1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the SelectionDAG::Legalize method.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/ADT/APFloat.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/CodeGen/ISDOpcodes.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineJumpTableInfo.h"
23 #include "llvm/CodeGen/MachineMemOperand.h"
24 #include "llvm/CodeGen/RuntimeLibcalls.h"
25 #include "llvm/CodeGen/SelectionDAG.h"
26 #include "llvm/CodeGen/SelectionDAGNodes.h"
27 #include "llvm/CodeGen/TargetFrameLowering.h"
28 #include "llvm/CodeGen/TargetLowering.h"
29 #include "llvm/CodeGen/TargetSubtargetInfo.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/Metadata.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/Compiler.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/MachineValueType.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Target/TargetMachine.h"
46 #include "llvm/Target/TargetOptions.h"
55 #define DEBUG_TYPE "legalizedag"
59 /// Keeps track of state when getting the sign of a floating-point value as an
61 struct FloatSignAsInt
{
66 MachinePointerInfo IntPointerInfo
;
67 MachinePointerInfo FloatPointerInfo
;
73 //===----------------------------------------------------------------------===//
74 /// This takes an arbitrary SelectionDAG as input and
75 /// hacks on it until the target machine can handle it. This involves
76 /// eliminating value sizes the machine cannot handle (promoting small sizes to
77 /// large sizes or splitting up large values into small values) as well as
78 /// eliminating operations the machine cannot handle.
80 /// This code also does a small amount of optimization and recognition of idioms
81 /// as part of its processing. For example, if a target does not support a
82 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
83 /// will attempt merge setcc and brc instructions into brcc's.
84 class SelectionDAGLegalize
{
85 const TargetMachine
&TM
;
86 const TargetLowering
&TLI
;
89 /// The set of nodes which have already been legalized. We hold a
90 /// reference to it in order to update as necessary on node deletion.
91 SmallPtrSetImpl
<SDNode
*> &LegalizedNodes
;
93 /// A set of all the nodes updated during legalization.
94 SmallSetVector
<SDNode
*, 16> *UpdatedNodes
;
96 EVT
getSetCCResultType(EVT VT
) const {
97 return TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
100 // Libcall insertion helpers.
103 SelectionDAGLegalize(SelectionDAG
&DAG
,
104 SmallPtrSetImpl
<SDNode
*> &LegalizedNodes
,
105 SmallSetVector
<SDNode
*, 16> *UpdatedNodes
= nullptr)
106 : TM(DAG
.getTarget()), TLI(DAG
.getTargetLoweringInfo()), DAG(DAG
),
107 LegalizedNodes(LegalizedNodes
), UpdatedNodes(UpdatedNodes
) {}
109 /// Legalizes the given operation.
110 void LegalizeOp(SDNode
*Node
);
113 SDValue
OptimizeFloatStore(StoreSDNode
*ST
);
115 void LegalizeLoadOps(SDNode
*Node
);
116 void LegalizeStoreOps(SDNode
*Node
);
118 /// Some targets cannot handle a variable
119 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it
120 /// is necessary to spill the vector being inserted into to memory, perform
121 /// the insert there, and then read the result back.
122 SDValue
PerformInsertVectorEltInMemory(SDValue Vec
, SDValue Val
, SDValue Idx
,
124 SDValue
ExpandINSERT_VECTOR_ELT(SDValue Vec
, SDValue Val
, SDValue Idx
,
127 /// Return a vector shuffle operation which
128 /// performs the same shuffe in terms of order or result bytes, but on a type
129 /// whose vector element type is narrower than the original shuffle type.
130 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
131 SDValue
ShuffleWithNarrowerEltType(EVT NVT
, EVT VT
, const SDLoc
&dl
,
132 SDValue N1
, SDValue N2
,
133 ArrayRef
<int> Mask
) const;
135 bool LegalizeSetCCCondCode(EVT VT
, SDValue
&LHS
, SDValue
&RHS
, SDValue
&CC
,
136 bool &NeedInvert
, const SDLoc
&dl
);
138 SDValue
ExpandLibCall(RTLIB::Libcall LC
, SDNode
*Node
, bool isSigned
);
140 std::pair
<SDValue
, SDValue
> ExpandChainLibCall(RTLIB::Libcall LC
,
141 SDNode
*Node
, bool isSigned
);
142 SDValue
ExpandFPLibCall(SDNode
*Node
, RTLIB::Libcall Call_F32
,
143 RTLIB::Libcall Call_F64
, RTLIB::Libcall Call_F80
,
144 RTLIB::Libcall Call_F128
,
145 RTLIB::Libcall Call_PPCF128
);
146 SDValue
ExpandIntLibCall(SDNode
*Node
, bool isSigned
,
147 RTLIB::Libcall Call_I8
,
148 RTLIB::Libcall Call_I16
,
149 RTLIB::Libcall Call_I32
,
150 RTLIB::Libcall Call_I64
,
151 RTLIB::Libcall Call_I128
);
152 SDValue
ExpandArgFPLibCall(SDNode
*Node
,
153 RTLIB::Libcall Call_F32
, RTLIB::Libcall Call_F64
,
154 RTLIB::Libcall Call_F80
, RTLIB::Libcall Call_F128
,
155 RTLIB::Libcall Call_PPCF128
);
156 void ExpandDivRemLibCall(SDNode
*Node
, SmallVectorImpl
<SDValue
> &Results
);
157 void ExpandSinCosLibCall(SDNode
*Node
, SmallVectorImpl
<SDValue
> &Results
);
159 SDValue
EmitStackConvert(SDValue SrcOp
, EVT SlotVT
, EVT DestVT
,
161 SDValue
EmitStackConvert(SDValue SrcOp
, EVT SlotVT
, EVT DestVT
,
162 const SDLoc
&dl
, SDValue ChainIn
);
163 SDValue
ExpandBUILD_VECTOR(SDNode
*Node
);
164 SDValue
ExpandSCALAR_TO_VECTOR(SDNode
*Node
);
165 void ExpandDYNAMIC_STACKALLOC(SDNode
*Node
,
166 SmallVectorImpl
<SDValue
> &Results
);
167 void getSignAsIntValue(FloatSignAsInt
&State
, const SDLoc
&DL
,
168 SDValue Value
) const;
169 SDValue
modifySignAsInt(const FloatSignAsInt
&State
, const SDLoc
&DL
,
170 SDValue NewIntValue
) const;
171 SDValue
ExpandFCOPYSIGN(SDNode
*Node
) const;
172 SDValue
ExpandFABS(SDNode
*Node
) const;
173 SDValue
ExpandLegalINT_TO_FP(bool isSigned
, SDValue Op0
, EVT DestVT
,
175 SDValue
PromoteLegalINT_TO_FP(SDValue LegalOp
, EVT DestVT
, bool isSigned
,
177 SDValue
PromoteLegalFP_TO_INT(SDValue LegalOp
, EVT DestVT
, bool isSigned
,
180 SDValue
ExpandBITREVERSE(SDValue Op
, const SDLoc
&dl
);
181 SDValue
ExpandBSWAP(SDValue Op
, const SDLoc
&dl
);
183 SDValue
ExpandExtractFromVectorThroughStack(SDValue Op
);
184 SDValue
ExpandInsertToVectorThroughStack(SDValue Op
);
185 SDValue
ExpandVectorBuildThroughStack(SDNode
* Node
);
187 SDValue
ExpandConstantFP(ConstantFPSDNode
*CFP
, bool UseCP
);
188 SDValue
ExpandConstant(ConstantSDNode
*CP
);
190 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall
191 bool ExpandNode(SDNode
*Node
);
192 void ConvertNodeToLibcall(SDNode
*Node
);
193 void PromoteNode(SDNode
*Node
);
196 // Node replacement helpers
198 void ReplacedNode(SDNode
*N
) {
199 LegalizedNodes
.erase(N
);
201 UpdatedNodes
->insert(N
);
204 void ReplaceNode(SDNode
*Old
, SDNode
*New
) {
205 LLVM_DEBUG(dbgs() << " ... replacing: "; Old
->dump(&DAG
);
206 dbgs() << " with: "; New
->dump(&DAG
));
208 assert(Old
->getNumValues() == New
->getNumValues() &&
209 "Replacing one node with another that produces a different number "
211 DAG
.ReplaceAllUsesWith(Old
, New
);
213 UpdatedNodes
->insert(New
);
217 void ReplaceNode(SDValue Old
, SDValue New
) {
218 LLVM_DEBUG(dbgs() << " ... replacing: "; Old
->dump(&DAG
);
219 dbgs() << " with: "; New
->dump(&DAG
));
221 DAG
.ReplaceAllUsesWith(Old
, New
);
223 UpdatedNodes
->insert(New
.getNode());
224 ReplacedNode(Old
.getNode());
227 void ReplaceNode(SDNode
*Old
, const SDValue
*New
) {
228 LLVM_DEBUG(dbgs() << " ... replacing: "; Old
->dump(&DAG
));
230 DAG
.ReplaceAllUsesWith(Old
, New
);
231 for (unsigned i
= 0, e
= Old
->getNumValues(); i
!= e
; ++i
) {
232 LLVM_DEBUG(dbgs() << (i
== 0 ? " with: " : " and: ");
235 UpdatedNodes
->insert(New
[i
].getNode());
240 void ReplaceNodeWithValue(SDValue Old
, SDValue New
) {
241 LLVM_DEBUG(dbgs() << " ... replacing: "; Old
->dump(&DAG
);
242 dbgs() << " with: "; New
->dump(&DAG
));
244 DAG
.ReplaceAllUsesOfValueWith(Old
, New
);
246 UpdatedNodes
->insert(New
.getNode());
247 ReplacedNode(Old
.getNode());
251 } // end anonymous namespace
253 /// Return a vector shuffle operation which
254 /// performs the same shuffle in terms of order or result bytes, but on a type
255 /// whose vector element type is narrower than the original shuffle type.
256 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
257 SDValue
SelectionDAGLegalize::ShuffleWithNarrowerEltType(
258 EVT NVT
, EVT VT
, const SDLoc
&dl
, SDValue N1
, SDValue N2
,
259 ArrayRef
<int> Mask
) const {
260 unsigned NumMaskElts
= VT
.getVectorNumElements();
261 unsigned NumDestElts
= NVT
.getVectorNumElements();
262 unsigned NumEltsGrowth
= NumDestElts
/ NumMaskElts
;
264 assert(NumEltsGrowth
&& "Cannot promote to vector type with fewer elts!");
266 if (NumEltsGrowth
== 1)
267 return DAG
.getVectorShuffle(NVT
, dl
, N1
, N2
, Mask
);
269 SmallVector
<int, 8> NewMask
;
270 for (unsigned i
= 0; i
!= NumMaskElts
; ++i
) {
272 for (unsigned j
= 0; j
!= NumEltsGrowth
; ++j
) {
274 NewMask
.push_back(-1);
276 NewMask
.push_back(Idx
* NumEltsGrowth
+ j
);
279 assert(NewMask
.size() == NumDestElts
&& "Non-integer NumEltsGrowth?");
280 assert(TLI
.isShuffleMaskLegal(NewMask
, NVT
) && "Shuffle not legal?");
281 return DAG
.getVectorShuffle(NVT
, dl
, N1
, N2
, NewMask
);
284 /// Expands the ConstantFP node to an integer constant or
285 /// a load from the constant pool.
287 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode
*CFP
, bool UseCP
) {
291 // If a FP immediate is precise when represented as a float and if the
292 // target can do an extending load from float to double, we put it into
293 // the constant pool as a float, even if it's is statically typed as a
294 // double. This shrinks FP constants and canonicalizes them for targets where
295 // an FP extending load is the same cost as a normal load (such as on the x87
296 // fp stack or PPC FP unit).
297 EVT VT
= CFP
->getValueType(0);
298 ConstantFP
*LLVMC
= const_cast<ConstantFP
*>(CFP
->getConstantFPValue());
300 assert((VT
== MVT::f64
|| VT
== MVT::f32
) && "Invalid type expansion");
301 return DAG
.getConstant(LLVMC
->getValueAPF().bitcastToAPInt(), dl
,
302 (VT
== MVT::f64
) ? MVT::i64
: MVT::i32
);
305 APFloat APF
= CFP
->getValueAPF();
309 // We don't want to shrink SNaNs. Converting the SNaN back to its real type
310 // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ).
