSDNode
*LD
) {
13789 if (OptLevel
== CodeGenOpt::None
|| !LD
->isSimple())
13791 SDValue Chain
= LD
->getOperand(0);
13792 StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(Chain
.getNode());
13793 // TODO: Relax this restriction for unordered atomics (see D66309)
13794 if (!ST
|| !ST
->isSimple())
13797 EVT LDType
= LD
->getValueType(0);
13798 EVT LDMemType
= LD
->getMemoryVT();
13799 EVT STMemType
= ST
->getMemoryVT();
13800 EVT STType
= ST
->getValue().getValueType();
13802 BaseIndexOffset BasePtrLD
= BaseIndexOffset::match(LD
, DAG
);
13803 BaseIndexOffset BasePtrST
= BaseIndexOffset::match(ST
, DAG
);
13805 if (!BasePtrST
.equalBaseIndex(BasePtrLD
, DAG
, Offset
))
13808 // Normalize for Endianness. After this Offset=0 will denote that the least
13809 // significant bit in the loaded value maps to the least significant bit in
13810 // the stored value). With Offset=n (for n > 0) the loaded value starts at the
13811 // n:th least significant byte of the stored value.
13812 if (DAG
.getDataLayout().isBigEndian())
13813 Offset
= (STMemType
.getStoreSizeInBits() -
13814 LDMemType
.getStoreSizeInBits()) / 8 - Offset
;
13816 // Check that the stored value cover all bits that are loaded.
13819 (Offset
* 8 + LDMemType
.getSizeInBits() <= STMemType
.getSizeInBits());
13821 auto ReplaceLd
= [&](LoadSDNode
*LD
, SDValue Val
, SDValue Chain
) -> SDValue
{
13822 if (LD
->isIndexed()) {
13823 bool IsSub
= (LD
->getAddressingMode() == ISD::PRE_DEC
||
13824 LD
->getAddressingMode() == ISD::POST_DEC
);
13825 unsigned Opc
= IsSub
? ISD::SUB
: ISD::ADD
;
13826 SDValue Idx
= DAG
.getNode(Opc
, SDLoc(LD
), LD
->getOperand(1).getValueType(),
13827 LD
->getOperand(1), LD
->getOperand(2));
13828 SDValue Ops
[] = {Val
, Idx
, Chain
};
13829 return CombineTo(LD
, Ops
, 3);
13831 return CombineTo(LD
, Val
, Chain
);
13837 // Memory as copy space (potentially masked).
13838 if (Offset
== 0 && LDType
== STType
&& STMemType
== LDMemType
) {
13839 // Simple case: Direct non-truncating forwarding
13840 if (LDType
.getSizeInBits() == LDMemType
.getSizeInBits())
13841 return ReplaceLd(LD
, ST
->getValue(), Chain
);
13842 // Can we model the truncate and extension with an and mask?
13843 if (STType
.isInteger() && LDMemType
.isInteger() && !STType
.isVector() &&
13844 !LDMemType
.isVector() && LD
->getExtensionType() != ISD::SEXTLOAD
) {
13845 // Mask to size of LDMemType
13847 DAG
.getConstant(APInt::getLowBitsSet(STType
.getSizeInBits(),
13848 STMemType
.getSizeInBits()),
13849 SDLoc(ST
), STType
);
13850 auto Val
= DAG
.getNode(ISD::AND
, SDLoc(LD
), LDType
, ST
->getValue(), Mask
);
13851 return ReplaceLd(LD
, Val
, Chain
);
13855 // TODO: Deal with nonzero offset.
13856 if (LD
->getBasePtr().isUndef() || Offset
!= 0)
13858 // Model necessary truncations / extenstions.
13860 // Truncate Value To Stored Memory Size.
13862 if (!getTruncatedStoreValue(ST
, Val
))
13864 if (!isTypeLegal(LDMemType
))
13866 if (STMemType
!= LDMemType
) {
13867 // TODO: Support vectors? This requires extract_subvector/bitcast.
13868 if (!STMemType
.isVector() && !LDMemType
.isVector() &&
13869 STMemType
.isInteger() && LDMemType
.isInteger())
13870 Val
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(LD
), LDMemType
, Val
);
13874 if (!extendLoadedValueToExtension(LD
, Val
))
13876 return ReplaceLd(LD
, Val
, Chain
);
13879 // On failure, cleanup dead nodes we may have created.
13880 if (Val
->use_empty())
13881 deleteAndRecombine(Val
.getNode());
13885 SDValue
DAGCombiner::visitLOAD(SDNode
*N
) {
13886 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
13887 SDValue Chain
= LD
->getChain();
13888 SDValue Ptr
= LD
->getBasePtr();
13890 // If load is not volatile and there are no uses of the loaded value (and
13891 // the updated indexed value in case of indexed loads), change uses of the
13892 // chain value into uses of the chain input (i.e. delete the dead load).
13893 // TODO: Allow this for unordered atomics (see D66309)
13894 if (LD
->isSimple()) {
13895 if (N
->getValueType(1) == MVT::Other
) {
13896 // Unindexed loads.
13897 if (!N
->hasAnyUseOfValue(0)) {
13898 // It's not safe to use the two value CombineTo variant here. e.g.
13899 // v1, chain2 = load chain1, loc
13900 // v2, chain3 = load chain2, loc
13902 // Now we replace use of chain2 with chain1. This makes the second load
13903 // isomorphic to the one we are deleting, and thus makes this load live.
13904 LLVM_DEBUG(dbgs() << "\nReplacing.6 "; N
->dump(&DAG
);
13905 dbgs() << "\nWith chain: "; Chain
.getNode()->dump(&DAG
);
13907 WorklistRemover
DeadNodes(*this);
13908 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Chain
);
13909 AddUsersToWorklist(Chain
.getNode());
13910 if (N
->use_empty())
13911 deleteAndRecombine(N
);
13913 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
13917 assert(N
->getValueType(2) == MVT::Other
&& "Malformed indexed loads?");
13919 // If this load has an opaque TargetConstant offset, then we cannot split
13920 // the indexing into an add/sub directly (that TargetConstant may not be
13921 // valid for a different type of node, and we cannot convert an opaque
13922 // target constant into a regular constant).
13923 bool HasOTCInc
= LD
->getOperand(2).getOpcode() == ISD::TargetConstant
&&
13924 cast
<ConstantSDNode
>(LD
->getOperand(2))->isOpaque();
13926 if (!N
->hasAnyUseOfValue(0) &&
13927 ((MaySplitLoadIndex
&& !HasOTCInc
) || !N
->hasAnyUseOfValue(1))) {
13928 SDValue Undef
= DAG
.getUNDEF(N
->getValueType(0));
13930 if (N
->hasAnyUseOfValue(1) && MaySplitLoadIndex
&& !HasOTCInc
) {
13931 Index
= SplitIndexingFromLoad(LD
);
13932 // Try to fold the base pointer arithmetic into subsequent loads and
13934 AddUsersToWorklist(N
);
13936 Index
= DAG
.getUNDEF(N
->getValueType(1));
13937 LLVM_DEBUG(dbgs() << "\nReplacing.7 "; N
->dump(&DAG
);
13938 dbgs() << "\nWith: "; Undef
.getNode()->dump(&DAG
);
13939 dbgs() << " and 2 other values\n");
13940 WorklistRemover
DeadNodes(*this);
13941 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Undef
);
13942 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Index
);
13943 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 2), Chain
);
13944 deleteAndRecombine(N
);
13945 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
13950 // If this load is directly stored, replace the load value with the stored
13952 if (auto V
= ForwardStoreValueToDirectLoad(LD
))
13955 // Try to infer better alignment information than the load already has.
13956 if (OptLevel
!= CodeGenOpt::None
&& LD
->isUnindexed()) {
13957 if (unsigned Align
= DAG
.InferPtrAlignment(Ptr
)) {
13958 if (Align
> LD
->getAlignment() && LD
->getSrcValueOffset() % Align
== 0) {
13959 SDValue NewLoad
= DAG
.getExtLoad(
13960 LD
->getExtensionType(), SDLoc(N
), LD
->getValueType(0), Chain
, Ptr
,
13961 LD
->getPointerInfo(), LD
->getMemoryVT(), Align
,
13962 LD
->getMemOperand()->getFlags(), LD
->getAAInfo());
13963 // NewLoad will always be N as we are only refining the alignment
13964 assert(NewLoad
.getNode() == N
);
13970 if (LD
->isUnindexed()) {
13971 // Walk up chain skipping non-aliasing memory nodes.
13972 SDValue BetterChain
= FindBetterChain(LD
, Chain
);
13974 // If there is a better chain.
13975 if (Chain
!= BetterChain
) {
13978 // Replace the chain to void dependency.
13979 if (LD
->getExtensionType() == ISD::NON_EXTLOAD
) {
13980 ReplLoad
= DAG
.getLoad(N
->getValueType(0), SDLoc(LD
),
13981 BetterChain
, Ptr
, LD
->getMemOperand());
13983 ReplLoad
= DAG
.getExtLoad(LD
->getExtensionType(), SDLoc(LD
),
13984 LD
->getValueType(0),
13985 BetterChain
, Ptr
, LD
->getMemoryVT(),
13986 LD
->getMemOperand());
13989 // Create token factor to keep old chain connected.
13990 SDValue Token
= DAG
.getNode(ISD::TokenFactor
, SDLoc(N
),
13991 MVT::Other
, Chain
, ReplLoad
.getValue(1));
13993 // Replace uses with load result and token factor
13994 return CombineTo(N
, ReplLoad
.getValue(0), Token
);
13998 // Try transforming N to an indexed load.
13999 if (CombineToPreIndexedLoadStore(N
) || CombineToPostIndexedLoadStore(N
))
14000 return SDValue(N
, 0);
14002 // Try to slice up N to more direct loads if the slices are mapped to
14003 // different register banks or pairing can take place.
14004 if (SliceUpLoad(N
))
14005 return SDValue(N
, 0);
14012 /// Helper structure used to slice a load in smaller loads.
14013 /// Basically a slice is obtained from the following sequence:
14014 /// Origin = load Ty1, Base
14015 /// Shift = srl Ty1 Origin, CstTy Amount
14016 /// Inst = trunc Shift to Ty2
14018 /// Then, it will be rewritten into:
14019 /// Slice = load SliceTy, Base + SliceOffset
14020 /// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2
14022 /// SliceTy is deduced from the number of bits that are actually used to
14024 struct LoadedSlice
{
14025 /// Helper structure used to compute the cost of a slice.
14027 /// Are we optimizing for code size.
14028 bool ForCodeSize
= false;
14031 unsigned Loads
= 0;
14032 unsigned Truncates
= 0;
14033 unsigned CrossRegisterBanksCopies
= 0;
14034 unsigned ZExts
= 0;
14035 unsigned Shift
= 0;
14037 explicit Cost(bool ForCodeSize
) : ForCodeSize(ForCodeSize
) {}
14039 /// Get the cost of one isolated slice.
14040 Cost(const LoadedSlice
&LS
, bool ForCodeSize
)
14041 : ForCodeSize(ForCodeSize
), Loads(1) {
14042 EVT TruncType
= LS
.Inst
->getValueType(0);
14043 EVT LoadedType
= LS
.getLoadedType();
14044 if (TruncType
!= LoadedType
&&
14045 !LS
.DAG
->getTargetLoweringInfo().isZExtFree(LoadedType
, TruncType
))
14049 /// Account for slicing gain in the current cost.
14050 /// Slicing provide a few gains like removing a shift or a
14051 /// truncate. This method allows to grow the cost of the original
14052 /// load with the gain from this slice.
14053 void addSliceGain(const LoadedSlice
&LS
) {
14054 // Each slice saves a truncate.
14055 const TargetLowering
&TLI
= LS
.DAG
->getTargetLoweringInfo();
14056 if (!TLI
.isTruncateFree(LS
.Inst
->getOperand(0).getValueType(),
14057 LS
.Inst
->getValueType(0)))
14059 // If there is a shift amount, this slice gets rid of it.
14062 // If this slice can merge a cross register bank copy, account for it.
14063 if (LS
.canMergeExpensiveCrossRegisterBankCopy())
14064 ++CrossRegisterBanksCopies
;
14067 Cost
&operator+=(const Cost
&RHS
) {
14068 Loads
+= RHS
.Loads
;
14069 Truncates
+= RHS
.Truncates
;
14070 CrossRegisterBanksCopies
+= RHS
.CrossRegisterBanksCopies
;
14071 ZExts
+= RHS
.ZExts
;
14072 Shift
+= RHS
.Shift
;
14076 bool operator==(const Cost
&RHS
) const {
14077 return Loads
== RHS
.Loads
&& Truncates
== RHS
.Truncates
&&
14078 CrossRegisterBanksCopies
== RHS
.CrossRegisterBanksCopies
&&
14079 ZExts
== RHS
.ZExts
&& Shift
== RHS
.Shift
;
14082 bool operator!=(const Cost
&RHS
) const { return !(*this == RHS
); }
14084 bool operator<(const Cost
&RHS
) const {
14085 // Assume cross register banks copies are as expensive as loads.
14086 // FIXME: Do we want some more target hooks?
14087 unsigned ExpensiveOpsLHS
= Loads
+ CrossRegisterBanksCopies
;
14088 unsigned ExpensiveOpsRHS
= RHS
.Loads
+ RHS
.CrossRegisterBanksCopies
;
14089 // Unless we are optimizing for code size, consider the
14090 // expensive operation first.
14091 if (!ForCodeSize
&& ExpensiveOpsLHS
!= ExpensiveOpsRHS
)
14092 return ExpensiveOpsLHS
< ExpensiveOpsRHS
;
14093 return (Truncates
+ ZExts
+ Shift
+ ExpensiveOpsLHS
) <
14094 (RHS
.Truncates
+ RHS
.ZExts
+ RHS
.Shift
+ ExpensiveOpsRHS
);
14097 bool operator>(const Cost
&RHS
) const { return RHS
< *this; }
14099 bool operator<=(const Cost
&RHS
) const { return !(RHS
< *this); }
14101 bool operator>=(const Cost
&RHS
) const { return !(*this < RHS
); }
14104 // The last instruction that represent the slice. This should be a
14105 // truncate instruction.
14108 // The original load instruction.
14109 LoadSDNode
*Origin
;
14111 // The right shift amount in bits from the original load.
14114 // The DAG from which Origin came from.
14115 // This is used to get some contextual information about legal types, etc.
14118 LoadedSlice(SDNode
*Inst
= nullptr, LoadSDNode
*Origin
= nullptr,
14119 unsigned Shift
= 0, SelectionDAG
*DAG
= nullptr)
14120 : Inst(Inst
), Origin(Origin
), Shift(Shift
), DAG(DAG
) {}
14122 /// Get the bits used in a chunk of bits \p BitWidth large.
14123 /// \return Result is \p BitWidth and has used bits set to 1 and
14124 /// not used bits set to 0.
14125 APInt
getUsedBits() const {
14126 // Reproduce the trunc(lshr) sequence:
14127 // - Start from the truncated value.
14128 // - Zero extend to the desired bit width.
14130 assert(Origin
&& "No original load to compare against.");
14131 unsigned BitWidth
= Origin
->getValueSizeInBits(0);
14132 assert(Inst
&& "This slice is not bound to an instruction");
14133 assert(Inst
->getValueSizeInBits(0) <= BitWidth
&&
14134 "Extracted slice is bigger than the whole type!");
14135 APInt
UsedBits(Inst
->getValueSizeInBits(0), 0);
14136 UsedBits
.setAllBits();
14137 UsedBits
= UsedBits
.zext(BitWidth
);
14138 UsedBits
<<= Shift
;
14142 /// Get the size of the slice to be loaded in bytes.
14143 unsigned getLoadedSize() const {
14144 unsigned SliceSize
= getUsedBits().countPopulation();
14145 assert(!(SliceSize
& 0x7) && "Size is not a multiple of a byte.");
14146 return SliceSize
/ 8;
14149 /// Get the type that will be loaded for this slice.
14150 /// Note: This may not be the final type for the slice.
14151 EVT
getLoadedType() const {
14152 assert(DAG
&& "Missing context");
14153 LLVMContext
&Ctxt
= *DAG
->getContext();
14154 return EVT::getIntegerVT(Ctxt
, getLoadedSize() * 8);
14157 /// Get the alignment of the load used for this slice.
14158 unsigned getAlignment() const {
14159 unsigned Alignment
= Origin
->getAlignment();
14160 uint64_t Offset
= getOffsetFromBase();
14162 Alignment
= MinAlign(Alignment
, Alignment
+ Offset
);
14166 /// Check if this slice can be rewritten with legal operations.
14167 bool isLegal() const {
14168 // An invalid slice is not legal.
14169 if (!Origin
|| !Inst
|| !DAG
)
14172 // Offsets are for indexed load only, we do not handle that.
14173 if (!Origin
->getOffset().isUndef())
14176 const TargetLowering
&TLI
= DAG
->getTargetLoweringInfo();
14178 // Check that the type is legal.
14179 EVT SliceType
= getLoadedType();
14180 if (!TLI
.isTypeLegal(SliceType
))
14183 // Check that the load is legal for this type.
14184 if (!TLI
.isOperationLegal(ISD::LOAD
, SliceType
))
14187 // Check that the offset can be computed.
14188 // 1. Check its type.
14189 EVT PtrType
= Origin
->getBasePtr().getValueType();
14190 if (PtrType
== MVT::Untyped
|| PtrType
.isExtended())
14193 // 2. Check that it fits in the immediate.
14194 if (!TLI
.isLegalAddImmediate(getOffsetFromBase()))
14197 // 3. Check that the computation is legal.
14198 if (!TLI
.isOperationLegal(ISD::ADD
, PtrType
))
14201 // Check that the zext is legal if it needs one.
14202 EVT TruncateType
= Inst
->getValueType(0);
14203 if (TruncateType
!= SliceType
&&
14204 !TLI
.isOperationLegal(ISD::ZERO_EXTEND
, TruncateType
))
14210 /// Get the offset in bytes of this slice in the original chunk of
14212 /// \pre DAG != nullptr.
14213 uint64_t getOffsetFromBase() const {
14214 assert(DAG
&& "Missing context.");
14215 bool IsBigEndian
= DAG
->getDataLayout().isBigEndian();
14216 assert(!(Shift
& 0x7) && "Shifts not aligned on Bytes are not supported.");
14217 uint64_t Offset
= Shift
/ 8;
14218 unsigned TySizeInBytes
= Origin
->getValueSizeInBits(0) / 8;
14219 assert(!(Origin
->getValueSizeInBits(0) & 0x7) &&
14220 "The size of the original loaded type is not a multiple of a"
14222 // If Offset is bigger than TySizeInBytes, it means we are loading all
14223 // zeros. This should have been optimized before in the process.
14224 assert(TySizeInBytes
> Offset
&&
14225 "Invalid shift amount for given loaded size");
14227 Offset
= TySizeInBytes
- Offset
- getLoadedSize();
14231 /// Generate the sequence of instructions to load the slice
14232 /// represented by this object and redirect the uses of this slice to
14233 /// this new sequence of instructions.
14234 /// \pre this->Inst && this->Origin are valid Instructions and this
14235 /// object passed the legal check: LoadedSlice::isLegal returned true.
14236 /// \return The last instruction of the sequence used to load the slice.
14237 SDValue
loadSlice() const {
14238 assert(Inst
&& Origin
&& "Unable to replace a non-existing slice.");
14239 const SDValue
&OldBaseAddr
= Origin
->getBasePtr();
14240 SDValue BaseAddr
= OldBaseAddr
;
14241 // Get the offset in that chunk of bytes w.r.t. the endianness.
14242 int64_t Offset
= static_cast<int64_t>(getOffsetFromBase());
14243 assert(Offset
>= 0 && "Offset too big to fit in int64_t!");
14245 // BaseAddr = BaseAddr + Offset.
14246 EVT ArithType
= BaseAddr
.getValueType();
14248 BaseAddr
= DAG
->getNode(ISD::ADD
, DL
, ArithType
, BaseAddr
,
14249 DAG
->getConstant(Offset
, DL
, ArithType
));
14252 // Create the type of the loaded slice according to its size.
14253 EVT SliceType
= getLoadedType();
14255 // Create the load for the slice.
14257 DAG
->getLoad(SliceType
, SDLoc(Origin
), Origin
->getChain(), BaseAddr
,
14258 Origin
->getPointerInfo().getWithOffset(Offset
),
14259 getAlignment(), Origin
->getMemOperand()->getFlags());
14260 // If the final type is not the same as the loaded type, this means that
14261 // we have to pad with zero. Create a zero extend for that.
14262 EVT FinalType
= Inst
->getValueType(0);
14263 if (SliceType
!= FinalType
)
14265 DAG
->getNode(ISD::ZERO_EXTEND
, SDLoc(LastInst
), FinalType
, LastInst
);
14269 /// Check if this slice can be merged with an expensive cross register
14270 /// bank copy. E.g.,
14272 /// f = bitcast i32 i to float
14273 bool canMergeExpensiveCrossRegisterBankCopy() const {
14274 if (!Inst
|| !Inst
->hasOneUse())
14276 SDNode
*Use
= *Inst
->use_begin();
14277 if (Use
->getOpcode() != ISD::BITCAST
)
14279 assert(DAG
&& "Missing context");
14280 const TargetLowering
&TLI
= DAG
->getTargetLoweringInfo();
14281 EVT ResVT
= Use
->getValueType(0);
14282 const TargetRegisterClass
*ResRC
=
14283 TLI
.getRegClassFor(ResVT
.getSimpleVT(), Use
->isDivergent());
14284 const TargetRegisterClass
*ArgRC
=
14285 TLI
.getRegClassFor(Use
->getOperand(0).getValueType().getSimpleVT(),
14286 Use
->getOperand(0)->isDivergent());
14287 if (ArgRC
== ResRC
|| !TLI
.isOperationLegal(ISD::LOAD
, ResVT
))
14290 // At this point, we know that we perform a cross-register-bank copy.
14291 // Check if it is expensive.
14292 const TargetRegisterInfo
*TRI
= DAG
->getSubtarget().getRegisterInfo();
14293 // Assume bitcasts are cheap, unless both register classes do not
14294 // explicitly share a common sub class.
14295 if (!TRI
|| TRI
->getCommonSubClass(ArgRC
, ResRC
))
14298 // Check if it will be merged with the load.
14299 // 1. Check the alignment constraint.
14300 unsigned RequiredAlignment
= DAG
->getDataLayout().getABITypeAlignment(
14301 ResVT
.getTypeForEVT(*DAG
->getContext()));
14303 if (RequiredAlignment
> getAlignment())
14306 // 2. Check that the load is a legal operation for that type.
14307 if (!TLI
.isOperationLegal(ISD::LOAD
, ResVT
))
14310 // 3. Check that we do not have a zext in the way.
14311 if (Inst
->getValueType(0) != getLoadedType())
14318 } // end anonymous namespace
14320 /// Check that all bits set in \p UsedBits form a dense region, i.e.,
14321 /// \p UsedBits looks like 0..0 1..1 0..0.
14322 static bool areUsedBitsDense(const APInt
&UsedBits
) {
14323 // If all the bits are one, this is dense!
14324 if (UsedBits
.isAllOnesValue())
14327 // Get rid of the unused bits on the right.
14328 APInt NarrowedUsedBits
= UsedBits
.lshr(UsedBits
.countTrailingZeros());
14329 // Get rid of the unused bits on the left.
14330 if (NarrowedUsedBits
.countLeadingZeros())
14331 NarrowedUsedBits
= NarrowedUsedBits
.trunc(NarrowedUsedBits
.getActiveBits());
14332 // Check that the chunk of bits is completely used.
14333 return NarrowedUsedBits
.isAllOnesValue();
14336 /// Check whether or not \p First and \p Second are next to each other
14337 /// in memory. This means that there is no hole between the bits loaded
14338 /// by \p First and the bits loaded by \p Second.
14339 static bool areSlicesNextToEachOther(const LoadedSlice
&First
,
14340 const LoadedSlice
&Second
) {
14341 assert(First
.Origin
== Second
.Origin
&& First
.Origin
&&
14342 "Unable to match different memory origins.");
14343 APInt UsedBits
= First
.getUsedBits();
14344 assert((UsedBits
& Second
.getUsedBits()) == 0 &&
14345 "Slices are not supposed to overlap.");
14346 UsedBits
|= Second
.getUsedBits();
14347 return areUsedBitsDense(UsedBits
);
14350 /// Adjust the \p GlobalLSCost according to the target
14351 /// paring capabilities and the layout of the slices.
14352 /// \pre \p GlobalLSCost should account for at least as many loads as
14353 /// there is in the slices in \p LoadedSlices.
14354 static void adjustCostForPairing(SmallVectorImpl
<LoadedSlice
> &LoadedSlices
,
14355 LoadedSlice::Cost
&GlobalLSCost
) {
14356 unsigned NumberOfSlices
= LoadedSlices
.size();
14357 // If there is less than 2 elements, no pairing is possible.
14358 if (NumberOfSlices
< 2)
14361 // Sort the slices so that elements that are likely to be next to each
14362 // other in memory are next to each other in the list.
14363 llvm::sort(LoadedSlices
, [](const LoadedSlice
&LHS
, const LoadedSlice
&RHS
) {
14364 assert(LHS
.Origin
== RHS
.Origin
&& "Different bases not implemented.");
14365 return LHS
.getOffsetFromBase() < RHS
.getOffsetFromBase();
14367 const TargetLowering
&TLI
= LoadedSlices
[0].DAG
->getTargetLoweringInfo();
14368 // First (resp. Second) is the first (resp. Second) potentially candidate
14369 // to be placed in a paired load.
14370 const LoadedSlice
*First
= nullptr;
14371 const LoadedSlice
*Second
= nullptr;
14372 for (unsigned CurrSlice
= 0; CurrSlice
< NumberOfSlices
; ++CurrSlice
,
14373 // Set the beginning of the pair.
14375 Second
= &LoadedSlices
[CurrSlice
];
14377 // If First is NULL, it means we start a new pair.
14378 // Get to the next slice.
14382 EVT LoadedType
= First
->getLoadedType();
14384 // If the types of the slices are different, we cannot pair them.
14385 if (LoadedType
!= Second
->getLoadedType())
14388 // Check if the target supplies paired loads for this type.
14389 unsigned RequiredAlignment
= 0;
14390 if (!TLI
.hasPairedLoad(LoadedType
, RequiredAlignment
)) {
14391 // move to the next pair, this type is hopeless.
14395 // Check if we meet the alignment requirement.
14396 if (RequiredAlignment
> First
->getAlignment())
14399 // Check that both loads are next to each other in memory.
14400 if (!areSlicesNextToEachOther(*First
, *Second
))
14403 assert(GlobalLSCost
.Loads
> 0 && "We save more loads than we created!");
14404 --GlobalLSCost
.Loads
;
14405 // Move to the next pair.
14410 /// Check the profitability of all involved LoadedSlice.
14411 /// Currently, it is considered profitable if there is exactly two
14412 /// involved slices (1) which are (2) next to each other in memory, and
14413 /// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3).
14415 /// Note: The order of the elements in \p LoadedSlices may be modified, but not
14416 /// the elements themselves.
14418 /// FIXME: When the cost model will be mature enough, we can relax
14419 /// constraints (1) and (2).
14420 static bool isSlicingProfitable(SmallVectorImpl
<LoadedSlice
> &LoadedSlices
,
14421 const APInt
&UsedBits
, bool ForCodeSize
) {
14422 unsigned NumberOfSlices
= LoadedSlices
.size();
14423 if (StressLoadSlicing
)
14424 return NumberOfSlices
> 1;
14427 if (NumberOfSlices
!= 2)
14431 if (!areUsedBitsDense(UsedBits
))
14435 LoadedSlice::Cost
OrigCost(ForCodeSize
), GlobalSlicingCost(ForCodeSize
);
14436 // The original code has one big load.
14437 OrigCost
.Loads
= 1;
14438 for (unsigned CurrSlice
= 0; CurrSlice
< NumberOfSlices
; ++CurrSlice
) {
14439 const LoadedSlice
&LS
= LoadedSlices
[CurrSlice
];
14440 // Accumulate the cost of all the slices.
14441 LoadedSlice::Cost
SliceCost(LS
, ForCodeSize
);
14442 GlobalSlicingCost
+= SliceCost
;
14444 // Account as cost in the original configuration the gain obtained
14445 // with the current slices.
14446 OrigCost
.addSliceGain(LS
);
14449 // If the target supports paired load, adjust the cost accordingly.
14450 adjustCostForPairing(LoadedSlices
, GlobalSlicingCost
);
14451 return OrigCost
> GlobalSlicingCost
;
14454 /// If the given load, \p LI, is used only by trunc or trunc(lshr)
14455 /// operations, split it in the various pieces being extracted.
14457 /// This sort of thing is introduced by SROA.
14458 /// This slicing takes care not to insert overlapping loads.
14459 /// \pre LI is a simple load (i.e., not an atomic or volatile load).
14460 bool DAGCombiner::SliceUpLoad(SDNode
*N
) {
14461 if (Level
< AfterLegalizeDAG
)
14464 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
14465 if (!LD
->isSimple() || !ISD::isNormalLoad(LD
) ||
14466 !LD
->getValueType(0).isInteger())
14469 // Keep track of already used bits to detect overlapping values.
14470 // In that case, we will just abort the transformation.
14471 APInt
UsedBits(LD
->getValueSizeInBits(0), 0);
14473 SmallVector
<LoadedSlice
, 4> LoadedSlices
;
14475 // Check if this load is used as several smaller chunks of bits.
14476 // Basically, look for uses in trunc or trunc(lshr) and record a new chain
14477 // of computation for each trunc.
14478 for (SDNode::use_iterator UI
= LD
->use_begin(), UIEnd
= LD
->use_end();
14479 UI
!= UIEnd
; ++UI
) {
14480 // Skip the uses of the chain.
14481 if (UI
.getUse().getResNo() != 0)
14484 SDNode
*User
= *UI
;
14485 unsigned Shift
= 0;
14487 // Check if this is a trunc(lshr).
14488 if (User
->getOpcode() == ISD::SRL
&& User
->hasOneUse() &&
14489 isa
<ConstantSDNode
>(User
->getOperand(1))) {
14490 Shift
= User
->getConstantOperandVal(1);
14491 User
= *User
->use_begin();
14494 // At this point, User is a Truncate, iff we encountered, trunc or
14496 if (User
->getOpcode() != ISD::TRUNCATE
)
14499 // The width of the type must be a power of 2 and greater than 8-bits.
14500 // Otherwise the load cannot be represented in LLVM IR.
14501 // Moreover, if we shifted with a non-8-bits multiple, the slice
14502 // will be across several bytes. We do not support that.
14503 unsigned Width
= User
->getValueSizeInBits(0);
14504 if (Width
< 8 || !isPowerOf2_32(Width
) || (Shift
& 0x7))
14507 // Build the slice for this chain of computations.
14508 LoadedSlice
LS(User
, LD
, Shift
, &DAG
);
14509 APInt CurrentUsedBits
= LS
.getUsedBits();
14511 // Check if this slice overlaps with another.
14512 if ((CurrentUsedBits
& UsedBits
) != 0)
14514 // Update the bits used globally.
14515 UsedBits
|= CurrentUsedBits
;
14517 // Check if the new slice would be legal.
14521 // Record the slice.
14522 LoadedSlices
.push_back(LS
);
14525 // Abort slicing if it does not seem to be profitable.
14526 if (!isSlicingProfitable(LoadedSlices
, UsedBits
, ForCodeSize
))
14531 // Rewrite each chain to use an independent load.
14532 // By construction, each chain can be represented by a unique load.
14534 // Prepare the argument for the new token factor for all the slices.
14535 SmallVector
<SDValue
, 8> ArgChains
;
14536 for (SmallVectorImpl
<LoadedSlice
>::const_iterator
14537 LSIt
= LoadedSlices
.begin(),
14538 LSItEnd
= LoadedSlices
.end();
14539 LSIt
!= LSItEnd
; ++LSIt
) {
14540 SDValue SliceInst
= LSIt
->loadSlice();
14541 CombineTo(LSIt
->Inst
, SliceInst
, true);
14542 if (SliceInst
.getOpcode() != ISD::LOAD
)
14543 SliceInst
= SliceInst
.getOperand(0);
14544 assert(SliceInst
->getOpcode() == ISD::LOAD
&&
14545 "It takes more than a zext to get to the loaded slice!!");
14546 ArgChains
.push_back(SliceInst
.getValue(1));
14549 SDValue Chain
= DAG
.getNode(ISD::TokenFactor
, SDLoc(LD
), MVT::Other
,
14551 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Chain
);
14552 AddToWorklist(Chain
.getNode());
14556 /// Check to see if V is (and load (ptr), imm), where the load is having
14557 /// specific bytes cleared out. If so, return the byte size being masked out
14558 /// and the shift amount.
14559 static std::pair
<unsigned, unsigned>
14560 CheckForMaskedLoad(SDValue V
, SDValue Ptr
, SDValue Chain
) {
14561 std::pair
<unsigned, unsigned> Result(0, 0);
14563 // Check for the structure we're looking for.
14564 if (V
->getOpcode() != ISD::AND
||
14565 !isa
<ConstantSDNode
>(V
->getOperand(1)) ||
14566 !ISD::isNormalLoad(V
->getOperand(0).getNode()))
14569 // Check the chain and pointer.
14570 LoadSDNode
*LD
= cast
<LoadSDNode
>(V
->getOperand(0));
14571 if (LD
->getBasePtr() != Ptr
) return Result
; // Not from same pointer.
14573 // This only handles simple types.
14574 if (V
.getValueType() != MVT::i16
&&
14575 V
.getValueType() != MVT::i32
&&
14576 V
.getValueType() != MVT::i64
)
14579 // Check the constant mask. Invert it so that the bits being masked out are
14580 // 0 and the bits being kept are 1. Use getSExtValue so that leading bits
14581 // follow the sign bit for uniformity.
14582 uint64_t NotMask
= ~cast
<ConstantSDNode
>(V
->getOperand(1))->getSExtValue();
14583 unsigned NotMaskLZ
= countLeadingZeros(NotMask
);
14584 if (NotMaskLZ
& 7) return Result
; // Must be multiple of a byte.
14585 unsigned NotMaskTZ
= countTrailingZeros(NotMask
);
14586 if (NotMaskTZ
& 7) return Result
; // Must be multiple of a byte.
14587 if (NotMaskLZ
== 64) return Result
; // All zero mask.
14589 // See if we have a continuous run of bits. If so, we have 0*1+0*
14590 if (countTrailingOnes(NotMask
>> NotMaskTZ
) + NotMaskTZ
+ NotMaskLZ
!= 64)
14593 // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
14594 if (V
.getValueType() != MVT::i64
&& NotMaskLZ
)
14595 NotMaskLZ
-= 64-V
.getValueSizeInBits();
14597 unsigned MaskedBytes
= (V
.getValueSizeInBits()-NotMaskLZ
-NotMaskTZ
)/8;
14598 switch (MaskedBytes
) {
14602 default: return Result
; // All one mask, or 5-byte mask.
14605 // Verify that the first bit starts at a multiple of mask so that the access
14606 // is aligned the same as the access width.
14607 if (NotMaskTZ
&& NotMaskTZ
/8 % MaskedBytes
) return Result
;
14609 // For narrowing to be valid, it must be the case that the load the
14610 // immediately preceding memory operation before the store.
14611 if (LD
== Chain
.getNode())
14613 else if (Chain
->getOpcode() == ISD::TokenFactor
&&
14614 SDValue(LD
, 1).hasOneUse()) {
14615 // LD has only 1 chain use so they are no indirect dependencies.
14616 if (!LD
->isOperandOf(Chain
.getNode()))
14619 return Result
; // Fail.
14621 Result
.first
= MaskedBytes
;
14622 Result
.second
= NotMaskTZ
/8;
14626 /// Check to see if IVal is something that provides a value as specified by
14627 /// MaskInfo. If so, replace the specified store with a narrower store of
14628 /// truncated IVal.
14630 ShrinkLoadReplaceStoreWithStore(const std::pair
<unsigned, unsigned> &MaskInfo
,
14631 SDValue IVal
, StoreSDNode
*St
,
14633 unsigned NumBytes
= MaskInfo
.first
;
14634 unsigned ByteShift
= MaskInfo
.second
;
14635 SelectionDAG
&DAG
= DC
->getDAG();
14637 // Check to see if IVal is all zeros in the part being masked in by the 'or'
14638 // that uses this. If not, this is not a replacement.
14639 APInt Mask
= ~APInt::getBitsSet(IVal
.getValueSizeInBits(),
14640 ByteShift
*8, (ByteShift
+NumBytes
)*8);
14641 if (!DAG
.MaskedValueIsZero(IVal
, Mask
)) return SDValue();
14643 // Check that it is legal on the target to do this. It is legal if the new
14644 // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
14645 // legalization (and the target doesn't explicitly think this is a bad idea).
14646 MVT VT
= MVT::getIntegerVT(NumBytes
* 8);
14647 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
14648 if (!DC
->isTypeLegal(VT
))
14650 if (St
->getMemOperand() &&
14651 !TLI
.allowsMemoryAccess(*DAG
.getContext(), DAG
.getDataLayout(), VT
,
14652 *St
->getMemOperand()))
14655 // Okay, we can do this! Replace the 'St' store with a store of IVal that is
14656 // shifted by ByteShift and truncated down to NumBytes.
14659 IVal
= DAG
.getNode(ISD::SRL
, DL
, IVal
.getValueType(), IVal
,
14660 DAG
.getConstant(ByteShift
*8, DL
,
14661 DC
->getShiftAmountTy(IVal
.getValueType())));
14664 // Figure out the offset for the store and the alignment of the access.
14666 unsigned NewAlign
= St
->getAlignment();
14668 if (DAG
.getDataLayout().isLittleEndian())
14669 StOffset
= ByteShift
;
14671 StOffset
= IVal
.getValueType().getStoreSize() - ByteShift
- NumBytes
;
14673 SDValue Ptr
= St
->getBasePtr();
14676 Ptr
= DAG
.getNode(ISD::ADD
, DL
, Ptr
.getValueType(),
14677 Ptr
, DAG
.getConstant(StOffset
, DL
, Ptr
.getValueType()));
14678 NewAlign
= MinAlign(NewAlign
, StOffset
);
14681 // Truncate down to the new size.
14682 IVal
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(IVal
), VT
, IVal
);
14686 .getStore(St
->getChain(), SDLoc(St
), IVal
, Ptr
,
14687 St
->getPointerInfo().getWithOffset(StOffset
), NewAlign
);
14690 /// Look for sequence of load / op / store where op is one of 'or', 'xor', and
14691 /// 'and' of immediates. If 'op' is only touching some of the loaded bits, try
14692 /// narrowing the load and store if it would end up being a win for performance
14694 SDValue
DAGCombiner::ReduceLoadOpStoreWidth(SDNode
*N
) {
14695 StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
14696 if (!ST
->isSimple())
14699 SDValue Chain
= ST
->getChain();
14700 SDValue Value
= ST
->getValue();
14701 SDValue Ptr
= ST
->getBasePtr();
14702 EVT VT
= Value
.getValueType();
14704 if (ST
->isTruncatingStore() || VT
.isVector() || !Value
.hasOneUse())
14707 unsigned Opc
= Value
.getOpcode();
14709 // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
14710 // is a byte mask indicating a consecutive number of bytes, check to see if
14711 // Y is known to provide just those bytes. If so, we try to replace the
14712 // load + replace + store sequence with a single (narrower) store, which makes
14714 if (Opc
== ISD::OR
) {
14715 std::pair
<unsigned, unsigned> MaskedLoad
;
14716 MaskedLoad
= CheckForMaskedLoad(Value
.getOperand(0), Ptr
, Chain
);
14717 if (MaskedLoad
.first
)
14718 if (SDValue NewST
= ShrinkLoadReplaceStoreWithStore(MaskedLoad
,
14719 Value
.getOperand(1), ST
,this))
14722 // Or is commutative, so try swapping X and Y.