311 if (!APF
.isSignaling()) {
312 while (SVT
!= MVT::f32
&& SVT
!= MVT::f16
) {
313 SVT
= (MVT::SimpleValueType
)(SVT
.getSimpleVT().SimpleTy
- 1);
314 if (ConstantFPSDNode::isValueValidForType(SVT
, APF
) &&
315 // Only do this if the target has a native EXTLOAD instruction from
317 TLI
.isLoadExtLegal(ISD::EXTLOAD
, OrigVT
, SVT
) &&
318 TLI
.ShouldShrinkFPConstant(OrigVT
)) {
319 Type
*SType
= SVT
.getTypeForEVT(*DAG
.getContext());
320 LLVMC
= cast
<ConstantFP
>(ConstantExpr::getFPTrunc(LLVMC
, SType
));
328 DAG
.getConstantPool(LLVMC
, TLI
.getPointerTy(DAG
.getDataLayout()));
329 unsigned Alignment
= cast
<ConstantPoolSDNode
>(CPIdx
)->getAlignment();
331 SDValue Result
= DAG
.getExtLoad(
332 ISD::EXTLOAD
, dl
, OrigVT
, DAG
.getEntryNode(), CPIdx
,
333 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()), VT
,
337 SDValue Result
= DAG
.getLoad(
338 OrigVT
, dl
, DAG
.getEntryNode(), CPIdx
,
339 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()), Alignment
);
343 /// Expands the Constant node to a load from the constant pool.
344 SDValue
SelectionDAGLegalize::ExpandConstant(ConstantSDNode
*CP
) {
346 EVT VT
= CP
->getValueType(0);
347 SDValue CPIdx
= DAG
.getConstantPool(CP
->getConstantIntValue(),
348 TLI
.getPointerTy(DAG
.getDataLayout()));
349 unsigned Alignment
= cast
<ConstantPoolSDNode
>(CPIdx
)->getAlignment();
350 SDValue Result
= DAG
.getLoad(
351 VT
, dl
, DAG
.getEntryNode(), CPIdx
,
352 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()), Alignment
);
356 /// Some target cannot handle a variable insertion index for the
357 /// INSERT_VECTOR_ELT instruction. In this case, it
358 /// is necessary to spill the vector being inserted into to memory, perform
359 /// the insert there, and then read the result back.
360 SDValue
SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec
,
368 // If the target doesn't support this, we have to spill the input vector
369 // to a temporary stack slot, update the element, then reload it. This is
370 // badness. We could also load the value into a vector register (either
371 // with a "move to register" or "extload into register" instruction, then
372 // permute it into place, if the idx is a constant and if the idx is
373 // supported by the target.
374 EVT VT
= Tmp1
.getValueType();
375 EVT EltVT
= VT
.getVectorElementType();
376 SDValue StackPtr
= DAG
.CreateStackTemporary(VT
);
378 int SPFI
= cast
<FrameIndexSDNode
>(StackPtr
.getNode())->getIndex();
381 SDValue Ch
= DAG
.getStore(
382 DAG
.getEntryNode(), dl
, Tmp1
, StackPtr
,
383 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), SPFI
));
385 SDValue StackPtr2
= TLI
.getVectorElementPointer(DAG
, StackPtr
, VT
, Tmp3
);
387 // Store the scalar value.
388 Ch
= DAG
.getTruncStore(Ch
, dl
, Tmp2
, StackPtr2
, MachinePointerInfo(), EltVT
);
389 // Load the updated vector.
390 return DAG
.getLoad(VT
, dl
, Ch
, StackPtr
, MachinePointerInfo::getFixedStack(
391 DAG
.getMachineFunction(), SPFI
));
394 SDValue
SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec
, SDValue Val
,
397 if (ConstantSDNode
*InsertPos
= dyn_cast
<ConstantSDNode
>(Idx
)) {
398 // SCALAR_TO_VECTOR requires that the type of the value being inserted
399 // match the element type of the vector being created, except for
400 // integers in which case the inserted value can be over width.
401 EVT EltVT
= Vec
.getValueType().getVectorElementType();
402 if (Val
.getValueType() == EltVT
||
403 (EltVT
.isInteger() && Val
.getValueType().bitsGE(EltVT
))) {
404 SDValue ScVec
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
,
405 Vec
.getValueType(), Val
);
407 unsigned NumElts
= Vec
.getValueType().getVectorNumElements();
408 // We generate a shuffle of InVec and ScVec, so the shuffle mask
409 // should be 0,1,2,3,4,5... with the appropriate element replaced with
411 SmallVector
<int, 8> ShufOps
;
412 for (unsigned i
= 0; i
!= NumElts
; ++i
)
413 ShufOps
.push_back(i
!= InsertPos
->getZExtValue() ? i
: NumElts
);
415 return DAG
.getVectorShuffle(Vec
.getValueType(), dl
, Vec
, ScVec
, ShufOps
);
418 return PerformInsertVectorEltInMemory(Vec
, Val
, Idx
, dl
);
421 SDValue
SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode
* ST
) {
422 LLVM_DEBUG(dbgs() << "Optimizing float store operations\n");
423 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
424 // FIXME: We shouldn't do this for TargetConstantFP's.
425 // FIXME: move this to the DAG Combiner! Note that we can't regress due
426 // to phase ordering between legalized code and the dag combiner. This
427 // probably means that we need to integrate dag combiner and legalizer
429 // We generally can't do this one for long doubles.
430 SDValue Chain
= ST
->getChain();
431 SDValue Ptr
= ST
->getBasePtr();
432 unsigned Alignment
= ST
->getAlignment();
433 MachineMemOperand::Flags MMOFlags
= ST
->getMemOperand()->getFlags();
434 AAMDNodes AAInfo
= ST
->getAAInfo();
436 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(ST
->getValue())) {
437 if (CFP
->getValueType(0) == MVT::f32
&&
438 TLI
.isTypeLegal(MVT::i32
)) {
439 SDValue Con
= DAG
.getConstant(CFP
->getValueAPF().
440 bitcastToAPInt().zextOrTrunc(32),
441 SDLoc(CFP
), MVT::i32
);
442 return DAG
.getStore(Chain
, dl
, Con
, Ptr
, ST
->getPointerInfo(), Alignment
,
446 if (CFP
->getValueType(0) == MVT::f64
) {
447 // If this target supports 64-bit registers, do a single 64-bit store.
448 if (TLI
.isTypeLegal(MVT::i64
)) {
449 SDValue Con
= DAG
.getConstant(CFP
->getValueAPF().bitcastToAPInt().
450 zextOrTrunc(64), SDLoc(CFP
), MVT::i64
);
451 return DAG
.getStore(Chain
, dl
, Con
, Ptr
, ST
->getPointerInfo(),
452 Alignment
, MMOFlags
, AAInfo
);
455 if (TLI
.isTypeLegal(MVT::i32
) && !ST
->isVolatile()) {
456 // Otherwise, if the target supports 32-bit registers, use 2 32-bit
457 // stores. If the target supports neither 32- nor 64-bits, this
458 // xform is certainly not worth it.
459 const APInt
&IntVal
= CFP
->getValueAPF().bitcastToAPInt();
460 SDValue Lo
= DAG
.getConstant(IntVal
.trunc(32), dl
, MVT::i32
);
461 SDValue Hi
= DAG
.getConstant(IntVal
.lshr(32).trunc(32), dl
, MVT::i32
);
462 if (DAG
.getDataLayout().isBigEndian())
465 Lo
= DAG
.getStore(Chain
, dl
, Lo
, Ptr
, ST
->getPointerInfo(), Alignment
,
467 Ptr
= DAG
.getNode(ISD::ADD
, dl
, Ptr
.getValueType(), Ptr
,
468 DAG
.getConstant(4, dl
, Ptr
.getValueType()));
469 Hi
= DAG
.getStore(Chain
, dl
, Hi
, Ptr
,
470 ST
->getPointerInfo().getWithOffset(4),
471 MinAlign(Alignment
, 4U), MMOFlags
, AAInfo
);
473 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Lo
, Hi
);
477 return SDValue(nullptr, 0);
480 void SelectionDAGLegalize::LegalizeStoreOps(SDNode
*Node
) {
481 StoreSDNode
*ST
= cast
<StoreSDNode
>(Node
);
482 SDValue Chain
= ST
->getChain();
483 SDValue Ptr
= ST
->getBasePtr();
486 unsigned Alignment
= ST
->getAlignment();
487 MachineMemOperand::Flags MMOFlags
= ST
->getMemOperand()->getFlags();
488 AAMDNodes AAInfo
= ST
->getAAInfo();
490 if (!ST
->isTruncatingStore()) {
491 LLVM_DEBUG(dbgs() << "Legalizing store operation\n");
492 if (SDNode
*OptStore
= OptimizeFloatStore(ST
).getNode()) {
493 ReplaceNode(ST
, OptStore
);
497 SDValue Value
= ST
->getValue();
498 MVT VT
= Value
.getSimpleValueType();
499 switch (TLI
.getOperationAction(ISD::STORE
, VT
)) {
500 default: llvm_unreachable("This action is not supported yet!");
501 case TargetLowering::Legal
: {
502 // If this is an unaligned store and the target doesn't support it,
504 EVT MemVT
= ST
->getMemoryVT();
505 const DataLayout
&DL
= DAG
.getDataLayout();
506 if (!TLI
.allowsMemoryAccess(*DAG
.getContext(), DL
, MemVT
,
507 *ST
->getMemOperand())) {
508 LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n");
509 SDValue Result
= TLI
.expandUnalignedStore(ST
, DAG
);
510 ReplaceNode(SDValue(ST
, 0), Result
);
512 LLVM_DEBUG(dbgs() << "Legal store\n");
515 case TargetLowering::Custom
: {
516 LLVM_DEBUG(dbgs() << "Trying custom lowering\n");
517 SDValue Res
= TLI
.LowerOperation(SDValue(Node
, 0), DAG
);
518 if (Res
&& Res
!= SDValue(Node
, 0))
519 ReplaceNode(SDValue(Node
, 0), Res
);
522 case TargetLowering::Promote
: {
523 MVT NVT
= TLI
.getTypeToPromoteTo(ISD::STORE
, VT
);
524 assert(NVT
.getSizeInBits() == VT
.getSizeInBits() &&
525 "Can only promote stores to same size type");
526 Value
= DAG
.getNode(ISD::BITCAST
, dl
, NVT
, Value
);
528 DAG
.getStore(Chain
, dl
, Value
, Ptr
, ST
->getPointerInfo(),
529 Alignment
, MMOFlags
, AAInfo
);
530 ReplaceNode(SDValue(Node
, 0), Result
);
537 LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n");
538 SDValue Value
= ST
->getValue();
539 EVT StVT
= ST
->getMemoryVT();
540 unsigned StWidth
= StVT
.getSizeInBits();
541 auto &DL
= DAG
.getDataLayout();
543 if (StWidth
!= StVT
.getStoreSizeInBits()) {
544 // Promote to a byte-sized store with upper bits zero if not
545 // storing an integral number of bytes. For example, promote
546 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
547 EVT NVT
= EVT::getIntegerVT(*DAG
.getContext(),
548 StVT
.getStoreSizeInBits());
549 Value
= DAG
.getZeroExtendInReg(Value
, dl
, StVT
);
551 DAG
.getTruncStore(Chain
, dl
, Value
, Ptr
, ST
->getPointerInfo(), NVT
,
552 Alignment
, MMOFlags
, AAInfo
);
553 ReplaceNode(SDValue(Node
, 0), Result
);
554 } else if (StWidth
& (StWidth
- 1)) {
555 // If not storing a power-of-2 number of bits, expand as two stores.