14723 MaskedLoad
= CheckForMaskedLoad(Value
.getOperand(1), Ptr
, Chain
);
14724 if (MaskedLoad
.first
)
14725 if (SDValue NewST
= ShrinkLoadReplaceStoreWithStore(MaskedLoad
,
14726 Value
.getOperand(0), ST
,this))
14730 if ((Opc
!= ISD::OR
&& Opc
!= ISD::XOR
&& Opc
!= ISD::AND
) ||
14731 Value
.getOperand(1).getOpcode() != ISD::Constant
)
14734 SDValue N0
= Value
.getOperand(0);
14735 if (ISD::isNormalLoad(N0
.getNode()) && N0
.hasOneUse() &&
14736 Chain
== SDValue(N0
.getNode(), 1)) {
14737 LoadSDNode
*LD
= cast
<LoadSDNode
>(N0
);
14738 if (LD
->getBasePtr() != Ptr
||
14739 LD
->getPointerInfo().getAddrSpace() !=
14740 ST
->getPointerInfo().getAddrSpace())
14743 // Find the type to narrow it the load / op / store to.
14744 SDValue N1
= Value
.getOperand(1);
14745 unsigned BitWidth
= N1
.getValueSizeInBits();
14746 APInt Imm
= cast
<ConstantSDNode
>(N1
)->getAPIntValue();
14747 if (Opc
== ISD::AND
)
14748 Imm
^= APInt::getAllOnesValue(BitWidth
);
14749 if (Imm
== 0 || Imm
.isAllOnesValue())
14751 unsigned ShAmt
= Imm
.countTrailingZeros();
14752 unsigned MSB
= BitWidth
- Imm
.countLeadingZeros() - 1;
14753 unsigned NewBW
= NextPowerOf2(MSB
- ShAmt
);
14754 EVT NewVT
= EVT::getIntegerVT(*DAG
.getContext(), NewBW
);
14755 // The narrowing should be profitable, the load/store operation should be
14756 // legal (or custom) and the store size should be equal to the NewVT width.
14757 while (NewBW
< BitWidth
&&
14758 (NewVT
.getStoreSizeInBits() != NewBW
||
14759 !TLI
.isOperationLegalOrCustom(Opc
, NewVT
) ||
14760 !TLI
.isNarrowingProfitable(VT
, NewVT
))) {
14761 NewBW
= NextPowerOf2(NewBW
);
14762 NewVT
= EVT::getIntegerVT(*DAG
.getContext(), NewBW
);
14764 if (NewBW
>= BitWidth
)
14767 // If the lsb changed does not start at the type bitwidth boundary,
14768 // start at the previous one.
14770 ShAmt
= (((ShAmt
+ NewBW
- 1) / NewBW
) * NewBW
) - NewBW
;
14771 APInt Mask
= APInt::getBitsSet(BitWidth
, ShAmt
,
14772 std::min(BitWidth
, ShAmt
+ NewBW
));
14773 if ((Imm
& Mask
) == Imm
) {
14774 APInt NewImm
= (Imm
& Mask
).lshr(ShAmt
).trunc(NewBW
);
14775 if (Opc
== ISD::AND
)
14776 NewImm
^= APInt::getAllOnesValue(NewBW
);
14777 uint64_t PtrOff
= ShAmt
/ 8;
14778 // For big endian targets, we need to adjust the offset to the pointer to
14779 // load the correct bytes.
14780 if (DAG
.getDataLayout().isBigEndian())
14781 PtrOff
= (BitWidth
+ 7 - NewBW
) / 8 - PtrOff
;
14783 unsigned NewAlign
= MinAlign(LD
->getAlignment(), PtrOff
);
14784 Type
*NewVTTy
= NewVT
.getTypeForEVT(*DAG
.getContext());
14785 if (NewAlign
< DAG
.getDataLayout().getABITypeAlignment(NewVTTy
))
14788 SDValue NewPtr
= DAG
.getNode(ISD::ADD
, SDLoc(LD
),
14789 Ptr
.getValueType(), Ptr
,
14790 DAG
.getConstant(PtrOff
, SDLoc(LD
),
14791 Ptr
.getValueType()));
14793 DAG
.getLoad(NewVT
, SDLoc(N0
), LD
->getChain(), NewPtr
,
14794 LD
->getPointerInfo().getWithOffset(PtrOff
), NewAlign
,
14795 LD
->getMemOperand()->getFlags(), LD
->getAAInfo());
14796 SDValue NewVal
= DAG
.getNode(Opc
, SDLoc(Value
), NewVT
, NewLD
,
14797 DAG
.getConstant(NewImm
, SDLoc(Value
),
14800 DAG
.getStore(Chain
, SDLoc(N
), NewVal
, NewPtr
,
14801 ST
->getPointerInfo().getWithOffset(PtrOff
), NewAlign
);
14803 AddToWorklist(NewPtr
.getNode());
14804 AddToWorklist(NewLD
.getNode());
14805 AddToWorklist(NewVal
.getNode());
14806 WorklistRemover
DeadNodes(*this);
14807 DAG
.ReplaceAllUsesOfValueWith(N0
.getValue(1), NewLD
.getValue(1));
14816 /// For a given floating point load / store pair, if the load value isn't used
14817 /// by any other operations, then consider transforming the pair to integer
14818 /// load / store operations if the target deems the transformation profitable.
14819 SDValue
DAGCombiner::TransformFPLoadStorePair(SDNode
*N
) {
14820 StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
14821 SDValue Value
= ST
->getValue();
14822 if (ISD::isNormalStore(ST
) && ISD::isNormalLoad(Value
.getNode()) &&
14823 Value
.hasOneUse()) {
14824 LoadSDNode
*LD
= cast
<LoadSDNode
>(Value
);
14825 EVT VT
= LD
->getMemoryVT();
14826 if (!VT
.isFloatingPoint() ||
14827 VT
!= ST
->getMemoryVT() ||
14828 LD
->isNonTemporal() ||
14829 ST
->isNonTemporal() ||
14830 LD
->getPointerInfo().getAddrSpace() != 0 ||
14831 ST
->getPointerInfo().getAddrSpace() != 0)
14834 EVT IntVT
= EVT::getIntegerVT(*DAG
.getContext(), VT
.getSizeInBits());
14835 if (!TLI
.isOperationLegal(ISD::LOAD
, IntVT
) ||
14836 !TLI
.isOperationLegal(ISD::STORE
, IntVT
) ||
14837 !TLI
.isDesirableToTransformToIntegerOp(ISD::LOAD
, VT
) ||
14838 !TLI
.isDesirableToTransformToIntegerOp(ISD::STORE
, VT
))
14841 unsigned LDAlign
= LD
->getAlignment();
14842 unsigned STAlign
= ST
->getAlignment();
14843 Type
*IntVTTy
= IntVT
.getTypeForEVT(*DAG
.getContext());
14844 unsigned ABIAlign
= DAG
.getDataLayout().getABITypeAlignment(IntVTTy
);
14845 if (LDAlign
< ABIAlign
|| STAlign
< ABIAlign
)
14849 DAG
.getLoad(IntVT
, SDLoc(Value
), LD
->getChain(), LD
->getBasePtr(),
14850 LD
->getPointerInfo(), LDAlign
);
14853 DAG
.getStore(ST
->getChain(), SDLoc(N
), NewLD
, ST
->getBasePtr(),
14854 ST
->getPointerInfo(), STAlign
);
14856 AddToWorklist(NewLD
.getNode());
14857 AddToWorklist(NewST
.getNode());
14858 WorklistRemover
DeadNodes(*this);
14859 DAG
.ReplaceAllUsesOfValueWith(Value
.getValue(1), NewLD
.getValue(1));
14867 // This is a helper function for visitMUL to check the profitability
14868 // of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
14869 // MulNode is the original multiply, AddNode is (add x, c1),
14870 // and ConstNode is c2.
14872 // If the (add x, c1) has multiple uses, we could increase
14873 // the number of adds if we make this transformation.
14874 // It would only be worth doing this if we can remove a
14875 // multiply in the process. Check for that here.
14879 // We're checking for cases where we have common "c3 * A" expressions.
14880 bool DAGCombiner::isMulAddWithConstProfitable(SDNode
*MulNode
,
14882 SDValue
&ConstNode
) {
14885 // If the add only has one use, this would be OK to do.
14886 if (AddNode
.getNode()->hasOneUse())
14889 // Walk all the users of the constant with which we're multiplying.
14890 for (SDNode
*Use
: ConstNode
->uses()) {
14891 if (Use
== MulNode
) // This use is the one we're on right now. Skip it.
14894 if (Use
->getOpcode() == ISD::MUL
) { // We have another multiply use.
14896 SDNode
*MulVar
= AddNode
.getOperand(0).getNode();
14898 // OtherOp is what we're multiplying against the constant.
14899 if (Use
->getOperand(0) == ConstNode
)
14900 OtherOp
= Use
->getOperand(1).getNode();
14902 OtherOp
= Use
->getOperand(0).getNode();
14904 // Check to see if multiply is with the same operand of our "add".
14906 // ConstNode = CONST
14907 // Use = ConstNode * A <-- visiting Use. OtherOp is A.
14909 // AddNode = (A + c1) <-- MulVar is A.
14910 // = AddNode * ConstNode <-- current visiting instruction.
14912 // If we make this transformation, we will have a common
14913 // multiply (ConstNode * A) that we can save.
14914 if (OtherOp
== MulVar
)
14917 // Now check to see if a future expansion will give us a common
14920 // ConstNode = CONST
14921 // AddNode = (A + c1)
14922 // ... = AddNode * ConstNode <-- current visiting instruction.
14924 // OtherOp = (A + c2)
14925 // Use = OtherOp * ConstNode <-- visiting Use.
14927 // If we make this transformation, we will have a common
14928 // multiply (CONST * A) after we also do the same transformation
14929 // to the "t2" instruction.
14930 if (OtherOp
->getOpcode() == ISD::ADD
&&
14931 DAG
.isConstantIntBuildVectorOrConstantInt(OtherOp
->getOperand(1)) &&
14932 OtherOp
->getOperand(0).getNode() == MulVar
)
14937 // Didn't find a case where this would be profitable.
14941 SDValue
DAGCombiner::getMergeStoreChains(SmallVectorImpl
<MemOpLink
> &StoreNodes
,
14942 unsigned NumStores
) {
14943 SmallVector
<SDValue
, 8> Chains
;
14944 SmallPtrSet
<const SDNode
*, 8> Visited
;
14945 SDLoc
StoreDL(StoreNodes
[0].MemNode
);
14947 for (unsigned i
= 0; i
< NumStores
; ++i
) {
14948 Visited
.insert(StoreNodes
[i
].MemNode
);
14951 // don't include nodes that are children or repeated nodes.
14952 for (unsigned i
= 0; i
< NumStores
; ++i
) {
14953 if (Visited
.insert(StoreNodes
[i
].MemNode
->getChain().getNode()).second
)
14954 Chains
.push_back(StoreNodes
[i
].MemNode
->getChain());
14957 assert(Chains
.size() > 0 && "Chain should have generated a chain");
14958 return DAG
.getTokenFactor(StoreDL
, Chains
);
14961 bool DAGCombiner::MergeStoresOfConstantsOrVecElts(
14962 SmallVectorImpl
<MemOpLink
> &StoreNodes
, EVT MemVT
, unsigned NumStores
,
14963 bool IsConstantSrc
, bool UseVector
, bool UseTrunc
) {
14964 // Make sure we have something to merge.
14968 // The latest Node in the DAG.
14969 SDLoc
DL(StoreNodes
[0].MemNode
);
14971 int64_t ElementSizeBits
= MemVT
.getStoreSizeInBits();
14972 unsigned SizeInBits
= NumStores
* ElementSizeBits
;
14973 unsigned NumMemElts
= MemVT
.isVector() ? MemVT
.getVectorNumElements() : 1;
14977 unsigned Elts
= NumStores
* NumMemElts
;
14978 // Get the type for the merged vector store.
14979 StoreTy
= EVT::getVectorVT(*DAG
.getContext(), MemVT
.getScalarType(), Elts
);
14981 StoreTy
= EVT::getIntegerVT(*DAG
.getContext(), SizeInBits
);
14985 if (IsConstantSrc
) {
14986 SmallVector
<SDValue
, 8> BuildVector
;
14987 for (unsigned I
= 0; I
!= NumStores
; ++I
) {
14988 StoreSDNode
*St
= cast
<StoreSDNode
>(StoreNodes
[I
].MemNode
);
14989 SDValue Val
= St
->getValue();
14990 // If constant is of the wrong type, convert it now.
14991 if (MemVT
!= Val
.getValueType()) {
14992 Val
= peekThroughBitcasts(Val
);
14993 // Deal with constants of wrong size.
14994 if (ElementSizeBits
!= Val
.getValueSizeInBits()) {
14996 EVT::getIntegerVT(*DAG
.getContext(), MemVT
.getSizeInBits());
14997 if (isa
<ConstantFPSDNode
>(Val
)) {
14998 // Not clear how to truncate FP values.
15000 } else if (auto *C
= dyn_cast
<ConstantSDNode
>(Val
))
15001 Val
= DAG
.getConstant(C
->getAPIntValue()
15002 .zextOrTrunc(Val
.getValueSizeInBits())
15003 .zextOrTrunc(ElementSizeBits
),
15004 SDLoc(C
), IntMemVT
);
15006 // Make sure correctly size type is the correct type.
15007 Val
= DAG
.getBitcast(MemVT
, Val
);
15009 BuildVector
.push_back(Val
);
15011 StoredVal
= DAG
.getNode(MemVT
.isVector() ? ISD::CONCAT_VECTORS
15012 : ISD::BUILD_VECTOR
,
15013 DL
, StoreTy
, BuildVector
);
15015 SmallVector
<SDValue
, 8> Ops
;
15016 for (unsigned i
= 0; i
< NumStores
; ++i
) {
15017 StoreSDNode
*St
= cast
<StoreSDNode
>(StoreNodes
[i
].MemNode
);
15018 SDValue Val
= peekThroughBitcasts(St
->getValue());
15019 // All operands of BUILD_VECTOR / CONCAT_VECTOR must be of
15020 // type MemVT. If the underlying value is not the correct
15021 // type, but it is an extraction of an appropriate vector we
15022 // can recast Val to be of the correct type. This may require
15023 // converting between EXTRACT_VECTOR_ELT and
15024 // EXTRACT_SUBVECTOR.
15025 if ((MemVT
!= Val
.getValueType()) &&
15026 (Val
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
||
15027 Val
.getOpcode() == ISD::EXTRACT_SUBVECTOR
)) {
15028 EVT MemVTScalarTy
= MemVT
.getScalarType();
15029 // We may need to add a bitcast here to get types to line up.
15030 if (MemVTScalarTy
!= Val
.getValueType().getScalarType()) {
15031 Val
= DAG
.getBitcast(MemVT
, Val
);
15033 unsigned OpC
= MemVT
.isVector() ? ISD::EXTRACT_SUBVECTOR
15034 : ISD::EXTRACT_VECTOR_ELT
;
15035 SDValue Vec
= Val
.getOperand(0);
15036 SDValue Idx
= Val
.getOperand(1);
15037 Val
= DAG
.getNode(OpC
, SDLoc(Val
), MemVT
, Vec
, Idx
);
15040 Ops
.push_back(Val
);
15043 // Build the extracted vector elements back into a vector.
15044 StoredVal
= DAG
.getNode(MemVT
.isVector() ? ISD::CONCAT_VECTORS
15045 : ISD::BUILD_VECTOR
,
15049 // We should always use a vector store when merging extracted vector
15050 // elements, so this path implies a store of constants.
15051 assert(IsConstantSrc
&& "Merged vector elements should use vector store");
15053 APInt
StoreInt(SizeInBits
, 0);
15055 // Construct a single integer constant which is made of the smaller
15056 // constant inputs.
15057 bool IsLE
= DAG
.getDataLayout().isLittleEndian();
15058 for (unsigned i
= 0; i
< NumStores
; ++i
) {
15059 unsigned Idx
= IsLE
? (NumStores
- 1 - i
) : i
;
15060 StoreSDNode
*St
= cast
<StoreSDNode
>(StoreNodes
[Idx
].MemNode
);
15062 SDValue Val
= St
->getValue();
15063 Val
= peekThroughBitcasts(Val
);
15064 StoreInt
<<= ElementSizeBits
;
15065 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Val
)) {
15066 StoreInt
|= C
->getAPIntValue()
15067 .zextOrTrunc(ElementSizeBits
)
15068 .zextOrTrunc(SizeInBits
);
15069 } else if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(Val
)) {
15070 StoreInt
|= C
->getValueAPF()
15072 .zextOrTrunc(ElementSizeBits
)
15073 .zextOrTrunc(SizeInBits
);
15074 // If fp truncation is necessary give up for now.
15075 if (MemVT
.getSizeInBits() != ElementSizeBits
)
15078 llvm_unreachable("Invalid constant element type");
15082 // Create the new Load and Store operations.
15083 StoredVal
= DAG
.getConstant(StoreInt
, DL
, StoreTy
);
15086 LSBaseSDNode
*FirstInChain
= StoreNodes
[0].MemNode
;
15087 SDValue NewChain
= getMergeStoreChains(StoreNodes
, NumStores
);
15089 // make sure we use trunc store if it's necessary to be legal.
15092 NewStore
= DAG
.getStore(NewChain
, DL
, StoredVal
, FirstInChain
->getBasePtr(),
15093 FirstInChain
->getPointerInfo(),
15094 FirstInChain
->getAlignment());
15095 } else { // Must be realized as a trunc store
15096 EVT LegalizedStoredValTy
=
15097 TLI
.getTypeToTransformTo(*DAG
.getContext(), StoredVal
.getValueType());
15098 unsigned LegalizedStoreSize
= LegalizedStoredValTy
.getSizeInBits();
15099 ConstantSDNode
*C
= cast
<ConstantSDNode
>(StoredVal
);
15100 SDValue ExtendedStoreVal
=
15101 DAG
.getConstant(C
->getAPIntValue().zextOrTrunc(LegalizedStoreSize
), DL
,
15102 LegalizedStoredValTy
);
15103 NewStore
= DAG
.getTruncStore(
15104 NewChain
, DL
, ExtendedStoreVal
, FirstInChain
->getBasePtr(),
15105 FirstInChain
->getPointerInfo(), StoredVal
.getValueType() /*TVT*/,
15106 FirstInChain
->getAlignment(),
15107 FirstInChain
->getMemOperand()->getFlags());
15110 // Replace all merged stores with the new store.
15111 for (unsigned i
= 0; i
< NumStores
; ++i
)
15112 CombineTo(StoreNodes
[i
].MemNode
, NewStore
);
15114 AddToWorklist(NewChain
.getNode());
15118 void DAGCombiner::getStoreMergeCandidates(
15119 StoreSDNode
*St
, SmallVectorImpl
<MemOpLink
> &StoreNodes
,
15120 SDNode
*&RootNode
) {
15121 // This holds the base pointer, index, and the offset in bytes from the base
15123 BaseIndexOffset BasePtr
= BaseIndexOffset::match(St
, DAG
);
15124 EVT MemVT
= St
->getMemoryVT();
15126 SDValue Val
= peekThroughBitcasts(St
->getValue());
15127 // We must have a base and an offset.
15128 if (!BasePtr
.getBase().getNode())
15131 // Do not handle stores to undef base pointers.
15132 if (BasePtr
.getBase().isUndef())
15135 bool IsConstantSrc
= isa
<ConstantSDNode
>(Val
) || isa
<ConstantFPSDNode
>(Val
);
15136 bool IsExtractVecSrc
= (Val
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
||
15137 Val
.getOpcode() == ISD::EXTRACT_SUBVECTOR
);
15138 bool IsLoadSrc
= isa
<LoadSDNode
>(Val
);
15139 BaseIndexOffset LBasePtr
;
15140 // Match on loadbaseptr if relevant.
15143 auto *Ld
= cast
<LoadSDNode
>(Val
);
15144 LBasePtr
= BaseIndexOffset::match(Ld
, DAG
);
15145 LoadVT
= Ld
->getMemoryVT();
15146 // Load and store should be the same type.
15147 if (MemVT
!= LoadVT
)
15149 // Loads must only have one use.
15150 if (!Ld
->hasNUsesOfValue(1, 0))
15152 // The memory operands must not be volatile/indexed/atomic.
15153 // TODO: May be able to relax for unordered atomics (see D66309)
15154 if (!Ld
->isSimple() || Ld
->isIndexed())
15157 auto CandidateMatch
= [&](StoreSDNode
*Other
, BaseIndexOffset
&Ptr
,
15158 int64_t &Offset
) -> bool {
15159 // The memory operands must not be volatile/indexed/atomic.
15160 // TODO: May be able to relax for unordered atomics (see D66309)
15161 if (!Other
->isSimple() || Other
->isIndexed())
15163 // Don't mix temporal stores with non-temporal stores.
15164 if (St
->isNonTemporal() != Other
->isNonTemporal())
15166 SDValue OtherBC
= peekThroughBitcasts(Other
->getValue());
15167 // Allow merging constants of different types as integers.
15168 bool NoTypeMatch
= (MemVT
.isInteger()) ? !MemVT
.bitsEq(Other
->getMemoryVT())
15169 : Other
->getMemoryVT() != MemVT
;
15173 // The Load's Base Ptr must also match
15174 if (LoadSDNode
*OtherLd
= dyn_cast
<LoadSDNode
>(OtherBC
)) {
15175 BaseIndexOffset LPtr
= BaseIndexOffset::match(OtherLd
, DAG
);
15176 if (LoadVT
!= OtherLd
->getMemoryVT())
15178 // Loads must only have one use.
15179 if (!OtherLd
->hasNUsesOfValue(1, 0))
15181 // The memory operands must not be volatile/indexed/atomic.
15182 // TODO: May be able to relax for unordered atomics (see D66309)
15183 if (!OtherLd
->isSimple() ||
15184 OtherLd
->isIndexed())
15186 // Don't mix temporal loads with non-temporal loads.
15187 if (cast
<LoadSDNode
>(Val
)->isNonTemporal() != OtherLd
->isNonTemporal())
15189 if (!(LBasePtr
.equalBaseIndex(LPtr
, DAG
)))
15194 if (IsConstantSrc
) {
15197 if (!(isa
<ConstantSDNode
>(OtherBC
) || isa
<ConstantFPSDNode
>(OtherBC
)))
15200 if (IsExtractVecSrc
) {
15201 // Do not merge truncated stores here.
15202 if (Other
->isTruncatingStore())
15204 if (!MemVT
.bitsEq(OtherBC
.getValueType()))
15206 if (OtherBC
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
&&
15207 OtherBC
.getOpcode() != ISD::EXTRACT_SUBVECTOR
)
15210 Ptr
= BaseIndexOffset::match(Other
, DAG
);
15211 return (BasePtr
.equalBaseIndex(Ptr
, DAG
, Offset
));
15214 // Check if the pair of StoreNode and the RootNode already bail out many
15215 // times which is over the limit in dependence check.
15216 auto OverLimitInDependenceCheck
= [&](SDNode
*StoreNode
,
15217 SDNode
*RootNode
) -> bool {
15218 auto RootCount
= StoreRootCountMap
.find(StoreNode
);
15219 if (RootCount
!= StoreRootCountMap
.end() &&
15220 RootCount
->second
.first
== RootNode
&&
15221 RootCount
->second
.second
> StoreMergeDependenceLimit
)
15226 // We looking for a root node which is an ancestor to all mergable
15227 // stores. We search up through a load, to our root and then down
15228 // through all children. For instance we will find Store{1,2,3} if
15229 // St is Store1, Store2. or Store3 where the root is not a load
15230 // which always true for nonvolatile ops. TODO: Expand
15231 // the search to find all valid candidates through multiple layers of loads.
15234 // |-------|-------|
15235 // Load Load Store3
15239 // FIXME: We should be able to climb and
15240 // descend TokenFactors to find candidates as well.
15242 RootNode
= St
->getChain().getNode();
15244 unsigned NumNodesExplored
= 0;
15245 if (LoadSDNode
*Ldn
= dyn_cast
<LoadSDNode
>(RootNode
)) {
15246 RootNode
= Ldn
->getChain().getNode();
15247 for (auto I
= RootNode
->use_begin(), E
= RootNode
->use_end();
15248 I
!= E
&& NumNodesExplored
< 1024; ++I
, ++NumNodesExplored
)
15249 if (I
.getOperandNo() == 0 && isa
<LoadSDNode
>(*I
)) // walk down chain
15250 for (auto I2
= (*I
)->use_begin(), E2
= (*I
)->use_end(); I2
!= E2
; ++I2
)
15251 if (I2
.getOperandNo() == 0)
15252 if (StoreSDNode
*OtherST
= dyn_cast
<StoreSDNode
>(*I2
)) {
15253 BaseIndexOffset Ptr
;
15255 if (CandidateMatch(OtherST
, Ptr
, PtrDiff
) &&
15256 !OverLimitInDependenceCheck(OtherST
, RootNode
))
15257 StoreNodes
.push_back(MemOpLink(OtherST
, PtrDiff
));
15260 for (auto I
= RootNode
->use_begin(), E
= RootNode
->use_end();
15261 I
!= E
&& NumNodesExplored
< 1024; ++I
, ++NumNodesExplored
)
15262 if (I
.getOperandNo() == 0)
15263 if (StoreSDNode
*OtherST
= dyn_cast
<StoreSDNode
>(*I
)) {
15264 BaseIndexOffset Ptr
;
15266 if (CandidateMatch(OtherST
, Ptr
, PtrDiff
) &&
15267 !OverLimitInDependenceCheck(OtherST
, RootNode
))
15268 StoreNodes
.push_back(MemOpLink(OtherST
, PtrDiff
));
15272 // We need to check that merging these stores does not cause a loop in
15273 // the DAG. Any store candidate may depend on another candidate
15274 // indirectly through its operand (we already consider dependencies
15275 // through the chain). Check in parallel by searching up from
15276 // non-chain operands of candidates.
15277 bool DAGCombiner::checkMergeStoreCandidatesForDependencies(
15278 SmallVectorImpl
<MemOpLink
> &StoreNodes
, unsigned NumStores
,
15279 SDNode
*RootNode
) {
15280 // FIXME: We should be able to truncate a full search of
15281 // predecessors by doing a BFS and keeping tabs the originating
15282 // stores from which worklist nodes come from in a similar way to
15283 // TokenFactor simplfication.
15285 SmallPtrSet
<const SDNode
*, 32> Visited
;
15286 SmallVector
<const SDNode
*, 8> Worklist
;
15288 // RootNode is a predecessor to all candidates so we need not search
15289 // past it. Add RootNode (peeking through TokenFactors). Do not count
15290 // these towards size check.
15292 Worklist
.push_back(RootNode
);
15293 while (!Worklist
.empty()) {
15294 auto N
= Worklist
.pop_back_val();
15295 if (!Visited
.insert(N
).second
)
15296 continue; // Already present in Visited.
15297 if (N
->getOpcode() == ISD::TokenFactor
) {
15298 for (SDValue Op
: N
->ops())
15299 Worklist
.push_back(Op
.getNode());
15303 // Don't count pruning nodes towards max.
15304 unsigned int Max
= 1024 + Visited
.size();
15305 // Search Ops of store candidates.
15306 for (unsigned i
= 0; i
< NumStores
; ++i
) {
15307 SDNode
*N
= StoreNodes
[i
].MemNode
;
15308 // Of the 4 Store Operands:
15309 // * Chain (Op 0) -> We have already considered these
15310 // in candidate selection and can be
15312 // * Value (Op 1) -> Cycles may happen (e.g. through load chains)
15313 // * Address (Op 2) -> Merged addresses may only vary by a fixed constant,
15314 // but aren't necessarily fromt the same base node, so
15315 // cycles possible (e.g. via indexed store).
15316 // * (Op 3) -> Represents the pre or post-indexing offset (or undef for
15317 // non-indexed stores). Not constant on all targets (e.g. ARM)
15318 // and so can participate in a cycle.
15319 for (unsigned j
= 1; j
< N
->getNumOperands(); ++j
)
15320 Worklist
.push_back(N
->getOperand(j
).getNode());
15322 // Search through DAG. We can stop early if we find a store node.
15323 for (unsigned i
= 0; i
< NumStores
; ++i
)
15324 if (SDNode::hasPredecessorHelper(StoreNodes
[i
].MemNode
, Visited
, Worklist
,
15326 // If the searching bail out, record the StoreNode and RootNode in the
15327 // StoreRootCountMap. If we have seen the pair many times over a limit,
15328 // we won't add the StoreNode into StoreNodes set again.
15329 if (Visited
.size() >= Max
) {
15330 auto &RootCount
= StoreRootCountMap
[StoreNodes
[i
].MemNode
];
15331 if (RootCount
.first
== RootNode
)
15332 RootCount
.second
++;
15334 RootCount
= {RootNode
, 1};
15341 bool DAGCombiner::MergeConsecutiveStores(StoreSDNode
*St
) {
15342 if (OptLevel
== CodeGenOpt::None
|| !EnableStoreMerging
)
15345 EVT MemVT
= St
->getMemoryVT();
15346 int64_t ElementSizeBytes
= MemVT
.getStoreSize();
15347 unsigned NumMemElts
= MemVT
.isVector() ? MemVT
.getVectorNumElements() : 1;
15349 if (MemVT
.getSizeInBits() * 2 > MaximumLegalStoreInBits
)
15352 bool NoVectors
= DAG
.getMachineFunction().getFunction().hasFnAttribute(
15353 Attribute::NoImplicitFloat
);
15355 // This function cannot currently deal with non-byte-sized memory sizes.
15356 if (ElementSizeBytes
* 8 != MemVT
.getSizeInBits())
15359 if (!MemVT
.isSimple())
15362 // Perform an early exit check. Do not bother looking at stored values that
15363 // are not constants, loads, or extracted vector elements.
15364 SDValue StoredVal
= peekThroughBitcasts(St
->getValue());
15365 bool IsLoadSrc
= isa
<LoadSDNode
>(StoredVal
);
15366 bool IsConstantSrc
= isa
<ConstantSDNode
>(StoredVal
) ||
15367 isa
<ConstantFPSDNode
>(StoredVal
);
15368 bool IsExtractVecSrc
= (StoredVal
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
||
15369 StoredVal
.getOpcode() == ISD::EXTRACT_SUBVECTOR
);
15370 bool IsNonTemporalStore
= St
->isNonTemporal();
15371 bool IsNonTemporalLoad
=
15372 IsLoadSrc
&& cast
<LoadSDNode
>(StoredVal
)->isNonTemporal();
15374 if (!IsConstantSrc
&& !IsLoadSrc
&& !IsExtractVecSrc
)
15377 SmallVector
<MemOpLink
, 8> StoreNodes
;
15379 // Find potential store merge candidates by searching through chain sub-DAG
15380 getStoreMergeCandidates(St
, StoreNodes
, RootNode
);
15382 // Check if there is anything to merge.
15383 if (StoreNodes
.size() < 2)
15386 // Sort the memory operands according to their distance from the
15388 llvm::sort(StoreNodes
, [](MemOpLink LHS
, MemOpLink RHS
) {
15389 return LHS
.OffsetFromBase
< RHS
.OffsetFromBase
;
15392 // Store Merge attempts to merge the lowest stores. This generally
15393 // works out as if successful, as the remaining stores are checked
15394 // after the first collection of stores is merged. However, in the
15395 // case that a non-mergeable store is found first, e.g., {p[-2],
15396 // p[0], p[1], p[2], p[3]}, we would fail and miss the subsequent
15397 // mergeable cases. To prevent this, we prune such stores from the
15398 // front of StoreNodes here.
15401 while (StoreNodes
.size() > 1) {
15402 size_t StartIdx
= 0;
15403 while ((StartIdx
+ 1 < StoreNodes
.size()) &&
15404 StoreNodes
[StartIdx
].OffsetFromBase
+ ElementSizeBytes
!=
15405 StoreNodes
[StartIdx
+ 1].OffsetFromBase
)
15408 // Bail if we don't have enough candidates to merge.
15409 if (StartIdx
+ 1 >= StoreNodes
.size())
15413 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + StartIdx
);
15415 // Scan the memory operations on the chain and find the first
15416 // non-consecutive store memory address.
15417 unsigned NumConsecutiveStores
= 1;
15418 int64_t StartAddress
= StoreNodes
[0].OffsetFromBase
;
15419 // Check that the addresses are consecutive starting from the second
15420 // element in the list of stores.
15421 for (unsigned i
= 1, e
= StoreNodes
.size(); i
< e
; ++i
) {
15422 int64_t CurrAddress
= StoreNodes
[i
].OffsetFromBase
;
15423 if (CurrAddress
- StartAddress
!= (ElementSizeBytes
* i
))
15425 NumConsecutiveStores
= i
+ 1;
15428 if (NumConsecutiveStores
< 2) {
15429 StoreNodes
.erase(StoreNodes
.begin(),
15430 StoreNodes
.begin() + NumConsecutiveStores
);
15434 // The node with the lowest store address.
15435 LLVMContext
&Context
= *DAG
.getContext();
15436 const DataLayout
&DL
= DAG
.getDataLayout();
15438 // Store the constants into memory as one consecutive store.
15439 if (IsConstantSrc
) {
15440 while (NumConsecutiveStores
>= 2) {
15441 LSBaseSDNode
*FirstInChain
= StoreNodes
[0].MemNode
;
15442 unsigned FirstStoreAS
= FirstInChain
->getAddressSpace();
15443 unsigned FirstStoreAlign
= FirstInChain
->getAlignment();
15444 unsigned LastLegalType
= 1;
15445 unsigned LastLegalVectorType
= 1;
15446 bool LastIntegerTrunc
= false;
15447 bool NonZero
= false;
15448 unsigned FirstZeroAfterNonZero
= NumConsecutiveStores
;
15449 for (unsigned i
= 0; i
< NumConsecutiveStores
; ++i
) {
15450 StoreSDNode
*ST
= cast
<StoreSDNode
>(StoreNodes
[i
].MemNode
);
15451 SDValue StoredVal
= ST
->getValue();
15452 bool IsElementZero
= false;
15453 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(StoredVal
))
15454 IsElementZero
= C
->isNullValue();
15455 else if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(StoredVal
))
15456 IsElementZero
= C
->getConstantFPValue()->isNullValue();
15457 if (IsElementZero
) {
15458 if (NonZero
&& FirstZeroAfterNonZero
== NumConsecutiveStores
)
15459 FirstZeroAfterNonZero
= i
;
15461 NonZero
|= !IsElementZero
;
15463 // Find a legal type for the constant store.
15464 unsigned SizeInBits
= (i
+ 1) * ElementSizeBytes
* 8;
15465 EVT StoreTy
= EVT::getIntegerVT(Context
, SizeInBits
);
15466 bool IsFast
= false;
15468 // Break early when size is too large to be legal.
15469 if (StoreTy
.getSizeInBits() > MaximumLegalStoreInBits
)
15472 if (TLI
.isTypeLegal(StoreTy
) &&
15473 TLI
.canMergeStoresTo(FirstStoreAS
, StoreTy
, DAG
) &&
15474 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
15475 *FirstInChain
->getMemOperand(), &IsFast
) &&
15477 LastIntegerTrunc
= false;
15478 LastLegalType
= i
+ 1;
15479 // Or check whether a truncstore is legal.
15480 } else if (TLI
.getTypeAction(Context
, StoreTy
) ==
15481 TargetLowering::TypePromoteInteger
) {
15482 EVT LegalizedStoredValTy
=
15483 TLI
.getTypeToTransformTo(Context
, StoredVal
.getValueType());
15484 if (TLI
.isTruncStoreLegal(LegalizedStoredValTy
, StoreTy
) &&
15485 TLI
.canMergeStoresTo(FirstStoreAS
, LegalizedStoredValTy
, DAG
) &&
15486 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
15487 *FirstInChain
->getMemOperand(),
15490 LastIntegerTrunc
= true;
15491 LastLegalType
= i
+ 1;
15495 // We only use vectors if the constant is known to be zero or the
15496 // target allows it and the function is not marked with the
15497 // noimplicitfloat attribute.
15499 TLI
.storeOfVectorConstantIsCheap(MemVT
, i
+ 1, FirstStoreAS
)) &&
15501 // Find a legal type for the vector store.
15502 unsigned Elts
= (i
+ 1) * NumMemElts
;
15503 EVT Ty
= EVT::getVectorVT(Context
, MemVT
.getScalarType(), Elts
);
15504 if (TLI
.isTypeLegal(Ty
) && TLI
.isTypeLegal(MemVT
) &&
15505 TLI
.canMergeStoresTo(FirstStoreAS
, Ty
, DAG
) &&
15506 TLI
.allowsMemoryAccess(
15507 Context
, DL
, Ty
, *FirstInChain
->getMemOperand(), &IsFast
) &&
15509 LastLegalVectorType
= i
+ 1;
15513 bool UseVector
= (LastLegalVectorType
> LastLegalType
) && !NoVectors
;
15514 unsigned NumElem
= (UseVector
) ? LastLegalVectorType
: LastLegalType
;
15516 // Check if we found a legal integer type that creates a meaningful
15519 // We know that candidate stores are in order and of correct
15520 // shape. While there is no mergeable sequence from the
15521 // beginning one may start later in the sequence. The only
15522 // reason a merge of size N could have failed where another of
15523 // the same size would not have, is if the alignment has
15524 // improved or we've dropped a non-zero value. Drop as many
15525 // candidates as we can here.
15526 unsigned NumSkip
= 1;
15528 (NumSkip
< NumConsecutiveStores
) &&
15529 (NumSkip
< FirstZeroAfterNonZero
) &&
15530 (StoreNodes
[NumSkip
].MemNode
->getAlignment() <= FirstStoreAlign
))
15533 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumSkip
);
15534 NumConsecutiveStores
-= NumSkip
;
15538 // Check that we can merge these candidates without causing a cycle.
15539 if (!checkMergeStoreCandidatesForDependencies(StoreNodes
, NumElem
,
15541 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumElem
);
15542 NumConsecutiveStores
-= NumElem
;
15546 RV
|= MergeStoresOfConstantsOrVecElts(StoreNodes
, MemVT
, NumElem
, true,
15547 UseVector
, LastIntegerTrunc
);
15549 // Remove merged stores for next iteration.
15550 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumElem
);
15551 NumConsecutiveStores
-= NumElem
;
15556 // When extracting multiple vector elements, try to store them
15557 // in one vector store rather than a sequence of scalar stores.
15558 if (IsExtractVecSrc
) {
15559 // Loop on Consecutive Stores on success.
15560 while (NumConsecutiveStores
>= 2) {
15561 LSBaseSDNode
*FirstInChain
= StoreNodes
[0].MemNode
;
15562 unsigned FirstStoreAS
= FirstInChain
->getAddressSpace();
15563 unsigned FirstStoreAlign
= FirstInChain
->getAlignment();
15564 unsigned NumStoresToMerge
= 1;
15565 for (unsigned i
= 0; i
< NumConsecutiveStores
; ++i
) {
15566 // Find a legal type for the vector store.
15567 unsigned Elts
= (i
+ 1) * NumMemElts
;
15569 EVT::getVectorVT(*DAG
.getContext(), MemVT
.getScalarType(), Elts
);
15572 // Break early when size is too large to be legal.
15573 if (Ty
.getSizeInBits() > MaximumLegalStoreInBits
)
15576 if (TLI
.isTypeLegal(Ty
) &&
15577 TLI
.canMergeStoresTo(FirstStoreAS
, Ty
, DAG
) &&
15578 TLI
.allowsMemoryAccess(Context
, DL
, Ty
,
15579 *FirstInChain
->getMemOperand(), &IsFast
) &&
15581 NumStoresToMerge
= i
+ 1;
15584 // Check if we found a legal integer type creating a meaningful
15586 if (NumStoresToMerge
< 2) {
15587 // We know that candidate stores are in order and of correct
15588 // shape. While there is no mergeable sequence from the
15589 // beginning one may start later in the sequence. The only
15590 // reason a merge of size N could have failed where another of
15591 // the same size would not have, is if the alignment has
15592 // improved. Drop as many candidates as we can here.
15593 unsigned NumSkip
= 1;
15595 (NumSkip
< NumConsecutiveStores
) &&
15596 (StoreNodes
[NumSkip
].MemNode
->getAlignment() <= FirstStoreAlign
))
15599 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumSkip
);
15600 NumConsecutiveStores
-= NumSkip
;
15604 // Check that we can merge these candidates without causing a cycle.
15605 if (!checkMergeStoreCandidatesForDependencies(
15606 StoreNodes
, NumStoresToMerge
, RootNode
)) {
15607 StoreNodes
.erase(StoreNodes
.begin(),
15608 StoreNodes
.begin() + NumStoresToMerge
);
15609 NumConsecutiveStores
-= NumStoresToMerge
;
15613 RV
|= MergeStoresOfConstantsOrVecElts(
15614 StoreNodes
, MemVT
, NumStoresToMerge
, false, true, false);
15616 StoreNodes
.erase(StoreNodes
.begin(),
15617 StoreNodes
.begin() + NumStoresToMerge
);
15618 NumConsecutiveStores
-= NumStoresToMerge
;
15623 // Below we handle the case of multiple consecutive stores that
15624 // come from multiple consecutive loads. We merge them into a single
15625 // wide load and a single wide store.
15627 // Look for load nodes which are used by the stored values.
15628 SmallVector
<MemOpLink
, 8> LoadNodes
;
15630 // Find acceptable loads. Loads need to have the same chain (token factor),
15631 // must not be zext, volatile, indexed, and they must be consecutive.
15632 BaseIndexOffset LdBasePtr
;
15634 for (unsigned i
= 0; i
< NumConsecutiveStores
; ++i
) {
15635 StoreSDNode
*St
= cast
<StoreSDNode
>(StoreNodes
[i
].MemNode
);
15636 SDValue Val
= peekThroughBitcasts(St
->getValue());
15637 LoadSDNode
*Ld
= cast
<LoadSDNode
>(Val
);
15639 BaseIndexOffset LdPtr
= BaseIndexOffset::match(Ld
, DAG
);
15640 // If this is not the first ptr that we check.
15641 int64_t LdOffset
= 0;
15642 if (LdBasePtr
.getBase().getNode()) {
15643 // The base ptr must be the same.
15644 if (!LdBasePtr
.equalBaseIndex(LdPtr
, DAG
, LdOffset
))
15647 // Check that all other base pointers are the same as this one.
15651 // We found a potential memory operand to merge.
15652 LoadNodes
.push_back(MemOpLink(Ld
, LdOffset
));
15655 while (NumConsecutiveStores
>= 2 && LoadNodes
.size() >= 2) {
15656 // If we have load/store pair instructions and we only have two values,
15657 // don't bother merging.
15658 unsigned RequiredAlignment
;
15659 if (LoadNodes
.size() == 2 &&
15660 TLI
.hasPairedLoad(MemVT
, RequiredAlignment
) &&
15661 StoreNodes
[0].MemNode
->getAlignment() >= RequiredAlignment
) {
15662 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + 2);
15663 LoadNodes
.erase(LoadNodes
.begin(), LoadNodes
.begin() + 2);
15666 LSBaseSDNode
*FirstInChain
= StoreNodes
[0].MemNode
;
15667 unsigned FirstStoreAS
= FirstInChain
->getAddressSpace();
15668 unsigned FirstStoreAlign
= FirstInChain
->getAlignment();
15669 LoadSDNode
*FirstLoad
= cast
<LoadSDNode
>(LoadNodes
[0].MemNode
);
15670 unsigned FirstLoadAlign
= FirstLoad
->getAlignment();
15672 // Scan the memory operations on the chain and find the first
15673 // non-consecutive load memory address. These variables hold the index in
15674 // the store node array.
15676 unsigned LastConsecutiveLoad
= 1;
15678 // This variable refers to the size and not index in the array.
15679 unsigned LastLegalVectorType
= 1;
15680 unsigned LastLegalIntegerType
= 1;
15681 bool isDereferenceable
= true;
15682 bool DoIntegerTruncate
= false;
15683 StartAddress
= LoadNodes
[0].OffsetFromBase
;
15684 SDValue FirstChain
= FirstLoad
->getChain();
15685 for (unsigned i
= 1; i
< LoadNodes
.size(); ++i
) {
15686 // All loads must share the same chain.
15687 if (LoadNodes
[i
].MemNode
->getChain() != FirstChain
)
15690 int64_t CurrAddress
= LoadNodes
[i
].OffsetFromBase
;
15691 if (CurrAddress
- StartAddress
!= (ElementSizeBytes
* i
))
15693 LastConsecutiveLoad
= i
;
15695 if (isDereferenceable
&& !LoadNodes
[i
].MemNode
->isDereferenceable())
15696 isDereferenceable
= false;
15698 // Find a legal type for the vector store.
15699 unsigned Elts
= (i
+ 1) * NumMemElts
;
15700 EVT StoreTy
= EVT::getVectorVT(Context
, MemVT
.getScalarType(), Elts
);
15702 // Break early when size is too large to be legal.
15703 if (StoreTy
.getSizeInBits() > MaximumLegalStoreInBits
)
15706 bool IsFastSt
, IsFastLd
;
15707 if (TLI
.isTypeLegal(StoreTy
) &&
15708 TLI
.canMergeStoresTo(FirstStoreAS
, StoreTy
, DAG
) &&
15709 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
15710 *FirstInChain
->getMemOperand(), &IsFastSt
) &&
15712 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
15713 *FirstLoad
->getMemOperand(), &IsFastLd
) &&
15715 LastLegalVectorType
= i
+ 1;
15718 // Find a legal type for the integer store.
15719 unsigned SizeInBits
= (i
+ 1) * ElementSizeBytes
* 8;
15720 StoreTy
= EVT::getIntegerVT(Context
, SizeInBits
);
15721 if (TLI
.isTypeLegal(StoreTy
) &&
15722 TLI
.canMergeStoresTo(FirstStoreAS
, StoreTy
, DAG
) &&
15723 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
15724 *FirstInChain
->getMemOperand(), &IsFastSt
) &&
15726 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
15727 *FirstLoad
->getMemOperand(), &IsFastLd
) &&
15729 LastLegalIntegerType
= i
+ 1;
15730 DoIntegerTruncate
= false;
15731 // Or check whether a truncstore and extload is legal.
15732 } else if (TLI
.getTypeAction(Context
, StoreTy
) ==
15733 TargetLowering::TypePromoteInteger
) {
15734 EVT LegalizedStoredValTy
= TLI
.getTypeToTransformTo(Context
, StoreTy
);
15735 if (TLI
.isTruncStoreLegal(LegalizedStoredValTy
, StoreTy
) &&
15736 TLI
.canMergeStoresTo(FirstStoreAS
, LegalizedStoredValTy
, DAG
) &&
15737 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, LegalizedStoredValTy
,
15739 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, LegalizedStoredValTy
,
15741 TLI
.isLoadExtLegal(ISD::EXTLOAD
, LegalizedStoredValTy
, StoreTy
) &&
15742 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
15743 *FirstInChain
->getMemOperand(),
15746 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
15747 *FirstLoad
->getMemOperand(), &IsFastLd
) &&
15749 LastLegalIntegerType
= i
+ 1;
15750 DoIntegerTruncate
= true;
15755 // Only use vector types if the vector type is larger than the integer
15756 // type. If they are the same, use integers.
15758 LastLegalVectorType
> LastLegalIntegerType
&& !NoVectors
;
15759 unsigned LastLegalType
=
15760 std::max(LastLegalVectorType
, LastLegalIntegerType
);
15762 // We add +1 here because the LastXXX variables refer to location while
15763 // the NumElem refers to array/index size.
15765 std::min(NumConsecutiveStores
, LastConsecutiveLoad
+ 1);
15766 NumElem
= std::min(LastLegalType
, NumElem
);
15769 // We know that candidate stores are in order and of correct
15770 // shape. While there is no mergeable sequence from the
15771 // beginning one may start later in the sequence. The only
15772 // reason a merge of size N could have failed where another of
15773 // the same size would not have is if the alignment or either
15774 // the load or store has improved. Drop as many candidates as we
15776 unsigned NumSkip
= 1;
15777 while ((NumSkip
< LoadNodes
.size()) &&
15778 (LoadNodes
[NumSkip
].MemNode
->getAlignment() <= FirstLoadAlign
) &&
15779 (StoreNodes
[NumSkip
].MemNode
->getAlignment() <= FirstStoreAlign
))
15781 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumSkip
);
15782 LoadNodes
.erase(LoadNodes
.begin(), LoadNodes
.begin() + NumSkip
);
15783 NumConsecutiveStores
-= NumSkip
;
15787 // Check that we can merge these candidates without causing a cycle.
15788 if (!checkMergeStoreCandidatesForDependencies(StoreNodes
, NumElem
,
15790 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumElem
);
15791 LoadNodes
.erase(LoadNodes
.begin(), LoadNodes
.begin() + NumElem
);
15792 NumConsecutiveStores
-= NumElem
;
15796 // Find if it is better to use vectors or integers to load and store
15800 // Find a legal type for the vector store.
15801 unsigned Elts
= NumElem
* NumMemElts
;
15802 JointMemOpVT
= EVT::getVectorVT(Context
, MemVT
.getScalarType(), Elts
);
15804 unsigned SizeInBits
= NumElem
* ElementSizeBytes
* 8;
15805 JointMemOpVT
= EVT::getIntegerVT(Context
, SizeInBits
);
15808 SDLoc
LoadDL(LoadNodes
[0].MemNode
);
15809 SDLoc
StoreDL(StoreNodes
[0].MemNode
);
15811 // The merged loads are required to have the same incoming chain, so
15812 // using the first's chain is acceptable.
15814 SDValue NewStoreChain
= getMergeStoreChains(StoreNodes
, NumElem
);
15815 AddToWorklist(NewStoreChain
.getNode());
15817 MachineMemOperand::Flags LdMMOFlags
=
15818 isDereferenceable
? MachineMemOperand::MODereferenceable
15819 : MachineMemOperand::MONone
;
15820 if (IsNonTemporalLoad
)
15821 LdMMOFlags
|= MachineMemOperand::MONonTemporal
;
15823 MachineMemOperand::Flags StMMOFlags
=
15824 IsNonTemporalStore
? MachineMemOperand::MONonTemporal
15825 : MachineMemOperand::MONone
;
15827 SDValue NewLoad
, NewStore
;
15828 if (UseVectorTy
|| !DoIntegerTruncate
) {
15830 DAG
.getLoad(JointMemOpVT
, LoadDL
, FirstLoad
->getChain(),
15831 FirstLoad
->getBasePtr(), FirstLoad
->getPointerInfo(),
15832 FirstLoadAlign
, LdMMOFlags
);
15833 NewStore
= DAG
.getStore(
15834 NewStoreChain
, StoreDL
, NewLoad
, FirstInChain
->getBasePtr(),
15835 FirstInChain
->getPointerInfo(), FirstStoreAlign
, StMMOFlags
);
15836 } else { // This must be the truncstore/extload case
15838 TLI
.getTypeToTransformTo(*DAG
.getContext(), JointMemOpVT
);
15839 NewLoad
= DAG
.getExtLoad(ISD::EXTLOAD
, LoadDL
, ExtendedTy
,
15840 FirstLoad
->getChain(), FirstLoad
->getBasePtr(),
15841 FirstLoad
->getPointerInfo(), JointMemOpVT
,
15842 FirstLoadAlign
, LdMMOFlags
);
15843 NewStore
= DAG
.getTruncStore(NewStoreChain
, StoreDL
, NewLoad
,
15844 FirstInChain
->getBasePtr(),
15845 FirstInChain
->getPointerInfo(),
15846 JointMemOpVT
, FirstInChain
->getAlignment(),
15847 FirstInChain
->getMemOperand()->getFlags());
15850 // Transfer chain users from old loads to the new load.
15851 for (unsigned i
= 0; i
< NumElem
; ++i
) {
15852 LoadSDNode
*Ld
= cast
<LoadSDNode
>(LoadNodes
[i
].MemNode
);
15853 DAG
.ReplaceAllUsesOfValueWith(SDValue(Ld
, 1),
15854 SDValue(NewLoad
.getNode(), 1));
15857 // Replace the all stores with the new store. Recursively remove
15858 // corresponding value if its no longer used.
15859 for (unsigned i
= 0; i
< NumElem
; ++i
) {
15860 SDValue Val
= StoreNodes
[i
].MemNode
->getOperand(1);
15861 CombineTo(StoreNodes
[i
].MemNode
, NewStore
);
15862 if (Val
.getNode()->use_empty())
15863 recursivelyDeleteUnusedNodes(Val
.getNode());
15867 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumElem
);
15868 LoadNodes
.erase(LoadNodes
.begin(), LoadNodes
.begin() + NumElem
);
15869 NumConsecutiveStores
-= NumElem
;
15875 SDValue
DAGCombiner::replaceStoreChain(StoreSDNode
*ST
, SDValue BetterChain
) {
15879 // Replace the chain to avoid dependency.
15880 if (ST
->isTruncatingStore()) {
15881 ReplStore
= DAG
.getTruncStore(BetterChain
, SL
, ST
->getValue(),
15882 ST
->getBasePtr(), ST
->getMemoryVT(),
15883 ST
->getMemOperand());
15885 ReplStore
= DAG
.getStore(BetterChain
, SL
, ST
->getValue(), ST
->getBasePtr(),
15886 ST
->getMemOperand());
15889 // Create token to keep both nodes around.
15890 SDValue Token
= DAG
.getNode(ISD::TokenFactor
, SL
,
15891 MVT::Other
, ST
->getChain(), ReplStore
);
15893 // Make sure the new and old chains are cleaned up.
15894 AddToWorklist(Token
.getNode());
15896 // Don't add users to work list.
15897 return CombineTo(ST
, Token
, false);
15900 SDValue
DAGCombiner::replaceStoreOfFPConstant(StoreSDNode
*ST
) {
15901 SDValue Value
= ST
->getValue();
15902 if (Value
.getOpcode() == ISD::TargetConstantFP
)
15907 SDValue Chain
= ST
->getChain();
15908 SDValue Ptr
= ST
->getBasePtr();
15910 const ConstantFPSDNode
*CFP
= cast
<ConstantFPSDNode
>(Value
);
15912 // NOTE: If the original store is volatile, this transform must not increase
15913 // the number of stores. For example, on x86-32 an f64 can be stored in one
15914 // processor operation but an i64 (which is not legal) requires two. So the
15915 // transform should not be done in this case.
15918 switch (CFP
->getSimpleValueType(0).SimpleTy
) {
15920 llvm_unreachable("Unknown FP type");
15921 case MVT::f16
: // We don't do this for these yet.
15927 if ((isTypeLegal(MVT::i32
) && !LegalOperations
&& ST
->isSimple()) ||
15928 TLI
.isOperationLegalOrCustom(ISD::STORE
, MVT::i32
)) {
15930 Tmp
= DAG
.getConstant((uint32_t)CFP
->getValueAPF().
15931 bitcastToAPInt().getZExtValue(), SDLoc(CFP
),
15933 return DAG
.getStore(Chain
, DL
, Tmp
, Ptr
, ST
->getMemOperand());
15938 if ((TLI
.isTypeLegal(MVT::i64
) && !LegalOperations
&&
15940 TLI
.isOperationLegalOrCustom(ISD::STORE
, MVT::i64
)) {
15942 Tmp
= DAG
.getConstant(CFP
->getValueAPF().bitcastToAPInt().
15943 getZExtValue(), SDLoc(CFP
), MVT::i64
);
15944 return DAG
.getStore(Chain
, DL
, Tmp
,
15945 Ptr
, ST
->getMemOperand());
15948 if (ST
->isSimple() &&
15949 TLI
.isOperationLegalOrCustom(ISD::STORE
, MVT::i32
)) {
15950 // Many FP stores are not made apparent until after legalize, e.g. for
15951 // argument passing. Since this is so common, custom legalize the
15952 // 64-bit integer store into two 32-bit stores.
15953 uint64_t Val
= CFP
->getValueAPF().bitcastToAPInt().getZExtValue();
15954 SDValue Lo
= DAG
.getConstant(Val
& 0xFFFFFFFF, SDLoc(CFP
), MVT::i32
);
15955 SDValue Hi
= DAG
.getConstant(Val
>> 32, SDLoc(CFP
), MVT::i32
);
15956 if (DAG
.getDataLayout().isBigEndian())
15959 unsigned Alignment
= ST
->getAlignment();
15960 MachineMemOperand::Flags MMOFlags
= ST
->getMemOperand()->getFlags();
15961 AAMDNodes AAInfo
= ST
->getAAInfo();
15963 SDValue St0
= DAG
.getStore(Chain
, DL
, Lo
, Ptr
, ST
->getPointerInfo(),
15964 ST
->getAlignment(), MMOFlags
, AAInfo
);
15965 Ptr
= DAG
.getNode(ISD::ADD
, DL
, Ptr
.getValueType(), Ptr
,
15966 DAG
.getConstant(4, DL
, Ptr
.getValueType()));
15967 Alignment
= MinAlign(Alignment
, 4U);
15968 SDValue St1
= DAG
.getStore(Chain
, DL
, Hi
, Ptr
,
15969 ST
->getPointerInfo().getWithOffset(4),
15970 Alignment
, MMOFlags
, AAInfo
);
15971 return DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
,
15979 SDValue
DAGCombiner::visitSTORE(SDNode
*N
) {
15980 StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
15981 SDValue Chain
= ST
->getChain();
15982 SDValue Value
= ST
->getValue();
15983 SDValue Ptr
= ST
->getBasePtr();
15985 // If this is a store of a bit convert, store the input value if the
15986 // resultant store does not need a higher alignment than the original.
15987 if (Value
.getOpcode() == ISD::BITCAST
&& !ST
->isTruncatingStore() &&
15988 ST
->isUnindexed()) {
15989 EVT SVT
= Value
.getOperand(0).getValueType();
15990 // If the store is volatile, we only want to change the store type if the
15991 // resulting store is legal. Otherwise we might increase the number of
15992 // memory accesses. We don't care if the original type was legal or not
15993 // as we assume software couldn't rely on the number of accesses of an
15995 // TODO: May be able to relax for unordered atomics (see D66309)
15996 if (((!LegalOperations
&& ST
->isSimple()) ||
15997 TLI
.isOperationLegal(ISD::STORE
, SVT
)) &&
15998 TLI
.isStoreBitCastBeneficial(Value
.getValueType(), SVT
,
15999 DAG
, *ST
->getMemOperand())) {
16000 return DAG
.getStore(Chain
, SDLoc(N
), Value
.getOperand(0), Ptr
,
16001 ST
->getPointerInfo(), ST
->getAlignment(),
16002 ST
->getMemOperand()->getFlags(), ST
->getAAInfo());
16006 // Turn 'store undef, Ptr' -> nothing.
16007 if (Value
.isUndef() && ST
->isUnindexed())
16010 // Try to infer better alignment information than the store already has.
16011 if (OptLevel
!= CodeGenOpt::None
&& ST
->isUnindexed()) {
16012 if (unsigned Align
= DAG
.InferPtrAlignment(Ptr
)) {
16013 if (Align
> ST
->getAlignment() && ST
->getSrcValueOffset() % Align
== 0) {
16015 DAG
.getTruncStore(Chain
, SDLoc(N
), Value
, Ptr
, ST
->getPointerInfo(),
16016 ST
->getMemoryVT(), Align
,
16017 ST
->getMemOperand()->getFlags(), ST
->getAAInfo());
16018 // NewStore will always be N as we are only refining the alignment
16019 assert(NewStore
.getNode() == N
);
16025 // Try transforming a pair floating point load / store ops to integer
16026 // load / store ops.
16027 if (SDValue NewST
= TransformFPLoadStorePair(N
))
16030 // Try transforming several stores into STORE (BSWAP).
16031 if (SDValue Store
= MatchStoreCombine(ST
))
16034 if (ST
->isUnindexed()) {
16035 // Walk up chain skipping non-aliasing memory nodes, on this store and any
16036 // adjacent stores.
16037 if (findBetterNeighborChains(ST
)) {
16038 // replaceStoreChain uses CombineTo, which handled all of the worklist
16039 // manipulation. Return the original node to not do anything else.
16040 return SDValue(ST
, 0);
16042 Chain
= ST
->getChain();
16045 // FIXME: is there such a thing as a truncating indexed store?
16046 if (ST
->isTruncatingStore() && ST
->isUnindexed() &&
16047 Value
.getValueType().isInteger() &&
16048 (!isa
<ConstantSDNode
>(Value
) ||
16049 !cast
<ConstantSDNode
>(Value
)->isOpaque())) {
16050 APInt TruncDemandedBits
=
16051 APInt::getLowBitsSet(Value
.getScalarValueSizeInBits(),
16052 ST
->getMemoryVT().getScalarSizeInBits());
16054 // See if we can simplify the input to this truncstore with knowledge that
16055 // only the low bits are being used. For example:
16056 // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8"
16057 AddToWorklist(Value
.getNode());
16058 if (SDValue Shorter
= DAG
.GetDemandedBits(Value
, TruncDemandedBits
))
16059 return DAG
.getTruncStore(Chain
, SDLoc(N
), Shorter
, Ptr
, ST
->getMemoryVT(),
16060 ST
->getMemOperand());
16062 // Otherwise, see if we can simplify the operation with
16063 // SimplifyDemandedBits, which only works if the value has a single use.
16064 if (SimplifyDemandedBits(Value
, TruncDemandedBits
)) {
16065 // Re-visit the store if anything changed and the store hasn't been merged
16066 // with another node (N is deleted) SimplifyDemandedBits will add Value's
16067 // node back to the worklist if necessary, but we also need to re-visit
16068 // the Store node itself.
16069 if (N
->getOpcode() != ISD::DELETED_NODE
)
16071 return SDValue(N
, 0);
16075 // If this is a load followed by a store to the same location, then the store
16077 // TODO: Can relax for unordered atomics (see D66309)
16078 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Value
)) {
16079 if (Ld
->getBasePtr() == Ptr
&& ST
->getMemoryVT() == Ld
->getMemoryVT() &&
16080 ST
->isUnindexed() && ST
->isSimple() &&
16081 // There can't be any side effects between the load and store, such as
16082 // a call or store.
16083 Chain
.reachesChainWithoutSideEffects(SDValue(Ld
, 1))) {
16084 // The store is dead, remove it.
16089 // TODO: Can relax for unordered atomics (see D66309)
16090 if (StoreSDNode
*ST1
= dyn_cast
<StoreSDNode
>(Chain
)) {
16091 if (ST
->isUnindexed() && ST
->isSimple() &&
16092 ST1
->isUnindexed() && ST1
->isSimple()) {
16093 if (ST1
->getBasePtr() == Ptr
&& ST1
->getValue() == Value
&&
16094 ST
->getMemoryVT() == ST1
->getMemoryVT()) {
16095 // If this is a store followed by a store with the same value to the
16096 // same location, then the store is dead/noop.
16100 if (OptLevel
!= CodeGenOpt::None
&& ST1
->hasOneUse() &&
16101 !ST1
->getBasePtr().isUndef()) {
16102 const BaseIndexOffset STBase
= BaseIndexOffset::match(ST
, DAG
);
16103 const BaseIndexOffset ChainBase
= BaseIndexOffset::match(ST1
, DAG
);
16104 unsigned STBitSize
= ST
->getMemoryVT().getSizeInBits();
16105 unsigned ChainBitSize
= ST1
->getMemoryVT().getSizeInBits();
16106 // If this is a store who's preceding store to a subset of the current
16107 // location and no one other node is chained to that store we can
16108 // effectively drop the store. Do not remove stores to undef as they may
16109 // be used as data sinks.
16110 if (STBase
.contains(DAG
, STBitSize
, ChainBase
, ChainBitSize
)) {
16111 CombineTo(ST1
, ST1
->getChain());
16115 // If ST stores to a subset of preceding store's write set, we may be
16116 // able to fold ST's value into the preceding stored value. As we know
16117 // the other uses of ST1's chain are unconcerned with ST, this folding
16118 // will not affect those nodes.
16120 if (ChainBase
.contains(DAG
, ChainBitSize
, STBase
, STBitSize
,
16122 SDValue ChainValue
= ST1
->getValue();
16123 if (auto *C1
= dyn_cast
<ConstantSDNode
>(ChainValue
)) {
16124 if (auto *C
= dyn_cast
<ConstantSDNode
>(Value
)) {
16125 APInt Val
= C1
->getAPIntValue();
16126 APInt InsertVal
= C
->getAPIntValue().zextOrTrunc(STBitSize
);
16127 // FIXME: Handle Big-endian mode.
16128 if (!DAG
.getDataLayout().isBigEndian()) {
16129 Val
.insertBits(InsertVal
, BitOffset
);
16131 DAG
.getConstant(Val
, SDLoc(C
), ChainValue
.getValueType(),
16132 C1
->isTargetOpcode(), C1
->isOpaque());
16133 SDNode
*NewST1
= DAG
.UpdateNodeOperands(
16134 ST1
, ST1
->getChain(), NewSDVal
, ST1
->getOperand(2),
16135 ST1
->getOperand(3));
16136 return CombineTo(ST
, SDValue(NewST1
, 0));
16140 } // End ST subset of ST1 case.
16145 // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
16146 // truncating store. We can do this even if this is already a truncstore.
16147 if ((Value
.getOpcode() == ISD::FP_ROUND
|| Value
.getOpcode() == ISD::TRUNCATE
)
16148 && Value
.getNode()->hasOneUse() && ST
->isUnindexed() &&
16149 TLI
.isTruncStoreLegal(Value
.getOperand(0).getValueType(),
16150 ST
->getMemoryVT())) {
16151 return DAG
.getTruncStore(Chain
, SDLoc(N
), Value
.getOperand(0),
16152 Ptr
, ST
->getMemoryVT(), ST
->getMemOperand());
16155 // Always perform this optimization before types are legal. If the target
16156 // prefers, also try this after legalization to catch stores that were created
16157 // by intrinsics or other nodes.
16158 if (!LegalTypes
|| (TLI
.mergeStoresAfterLegalization(ST
->getMemoryVT()))) {
16160 // There can be multiple store sequences on the same chain.
16161 // Keep trying to merge store sequences until we are unable to do so
16162 // or until we merge the last store on the chain.
16163 bool Changed
= MergeConsecutiveStores(ST
);
16164 if (!Changed
) break;
16165 // Return N as merge only uses CombineTo and no worklist clean
16166 // up is necessary.
16167 if (N
->getOpcode() == ISD::DELETED_NODE
|| !isa
<StoreSDNode
>(N
))
16168 return SDValue(N
, 0);
16172 // Try transforming N to an indexed store.
16173 if (CombineToPreIndexedLoadStore(N
) || CombineToPostIndexedLoadStore(N
))
16174 return SDValue(N
, 0);
16176 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
16178 // Make sure to do this only after attempting to merge stores in order to
16179 // avoid changing the types of some subset of stores due to visit order,
16180 // preventing their merging.
16181 if (isa
<ConstantFPSDNode
>(ST
->getValue())) {
16182 if (SDValue NewSt
= replaceStoreOfFPConstant(ST
))
16186 if (SDValue NewSt
= splitMergedValStore(ST
))
16189 return ReduceLoadOpStoreWidth(N
);
16192 SDValue
DAGCombiner::visitLIFETIME_END(SDNode
*N
) {
16193 const auto *LifetimeEnd
= cast
<LifetimeSDNode
>(N
);
16194 if (!LifetimeEnd
->hasOffset())
16197 const BaseIndexOffset
LifetimeEndBase(N
->getOperand(1), SDValue(),
16198 LifetimeEnd
->getOffset(), false);
16200 // We walk up the chains to find stores.
16201 SmallVector
<SDValue
, 8> Chains
= {N
->getOperand(0)};
16202 while (!Chains
.empty()) {
16203 SDValue Chain
= Chains
.back();
16205 if (!Chain
.hasOneUse())
16207 switch (Chain
.getOpcode()) {
16208 case ISD::TokenFactor
:
16209 for (unsigned Nops
= Chain
.getNumOperands(); Nops
;)
16210 Chains
.push_back(Chain
.getOperand(--Nops
));
16212 case ISD::LIFETIME_START
:
16213 case ISD::LIFETIME_END
:
16214 // We can forward past any lifetime start/end that can be proven not to
16216 if (!isAlias(Chain
.getNode(), N
))
16217 Chains
.push_back(Chain
.getOperand(0));
16220 StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(Chain
);
16221 // TODO: Can relax for unordered atomics (see D66309)
16222 if (!ST
->isSimple() || ST
->isIndexed())
16224 const BaseIndexOffset StoreBase
= BaseIndexOffset::match(ST
, DAG
);
16225 // If we store purely within object bounds just before its lifetime ends,
16226 // we can remove the store.
16227 if (LifetimeEndBase
.contains(DAG
, LifetimeEnd
->getSize() * 8, StoreBase
,
16228 ST
->getMemoryVT().getStoreSizeInBits())) {
16229 LLVM_DEBUG(dbgs() << "\nRemoving store:"; StoreBase
.dump();
16230 dbgs() << "\nwithin LIFETIME_END of : ";
16231 LifetimeEndBase
.dump(); dbgs() << "\n");
16232 CombineTo(ST
, ST
->getChain());
16233 return SDValue(N
, 0);
16241 /// For the instruction sequence of store below, F and I values
16242 /// are bundled together as an i64 value before being stored into memory.
16243 /// Sometimes it is more efficent to generate separate stores for F and I,
16244 /// which can remove the bitwise instructions or sink them to colder places.
16246 /// (store (or (zext (bitcast F to i32) to i64),
16247 /// (shl (zext I to i64), 32)), addr) -->
16248 /// (store F, addr) and (store I, addr+4)
16250 /// Similarly, splitting for other merged store can also be beneficial, like:
16251 /// For pair of {i32, i32}, i64 store --> two i32 stores.
16252 /// For pair of {i32, i16}, i64 store --> two i32 stores.
16253 /// For pair of {i16, i16}, i32 store --> two i16 stores.
16254 /// For pair of {i16, i8}, i32 store --> two i16 stores.
16255 /// For pair of {i8, i8}, i16 store --> two i8 stores.
16257 /// We allow each target to determine specifically which kind of splitting is
16260 /// The store patterns are commonly seen from the simple code snippet below
16261 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
16262 /// void goo(const std::pair<int, float> &);
16265 /// goo(std::make_pair(tmp, ftmp));
16269 SDValue
DAGCombiner::splitMergedValStore(StoreSDNode
*ST
) {
16270 if (OptLevel
== CodeGenOpt::None
)
16273 SDValue Val
= ST
->getValue();
16276 // Match OR operand.
16277 if (!Val
.getValueType().isScalarInteger() || Val
.getOpcode() != ISD::OR
)
16280 // Match SHL operand and get Lower and Higher parts of Val.
16281 SDValue Op1
= Val
.getOperand(0);
16282 SDValue Op2
= Val
.getOperand(1);
16284 if (Op1
.getOpcode() != ISD::SHL
) {
16285 std::swap(Op1
, Op2
);
16286 if (Op1
.getOpcode() != ISD::SHL
)
16290 Hi
= Op1
.getOperand(0);
16291 if (!Op1
.hasOneUse())
16294 // Match shift amount to HalfValBitSize.
16295 unsigned HalfValBitSize
= Val
.getValueSizeInBits() / 2;
16296 ConstantSDNode
*ShAmt
= dyn_cast
<ConstantSDNode
>(Op1
.getOperand(1));
16297 if (!ShAmt
|| ShAmt
->getAPIntValue() != HalfValBitSize
)
16300 // Lo and Hi are zero-extended from int with size less equal than 32
16302 if (Lo
.getOpcode() != ISD::ZERO_EXTEND
|| !Lo
.hasOneUse() ||
16303 !Lo
.getOperand(0).getValueType().isScalarInteger() ||
16304 Lo
.getOperand(0).getValueSizeInBits() > HalfValBitSize
||
16305 Hi
.getOpcode() != ISD::ZERO_EXTEND
|| !Hi
.hasOneUse() ||
16306 !Hi
.getOperand(0).getValueType().isScalarInteger() ||
16307 Hi
.getOperand(0).getValueSizeInBits() > HalfValBitSize
)
16310 // Use the EVT of low and high parts before bitcast as the input
16311 // of target query.
16312 EVT LowTy
= (Lo
.getOperand(0).getOpcode() == ISD::BITCAST
)
16313 ? Lo
.getOperand(0).getValueType()
16314 : Lo
.getValueType();
16315 EVT HighTy
= (Hi
.getOperand(0).getOpcode() == ISD::BITCAST
)
16316 ? Hi
.getOperand(0).getValueType()
16317 : Hi
.getValueType();
16318 if (!TLI
.isMultiStoresCheaperThanBitsMerge(LowTy
, HighTy
))
16321 // Start to split store.
16322 unsigned Alignment
= ST
->getAlignment();
16323 MachineMemOperand::Flags MMOFlags
= ST
->getMemOperand()->getFlags();
16324 AAMDNodes AAInfo
= ST
->getAAInfo();
16326 // Change the sizes of Lo and Hi's value types to HalfValBitSize.
16327 EVT VT
= EVT::getIntegerVT(*DAG
.getContext(), HalfValBitSize
);
16328 Lo
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, Lo
.getOperand(0));
16329 Hi
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, Hi
.getOperand(0));
16331 SDValue Chain
= ST
->getChain();
16332 SDValue Ptr
= ST
->getBasePtr();
16333 // Lower value store.
16334 SDValue St0
= DAG
.getStore(Chain
, DL
, Lo
, Ptr
, ST
->getPointerInfo(),
16335 ST
->getAlignment(), MMOFlags
, AAInfo
);
16337 DAG
.getNode(ISD::ADD
, DL
, Ptr
.getValueType(), Ptr
,
16338 DAG
.getConstant(HalfValBitSize
/ 8, DL
, Ptr
.getValueType()));
16339 // Higher value store.
16341 DAG
.getStore(St0
, DL
, Hi
, Ptr
,
16342 ST
->getPointerInfo().getWithOffset(HalfValBitSize
/ 8),
16343 Alignment
/ 2, MMOFlags
, AAInfo
);
16347 /// Convert a disguised subvector insertion into a shuffle:
16348 SDValue
DAGCombiner::combineInsertEltToShuffle(SDNode
*N
, unsigned InsIndex
) {
16349 SDValue InsertVal
= N
->getOperand(1);
16350 SDValue Vec
= N
->getOperand(0);
16352 // (insert_vector_elt (vector_shuffle X, Y), (extract_vector_elt X, N), InsIndex)
16353 // --> (vector_shuffle X, Y)
16354 if (Vec
.getOpcode() == ISD::VECTOR_SHUFFLE
&& Vec
.hasOneUse() &&
16355 InsertVal
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
16356 isa
<ConstantSDNode
>(InsertVal
.getOperand(1))) {
16357 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(Vec
.getNode());
16358 ArrayRef
<int> Mask
= SVN
->getMask();
16360 SDValue X
= Vec
.getOperand(0);
16361 SDValue Y
= Vec
.getOperand(1);
16363 // Vec's operand 0 is using indices from 0 to N-1 and
16364 // operand 1 from N to 2N - 1, where N is the number of
16365 // elements in the vectors.
16367 if (InsertVal
.getOperand(0) == X
) {
16369 } else if (InsertVal
.getOperand(0) == Y
) {
16370 XOffset
= X
.getValueType().getVectorNumElements();
16373 if (XOffset
!= -1) {
16374 SmallVector
<int, 16> NewMask(Mask
.begin(), Mask
.end());
16376 auto *ExtrIndex
= cast
<ConstantSDNode
>(InsertVal
.getOperand(1));
16377 NewMask
[InsIndex
] = XOffset
+ ExtrIndex
->getZExtValue();
16378 assert(NewMask
[InsIndex
] <
16379 (int)(2 * Vec
.getValueType().getVectorNumElements()) &&
16380 NewMask
[InsIndex
] >= 0 && "NewMask[InsIndex] is out of bound");
16382 SDValue LegalShuffle
=
16383 TLI
.buildLegalVectorShuffle(Vec
.getValueType(), SDLoc(N
), X
,
16386 return LegalShuffle
;
16390 // insert_vector_elt V, (bitcast X from vector type), IdxC -->
16391 // bitcast(shuffle (bitcast V), (extended X), Mask)
16392 // Note: We do not use an insert_subvector node because that requires a
16393 // legal subvector type.
16394 if (InsertVal
.getOpcode() != ISD::BITCAST
|| !InsertVal
.hasOneUse() ||
16395 !InsertVal
.getOperand(0).getValueType().isVector())
16398 SDValue SubVec
= InsertVal
.getOperand(0);
16399 SDValue DestVec
= N
->getOperand(0);
16400 EVT SubVecVT
= SubVec
.getValueType();
16401 EVT VT
= DestVec
.getValueType();
16402 unsigned NumSrcElts
= SubVecVT
.getVectorNumElements();
16403 unsigned ExtendRatio
= VT
.getSizeInBits() / SubVecVT
.getSizeInBits();
16404 unsigned NumMaskVals
= ExtendRatio
* NumSrcElts
;
16406 // Step 1: Create a shuffle mask that implements this insert operation. The
16407 // vector that we are inserting into will be operand 0 of the shuffle, so
16408 // those elements are just 'i'. The inserted subvector is in the first
16409 // positions of operand 1 of the shuffle. Example:
16410 // insert v4i32 V, (v2i16 X), 2 --> shuffle v8i16 V', X', {0,1,2,3,8,9,6,7}
16411 SmallVector
<int, 16> Mask(NumMaskVals
);
16412 for (unsigned i
= 0; i
!= NumMaskVals
; ++i
) {
16413 if (i
/ NumSrcElts
== InsIndex
)
16414 Mask
[i
] = (i
% NumSrcElts
) + NumMaskVals
;
16419 // Bail out if the target can not handle the shuffle we want to create.
16420 EVT SubVecEltVT
= SubVecVT
.getVectorElementType();
16421 EVT ShufVT
= EVT::getVectorVT(*DAG
.getContext(), SubVecEltVT
, NumMaskVals
);
16422 if (!TLI
.isShuffleMaskLegal(Mask
, ShufVT
))
16425 // Step 2: Create a wide vector from the inserted source vector by appending
16426 // undefined elements. This is the same size as our destination vector.
16428 SmallVector
<SDValue
, 8> ConcatOps(ExtendRatio
, DAG
.getUNDEF(SubVecVT
));
16429 ConcatOps
[0] = SubVec
;
16430 SDValue PaddedSubV
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, ShufVT
, ConcatOps
);
16432 // Step 3: Shuffle in the padded subvector.
16433 SDValue DestVecBC
= DAG
.getBitcast(ShufVT
, DestVec
);
16434 SDValue Shuf
= DAG
.getVectorShuffle(ShufVT
, DL
, DestVecBC
, PaddedSubV
, Mask
);
16435 AddToWorklist(PaddedSubV
.getNode());
16436 AddToWorklist(DestVecBC
.getNode());
16437 AddToWorklist(Shuf
.getNode());
16438 return DAG
.getBitcast(VT
, Shuf
);
16441 SDValue
DAGCombiner::visitINSERT_VECTOR_ELT(SDNode
*N
) {
16442 SDValue InVec
= N
->getOperand(0);
16443 SDValue InVal
= N
->getOperand(1);
16444 SDValue EltNo
= N
->getOperand(2);
16447 // If the inserted element is an UNDEF, just use the input vector.