556 assert(!StVT
.isVector() && "Unsupported truncstore!");
557 unsigned LogStWidth
= Log2_32(StWidth
);
558 assert(LogStWidth
< 32);
559 unsigned RoundWidth
= 1 << LogStWidth
;
560 assert(RoundWidth
< StWidth
);
561 unsigned ExtraWidth
= StWidth
- RoundWidth
;
562 assert(ExtraWidth
< RoundWidth
);
563 assert(!(RoundWidth
% 8) && !(ExtraWidth
% 8) &&
564 "Store size not an integral number of bytes!");
565 EVT RoundVT
= EVT::getIntegerVT(*DAG
.getContext(), RoundWidth
);
566 EVT ExtraVT
= EVT::getIntegerVT(*DAG
.getContext(), ExtraWidth
);
568 unsigned IncrementSize
;
570 if (DL
.isLittleEndian()) {
571 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
572 // Store the bottom RoundWidth bits.
573 Lo
= DAG
.getTruncStore(Chain
, dl
, Value
, Ptr
, ST
->getPointerInfo(),
574 RoundVT
, Alignment
, MMOFlags
, AAInfo
);
576 // Store the remaining ExtraWidth bits.
577 IncrementSize
= RoundWidth
/ 8;
578 Ptr
= DAG
.getNode(ISD::ADD
, dl
, Ptr
.getValueType(), Ptr
,
579 DAG
.getConstant(IncrementSize
, dl
,
580 Ptr
.getValueType()));
582 ISD::SRL
, dl
, Value
.getValueType(), Value
,
583 DAG
.getConstant(RoundWidth
, dl
,
584 TLI
.getShiftAmountTy(Value
.getValueType(), DL
)));
585 Hi
= DAG
.getTruncStore(
587 ST
->getPointerInfo().getWithOffset(IncrementSize
), ExtraVT
,
588 MinAlign(Alignment
, IncrementSize
), MMOFlags
, AAInfo
);
590 // Big endian - avoid unaligned stores.
591 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
592 // Store the top RoundWidth bits.
594 ISD::SRL
, dl
, Value
.getValueType(), Value
,
595 DAG
.getConstant(ExtraWidth
, dl
,
596 TLI
.getShiftAmountTy(Value
.getValueType(), DL
)));
597 Hi
= DAG
.getTruncStore(Chain
, dl
, Hi
, Ptr
, ST
->getPointerInfo(),
598 RoundVT
, Alignment
, MMOFlags
, AAInfo
);
600 // Store the remaining ExtraWidth bits.
601 IncrementSize
= RoundWidth
/ 8;
602 Ptr
= DAG
.getNode(ISD::ADD
, dl
, Ptr
.getValueType(), Ptr
,
603 DAG
.getConstant(IncrementSize
, dl
,
604 Ptr
.getValueType()));
605 Lo
= DAG
.getTruncStore(
606 Chain
, dl
, Value
, Ptr
,
607 ST
->getPointerInfo().getWithOffset(IncrementSize
), ExtraVT
,
608 MinAlign(Alignment
, IncrementSize
), MMOFlags
, AAInfo
);
611 // The order of the stores doesn't matter.
612 SDValue Result
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Lo
, Hi
);
613 ReplaceNode(SDValue(Node
, 0), Result
);
615 switch (TLI
.getTruncStoreAction(ST
->getValue().getValueType(), StVT
)) {
616 default: llvm_unreachable("This action is not supported yet!");
617 case TargetLowering::Legal
: {
618 EVT MemVT
= ST
->getMemoryVT();
619 // If this is an unaligned store and the target doesn't support it,
621 if (!TLI
.allowsMemoryAccess(*DAG
.getContext(), DL
, MemVT
,
622 *ST
->getMemOperand())) {
623 SDValue Result
= TLI
.expandUnalignedStore(ST
, DAG
);
624 ReplaceNode(SDValue(ST
, 0), Result
);
628 case TargetLowering::Custom
: {
629 SDValue Res
= TLI
.LowerOperation(SDValue(Node
, 0), DAG
);
630 if (Res
&& Res
!= SDValue(Node
, 0))
631 ReplaceNode(SDValue(Node
, 0), Res
);
634 case TargetLowering::Expand
:
635 assert(!StVT
.isVector() &&
636 "Vector Stores are handled in LegalizeVectorOps");
640 // TRUNCSTORE:i16 i32 -> STORE i16
641 if (TLI
.isTypeLegal(StVT
)) {
642 Value
= DAG
.getNode(ISD::TRUNCATE
, dl
, StVT
, Value
);
643 Result
= DAG
.getStore(Chain
, dl
, Value
, Ptr
, ST
->getPointerInfo(),
644 Alignment
, MMOFlags
, AAInfo
);
646 // The in-memory type isn't legal. Truncate to the type it would promote
647 // to, and then do a truncstore.
648 Value
= DAG
.getNode(ISD::TRUNCATE
, dl
,
649 TLI
.getTypeToTransformTo(*DAG
.getContext(), StVT
),
651 Result
= DAG
.getTruncStore(Chain
, dl
, Value
, Ptr
, ST
->getPointerInfo(),
652 StVT
, Alignment
, MMOFlags
, AAInfo
);
655 ReplaceNode(SDValue(Node
, 0), Result
);
661 void SelectionDAGLegalize::LegalizeLoadOps(SDNode
*Node
) {
662 LoadSDNode
*LD
= cast
<LoadSDNode
>(Node
);
663 SDValue Chain
= LD
->getChain(); // The chain.
664 SDValue Ptr
= LD
->getBasePtr(); // The base pointer.
665 SDValue Value
; // The value returned by the load op.
668 ISD::LoadExtType ExtType
= LD
->getExtensionType();
669 if (ExtType
== ISD::NON_EXTLOAD
) {
670 LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n");
671 MVT VT
= Node
->getSimpleValueType(0);
672 SDValue RVal
= SDValue(Node
, 0);
673 SDValue RChain
= SDValue(Node
, 1);
675 switch (TLI
.getOperationAction(Node
->getOpcode(), VT
)) {
676 default: llvm_unreachable("This action is not supported yet!");
677 case TargetLowering::Legal
: {
678 EVT MemVT
= LD
->getMemoryVT();
679 const DataLayout
&DL
= DAG
.getDataLayout();
680 // If this is an unaligned load and the target doesn't support it,
682 if (!TLI
.allowsMemoryAccess(*DAG
.getContext(), DL
, MemVT
,
683 *LD
->getMemOperand())) {
684 std::tie(RVal
, RChain
) = TLI
.expandUnalignedLoad(LD
, DAG
);
688 case TargetLowering::Custom
:
689 if (SDValue Res
= TLI
.LowerOperation(RVal
, DAG
)) {
691 RChain
= Res
.getValue(1);
695 case TargetLowering::Promote
: {
696 MVT NVT
= TLI
.getTypeToPromoteTo(Node
->getOpcode(), VT
);
697 assert(NVT
.getSizeInBits() == VT
.getSizeInBits() &&
698 "Can only promote loads to same size type");
700 SDValue Res
= DAG
.getLoad(NVT
, dl
, Chain
, Ptr
, LD
->getMemOperand());
701 RVal
= DAG
.getNode(ISD::BITCAST
, dl
, VT
, Res
);
702 RChain
= Res
.getValue(1);
706 if (RChain
.getNode() != Node
) {
707 assert(RVal
.getNode() != Node
&& "Load must be completely replaced");
708 DAG
.ReplaceAllUsesOfValueWith(SDValue(Node
, 0), RVal
);
709 DAG
.ReplaceAllUsesOfValueWith(SDValue(Node
, 1), RChain
);
711 UpdatedNodes
->insert(RVal
.getNode());
712 UpdatedNodes
->insert(RChain
.getNode());
719 LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n");
720 EVT SrcVT
= LD
->getMemoryVT();
721 unsigned SrcWidth
= SrcVT
.getSizeInBits();
722 unsigned Alignment
= LD
->getAlignment();
723 MachineMemOperand::Flags MMOFlags
= LD
->getMemOperand()->getFlags();
724 AAMDNodes AAInfo
= LD
->getAAInfo();
726 if (SrcWidth
!= SrcVT
.getStoreSizeInBits() &&
727 // Some targets pretend to have an i1 loading operation, and actually
728 // load an i8. This trick is correct for ZEXTLOAD because the top 7
729 // bits are guaranteed to be zero; it helps the optimizers understand
730 // that these bits are zero. It is also useful for EXTLOAD, since it
731 // tells the optimizers that those bits are undefined. It would be
732 // nice to have an effective generic way of getting these benefits...
733 // Until such a way is found, don't insist on promoting i1 here.
735 TLI
.getLoadExtAction(ExtType
, Node
->getValueType(0), MVT::i1
) ==
736 TargetLowering::Promote
)) {
737 // Promote to a byte-sized load if not loading an integral number of
738 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
739 unsigned NewWidth
= SrcVT
.getStoreSizeInBits();
740 EVT NVT
= EVT::getIntegerVT(*DAG
.getContext(), NewWidth
);
743 // The extra bits are guaranteed to be zero, since we stored them that
744 // way. A zext load from NVT thus automatically gives zext from SrcVT.
746 ISD::LoadExtType NewExtType
=
747 ExtType
== ISD::ZEXTLOAD
? ISD::ZEXTLOAD
: ISD::EXTLOAD
;
750 DAG
.getExtLoad(NewExtType
, dl
, Node
->getValueType(0), Chain
, Ptr
,
751 LD
->getPointerInfo(), NVT
, Alignment
, MMOFlags
, AAInfo
);
753 Ch
= Result
.getValue(1); // The chain.
755 if (ExtType
== ISD::SEXTLOAD
)
756 // Having the top bits zero doesn't help when sign extending.
757 Result
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
,
758 Result
.getValueType(),
759 Result
, DAG
.getValueType(SrcVT
));
760 else if (ExtType
== ISD::ZEXTLOAD
|| NVT
== Result
.getValueType())
761 // All the top bits are guaranteed to be zero - inform the optimizers.
762 Result
= DAG
.getNode(ISD::AssertZext
, dl
,
763 Result
.getValueType(), Result
,
764 DAG
.getValueType(SrcVT
));
768 } else if (SrcWidth
& (SrcWidth
- 1)) {
769 // If not loading a power-of-2 number of bits, expand as two loads.
770 assert(!SrcVT
.isVector() && "Unsupported extload!");
771 unsigned LogSrcWidth
= Log2_32(SrcWidth
);
772 assert(LogSrcWidth
< 32);
773 unsigned RoundWidth
= 1 << LogSrcWidth
;
774 assert(RoundWidth
< SrcWidth
);
775 unsigned ExtraWidth
= SrcWidth
- RoundWidth
;
776 assert(ExtraWidth
< RoundWidth
);
777 assert(!(RoundWidth
% 8) && !(ExtraWidth
% 8) &&
778 "Load size not an integral number of bytes!");
779 EVT RoundVT
= EVT::getIntegerVT(*DAG
.getContext(), RoundWidth
);
780 EVT ExtraVT
= EVT::getIntegerVT(*DAG
.getContext(), ExtraWidth
);
782 unsigned IncrementSize
;
783 auto &DL
= DAG
.getDataLayout();
785 if (DL
.isLittleEndian()) {
786 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
787 // Load the bottom RoundWidth bits.
788 Lo
= DAG
.getExtLoad(ISD::ZEXTLOAD
, dl
, Node
->getValueType(0), Chain
, Ptr
,
789 LD
->getPointerInfo(), RoundVT
, Alignment
, MMOFlags
,
792 // Load the remaining ExtraWidth bits.
793 IncrementSize
= RoundWidth
/ 8;
794 Ptr
= DAG
.getNode(ISD::ADD
, dl
, Ptr
.getValueType(), Ptr
,
795 DAG
.getConstant(IncrementSize
, dl
,
796 Ptr
.getValueType()));
797 Hi
= DAG
.getExtLoad(ExtType
, dl
, Node
->getValueType(0), Chain
, Ptr
,
798 LD
->getPointerInfo().getWithOffset(IncrementSize
),
799 ExtraVT
, MinAlign(Alignment
, IncrementSize
), MMOFlags
,
802 // Build a factor node to remember that this load is independent of
804 Ch
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Lo
.getValue(1),
807 // Move the top bits to the right place.