16448 if (InVal
.isUndef())
16451 EVT VT
= InVec
.getValueType();
16452 unsigned NumElts
= VT
.getVectorNumElements();
16454 // Remove redundant insertions:
16455 // (insert_vector_elt x (extract_vector_elt x idx) idx) -> x
16456 if (InVal
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
16457 InVec
== InVal
.getOperand(0) && EltNo
== InVal
.getOperand(1))
16460 auto *IndexC
= dyn_cast
<ConstantSDNode
>(EltNo
);
16462 // If this is variable insert to undef vector, it might be better to splat:
16463 // inselt undef, InVal, EltNo --> build_vector < InVal, InVal, ... >
16464 if (InVec
.isUndef() && TLI
.shouldSplatInsEltVarIndex(VT
)) {
16465 SmallVector
<SDValue
, 8> Ops(NumElts
, InVal
);
16466 return DAG
.getBuildVector(VT
, DL
, Ops
);
16471 // We must know which element is being inserted for folds below here.
16472 unsigned Elt
= IndexC
->getZExtValue();
16473 if (SDValue Shuf
= combineInsertEltToShuffle(N
, Elt
))
16476 // Canonicalize insert_vector_elt dag nodes.
16478 // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1)
16479 // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0)
16481 // Do this only if the child insert_vector node has one use; also
16482 // do this only if indices are both constants and Idx1 < Idx0.
16483 if (InVec
.getOpcode() == ISD::INSERT_VECTOR_ELT
&& InVec
.hasOneUse()
16484 && isa
<ConstantSDNode
>(InVec
.getOperand(2))) {
16485 unsigned OtherElt
= InVec
.getConstantOperandVal(2);
16486 if (Elt
< OtherElt
) {
16488 SDValue NewOp
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, DL
, VT
,
16489 InVec
.getOperand(0), InVal
, EltNo
);
16490 AddToWorklist(NewOp
.getNode());
16491 return DAG
.getNode(ISD::INSERT_VECTOR_ELT
, SDLoc(InVec
.getNode()),
16492 VT
, NewOp
, InVec
.getOperand(1), InVec
.getOperand(2));
16496 // If we can't generate a legal BUILD_VECTOR, exit
16497 if (LegalOperations
&& !TLI
.isOperationLegal(ISD::BUILD_VECTOR
, VT
))
16500 // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
16501 // be converted to a BUILD_VECTOR). Fill in the Ops vector with the
16502 // vector elements.
16503 SmallVector
<SDValue
, 8> Ops
;
16504 // Do not combine these two vectors if the output vector will not replace
16505 // the input vector.
16506 if (InVec
.getOpcode() == ISD::BUILD_VECTOR
&& InVec
.hasOneUse()) {
16507 Ops
.append(InVec
.getNode()->op_begin(),
16508 InVec
.getNode()->op_end());
16509 } else if (InVec
.isUndef()) {
16510 Ops
.append(NumElts
, DAG
.getUNDEF(InVal
.getValueType()));
16514 assert(Ops
.size() == NumElts
&& "Unexpected vector size");
16516 // Insert the element
16517 if (Elt
< Ops
.size()) {
16518 // All the operands of BUILD_VECTOR must have the same type;
16519 // we enforce that here.
16520 EVT OpVT
= Ops
[0].getValueType();
16521 Ops
[Elt
] = OpVT
.isInteger() ? DAG
.getAnyExtOrTrunc(InVal
, DL
, OpVT
) : InVal
;
16524 // Return the new vector
16525 return DAG
.getBuildVector(VT
, DL
, Ops
);
16528 SDValue
DAGCombiner::scalarizeExtractedVectorLoad(SDNode
*EVE
, EVT InVecVT
,
16530 LoadSDNode
*OriginalLoad
) {
16531 assert(OriginalLoad
->isSimple());
16533 EVT ResultVT
= EVE
->getValueType(0);
16534 EVT VecEltVT
= InVecVT
.getVectorElementType();
16535 unsigned Align
= OriginalLoad
->getAlignment();
16536 unsigned NewAlign
= DAG
.getDataLayout().getABITypeAlignment(
16537 VecEltVT
.getTypeForEVT(*DAG
.getContext()));
16539 if (NewAlign
> Align
|| !TLI
.isOperationLegalOrCustom(ISD::LOAD
, VecEltVT
))
16542 ISD::LoadExtType ExtTy
= ResultVT
.bitsGT(VecEltVT
) ?
16543 ISD::NON_EXTLOAD
: ISD::EXTLOAD
;
16544 if (!TLI
.shouldReduceLoadWidth(OriginalLoad
, ExtTy
, VecEltVT
))
16549 SDValue NewPtr
= OriginalLoad
->getBasePtr();
16551 EVT PtrType
= NewPtr
.getValueType();
16552 MachinePointerInfo MPI
;
16554 if (auto *ConstEltNo
= dyn_cast
<ConstantSDNode
>(EltNo
)) {
16555 int Elt
= ConstEltNo
->getZExtValue();
16556 unsigned PtrOff
= VecEltVT
.getSizeInBits() * Elt
/ 8;
16557 Offset
= DAG
.getConstant(PtrOff
, DL
, PtrType
);
16558 MPI
= OriginalLoad
->getPointerInfo().getWithOffset(PtrOff
);
16560 Offset
= DAG
.getZExtOrTrunc(EltNo
, DL
, PtrType
);
16561 Offset
= DAG
.getNode(
16562 ISD::MUL
, DL
, PtrType
, Offset
,
16563 DAG
.getConstant(VecEltVT
.getStoreSize(), DL
, PtrType
));
16564 // Discard the pointer info except the address space because the memory
16565 // operand can't represent this new access since the offset is variable.
16566 MPI
= MachinePointerInfo(OriginalLoad
->getPointerInfo().getAddrSpace());
16568 NewPtr
= DAG
.getNode(ISD::ADD
, DL
, PtrType
, NewPtr
, Offset
);
16570 // The replacement we need to do here is a little tricky: we need to
16571 // replace an extractelement of a load with a load.
16572 // Use ReplaceAllUsesOfValuesWith to do the replacement.
16573 // Note that this replacement assumes that the extractvalue is the only
16574 // use of the load; that's okay because we don't want to perform this
16575 // transformation in other cases anyway.
16578 if (ResultVT
.bitsGT(VecEltVT
)) {
16579 // If the result type of vextract is wider than the load, then issue an
16580 // extending load instead.
16581 ISD::LoadExtType ExtType
= TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, ResultVT
,
16585 Load
= DAG
.getExtLoad(ExtType
, SDLoc(EVE
), ResultVT
,
16586 OriginalLoad
->getChain(), NewPtr
, MPI
, VecEltVT
,
16587 Align
, OriginalLoad
->getMemOperand()->getFlags(),
16588 OriginalLoad
->getAAInfo());
16589 Chain
= Load
.getValue(1);
16591 Load
= DAG
.getLoad(VecEltVT
, SDLoc(EVE
), OriginalLoad
->getChain(), NewPtr
,
16592 MPI
, Align
, OriginalLoad
->getMemOperand()->getFlags(),
16593 OriginalLoad
->getAAInfo());
16594 Chain
= Load
.getValue(1);
16595 if (ResultVT
.bitsLT(VecEltVT
))
16596 Load
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(EVE
), ResultVT
, Load
);
16598 Load
= DAG
.getBitcast(ResultVT
, Load
);
16600 WorklistRemover
DeadNodes(*this);
16601 SDValue From
[] = { SDValue(EVE
, 0), SDValue(OriginalLoad
, 1) };
16602 SDValue To
[] = { Load
, Chain
};
16603 DAG
.ReplaceAllUsesOfValuesWith(From
, To
, 2);
16604 // Make sure to revisit this node to clean it up; it will usually be dead.
16605 AddToWorklist(EVE
);
16606 // Since we're explicitly calling ReplaceAllUses, add the new node to the
16607 // worklist explicitly as well.
16608 AddUsersToWorklist(Load
.getNode()); // Add users too
16609 AddToWorklist(Load
.getNode());
16611 return SDValue(EVE
, 0);
16614 /// Transform a vector binary operation into a scalar binary operation by moving
16615 /// the math/logic after an extract element of a vector.
16616 static SDValue
scalarizeExtractedBinop(SDNode
*ExtElt
, SelectionDAG
&DAG
,
16617 bool LegalOperations
) {
16618 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
16619 SDValue Vec
= ExtElt
->getOperand(0);
16620 SDValue Index
= ExtElt
->getOperand(1);
16621 auto *IndexC
= dyn_cast
<ConstantSDNode
>(Index
);
16622 if (!IndexC
|| !TLI
.isBinOp(Vec
.getOpcode()) || !Vec
.hasOneUse() ||
16623 Vec
.getNode()->getNumValues() != 1)
16626 // Targets may want to avoid this to prevent an expensive register transfer.
16627 if (!TLI
.shouldScalarizeBinop(Vec
))
16630 // Extracting an element of a vector constant is constant-folded, so this
16631 // transform is just replacing a vector op with a scalar op while moving the
16633 SDValue Op0
= Vec
.getOperand(0);
16634 SDValue Op1
= Vec
.getOperand(1);
16635 if (isAnyConstantBuildVector(Op0
, true) ||
16636 isAnyConstantBuildVector(Op1
, true)) {
16637 // extractelt (binop X, C), IndexC --> binop (extractelt X, IndexC), C'
16638 // extractelt (binop C, X), IndexC --> binop C', (extractelt X, IndexC)
16640 EVT VT
= ExtElt
->getValueType(0);
16641 SDValue Ext0
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, VT
, Op0
, Index
);
16642 SDValue Ext1
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, VT
, Op1
, Index
);
16643 return DAG
.getNode(Vec
.getOpcode(), DL
, VT
, Ext0
, Ext1
);
16649 SDValue
DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode
*N
) {
16650 SDValue VecOp
= N
->getOperand(0);
16651 SDValue Index
= N
->getOperand(1);
16652 EVT ScalarVT
= N
->getValueType(0);
16653 EVT VecVT
= VecOp
.getValueType();
16654 if (VecOp
.isUndef())
16655 return DAG
.getUNDEF(ScalarVT
);
16657 // extract_vector_elt (insert_vector_elt vec, val, idx), idx) -> val
16659 // This only really matters if the index is non-constant since other combines
16660 // on the constant elements already work.
16662 if (VecOp
.getOpcode() == ISD::INSERT_VECTOR_ELT
&&
16663 Index
== VecOp
.getOperand(2)) {
16664 SDValue Elt
= VecOp
.getOperand(1);
16665 return VecVT
.isInteger() ? DAG
.getAnyExtOrTrunc(Elt
, DL
, ScalarVT
) : Elt
;
16668 // (vextract (scalar_to_vector val, 0) -> val
16669 if (VecOp
.getOpcode() == ISD::SCALAR_TO_VECTOR
) {
16670 // Check if the result type doesn't match the inserted element type. A
16671 // SCALAR_TO_VECTOR may truncate the inserted element and the
16672 // EXTRACT_VECTOR_ELT may widen the extracted vector.
16673 SDValue InOp
= VecOp
.getOperand(0);
16674 if (InOp
.getValueType() != ScalarVT
) {
16675 assert(InOp
.getValueType().isInteger() && ScalarVT
.isInteger());
16676 return DAG
.getSExtOrTrunc(InOp
, DL
, ScalarVT
);
16681 // extract_vector_elt of out-of-bounds element -> UNDEF
16682 auto *IndexC
= dyn_cast
<ConstantSDNode
>(Index
);
16683 unsigned NumElts
= VecVT
.getVectorNumElements();
16684 if (IndexC
&& IndexC
->getAPIntValue().uge(NumElts
))
16685 return DAG
.getUNDEF(ScalarVT
);
16687 // extract_vector_elt (build_vector x, y), 1 -> y
16688 if (IndexC
&& VecOp
.getOpcode() == ISD::BUILD_VECTOR
&&
16689 TLI
.isTypeLegal(VecVT
) &&
16690 (VecOp
.hasOneUse() || TLI
.aggressivelyPreferBuildVectorSources(VecVT
))) {
16691 SDValue Elt
= VecOp
.getOperand(IndexC
->getZExtValue());
16692 EVT InEltVT
= Elt
.getValueType();
16694 // Sometimes build_vector's scalar input types do not match result type.
16695 if (ScalarVT
== InEltVT
)
16698 // TODO: It may be useful to truncate if free if the build_vector implicitly
16702 // TODO: These transforms should not require the 'hasOneUse' restriction, but
16703 // there are regressions on multiple targets without it. We can end up with a
16704 // mess of scalar and vector code if we reduce only part of the DAG to scalar.
16705 if (IndexC
&& VecOp
.getOpcode() == ISD::BITCAST
&& VecVT
.isInteger() &&
16706 VecOp
.hasOneUse()) {
16707 // The vector index of the LSBs of the source depend on the endian-ness.
16708 bool IsLE
= DAG
.getDataLayout().isLittleEndian();
16709 unsigned ExtractIndex
= IndexC
->getZExtValue();
16710 // extract_elt (v2i32 (bitcast i64:x)), BCTruncElt -> i32 (trunc i64:x)
16711 unsigned BCTruncElt
= IsLE
? 0 : NumElts
- 1;
16712 SDValue BCSrc
= VecOp
.getOperand(0);
16713 if (ExtractIndex
== BCTruncElt
&& BCSrc
.getValueType().isScalarInteger())
16714 return DAG
.getNode(ISD::TRUNCATE
, DL
, ScalarVT
, BCSrc
);
16716 if (LegalTypes
&& BCSrc
.getValueType().isInteger() &&
16717 BCSrc
.getOpcode() == ISD::SCALAR_TO_VECTOR
) {
16718 // ext_elt (bitcast (scalar_to_vec i64 X to v2i64) to v4i32), TruncElt -->
16719 // trunc i64 X to i32
16720 SDValue X
= BCSrc
.getOperand(0);
16721 assert(X
.getValueType().isScalarInteger() && ScalarVT
.isScalarInteger() &&
16722 "Extract element and scalar to vector can't change element type "
16723 "from FP to integer.");
16724 unsigned XBitWidth
= X
.getValueSizeInBits();
16725 unsigned VecEltBitWidth
= VecVT
.getScalarSizeInBits();
16726 BCTruncElt
= IsLE
? 0 : XBitWidth
/ VecEltBitWidth
- 1;
16728 // An extract element return value type can be wider than its vector
16729 // operand element type. In that case, the high bits are undefined, so
16730 // it's possible that we may need to extend rather than truncate.
16731 if (ExtractIndex
== BCTruncElt
&& XBitWidth
> VecEltBitWidth
) {
16732 assert(XBitWidth
% VecEltBitWidth
== 0 &&
16733 "Scalar bitwidth must be a multiple of vector element bitwidth");
16734 return DAG
.getAnyExtOrTrunc(X
, DL
, ScalarVT
);
16739 if (SDValue BO
= scalarizeExtractedBinop(N
, DAG
, LegalOperations
))
16742 // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
16743 // We only perform this optimization before the op legalization phase because
16744 // we may introduce new vector instructions which are not backed by TD
16745 // patterns. For example on AVX, extracting elements from a wide vector
16746 // without using extract_subvector. However, if we can find an underlying
16747 // scalar value, then we can always use that.
16748 if (IndexC
&& VecOp
.getOpcode() == ISD::VECTOR_SHUFFLE
) {
16749 auto *Shuf
= cast
<ShuffleVectorSDNode
>(VecOp
);
16750 // Find the new index to extract from.
16751 int OrigElt
= Shuf
->getMaskElt(IndexC
->getZExtValue());
16753 // Extracting an undef index is undef.
16755 return DAG
.getUNDEF(ScalarVT
);
16757 // Select the right vector half to extract from.
16759 if (OrigElt
< (int)NumElts
) {
16760 SVInVec
= VecOp
.getOperand(0);
16762 SVInVec
= VecOp
.getOperand(1);
16763 OrigElt
-= NumElts
;
16766 if (SVInVec
.getOpcode() == ISD::BUILD_VECTOR
) {
16767 SDValue InOp
= SVInVec
.getOperand(OrigElt
);
16768 if (InOp
.getValueType() != ScalarVT
) {
16769 assert(InOp
.getValueType().isInteger() && ScalarVT
.isInteger());
16770 InOp
= DAG
.getSExtOrTrunc(InOp
, DL
, ScalarVT
);
16776 // FIXME: We should handle recursing on other vector shuffles and
16777 // scalar_to_vector here as well.
16779 if (!LegalOperations
||
16780 // FIXME: Should really be just isOperationLegalOrCustom.
16781 TLI
.isOperationLegal(ISD::EXTRACT_VECTOR_ELT
, VecVT
) ||
16782 TLI
.isOperationExpand(ISD::VECTOR_SHUFFLE
, VecVT
)) {
16783 EVT IndexTy
= TLI
.getVectorIdxTy(DAG
.getDataLayout());
16784 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, ScalarVT
, SVInVec
,
16785 DAG
.getConstant(OrigElt
, DL
, IndexTy
));
16789 // If only EXTRACT_VECTOR_ELT nodes use the source vector we can
16790 // simplify it based on the (valid) extraction indices.
16791 if (llvm::all_of(VecOp
->uses(), [&](SDNode
*Use
) {
16792 return Use
->getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
16793 Use
->getOperand(0) == VecOp
&&
16794 isa
<ConstantSDNode
>(Use
->getOperand(1));
16796 APInt DemandedElts
= APInt::getNullValue(NumElts
);
16797 for (SDNode
*Use
: VecOp
->uses()) {
16798 auto *CstElt
= cast
<ConstantSDNode
>(Use
->getOperand(1));
16799 if (CstElt
->getAPIntValue().ult(NumElts
))
16800 DemandedElts
.setBit(CstElt
->getZExtValue());
16802 if (SimplifyDemandedVectorElts(VecOp
, DemandedElts
, true)) {
16803 // We simplified the vector operand of this extract element. If this
16804 // extract is not dead, visit it again so it is folded properly.
16805 if (N
->getOpcode() != ISD::DELETED_NODE
)
16807 return SDValue(N
, 0);
16811 // Everything under here is trying to match an extract of a loaded value.
16812 // If the result of load has to be truncated, then it's not necessarily
16814 bool BCNumEltsChanged
= false;
16815 EVT ExtVT
= VecVT
.getVectorElementType();
16817 if (ScalarVT
.bitsLT(LVT
) && !TLI
.isTruncateFree(LVT
, ScalarVT
))
16820 if (VecOp
.getOpcode() == ISD::BITCAST
) {
16821 // Don't duplicate a load with other uses.
16822 if (!VecOp
.hasOneUse())
16825 EVT BCVT
= VecOp
.getOperand(0).getValueType();
16826 if (!BCVT
.isVector() || ExtVT
.bitsGT(BCVT
.getVectorElementType()))
16828 if (NumElts
!= BCVT
.getVectorNumElements())
16829 BCNumEltsChanged
= true;
16830 VecOp
= VecOp
.getOperand(0);
16831 ExtVT
= BCVT
.getVectorElementType();
16834 // extract (vector load $addr), i --> load $addr + i * size
16835 if (!LegalOperations
&& !IndexC
&& VecOp
.hasOneUse() &&
16836 ISD::isNormalLoad(VecOp
.getNode()) &&
16837 !Index
->hasPredecessor(VecOp
.getNode())) {
16838 auto *VecLoad
= dyn_cast
<LoadSDNode
>(VecOp
);
16839 if (VecLoad
&& VecLoad
->isSimple())
16840 return scalarizeExtractedVectorLoad(N
, VecVT
, Index
, VecLoad
);
16843 // Perform only after legalization to ensure build_vector / vector_shuffle
16844 // optimizations have already been done.
16845 if (!LegalOperations
|| !IndexC
)
16848 // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
16849 // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
16850 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
16851 int Elt
= IndexC
->getZExtValue();
16852 LoadSDNode
*LN0
= nullptr;
16853 if (ISD::isNormalLoad(VecOp
.getNode())) {
16854 LN0
= cast
<LoadSDNode
>(VecOp
);
16855 } else if (VecOp
.getOpcode() == ISD::SCALAR_TO_VECTOR
&&
16856 VecOp
.getOperand(0).getValueType() == ExtVT
&&
16857 ISD::isNormalLoad(VecOp
.getOperand(0).getNode())) {
16858 // Don't duplicate a load with other uses.
16859 if (!VecOp
.hasOneUse())
16862 LN0
= cast
<LoadSDNode
>(VecOp
.getOperand(0));
16864 if (auto *Shuf
= dyn_cast
<ShuffleVectorSDNode
>(VecOp
)) {
16865 // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
16867 // (load $addr+1*size)
16869 // Don't duplicate a load with other uses.
16870 if (!VecOp
.hasOneUse())
16873 // If the bit convert changed the number of elements, it is unsafe
16874 // to examine the mask.
16875 if (BCNumEltsChanged
)
16878 // Select the input vector, guarding against out of range extract vector.
16879 int Idx
= (Elt
> (int)NumElts
) ? -1 : Shuf
->getMaskElt(Elt
);
16880 VecOp
= (Idx
< (int)NumElts
) ? VecOp
.getOperand(0) : VecOp
.getOperand(1);
16882 if (VecOp
.getOpcode() == ISD::BITCAST
) {
16883 // Don't duplicate a load with other uses.
16884 if (!VecOp
.hasOneUse())
16887 VecOp
= VecOp
.getOperand(0);
16889 if (ISD::isNormalLoad(VecOp
.getNode())) {
16890 LN0
= cast
<LoadSDNode
>(VecOp
);
16891 Elt
= (Idx
< (int)NumElts
) ? Idx
: Idx
- (int)NumElts
;
16892 Index
= DAG
.getConstant(Elt
, DL
, Index
.getValueType());
16896 // Make sure we found a non-volatile load and the extractelement is
16898 if (!LN0
|| !LN0
->hasNUsesOfValue(1,0) || !LN0
->isSimple())
16901 // If Idx was -1 above, Elt is going to be -1, so just return undef.
16903 return DAG
.getUNDEF(LVT
);
16905 return scalarizeExtractedVectorLoad(N
, VecVT
, Index
, LN0
);
16908 // Simplify (build_vec (ext )) to (bitcast (build_vec ))
16909 SDValue
DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode
*N
) {
16910 // We perform this optimization post type-legalization because
16911 // the type-legalizer often scalarizes integer-promoted vectors.
16912 // Performing this optimization before may create bit-casts which
16913 // will be type-legalized to complex code sequences.
16914 // We perform this optimization only before the operation legalizer because we
16915 // may introduce illegal operations.
16916 if (Level
!= AfterLegalizeVectorOps
&& Level
!= AfterLegalizeTypes
)
16919 unsigned NumInScalars
= N
->getNumOperands();
16921 EVT VT
= N
->getValueType(0);
16923 // Check to see if this is a BUILD_VECTOR of a bunch of values
16924 // which come from any_extend or zero_extend nodes. If so, we can create
16925 // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
16926 // optimizations. We do not handle sign-extend because we can't fill the sign
16928 EVT SourceType
= MVT::Other
;
16929 bool AllAnyExt
= true;
16931 for (unsigned i
= 0; i
!= NumInScalars
; ++i
) {
16932 SDValue In
= N
->getOperand(i
);
16933 // Ignore undef inputs.
16934 if (In
.isUndef()) continue;
16936 bool AnyExt
= In
.getOpcode() == ISD::ANY_EXTEND
;
16937 bool ZeroExt
= In
.getOpcode() == ISD::ZERO_EXTEND
;
16939 // Abort if the element is not an extension.
16940 if (!ZeroExt
&& !AnyExt
) {
16941 SourceType
= MVT::Other
;
16945 // The input is a ZeroExt or AnyExt. Check the original type.
16946 EVT InTy
= In
.getOperand(0).getValueType();
16948 // Check that all of the widened source types are the same.
16949 if (SourceType
== MVT::Other
)
16952 else if (InTy
!= SourceType
) {
16953 // Multiple income types. Abort.
16954 SourceType
= MVT::Other
;
16958 // Check if all of the extends are ANY_EXTENDs.
16959 AllAnyExt
&= AnyExt
;
16962 // In order to have valid types, all of the inputs must be extended from the
16963 // same source type and all of the inputs must be any or zero extend.
16964 // Scalar sizes must be a power of two.
16965 EVT OutScalarTy
= VT
.getScalarType();
16966 bool ValidTypes
= SourceType
!= MVT::Other
&&
16967 isPowerOf2_32(OutScalarTy
.getSizeInBits()) &&
16968 isPowerOf2_32(SourceType
.getSizeInBits());
16970 // Create a new simpler BUILD_VECTOR sequence which other optimizations can
16971 // turn into a single shuffle instruction.
16975 bool isLE
= DAG
.getDataLayout().isLittleEndian();
16976 unsigned ElemRatio
= OutScalarTy
.getSizeInBits()/SourceType
.getSizeInBits();
16977 assert(ElemRatio
> 1 && "Invalid element size ratio");
16978 SDValue Filler
= AllAnyExt
? DAG
.getUNDEF(SourceType
):
16979 DAG
.getConstant(0, DL
, SourceType
);
16981 unsigned NewBVElems
= ElemRatio
* VT
.getVectorNumElements();
16982 SmallVector
<SDValue
, 8> Ops(NewBVElems
, Filler
);
16984 // Populate the new build_vector
16985 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
16986 SDValue Cast
= N
->getOperand(i
);
16987 assert((Cast
.getOpcode() == ISD::ANY_EXTEND
||
16988 Cast
.getOpcode() == ISD::ZERO_EXTEND
||
16989 Cast
.isUndef()) && "Invalid cast opcode");
16991 if (Cast
.isUndef())
16992 In
= DAG
.getUNDEF(SourceType
);
16994 In
= Cast
->getOperand(0);
16995 unsigned Index
= isLE
? (i
* ElemRatio
) :
16996 (i
* ElemRatio
+ (ElemRatio
- 1));
16998 assert(Index
< Ops
.size() && "Invalid index");
17002 // The type of the new BUILD_VECTOR node.
17003 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), SourceType
, NewBVElems
);
17004 assert(VecVT
.getSizeInBits() == VT
.getSizeInBits() &&
17005 "Invalid vector size");
17006 // Check if the new vector type is legal.
17007 if (!isTypeLegal(VecVT
) ||
17008 (!TLI
.isOperationLegal(ISD::BUILD_VECTOR
, VecVT
) &&
17009 TLI
.isOperationLegal(ISD::BUILD_VECTOR
, VT
)))
17012 // Make the new BUILD_VECTOR.
17013 SDValue BV
= DAG
.getBuildVector(VecVT
, DL
, Ops
);
17015 // The new BUILD_VECTOR node has the potential to be further optimized.
17016 AddToWorklist(BV
.getNode());
17017 // Bitcast to the desired type.
17018 return DAG
.getBitcast(VT
, BV
);
17021 SDValue
DAGCombiner::createBuildVecShuffle(const SDLoc
&DL
, SDNode
*N
,
17022 ArrayRef
<int> VectorMask
,
17023 SDValue VecIn1
, SDValue VecIn2
,
17024 unsigned LeftIdx
, bool DidSplitVec
) {
17025 MVT IdxTy
= TLI
.getVectorIdxTy(DAG
.getDataLayout());
17026 SDValue ZeroIdx
= DAG
.getConstant(0, DL
, IdxTy
);
17028 EVT VT
= N
->getValueType(0);
17029 EVT InVT1
= VecIn1
.getValueType();
17030 EVT InVT2
= VecIn2
.getNode() ? VecIn2
.getValueType() : InVT1
;
17032 unsigned NumElems
= VT
.getVectorNumElements();
17033 unsigned ShuffleNumElems
= NumElems
;
17035 // If we artificially split a vector in two already, then the offsets in the
17036 // operands will all be based off of VecIn1, even those in VecIn2.
17037 unsigned Vec2Offset
= DidSplitVec
? 0 : InVT1
.getVectorNumElements();
17039 // We can't generate a shuffle node with mismatched input and output types.
17040 // Try to make the types match the type of the output.
17041 if (InVT1
!= VT
|| InVT2
!= VT
) {
17042 if ((VT
.getSizeInBits() % InVT1
.getSizeInBits() == 0) && InVT1
== InVT2
) {
17043 // If the output vector length is a multiple of both input lengths,
17044 // we can concatenate them and pad the rest with undefs.
17045 unsigned NumConcats
= VT
.getSizeInBits() / InVT1
.getSizeInBits();
17046 assert(NumConcats
>= 2 && "Concat needs at least two inputs!");
17047 SmallVector
<SDValue
, 2> ConcatOps(NumConcats
, DAG
.getUNDEF(InVT1
));
17048 ConcatOps
[0] = VecIn1
;
17049 ConcatOps
[1] = VecIn2
? VecIn2
: DAG
.getUNDEF(InVT1
);
17050 VecIn1
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, VT
, ConcatOps
);
17051 VecIn2
= SDValue();
17052 } else if (InVT1
.getSizeInBits() == VT
.getSizeInBits() * 2) {
17053 if (!TLI
.isExtractSubvectorCheap(VT
, InVT1
, NumElems
))
17056 if (!VecIn2
.getNode()) {
17057 // If we only have one input vector, and it's twice the size of the
17058 // output, split it in two.
17059 VecIn2
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, VT
, VecIn1
,
17060 DAG
.getConstant(NumElems
, DL
, IdxTy
));
17061 VecIn1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, VT
, VecIn1
, ZeroIdx
);
17062 // Since we now have shorter input vectors, adjust the offset of the
17063 // second vector's start.
17064 Vec2Offset
= NumElems
;
17065 } else if (InVT2
.getSizeInBits() <= InVT1
.getSizeInBits()) {
17066 // VecIn1 is wider than the output, and we have another, possibly
17067 // smaller input. Pad the smaller input with undefs, shuffle at the
17068 // input vector width, and extract the output.
17069 // The shuffle type is different than VT, so check legality again.
17070 if (LegalOperations
&&
17071 !TLI
.isOperationLegal(ISD::VECTOR_SHUFFLE
, InVT1
))
17074 // Legalizing INSERT_SUBVECTOR is tricky - you basically have to
17075 // lower it back into a BUILD_VECTOR. So if the inserted type is
17076 // illegal, don't even try.
17077 if (InVT1
!= InVT2
) {
17078 if (!TLI
.isTypeLegal(InVT2
))
17080 VecIn2
= DAG
.getNode(ISD::INSERT_SUBVECTOR
, DL
, InVT1
,
17081 DAG
.getUNDEF(InVT1
), VecIn2
, ZeroIdx
);
17083 ShuffleNumElems
= NumElems
* 2;
17085 // Both VecIn1 and VecIn2 are wider than the output, and VecIn2 is wider
17086 // than VecIn1. We can't handle this for now - this case will disappear
17087 // when we start sorting the vectors by type.
17090 } else if (InVT2
.getSizeInBits() * 2 == VT
.getSizeInBits() &&
17091 InVT1
.getSizeInBits() == VT
.getSizeInBits()) {
17092 SmallVector
<SDValue
, 2> ConcatOps(2, DAG
.getUNDEF(InVT2
));
17093 ConcatOps
[0] = VecIn2
;
17094 VecIn2
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, VT
, ConcatOps
);
17096 // TODO: Support cases where the length mismatch isn't exactly by a
17098 // TODO: Move this check upwards, so that if we have bad type
17099 // mismatches, we don't create any DAG nodes.
17104 // Initialize mask to undef.
17105 SmallVector
<int, 8> Mask(ShuffleNumElems
, -1);
17107 // Only need to run up to the number of elements actually used, not the
17108 // total number of elements in the shuffle - if we are shuffling a wider
17109 // vector, the high lanes should be set to undef.
17110 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
17111 if (VectorMask
[i
] <= 0)
17114 unsigned ExtIndex
= N
->getOperand(i
).getConstantOperandVal(1);
17115 if (VectorMask
[i
] == (int)LeftIdx
) {
17116 Mask
[i
] = ExtIndex
;
17117 } else if (VectorMask
[i
] == (int)LeftIdx
+ 1) {
17118 Mask
[i
] = Vec2Offset
+ ExtIndex
;
17122 // The type the input vectors may have changed above.
17123 InVT1
= VecIn1
.getValueType();
17125 // If we already have a VecIn2, it should have the same type as VecIn1.
17126 // If we don't, get an undef/zero vector of the appropriate type.
17127 VecIn2
= VecIn2
.getNode() ? VecIn2
: DAG
.getUNDEF(InVT1
);
17128 assert(InVT1
== VecIn2
.getValueType() && "Unexpected second input type.");
17130 SDValue Shuffle
= DAG
.getVectorShuffle(InVT1
, DL
, VecIn1
, VecIn2
, Mask
);
17131 if (ShuffleNumElems
> NumElems
)
17132 Shuffle
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, VT
, Shuffle
, ZeroIdx
);
17137 static SDValue
reduceBuildVecToShuffleWithZero(SDNode
*BV
, SelectionDAG
&DAG
) {
17138 assert(BV
->getOpcode() == ISD::BUILD_VECTOR
&& "Expected build vector");
17140 // First, determine where the build vector is not undef.
17141 // TODO: We could extend this to handle zero elements as well as undefs.
17142 int NumBVOps
= BV
->getNumOperands();
17144 for (int i
= 0; i
!= NumBVOps
; ++i
) {
17145 SDValue Op
= BV
->getOperand(i
);
17153 // Bail out if there's no non-undef element.
17157 // The build vector contains some number of undef elements and exactly
17158 // one other element. That other element must be a zero-extended scalar
17159 // extracted from a vector at a constant index to turn this into a shuffle.
17160 // Also, require that the build vector does not implicitly truncate/extend
17162 // TODO: This could be enhanced to allow ANY_EXTEND as well as ZERO_EXTEND.
17163 EVT VT
= BV
->getValueType(0);
17164 SDValue Zext
= BV
->getOperand(ZextElt
);
17165 if (Zext
.getOpcode() != ISD::ZERO_EXTEND
|| !Zext
.hasOneUse() ||
17166 Zext
.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
17167 !isa
<ConstantSDNode
>(Zext
.getOperand(0).getOperand(1)) ||
17168 Zext
.getValueSizeInBits() != VT
.getScalarSizeInBits())
17171 // The zero-extend must be a multiple of the source size, and we must be
17172 // building a vector of the same size as the source of the extract element.
17173 SDValue Extract
= Zext
.getOperand(0);
17174 unsigned DestSize
= Zext
.getValueSizeInBits();
17175 unsigned SrcSize
= Extract
.getValueSizeInBits();
17176 if (DestSize
% SrcSize
!= 0 ||
17177 Extract
.getOperand(0).getValueSizeInBits() != VT
.getSizeInBits())
17180 // Create a shuffle mask that will combine the extracted element with zeros
17182 int ZextRatio
= DestSize
/ SrcSize
;
17183 int NumMaskElts
= NumBVOps
* ZextRatio
;
17184 SmallVector
<int, 32> ShufMask(NumMaskElts
, -1);
17185 for (int i
= 0; i
!= NumMaskElts
; ++i
) {
17186 if (i
/ ZextRatio
== ZextElt
) {
17187 // The low bits of the (potentially translated) extracted element map to
17188 // the source vector. The high bits map to zero. We will use a zero vector
17189 // as the 2nd source operand of the shuffle, so use the 1st element of
17190 // that vector (mask value is number-of-elements) for the high bits.
17191 if (i
% ZextRatio
== 0)
17192 ShufMask
[i
] = Extract
.getConstantOperandVal(1);
17194 ShufMask
[i
] = NumMaskElts
;
17197 // Undef elements of the build vector remain undef because we initialize
17198 // the shuffle mask with -1.
17201 // buildvec undef, ..., (zext (extractelt V, IndexC)), undef... -->
17202 // bitcast (shuffle V, ZeroVec, VectorMask)
17204 EVT VecVT
= Extract
.getOperand(0).getValueType();
17205 SDValue ZeroVec
= DAG
.getConstant(0, DL
, VecVT
);
17206 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
17207 SDValue Shuf
= TLI
.buildLegalVectorShuffle(VecVT
, DL
, Extract
.getOperand(0),
17208 ZeroVec
, ShufMask
, DAG
);
17211 return DAG
.getBitcast(VT
, Shuf
);
17214 // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
17215 // operations. If the types of the vectors we're extracting from allow it,
17216 // turn this into a vector_shuffle node.
17217 SDValue
DAGCombiner::reduceBuildVecToShuffle(SDNode
*N
) {
17219 EVT VT
= N
->getValueType(0);
17221 // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
17222 if (!isTypeLegal(VT
))
17225 if (SDValue V
= reduceBuildVecToShuffleWithZero(N
, DAG
))
17228 // May only combine to shuffle after legalize if shuffle is legal.
17229 if (LegalOperations
&& !TLI
.isOperationLegal(ISD::VECTOR_SHUFFLE
, VT
))
17232 bool UsesZeroVector
= false;
17233 unsigned NumElems
= N
->getNumOperands();
17235 // Record, for each element of the newly built vector, which input vector
17236 // that element comes from. -1 stands for undef, 0 for the zero vector,
17237 // and positive values for the input vectors.
17238 // VectorMask maps each element to its vector number, and VecIn maps vector
17239 // numbers to their initial SDValues.
17241 SmallVector
<int, 8> VectorMask(NumElems
, -1);
17242 SmallVector
<SDValue
, 8> VecIn
;
17243 VecIn
.push_back(SDValue());
17245 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
17246 SDValue Op
= N
->getOperand(i
);
17251 // See if we can use a blend with a zero vector.
17252 // TODO: Should we generalize this to a blend with an arbitrary constant
17254 if (isNullConstant(Op
) || isNullFPConstant(Op
)) {
17255 UsesZeroVector
= true;
17260 // Not an undef or zero. If the input is something other than an
17261 // EXTRACT_VECTOR_ELT with an in-range constant index, bail out.
17262 if (Op
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
17263 !isa
<ConstantSDNode
>(Op
.getOperand(1)))
17265 SDValue ExtractedFromVec
= Op
.getOperand(0);
17267 const APInt
&ExtractIdx
= Op
.getConstantOperandAPInt(1);
17268 if (ExtractIdx
.uge(ExtractedFromVec
.getValueType().getVectorNumElements()))
17271 // All inputs must have the same element type as the output.
17272 if (VT
.getVectorElementType() !=
17273 ExtractedFromVec
.getValueType().getVectorElementType())
17276 // Have we seen this input vector before?
17277 // The vectors are expected to be tiny (usually 1 or 2 elements), so using
17278 // a map back from SDValues to numbers isn't worth it.
17279 unsigned Idx
= std::distance(
17280 VecIn
.begin(), std::find(VecIn
.begin(), VecIn
.end(), ExtractedFromVec
));
17281 if (Idx
== VecIn
.size())
17282 VecIn
.push_back(ExtractedFromVec
);
17284 VectorMask
[i
] = Idx
;
17287 // If we didn't find at least one input vector, bail out.
17288 if (VecIn
.size() < 2)
17291 // If all the Operands of BUILD_VECTOR extract from same
17292 // vector, then split the vector efficiently based on the maximum
17293 // vector access index and adjust the VectorMask and
17294 // VecIn accordingly.
17295 bool DidSplitVec
= false;
17296 if (VecIn
.size() == 2) {
17297 unsigned MaxIndex
= 0;
17298 unsigned NearestPow2
= 0;
17299 SDValue Vec
= VecIn
.back();
17300 EVT InVT
= Vec
.getValueType();
17301 MVT IdxTy
= TLI
.getVectorIdxTy(DAG
.getDataLayout());
17302 SmallVector
<unsigned, 8> IndexVec(NumElems
, 0);
17304 for (unsigned i
= 0; i
< NumElems
; i
++) {
17305 if (VectorMask
[i
] <= 0)
17307 unsigned Index
= N
->getOperand(i
).getConstantOperandVal(1);
17308 IndexVec
[i
] = Index
;
17309 MaxIndex
= std::max(MaxIndex
, Index
);
17312 NearestPow2
= PowerOf2Ceil(MaxIndex
);
17313 if (InVT
.isSimple() && NearestPow2
> 2 && MaxIndex
< NearestPow2
&&
17314 NumElems
* 2 < NearestPow2
) {
17315 unsigned SplitSize
= NearestPow2
/ 2;
17316 EVT SplitVT
= EVT::getVectorVT(*DAG
.getContext(),
17317 InVT
.getVectorElementType(), SplitSize
);
17318 if (TLI
.isTypeLegal(SplitVT
)) {
17319 SDValue VecIn2
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, SplitVT
, Vec
,
17320 DAG
.getConstant(SplitSize
, DL
, IdxTy
));
17321 SDValue VecIn1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, SplitVT
, Vec
,
17322 DAG
.getConstant(0, DL
, IdxTy
));
17324 VecIn
.push_back(VecIn1
);
17325 VecIn
.push_back(VecIn2
);
17326 DidSplitVec
= true;
17328 for (unsigned i
= 0; i
< NumElems
; i
++) {
17329 if (VectorMask
[i
] <= 0)
17331 VectorMask
[i
] = (IndexVec
[i
] < SplitSize
) ? 1 : 2;
17337 // TODO: We want to sort the vectors by descending length, so that adjacent
17338 // pairs have similar length, and the longer vector is always first in the
17341 // TODO: Should this fire if some of the input vectors has illegal type (like
17342 // it does now), or should we let legalization run its course first?
17345 // Take pairs of vectors, and shuffle them so that the result has elements
17346 // from these vectors in the correct places.
17347 // For example, given:
17348 // t10: i32 = extract_vector_elt t1, Constant:i64<0>
17349 // t11: i32 = extract_vector_elt t2, Constant:i64<0>
17350 // t12: i32 = extract_vector_elt t3, Constant:i64<0>
17351 // t13: i32 = extract_vector_elt t1, Constant:i64<1>
17352 // t14: v4i32 = BUILD_VECTOR t10, t11, t12, t13
17353 // We will generate:
17354 // t20: v4i32 = vector_shuffle<0,4,u,1> t1, t2
17355 // t21: v4i32 = vector_shuffle<u,u,0,u> t3, undef
17356 SmallVector
<SDValue
, 4> Shuffles
;
17357 for (unsigned In
= 0, Len
= (VecIn
.size() / 2); In
< Len
; ++In
) {
17358 unsigned LeftIdx
= 2 * In
+ 1;
17359 SDValue VecLeft
= VecIn
[LeftIdx
];
17361 (LeftIdx
+ 1) < VecIn
.size() ? VecIn
[LeftIdx
+ 1] : SDValue();
17363 if (SDValue Shuffle
= createBuildVecShuffle(DL
, N
, VectorMask
, VecLeft
,
17364 VecRight
, LeftIdx
, DidSplitVec
))
17365 Shuffles
.push_back(Shuffle
);
17370 // If we need the zero vector as an "ingredient" in the blend tree, add it
17371 // to the list of shuffles.
17372 if (UsesZeroVector
)
17373 Shuffles
.push_back(VT
.isInteger() ? DAG
.getConstant(0, DL
, VT
)
17374 : DAG
.getConstantFP(0.0, DL
, VT
));
17376 // If we only have one shuffle, we're done.
17377 if (Shuffles
.size() == 1)
17378 return Shuffles
[0];
17380 // Update the vector mask to point to the post-shuffle vectors.
17381 for (int &Vec
: VectorMask
)
17383 Vec
= Shuffles
.size() - 1;
17385 Vec
= (Vec
- 1) / 2;
17387 // More than one shuffle. Generate a binary tree of blends, e.g. if from
17388 // the previous step we got the set of shuffles t10, t11, t12, t13, we will
17390 // t10: v8i32 = vector_shuffle<0,8,u,u,u,u,u,u> t1, t2
17391 // t11: v8i32 = vector_shuffle<u,u,0,8,u,u,u,u> t3, t4
17392 // t12: v8i32 = vector_shuffle<u,u,u,u,0,8,u,u> t5, t6
17393 // t13: v8i32 = vector_shuffle<u,u,u,u,u,u,0,8> t7, t8
17394 // t20: v8i32 = vector_shuffle<0,1,10,11,u,u,u,u> t10, t11
17395 // t21: v8i32 = vector_shuffle<u,u,u,u,4,5,14,15> t12, t13
17396 // t30: v8i32 = vector_shuffle<0,1,2,3,12,13,14,15> t20, t21
17398 // Make sure the initial size of the shuffle list is even.
17399 if (Shuffles
.size() % 2)
17400 Shuffles
.push_back(DAG
.getUNDEF(VT
));
17402 for (unsigned CurSize
= Shuffles
.size(); CurSize
> 1; CurSize
/= 2) {
17404 Shuffles
[CurSize
] = DAG
.getUNDEF(VT
);
17407 for (unsigned In
= 0, Len
= CurSize
/ 2; In
< Len
; ++In
) {
17409 int Right
= 2 * In
+ 1;
17410 SmallVector
<int, 8> Mask(NumElems
, -1);
17411 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
17412 if (VectorMask
[i
] == Left
) {
17414 VectorMask
[i
] = In
;
17415 } else if (VectorMask
[i
] == Right
) {
17416 Mask
[i
] = i
+ NumElems
;
17417 VectorMask
[i
] = In
;
17422 DAG
.getVectorShuffle(VT
, DL
, Shuffles
[Left
], Shuffles
[Right
], Mask
);
17425 return Shuffles
[0];
17428 // Try to turn a build vector of zero extends of extract vector elts into a
17429 // a vector zero extend and possibly an extract subvector.
17430 // TODO: Support sign extend?
17431 // TODO: Allow undef elements?
17432 SDValue
DAGCombiner::convertBuildVecZextToZext(SDNode
*N
) {
17433 if (LegalOperations
)
17436 EVT VT
= N
->getValueType(0);
17438 bool FoundZeroExtend
= false;
17439 SDValue Op0
= N
->getOperand(0);
17440 auto checkElem
= [&](SDValue Op
) -> int64_t {
17441 unsigned Opc
= Op
.getOpcode();
17442 FoundZeroExtend
|= (Opc
== ISD::ZERO_EXTEND
);
17443 if ((Opc
== ISD::ZERO_EXTEND
|| Opc
== ISD::ANY_EXTEND
) &&
17444 Op
.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
17445 Op0
.getOperand(0).getOperand(0) == Op
.getOperand(0).getOperand(0))
17446 if (auto *C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(0).getOperand(1)))
17447 return C
->getZExtValue();
17451 // Make sure the first element matches
17452 // (zext (extract_vector_elt X, C))
17453 int64_t Offset
= checkElem(Op0
);
17457 unsigned NumElems
= N
->getNumOperands();
17458 SDValue In
= Op0
.getOperand(0).getOperand(0);
17459 EVT InSVT
= In
.getValueType().getScalarType();
17460 EVT InVT
= EVT::getVectorVT(*DAG
.getContext(), InSVT
, NumElems
);
17462 // Don't create an illegal input type after type legalization.
17463 if (LegalTypes
&& !TLI
.isTypeLegal(InVT
))
17466 // Ensure all the elements come from the same vector and are adjacent.
17467 for (unsigned i
= 1; i
!= NumElems
; ++i
) {
17468 if ((Offset
+ i
) != checkElem(N
->getOperand(i
)))
17473 In
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, InVT
, In
,
17474 Op0
.getOperand(0).getOperand(1));
17475 return DAG
.getNode(FoundZeroExtend
? ISD::ZERO_EXTEND
: ISD::ANY_EXTEND
, DL
,
17479 SDValue
DAGCombiner::visitBUILD_VECTOR(SDNode
*N
) {
17480 EVT VT
= N
->getValueType(0);
17482 // A vector built entirely of undefs is undef.
17483 if (ISD::allOperandsUndef(N
))
17484 return DAG
.getUNDEF(VT
);
17486 // If this is a splat of a bitcast from another vector, change to a
17489 // (build_vector (i64 (bitcast (v2i32 X))), (i64 (bitcast (v2i32 X)))) ->
17490 // (v2i64 (bitcast (concat_vectors (v2i32 X), (v2i32 X))))
17492 // If X is a build_vector itself, the concat can become a larger build_vector.
17493 // TODO: Maybe this is useful for non-splat too?
17494 if (!LegalOperations
) {
17495 if (SDValue Splat
= cast
<BuildVectorSDNode
>(N
)->getSplatValue()) {
17496 Splat
= peekThroughBitcasts(Splat
);
17497 EVT SrcVT
= Splat
.getValueType();
17498 if (SrcVT
.isVector()) {
17499 unsigned NumElts
= N
->getNumOperands() * SrcVT
.getVectorNumElements();
17500 EVT NewVT
= EVT::getVectorVT(*DAG
.getContext(),
17501 SrcVT
.getVectorElementType(), NumElts
);
17502 if (!LegalTypes
|| TLI
.isTypeLegal(NewVT
)) {
17503 SmallVector
<SDValue
, 8> Ops(N
->getNumOperands(), Splat
);
17504 SDValue Concat
= DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
),
17506 return DAG
.getBitcast(VT
, Concat
);
17512 // Check if we can express BUILD VECTOR via subvector extract.
17513 if (!LegalTypes
&& (N
->getNumOperands() > 1)) {
17514 SDValue Op0
= N
->getOperand(0);
17515 auto checkElem
= [&](SDValue Op
) -> uint64_t {
17516 if ((Op
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
) &&
17517 (Op0
.getOperand(0) == Op
.getOperand(0)))
17518 if (auto CNode
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
17519 return CNode
->getZExtValue();
17523 int Offset
= checkElem(Op0
);
17524 for (unsigned i
= 0; i
< N
->getNumOperands(); ++i
) {
17525 if (Offset
+ i
!= checkElem(N
->getOperand(i
))) {
17531 if ((Offset
== 0) &&
17532 (Op0
.getOperand(0).getValueType() == N
->getValueType(0)))
17533 return Op0
.getOperand(0);
17534 if ((Offset
!= -1) &&
17535 ((Offset
% N
->getValueType(0).getVectorNumElements()) ==
17536 0)) // IDX must be multiple of output size.
17537 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, SDLoc(N
), N
->getValueType(0),
17538 Op0
.getOperand(0), Op0
.getOperand(1));
17541 if (SDValue V
= convertBuildVecZextToZext(N
))
17544 if (SDValue V
= reduceBuildVecExtToExtBuildVec(N
))
17547 if (SDValue V
= reduceBuildVecToShuffle(N
))
17553 static SDValue
combineConcatVectorOfScalars(SDNode
*N
, SelectionDAG
&DAG
) {
17554 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
17555 EVT OpVT
= N
->getOperand(0).getValueType();
17557 // If the operands are legal vectors, leave them alone.
17558 if (TLI
.isTypeLegal(OpVT
))
17562 EVT VT
= N
->getValueType(0);
17563 SmallVector
<SDValue
, 8> Ops
;
17565 EVT SVT
= EVT::getIntegerVT(*DAG
.getContext(), OpVT
.getSizeInBits());
17566 SDValue ScalarUndef
= DAG
.getNode(ISD::UNDEF
, DL
, SVT
);
17568 // Keep track of what we encounter.
17569 bool AnyInteger
= false;
17570 bool AnyFP
= false;
17571 for (const SDValue
&Op
: N
->ops()) {
17572 if (ISD::BITCAST
== Op
.getOpcode() &&
17573 !Op
.getOperand(0).getValueType().isVector())
17574 Ops
.push_back(Op
.getOperand(0));
17575 else if (ISD::UNDEF
== Op
.getOpcode())
17576 Ops
.push_back(ScalarUndef
);
17580 // Note whether we encounter an integer or floating point scalar.
17581 // If it's neither, bail out, it could be something weird like x86mmx.
17582 EVT LastOpVT
= Ops
.back().getValueType();
17583 if (LastOpVT
.isFloatingPoint())
17585 else if (LastOpVT
.isInteger())
17591 // If any of the operands is a floating point scalar bitcast to a vector,
17592 // use floating point types throughout, and bitcast everything.
17593 // Replace UNDEFs by another scalar UNDEF node, of the final desired type.
17595 SVT
= EVT::getFloatingPointVT(OpVT
.getSizeInBits());
17596 ScalarUndef
= DAG
.getNode(ISD::UNDEF
, DL
, SVT
);
17598 for (SDValue
&Op
: Ops
) {
17599 if (Op
.getValueType() == SVT
)
17604 Op
= DAG
.getBitcast(SVT
, Op
);
17609 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), SVT
,
17610 VT
.getSizeInBits() / SVT
.getSizeInBits());
17611 return DAG
.getBitcast(VT
, DAG
.getBuildVector(VecVT
, DL
, Ops
));
17614 // Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR
17615 // operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at
17616 // most two distinct vectors the same size as the result, attempt to turn this
17617 // into a legal shuffle.
17618 static SDValue
combineConcatVectorOfExtracts(SDNode
*N
, SelectionDAG
&DAG
) {
17619 EVT VT
= N
->getValueType(0);
17620 EVT OpVT
= N
->getOperand(0).getValueType();
17621 int NumElts
= VT
.getVectorNumElements();
17622 int NumOpElts
= OpVT
.getVectorNumElements();
17624 SDValue SV0
= DAG
.getUNDEF(VT
), SV1
= DAG
.getUNDEF(VT
);
17625 SmallVector
<int, 8> Mask
;
17627 for (SDValue Op
: N
->ops()) {
17628 Op
= peekThroughBitcasts(Op
);
17630 // UNDEF nodes convert to UNDEF shuffle mask values.
17631 if (Op
.isUndef()) {
17632 Mask
.append((unsigned)NumOpElts
, -1);
17636 if (Op
.getOpcode() != ISD::EXTRACT_SUBVECTOR
)
17639 // What vector are we extracting the subvector from and at what index?
17640 SDValue ExtVec
= Op
.getOperand(0);
17642 // We want the EVT of the original extraction to correctly scale the
17643 // extraction index.
17644 EVT ExtVT
= ExtVec
.getValueType();
17645 ExtVec
= peekThroughBitcasts(ExtVec
);
17647 // UNDEF nodes convert to UNDEF shuffle mask values.
17648 if (ExtVec
.isUndef()) {
17649 Mask
.append((unsigned)NumOpElts
, -1);
17653 if (!isa
<ConstantSDNode
>(Op
.getOperand(1)))
17655 int ExtIdx
= Op
.getConstantOperandVal(1);
17657 // Ensure that we are extracting a subvector from a vector the same
17658 // size as the result.
17659 if (ExtVT
.getSizeInBits() != VT
.getSizeInBits())
17662 // Scale the subvector index to account for any bitcast.
17663 int NumExtElts
= ExtVT
.getVectorNumElements();
17664 if (0 == (NumExtElts
% NumElts
))
17665 ExtIdx
/= (NumExtElts
/ NumElts
);
17666 else if (0 == (NumElts
% NumExtElts
))
17667 ExtIdx
*= (NumElts
/ NumExtElts
);
17671 // At most we can reference 2 inputs in the final shuffle.
17672 if (SV0
.isUndef() || SV0
== ExtVec
) {
17674 for (int i
= 0; i
!= NumOpElts
; ++i
)
17675 Mask
.push_back(i
+ ExtIdx
);
17676 } else if (SV1
.isUndef() || SV1
== ExtVec
) {
17678 for (int i
= 0; i
!= NumOpElts
; ++i
)
17679 Mask
.push_back(i
+ ExtIdx
+ NumElts
);
17685 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
17686 return TLI
.buildLegalVectorShuffle(VT
, SDLoc(N
), DAG
.getBitcast(VT
, SV0
),
17687 DAG
.getBitcast(VT
, SV1
), Mask
, DAG
);
17690 SDValue
DAGCombiner::visitCONCAT_VECTORS(SDNode
*N
) {
17691 // If we only have one input vector, we don't need to do any concatenation.
17692 if (N
->getNumOperands() == 1)
17693 return N
->getOperand(0);
17695 // Check if all of the operands are undefs.
17696 EVT VT
= N
->getValueType(0);
17697 if (ISD::allOperandsUndef(N
))
17698 return DAG
.getUNDEF(VT
);
17700 // Optimize concat_vectors where all but the first of the vectors are undef.
17701 if (std::all_of(std::next(N
->op_begin()), N
->op_end(), [](const SDValue
&Op
) {
17702 return Op
.isUndef();
17704 SDValue In
= N
->getOperand(0);
17705 assert(In
.getValueType().isVector() && "Must concat vectors");
17707 // If the input is a concat_vectors, just make a larger concat by padding
17708 // with smaller undefs.
17709 if (In
.getOpcode() == ISD::CONCAT_VECTORS
&& In
.hasOneUse()) {
17710 unsigned NumOps
= N
->getNumOperands() * In
.getNumOperands();
17711 SmallVector
<SDValue
, 4> Ops(In
->op_begin(), In
->op_end());
17712 Ops
.resize(NumOps
, DAG
.getUNDEF(Ops
[0].getValueType()));
17713 return DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
, Ops
);
17716 SDValue Scalar
= peekThroughOneUseBitcasts(In
);
17718 // concat_vectors(scalar_to_vector(scalar), undef) ->
17719 // scalar_to_vector(scalar)
17720 if (!LegalOperations
&& Scalar
.getOpcode() == ISD::SCALAR_TO_VECTOR
&&
17721 Scalar
.hasOneUse()) {
17722 EVT SVT
= Scalar
.getValueType().getVectorElementType();
17723 if (SVT
== Scalar
.getOperand(0).getValueType())
17724 Scalar
= Scalar
.getOperand(0);
17727 // concat_vectors(scalar, undef) -> scalar_to_vector(scalar)
17728 if (!Scalar
.getValueType().isVector()) {
17729 // If the bitcast type isn't legal, it might be a trunc of a legal type;
17730 // look through the trunc so we can still do the transform:
17731 // concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar)
17732 if (Scalar
->getOpcode() == ISD::TRUNCATE
&&
17733 !TLI
.isTypeLegal(Scalar
.getValueType()) &&
17734 TLI
.isTypeLegal(Scalar
->getOperand(0).getValueType()))
17735 Scalar
= Scalar
->getOperand(0);
17737 EVT SclTy
= Scalar
.getValueType();
17739 if (!SclTy
.isFloatingPoint() && !SclTy
.isInteger())
17742 // Bail out if the vector size is not a multiple of the scalar size.
17743 if (VT
.getSizeInBits() % SclTy
.getSizeInBits())
17746 unsigned VNTNumElms
= VT
.getSizeInBits() / SclTy
.getSizeInBits();
17747 if (VNTNumElms
< 2)
17750 EVT NVT
= EVT::getVectorVT(*DAG
.getContext(), SclTy
, VNTNumElms
);
17751 if (!TLI
.isTypeLegal(NVT
) || !TLI
.isTypeLegal(Scalar
.getValueType()))
17754 SDValue Res
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, SDLoc(N
), NVT
, Scalar
);
17755 return DAG
.getBitcast(VT
, Res
);
17759 // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR.
17760 // We have already tested above for an UNDEF only concatenation.
17761 // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...))
17762 // -> (BUILD_VECTOR A, B, ..., C, D, ...)
17763 auto IsBuildVectorOrUndef
= [](const SDValue
&Op
) {
17764 return ISD::UNDEF
== Op
.getOpcode() || ISD::BUILD_VECTOR
== Op
.getOpcode();
17766 if (llvm::all_of(N
->ops(), IsBuildVectorOrUndef
)) {
17767 SmallVector
<SDValue
, 8> Opnds
;
17768 EVT SVT
= VT
.getScalarType();
17771 if (!SVT
.isFloatingPoint()) {
17772 // If BUILD_VECTOR are from built from integer, they may have different
17773 // operand types. Get the smallest type and truncate all operands to it.
17774 bool FoundMinVT
= false;
17775 for (const SDValue
&Op
: N
->ops())
17776 if (ISD::BUILD_VECTOR
== Op
.getOpcode()) {
17777 EVT OpSVT
= Op
.getOperand(0).getValueType();
17778 MinVT
= (!FoundMinVT
|| OpSVT
.bitsLE(MinVT
)) ? OpSVT
: MinVT
;
17781 assert(FoundMinVT
&& "Concat vector type mismatch");
17784 for (const SDValue
&Op
: N
->ops()) {
17785 EVT OpVT
= Op
.getValueType();
17786 unsigned NumElts
= OpVT
.getVectorNumElements();
17788 if (ISD::UNDEF
== Op
.getOpcode())
17789 Opnds
.append(NumElts
, DAG
.getUNDEF(MinVT
));
17791 if (ISD::BUILD_VECTOR
== Op
.getOpcode()) {
17792 if (SVT
.isFloatingPoint()) {
17793 assert(SVT
== OpVT
.getScalarType() && "Concat vector type mismatch");
17794 Opnds
.append(Op
->op_begin(), Op
->op_begin() + NumElts
);
17796 for (unsigned i
= 0; i
!= NumElts
; ++i
)
17798 DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), MinVT
, Op
.getOperand(i
)));
17803 assert(VT
.getVectorNumElements() == Opnds
.size() &&
17804 "Concat vector type mismatch");
17805 return DAG
.getBuildVector(VT
, SDLoc(N
), Opnds
);
17808 // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR.
17809 if (SDValue V
= combineConcatVectorOfScalars(N
, DAG
))
17812 // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE.
17813 if (Level
< AfterLegalizeVectorOps
&& TLI
.isTypeLegal(VT
))
17814 if (SDValue V
= combineConcatVectorOfExtracts(N
, DAG
))
17817 // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR
17818 // nodes often generate nop CONCAT_VECTOR nodes.
17819 // Scan the CONCAT_VECTOR operands and look for a CONCAT operations that
17820 // place the incoming vectors at the exact same location.
17821 SDValue SingleSource
= SDValue();
17822 unsigned PartNumElem
= N
->getOperand(0).getValueType().getVectorNumElements();
17824 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
17825 SDValue Op
= N
->getOperand(i
);
17830 // Check if this is the identity extract:
17831 if (Op
.getOpcode() != ISD::EXTRACT_SUBVECTOR
)
17834 // Find the single incoming vector for the extract_subvector.
17835 if (SingleSource
.getNode()) {
17836 if (Op
.getOperand(0) != SingleSource
)
17839 SingleSource
= Op
.getOperand(0);
17841 // Check the source type is the same as the type of the result.
17842 // If not, this concat may extend the vector, so we can not
17843 // optimize it away.
17844 if (SingleSource
.getValueType() != N
->getValueType(0))
17848 auto *CS
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
17849 // The extract index must be constant.
17853 // Check that we are reading from the identity index.
17854 unsigned IdentityIndex
= i
* PartNumElem
;
17855 if (CS
->getAPIntValue() != IdentityIndex
)
17859 if (SingleSource
.getNode())
17860 return SingleSource
;
17865 // Helper that peeks through INSERT_SUBVECTOR/CONCAT_VECTORS to find
17866 // if the subvector can be sourced for free.
17867 static SDValue
getSubVectorSrc(SDValue V
, SDValue Index
, EVT SubVT
) {
17868 if (V
.getOpcode() == ISD::INSERT_SUBVECTOR
&&
17869 V
.getOperand(1).getValueType() == SubVT
&& V
.getOperand(2) == Index
) {
17870 return V
.getOperand(1);
17872 auto *IndexC
= dyn_cast
<ConstantSDNode
>(Index
);
17873 if (IndexC
&& V
.getOpcode() == ISD::CONCAT_VECTORS
&&
17874 V
.getOperand(0).getValueType() == SubVT
&&
17875 (IndexC
->getZExtValue() % SubVT
.getVectorNumElements()) == 0) {
17876 uint64_t SubIdx
= IndexC
->getZExtValue() / SubVT
.getVectorNumElements();
17877 return V
.getOperand(SubIdx
);
17882 static SDValue
narrowInsertExtractVectorBinOp(SDNode
*Extract
,
17883 SelectionDAG
&DAG
) {
17884 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
17885 SDValue BinOp
= Extract
->getOperand(0);
17886 unsigned BinOpcode
= BinOp
.getOpcode();
17887 if (!TLI
.isBinOp(BinOpcode
) || BinOp
.getNode()->getNumValues() != 1)
17890 EVT VecVT
= BinOp
.getValueType();
17891 SDValue Bop0
= BinOp
.getOperand(0), Bop1
= BinOp
.getOperand(1);
17892 if (VecVT
!= Bop0
.getValueType() || VecVT
!= Bop1
.getValueType())
17895 SDValue Index
= Extract
->getOperand(1);
17896 EVT SubVT
= Extract
->getValueType(0);
17897 if (!TLI
.isOperationLegalOrCustom(BinOpcode
, SubVT
))
17900 SDValue Sub0
= getSubVectorSrc(Bop0
, Index
, SubVT
);
17901 SDValue Sub1
= getSubVectorSrc(Bop1
, Index
, SubVT
);
17903 // TODO: We could handle the case where only 1 operand is being inserted by
17904 // creating an extract of the other operand, but that requires checking
17905 // number of uses and/or costs.
17906 if (!Sub0
|| !Sub1
)
17909 // We are inserting both operands of the wide binop only to extract back
17910 // to the narrow vector size. Eliminate all of the insert/extract:
17911 // ext (binop (ins ?, X, Index), (ins ?, Y, Index)), Index --> binop X, Y
17912 return DAG
.getNode(BinOpcode
, SDLoc(Extract
), SubVT
, Sub0
, Sub1
,
17913 BinOp
->getFlags());
17916 /// If we are extracting a subvector produced by a wide binary operator try
17917 /// to use a narrow binary operator and/or avoid concatenation and extraction.
17918 static SDValue
narrowExtractedVectorBinOp(SDNode
*Extract
, SelectionDAG
&DAG
) {
17919 // TODO: Refactor with the caller (visitEXTRACT_SUBVECTOR), so we can share
17920 // some of these bailouts with other transforms.
17922 if (SDValue V
= narrowInsertExtractVectorBinOp(Extract
, DAG
))
17925 // The extract index must be a constant, so we can map it to a concat operand.
17926 auto *ExtractIndexC
= dyn_cast
<ConstantSDNode
>(Extract
->getOperand(1));
17927 if (!ExtractIndexC
)
17930 // We are looking for an optionally bitcasted wide vector binary operator
17931 // feeding an extract subvector.
17932 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
17933 SDValue BinOp
= peekThroughBitcasts(Extract
->getOperand(0));
17934 unsigned BOpcode
= BinOp
.getOpcode();
17935 if (!TLI
.isBinOp(BOpcode
) || BinOp
.getNode()->getNumValues() != 1)
17938 // The binop must be a vector type, so we can extract some fraction of it.
17939 EVT WideBVT
= BinOp
.getValueType();
17940 if (!WideBVT
.isVector())
17943 EVT VT
= Extract
->getValueType(0);
17944 unsigned ExtractIndex
= ExtractIndexC
->getZExtValue();
17945 assert(ExtractIndex
% VT
.getVectorNumElements() == 0 &&
17946 "Extract index is not a multiple of the vector length.");
17948 // Bail out if this is not a proper multiple width extraction.
17949 unsigned WideWidth
= WideBVT
.getSizeInBits();
17950 unsigned NarrowWidth
= VT
.getSizeInBits();
17951 if (WideWidth
% NarrowWidth
!= 0)
17954 // Bail out if we are extracting a fraction of a single operation. This can
17955 // occur because we potentially looked through a bitcast of the binop.
17956 unsigned NarrowingRatio
= WideWidth
/ NarrowWidth
;
17957 unsigned WideNumElts
= WideBVT
.getVectorNumElements();
17958 if (WideNumElts
% NarrowingRatio
!= 0)
17961 // Bail out if the target does not support a narrower version of the binop.
17962 EVT NarrowBVT
= EVT::getVectorVT(*DAG
.getContext(), WideBVT
.getScalarType(),
17963 WideNumElts
/ NarrowingRatio
);
17964 if (!TLI
.isOperationLegalOrCustomOrPromote(BOpcode
, NarrowBVT
))
17967 // If extraction is cheap, we don't need to look at the binop operands
17968 // for concat ops. The narrow binop alone makes this transform profitable.
17969 // We can't just reuse the original extract index operand because we may have
17971 unsigned ConcatOpNum
= ExtractIndex
/ VT
.getVectorNumElements();
17972 unsigned ExtBOIdx
= ConcatOpNum
* NarrowBVT
.getVectorNumElements();
17973 EVT ExtBOIdxVT
= Extract
->getOperand(1).getValueType();
17974 if (TLI
.isExtractSubvectorCheap(NarrowBVT
, WideBVT
, ExtBOIdx
) &&
17975 BinOp
.hasOneUse() && Extract
->getOperand(0)->hasOneUse()) {
17976 // extract (binop B0, B1), N --> binop (extract B0, N), (extract B1, N)
17978 SDValue NewExtIndex
= DAG
.getConstant(ExtBOIdx
, DL
, ExtBOIdxVT
);
17979 SDValue X
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, NarrowBVT
,
17980 BinOp
.getOperand(0), NewExtIndex
);
17981 SDValue Y
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, NarrowBVT
,
17982 BinOp
.getOperand(1), NewExtIndex
);
17983 SDValue NarrowBinOp
= DAG
.getNode(BOpcode
, DL
, NarrowBVT
, X
, Y
,
17984 BinOp
.getNode()->getFlags());
17985 return DAG
.getBitcast(VT
, NarrowBinOp
);
17988 // Only handle the case where we are doubling and then halving. A larger ratio
17989 // may require more than two narrow binops to replace the wide binop.
17990 if (NarrowingRatio
!= 2)
17993 // TODO: The motivating case for this transform is an x86 AVX1 target. That
17994 // target has temptingly almost legal versions of bitwise logic ops in 256-bit
17995 // flavors, but no other 256-bit integer support. This could be extended to
17996 // handle any binop, but that may require fixing/adding other folds to avoid
17997 // codegen regressions.
17998 if (BOpcode
!= ISD::AND
&& BOpcode
!= ISD::OR
&& BOpcode
!= ISD::XOR
)
18001 // We need at least one concatenation operation of a binop operand to make
18002 // this transform worthwhile. The concat must double the input vector sizes.
18003 auto GetSubVector
= [ConcatOpNum
](SDValue V
) -> SDValue
{
18004 if (V
.getOpcode() == ISD::CONCAT_VECTORS
&& V
.getNumOperands() == 2)
18005 return V
.getOperand(ConcatOpNum
);
18008 SDValue SubVecL
= GetSubVector(peekThroughBitcasts(BinOp
.getOperand(0)));
18009 SDValue SubVecR
= GetSubVector(peekThroughBitcasts(BinOp
.getOperand(1)));
18011 if (SubVecL
|| SubVecR
) {
18012 // If a binop operand was not the result of a concat, we must extract a
18013 // half-sized operand for our new narrow binop:
18014 // extract (binop (concat X1, X2), (concat Y1, Y2)), N --> binop XN, YN
18015 // extract (binop (concat X1, X2), Y), N --> binop XN, (extract Y, IndexC)
18016 // extract (binop X, (concat Y1, Y2)), N --> binop (extract X, IndexC), YN
18018 SDValue IndexC
= DAG
.getConstant(ExtBOIdx
, DL
, ExtBOIdxVT
);
18019 SDValue X
= SubVecL
? DAG
.getBitcast(NarrowBVT
, SubVecL
)
18020 : DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, NarrowBVT
,
18021 BinOp
.getOperand(0), IndexC
);
18023 SDValue Y
= SubVecR
? DAG
.getBitcast(NarrowBVT
, SubVecR
)
18024 : DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, NarrowBVT
,
18025 BinOp
.getOperand(1), IndexC
);
18027 SDValue NarrowBinOp
= DAG
.getNode(BOpcode
, DL
, NarrowBVT
, X
, Y
);
18028 return DAG
.getBitcast(VT
, NarrowBinOp
);
18034 /// If we are extracting a subvector from a wide vector load, convert to a
18035 /// narrow load to eliminate the extraction:
18036 /// (extract_subvector (load wide vector)) --> (load narrow vector)
18037 static SDValue
narrowExtractedVectorLoad(SDNode
*Extract
, SelectionDAG
&DAG
) {
18038 // TODO: Add support for big-endian. The offset calculation must be adjusted.
18039 if (DAG
.getDataLayout().isBigEndian())
18042 auto *Ld
= dyn_cast
<LoadSDNode
>(Extract
->getOperand(0));
18043 auto *ExtIdx
= dyn_cast
<ConstantSDNode
>(Extract
->getOperand(1));
18044 if (!Ld
|| Ld
->getExtensionType() || !Ld
->isSimple() ||
18048 // Allow targets to opt-out.
18049 EVT VT
= Extract
->getValueType(0);
18050 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
18051 if (!TLI
.shouldReduceLoadWidth(Ld
, Ld
->getExtensionType(), VT
))
18054 // The narrow load will be offset from the base address of the old load if
18055 // we are extracting from something besides index 0 (little-endian).
18057 SDValue BaseAddr
= Ld
->getOperand(1);
18058 unsigned Offset
= ExtIdx
->getZExtValue() * VT
.getScalarType().getStoreSize();
18060 // TODO: Use "BaseIndexOffset" to make this more effective.
18061 SDValue NewAddr
= DAG
.getMemBasePlusOffset(BaseAddr
, Offset
, DL
);
18062 MachineFunction
&MF
= DAG
.getMachineFunction();
18063 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(Ld
->getMemOperand(), Offset
,
18064 VT
.getStoreSize());
18065 SDValue NewLd
= DAG
.getLoad(VT
, DL
, Ld
->getChain(), NewAddr
, MMO
);
18066 DAG
.makeEquivalentMemoryOrdering(Ld
, NewLd
);
18070 SDValue
DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode
*N
) {
18071 EVT NVT
= N
->getValueType(0);
18072 SDValue V
= N
->getOperand(0);
18074 // Extract from UNDEF is UNDEF.
18076 return DAG
.getUNDEF(NVT
);
18078 if (TLI
.isOperationLegalOrCustomOrPromote(ISD::LOAD
, NVT
))
18079 if (SDValue NarrowLoad
= narrowExtractedVectorLoad(N
, DAG
))
18082 // Combine an extract of an extract into a single extract_subvector.
18083 // ext (ext X, C), 0 --> ext X, C
18084 SDValue Index
= N
->getOperand(1);
18085 if (isNullConstant(Index
) && V
.getOpcode() == ISD::EXTRACT_SUBVECTOR
&&
18086 V
.hasOneUse() && isa
<ConstantSDNode
>(V
.getOperand(1))) {
18087 if (TLI
.isExtractSubvectorCheap(NVT
, V
.getOperand(0).getValueType(),
18088 V
.getConstantOperandVal(1)) &&
18089 TLI
.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR
, NVT
)) {
18090 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, SDLoc(N
), NVT
, V
.getOperand(0),
18095 // Try to move vector bitcast after extract_subv by scaling extraction index:
18096 // extract_subv (bitcast X), Index --> bitcast (extract_subv X, Index')
18097 if (isa
<ConstantSDNode
>(Index
) && V
.getOpcode() == ISD::BITCAST
&&
18098 V
.getOperand(0).getValueType().isVector()) {
18099 SDValue SrcOp
= V
.getOperand(0);
18100 EVT SrcVT
= SrcOp
.getValueType();
18101 unsigned SrcNumElts
= SrcVT
.getVectorNumElements();
18102 unsigned DestNumElts
= V
.getValueType().getVectorNumElements();
18103 if ((SrcNumElts
% DestNumElts
) == 0) {
18104 unsigned SrcDestRatio
= SrcNumElts
/ DestNumElts
;
18105 unsigned NewExtNumElts
= NVT
.getVectorNumElements() * SrcDestRatio
;
18106 EVT NewExtVT
= EVT::getVectorVT(*DAG
.getContext(), SrcVT
.getScalarType(),
18108 if (TLI
.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR
, NewExtVT
)) {
18109 unsigned IndexValScaled
= N
->getConstantOperandVal(1) * SrcDestRatio
;
18111 SDValue NewIndex
= DAG
.getIntPtrConstant(IndexValScaled
, DL
);
18112 SDValue NewExtract
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, NewExtVT
,
18113 V
.getOperand(0), NewIndex
);
18114 return DAG
.getBitcast(NVT
, NewExtract
);
18117 // TODO - handle (DestNumElts % SrcNumElts) == 0
18121 // (extract_subvec (concat V1, V2, ...), i)
18124 // Only operand 0 is checked as 'concat' assumes all inputs of the same
18126 if (V
.getOpcode() == ISD::CONCAT_VECTORS
&& isa
<ConstantSDNode
>(Index
) &&
18127 V
.getOperand(0).getValueType() == NVT
) {
18128 unsigned Idx
= N
->getConstantOperandVal(1);
18129 unsigned NumElems
= NVT
.getVectorNumElements();
18130 assert((Idx
% NumElems
) == 0 &&
18131 "IDX in concat is not a multiple of the result vector length.");
18132 return V
->getOperand(Idx
/ NumElems
);
18135 V
= peekThroughBitcasts(V
);
18137 // If the input is a build vector. Try to make a smaller build vector.
18138 if (V
.getOpcode() == ISD::BUILD_VECTOR
) {
18139 if (auto *IdxC
= dyn_cast
<ConstantSDNode
>(Index
)) {
18140 EVT InVT
= V
.getValueType();
18141 unsigned ExtractSize
= NVT
.getSizeInBits();
18142 unsigned EltSize
= InVT
.getScalarSizeInBits();
18143 // Only do this if we won't split any elements.
18144 if (ExtractSize
% EltSize
== 0) {
18145 unsigned NumElems
= ExtractSize
/ EltSize
;
18146 EVT EltVT
= InVT
.getVectorElementType();
18147 EVT ExtractVT
= NumElems
== 1 ? EltVT
18148 : EVT::getVectorVT(*DAG
.getContext(),
18150 if ((Level
< AfterLegalizeDAG
||
18152 TLI
.isOperationLegal(ISD::BUILD_VECTOR
, ExtractVT
))) &&
18153 (!LegalTypes
|| TLI
.isTypeLegal(ExtractVT
))) {
18154 unsigned IdxVal
= IdxC
->getZExtValue();
18155 IdxVal
*= NVT
.getScalarSizeInBits();
18158 if (NumElems
== 1) {
18159 SDValue Src
= V
->getOperand(IdxVal
);
18160 if (EltVT
!= Src
.getValueType())
18161 Src
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), InVT
, Src
);
18162 return DAG
.getBitcast(NVT
, Src
);
18165 // Extract the pieces from the original build_vector.
18166 SDValue BuildVec
= DAG
.getBuildVector(
18167 ExtractVT
, SDLoc(N
), V
->ops().slice(IdxVal
, NumElems
));
18168 return DAG
.getBitcast(NVT
, BuildVec
);
18174 if (V
.getOpcode() == ISD::INSERT_SUBVECTOR
) {
18175 // Handle only simple case where vector being inserted and vector
18176 // being extracted are of same size.
18177 EVT SmallVT
= V
.getOperand(1).getValueType();
18178 if (!NVT
.bitsEq(SmallVT
))
18181 // Only handle cases where both indexes are constants.
18182 auto *ExtIdx
= dyn_cast
<ConstantSDNode
>(Index
);
18183 auto *InsIdx
= dyn_cast
<ConstantSDNode
>(V
.getOperand(2));
18184 if (InsIdx
&& ExtIdx
) {
18186 // (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
18188 // indices are equal or bit offsets are equal => V1
18189 // otherwise => (extract_subvec V1, ExtIdx)
18190 if (InsIdx
->getZExtValue() * SmallVT
.getScalarSizeInBits() ==
18191 ExtIdx
->getZExtValue() * NVT
.getScalarSizeInBits())
18192 return DAG
.getBitcast(NVT
, V
.getOperand(1));
18193 return DAG
.getNode(
18194 ISD::EXTRACT_SUBVECTOR
, SDLoc(N
), NVT
,
18195 DAG
.getBitcast(N
->getOperand(0).getValueType(), V
.getOperand(0)),
18200 if (SDValue NarrowBOp
= narrowExtractedVectorBinOp(N
, DAG
))
18203 if (SimplifyDemandedVectorElts(SDValue(N
, 0)))
18204 return SDValue(N
, 0);
18209 /// Try to convert a wide shuffle of concatenated vectors into 2 narrow shuffles
18210 /// followed by concatenation. Narrow vector ops may have better performance
18211 /// than wide ops, and this can unlock further narrowing of other vector ops.