809 ISD::SHL
, dl
, Hi
.getValueType(), Hi
,
810 DAG
.getConstant(RoundWidth
, dl
,
811 TLI
.getShiftAmountTy(Hi
.getValueType(), DL
)));
813 // Join the hi and lo parts.
814 Value
= DAG
.getNode(ISD::OR
, dl
, Node
->getValueType(0), Lo
, Hi
);
816 // Big endian - avoid unaligned loads.
817 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
818 // Load the top RoundWidth bits.
819 Hi
= DAG
.getExtLoad(ExtType
, dl
, Node
->getValueType(0), Chain
, Ptr
,
820 LD
->getPointerInfo(), RoundVT
, Alignment
, MMOFlags
,
823 // Load the remaining ExtraWidth bits.
824 IncrementSize
= RoundWidth
/ 8;
825 Ptr
= DAG
.getNode(ISD::ADD
, dl
, Ptr
.getValueType(), Ptr
,
826 DAG
.getConstant(IncrementSize
, dl
,
827 Ptr
.getValueType()));
828 Lo
= DAG
.getExtLoad(ISD::ZEXTLOAD
, dl
, Node
->getValueType(0), Chain
, Ptr
,
829 LD
->getPointerInfo().getWithOffset(IncrementSize
),
830 ExtraVT
, MinAlign(Alignment
, IncrementSize
), MMOFlags
,
833 // Build a factor node to remember that this load is independent of
835 Ch
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Lo
.getValue(1),
838 // Move the top bits to the right place.
840 ISD::SHL
, dl
, Hi
.getValueType(), Hi
,
841 DAG
.getConstant(ExtraWidth
, dl
,
842 TLI
.getShiftAmountTy(Hi
.getValueType(), DL
)));
844 // Join the hi and lo parts.
845 Value
= DAG
.getNode(ISD::OR
, dl
, Node
->getValueType(0), Lo
, Hi
);
850 bool isCustom
= false;
851 switch (TLI
.getLoadExtAction(ExtType
, Node
->getValueType(0),
852 SrcVT
.getSimpleVT())) {
853 default: llvm_unreachable("This action is not supported yet!");
854 case TargetLowering::Custom
:
857 case TargetLowering::Legal
:
858 Value
= SDValue(Node
, 0);
859 Chain
= SDValue(Node
, 1);
862 if (SDValue Res
= TLI
.LowerOperation(SDValue(Node
, 0), DAG
)) {
864 Chain
= Res
.getValue(1);
867 // If this is an unaligned load and the target doesn't support it,
869 EVT MemVT
= LD
->getMemoryVT();
870 const DataLayout
&DL
= DAG
.getDataLayout();
871 if (!TLI
.allowsMemoryAccess(*DAG
.getContext(), DL
, MemVT
,
872 *LD
->getMemOperand())) {
873 std::tie(Value
, Chain
) = TLI
.expandUnalignedLoad(LD
, DAG
);
878 case TargetLowering::Expand
: {
879 EVT DestVT
= Node
->getValueType(0);
880 if (!TLI
.isLoadExtLegal(ISD::EXTLOAD
, DestVT
, SrcVT
)) {
881 // If the source type is not legal, see if there is a legal extload to
882 // an intermediate type that we can then extend further.
883 EVT LoadVT
= TLI
.getRegisterType(SrcVT
.getSimpleVT());
884 if (TLI
.isTypeLegal(SrcVT
) || // Same as SrcVT == LoadVT?
885 TLI
.isLoadExtLegal(ExtType
, LoadVT
, SrcVT
)) {
886 // If we are loading a legal type, this is a non-extload followed by a
888 ISD::LoadExtType MidExtType
=
889 (LoadVT
== SrcVT
) ? ISD::NON_EXTLOAD
: ExtType
;
891 SDValue Load
= DAG
.getExtLoad(MidExtType
, dl
, LoadVT
, Chain
, Ptr
,
892 SrcVT
, LD
->getMemOperand());
894 ISD::getExtForLoadExtType(SrcVT
.isFloatingPoint(), ExtType
);
895 Value
= DAG
.getNode(ExtendOp
, dl
, Node
->getValueType(0), Load
);
896 Chain
= Load
.getValue(1);
900 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the
901 // normal undefined upper bits behavior to allow using an in-reg extend
902 // with the illegal FP type, so load as an integer and do the
903 // from-integer conversion.
904 if (SrcVT
.getScalarType() == MVT::f16
) {
905 EVT ISrcVT
= SrcVT
.changeTypeToInteger();
906 EVT IDestVT
= DestVT
.changeTypeToInteger();
907 EVT ILoadVT
= TLI
.getRegisterType(IDestVT
.getSimpleVT());
909 SDValue Result
= DAG
.getExtLoad(ISD::ZEXTLOAD
, dl
, ILoadVT
, Chain
,
910 Ptr
, ISrcVT
, LD
->getMemOperand());
911 Value
= DAG
.getNode(ISD::FP16_TO_FP
, dl
, DestVT
, Result
);
912 Chain
= Result
.getValue(1);
917 assert(!SrcVT
.isVector() &&
918 "Vector Loads are handled in LegalizeVectorOps");
920 // FIXME: This does not work for vectors on most targets. Sign-
921 // and zero-extend operations are currently folded into extending
922 // loads, whether they are legal or not, and then we end up here
923 // without any support for legalizing them.
924 assert(ExtType
!= ISD::EXTLOAD
&&
925 "EXTLOAD should always be supported!");
926 // Turn the unsupported load into an EXTLOAD followed by an
927 // explicit zero/sign extend inreg.
928 SDValue Result
= DAG
.getExtLoad(ISD::EXTLOAD
, dl
,
929 Node
->getValueType(0),
931 LD
->getMemOperand());
933 if (ExtType
== ISD::SEXTLOAD
)
934 ValRes
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
,
935 Result
.getValueType(),
936 Result
, DAG
.getValueType(SrcVT
));
938 ValRes
= DAG
.getZeroExtendInReg(Result
, dl
, SrcVT
.getScalarType());
940 Chain
= Result
.getValue(1);
946 // Since loads produce two values, make sure to remember that we legalized
948 if (Chain
.getNode() != Node
) {
949 assert(Value
.getNode() != Node
&& "Load must be completely replaced");
950 DAG
.ReplaceAllUsesOfValueWith(SDValue(Node
, 0), Value
);
951 DAG
.ReplaceAllUsesOfValueWith(SDValue(Node
, 1), Chain
);
953 UpdatedNodes
->insert(Value
.getNode());
954 UpdatedNodes
->insert(Chain
.getNode());
960 /// Return a legal replacement for the given operation, with all legal operands.
961 void SelectionDAGLegalize::LegalizeOp(SDNode
*Node
) {
962 LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node
->dump(&DAG
));
964 // Allow illegal target nodes and illegal registers.
965 if (Node
->getOpcode() == ISD::TargetConstant
||
966 Node
->getOpcode() == ISD::Register
)
970 for (unsigned i
= 0, e
= Node
->getNumValues(); i
!= e
; ++i
)
971 assert(TLI
.getTypeAction(*DAG
.getContext(), Node
->getValueType(i
)) ==
972 TargetLowering::TypeLegal
&&
973 "Unexpected illegal type!");
975 for (const SDValue
&Op
: Node
->op_values())
976 assert((TLI
.getTypeAction(*DAG
.getContext(), Op
.getValueType()) ==
977 TargetLowering::TypeLegal
||
978 Op
.getOpcode() == ISD::TargetConstant
||
979 Op
.getOpcode() == ISD::Register
) &&
980 "Unexpected illegal type!");
983 // Figure out the correct action; the way to query this varies by opcode
984 TargetLowering::LegalizeAction Action
= TargetLowering::Legal
;
985 bool SimpleFinishLegalizing
= true;
986 switch (Node
->getOpcode()) {
987 case ISD::INTRINSIC_W_CHAIN
:
988 case ISD::INTRINSIC_WO_CHAIN
:
989 case ISD::INTRINSIC_VOID
:
991 Action
= TLI
.getOperationAction(Node
->getOpcode(), MVT::Other
);
993 case ISD::GET_DYNAMIC_AREA_OFFSET
:
994 Action
= TLI
.getOperationAction(Node
->getOpcode(),
995 Node
->getValueType(0));
998 Action
= TLI
.getOperationAction(Node
->getOpcode(),
999 Node
->getValueType(0));
1000 if (Action
!= TargetLowering::Promote
)
1001 Action
= TLI
.getOperationAction(Node
->getOpcode(), MVT::Other
);
1003 case ISD::FP_TO_FP16
:
1004 case ISD::SINT_TO_FP
:
1005 case ISD::UINT_TO_FP
:
1006 case ISD::EXTRACT_VECTOR_ELT
:
1011 Action
= TLI
.getOperationAction(Node
->getOpcode(),
1012 Node
->getOperand(0).getValueType());
1014 case ISD::SIGN_EXTEND_INREG
: {
1015 EVT InnerType
= cast
<VTSDNode
>(Node
->getOperand(1))->getVT();
1016 Action
= TLI
.getOperationAction(Node
->getOpcode(), InnerType
);
1019 case ISD::ATOMIC_STORE
:
1020 Action
= TLI
.getOperationAction(Node
->getOpcode(),
1021 Node
->getOperand(2).getValueType());
1023 case ISD::SELECT_CC
:
1026 unsigned CCOperand
= Node
->getOpcode() == ISD::SELECT_CC
? 4 :
1027 Node
->getOpcode() == ISD::SETCC
? 2 : 1;
1028 unsigned CompareOperand
= Node
->getOpcode() == ISD::BR_CC
? 2 : 0;
1029 MVT OpVT
= Node
->getOperand(CompareOperand
).getSimpleValueType();
1030 ISD::CondCode CCCode
=
1031 cast
<CondCodeSDNode
>(Node
->getOperand(CCOperand
))->get();
1032 Action
= TLI
.getCondCodeAction(CCCode
, OpVT
);
1033 if (Action
== TargetLowering::Legal
) {
1034 if (Node
->getOpcode() == ISD::SELECT_CC
)
1035 Action
= TLI
.getOperationAction(Node
->getOpcode(),
1036 Node
->getValueType(0));
1038 Action
= TLI
.getOperationAction(Node
->getOpcode(), OpVT
);
1044 // FIXME: Model these properly. LOAD and STORE are complicated, and
1045 // STORE expects the unlegalized operand in some cases.
1046 SimpleFinishLegalizing
= false;
1048 case ISD::CALLSEQ_START
:
1049 case ISD::CALLSEQ_END
:
1050 // FIXME: This shouldn't be necessary. These nodes have special properties
1051 // dealing with the recursive nature of legalization. Removing this
1052 // special case should be done as part of making LegalizeDAG non-recursive.
1053 SimpleFinishLegalizing
= false;
1055 case ISD::EXTRACT_ELEMENT
:
1056 case ISD::FLT_ROUNDS_
:
1057 case ISD::MERGE_VALUES
:
1058 case ISD::EH_RETURN
:
1059 case ISD::FRAME_TO_ARGS_OFFSET
:
1060 case ISD::EH_DWARF_CFA
:
1061 case ISD::EH_SJLJ_SETJMP
:
1062 case ISD::EH_SJLJ_LONGJMP
:
1063 case ISD::EH_SJLJ_SETUP_DISPATCH
:
1064 // These operations lie about being legal: when they claim to be legal,
1065 // they should actually be expanded.
1066 Action
= TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0));
1067 if (Action
== TargetLowering::Legal
)
1068 Action
= TargetLowering::Expand
;
1070 case ISD::INIT_TRAMPOLINE
:
1071 case ISD::ADJUST_TRAMPOLINE
:
1072 case ISD::FRAMEADDR
:
1073 case ISD::RETURNADDR
:
1074 case ISD::ADDROFRETURNADDR
:
1075 case ISD::SPONENTRY
:
1076 // These operations lie about being legal: when they claim to be legal,
1077 // they should actually be custom-lowered.
1078 Action
= TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0));
1079 if (Action
== TargetLowering::Legal
)
1080 Action
= TargetLowering::Custom
;
1082 case ISD::READCYCLECOUNTER
:
1083 // READCYCLECOUNTER returns an i64, even if type legalization might have
1084 // expanded that to several smaller types.
1085 Action
= TLI
.getOperationAction(Node
->getOpcode(), MVT::i64
);
1087 case ISD::READ_REGISTER
:
1088 case ISD::WRITE_REGISTER
:
1089 // Named register is legal in the DAG, but blocked by register name
1090 // selection if not implemented by target (to chose the correct register)
1091 // They'll be converted to Copy(To/From)Reg.
1092 Action
= TargetLowering::Legal
;
1094 case ISD::DEBUGTRAP
:
1095 Action
= TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0));
1096 if (Action
== TargetLowering::Expand
) {
1097 // replace ISD::DEBUGTRAP with ISD::TRAP
1099 NewVal
= DAG
.getNode(ISD::TRAP
, SDLoc(Node
), Node
->getVTList(),
1100 Node
->getOperand(0));
1101 ReplaceNode(Node
, NewVal
.getNode());
1102 LegalizeOp(NewVal
.getNode());
1109 case ISD::USUBSAT
: {
1110 Action
= TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0));
1114 case ISD::SMULFIXSAT
:
1116 case ISD::UMULFIXSAT
: {
1117 unsigned Scale
= Node
->getConstantOperandVal(2);
1118 Action
= TLI
.getFixedPointOperationAction(Node
->getOpcode(),
1119 Node
->getValueType(0), Scale
);
1123 Action
= TLI
.getOperationAction(Node
->getOpcode(),
1124 cast
<MaskedScatterSDNode
>(Node
)->getValue().getValueType());
1127 Action
= TLI
.getOperationAction(Node
->getOpcode(),
1128 cast
<MaskedStoreSDNode
>(Node
)->getValue().getValueType());
1130 case ISD::VECREDUCE_FADD
:
1131 case ISD::VECREDUCE_FMUL
:
1132 case ISD::VECREDUCE_ADD
:
1133 case ISD::VECREDUCE_MUL
:
1134 case ISD::VECREDUCE_AND
:
1135 case ISD::VECREDUCE_OR
:
1136 case ISD::VECREDUCE_XOR
:
1137 case ISD::VECREDUCE_SMAX
:
1138 case ISD::VECREDUCE_SMIN
:
1139 case ISD::VECREDUCE_UMAX
:
1140 case ISD::VECREDUCE_UMIN
:
1141 case ISD::VECREDUCE_FMAX
:
1142 case ISD::VECREDUCE_FMIN
:
1143 Action
= TLI
.getOperationAction(
1144 Node
->getOpcode(), Node
->getOperand(0).getValueType());
1147 if (Node
->getOpcode() >= ISD::BUILTIN_OP_END
) {
1148 Action
= TargetLowering::Legal
;
1150 Action
= TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0));
1155 if (SimpleFinishLegalizing
) {
1156 SDNode
*NewNode
= Node
;
1157 switch (Node
->getOpcode()) {
1164 // Legalizing shifts/rotates requires adjusting the shift amount
1165 // to the appropriate width.
1166 SDValue Op0
= Node
->getOperand(0);
1167 SDValue Op1
= Node
->getOperand(1);
1168 if (!Op1
.getValueType().isVector()) {
1169 SDValue SAO
= DAG
.getShiftAmountOperand(Op0
.getValueType(), Op1
);
1170 // The getShiftAmountOperand() may create a new operand node or
1171 // return the existing one. If new operand is created we need
1172 // to update the parent node.
1173 // Do not try to legalize SAO here! It will be automatically legalized
1174 // in the next round.
1176 NewNode
= DAG
.UpdateNodeOperands(Node
, Op0
, SAO
);
1182 case ISD::SRL_PARTS
:
1183 case ISD::SRA_PARTS
:
1184 case ISD::SHL_PARTS
: {
1185 // Legalizing shifts/rotates requires adjusting the shift amount
1186 // to the appropriate width.
1187 SDValue Op0
= Node
->getOperand(0);
1188 SDValue Op1
= Node
->getOperand(1);
1189 SDValue Op2
= Node
->getOperand(2);
1190 if (!Op2
.getValueType().isVector()) {
1191 SDValue SAO
= DAG
.getShiftAmountOperand(Op0
.getValueType(), Op2
);
1192 // The getShiftAmountOperand() may create a new operand node or
1193 // return the existing one. If new operand is created we need
1194 // to update the parent node.
1196 NewNode
= DAG
.UpdateNodeOperands(Node
, Op0
, Op1
, SAO
);
1202 if (NewNode
!= Node
) {
1203 ReplaceNode(Node
, NewNode
);
1207 case TargetLowering::Legal
:
1208 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
1210 case TargetLowering::Custom
:
1211 LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
1212 // FIXME: The handling for custom lowering with multiple results is
1214 if (SDValue Res
= TLI
.LowerOperation(SDValue(Node
, 0), DAG
)) {
1215 if (!(Res
.getNode() != Node
|| Res
.getResNo() != 0))
1218 if (Node
->getNumValues() == 1) {
1219 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
1220 // We can just directly replace this node with the lowered value.
1221 ReplaceNode(SDValue(Node
, 0), Res
);
1225 SmallVector
<SDValue
, 8> ResultVals
;
1226 for (unsigned i
= 0, e
= Node
->getNumValues(); i
!= e
; ++i
)
1227 ResultVals
.push_back(Res
.getValue(i
));
1228 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
1229 ReplaceNode(Node
, ResultVals
.data());
1232 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
1234 case TargetLowering::Expand
:
1235 if (ExpandNode(Node
))
1238 case TargetLowering::LibCall
:
1239 ConvertNodeToLibcall(Node
);
1241 case TargetLowering::Promote
:
1247 switch (Node
->getOpcode()) {
1254 llvm_unreachable("Do not know how to legalize this operator!");
1256 case ISD::CALLSEQ_START
:
1257 case ISD::CALLSEQ_END
:
1260 return LegalizeLoadOps(Node
);
1262 return LegalizeStoreOps(Node
);
1266 SDValue
SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op
) {
1267 SDValue Vec
= Op
.getOperand(0);
1268 SDValue Idx
= Op
.getOperand(1);
1271 // Before we generate a new store to a temporary stack slot, see if there is
1272 // already one that we can use. There often is because when we scalarize
1273 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole
1274 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in
1275 // the vector. If all are expanded here, we don't want one store per vector
1278 // Caches for hasPredecessorHelper
1279 SmallPtrSet
<const SDNode
*, 32> Visited
;
1280 SmallVector
<const SDNode
*, 16> Worklist
;
1281 Visited
.insert(Op
.getNode());
1282 Worklist
.push_back(Idx
.getNode());
1283 SDValue StackPtr
, Ch
;
1284 for (SDNode::use_iterator UI
= Vec
.getNode()->use_begin(),
1285 UE
= Vec
.getNode()->use_end(); UI
!= UE
; ++UI
) {
1287 if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(User
)) {
1288 if (ST
->isIndexed() || ST
->isTruncatingStore() ||
1289 ST
->getValue() != Vec
)
1292 // Make sure that nothing else could have stored into the destination of
1294 if (!ST
->getChain().reachesChainWithoutSideEffects(DAG
.getEntryNode()))
1297 // If the index is dependent on the store we will introduce a cycle when
1298 // creating the load (the load uses the index, and by replacing the chain
1299 // we will make the index dependent on the load). Also, the store might be
1300 // dependent on the extractelement and introduce a cycle when creating
1302 if (SDNode::hasPredecessorHelper(ST
, Visited
, Worklist
) ||
1303 ST
->hasPredecessor(Op
.getNode()))
1306 StackPtr
= ST
->getBasePtr();
1307 Ch
= SDValue(ST
, 0);
1312 EVT VecVT
= Vec
.getValueType();
1314 if (!Ch
.getNode()) {
1315 // Store the value to a temporary stack slot, then LOAD the returned part.
1316 StackPtr
= DAG
.CreateStackTemporary(VecVT
);
1317 Ch
= DAG
.getStore(DAG
.getEntryNode(), dl
, Vec
, StackPtr
,
1318 MachinePointerInfo());
1321 StackPtr
= TLI
.getVectorElementPointer(DAG
, StackPtr
, VecVT
, Idx
);
1325 if (Op
.getValueType().isVector())
1327 DAG
.getLoad(Op
.getValueType(), dl
, Ch
, StackPtr
, MachinePointerInfo());
1329 NewLoad
= DAG
.getExtLoad(ISD::EXTLOAD
, dl
, Op
.getValueType(), Ch
, StackPtr
,
1330 MachinePointerInfo(),
1331 VecVT
.getVectorElementType());
1333 // Replace the chain going out of the store, by the one out of the load.
1334 DAG
.ReplaceAllUsesOfValueWith(Ch
, SDValue(NewLoad
.getNode(), 1));
1336 // We introduced a cycle though, so update the loads operands, making sure
1337 // to use the original store's chain as an incoming chain.
1338 SmallVector
<SDValue
, 6> NewLoadOperands(NewLoad
->op_begin(),
1340 NewLoadOperands
[0] = Ch
;
1342 SDValue(DAG
.UpdateNodeOperands(NewLoad
.getNode(), NewLoadOperands
), 0);
1346 SDValue
SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op
) {
1347 assert(Op
.getValueType().isVector() && "Non-vector insert subvector!");
1349 SDValue Vec
= Op
.getOperand(0);
1350 SDValue Part
= Op
.getOperand(1);
1351 SDValue Idx
= Op
.getOperand(2);
1354 // Store the value to a temporary stack slot, then LOAD the returned part.
1355 EVT VecVT
= Vec
.getValueType();
1356 SDValue StackPtr
= DAG
.CreateStackTemporary(VecVT
);
1357 int FI
= cast
<FrameIndexSDNode
>(StackPtr
.getNode())->getIndex();
1358 MachinePointerInfo PtrInfo
=
1359 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
);
1361 // First store the whole vector.
1362 SDValue Ch
= DAG
.getStore(DAG
.getEntryNode(), dl
, Vec
, StackPtr
, PtrInfo
);
1364 // Then store the inserted part.
1365 SDValue SubStackPtr
= TLI
.getVectorElementPointer(DAG
, StackPtr
, VecVT
, Idx
);
1367 // Store the subvector.
1368 Ch
= DAG
.getStore(Ch
, dl
, Part
, SubStackPtr
, MachinePointerInfo());
1370 // Finally, load the updated vector.
1371 return DAG
.getLoad(Op
.getValueType(), dl
, Ch
, StackPtr
, PtrInfo
);
1374 SDValue
SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode
* Node
) {
1375 // We can't handle this case efficiently. Allocate a sufficiently
1376 // aligned object on the stack, store each element into it, then load
1377 // the result as a vector.
1378 // Create the stack frame object.
1379 EVT VT
= Node
->getValueType(0);
1380 EVT EltVT
= VT
.getVectorElementType();
1382 SDValue FIPtr
= DAG
.CreateStackTemporary(VT
);
1383 int FI
= cast
<FrameIndexSDNode
>(FIPtr
.getNode())->getIndex();
1384 MachinePointerInfo PtrInfo
=
1385 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
);
1387 // Emit a store of each element to the stack slot.
1388 SmallVector
<SDValue
, 8> Stores
;
1389 unsigned TypeByteSize
= EltVT
.getSizeInBits() / 8;
1390 assert(TypeByteSize
> 0 && "Vector element type too small for stack store!");
1391 // Store (in the right endianness) the elements to memory.
1392 for (unsigned i
= 0, e
= Node
->getNumOperands(); i
!= e
; ++i
) {
1393 // Ignore undef elements.
1394 if (Node
->getOperand(i
).isUndef()) continue;
1396 unsigned Offset
= TypeByteSize
*i
;
1398 SDValue Idx
= DAG
.getConstant(Offset
, dl
, FIPtr
.getValueType());
1399 Idx
= DAG
.getNode(ISD::ADD
, dl
, FIPtr
.getValueType(), FIPtr
, Idx
);
1401 // If the destination vector element type is narrower than the source
1402 // element type, only store the bits necessary.