18212 /// Targets can invert this transform later if it is not profitable.
18213 static SDValue
foldShuffleOfConcatUndefs(ShuffleVectorSDNode
*Shuf
,
18214 SelectionDAG
&DAG
) {
18215 SDValue N0
= Shuf
->getOperand(0), N1
= Shuf
->getOperand(1);
18216 if (N0
.getOpcode() != ISD::CONCAT_VECTORS
|| N0
.getNumOperands() != 2 ||
18217 N1
.getOpcode() != ISD::CONCAT_VECTORS
|| N1
.getNumOperands() != 2 ||
18218 !N0
.getOperand(1).isUndef() || !N1
.getOperand(1).isUndef())
18221 // Split the wide shuffle mask into halves. Any mask element that is accessing
18222 // operand 1 is offset down to account for narrowing of the vectors.
18223 ArrayRef
<int> Mask
= Shuf
->getMask();
18224 EVT VT
= Shuf
->getValueType(0);
18225 unsigned NumElts
= VT
.getVectorNumElements();
18226 unsigned HalfNumElts
= NumElts
/ 2;
18227 SmallVector
<int, 16> Mask0(HalfNumElts
, -1);
18228 SmallVector
<int, 16> Mask1(HalfNumElts
, -1);
18229 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
18232 int M
= Mask
[i
] < (int)NumElts
? Mask
[i
] : Mask
[i
] - (int)HalfNumElts
;
18233 if (i
< HalfNumElts
)
18236 Mask1
[i
- HalfNumElts
] = M
;
18239 // Ask the target if this is a valid transform.
18240 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
18241 EVT HalfVT
= EVT::getVectorVT(*DAG
.getContext(), VT
.getScalarType(),
18243 if (!TLI
.isShuffleMaskLegal(Mask0
, HalfVT
) ||
18244 !TLI
.isShuffleMaskLegal(Mask1
, HalfVT
))
18247 // shuffle (concat X, undef), (concat Y, undef), Mask -->
18248 // concat (shuffle X, Y, Mask0), (shuffle X, Y, Mask1)
18249 SDValue X
= N0
.getOperand(0), Y
= N1
.getOperand(0);
18251 SDValue Shuf0
= DAG
.getVectorShuffle(HalfVT
, DL
, X
, Y
, Mask0
);
18252 SDValue Shuf1
= DAG
.getVectorShuffle(HalfVT
, DL
, X
, Y
, Mask1
);
18253 return DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, VT
, Shuf0
, Shuf1
);
18256 // Tries to turn a shuffle of two CONCAT_VECTORS into a single concat,
18257 // or turn a shuffle of a single concat into simpler shuffle then concat.
18258 static SDValue
partitionShuffleOfConcats(SDNode
*N
, SelectionDAG
&DAG
) {
18259 EVT VT
= N
->getValueType(0);
18260 unsigned NumElts
= VT
.getVectorNumElements();
18262 SDValue N0
= N
->getOperand(0);
18263 SDValue N1
= N
->getOperand(1);
18264 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
);
18265 ArrayRef
<int> Mask
= SVN
->getMask();
18267 SmallVector
<SDValue
, 4> Ops
;
18268 EVT ConcatVT
= N0
.getOperand(0).getValueType();
18269 unsigned NumElemsPerConcat
= ConcatVT
.getVectorNumElements();
18270 unsigned NumConcats
= NumElts
/ NumElemsPerConcat
;
18272 auto IsUndefMaskElt
= [](int i
) { return i
== -1; };
18274 // Special case: shuffle(concat(A,B)) can be more efficiently represented
18275 // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high
18276 // half vector elements.
18277 if (NumElemsPerConcat
* 2 == NumElts
&& N1
.isUndef() &&
18278 llvm::all_of(Mask
.slice(NumElemsPerConcat
, NumElemsPerConcat
),
18280 N0
= DAG
.getVectorShuffle(ConcatVT
, SDLoc(N
), N0
.getOperand(0),
18282 Mask
.slice(0, NumElemsPerConcat
));
18283 N1
= DAG
.getUNDEF(ConcatVT
);
18284 return DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
, N0
, N1
);
18287 // Look at every vector that's inserted. We're looking for exact
18288 // subvector-sized copies from a concatenated vector
18289 for (unsigned I
= 0; I
!= NumConcats
; ++I
) {
18290 unsigned Begin
= I
* NumElemsPerConcat
;
18291 ArrayRef
<int> SubMask
= Mask
.slice(Begin
, NumElemsPerConcat
);
18293 // Make sure we're dealing with a copy.
18294 if (llvm::all_of(SubMask
, IsUndefMaskElt
)) {
18295 Ops
.push_back(DAG
.getUNDEF(ConcatVT
));
18300 for (int i
= 0; i
!= (int)NumElemsPerConcat
; ++i
) {
18301 if (IsUndefMaskElt(SubMask
[i
]))
18303 if ((SubMask
[i
] % (int)NumElemsPerConcat
) != i
)
18305 int EltOpIdx
= SubMask
[i
] / NumElemsPerConcat
;
18306 if (0 <= OpIdx
&& EltOpIdx
!= OpIdx
)
18310 assert(0 <= OpIdx
&& "Unknown concat_vectors op");
18312 if (OpIdx
< (int)N0
.getNumOperands())
18313 Ops
.push_back(N0
.getOperand(OpIdx
));
18315 Ops
.push_back(N1
.getOperand(OpIdx
- N0
.getNumOperands()));
18318 return DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
, Ops
);
18321 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
18322 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
18324 // SHUFFLE(BUILD_VECTOR(), BUILD_VECTOR()) -> BUILD_VECTOR() is always
18325 // a simplification in some sense, but it isn't appropriate in general: some
18326 // BUILD_VECTORs are substantially cheaper than others. The general case
18327 // of a BUILD_VECTOR requires inserting each element individually (or
18328 // performing the equivalent in a temporary stack variable). A BUILD_VECTOR of
18329 // all constants is a single constant pool load. A BUILD_VECTOR where each
18330 // element is identical is a splat. A BUILD_VECTOR where most of the operands
18331 // are undef lowers to a small number of element insertions.
18333 // To deal with this, we currently use a bunch of mostly arbitrary heuristics.
18334 // We don't fold shuffles where one side is a non-zero constant, and we don't
18335 // fold shuffles if the resulting (non-splat) BUILD_VECTOR would have duplicate
18336 // non-constant operands. This seems to work out reasonably well in practice.
18337 static SDValue
combineShuffleOfScalars(ShuffleVectorSDNode
*SVN
,
18339 const TargetLowering
&TLI
) {
18340 EVT VT
= SVN
->getValueType(0);
18341 unsigned NumElts
= VT
.getVectorNumElements();
18342 SDValue N0
= SVN
->getOperand(0);
18343 SDValue N1
= SVN
->getOperand(1);
18345 if (!N0
->hasOneUse())
18348 // If only one of N1,N2 is constant, bail out if it is not ALL_ZEROS as
18349 // discussed above.
18350 if (!N1
.isUndef()) {
18351 if (!N1
->hasOneUse())
18354 bool N0AnyConst
= isAnyConstantBuildVector(N0
);
18355 bool N1AnyConst
= isAnyConstantBuildVector(N1
);
18356 if (N0AnyConst
&& !N1AnyConst
&& !ISD::isBuildVectorAllZeros(N0
.getNode()))
18358 if (!N0AnyConst
&& N1AnyConst
&& !ISD::isBuildVectorAllZeros(N1
.getNode()))
18362 // If both inputs are splats of the same value then we can safely merge this
18363 // to a single BUILD_VECTOR with undef elements based on the shuffle mask.
18364 bool IsSplat
= false;
18365 auto *BV0
= dyn_cast
<BuildVectorSDNode
>(N0
);
18366 auto *BV1
= dyn_cast
<BuildVectorSDNode
>(N1
);
18368 if (SDValue Splat0
= BV0
->getSplatValue())
18369 IsSplat
= (Splat0
== BV1
->getSplatValue());
18371 SmallVector
<SDValue
, 8> Ops
;
18372 SmallSet
<SDValue
, 16> DuplicateOps
;
18373 for (int M
: SVN
->getMask()) {
18374 SDValue Op
= DAG
.getUNDEF(VT
.getScalarType());
18376 int Idx
= M
< (int)NumElts
? M
: M
- NumElts
;
18377 SDValue
&S
= (M
< (int)NumElts
? N0
: N1
);
18378 if (S
.getOpcode() == ISD::BUILD_VECTOR
) {
18379 Op
= S
.getOperand(Idx
);
18380 } else if (S
.getOpcode() == ISD::SCALAR_TO_VECTOR
) {
18381 SDValue Op0
= S
.getOperand(0);
18382 Op
= Idx
== 0 ? Op0
: DAG
.getUNDEF(Op0
.getValueType());
18384 // Operand can't be combined - bail out.
18389 // Don't duplicate a non-constant BUILD_VECTOR operand unless we're
18390 // generating a splat; semantically, this is fine, but it's likely to
18391 // generate low-quality code if the target can't reconstruct an appropriate
18393 if (!Op
.isUndef() && !isa
<ConstantSDNode
>(Op
) && !isa
<ConstantFPSDNode
>(Op
))
18394 if (!IsSplat
&& !DuplicateOps
.insert(Op
).second
)
18400 // BUILD_VECTOR requires all inputs to be of the same type, find the
18401 // maximum type and extend them all.
18402 EVT SVT
= VT
.getScalarType();
18403 if (SVT
.isInteger())
18404 for (SDValue
&Op
: Ops
)
18405 SVT
= (SVT
.bitsLT(Op
.getValueType()) ? Op
.getValueType() : SVT
);
18406 if (SVT
!= VT
.getScalarType())
18407 for (SDValue
&Op
: Ops
)
18408 Op
= TLI
.isZExtFree(Op
.getValueType(), SVT
)
18409 ? DAG
.getZExtOrTrunc(Op
, SDLoc(SVN
), SVT
)
18410 : DAG
.getSExtOrTrunc(Op
, SDLoc(SVN
), SVT
);
18411 return DAG
.getBuildVector(VT
, SDLoc(SVN
), Ops
);
18414 // Match shuffles that can be converted to any_vector_extend_in_reg.
18415 // This is often generated during legalization.
18416 // e.g. v4i32 <0,u,1,u> -> (v2i64 any_vector_extend_in_reg(v4i32 src))
18417 // TODO Add support for ZERO_EXTEND_VECTOR_INREG when we have a test case.
18418 static SDValue
combineShuffleToVectorExtend(ShuffleVectorSDNode
*SVN
,
18420 const TargetLowering
&TLI
,
18421 bool LegalOperations
) {
18422 EVT VT
= SVN
->getValueType(0);
18423 bool IsBigEndian
= DAG
.getDataLayout().isBigEndian();
18425 // TODO Add support for big-endian when we have a test case.
18426 if (!VT
.isInteger() || IsBigEndian
)
18429 unsigned NumElts
= VT
.getVectorNumElements();
18430 unsigned EltSizeInBits
= VT
.getScalarSizeInBits();
18431 ArrayRef
<int> Mask
= SVN
->getMask();
18432 SDValue N0
= SVN
->getOperand(0);
18434 // shuffle<0,-1,1,-1> == (v2i64 anyextend_vector_inreg(v4i32))
18435 auto isAnyExtend
= [&Mask
, &NumElts
](unsigned Scale
) {
18436 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
18439 if ((i
% Scale
) == 0 && Mask
[i
] == (int)(i
/ Scale
))
18446 // Attempt to match a '*_extend_vector_inreg' shuffle, we just search for
18447 // power-of-2 extensions as they are the most likely.
18448 for (unsigned Scale
= 2; Scale
< NumElts
; Scale
*= 2) {
18449 // Check for non power of 2 vector sizes
18450 if (NumElts
% Scale
!= 0)
18452 if (!isAnyExtend(Scale
))
18455 EVT OutSVT
= EVT::getIntegerVT(*DAG
.getContext(), EltSizeInBits
* Scale
);
18456 EVT OutVT
= EVT::getVectorVT(*DAG
.getContext(), OutSVT
, NumElts
/ Scale
);
18457 // Never create an illegal type. Only create unsupported operations if we
18458 // are pre-legalization.
18459 if (TLI
.isTypeLegal(OutVT
))
18460 if (!LegalOperations
||
18461 TLI
.isOperationLegalOrCustom(ISD::ANY_EXTEND_VECTOR_INREG
, OutVT
))
18462 return DAG
.getBitcast(VT
,
18463 DAG
.getNode(ISD::ANY_EXTEND_VECTOR_INREG
,
18464 SDLoc(SVN
), OutVT
, N0
));
18470 // Detect 'truncate_vector_inreg' style shuffles that pack the lower parts of
18471 // each source element of a large type into the lowest elements of a smaller
18472 // destination type. This is often generated during legalization.
18473 // If the source node itself was a '*_extend_vector_inreg' node then we should
18474 // then be able to remove it.
18475 static SDValue
combineTruncationShuffle(ShuffleVectorSDNode
*SVN
,
18476 SelectionDAG
&DAG
) {
18477 EVT VT
= SVN
->getValueType(0);
18478 bool IsBigEndian
= DAG
.getDataLayout().isBigEndian();
18480 // TODO Add support for big-endian when we have a test case.
18481 if (!VT
.isInteger() || IsBigEndian
)
18484 SDValue N0
= peekThroughBitcasts(SVN
->getOperand(0));
18486 unsigned Opcode
= N0
.getOpcode();
18487 if (Opcode
!= ISD::ANY_EXTEND_VECTOR_INREG
&&
18488 Opcode
!= ISD::SIGN_EXTEND_VECTOR_INREG
&&
18489 Opcode
!= ISD::ZERO_EXTEND_VECTOR_INREG
)
18492 SDValue N00
= N0
.getOperand(0);
18493 ArrayRef
<int> Mask
= SVN
->getMask();
18494 unsigned NumElts
= VT
.getVectorNumElements();
18495 unsigned EltSizeInBits
= VT
.getScalarSizeInBits();
18496 unsigned ExtSrcSizeInBits
= N00
.getScalarValueSizeInBits();
18497 unsigned ExtDstSizeInBits
= N0
.getScalarValueSizeInBits();
18499 if (ExtDstSizeInBits
% ExtSrcSizeInBits
!= 0)
18501 unsigned ExtScale
= ExtDstSizeInBits
/ ExtSrcSizeInBits
;
18503 // (v4i32 truncate_vector_inreg(v2i64)) == shuffle<0,2-1,-1>
18504 // (v8i16 truncate_vector_inreg(v4i32)) == shuffle<0,2,4,6,-1,-1,-1,-1>
18505 // (v8i16 truncate_vector_inreg(v2i64)) == shuffle<0,4,-1,-1,-1,-1,-1,-1>
18506 auto isTruncate
= [&Mask
, &NumElts
](unsigned Scale
) {
18507 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
18510 if ((i
* Scale
) < NumElts
&& Mask
[i
] == (int)(i
* Scale
))
18517 // At the moment we just handle the case where we've truncated back to the
18518 // same size as before the extension.
18519 // TODO: handle more extension/truncation cases as cases arise.
18520 if (EltSizeInBits
!= ExtSrcSizeInBits
)
18523 // We can remove *extend_vector_inreg only if the truncation happens at
18524 // the same scale as the extension.
18525 if (isTruncate(ExtScale
))
18526 return DAG
.getBitcast(VT
, N00
);
18531 // Combine shuffles of splat-shuffles of the form:
18532 // shuffle (shuffle V, undef, splat-mask), undef, M
18533 // If splat-mask contains undef elements, we need to be careful about
18534 // introducing undef's in the folded mask which are not the result of composing
18535 // the masks of the shuffles.
18536 static SDValue
combineShuffleOfSplatVal(ShuffleVectorSDNode
*Shuf
,
18537 SelectionDAG
&DAG
) {
18538 if (!Shuf
->getOperand(1).isUndef())
18540 auto *Splat
= dyn_cast
<ShuffleVectorSDNode
>(Shuf
->getOperand(0));
18541 if (!Splat
|| !Splat
->isSplat())
18544 ArrayRef
<int> ShufMask
= Shuf
->getMask();
18545 ArrayRef
<int> SplatMask
= Splat
->getMask();
18546 assert(ShufMask
.size() == SplatMask
.size() && "Mask length mismatch");
18548 // Prefer simplifying to the splat-shuffle, if possible. This is legal if
18549 // every undef mask element in the splat-shuffle has a corresponding undef
18550 // element in the user-shuffle's mask or if the composition of mask elements
18551 // would result in undef.
18552 // Examples for (shuffle (shuffle v, undef, SplatMask), undef, UserMask):
18553 // * UserMask=[0,2,u,u], SplatMask=[2,u,2,u] -> [2,2,u,u]
18554 // In this case it is not legal to simplify to the splat-shuffle because we
18555 // may be exposing the users of the shuffle an undef element at index 1
18556 // which was not there before the combine.
18557 // * UserMask=[0,u,2,u], SplatMask=[2,u,2,u] -> [2,u,2,u]
18558 // In this case the composition of masks yields SplatMask, so it's ok to
18559 // simplify to the splat-shuffle.
18560 // * UserMask=[3,u,2,u], SplatMask=[2,u,2,u] -> [u,u,2,u]
18561 // In this case the composed mask includes all undef elements of SplatMask
18562 // and in addition sets element zero to undef. It is safe to simplify to
18563 // the splat-shuffle.
18564 auto CanSimplifyToExistingSplat
= [](ArrayRef
<int> UserMask
,
18565 ArrayRef
<int> SplatMask
) {
18566 for (unsigned i
= 0, e
= UserMask
.size(); i
!= e
; ++i
)
18567 if (UserMask
[i
] != -1 && SplatMask
[i
] == -1 &&
18568 SplatMask
[UserMask
[i
]] != -1)
18572 if (CanSimplifyToExistingSplat(ShufMask
, SplatMask
))
18573 return Shuf
->getOperand(0);
18575 // Create a new shuffle with a mask that is composed of the two shuffles'
18577 SmallVector
<int, 32> NewMask
;
18578 for (int Idx
: ShufMask
)
18579 NewMask
.push_back(Idx
== -1 ? -1 : SplatMask
[Idx
]);
18581 return DAG
.getVectorShuffle(Splat
->getValueType(0), SDLoc(Splat
),
18582 Splat
->getOperand(0), Splat
->getOperand(1),
18586 /// If the shuffle mask is taking exactly one element from the first vector
18587 /// operand and passing through all other elements from the second vector
18588 /// operand, return the index of the mask element that is choosing an element
18589 /// from the first operand. Otherwise, return -1.
18590 static int getShuffleMaskIndexOfOneElementFromOp0IntoOp1(ArrayRef
<int> Mask
) {
18591 int MaskSize
= Mask
.size();
18592 int EltFromOp0
= -1;
18593 // TODO: This does not match if there are undef elements in the shuffle mask.
18594 // Should we ignore undefs in the shuffle mask instead? The trade-off is
18595 // removing an instruction (a shuffle), but losing the knowledge that some
18596 // vector lanes are not needed.
18597 for (int i
= 0; i
!= MaskSize
; ++i
) {
18598 if (Mask
[i
] >= 0 && Mask
[i
] < MaskSize
) {
18599 // We're looking for a shuffle of exactly one element from operand 0.
18600 if (EltFromOp0
!= -1)
18603 } else if (Mask
[i
] != i
+ MaskSize
) {
18604 // Nothing from operand 1 can change lanes.
18611 /// If a shuffle inserts exactly one element from a source vector operand into
18612 /// another vector operand and we can access the specified element as a scalar,
18613 /// then we can eliminate the shuffle.
18614 static SDValue
replaceShuffleOfInsert(ShuffleVectorSDNode
*Shuf
,
18615 SelectionDAG
&DAG
) {
18616 // First, check if we are taking one element of a vector and shuffling that
18617 // element into another vector.
18618 ArrayRef
<int> Mask
= Shuf
->getMask();
18619 SmallVector
<int, 16> CommutedMask(Mask
.begin(), Mask
.end());
18620 SDValue Op0
= Shuf
->getOperand(0);
18621 SDValue Op1
= Shuf
->getOperand(1);
18622 int ShufOp0Index
= getShuffleMaskIndexOfOneElementFromOp0IntoOp1(Mask
);
18623 if (ShufOp0Index
== -1) {
18624 // Commute mask and check again.
18625 ShuffleVectorSDNode::commuteMask(CommutedMask
);
18626 ShufOp0Index
= getShuffleMaskIndexOfOneElementFromOp0IntoOp1(CommutedMask
);
18627 if (ShufOp0Index
== -1)
18629 // Commute operands to match the commuted shuffle mask.
18630 std::swap(Op0
, Op1
);
18631 Mask
= CommutedMask
;
18634 // The shuffle inserts exactly one element from operand 0 into operand 1.
18635 // Now see if we can access that element as a scalar via a real insert element
18637 // TODO: We can try harder to locate the element as a scalar. Examples: it
18638 // could be an operand of SCALAR_TO_VECTOR, BUILD_VECTOR, or a constant.
18639 assert(Mask
[ShufOp0Index
] >= 0 && Mask
[ShufOp0Index
] < (int)Mask
.size() &&
18640 "Shuffle mask value must be from operand 0");
18641 if (Op0
.getOpcode() != ISD::INSERT_VECTOR_ELT
)
18644 auto *InsIndexC
= dyn_cast
<ConstantSDNode
>(Op0
.getOperand(2));
18645 if (!InsIndexC
|| InsIndexC
->getSExtValue() != Mask
[ShufOp0Index
])
18648 // There's an existing insertelement with constant insertion index, so we
18649 // don't need to check the legality/profitability of a replacement operation
18650 // that differs at most in the constant value. The target should be able to
18651 // lower any of those in a similar way. If not, legalization will expand this
18652 // to a scalar-to-vector plus shuffle.
18654 // Note that the shuffle may move the scalar from the position that the insert
18655 // element used. Therefore, our new insert element occurs at the shuffle's
18656 // mask index value, not the insert's index value.
18657 // shuffle (insertelt v1, x, C), v2, mask --> insertelt v2, x, C'
18658 SDValue NewInsIndex
= DAG
.getConstant(ShufOp0Index
, SDLoc(Shuf
),
18659 Op0
.getOperand(2).getValueType());
18660 return DAG
.getNode(ISD::INSERT_VECTOR_ELT
, SDLoc(Shuf
), Op0
.getValueType(),
18661 Op1
, Op0
.getOperand(1), NewInsIndex
);
18664 /// If we have a unary shuffle of a shuffle, see if it can be folded away
18665 /// completely. This has the potential to lose undef knowledge because the first
18666 /// shuffle may not have an undef mask element where the second one does. So
18667 /// only call this after doing simplifications based on demanded elements.
18668 static SDValue
simplifyShuffleOfShuffle(ShuffleVectorSDNode
*Shuf
) {
18669 // shuf (shuf0 X, Y, Mask0), undef, Mask
18670 auto *Shuf0
= dyn_cast
<ShuffleVectorSDNode
>(Shuf
->getOperand(0));
18671 if (!Shuf0
|| !Shuf
->getOperand(1).isUndef())
18674 ArrayRef
<int> Mask
= Shuf
->getMask();
18675 ArrayRef
<int> Mask0
= Shuf0
->getMask();
18676 for (int i
= 0, e
= (int)Mask
.size(); i
!= e
; ++i
) {
18677 // Ignore undef elements.
18680 assert(Mask
[i
] >= 0 && Mask
[i
] < e
&& "Unexpected shuffle mask value");
18682 // Is the element of the shuffle operand chosen by this shuffle the same as
18683 // the element chosen by the shuffle operand itself?
18684 if (Mask0
[Mask
[i
]] != Mask0
[i
])
18687 // Every element of this shuffle is identical to the result of the previous
18688 // shuffle, so we can replace this value.
18689 return Shuf
->getOperand(0);
18692 SDValue
DAGCombiner::visitVECTOR_SHUFFLE(SDNode
*N
) {
18693 EVT VT
= N
->getValueType(0);
18694 unsigned NumElts
= VT
.getVectorNumElements();
18696 SDValue N0
= N
->getOperand(0);
18697 SDValue N1
= N
->getOperand(1);
18699 assert(N0
.getValueType() == VT
&& "Vector shuffle must be normalized in DAG");
18701 // Canonicalize shuffle undef, undef -> undef
18702 if (N0
.isUndef() && N1
.isUndef())
18703 return DAG
.getUNDEF(VT
);
18705 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
);
18707 // Canonicalize shuffle v, v -> v, undef
18709 SmallVector
<int, 8> NewMask
;
18710 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
18711 int Idx
= SVN
->getMaskElt(i
);
18712 if (Idx
>= (int)NumElts
) Idx
-= NumElts
;
18713 NewMask
.push_back(Idx
);
18715 return DAG
.getVectorShuffle(VT
, SDLoc(N
), N0
, DAG
.getUNDEF(VT
), NewMask
);
18718 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
18720 return DAG
.getCommutedVectorShuffle(*SVN
);
18722 // Remove references to rhs if it is undef
18723 if (N1
.isUndef()) {
18724 bool Changed
= false;
18725 SmallVector
<int, 8> NewMask
;
18726 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
18727 int Idx
= SVN
->getMaskElt(i
);
18728 if (Idx
>= (int)NumElts
) {
18732 NewMask
.push_back(Idx
);
18735 return DAG
.getVectorShuffle(VT
, SDLoc(N
), N0
, N1
, NewMask
);
18738 if (SDValue InsElt
= replaceShuffleOfInsert(SVN
, DAG
))
18741 // A shuffle of a single vector that is a splatted value can always be folded.
18742 if (SDValue V
= combineShuffleOfSplatVal(SVN
, DAG
))
18745 // If it is a splat, check if the argument vector is another splat or a
18747 if (SVN
->isSplat() && SVN
->getSplatIndex() < (int)NumElts
) {
18748 int SplatIndex
= SVN
->getSplatIndex();
18749 if (TLI
.isExtractVecEltCheap(VT
, SplatIndex
) &&
18750 TLI
.isBinOp(N0
.getOpcode()) && N0
.getNode()->getNumValues() == 1) {
18751 // splat (vector_bo L, R), Index -->
18752 // splat (scalar_bo (extelt L, Index), (extelt R, Index))
18753 SDValue L
= N0
.getOperand(0), R
= N0
.getOperand(1);
18755 EVT EltVT
= VT
.getScalarType();
18756 SDValue Index
= DAG
.getIntPtrConstant(SplatIndex
, DL
);
18757 SDValue ExtL
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, EltVT
, L
, Index
);
18758 SDValue ExtR
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, EltVT
, R
, Index
);
18759 SDValue NewBO
= DAG
.getNode(N0
.getOpcode(), DL
, EltVT
, ExtL
, ExtR
,
18760 N0
.getNode()->getFlags());
18761 SDValue Insert
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, DL
, VT
, NewBO
);
18762 SmallVector
<int, 16> ZeroMask(VT
.getVectorNumElements(), 0);
18763 return DAG
.getVectorShuffle(VT
, DL
, Insert
, DAG
.getUNDEF(VT
), ZeroMask
);
18766 // If this is a bit convert that changes the element type of the vector but
18767 // not the number of vector elements, look through it. Be careful not to
18768 // look though conversions that change things like v4f32 to v2f64.
18769 SDNode
*V
= N0
.getNode();
18770 if (V
->getOpcode() == ISD::BITCAST
) {
18771 SDValue ConvInput
= V
->getOperand(0);
18772 if (ConvInput
.getValueType().isVector() &&
18773 ConvInput
.getValueType().getVectorNumElements() == NumElts
)
18774 V
= ConvInput
.getNode();
18777 if (V
->getOpcode() == ISD::BUILD_VECTOR
) {
18778 assert(V
->getNumOperands() == NumElts
&&
18779 "BUILD_VECTOR has wrong number of operands");
18781 bool AllSame
= true;
18782 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
18783 if (!V
->getOperand(i
).isUndef()) {
18784 Base
= V
->getOperand(i
);
18788 // Splat of <u, u, u, u>, return <u, u, u, u>
18789 if (!Base
.getNode())
18791 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
18792 if (V
->getOperand(i
) != Base
) {
18797 // Splat of <x, x, x, x>, return <x, x, x, x>
18801 // Canonicalize any other splat as a build_vector.
18802 SDValue Splatted
= V
->getOperand(SplatIndex
);
18803 SmallVector
<SDValue
, 8> Ops(NumElts
, Splatted
);
18804 SDValue NewBV
= DAG
.getBuildVector(V
->getValueType(0), SDLoc(N
), Ops
);
18806 // We may have jumped through bitcasts, so the type of the
18807 // BUILD_VECTOR may not match the type of the shuffle.
18808 if (V
->getValueType(0) != VT
)
18809 NewBV
= DAG
.getBitcast(VT
, NewBV
);
18814 // Simplify source operands based on shuffle mask.
18815 if (SimplifyDemandedVectorElts(SDValue(N
, 0)))
18816 return SDValue(N
, 0);
18818 // This is intentionally placed after demanded elements simplification because
18819 // it could eliminate knowledge of undef elements created by this shuffle.
18820 if (SDValue ShufOp
= simplifyShuffleOfShuffle(SVN
))
18823 // Match shuffles that can be converted to any_vector_extend_in_reg.
18824 if (SDValue V
= combineShuffleToVectorExtend(SVN
, DAG
, TLI
, LegalOperations
))
18827 // Combine "truncate_vector_in_reg" style shuffles.
18828 if (SDValue V
= combineTruncationShuffle(SVN
, DAG
))
18831 if (N0
.getOpcode() == ISD::CONCAT_VECTORS
&&
18832 Level
< AfterLegalizeVectorOps
&&
18834 (N1
.getOpcode() == ISD::CONCAT_VECTORS
&&
18835 N0
.getOperand(0).getValueType() == N1
.getOperand(0).getValueType()))) {
18836 if (SDValue V
= partitionShuffleOfConcats(N
, DAG
))
18840 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
18841 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
18842 if (Level
< AfterLegalizeDAG
&& TLI
.isTypeLegal(VT
))
18843 if (SDValue Res
= combineShuffleOfScalars(SVN
, DAG
, TLI
))
18846 // If this shuffle only has a single input that is a bitcasted shuffle,
18847 // attempt to merge the 2 shuffles and suitably bitcast the inputs/output
18848 // back to their original types.
18849 if (N0
.getOpcode() == ISD::BITCAST
&& N0
.hasOneUse() &&
18850 N1
.isUndef() && Level
< AfterLegalizeVectorOps
&&
18851 TLI
.isTypeLegal(VT
)) {
18852 auto ScaleShuffleMask
= [](ArrayRef
<int> Mask
, int Scale
) {
18854 return SmallVector
<int, 8>(Mask
.begin(), Mask
.end());
18856 SmallVector
<int, 8> NewMask
;
18858 for (int s
= 0; s
!= Scale
; ++s
)
18859 NewMask
.push_back(M
< 0 ? -1 : Scale
* M
+ s
);
18863 SDValue BC0
= peekThroughOneUseBitcasts(N0
);
18864 if (BC0
.getOpcode() == ISD::VECTOR_SHUFFLE
&& BC0
.hasOneUse()) {
18865 EVT SVT
= VT
.getScalarType();
18866 EVT InnerVT
= BC0
->getValueType(0);
18867 EVT InnerSVT
= InnerVT
.getScalarType();
18869 // Determine which shuffle works with the smaller scalar type.
18870 EVT ScaleVT
= SVT
.bitsLT(InnerSVT
) ? VT
: InnerVT
;
18871 EVT ScaleSVT
= ScaleVT
.getScalarType();
18873 if (TLI
.isTypeLegal(ScaleVT
) &&
18874 0 == (InnerSVT
.getSizeInBits() % ScaleSVT
.getSizeInBits()) &&
18875 0 == (SVT
.getSizeInBits() % ScaleSVT
.getSizeInBits())) {
18876 int InnerScale
= InnerSVT
.getSizeInBits() / ScaleSVT
.getSizeInBits();
18877 int OuterScale
= SVT
.getSizeInBits() / ScaleSVT
.getSizeInBits();
18879 // Scale the shuffle masks to the smaller scalar type.
18880 ShuffleVectorSDNode
*InnerSVN
= cast
<ShuffleVectorSDNode
>(BC0
);
18881 SmallVector
<int, 8> InnerMask
=
18882 ScaleShuffleMask(InnerSVN
->getMask(), InnerScale
);
18883 SmallVector
<int, 8> OuterMask
=
18884 ScaleShuffleMask(SVN
->getMask(), OuterScale
);
18886 // Merge the shuffle masks.
18887 SmallVector
<int, 8> NewMask
;
18888 for (int M
: OuterMask
)
18889 NewMask
.push_back(M
< 0 ? -1 : InnerMask
[M
]);
18891 // Test for shuffle mask legality over both commutations.
18892 SDValue SV0
= BC0
->getOperand(0);
18893 SDValue SV1
= BC0
->getOperand(1);
18894 bool LegalMask
= TLI
.isShuffleMaskLegal(NewMask
, ScaleVT
);
18896 std::swap(SV0
, SV1
);
18897 ShuffleVectorSDNode::commuteMask(NewMask
);
18898 LegalMask
= TLI
.isShuffleMaskLegal(NewMask
, ScaleVT
);
18902 SV0
= DAG
.getBitcast(ScaleVT
, SV0
);
18903 SV1
= DAG
.getBitcast(ScaleVT
, SV1
);
18904 return DAG
.getBitcast(
18905 VT
, DAG
.getVectorShuffle(ScaleVT
, SDLoc(N
), SV0
, SV1
, NewMask
));
18911 // Canonicalize shuffles according to rules:
18912 // shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A)
18913 // shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B)
18914 // shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B)
18915 if (N1
.getOpcode() == ISD::VECTOR_SHUFFLE
&&
18916 N0
.getOpcode() != ISD::VECTOR_SHUFFLE
&& Level
< AfterLegalizeDAG
&&
18917 TLI
.isTypeLegal(VT
)) {
18918 // The incoming shuffle must be of the same type as the result of the
18919 // current shuffle.
18920 assert(N1
->getOperand(0).getValueType() == VT
&&
18921 "Shuffle types don't match");
18923 SDValue SV0
= N1
->getOperand(0);
18924 SDValue SV1
= N1
->getOperand(1);
18925 bool HasSameOp0
= N0
== SV0
;
18926 bool IsSV1Undef
= SV1
.isUndef();
18927 if (HasSameOp0
|| IsSV1Undef
|| N0
== SV1
)
18928 // Commute the operands of this shuffle so that next rule
18930 return DAG
.getCommutedVectorShuffle(*SVN
);
18933 // Try to fold according to rules:
18934 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
18935 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
18936 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
18937 // Don't try to fold shuffles with illegal type.
18938 // Only fold if this shuffle is the only user of the other shuffle.
18939 if (N0
.getOpcode() == ISD::VECTOR_SHUFFLE
&& N
->isOnlyUserOf(N0
.getNode()) &&
18940 Level
< AfterLegalizeDAG
&& TLI
.isTypeLegal(VT
)) {
18941 ShuffleVectorSDNode
*OtherSV
= cast
<ShuffleVectorSDNode
>(N0
);
18943 // Don't try to fold splats; they're likely to simplify somehow, or they
18945 if (OtherSV
->isSplat())
18948 // The incoming shuffle must be of the same type as the result of the
18949 // current shuffle.
18950 assert(OtherSV
->getOperand(0).getValueType() == VT
&&
18951 "Shuffle types don't match");
18954 SmallVector
<int, 4> Mask
;
18955 // Compute the combined shuffle mask for a shuffle with SV0 as the first
18956 // operand, and SV1 as the second operand.
18957 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
18958 int Idx
= SVN
->getMaskElt(i
);
18960 // Propagate Undef.
18961 Mask
.push_back(Idx
);
18965 SDValue CurrentVec
;
18966 if (Idx
< (int)NumElts
) {
18967 // This shuffle index refers to the inner shuffle N0. Lookup the inner
18968 // shuffle mask to identify which vector is actually referenced.
18969 Idx
= OtherSV
->getMaskElt(Idx
);
18971 // Propagate Undef.
18972 Mask
.push_back(Idx
);
18976 CurrentVec
= (Idx
< (int) NumElts
) ? OtherSV
->getOperand(0)
18977 : OtherSV
->getOperand(1);
18979 // This shuffle index references an element within N1.
18983 // Simple case where 'CurrentVec' is UNDEF.
18984 if (CurrentVec
.isUndef()) {
18985 Mask
.push_back(-1);
18989 // Canonicalize the shuffle index. We don't know yet if CurrentVec
18990 // will be the first or second operand of the combined shuffle.
18991 Idx
= Idx
% NumElts
;
18992 if (!SV0
.getNode() || SV0
== CurrentVec
) {
18993 // Ok. CurrentVec is the left hand side.
18994 // Update the mask accordingly.
18996 Mask
.push_back(Idx
);
19000 // Bail out if we cannot convert the shuffle pair into a single shuffle.
19001 if (SV1
.getNode() && SV1
!= CurrentVec
)
19004 // Ok. CurrentVec is the right hand side.
19005 // Update the mask accordingly.
19007 Mask
.push_back(Idx
+ NumElts
);
19010 // Check if all indices in Mask are Undef. In case, propagate Undef.
19011 bool isUndefMask
= true;
19012 for (unsigned i
= 0; i
!= NumElts
&& isUndefMask
; ++i
)
19013 isUndefMask
&= Mask
[i
] < 0;
19016 return DAG
.getUNDEF(VT
);
19018 if (!SV0
.getNode())
19019 SV0
= DAG
.getUNDEF(VT
);
19020 if (!SV1
.getNode())
19021 SV1
= DAG
.getUNDEF(VT
);
19023 // Avoid introducing shuffles with illegal mask.
19024 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
19025 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
19026 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
19027 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2)
19028 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2)
19029 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2)
19030 return TLI
.buildLegalVectorShuffle(VT
, SDLoc(N
), SV0
, SV1
, Mask
, DAG
);
19033 if (SDValue V
= foldShuffleOfConcatUndefs(SVN
, DAG
))
19039 SDValue
DAGCombiner::visitSCALAR_TO_VECTOR(SDNode
*N
) {
19040 SDValue InVal
= N
->getOperand(0);
19041 EVT VT
= N
->getValueType(0);
19043 // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern
19044 // with a VECTOR_SHUFFLE and possible truncate.
19045 if (InVal
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
19046 SDValue InVec
= InVal
->getOperand(0);
19047 SDValue EltNo
= InVal
->getOperand(1);
19048 auto InVecT
= InVec
.getValueType();
19049 if (ConstantSDNode
*C0
= dyn_cast
<ConstantSDNode
>(EltNo
)) {
19050 SmallVector
<int, 8> NewMask(InVecT
.getVectorNumElements(), -1);
19051 int Elt
= C0
->getZExtValue();
19053 // If we have an implict truncate do truncate here as long as it's legal.
19054 // if it's not legal, this should
19055 if (VT
.getScalarType() != InVal
.getValueType() &&
19056 InVal
.getValueType().isScalarInteger() &&
19057 isTypeLegal(VT
.getScalarType())) {
19059 DAG
.getNode(ISD::TRUNCATE
, SDLoc(InVal
), VT
.getScalarType(), InVal
);
19060 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, SDLoc(N
), VT
, Val
);
19062 if (VT
.getScalarType() == InVecT
.getScalarType() &&
19063 VT
.getVectorNumElements() <= InVecT
.getVectorNumElements()) {
19064 SDValue LegalShuffle
=
19065 TLI
.buildLegalVectorShuffle(InVecT
, SDLoc(N
), InVec
,
19066 DAG
.getUNDEF(InVecT
), NewMask
, DAG
);
19067 if (LegalShuffle
) {
19068 // If the initial vector is the correct size this shuffle is a
19071 return LegalShuffle
;
19072 // If not we must truncate the vector.