1403 if (EltVT
.bitsLT(Node
->getOperand(i
).getValueType().getScalarType())) {
1404 Stores
.push_back(DAG
.getTruncStore(DAG
.getEntryNode(), dl
,
1405 Node
->getOperand(i
), Idx
,
1406 PtrInfo
.getWithOffset(Offset
), EltVT
));
1408 Stores
.push_back(DAG
.getStore(DAG
.getEntryNode(), dl
, Node
->getOperand(i
),
1409 Idx
, PtrInfo
.getWithOffset(Offset
)));
1413 if (!Stores
.empty()) // Not all undef elements?
1414 StoreChain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Stores
);
1416 StoreChain
= DAG
.getEntryNode();
1418 // Result is a load from the stack slot.
1419 return DAG
.getLoad(VT
, dl
, StoreChain
, FIPtr
, PtrInfo
);
1422 /// Bitcast a floating-point value to an integer value. Only bitcast the part
1423 /// containing the sign bit if the target has no integer value capable of
1424 /// holding all bits of the floating-point value.
1425 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt
&State
,
1427 SDValue Value
) const {
1428 EVT FloatVT
= Value
.getValueType();
1429 unsigned NumBits
= FloatVT
.getSizeInBits();
1430 State
.FloatVT
= FloatVT
;
1431 EVT IVT
= EVT::getIntegerVT(*DAG
.getContext(), NumBits
);
1432 // Convert to an integer of the same size.
1433 if (TLI
.isTypeLegal(IVT
)) {
1434 State
.IntValue
= DAG
.getNode(ISD::BITCAST
, DL
, IVT
, Value
);
1435 State
.SignMask
= APInt::getSignMask(NumBits
);
1436 State
.SignBit
= NumBits
- 1;
1440 auto &DataLayout
= DAG
.getDataLayout();
1441 // Store the float to memory, then load the sign part out as an integer.
1442 MVT LoadTy
= TLI
.getRegisterType(*DAG
.getContext(), MVT::i8
);
1443 // First create a temporary that is aligned for both the load and store.
1444 SDValue StackPtr
= DAG
.CreateStackTemporary(FloatVT
, LoadTy
);
1445 int FI
= cast
<FrameIndexSDNode
>(StackPtr
.getNode())->getIndex();
1446 // Then store the float to it.
1447 State
.FloatPtr
= StackPtr
;
1448 MachineFunction
&MF
= DAG
.getMachineFunction();
1449 State
.FloatPointerInfo
= MachinePointerInfo::getFixedStack(MF
, FI
);
1450 State
.Chain
= DAG
.getStore(DAG
.getEntryNode(), DL
, Value
, State
.FloatPtr
,
1451 State
.FloatPointerInfo
);
1454 if (DataLayout
.isBigEndian()) {
1455 assert(FloatVT
.isByteSized() && "Unsupported floating point type!");
1456 // Load out a legal integer with the same sign bit as the float.
1458 State
.IntPointerInfo
= State
.FloatPointerInfo
;
1460 // Advance the pointer so that the loaded byte will contain the sign bit.
1461 unsigned ByteOffset
= (FloatVT
.getSizeInBits() / 8) - 1;
1462 IntPtr
= DAG
.getNode(ISD::ADD
, DL
, StackPtr
.getValueType(), StackPtr
,
1463 DAG
.getConstant(ByteOffset
, DL
, StackPtr
.getValueType()));
1464 State
.IntPointerInfo
= MachinePointerInfo::getFixedStack(MF
, FI
,
1468 State
.IntPtr
= IntPtr
;
1469 State
.IntValue
= DAG
.getExtLoad(ISD::EXTLOAD
, DL
, LoadTy
, State
.Chain
, IntPtr
,
1470 State
.IntPointerInfo
, MVT::i8
);
1471 State
.SignMask
= APInt::getOneBitSet(LoadTy
.getSizeInBits(), 7);
1475 /// Replace the integer value produced by getSignAsIntValue() with a new value
1476 /// and cast the result back to a floating-point type.
1477 SDValue
SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt
&State
,
1479 SDValue NewIntValue
) const {
1481 return DAG
.getNode(ISD::BITCAST
, DL
, State
.FloatVT
, NewIntValue
);
1483 // Override the part containing the sign bit in the value stored on the stack.
1484 SDValue Chain
= DAG
.getTruncStore(State
.Chain
, DL
, NewIntValue
, State
.IntPtr
,
1485 State
.IntPointerInfo
, MVT::i8
);
1486 return DAG
.getLoad(State
.FloatVT
, DL
, Chain
, State
.FloatPtr
,
1487 State
.FloatPointerInfo
);
1490 SDValue
SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode
*Node
) const {
1492 SDValue Mag
= Node
->getOperand(0);
1493 SDValue Sign
= Node
->getOperand(1);
1495 // Get sign bit into an integer value.
1496 FloatSignAsInt SignAsInt
;
1497 getSignAsIntValue(SignAsInt
, DL
, Sign
);
1499 EVT IntVT
= SignAsInt
.IntValue
.getValueType();
1500 SDValue SignMask
= DAG
.getConstant(SignAsInt
.SignMask
, DL
, IntVT
);
1501 SDValue SignBit
= DAG
.getNode(ISD::AND
, DL
, IntVT
, SignAsInt
.IntValue
,
1504 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X)
1505 EVT FloatVT
= Mag
.getValueType();
1506 if (TLI
.isOperationLegalOrCustom(ISD::FABS
, FloatVT
) &&
1507 TLI
.isOperationLegalOrCustom(ISD::FNEG
, FloatVT
)) {
1508 SDValue AbsValue
= DAG
.getNode(ISD::FABS
, DL
, FloatVT
, Mag
);
1509 SDValue NegValue
= DAG
.getNode(ISD::FNEG
, DL
, FloatVT
, AbsValue
);
1510 SDValue Cond
= DAG
.getSetCC(DL
, getSetCCResultType(IntVT
), SignBit
,
1511 DAG
.getConstant(0, DL
, IntVT
), ISD::SETNE
);
1512 return DAG
.getSelect(DL
, FloatVT
, Cond
, NegValue
, AbsValue
);
1515 // Transform Mag value to integer, and clear the sign bit.
1516 FloatSignAsInt MagAsInt
;
1517 getSignAsIntValue(MagAsInt
, DL
, Mag
);
1518 EVT MagVT
= MagAsInt
.IntValue
.getValueType();
1519 SDValue ClearSignMask
= DAG
.getConstant(~MagAsInt
.SignMask
, DL
, MagVT
);
1520 SDValue ClearedSign
= DAG
.getNode(ISD::AND
, DL
, MagVT
, MagAsInt
.IntValue
,
1523 // Get the signbit at the right position for MagAsInt.
1524 int ShiftAmount
= SignAsInt
.SignBit
- MagAsInt
.SignBit
;
1525 EVT ShiftVT
= IntVT
;
1526 if (SignBit
.getValueSizeInBits() < ClearedSign
.getValueSizeInBits()) {
1527 SignBit
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, MagVT
, SignBit
);
1530 if (ShiftAmount
> 0) {
1531 SDValue ShiftCnst
= DAG
.getConstant(ShiftAmount
, DL
, ShiftVT
);
1532 SignBit
= DAG
.getNode(ISD::SRL
, DL
, ShiftVT
, SignBit
, ShiftCnst
);
1533 } else if (ShiftAmount
< 0) {
1534 SDValue ShiftCnst
= DAG
.getConstant(-ShiftAmount
, DL
, ShiftVT
);
1535 SignBit
= DAG
.getNode(ISD::SHL
, DL
, ShiftVT
, SignBit
, ShiftCnst
);
1537 if (SignBit
.getValueSizeInBits() > ClearedSign
.getValueSizeInBits()) {
1538 SignBit
= DAG
.getNode(ISD::TRUNCATE
, DL
, MagVT
, SignBit
);
1541 // Store the part with the modified sign and convert back to float.
1542 SDValue CopiedSign
= DAG
.getNode(ISD::OR
, DL
, MagVT
, ClearedSign
, SignBit
);
1543 return modifySignAsInt(MagAsInt
, DL
, CopiedSign
);
1546 SDValue
SelectionDAGLegalize::ExpandFABS(SDNode
*Node
) const {
1548 SDValue Value
= Node
->getOperand(0);
1550 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal.
1551 EVT FloatVT
= Value
.getValueType();
1552 if (TLI
.isOperationLegalOrCustom(ISD::FCOPYSIGN
, FloatVT
)) {
1553 SDValue Zero
= DAG
.getConstantFP(0.0, DL
, FloatVT
);
1554 return DAG
.getNode(ISD::FCOPYSIGN
, DL
, FloatVT
, Value
, Zero
);
1557 // Transform value to integer, clear the sign bit and transform back.
1558 FloatSignAsInt ValueAsInt
;
1559 getSignAsIntValue(ValueAsInt
, DL
, Value
);
1560 EVT IntVT
= ValueAsInt
.IntValue
.getValueType();
1561 SDValue ClearSignMask
= DAG
.getConstant(~ValueAsInt
.SignMask
, DL
, IntVT
);
1562 SDValue ClearedSign
= DAG
.getNode(ISD::AND
, DL
, IntVT
, ValueAsInt
.IntValue
,
1564 return modifySignAsInt(ValueAsInt
, DL
, ClearedSign
);
1567 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode
* Node
,
1568 SmallVectorImpl
<SDValue
> &Results
) {
1569 unsigned SPReg
= TLI
.getStackPointerRegisterToSaveRestore();
1570 assert(SPReg
&& "Target cannot require DYNAMIC_STACKALLOC expansion and"
1571 " not tell us which reg is the stack pointer!");
1573 EVT VT
= Node
->getValueType(0);
1574 SDValue Tmp1
= SDValue(Node
, 0);
1575 SDValue Tmp2
= SDValue(Node
, 1);
1576 SDValue Tmp3
= Node
->getOperand(2);
1577 SDValue Chain
= Tmp1
.getOperand(0);
1579 // Chain the dynamic stack allocation so that it doesn't modify the stack
1580 // pointer when other instructions are using the stack.
1581 Chain
= DAG
.getCALLSEQ_START(Chain
, 0, 0, dl
);
1583 SDValue Size
= Tmp2
.getOperand(1);
1584 SDValue SP
= DAG
.getCopyFromReg(Chain
, dl
, SPReg
, VT
);
1585 Chain
= SP
.getValue(1);
1586 unsigned Align
= cast
<ConstantSDNode
>(Tmp3
)->getZExtValue();
1587 unsigned StackAlign
=
1588 DAG
.getSubtarget().getFrameLowering()->getStackAlignment();
1589 Tmp1
= DAG
.getNode(ISD::SUB
, dl
, VT
, SP
, Size
); // Value
1590 if (Align
> StackAlign
)
1591 Tmp1
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp1
,
1592 DAG
.getConstant(-(uint64_t)Align
, dl
, VT
));
1593 Chain
= DAG
.getCopyToReg(Chain
, dl
, SPReg
, Tmp1
); // Output chain
1595 Tmp2
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(0, dl
, true),
1596 DAG
.getIntPtrConstant(0, dl
, true), SDValue(), dl
);
1598 Results
.push_back(Tmp1
);
1599 Results
.push_back(Tmp2
);
1602 /// Legalize a SETCC with given LHS and RHS and condition code CC on the current
1605 /// If the SETCC has been legalized using AND / OR, then the legalized node
1606 /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert
1607 /// will be set to false.
1609 /// If the SETCC has been legalized by using getSetCCSwappedOperands(),
1610 /// then the values of LHS and RHS will be swapped, CC will be set to the
1611 /// new condition, and NeedInvert will be set to false.
1613 /// If the SETCC has been legalized using the inverse condcode, then LHS and
1614 /// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert
1615 /// will be set to true. The caller must invert the result of the SETCC with
1616 /// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect
1617 /// of a true/false result.
1619 /// \returns true if the SetCC has been legalized, false if it hasn't.
1620 bool SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT
, SDValue
&LHS
,
1621 SDValue
&RHS
, SDValue
&CC
,
1624 MVT OpVT
= LHS
.getSimpleValueType();
1625 ISD::CondCode CCCode
= cast
<CondCodeSDNode
>(CC
)->get();
1627 switch (TLI
.getCondCodeAction(CCCode
, OpVT
)) {
1628 default: llvm_unreachable("Unknown condition code action!");
1629 case TargetLowering::Legal
:
1632 case TargetLowering::Expand
: {
1633 ISD::CondCode InvCC
= ISD::getSetCCSwappedOperands(CCCode
);
1634 if (TLI
.isCondCodeLegalOrCustom(InvCC
, OpVT
)) {
1635 std::swap(LHS
, RHS
);
1636 CC
= DAG
.getCondCode(InvCC
);
1639 // Swapping operands didn't work. Try inverting the condition.
1640 bool NeedSwap
= false;
1641 InvCC
= getSetCCInverse(CCCode
, OpVT
.isInteger());
1642 if (!TLI
.isCondCodeLegalOrCustom(InvCC
, OpVT
)) {
1643 // If inverting the condition is not enough, try swapping operands
1645 InvCC
= ISD::getSetCCSwappedOperands(InvCC
);
1648 if (TLI
.isCondCodeLegalOrCustom(InvCC
, OpVT
)) {
1649 CC
= DAG
.getCondCode(InvCC
);
1652 std::swap(LHS
, RHS
);
1656 ISD::CondCode CC1
= ISD::SETCC_INVALID
, CC2
= ISD::SETCC_INVALID
;
1659 default: llvm_unreachable("Don't know how to expand this condition!");
1661 assert(TLI
.isCondCodeLegal(ISD::SETOEQ
, OpVT
)
1662 && "If SETO is expanded, SETOEQ must be legal!");
1663 CC1
= ISD::SETOEQ
; CC2
= ISD::SETOEQ
; Opc
= ISD::AND
; break;
1665 assert(TLI
.isCondCodeLegal(ISD::SETUNE
, OpVT
)
1666 && "If SETUO is expanded, SETUNE must be legal!");
1667 CC1
= ISD::SETUNE
; CC2
= ISD::SETUNE
; Opc
= ISD::OR
; break;
1680 // If we are floating point, assign and break, otherwise fall through.
1681 if (!OpVT
.isInteger()) {
1682 // We can use the 4th bit to tell if we are the unordered
1683 // or ordered version of the opcode.
1684 CC2
= ((unsigned)CCCode
& 0x8U
) ? ISD::SETUO
: ISD::SETO
;
1685 Opc
= ((unsigned)CCCode
& 0x8U
) ? ISD::OR
: ISD::AND
;
1686 CC1
= (ISD::CondCode
)(((int)CCCode
& 0x7) | 0x10);
1689 // Fallthrough if we are unsigned integer.
1697 // If all combinations of inverting the condition and swapping operands
1698 // didn't work then we have no means to expand the condition.
1699 llvm_unreachable("Don't know how to expand this condition!");
1702 SDValue SetCC1
, SetCC2
;
1703 if (CCCode
!= ISD::SETO
&& CCCode
!= ISD::SETUO
) {
1704 // If we aren't the ordered or unorder operation,
1705 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
1706 SetCC1
= DAG
.getSetCC(dl
, VT
, LHS
, RHS
, CC1
);
1707 SetCC2
= DAG
.getSetCC(dl
, VT
, LHS
, RHS
, CC2
);
1709 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
1710 SetCC1
= DAG
.getSetCC(dl
, VT
, LHS
, LHS
, CC1
);
1711 SetCC2
= DAG
.getSetCC(dl
, VT
, RHS
, RHS
, CC2
);
1713 LHS
= DAG
.getNode(Opc
, dl
, VT
, SetCC1
, SetCC2
);
1722 /// Emit a store/load combination to the stack. This stores
1723 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does
1724 /// a load from the stack slot to DestVT, extending it if needed.
1725 /// The resultant code need not be legal.
1726 SDValue
SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp
, EVT SlotVT
,
1727 EVT DestVT
, const SDLoc
&dl
) {
1728 return EmitStackConvert(SrcOp
, SlotVT
, DestVT
, dl
, DAG
.getEntryNode());
1731 SDValue
SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp
, EVT SlotVT
,
1732 EVT DestVT
, const SDLoc
&dl
,
1734 // Create the stack frame object.
1735 unsigned SrcAlign
= DAG
.getDataLayout().getPrefTypeAlignment(
1736 SrcOp
.getValueType().getTypeForEVT(*DAG
.getContext()));
1737 SDValue FIPtr
= DAG
.CreateStackTemporary(SlotVT
, SrcAlign
);
1739 FrameIndexSDNode
*StackPtrFI
= cast
<FrameIndexSDNode
>(FIPtr
);
1740 int SPFI
= StackPtrFI
->getIndex();
1741 MachinePointerInfo PtrInfo
=
1742 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), SPFI
);
1744 unsigned SrcSize
= SrcOp
.getValueSizeInBits();
1745 unsigned SlotSize
= SlotVT
.getSizeInBits();
1746 unsigned DestSize
= DestVT
.getSizeInBits();
1747 Type
*DestType
= DestVT
.getTypeForEVT(*DAG
.getContext());
1748 unsigned DestAlign
= DAG
.getDataLayout().getPrefTypeAlignment(DestType
);
1750 // Emit a store to the stack slot. Use a truncstore if the input value is
1751 // later than DestVT.
1754 if (SrcSize
> SlotSize
)
1755 Store
= DAG
.getTruncStore(Chain
, dl
, SrcOp
, FIPtr
, PtrInfo
,
1758 assert(SrcSize
== SlotSize
&& "Invalid store");
1760 DAG
.getStore(Chain
, dl
, SrcOp
, FIPtr
, PtrInfo
, SrcAlign
);
1763 // Result is a load from the stack slot.
1764 if (SlotSize
== DestSize
)
1765 return DAG
.getLoad(DestVT
, dl
, Store
, FIPtr
, PtrInfo
, DestAlign
);
1767 assert(SlotSize
< DestSize
&& "Unknown extension!");
1768 return DAG
.getExtLoad(ISD::EXTLOAD
, dl
, DestVT
, Store
, FIPtr
, PtrInfo
, SlotVT
,
1772 SDValue
SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode
*Node
) {
1774 // Create a vector sized/aligned stack slot, store the value to element #0,
1775 // then load the whole vector back out.
1776 SDValue StackPtr
= DAG
.CreateStackTemporary(Node
->getValueType(0));
1778 FrameIndexSDNode
*StackPtrFI
= cast
<FrameIndexSDNode
>(StackPtr
);
1779 int SPFI
= StackPtrFI
->getIndex();
1781 SDValue Ch
= DAG
.getTruncStore(
1782 DAG
.getEntryNode(), dl
, Node
->getOperand(0), StackPtr
,
1783 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), SPFI
),
1784 Node
->getValueType(0).getVectorElementType());
1786 Node
->getValueType(0), dl
, Ch
, StackPtr
,
1787 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), SPFI
));
1791 ExpandBVWithShuffles(SDNode
*Node
, SelectionDAG
&DAG
,
1792 const TargetLowering
&TLI
, SDValue
&Res
) {
1793 unsigned NumElems
= Node
->getNumOperands();
1795 EVT VT
= Node
->getValueType(0);
1797 // Try to group the scalars into pairs, shuffle the pairs together, then
1798 // shuffle the pairs of pairs together, etc. until the vector has
1799 // been built. This will work only if all of the necessary shuffle masks
1802 // We do this in two phases; first to check the legality of the shuffles,
1803 // and next, assuming that all shuffles are legal, to create the new nodes.
1804 for (int Phase
= 0; Phase
< 2; ++Phase
) {
1805 SmallVector
<std::pair
<SDValue
, SmallVector
<int, 16>>, 16> IntermedVals
,
1807 for (unsigned i
= 0; i
< NumElems
; ++i
) {
1808 SDValue V
= Node
->getOperand(i
);
1814 Vec
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, V
);
1815 IntermedVals
.push_back(std::make_pair(Vec
, SmallVector
<int, 16>(1, i
)));
1818 while (IntermedVals
.size() > 2) {
1819 NewIntermedVals
.clear();
1820 for (unsigned i
= 0, e
= (IntermedVals
.size() & ~1u); i
< e
; i
+= 2) {
1821 // This vector and the next vector are shuffled together (simply to
1822 // append the one to the other).
1823 SmallVector
<int, 16> ShuffleVec(NumElems
, -1);
1825 SmallVector
<int, 16> FinalIndices
;
1826 FinalIndices
.reserve(IntermedVals
[i
].second
.size() +
1827 IntermedVals
[i
+1].second
.size());
1830 for (unsigned j
= 0, f
= IntermedVals
[i
].second
.size(); j
!= f
;
1833 FinalIndices
.push_back(IntermedVals
[i
].second
[j
]);
1835 for (unsigned j
= 0, f
= IntermedVals
[i
+1].second
.size(); j
!= f
;
1837 ShuffleVec
[k
] = NumElems
+ j
;
1838 FinalIndices
.push_back(IntermedVals
[i
+1].second
[j
]);
1843 Shuffle
= DAG
.getVectorShuffle(VT
, dl
, IntermedVals
[i
].first
,
1844 IntermedVals
[i
+1].first
,
1846 else if (!TLI
.isShuffleMaskLegal(ShuffleVec
, VT
))
1848 NewIntermedVals
.push_back(
1849 std::make_pair(Shuffle
, std::move(FinalIndices
)));
1852 // If we had an odd number of defined values, then append the last
1853 // element to the array of new vectors.
1854 if ((IntermedVals
.size() & 1) != 0)
1855 NewIntermedVals
.push_back(IntermedVals
.back());
1857 IntermedVals
.swap(NewIntermedVals
);
1860 assert(IntermedVals
.size() <= 2 && IntermedVals
.size() > 0 &&
1861 "Invalid number of intermediate vectors");
1862 SDValue Vec1
= IntermedVals
[0].first
;
1864 if (IntermedVals
.size() > 1)
1865 Vec2
= IntermedVals
[1].first
;
1867 Vec2
= DAG
.getUNDEF(VT
);
1869 SmallVector
<int, 16> ShuffleVec(NumElems
, -1);
1870 for (unsigned i
= 0, e
= IntermedVals
[0].second
.size(); i
!= e
; ++i
)
1871 ShuffleVec
[IntermedVals
[0].second
[i
]] = i
;
1872 for (unsigned i
= 0, e
= IntermedVals
[1].second
.size(); i
!= e
; ++i
)
1873 ShuffleVec
[IntermedVals
[1].second
[i
]] = NumElems
+ i
;
1876 Res
= DAG
.getVectorShuffle(VT
, dl
, Vec1
, Vec2
, ShuffleVec
);
1877 else if (!TLI
.isShuffleMaskLegal(ShuffleVec
, VT
))
1884 /// Expand a BUILD_VECTOR node on targets that don't
1885 /// support the operation, but do support the resultant vector type.
1886 SDValue
SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode
*Node
) {
1887 unsigned NumElems
= Node
->getNumOperands();
1888 SDValue Value1
, Value2
;
1890 EVT VT
= Node
->getValueType(0);
1891 EVT OpVT
= Node
->getOperand(0).getValueType();
1892 EVT EltVT
= VT
.getVectorElementType();
1894 // If the only non-undef value is the low element, turn this into a
1895 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X.
1896 bool isOnlyLowElement
= true;
1897 bool MoreThanTwoValues
= false;
1898 bool isConstant
= true;
1899 for (unsigned i
= 0; i
< NumElems
; ++i
) {
1900 SDValue V
= Node
->getOperand(i
);
1904 isOnlyLowElement
= false;
1905 if (!isa
<ConstantFPSDNode
>(V
) && !isa
<ConstantSDNode
>(V
))
1908 if (!Value1
.getNode()) {
1910 } else if (!Value2
.getNode()) {
1913 } else if (V
!= Value1
&& V
!= Value2
) {
1914 MoreThanTwoValues
= true;
1918 if (!Value1
.getNode())
1919 return DAG
.getUNDEF(VT
);
1921 if (isOnlyLowElement
)
1922 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Node
->getOperand(0));
1924 // If all elements are constants, create a load from the constant pool.