19073 if (VT
.getVectorNumElements() != InVecT
.getVectorNumElements()) {
19074 MVT IdxTy
= TLI
.getVectorIdxTy(DAG
.getDataLayout());
19075 SDValue ZeroIdx
= DAG
.getConstant(0, SDLoc(N
), IdxTy
);
19077 EVT::getVectorVT(*DAG
.getContext(), InVecT
.getVectorElementType(),
19078 VT
.getVectorNumElements());
19079 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, SDLoc(N
), SubVT
,
19080 LegalShuffle
, ZeroIdx
);
19090 SDValue
DAGCombiner::visitINSERT_SUBVECTOR(SDNode
*N
) {
19091 EVT VT
= N
->getValueType(0);
19092 SDValue N0
= N
->getOperand(0);
19093 SDValue N1
= N
->getOperand(1);
19094 SDValue N2
= N
->getOperand(2);
19096 // If inserting an UNDEF, just return the original vector.
19100 // If this is an insert of an extracted vector into an undef vector, we can
19101 // just use the input to the extract.
19102 if (N0
.isUndef() && N1
.getOpcode() == ISD::EXTRACT_SUBVECTOR
&&
19103 N1
.getOperand(1) == N2
&& N1
.getOperand(0).getValueType() == VT
)
19104 return N1
.getOperand(0);
19106 // If we are inserting a bitcast value into an undef, with the same
19107 // number of elements, just use the bitcast input of the extract.
19108 // i.e. INSERT_SUBVECTOR UNDEF (BITCAST N1) N2 ->
19109 // BITCAST (INSERT_SUBVECTOR UNDEF N1 N2)
19110 if (N0
.isUndef() && N1
.getOpcode() == ISD::BITCAST
&&
19111 N1
.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR
&&
19112 N1
.getOperand(0).getOperand(1) == N2
&&
19113 N1
.getOperand(0).getOperand(0).getValueType().getVectorNumElements() ==
19114 VT
.getVectorNumElements() &&
19115 N1
.getOperand(0).getOperand(0).getValueType().getSizeInBits() ==
19116 VT
.getSizeInBits()) {
19117 return DAG
.getBitcast(VT
, N1
.getOperand(0).getOperand(0));
19120 // If both N1 and N2 are bitcast values on which insert_subvector
19121 // would makes sense, pull the bitcast through.
19122 // i.e. INSERT_SUBVECTOR (BITCAST N0) (BITCAST N1) N2 ->
19123 // BITCAST (INSERT_SUBVECTOR N0 N1 N2)
19124 if (N0
.getOpcode() == ISD::BITCAST
&& N1
.getOpcode() == ISD::BITCAST
) {
19125 SDValue CN0
= N0
.getOperand(0);
19126 SDValue CN1
= N1
.getOperand(0);
19127 EVT CN0VT
= CN0
.getValueType();
19128 EVT CN1VT
= CN1
.getValueType();
19129 if (CN0VT
.isVector() && CN1VT
.isVector() &&
19130 CN0VT
.getVectorElementType() == CN1VT
.getVectorElementType() &&
19131 CN0VT
.getVectorNumElements() == VT
.getVectorNumElements()) {
19132 SDValue NewINSERT
= DAG
.getNode(ISD::INSERT_SUBVECTOR
, SDLoc(N
),
19133 CN0
.getValueType(), CN0
, CN1
, N2
);
19134 return DAG
.getBitcast(VT
, NewINSERT
);
19138 // Combine INSERT_SUBVECTORs where we are inserting to the same index.
19139 // INSERT_SUBVECTOR( INSERT_SUBVECTOR( Vec, SubOld, Idx ), SubNew, Idx )
19140 // --> INSERT_SUBVECTOR( Vec, SubNew, Idx )
19141 if (N0
.getOpcode() == ISD::INSERT_SUBVECTOR
&&
19142 N0
.getOperand(1).getValueType() == N1
.getValueType() &&
19143 N0
.getOperand(2) == N2
)
19144 return DAG
.getNode(ISD::INSERT_SUBVECTOR
, SDLoc(N
), VT
, N0
.getOperand(0),
19147 // Eliminate an intermediate insert into an undef vector:
19148 // insert_subvector undef, (insert_subvector undef, X, 0), N2 -->
19149 // insert_subvector undef, X, N2
19150 if (N0
.isUndef() && N1
.getOpcode() == ISD::INSERT_SUBVECTOR
&&
19151 N1
.getOperand(0).isUndef() && isNullConstant(N1
.getOperand(2)))
19152 return DAG
.getNode(ISD::INSERT_SUBVECTOR
, SDLoc(N
), VT
, N0
,
19153 N1
.getOperand(1), N2
);
19155 if (!isa
<ConstantSDNode
>(N2
))
19158 uint64_t InsIdx
= cast
<ConstantSDNode
>(N2
)->getZExtValue();
19160 // Push subvector bitcasts to the output, adjusting the index as we go.
19161 // insert_subvector(bitcast(v), bitcast(s), c1)
19162 // -> bitcast(insert_subvector(v, s, c2))
19163 if ((N0
.isUndef() || N0
.getOpcode() == ISD::BITCAST
) &&
19164 N1
.getOpcode() == ISD::BITCAST
) {
19165 SDValue N0Src
= peekThroughBitcasts(N0
);
19166 SDValue N1Src
= peekThroughBitcasts(N1
);
19167 EVT N0SrcSVT
= N0Src
.getValueType().getScalarType();
19168 EVT N1SrcSVT
= N1Src
.getValueType().getScalarType();
19169 if ((N0
.isUndef() || N0SrcSVT
== N1SrcSVT
) &&
19170 N0Src
.getValueType().isVector() && N1Src
.getValueType().isVector()) {
19174 MVT IdxVT
= TLI
.getVectorIdxTy(DAG
.getDataLayout());
19175 LLVMContext
&Ctx
= *DAG
.getContext();
19176 unsigned NumElts
= VT
.getVectorNumElements();
19177 unsigned EltSizeInBits
= VT
.getScalarSizeInBits();
19178 if ((EltSizeInBits
% N1SrcSVT
.getSizeInBits()) == 0) {
19179 unsigned Scale
= EltSizeInBits
/ N1SrcSVT
.getSizeInBits();
19180 NewVT
= EVT::getVectorVT(Ctx
, N1SrcSVT
, NumElts
* Scale
);
19181 NewIdx
= DAG
.getConstant(InsIdx
* Scale
, DL
, IdxVT
);
19182 } else if ((N1SrcSVT
.getSizeInBits() % EltSizeInBits
) == 0) {
19183 unsigned Scale
= N1SrcSVT
.getSizeInBits() / EltSizeInBits
;
19184 if ((NumElts
% Scale
) == 0 && (InsIdx
% Scale
) == 0) {
19185 NewVT
= EVT::getVectorVT(Ctx
, N1SrcSVT
, NumElts
/ Scale
);
19186 NewIdx
= DAG
.getConstant(InsIdx
/ Scale
, DL
, IdxVT
);
19189 if (NewIdx
&& hasOperation(ISD::INSERT_SUBVECTOR
, NewVT
)) {
19190 SDValue Res
= DAG
.getBitcast(NewVT
, N0Src
);
19191 Res
= DAG
.getNode(ISD::INSERT_SUBVECTOR
, DL
, NewVT
, Res
, N1Src
, NewIdx
);
19192 return DAG
.getBitcast(VT
, Res
);
19197 // Canonicalize insert_subvector dag nodes.
19199 // (insert_subvector (insert_subvector A, Idx0), Idx1)
19200 // -> (insert_subvector (insert_subvector A, Idx1), Idx0)
19201 if (N0
.getOpcode() == ISD::INSERT_SUBVECTOR
&& N0
.hasOneUse() &&
19202 N1
.getValueType() == N0
.getOperand(1).getValueType() &&
19203 isa
<ConstantSDNode
>(N0
.getOperand(2))) {
19204 unsigned OtherIdx
= N0
.getConstantOperandVal(2);
19205 if (InsIdx
< OtherIdx
) {
19207 SDValue NewOp
= DAG
.getNode(ISD::INSERT_SUBVECTOR
, SDLoc(N
), VT
,
19208 N0
.getOperand(0), N1
, N2
);
19209 AddToWorklist(NewOp
.getNode());
19210 return DAG
.getNode(ISD::INSERT_SUBVECTOR
, SDLoc(N0
.getNode()),
19211 VT
, NewOp
, N0
.getOperand(1), N0
.getOperand(2));
19215 // If the input vector is a concatenation, and the insert replaces
19216 // one of the pieces, we can optimize into a single concat_vectors.
19217 if (N0
.getOpcode() == ISD::CONCAT_VECTORS
&& N0
.hasOneUse() &&
19218 N0
.getOperand(0).getValueType() == N1
.getValueType()) {
19219 unsigned Factor
= N1
.getValueType().getVectorNumElements();
19221 SmallVector
<SDValue
, 8> Ops(N0
->op_begin(), N0
->op_end());
19222 Ops
[cast
<ConstantSDNode
>(N2
)->getZExtValue() / Factor
] = N1
;
19224 return DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
, Ops
);
19227 // Simplify source operands based on insertion.
19228 if (SimplifyDemandedVectorElts(SDValue(N
, 0)))
19229 return SDValue(N
, 0);
19234 SDValue
DAGCombiner::visitFP_TO_FP16(SDNode
*N
) {
19235 SDValue N0
= N
->getOperand(0);
19237 // fold (fp_to_fp16 (fp16_to_fp op)) -> op
19238 if (N0
->getOpcode() == ISD::FP16_TO_FP
)
19239 return N0
->getOperand(0);
19244 SDValue
DAGCombiner::visitFP16_TO_FP(SDNode
*N
) {
19245 SDValue N0
= N
->getOperand(0);
19247 // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op)
19248 if (N0
->getOpcode() == ISD::AND
) {
19249 ConstantSDNode
*AndConst
= getAsNonOpaqueConstant(N0
.getOperand(1));
19250 if (AndConst
&& AndConst
->getAPIntValue() == 0xffff) {
19251 return DAG
.getNode(ISD::FP16_TO_FP
, SDLoc(N
), N
->getValueType(0),
19259 SDValue
DAGCombiner::visitVECREDUCE(SDNode
*N
) {
19260 SDValue N0
= N
->getOperand(0);
19261 EVT VT
= N0
.getValueType();
19262 unsigned Opcode
= N
->getOpcode();
19264 // VECREDUCE over 1-element vector is just an extract.
19265 if (VT
.getVectorNumElements() == 1) {
19267 SDValue Res
= DAG
.getNode(
19268 ISD::EXTRACT_VECTOR_ELT
, dl
, VT
.getVectorElementType(), N0
,
19269 DAG
.getConstant(0, dl
, TLI
.getVectorIdxTy(DAG
.getDataLayout())));
19270 if (Res
.getValueType() != N
->getValueType(0))
19271 Res
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, N
->getValueType(0), Res
);
19275 // On an boolean vector an and/or reduction is the same as a umin/umax
19276 // reduction. Convert them if the latter is legal while the former isn't.
19277 if (Opcode
== ISD::VECREDUCE_AND
|| Opcode
== ISD::VECREDUCE_OR
) {
19278 unsigned NewOpcode
= Opcode
== ISD::VECREDUCE_AND
19279 ? ISD::VECREDUCE_UMIN
: ISD::VECREDUCE_UMAX
;
19280 if (!TLI
.isOperationLegalOrCustom(Opcode
, VT
) &&
19281 TLI
.isOperationLegalOrCustom(NewOpcode
, VT
) &&
19282 DAG
.ComputeNumSignBits(N0
) == VT
.getScalarSizeInBits())
19283 return DAG
.getNode(NewOpcode
, SDLoc(N
), N
->getValueType(0), N0
);
19289 /// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle
19290 /// with the destination vector and a zero vector.
19291 /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
19292 /// vector_shuffle V, Zero, <0, 4, 2, 4>
19293 SDValue
DAGCombiner::XformToShuffleWithZero(SDNode
*N
) {
19294 assert(N
->getOpcode() == ISD::AND
&& "Unexpected opcode!");
19296 EVT VT
= N
->getValueType(0);
19297 SDValue LHS
= N
->getOperand(0);
19298 SDValue RHS
= peekThroughBitcasts(N
->getOperand(1));
19301 // Make sure we're not running after operation legalization where it
19302 // may have custom lowered the vector shuffles.
19303 if (LegalOperations
)
19306 if (RHS
.getOpcode() != ISD::BUILD_VECTOR
)
19309 EVT RVT
= RHS
.getValueType();
19310 unsigned NumElts
= RHS
.getNumOperands();
19312 // Attempt to create a valid clear mask, splitting the mask into
19313 // sub elements and checking to see if each is
19314 // all zeros or all ones - suitable for shuffle masking.
19315 auto BuildClearMask
= [&](int Split
) {
19316 int NumSubElts
= NumElts
* Split
;
19317 int NumSubBits
= RVT
.getScalarSizeInBits() / Split
;
19319 SmallVector
<int, 8> Indices
;
19320 for (int i
= 0; i
!= NumSubElts
; ++i
) {
19321 int EltIdx
= i
/ Split
;
19322 int SubIdx
= i
% Split
;
19323 SDValue Elt
= RHS
.getOperand(EltIdx
);
19324 if (Elt
.isUndef()) {
19325 Indices
.push_back(-1);
19330 if (isa
<ConstantSDNode
>(Elt
))
19331 Bits
= cast
<ConstantSDNode
>(Elt
)->getAPIntValue();
19332 else if (isa
<ConstantFPSDNode
>(Elt
))
19333 Bits
= cast
<ConstantFPSDNode
>(Elt
)->getValueAPF().bitcastToAPInt();
19337 // Extract the sub element from the constant bit mask.
19338 if (DAG
.getDataLayout().isBigEndian()) {
19339 Bits
.lshrInPlace((Split
- SubIdx
- 1) * NumSubBits
);
19341 Bits
.lshrInPlace(SubIdx
* NumSubBits
);
19345 Bits
= Bits
.trunc(NumSubBits
);
19347 if (Bits
.isAllOnesValue())
19348 Indices
.push_back(i
);
19349 else if (Bits
== 0)
19350 Indices
.push_back(i
+ NumSubElts
);
19355 // Let's see if the target supports this vector_shuffle.
19356 EVT ClearSVT
= EVT::getIntegerVT(*DAG
.getContext(), NumSubBits
);
19357 EVT ClearVT
= EVT::getVectorVT(*DAG
.getContext(), ClearSVT
, NumSubElts
);
19358 if (!TLI
.isVectorClearMaskLegal(Indices
, ClearVT
))
19361 SDValue Zero
= DAG
.getConstant(0, DL
, ClearVT
);
19362 return DAG
.getBitcast(VT
, DAG
.getVectorShuffle(ClearVT
, DL
,
19363 DAG
.getBitcast(ClearVT
, LHS
),
19367 // Determine maximum split level (byte level masking).
19369 if (RVT
.getScalarSizeInBits() % 8 == 0)
19370 MaxSplit
= RVT
.getScalarSizeInBits() / 8;
19372 for (int Split
= 1; Split
<= MaxSplit
; ++Split
)
19373 if (RVT
.getScalarSizeInBits() % Split
== 0)
19374 if (SDValue S
= BuildClearMask(Split
))
19380 /// If a vector binop is performed on splat values, it may be profitable to
19381 /// extract, scalarize, and insert/splat.
19382 static SDValue
scalarizeBinOpOfSplats(SDNode
*N
, SelectionDAG
&DAG
) {
19383 SDValue N0
= N
->getOperand(0);
19384 SDValue N1
= N
->getOperand(1);
19385 unsigned Opcode
= N
->getOpcode();
19386 EVT VT
= N
->getValueType(0);
19387 EVT EltVT
= VT
.getVectorElementType();
19388 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
19390 // TODO: Remove/replace the extract cost check? If the elements are available
19391 // as scalars, then there may be no extract cost. Should we ask if
19392 // inserting a scalar back into a vector is cheap instead?
19393 int Index0
, Index1
;
19394 SDValue Src0
= DAG
.getSplatSourceVector(N0
, Index0
);
19395 SDValue Src1
= DAG
.getSplatSourceVector(N1
, Index1
);
19396 if (!Src0
|| !Src1
|| Index0
!= Index1
||
19397 Src0
.getValueType().getVectorElementType() != EltVT
||
19398 Src1
.getValueType().getVectorElementType() != EltVT
||
19399 !TLI
.isExtractVecEltCheap(VT
, Index0
) ||
19400 !TLI
.isOperationLegalOrCustom(Opcode
, EltVT
))
19405 DAG
.getConstant(Index0
, DL
, TLI
.getVectorIdxTy(DAG
.getDataLayout()));
19406 SDValue X
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, EltVT
, N0
, IndexC
);
19407 SDValue Y
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, EltVT
, N1
, IndexC
);
19408 SDValue ScalarBO
= DAG
.getNode(Opcode
, DL
, EltVT
, X
, Y
, N
->getFlags());
19410 // If all lanes but 1 are undefined, no need to splat the scalar result.
19411 // TODO: Keep track of undefs and use that info in the general case.
19412 if (N0
.getOpcode() == ISD::BUILD_VECTOR
&& N0
.getOpcode() == N1
.getOpcode() &&
19413 count_if(N0
->ops(), [](SDValue V
) { return !V
.isUndef(); }) == 1 &&
19414 count_if(N1
->ops(), [](SDValue V
) { return !V
.isUndef(); }) == 1) {
19415 // bo (build_vec ..undef, X, undef...), (build_vec ..undef, Y, undef...) -->
19416 // build_vec ..undef, (bo X, Y), undef...
19417 SmallVector
<SDValue
, 8> Ops(VT
.getVectorNumElements(), DAG
.getUNDEF(EltVT
));
19418 Ops
[Index0
] = ScalarBO
;
19419 return DAG
.getBuildVector(VT
, DL
, Ops
);
19422 // bo (splat X, Index), (splat Y, Index) --> splat (bo X, Y), Index
19423 SmallVector
<SDValue
, 8> Ops(VT
.getVectorNumElements(), ScalarBO
);
19424 return DAG
.getBuildVector(VT
, DL
, Ops
);
19427 /// Visit a binary vector operation, like ADD.
19428 SDValue
DAGCombiner::SimplifyVBinOp(SDNode
*N
) {
19429 assert(N
->getValueType(0).isVector() &&
19430 "SimplifyVBinOp only works on vectors!");
19432 SDValue LHS
= N
->getOperand(0);
19433 SDValue RHS
= N
->getOperand(1);
19434 SDValue Ops
[] = {LHS
, RHS
};
19435 EVT VT
= N
->getValueType(0);
19436 unsigned Opcode
= N
->getOpcode();
19438 // See if we can constant fold the vector operation.
19439 if (SDValue Fold
= DAG
.FoldConstantVectorArithmetic(
19440 Opcode
, SDLoc(LHS
), LHS
.getValueType(), Ops
, N
->getFlags()))
19443 // Move unary shuffles with identical masks after a vector binop:
19444 // VBinOp (shuffle A, Undef, Mask), (shuffle B, Undef, Mask))
19445 // --> shuffle (VBinOp A, B), Undef, Mask
19446 // This does not require type legality checks because we are creating the
19447 // same types of operations that are in the original sequence. We do have to
19448 // restrict ops like integer div that have immediate UB (eg, div-by-zero)
19449 // though. This code is adapted from the identical transform in instcombine.
19450 if (Opcode
!= ISD::UDIV
&& Opcode
!= ISD::SDIV
&&
19451 Opcode
!= ISD::UREM
&& Opcode
!= ISD::SREM
&&
19452 Opcode
!= ISD::UDIVREM
&& Opcode
!= ISD::SDIVREM
) {
19453 auto *Shuf0
= dyn_cast
<ShuffleVectorSDNode
>(LHS
);
19454 auto *Shuf1
= dyn_cast
<ShuffleVectorSDNode
>(RHS
);
19455 if (Shuf0
&& Shuf1
&& Shuf0
->getMask().equals(Shuf1
->getMask()) &&
19456 LHS
.getOperand(1).isUndef() && RHS
.getOperand(1).isUndef() &&
19457 (LHS
.hasOneUse() || RHS
.hasOneUse() || LHS
== RHS
)) {
19459 SDValue NewBinOp
= DAG
.getNode(Opcode
, DL
, VT
, LHS
.getOperand(0),
19460 RHS
.getOperand(0), N
->getFlags());
19461 SDValue UndefV
= LHS
.getOperand(1);
19462 return DAG
.getVectorShuffle(VT
, DL
, NewBinOp
, UndefV
, Shuf0
->getMask());
19466 // The following pattern is likely to emerge with vector reduction ops. Moving
19467 // the binary operation ahead of insertion may allow using a narrower vector
19468 // instruction that has better performance than the wide version of the op:
19469 // VBinOp (ins undef, X, Z), (ins undef, Y, Z) --> ins VecC, (VBinOp X, Y), Z
19470 if (LHS
.getOpcode() == ISD::INSERT_SUBVECTOR
&& LHS
.getOperand(0).isUndef() &&
19471 RHS
.getOpcode() == ISD::INSERT_SUBVECTOR
&& RHS
.getOperand(0).isUndef() &&
19472 LHS
.getOperand(2) == RHS
.getOperand(2) &&
19473 (LHS
.hasOneUse() || RHS
.hasOneUse())) {
19474 SDValue X
= LHS
.getOperand(1);
19475 SDValue Y
= RHS
.getOperand(1);
19476 SDValue Z
= LHS
.getOperand(2);
19477 EVT NarrowVT
= X
.getValueType();
19478 if (NarrowVT
== Y
.getValueType() &&
19479 TLI
.isOperationLegalOrCustomOrPromote(Opcode
, NarrowVT
)) {
19480 // (binop undef, undef) may not return undef, so compute that result.
19483 DAG
.getNode(Opcode
, DL
, VT
, DAG
.getUNDEF(VT
), DAG
.getUNDEF(VT
));
19484 SDValue NarrowBO
= DAG
.getNode(Opcode
, DL
, NarrowVT
, X
, Y
);
19485 return DAG
.getNode(ISD::INSERT_SUBVECTOR
, DL
, VT
, VecC
, NarrowBO
, Z
);
19489 // Make sure all but the first op are undef or constant.
19490 auto ConcatWithConstantOrUndef
= [](SDValue Concat
) {
19491 return Concat
.getOpcode() == ISD::CONCAT_VECTORS
&&
19492 std::all_of(std::next(Concat
->op_begin()), Concat
->op_end(),
19493 [](const SDValue
&Op
) {
19494 return Op
.isUndef() ||
19495 ISD::isBuildVectorOfConstantSDNodes(Op
.getNode());
19499 // The following pattern is likely to emerge with vector reduction ops. Moving
19500 // the binary operation ahead of the concat may allow using a narrower vector
19501 // instruction that has better performance than the wide version of the op:
19502 // VBinOp (concat X, undef/constant), (concat Y, undef/constant) -->
19503 // concat (VBinOp X, Y), VecC
19504 if (ConcatWithConstantOrUndef(LHS
) && ConcatWithConstantOrUndef(RHS
) &&
19505 (LHS
.hasOneUse() || RHS
.hasOneUse())) {
19506 EVT NarrowVT
= LHS
.getOperand(0).getValueType();
19507 if (NarrowVT
== RHS
.getOperand(0).getValueType() &&
19508 TLI
.isOperationLegalOrCustomOrPromote(Opcode
, NarrowVT
)) {
19510 unsigned NumOperands
= LHS
.getNumOperands();
19511 SmallVector
<SDValue
, 4> ConcatOps
;
19512 for (unsigned i
= 0; i
!= NumOperands
; ++i
) {
19513 // This constant fold for operands 1 and up.
19514 ConcatOps
.push_back(DAG
.getNode(Opcode
, DL
, NarrowVT
, LHS
.getOperand(i
),
19515 RHS
.getOperand(i
)));
19518 return DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, VT
, ConcatOps
);
19522 if (SDValue V
= scalarizeBinOpOfSplats(N
, DAG
))
19528 SDValue
DAGCombiner::SimplifySelect(const SDLoc
&DL
, SDValue N0
, SDValue N1
,
19530 assert(N0
.getOpcode() ==ISD::SETCC
&& "First argument must be a SetCC node!");
19532 SDValue SCC
= SimplifySelectCC(DL
, N0
.getOperand(0), N0
.getOperand(1), N1
, N2
,
19533 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get());
19535 // If we got a simplified select_cc node back from SimplifySelectCC, then
19536 // break it down into a new SETCC node, and a new SELECT node, and then return
19537 // the SELECT node, since we were called with a SELECT node.
19538 if (SCC
.getNode()) {
19539 // Check to see if we got a select_cc back (to turn into setcc/select).
19540 // Otherwise, just return whatever node we got back, like fabs.
19541 if (SCC
.getOpcode() == ISD::SELECT_CC
) {
19542 const SDNodeFlags Flags
= N0
.getNode()->getFlags();
19543 SDValue SETCC
= DAG
.getNode(ISD::SETCC
, SDLoc(N0
),
19545 SCC
.getOperand(0), SCC
.getOperand(1),
19546 SCC
.getOperand(4), Flags
);
19547 AddToWorklist(SETCC
.getNode());
19548 SDValue SelectNode
= DAG
.getSelect(SDLoc(SCC
), SCC
.getValueType(), SETCC
,
19549 SCC
.getOperand(2), SCC
.getOperand(3));
19550 SelectNode
->setFlags(Flags
);
19559 /// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values
19560 /// being selected between, see if we can simplify the select. Callers of this
19561 /// should assume that TheSelect is deleted if this returns true. As such, they
19562 /// should return the appropriate thing (e.g. the node) back to the top-level of
19563 /// the DAG combiner loop to avoid it being looked at.
19564 bool DAGCombiner::SimplifySelectOps(SDNode
*TheSelect
, SDValue LHS
,
19566 // fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
19567 // The select + setcc is redundant, because fsqrt returns NaN for X < 0.
19568 if (const ConstantFPSDNode
*NaN
= isConstOrConstSplatFP(LHS
)) {
19569 if (NaN
->isNaN() && RHS
.getOpcode() == ISD::FSQRT
) {
19570 // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?))
19571 SDValue Sqrt
= RHS
;
19574 const ConstantFPSDNode
*Zero
= nullptr;
19576 if (TheSelect
->getOpcode() == ISD::SELECT_CC
) {
19577 CC
= cast
<CondCodeSDNode
>(TheSelect
->getOperand(4))->get();
19578 CmpLHS
= TheSelect
->getOperand(0);
19579 Zero
= isConstOrConstSplatFP(TheSelect
->getOperand(1));
19581 // SELECT or VSELECT
19582 SDValue Cmp
= TheSelect
->getOperand(0);
19583 if (Cmp
.getOpcode() == ISD::SETCC
) {
19584 CC
= cast
<CondCodeSDNode
>(Cmp
.getOperand(2))->get();
19585 CmpLHS
= Cmp
.getOperand(0);
19586 Zero
= isConstOrConstSplatFP(Cmp
.getOperand(1));
19589 if (Zero
&& Zero
->isZero() &&
19590 Sqrt
.getOperand(0) == CmpLHS
&& (CC
== ISD::SETOLT
||
19591 CC
== ISD::SETULT
|| CC
== ISD::SETLT
)) {
19592 // We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
19593 CombineTo(TheSelect
, Sqrt
);
19598 // Cannot simplify select with vector condition
19599 if (TheSelect
->getOperand(0).getValueType().isVector()) return false;
19601 // If this is a select from two identical things, try to pull the operation
19602 // through the select.
19603 if (LHS
.getOpcode() != RHS
.getOpcode() ||
19604 !LHS
.hasOneUse() || !RHS
.hasOneUse())
19607 // If this is a load and the token chain is identical, replace the select
19608 // of two loads with a load through a select of the address to load from.
19609 // This triggers in things like "select bool X, 10.0, 123.0" after the FP
19610 // constants have been dropped into the constant pool.
19611 if (LHS
.getOpcode() == ISD::LOAD
) {
19612 LoadSDNode
*LLD
= cast
<LoadSDNode
>(LHS
);
19613 LoadSDNode
*RLD
= cast
<LoadSDNode
>(RHS
);
19615 // Token chains must be identical.
19616 if (LHS
.getOperand(0) != RHS
.getOperand(0) ||
19617 // Do not let this transformation reduce the number of volatile loads.
19618 // Be conservative for atomics for the moment
19619 // TODO: This does appear to be legal for unordered atomics (see D66309)
19620 !LLD
->isSimple() || !RLD
->isSimple() ||
19621 // FIXME: If either is a pre/post inc/dec load,
19622 // we'd need to split out the address adjustment.
19623 LLD
->isIndexed() || RLD
->isIndexed() ||
19624 // If this is an EXTLOAD, the VT's must match.
19625 LLD
->getMemoryVT() != RLD
->getMemoryVT() ||
19626 // If this is an EXTLOAD, the kind of extension must match.
19627 (LLD
->getExtensionType() != RLD
->getExtensionType() &&
19628 // The only exception is if one of the extensions is anyext.
19629 LLD
->getExtensionType() != ISD::EXTLOAD
&&
19630 RLD
->getExtensionType() != ISD::EXTLOAD
) ||
19631 // FIXME: this discards src value information. This is
19632 // over-conservative. It would be beneficial to be able to remember
19633 // both potential memory locations. Since we are discarding
19634 // src value info, don't do the transformation if the memory
19635 // locations are not in the default address space.
19636 LLD
->getPointerInfo().getAddrSpace() != 0 ||
19637 RLD
->getPointerInfo().getAddrSpace() != 0 ||
19638 // We can't produce a CMOV of a TargetFrameIndex since we won't
19639 // generate the address generation required.
19640 LLD
->getBasePtr().getOpcode() == ISD::TargetFrameIndex
||
19641 RLD
->getBasePtr().getOpcode() == ISD::TargetFrameIndex
||
19642 !TLI
.isOperationLegalOrCustom(TheSelect
->getOpcode(),
19643 LLD
->getBasePtr().getValueType()))
19646 // The loads must not depend on one another.
19647 if (LLD
->isPredecessorOf(RLD
) || RLD
->isPredecessorOf(LLD
))
19650 // Check that the select condition doesn't reach either load. If so,
19651 // folding this will induce a cycle into the DAG. If not, this is safe to
19652 // xform, so create a select of the addresses.
19654 SmallPtrSet
<const SDNode
*, 32> Visited
;
19655 SmallVector
<const SDNode
*, 16> Worklist
;
19657 // Always fail if LLD and RLD are not independent. TheSelect is a
19658 // predecessor to all Nodes in question so we need not search past it.
19660 Visited
.insert(TheSelect
);
19661 Worklist
.push_back(LLD
);
19662 Worklist
.push_back(RLD
);
19664 if (SDNode::hasPredecessorHelper(LLD
, Visited
, Worklist
) ||
19665 SDNode::hasPredecessorHelper(RLD
, Visited
, Worklist
))
19669 if (TheSelect
->getOpcode() == ISD::SELECT
) {
19670 // We cannot do this optimization if any pair of {RLD, LLD} is a
19671 // predecessor to {RLD, LLD, CondNode}. As we've already compared the
19672 // Loads, we only need to check if CondNode is a successor to one of the
19673 // loads. We can further avoid this if there's no use of their chain
19675 SDNode
*CondNode
= TheSelect
->getOperand(0).getNode();
19676 Worklist
.push_back(CondNode
);
19678 if ((LLD
->hasAnyUseOfValue(1) &&
19679 SDNode::hasPredecessorHelper(LLD
, Visited
, Worklist
)) ||
19680 (RLD
->hasAnyUseOfValue(1) &&
19681 SDNode::hasPredecessorHelper(RLD
, Visited
, Worklist
)))
19684 Addr
= DAG
.getSelect(SDLoc(TheSelect
),
19685 LLD
->getBasePtr().getValueType(),
19686 TheSelect
->getOperand(0), LLD
->getBasePtr(),
19687 RLD
->getBasePtr());
19688 } else { // Otherwise SELECT_CC
19689 // We cannot do this optimization if any pair of {RLD, LLD} is a
19690 // predecessor to {RLD, LLD, CondLHS, CondRHS}. As we've already compared
19691 // the Loads, we only need to check if CondLHS/CondRHS is a successor to
19692 // one of the loads. We can further avoid this if there's no use of their
19695 SDNode
*CondLHS
= TheSelect
->getOperand(0).getNode();
19696 SDNode
*CondRHS
= TheSelect
->getOperand(1).getNode();
19697 Worklist
.push_back(CondLHS
);
19698 Worklist
.push_back(CondRHS
);
19700 if ((LLD
->hasAnyUseOfValue(1) &&
19701 SDNode::hasPredecessorHelper(LLD
, Visited
, Worklist
)) ||
19702 (RLD
->hasAnyUseOfValue(1) &&
19703 SDNode::hasPredecessorHelper(RLD
, Visited
, Worklist
)))
19706 Addr
= DAG
.getNode(ISD::SELECT_CC
, SDLoc(TheSelect
),
19707 LLD
->getBasePtr().getValueType(),
19708 TheSelect
->getOperand(0),
19709 TheSelect
->getOperand(1),
19710 LLD
->getBasePtr(), RLD
->getBasePtr(),
19711 TheSelect
->getOperand(4));
19715 // It is safe to replace the two loads if they have different alignments,
19716 // but the new load must be the minimum (most restrictive) alignment of the
19718 unsigned Alignment
= std::min(LLD
->getAlignment(), RLD
->getAlignment());
19719 MachineMemOperand::Flags MMOFlags
= LLD
->getMemOperand()->getFlags();
19720 if (!RLD
->isInvariant())
19721 MMOFlags
&= ~MachineMemOperand::MOInvariant
;
19722 if (!RLD
->isDereferenceable())
19723 MMOFlags
&= ~MachineMemOperand::MODereferenceable
;
19724 if (LLD
->getExtensionType() == ISD::NON_EXTLOAD
) {
19725 // FIXME: Discards pointer and AA info.
19726 Load
= DAG
.getLoad(TheSelect
->getValueType(0), SDLoc(TheSelect
),
19727 LLD
->getChain(), Addr
, MachinePointerInfo(), Alignment
,
19730 // FIXME: Discards pointer and AA info.
19731 Load
= DAG
.getExtLoad(
19732 LLD
->getExtensionType() == ISD::EXTLOAD
? RLD
->getExtensionType()
19733 : LLD
->getExtensionType(),
19734 SDLoc(TheSelect
), TheSelect
->getValueType(0), LLD
->getChain(), Addr
,
19735 MachinePointerInfo(), LLD
->getMemoryVT(), Alignment
, MMOFlags
);
19738 // Users of the select now use the result of the load.
19739 CombineTo(TheSelect
, Load
);
19741 // Users of the old loads now use the new load's chain. We know the
19742 // old-load value is dead now.
19743 CombineTo(LHS
.getNode(), Load
.getValue(0), Load
.getValue(1));
19744 CombineTo(RHS
.getNode(), Load
.getValue(0), Load
.getValue(1));
19751 /// Try to fold an expression of the form (N0 cond N1) ? N2 : N3 to a shift and
19753 SDValue
DAGCombiner::foldSelectCCToShiftAnd(const SDLoc
&DL
, SDValue N0
,
19754 SDValue N1
, SDValue N2
, SDValue N3
,
19755 ISD::CondCode CC
) {
19756 // If this is a select where the false operand is zero and the compare is a
19757 // check of the sign bit, see if we can perform the "gzip trick":
19758 // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
19759 // select_cc setgt X, 0, A, 0 -> and (not (sra X, size(X)-1)), A
19760 EVT XType
= N0
.getValueType();
19761 EVT AType
= N2
.getValueType();
19762 if (!isNullConstant(N3
) || !XType
.bitsGE(AType
))
19765 // If the comparison is testing for a positive value, we have to invert
19766 // the sign bit mask, so only do that transform if the target has a bitwise
19767 // 'and not' instruction (the invert is free).
19768 if (CC
== ISD::SETGT
&& TLI
.hasAndNot(N2
)) {
19769 // (X > -1) ? A : 0
19770 // (X > 0) ? X : 0 <-- This is canonical signed max.
19771 if (!(isAllOnesConstant(N1
) || (isNullConstant(N1
) && N0
== N2
)))
19773 } else if (CC
== ISD::SETLT
) {
19775 // (X < 1) ? X : 0 <-- This is un-canonicalized signed min.
19776 if (!(isNullConstant(N1
) || (isOneConstant(N1
) && N0
== N2
)))
19782 // and (sra X, size(X)-1), A -> "and (srl X, C2), A" iff A is a single-bit
19784 EVT ShiftAmtTy
= getShiftAmountTy(N0
.getValueType());
19785 auto *N2C
= dyn_cast
<ConstantSDNode
>(N2
.getNode());
19786 if (N2C
&& ((N2C
->getAPIntValue() & (N2C
->getAPIntValue() - 1)) == 0)) {
19787 unsigned ShCt
= XType
.getSizeInBits() - N2C
->getAPIntValue().logBase2() - 1;
19788 SDValue ShiftAmt
= DAG
.getConstant(ShCt
, DL
, ShiftAmtTy
);
19789 SDValue Shift
= DAG
.getNode(ISD::SRL
, DL
, XType
, N0
, ShiftAmt
);
19790 AddToWorklist(Shift
.getNode());
19792 if (XType
.bitsGT(AType
)) {
19793 Shift
= DAG
.getNode(ISD::TRUNCATE
, DL
, AType
, Shift
);
19794 AddToWorklist(Shift
.getNode());
19797 if (CC
== ISD::SETGT
)
19798 Shift
= DAG
.getNOT(DL
, Shift
, AType
);
19800 return DAG
.getNode(ISD::AND
, DL
, AType
, Shift
, N2
);
19803 SDValue ShiftAmt
= DAG
.getConstant(XType
.getSizeInBits() - 1, DL
, ShiftAmtTy
);
19804 SDValue Shift
= DAG
.getNode(ISD::SRA
, DL
, XType
, N0
, ShiftAmt
);
19805 AddToWorklist(Shift
.getNode());
19807 if (XType
.bitsGT(AType
)) {
19808 Shift
= DAG
.getNode(ISD::TRUNCATE
, DL
, AType
, Shift
);
19809 AddToWorklist(Shift
.getNode());
19812 if (CC
== ISD::SETGT
)
19813 Shift
= DAG
.getNOT(DL
, Shift
, AType
);
19815 return DAG
.getNode(ISD::AND
, DL
, AType
, Shift
, N2
);
19818 /// Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
19819 /// where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
19820 /// in it. This may be a win when the constant is not otherwise available
19821 /// because it replaces two constant pool loads with one.
19822 SDValue
DAGCombiner::convertSelectOfFPConstantsToLoadOffset(
19823 const SDLoc
&DL
, SDValue N0
, SDValue N1
, SDValue N2
, SDValue N3
,
19824 ISD::CondCode CC
) {
19825 if (!TLI
.reduceSelectOfFPConstantLoads(N0
.getValueType()))
19828 // If we are before legalize types, we want the other legalization to happen
19829 // first (for example, to avoid messing with soft float).
19830 auto *TV
= dyn_cast
<ConstantFPSDNode
>(N2
);
19831 auto *FV
= dyn_cast
<ConstantFPSDNode
>(N3
);
19832 EVT VT
= N2
.getValueType();
19833 if (!TV
|| !FV
|| !TLI
.isTypeLegal(VT
))
19836 // If a constant can be materialized without loads, this does not make sense.
19837 if (TLI
.getOperationAction(ISD::ConstantFP
, VT
) == TargetLowering::Legal
||
19838 TLI
.isFPImmLegal(TV
->getValueAPF(), TV
->getValueType(0), ForCodeSize
) ||
19839 TLI
.isFPImmLegal(FV
->getValueAPF(), FV
->getValueType(0), ForCodeSize
))
19842 // If both constants have multiple uses, then we won't need to do an extra
19843 // load. The values are likely around in registers for other users.
19844 if (!TV
->hasOneUse() && !FV
->hasOneUse())
19847 Constant
*Elts
[] = { const_cast<ConstantFP
*>(FV
->getConstantFPValue()),
19848 const_cast<ConstantFP
*>(TV
->getConstantFPValue()) };
19849 Type
*FPTy
= Elts
[0]->getType();
19850 const DataLayout
&TD
= DAG
.getDataLayout();
19852 // Create a ConstantArray of the two constants.
19853 Constant
*CA
= ConstantArray::get(ArrayType::get(FPTy
, 2), Elts
);
19854 SDValue CPIdx
= DAG
.getConstantPool(CA
, TLI
.getPointerTy(DAG
.getDataLayout()),
19855 TD
.getPrefTypeAlignment(FPTy
));
19856 unsigned Alignment
= cast
<ConstantPoolSDNode
>(CPIdx
)->getAlignment();
19858 // Get offsets to the 0 and 1 elements of the array, so we can select between
19860 SDValue Zero
= DAG
.getIntPtrConstant(0, DL
);
19861 unsigned EltSize
= (unsigned)TD
.getTypeAllocSize(Elts
[0]->getType());
19862 SDValue One
= DAG
.getIntPtrConstant(EltSize
, SDLoc(FV
));
19864 DAG
.getSetCC(DL
, getSetCCResultType(N0
.getValueType()), N0
, N1
, CC
);
19865 AddToWorklist(Cond
.getNode());
19866 SDValue CstOffset
= DAG
.getSelect(DL
, Zero
.getValueType(), Cond
, One
, Zero
);
19867 AddToWorklist(CstOffset
.getNode());
19868 CPIdx
= DAG
.getNode(ISD::ADD
, DL
, CPIdx
.getValueType(), CPIdx
, CstOffset
);
19869 AddToWorklist(CPIdx
.getNode());
19870 return DAG
.getLoad(TV
->getValueType(0), DL
, DAG
.getEntryNode(), CPIdx
,
19871 MachinePointerInfo::getConstantPool(
19872 DAG
.getMachineFunction()), Alignment
);
19875 /// Simplify an expression of the form (N0 cond N1) ? N2 : N3
19876 /// where 'cond' is the comparison specified by CC.
19877 SDValue
DAGCombiner::SimplifySelectCC(const SDLoc
&DL
, SDValue N0
, SDValue N1
,
19878 SDValue N2
, SDValue N3
, ISD::CondCode CC
,
19879 bool NotExtCompare
) {
19880 // (x ? y : y) -> y.
19881 if (N2
== N3
) return N2
;
19883 EVT CmpOpVT
= N0
.getValueType();
19884 EVT CmpResVT
= getSetCCResultType(CmpOpVT
);
19885 EVT VT
= N2
.getValueType();
19886 auto *N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
19887 auto *N2C
= dyn_cast
<ConstantSDNode
>(N2
.getNode());
19888 auto *N3C
= dyn_cast
<ConstantSDNode
>(N3
.getNode());
19890 // Determine if the condition we're dealing with is constant.
19891 if (SDValue SCC
= DAG
.FoldSetCC(CmpResVT
, N0
, N1
, CC
, DL
)) {
19892 AddToWorklist(SCC
.getNode());
19893 if (auto *SCCC
= dyn_cast
<ConstantSDNode
>(SCC
)) {
19894 // fold select_cc true, x, y -> x
19895 // fold select_cc false, x, y -> y
19896 return !(SCCC
->isNullValue()) ? N2
: N3
;
19901 convertSelectOfFPConstantsToLoadOffset(DL
, N0
, N1
, N2
, N3
, CC
))
19904 if (SDValue V
= foldSelectCCToShiftAnd(DL
, N0
, N1
, N2
, N3
, CC
))
19907 // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
19908 // where y is has a single bit set.
19909 // A plaintext description would be, we can turn the SELECT_CC into an AND
19910 // when the condition can be materialized as an all-ones register. Any
19911 // single bit-test can be materialized as an all-ones register with
19912 // shift-left and shift-right-arith.
19913 if (CC
== ISD::SETEQ
&& N0
->getOpcode() == ISD::AND
&&
19914 N0
->getValueType(0) == VT
&& isNullConstant(N1
) && isNullConstant(N2
)) {
19915 SDValue AndLHS
= N0
->getOperand(0);
19916 auto *ConstAndRHS
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1));
19917 if (ConstAndRHS
&& ConstAndRHS
->getAPIntValue().countPopulation() == 1) {
19918 // Shift the tested bit over the sign bit.
19919 const APInt
&AndMask
= ConstAndRHS
->getAPIntValue();
19921 DAG
.getConstant(AndMask
.countLeadingZeros(), SDLoc(AndLHS
),
19922 getShiftAmountTy(AndLHS
.getValueType()));
19923 SDValue Shl
= DAG
.getNode(ISD::SHL
, SDLoc(N0
), VT
, AndLHS
, ShlAmt
);
19925 // Now arithmetic right shift it all the way over, so the result is either
19926 // all-ones, or zero.
19928 DAG
.getConstant(AndMask
.getBitWidth() - 1, SDLoc(Shl
),
19929 getShiftAmountTy(Shl
.getValueType()));
19930 SDValue Shr
= DAG
.getNode(ISD::SRA
, SDLoc(N0
), VT
, Shl
, ShrAmt
);
19932 return DAG
.getNode(ISD::AND
, DL
, VT
, Shr
, N3
);
19936 // fold select C, 16, 0 -> shl C, 4
19937 bool Fold
= N2C
&& isNullConstant(N3
) && N2C
->getAPIntValue().isPowerOf2();
19938 bool Swap
= N3C
&& isNullConstant(N2
) && N3C
->getAPIntValue().isPowerOf2();
19940 if ((Fold
|| Swap
) &&
19941 TLI
.getBooleanContents(CmpOpVT
) ==
19942 TargetLowering::ZeroOrOneBooleanContent
&&
19943 (!LegalOperations
|| TLI
.isOperationLegal(ISD::SETCC
, CmpOpVT
))) {
19946 CC
= ISD::getSetCCInverse(CC
, CmpOpVT
.isInteger());
19947 std::swap(N2C
, N3C
);
19950 // If the caller doesn't want us to simplify this into a zext of a compare,
19952 if (NotExtCompare
&& N2C
->isOne())
19956 // zext (setcc n0, n1)
19958 SCC
= DAG
.getSetCC(DL
, CmpResVT
, N0
, N1
, CC
);
19959 if (VT
.bitsLT(SCC
.getValueType()))
19960 Temp
= DAG
.getZeroExtendInReg(SCC
, SDLoc(N2
), VT
);
19962 Temp
= DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N2
), VT
, SCC
);
19964 SCC
= DAG
.getSetCC(SDLoc(N0
), MVT::i1
, N0
, N1
, CC
);
19965 Temp
= DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N2
), VT
, SCC
);
19968 AddToWorklist(SCC
.getNode());
19969 AddToWorklist(Temp
.getNode());
19974 // shl setcc result by log2 n2c
19975 return DAG
.getNode(ISD::SHL
, DL
, N2
.getValueType(), Temp
,
19976 DAG
.getConstant(N2C
->getAPIntValue().logBase2(),
19978 getShiftAmountTy(Temp
.getValueType())));
19981 // select_cc seteq X, 0, sizeof(X), ctlz(X) -> ctlz(X)
19982 // select_cc seteq X, 0, sizeof(X), ctlz_zero_undef(X) -> ctlz(X)
19983 // select_cc seteq X, 0, sizeof(X), cttz(X) -> cttz(X)
19984 // select_cc seteq X, 0, sizeof(X), cttz_zero_undef(X) -> cttz(X)
19985 // select_cc setne X, 0, ctlz(X), sizeof(X) -> ctlz(X)
19986 // select_cc setne X, 0, ctlz_zero_undef(X), sizeof(X) -> ctlz(X)
19987 // select_cc setne X, 0, cttz(X), sizeof(X) -> cttz(X)
19988 // select_cc setne X, 0, cttz_zero_undef(X), sizeof(X) -> cttz(X)
19989 if (N1C
&& N1C
->isNullValue() && (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
)) {
19990 SDValue ValueOnZero
= N2
;
19991 SDValue Count
= N3
;
19992 // If the condition is NE instead of E, swap the operands.
19993 if (CC
== ISD::SETNE
)
19994 std::swap(ValueOnZero
, Count
);
19995 // Check if the value on zero is a constant equal to the bits in the type.
19996 if (auto *ValueOnZeroC
= dyn_cast
<ConstantSDNode
>(ValueOnZero
)) {
19997 if (ValueOnZeroC
->getAPIntValue() == VT
.getSizeInBits()) {
19998 // If the other operand is cttz/cttz_zero_undef of N0, and cttz is
19999 // legal, combine to just cttz.
20000 if ((Count
.getOpcode() == ISD::CTTZ
||
20001 Count
.getOpcode() == ISD::CTTZ_ZERO_UNDEF
) &&
20002 N0
== Count
.getOperand(0) &&
20003 (!LegalOperations
|| TLI
.isOperationLegal(ISD::CTTZ
, VT
)))
20004 return DAG
.getNode(ISD::CTTZ
, DL
, VT
, N0
);
20005 // If the other operand is ctlz/ctlz_zero_undef of N0, and ctlz is
20006 // legal, combine to just ctlz.
20007 if ((Count
.getOpcode() == ISD::CTLZ
||
20008 Count
.getOpcode() == ISD::CTLZ_ZERO_UNDEF
) &&
20009 N0
== Count
.getOperand(0) &&
20010 (!LegalOperations
|| TLI
.isOperationLegal(ISD::CTLZ
, VT
)))
20011 return DAG
.getNode(ISD::CTLZ
, DL
, VT
, N0
);
20019 /// This is a stub for TargetLowering::SimplifySetCC.
20020 SDValue
DAGCombiner::SimplifySetCC(EVT VT
, SDValue N0
, SDValue N1
,
20021 ISD::CondCode Cond
, const SDLoc
&DL
,
20022 bool foldBooleans
) {
20023 TargetLowering::DAGCombinerInfo
20024 DagCombineInfo(DAG
, Level
, false, this);
20025 return TLI
.SimplifySetCC(VT
, N0
, N1
, Cond
, foldBooleans
, DagCombineInfo
, DL
);
20028 /// Given an ISD::SDIV node expressing a divide by constant, return
20029 /// a DAG expression to select that will generate the same value by multiplying
20030 /// by a magic number.
20031 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
20032 SDValue
DAGCombiner::BuildSDIV(SDNode
*N
) {
20033 // when optimising for minimum size, we don't want to expand a div to a mul
20035 if (DAG
.getMachineFunction().getFunction().hasMinSize())
20038 SmallVector
<SDNode
*, 8> Built
;
20039 if (SDValue S
= TLI
.BuildSDIV(N
, DAG
, LegalOperations
, Built
)) {
20040 for (SDNode
*N
: Built
)
20048 /// Given an ISD::SDIV node expressing a divide by constant power of 2, return a
20049 /// DAG expression that will generate the same value by right shifting.
20050 SDValue
DAGCombiner::BuildSDIVPow2(SDNode
*N
) {
20051 ConstantSDNode
*C
= isConstOrConstSplat(N
->getOperand(1));
20055 // Avoid division by zero.
20056 if (C
->isNullValue())
20059 SmallVector
<SDNode
*, 8> Built
;
20060 if (SDValue S
= TLI
.BuildSDIVPow2(N
, C
->getAPIntValue(), DAG
, Built
)) {
20061 for (SDNode
*N
: Built
)
20069 /// Given an ISD::UDIV node expressing a divide by constant, return a DAG
20070 /// expression that will generate the same value by multiplying by a magic
20072 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
20073 SDValue
DAGCombiner::BuildUDIV(SDNode
*N
) {
20074 // when optimising for minimum size, we don't want to expand a div to a mul
20076 if (DAG
.getMachineFunction().getFunction().hasMinSize())
20079 SmallVector
<SDNode
*, 8> Built
;
20080 if (SDValue S
= TLI
.BuildUDIV(N
, DAG
, LegalOperations
, Built
)) {
20081 for (SDNode
*N
: Built
)
20089 /// Determines the LogBase2 value for a non-null input value using the
20090 /// transform: LogBase2(V) = (EltBits - 1) - ctlz(V).
20091 SDValue
DAGCombiner::BuildLogBase2(SDValue V
, const SDLoc
&DL
) {
20092 EVT VT
= V
.getValueType();
20093 unsigned EltBits
= VT
.getScalarSizeInBits();
20094 SDValue Ctlz
= DAG
.getNode(ISD::CTLZ
, DL
, VT
, V
);
20095 SDValue Base
= DAG
.getConstant(EltBits
- 1, DL
, VT
);
20096 SDValue LogBase2
= DAG
.getNode(ISD::SUB
, DL
, VT
, Base
, Ctlz
);
20100 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
20101 /// For the reciprocal, we need to find the zero of the function:
20102 /// F(X) = A X - 1 [which has a zero at X = 1/A]
20104 /// X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form
20105 /// does not require additional intermediate precision]
20106 /// For the last iteration, put numerator N into it to gain more precision:
20107 /// Result = N X_i + X_i (N - N A X_i)
20108 SDValue
DAGCombiner::BuildDivEstimate(SDValue N
, SDValue Op
,
20109 SDNodeFlags Flags
) {
20110 if (Level
>= AfterLegalizeDAG
)
20113 // TODO: Handle half and/or extended types?
20114 EVT VT
= Op
.getValueType();
20115 if (VT
.getScalarType() != MVT::f32
&& VT
.getScalarType() != MVT::f64
)
20118 // If estimates are explicitly disabled for this function, we're done.
20119 MachineFunction
&MF
= DAG
.getMachineFunction();
20120 int Enabled
= TLI
.getRecipEstimateDivEnabled(VT
, MF
);
20121 if (Enabled
== TLI
.ReciprocalEstimate::Disabled
)
20124 // Estimates may be explicitly enabled for this type with a custom number of
20125 // refinement steps.
20126 int Iterations
= TLI
.getDivRefinementSteps(VT
, MF
);
20127 if (SDValue Est
= TLI
.getRecipEstimate(Op
, DAG
, Enabled
, Iterations
)) {
20128 AddToWorklist(Est
.getNode());
20132 SDValue FPOne
= DAG
.getConstantFP(1.0, DL
, VT
);
20134 // Newton iterations: Est = Est + Est (N - Arg * Est)
20135 // If this is the last iteration, also multiply by the numerator.
20136 for (int i
= 0; i
< Iterations
; ++i
) {
20137 SDValue MulEst
= Est
;
20139 if (i
== Iterations
- 1) {
20140 MulEst
= DAG
.getNode(ISD::FMUL
, DL
, VT
, N
, Est
, Flags
);
20141 AddToWorklist(MulEst
.getNode());
20144 SDValue NewEst
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Op
, MulEst
, Flags
);
20145 AddToWorklist(NewEst
.getNode());
20147 NewEst
= DAG
.getNode(ISD::FSUB
, DL
, VT
,
20148 (i
== Iterations
- 1 ? N
: FPOne
), NewEst
, Flags
);
20149 AddToWorklist(NewEst
.getNode());
20151 NewEst
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Est
, NewEst
, Flags
);
20152 AddToWorklist(NewEst
.getNode());
20154 Est
= DAG
.getNode(ISD::FADD
, DL
, VT
, MulEst
, NewEst
, Flags
);
20155 AddToWorklist(Est
.getNode());
20158 // If no iterations are available, multiply with N.
20159 Est
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Est
, N
, Flags
);
20160 AddToWorklist(Est
.getNode());
20169 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
20170 /// For the reciprocal sqrt, we need to find the zero of the function:
20171 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
20173 /// X_{i+1} = X_i (1.5 - A X_i^2 / 2)
20174 /// As a result, we precompute A/2 prior to the iteration loop.
20175 SDValue
DAGCombiner::buildSqrtNROneConst(SDValue Arg
, SDValue Est
,
20176 unsigned Iterations
,
20177 SDNodeFlags Flags
, bool Reciprocal
) {
20178 EVT VT
= Arg
.getValueType();
20180 SDValue ThreeHalves
= DAG
.getConstantFP(1.5, DL
, VT
);
20182 // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that
20183 // this entire sequence requires only one FP constant.
20184 SDValue HalfArg
= DAG
.getNode(ISD::FMUL
, DL
, VT
, ThreeHalves
, Arg
, Flags
);
20185 HalfArg
= DAG
.getNode(ISD::FSUB
, DL
, VT
, HalfArg
, Arg
, Flags
);
20187 // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est)
20188 for (unsigned i
= 0; i
< Iterations
; ++i
) {
20189 SDValue NewEst
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Est
, Est
, Flags
);
20190 NewEst
= DAG
.getNode(ISD::FMUL
, DL
, VT
, HalfArg
, NewEst
, Flags
);
20191 NewEst
= DAG
.getNode(ISD::FSUB
, DL
, VT
, ThreeHalves
, NewEst
, Flags
);
20192 Est
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Est
, NewEst
, Flags
);
20195 // If non-reciprocal square root is requested, multiply the result by Arg.
20197 Est
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Est
, Arg
, Flags
);
20202 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
20203 /// For the reciprocal sqrt, we need to find the zero of the function:
20204 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
20206 /// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0))
20207 SDValue
DAGCombiner::buildSqrtNRTwoConst(SDValue Arg
, SDValue Est
,
20208 unsigned Iterations
,
20209 SDNodeFlags Flags
, bool Reciprocal
) {
20210 EVT VT
= Arg
.getValueType();
20212 SDValue MinusThree
= DAG
.getConstantFP(-3.0, DL
, VT
);
20213 SDValue MinusHalf
= DAG
.getConstantFP(-0.5, DL
, VT
);
20215 // This routine must enter the loop below to work correctly
20216 // when (Reciprocal == false).
20217 assert(Iterations
> 0);
20219 // Newton iterations for reciprocal square root:
20220 // E = (E * -0.5) * ((A * E) * E + -3.0)
20221 for (unsigned i
= 0; i
< Iterations
; ++i
) {
20222 SDValue AE
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Arg
, Est
, Flags
);
20223 SDValue AEE
= DAG
.getNode(ISD::FMUL
, DL
, VT
, AE
, Est
, Flags
);
20224 SDValue RHS
= DAG
.getNode(ISD::FADD
, DL
, VT
, AEE
, MinusThree
, Flags
);
20226 // When calculating a square root at the last iteration build:
20227 // S = ((A * E) * -0.5) * ((A * E) * E + -3.0)
20228 // (notice a common subexpression)
20230 if (Reciprocal
|| (i
+ 1) < Iterations
) {
20231 // RSQRT: LHS = (E * -0.5)
20232 LHS
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Est
, MinusHalf
, Flags
);
20234 // SQRT: LHS = (A * E) * -0.5
20235 LHS
= DAG
.getNode(ISD::FMUL
, DL
, VT
, AE
, MinusHalf
, Flags
);
20238 Est
= DAG
.getNode(ISD::FMUL
, DL
, VT
, LHS
, RHS
, Flags
);
20244 /// Build code to calculate either rsqrt(Op) or sqrt(Op). In the latter case
20245 /// Op*rsqrt(Op) is actually computed, so additional postprocessing is needed if
20246 /// Op can be zero.
20247 SDValue
DAGCombiner::buildSqrtEstimateImpl(SDValue Op
, SDNodeFlags Flags
,
20249 if (Level
>= AfterLegalizeDAG
)
20252 // TODO: Handle half and/or extended types?
20253 EVT VT
= Op
.getValueType();
20254 if (VT
.getScalarType() != MVT::f32
&& VT
.getScalarType() != MVT::f64
)
20257 // If estimates are explicitly disabled for this function, we're done.
20258 MachineFunction
&MF
= DAG
.getMachineFunction();
20259 int Enabled
= TLI
.getRecipEstimateSqrtEnabled(VT
, MF
);
20260 if (Enabled
== TLI
.ReciprocalEstimate::Disabled
)
20263 // Estimates may be explicitly enabled for this type with a custom number of
20264 // refinement steps.
20265 int Iterations
= TLI
.getSqrtRefinementSteps(VT
, MF
);
20267 bool UseOneConstNR
= false;
20269 TLI
.getSqrtEstimate(Op
, DAG
, Enabled
, Iterations
, UseOneConstNR
,
20271 AddToWorklist(Est
.getNode());
20274 Est
= UseOneConstNR
20275 ? buildSqrtNROneConst(Op
, Est
, Iterations
, Flags
, Reciprocal
)
20276 : buildSqrtNRTwoConst(Op
, Est
, Iterations
, Flags
, Reciprocal
);
20279 // The estimate is now completely wrong if the input was exactly 0.0 or
20280 // possibly a denormal. Force the answer to 0.0 for those cases.
20282 EVT CCVT
= getSetCCResultType(VT
);
20283 ISD::NodeType SelOpcode
= VT
.isVector() ? ISD::VSELECT
: ISD::SELECT
;
20284 const Function
&F
= DAG
.getMachineFunction().getFunction();
20285 Attribute Denorms
= F
.getFnAttribute("denormal-fp-math");
20286 if (Denorms
.getValueAsString().equals("ieee")) {
20287 // fabs(X) < SmallestNormal ? 0.0 : Est
20288 const fltSemantics
&FltSem
= DAG
.EVTToAPFloatSemantics(VT
);
20289 APFloat SmallestNorm
= APFloat::getSmallestNormalized(FltSem
);
20290 SDValue NormC
= DAG
.getConstantFP(SmallestNorm
, DL
, VT
);
20291 SDValue FPZero
= DAG
.getConstantFP(0.0, DL
, VT
);
20292 SDValue Fabs
= DAG
.getNode(ISD::FABS
, DL
, VT
, Op
);
20293 SDValue IsDenorm
= DAG
.getSetCC(DL
, CCVT
, Fabs
, NormC
, ISD::SETLT
);
20294 Est
= DAG
.getNode(SelOpcode
, DL
, VT
, IsDenorm
, FPZero
, Est
);
20296 // X == 0.0 ? 0.0 : Est
20297 SDValue FPZero
= DAG
.getConstantFP(0.0, DL
, VT
);
20298 SDValue IsZero
= DAG
.getSetCC(DL
, CCVT
, Op
, FPZero
, ISD::SETEQ
);
20299 Est
= DAG
.getNode(SelOpcode
, DL
, VT
, IsZero
, FPZero
, Est
);
20309 SDValue
DAGCombiner::buildRsqrtEstimate(SDValue Op
, SDNodeFlags Flags
) {
20310 return buildSqrtEstimateImpl(Op
, Flags
, true);
20313 SDValue
DAGCombiner::buildSqrtEstimate(SDValue Op
, SDNodeFlags Flags
) {
20314 return buildSqrtEstimateImpl(Op
, Flags
, false);
20317 /// Return true if there is any possibility that the two addresses overlap.
20318 bool DAGCombiner::isAlias(SDNode
*Op0
, SDNode
*Op1
) const {
20320 struct MemUseCharacteristics
{
20325 Optional
<int64_t> NumBytes
;
20326 MachineMemOperand
*MMO
;
20329 auto getCharacteristics
= [](SDNode
*N
) -> MemUseCharacteristics
{
20330 if (const auto *LSN
= dyn_cast
<LSBaseSDNode
>(N
)) {
20331 int64_t Offset
= 0;
20332 if (auto *C
= dyn_cast
<ConstantSDNode
>(LSN
->getOffset()))
20333 Offset
= (LSN
->getAddressingMode() == ISD::PRE_INC
)
20334 ? C
->getSExtValue()
20335 : (LSN
->getAddressingMode() == ISD::PRE_DEC
)
20336 ? -1 * C
->getSExtValue()
20338 return {LSN
->isVolatile(), LSN
->isAtomic(), LSN
->getBasePtr(),
20339 Offset
/*base offset*/,
20340 Optional
<int64_t>(LSN
->getMemoryVT().getStoreSize()),
20341 LSN
->getMemOperand()};
20343 if (const auto *LN
= cast
<LifetimeSDNode
>(N
))
20344 return {false /*isVolatile*/, /*isAtomic*/ false, LN
->getOperand(1),
20345 (LN
->hasOffset()) ? LN
->getOffset() : 0,
20346 (LN
->hasOffset()) ? Optional
<int64_t>(LN
->getSize())
20347 : Optional
<int64_t>(),
20348 (MachineMemOperand
*)nullptr};
20350 return {false /*isvolatile*/, /*isAtomic*/ false, SDValue(),
20351 (int64_t)0 /*offset*/,
20352 Optional
<int64_t>() /*size*/, (MachineMemOperand
*)nullptr};
20355 MemUseCharacteristics MUC0
= getCharacteristics(Op0
),
20356 MUC1
= getCharacteristics(Op1
);
20358 // If they are to the same address, then they must be aliases.
20359 if (MUC0
.BasePtr
.getNode() && MUC0
.BasePtr
== MUC1
.BasePtr
&&
20360 MUC0
.Offset
== MUC1
.Offset
)
20363 // If they are both volatile then they cannot be reordered.
20364 if (MUC0
.IsVolatile
&& MUC1
.IsVolatile
)
20367 // Be conservative about atomics for the moment
20368 // TODO: This is way overconservative for unordered atomics (see D66309)
20369 if (MUC0
.IsAtomic
&& MUC1
.IsAtomic
)
20372 if (MUC0
.MMO
&& MUC1
.MMO
) {
20373 if ((MUC0
.MMO
->isInvariant() && MUC1
.MMO
->isStore()) ||
20374 (MUC1
.MMO
->isInvariant() && MUC0
.MMO
->isStore()))
20378 // Try to prove that there is aliasing, or that there is no aliasing. Either
20379 // way, we can return now. If nothing can be proved, proceed with more tests.
20381 if (BaseIndexOffset::computeAliasing(Op0
, MUC0
.NumBytes
, Op1
, MUC1
.NumBytes
,
20385 // The following all rely on MMO0 and MMO1 being valid. Fail conservatively if
20386 // either are not known.
20387 if (!MUC0
.MMO
|| !MUC1
.MMO
)
20390 // If one operation reads from invariant memory, and the other may store, they
20391 // cannot alias. These should really be checking the equivalent of mayWrite,
20392 // but it only matters for memory nodes other than load /store.
20393 if ((MUC0
.MMO
->isInvariant() && MUC1
.MMO
->isStore()) ||
20394 (MUC1
.MMO
->isInvariant() && MUC0
.MMO
->isStore()))
20397 // If we know required SrcValue1 and SrcValue2 have relatively large
20398 // alignment compared to the size and offset of the access, we may be able
20399 // to prove they do not alias. This check is conservative for now to catch
20400 // cases created by splitting vector types.
20401 int64_t SrcValOffset0
= MUC0
.MMO
->getOffset();
20402 int64_t SrcValOffset1
= MUC1
.MMO
->getOffset();
20403 unsigned OrigAlignment0
= MUC0
.MMO
->getBaseAlignment();
20404 unsigned OrigAlignment1
= MUC1
.MMO
->getBaseAlignment();
20405 if (OrigAlignment0
== OrigAlignment1
&& SrcValOffset0
!= SrcValOffset1
&&
20406 MUC0
.NumBytes
.hasValue() && MUC1
.NumBytes
.hasValue() &&
20407 *MUC0
.NumBytes
== *MUC1
.NumBytes
&& OrigAlignment0
> *MUC0
.NumBytes
) {
20408 int64_t OffAlign0
= SrcValOffset0
% OrigAlignment0
;
20409 int64_t OffAlign1
= SrcValOffset1
% OrigAlignment1
;
20411 // There is no overlap between these relatively aligned accesses of
20412 // similar size. Return no alias.
20413 if ((OffAlign0
+ *MUC0
.NumBytes
) <= OffAlign1
||
20414 (OffAlign1
+ *MUC1
.NumBytes
) <= OffAlign0
)
20418 bool UseAA
= CombinerGlobalAA
.getNumOccurrences() > 0
20420 : DAG
.getSubtarget().useAA();
20422 if (CombinerAAOnlyFunc
.getNumOccurrences() &&
20423 CombinerAAOnlyFunc
!= DAG
.getMachineFunction().getName())
20427 if (UseAA
&& AA
&& MUC0
.MMO
->getValue() && MUC1
.MMO
->getValue()) {
20428 // Use alias analysis information.
20429 int64_t MinOffset
= std::min(SrcValOffset0
, SrcValOffset1
);
20430 int64_t Overlap0
= *MUC0
.NumBytes
+ SrcValOffset0
- MinOffset
;
20431 int64_t Overlap1
= *MUC1
.NumBytes
+ SrcValOffset1
- MinOffset
;
20432 AliasResult AAResult
= AA
->alias(
20433 MemoryLocation(MUC0
.MMO
->getValue(), Overlap0
,
20434 UseTBAA
? MUC0
.MMO
->getAAInfo() : AAMDNodes()),
20435 MemoryLocation(MUC1
.MMO
->getValue(), Overlap1
,
20436 UseTBAA
? MUC1
.MMO
->getAAInfo() : AAMDNodes()));
20437 if (AAResult
== NoAlias
)
20441 // Otherwise we have to assume they alias.
20445 /// Walk up chain skipping non-aliasing memory nodes,
20446 /// looking for aliasing nodes and adding them to the Aliases vector.
20447 void DAGCombiner::GatherAllAliases(SDNode
*N
, SDValue OriginalChain
,
20448 SmallVectorImpl
<SDValue
> &Aliases
) {
20449 SmallVector
<SDValue
, 8> Chains
; // List of chains to visit.
20450 SmallPtrSet
<SDNode
*, 16> Visited
; // Visited node set.
20452 // Get alias information for node.
20453 // TODO: relax aliasing for unordered atomics (see D66309)
20454 const bool IsLoad
= isa
<LoadSDNode
>(N
) && cast
<LoadSDNode
>(N
)->isSimple();
20457 Chains
.push_back(OriginalChain
);
20458 unsigned Depth
= 0;
20460 // Attempt to improve chain by a single step
20461 std::function
<bool(SDValue
&)> ImproveChain
= [&](SDValue
&C
) -> bool {
20462 switch (C
.getOpcode()) {
20463 case ISD::EntryToken
:
20464 // No need to mark EntryToken.
20469 // Get alias information for C.
20470 // TODO: Relax aliasing for unordered atomics (see D66309)
20471 bool IsOpLoad
= isa
<LoadSDNode
>(C
.getNode()) &&
20472 cast
<LSBaseSDNode
>(C
.getNode())->isSimple();
20473 if ((IsLoad
&& IsOpLoad
) || !isAlias(N
, C
.getNode())) {
20474 // Look further up the chain.
20475 C
= C
.getOperand(0);
20478 // Alias, so stop here.
20482 case ISD::CopyFromReg
:
20483 // Always forward past past CopyFromReg.
20484 C
= C
.getOperand(0);
20487 case ISD::LIFETIME_START
:
20488 case ISD::LIFETIME_END
: {
20489 // We can forward past any lifetime start/end that can be proven not to
20490 // alias the memory access.
20491 if (!isAlias(N
, C
.getNode())) {
20492 // Look further up the chain.
20493 C
= C
.getOperand(0);
20503 // Look at each chain and determine if it is an alias. If so, add it to the
20504 // aliases list. If not, then continue up the chain looking for the next
20506 while (!Chains
.empty()) {
20507 SDValue Chain
= Chains
.pop_back_val();
20509 // Don't bother if we've seen Chain before.
20510 if (!Visited
.insert(Chain
.getNode()).second
)
20513 // For TokenFactor nodes, look at each operand and only continue up the
20514 // chain until we reach the depth limit.
20516 // FIXME: The depth check could be made to return the last non-aliasing
20517 // chain we found before we hit a tokenfactor rather than the original
20519 if (Depth
> TLI
.getGatherAllAliasesMaxDepth()) {
20521 Aliases
.push_back(OriginalChain
);
20525 if (Chain
.getOpcode() == ISD::TokenFactor
) {
20526 // We have to check each of the operands of the token factor for "small"
20527 // token factors, so we queue them up. Adding the operands to the queue
20528 // (stack) in reverse order maintains the original order and increases the
20529 // likelihood that getNode will find a matching token factor (CSE.)
20530 if (Chain
.getNumOperands() > 16) {
20531 Aliases
.push_back(Chain
);
20534 for (unsigned n
= Chain
.getNumOperands(); n
;)
20535 Chains
.push_back(Chain
.getOperand(--n
));
20540 if (ImproveChain(Chain
)) {
20541 // Updated Chain Found, Consider new chain if one exists.
20542 if (Chain
.getNode())
20543 Chains
.push_back(Chain
);
20547 // No Improved Chain Possible, treat as Alias.
20548 Aliases
.push_back(Chain
);
20552 /// Walk up chain skipping non-aliasing memory nodes, looking for a better chain
20553 /// (aliasing node.)
20554 SDValue
DAGCombiner::FindBetterChain(SDNode
*N
, SDValue OldChain
) {
20555 if (OptLevel
== CodeGenOpt::None
)
20558 // Ops for replacing token factor.
20559 SmallVector
<SDValue
, 8> Aliases
;
20561 // Accumulate all the aliases to this node.
20562 GatherAllAliases(N
, OldChain
, Aliases
);
20564 // If no operands then chain to entry token.
20565 if (Aliases
.size() == 0)
20566 return DAG
.getEntryNode();
20568 // If a single operand then chain to it. We don't need to revisit it.
20569 if (Aliases
.size() == 1)
20572 // Construct a custom tailored token factor.
20573 return DAG
.getTokenFactor(SDLoc(N
), Aliases
);
20577 // TODO: Replace with with std::monostate when we move to C++17.
20578 struct UnitT
{ } Unit
;
20579 bool operator==(const UnitT
&, const UnitT
&) { return true; }
20580 bool operator!=(const UnitT
&, const UnitT
&) { return false; }
20583 // This function tries to collect a bunch of potentially interesting
20584 // nodes to improve the chains of, all at once. This might seem
20585 // redundant, as this function gets called when visiting every store
20586 // node, so why not let the work be done on each store as it's visited?
20588 // I believe this is mainly important because MergeConsecutiveStores
20589 // is unable to deal with merging stores of different sizes, so unless
20590 // we improve the chains of all the potential candidates up-front
20591 // before running MergeConsecutiveStores, it might only see some of
20592 // the nodes that will eventually be candidates, and then not be able
20593 // to go from a partially-merged state to the desired final
20594 // fully-merged state.
20596 bool DAGCombiner::parallelizeChainedStores(StoreSDNode
*St
) {
20597 SmallVector
<StoreSDNode
*, 8> ChainedStores
;
20598 StoreSDNode
*STChain
= St
;
20599 // Intervals records which offsets from BaseIndex have been covered. In
20600 // the common case, every store writes to the immediately previous address
20601 // space and thus merged with the previous interval at insertion time.
20604 llvm::IntervalMap
<int64_t, UnitT
, 8, IntervalMapHalfOpenInfo
<int64_t>>;
20608 // This holds the base pointer, index, and the offset in bytes from the base
20610 const BaseIndexOffset BasePtr
= BaseIndexOffset::match(St
, DAG
);
20612 // We must have a base and an offset.
20613 if (!BasePtr
.getBase().getNode())
20616 // Do not handle stores to undef base pointers.
20617 if (BasePtr
.getBase().isUndef())
20620 // Add ST's interval.
20621 Intervals
.insert(0, (St
->getMemoryVT().getSizeInBits() + 7) / 8, Unit
);
20623 while (StoreSDNode
*Chain
= dyn_cast
<StoreSDNode
>(STChain
->getChain())) {
20624 // If the chain has more than one use, then we can't reorder the mem ops.
20625 if (!SDValue(Chain
, 0)->hasOneUse())
20627 // TODO: Relax for unordered atomics (see D66309)
20628 if (!Chain
->isSimple() || Chain
->isIndexed())
20631 // Find the base pointer and offset for this memory node.
20632 const BaseIndexOffset Ptr
= BaseIndexOffset::match(Chain
, DAG
);
20633 // Check that the base pointer is the same as the original one.
20635 if (!BasePtr
.equalBaseIndex(Ptr
, DAG
, Offset
))
20637 int64_t Length
= (Chain
->getMemoryVT().getSizeInBits() + 7) / 8;
20638 // Make sure we don't overlap with other intervals by checking the ones to
20639 // the left or right before inserting.
20640 auto I
= Intervals
.find(Offset
);
20641 // If there's a next interval, we should end before it.
20642 if (I
!= Intervals
.end() && I
.start() < (Offset
+ Length
))
20644 // If there's a previous interval, we should start after it.
20645 if (I
!= Intervals
.begin() && (--I
).stop() <= Offset
)
20647 Intervals
.insert(Offset
, Offset
+ Length
, Unit
);
20649 ChainedStores
.push_back(Chain
);
20653 // If we didn't find a chained store, exit.
20654 if (ChainedStores
.size() == 0)
20657 // Improve all chained stores (St and ChainedStores members) starting from
20658 // where the store chain ended and return single TokenFactor.
20659 SDValue NewChain
= STChain
->getChain();
20660 SmallVector
<SDValue
, 8> TFOps
;
20661 for (unsigned I
= ChainedStores
.size(); I
;) {
20662 StoreSDNode
*S
= ChainedStores
[--I
];
20663 SDValue BetterChain
= FindBetterChain(S
, NewChain
);
20664 S
= cast
<StoreSDNode
>(DAG
.UpdateNodeOperands(
20665 S
, BetterChain
, S
->getOperand(1), S
->getOperand(2), S
->getOperand(3)));
20666 TFOps
.push_back(SDValue(S
, 0));
20667 ChainedStores
[I
] = S
;
20670 // Improve St's chain. Use a new node to avoid creating a loop from CombineTo.
20671 SDValue BetterChain
= FindBetterChain(St
, NewChain
);
20673 if (St
->isTruncatingStore())
20674 NewST
= DAG
.getTruncStore(BetterChain
, SDLoc(St
), St
->getValue(),
20675 St
->getBasePtr(), St
->getMemoryVT(),
20676 St
->getMemOperand());
20678 NewST
= DAG
.getStore(BetterChain
, SDLoc(St
), St
->getValue(),
20679 St
->getBasePtr(), St
->getMemOperand());
20681 TFOps
.push_back(NewST
);
20683 // If we improved every element of TFOps, then we've lost the dependence on
20684 // NewChain to successors of St and we need to add it back to TFOps. Do so at
20685 // the beginning to keep relative order consistent with FindBetterChains.
20686 auto hasImprovedChain
= [&](SDValue ST
) -> bool {
20687 return ST
->getOperand(0) != NewChain
;
20689 bool AddNewChain
= llvm::all_of(TFOps
, hasImprovedChain
);
20691 TFOps
.insert(TFOps
.begin(), NewChain
);
20693 SDValue TF
= DAG
.getTokenFactor(SDLoc(STChain
), TFOps
);
20696 // Add TF and its operands to the worklist.
20697 AddToWorklist(TF
.getNode());
20698 for (const SDValue
&Op
: TF
->ops())
20699 AddToWorklist(Op
.getNode());
20700 AddToWorklist(STChain
);
20704 bool DAGCombiner::findBetterNeighborChains(StoreSDNode
*St
) {
20705 if (OptLevel
== CodeGenOpt::None
)
20708 const BaseIndexOffset BasePtr
= BaseIndexOffset::match(St
, DAG
);
20710 // We must have a base and an offset.
20711 if (!BasePtr
.getBase().getNode())
20714 // Do not handle stores to undef base pointers.
20715 if (BasePtr
.getBase().isUndef())
20718 // Directly improve a chain of disjoint stores starting at St.
20719 if (parallelizeChainedStores(St
))
20722 // Improve St's Chain..
20723 SDValue BetterChain
= FindBetterChain(St
, St
->getChain());
20724 if (St
->getChain() != BetterChain
) {
20725 replaceStoreChain(St
, BetterChain
);
20731 /// This is the entry point for the file.
20732 void SelectionDAG::Combine(CombineLevel Level
, AliasAnalysis
*AA
,
20733 CodeGenOpt::Level OptLevel
) {
20734 /// This is the main entry point to this class.
20735 DAGCombiner(*this, AA
, OptLevel
).Run(Level
);