1926 SmallVector
<Constant
*, 16> CV
;
1927 for (unsigned i
= 0, e
= NumElems
; i
!= e
; ++i
) {
1928 if (ConstantFPSDNode
*V
=
1929 dyn_cast
<ConstantFPSDNode
>(Node
->getOperand(i
))) {
1930 CV
.push_back(const_cast<ConstantFP
*>(V
->getConstantFPValue()));
1931 } else if (ConstantSDNode
*V
=
1932 dyn_cast
<ConstantSDNode
>(Node
->getOperand(i
))) {
1934 CV
.push_back(const_cast<ConstantInt
*>(V
->getConstantIntValue()));
1936 // If OpVT and EltVT don't match, EltVT is not legal and the
1937 // element values have been promoted/truncated earlier. Undo this;
1938 // we don't want a v16i8 to become a v16i32 for example.
1939 const ConstantInt
*CI
= V
->getConstantIntValue();
1940 CV
.push_back(ConstantInt::get(EltVT
.getTypeForEVT(*DAG
.getContext()),
1941 CI
->getZExtValue()));
1944 assert(Node
->getOperand(i
).isUndef());
1945 Type
*OpNTy
= EltVT
.getTypeForEVT(*DAG
.getContext());
1946 CV
.push_back(UndefValue::get(OpNTy
));
1949 Constant
*CP
= ConstantVector::get(CV
);
1951 DAG
.getConstantPool(CP
, TLI
.getPointerTy(DAG
.getDataLayout()));
1952 unsigned Alignment
= cast
<ConstantPoolSDNode
>(CPIdx
)->getAlignment();
1954 VT
, dl
, DAG
.getEntryNode(), CPIdx
,
1955 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()),
1959 SmallSet
<SDValue
, 16> DefinedValues
;
1960 for (unsigned i
= 0; i
< NumElems
; ++i
) {
1961 if (Node
->getOperand(i
).isUndef())
1963 DefinedValues
.insert(Node
->getOperand(i
));
1966 if (TLI
.shouldExpandBuildVectorWithShuffles(VT
, DefinedValues
.size())) {
1967 if (!MoreThanTwoValues
) {
1968 SmallVector
<int, 8> ShuffleVec(NumElems
, -1);
1969 for (unsigned i
= 0; i
< NumElems
; ++i
) {
1970 SDValue V
= Node
->getOperand(i
);
1973 ShuffleVec
[i
] = V
== Value1
? 0 : NumElems
;
1975 if (TLI
.isShuffleMaskLegal(ShuffleVec
, Node
->getValueType(0))) {
1976 // Get the splatted value into the low element of a vector register.
1977 SDValue Vec1
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Value1
);
1979 if (Value2
.getNode())
1980 Vec2
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Value2
);
1982 Vec2
= DAG
.getUNDEF(VT
);
1984 // Return shuffle(LowValVec, undef, <0,0,0,0>)
1985 return DAG
.getVectorShuffle(VT
, dl
, Vec1
, Vec2
, ShuffleVec
);
1989 if (ExpandBVWithShuffles(Node
, DAG
, TLI
, Res
))
1994 // Otherwise, we can't handle this case efficiently.
1995 return ExpandVectorBuildThroughStack(Node
);
1998 // Expand a node into a call to a libcall. If the result value
1999 // does not fit into a register, return the lo part and set the hi part to the
2000 // by-reg argument. If it does fit into a single register, return the result
2001 // and leave the Hi part unset.
2002 SDValue
SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC
, SDNode
*Node
,
2004 TargetLowering::ArgListTy Args
;
2005 TargetLowering::ArgListEntry Entry
;
2006 for (const SDValue
&Op
: Node
->op_values()) {
2007 EVT ArgVT
= Op
.getValueType();
2008 Type
*ArgTy
= ArgVT
.getTypeForEVT(*DAG
.getContext());
2011 Entry
.IsSExt
= TLI
.shouldSignExtendTypeInLibCall(ArgVT
, isSigned
);
2012 Entry
.IsZExt
= !TLI
.shouldSignExtendTypeInLibCall(ArgVT
, isSigned
);
2013 Args
.push_back(Entry
);
2015 SDValue Callee
= DAG
.getExternalSymbol(TLI
.getLibcallName(LC
),
2016 TLI
.getPointerTy(DAG
.getDataLayout()));
2018 EVT RetVT
= Node
->getValueType(0);
2019 Type
*RetTy
= RetVT
.getTypeForEVT(*DAG
.getContext());
2021 // By default, the input chain to this libcall is the entry node of the
2022 // function. If the libcall is going to be emitted as a tail call then
2023 // TLI.isUsedByReturnOnly will change it to the right chain if the return
2024 // node which is being folded has a non-entry input chain.
2025 SDValue InChain
= DAG
.getEntryNode();
2027 // isTailCall may be true since the callee does not reference caller stack
2028 // frame. Check if it's in the right position and that the return types match.
2029 SDValue TCChain
= InChain
;
2030 const Function
&F
= DAG
.getMachineFunction().getFunction();
2032 TLI
.isInTailCallPosition(DAG
, Node
, TCChain
) &&
2033 (RetTy
== F
.getReturnType() || F
.getReturnType()->isVoidTy());
2037 TargetLowering::CallLoweringInfo
CLI(DAG
);
2038 bool signExtend
= TLI
.shouldSignExtendTypeInLibCall(RetVT
, isSigned
);
2039 CLI
.setDebugLoc(SDLoc(Node
))
2041 .setLibCallee(TLI
.getLibcallCallingConv(LC
), RetTy
, Callee
,
2043 .setTailCall(isTailCall
)
2044 .setSExtResult(signExtend
)
2045 .setZExtResult(!signExtend
)
2046 .setIsPostTypeLegalization(true);
2048 std::pair
<SDValue
, SDValue
> CallInfo
= TLI
.LowerCallTo(CLI
);
2050 if (!CallInfo
.second
.getNode()) {
2051 LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG
.getRoot().dump(&DAG
));
2052 // It's a tailcall, return the chain (which is the DAG root).
2053 return DAG
.getRoot();
2056 LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo
.first
.dump(&DAG
));
2057 return CallInfo
.first
;
2060 // Expand a node into a call to a libcall. Similar to
2061 // ExpandLibCall except that the first operand is the in-chain.
2062 std::pair
<SDValue
, SDValue
>
2063 SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC
,
2066 SDValue InChain
= Node
->getOperand(0);
2068 TargetLowering::ArgListTy Args
;
2069 TargetLowering::ArgListEntry Entry
;
2070 for (unsigned i
= 1, e
= Node
->getNumOperands(); i
!= e
; ++i
) {
2071 EVT ArgVT
= Node
->getOperand(i
).getValueType();
2072 Type
*ArgTy
= ArgVT
.getTypeForEVT(*DAG
.getContext());
2073 Entry
.Node
= Node
->getOperand(i
);
2075 Entry
.IsSExt
= isSigned
;
2076 Entry
.IsZExt
= !isSigned
;
2077 Args
.push_back(Entry
);
2079 SDValue Callee
= DAG
.getExternalSymbol(TLI
.getLibcallName(LC
),
2080 TLI
.getPointerTy(DAG
.getDataLayout()));
2082 Type
*RetTy
= Node
->getValueType(0).getTypeForEVT(*DAG
.getContext());
2084 TargetLowering::CallLoweringInfo
CLI(DAG
);
2085 CLI
.setDebugLoc(SDLoc(Node
))
2087 .setLibCallee(TLI
.getLibcallCallingConv(LC
), RetTy
, Callee
,
2089 .setSExtResult(isSigned
)
2090 .setZExtResult(!isSigned
);
2092 std::pair
<SDValue
, SDValue
> CallInfo
= TLI
.LowerCallTo(CLI
);
2097 SDValue
SelectionDAGLegalize::ExpandFPLibCall(SDNode
* Node
,
2098 RTLIB::Libcall Call_F32
,
2099 RTLIB::Libcall Call_F64
,
2100 RTLIB::Libcall Call_F80
,
2101 RTLIB::Libcall Call_F128
,
2102 RTLIB::Libcall Call_PPCF128
) {
2103 if (Node
->isStrictFPOpcode())
2104 Node
= DAG
.mutateStrictFPToFP(Node
);
2107 switch (Node
->getSimpleValueType(0).SimpleTy
) {
2108 default: llvm_unreachable("Unexpected request for libcall!");
2109 case MVT::f32
: LC
= Call_F32
; break;
2110 case MVT::f64
: LC
= Call_F64
; break;
2111 case MVT::f80
: LC
= Call_F80
; break;
2112 case MVT::f128
: LC
= Call_F128
; break;
2113 case MVT::ppcf128
: LC
= Call_PPCF128
; break;
2115 return ExpandLibCall(LC
, Node
, false);
2118 SDValue
SelectionDAGLegalize::ExpandIntLibCall(SDNode
* Node
, bool isSigned
,
2119 RTLIB::Libcall Call_I8
,
2120 RTLIB::Libcall Call_I16
,
2121 RTLIB::Libcall Call_I32
,
2122 RTLIB::Libcall Call_I64
,
2123 RTLIB::Libcall Call_I128
) {
2125 switch (Node
->getSimpleValueType(0).SimpleTy
) {
2126 default: llvm_unreachable("Unexpected request for libcall!");
2127 case MVT::i8
: LC
= Call_I8
; break;
2128 case MVT::i16
: LC
= Call_I16
; break;
2129 case MVT::i32
: LC
= Call_I32
; break;
2130 case MVT::i64
: LC
= Call_I64
; break;
2131 case MVT::i128
: LC
= Call_I128
; break;
2133 return ExpandLibCall(LC
, Node
, isSigned
);
2136 /// Expand the node to a libcall based on first argument type (for instance
2137 /// lround and its variant).
2138 SDValue
SelectionDAGLegalize::ExpandArgFPLibCall(SDNode
* Node
,
2139 RTLIB::Libcall Call_F32
,
2140 RTLIB::Libcall Call_F64
,
2141 RTLIB::Libcall Call_F80
,
2142 RTLIB::Libcall Call_F128
,
2143 RTLIB::Libcall Call_PPCF128
) {
2145 switch (Node
->getOperand(0).getValueType().getSimpleVT().SimpleTy
) {
2146 default: llvm_unreachable("Unexpected request for libcall!");
2147 case MVT::f32
: LC
= Call_F32
; break;
2148 case MVT::f64
: LC
= Call_F64
; break;
2149 case MVT::f80
: LC
= Call_F80
; break;
2150 case MVT::f128
: LC
= Call_F128
; break;
2151 case MVT::ppcf128
: LC
= Call_PPCF128
; break;
2154 return ExpandLibCall(LC
, Node
, false);
2157 /// Issue libcalls to __{u}divmod to compute div / rem pairs.
2159 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode
*Node
,
2160 SmallVectorImpl
<SDValue
> &Results
) {
2161 unsigned Opcode
= Node
->getOpcode();
2162 bool isSigned
= Opcode
== ISD::SDIVREM
;
2165 switch (Node
->getSimpleValueType(0).SimpleTy
) {
2166 default: llvm_unreachable("Unexpected request for libcall!");
2167 case MVT::i8
: LC
= isSigned
? RTLIB::SDIVREM_I8
: RTLIB::UDIVREM_I8
; break;
2168 case MVT::i16
: LC
= isSigned
? RTLIB::SDIVREM_I16
: RTLIB::UDIVREM_I16
; break;
2169 case MVT::i32
: LC
= isSigned
? RTLIB::SDIVREM_I32
: RTLIB::UDIVREM_I32
; break;
2170 case MVT::i64
: LC
= isSigned
? RTLIB::SDIVREM_I64
: RTLIB::UDIVREM_I64
; break;
2171 case MVT::i128
: LC
= isSigned
? RTLIB::SDIVREM_I128
:RTLIB::UDIVREM_I128
; break;
2174 // The input chain to this libcall is the entry node of the function.
2175 // Legalizing the call will automatically add the previous call to the
2177 SDValue InChain
= DAG
.getEntryNode();
2179 EVT RetVT
= Node
->getValueType(0);
2180 Type
*RetTy
= RetVT
.getTypeForEVT(*DAG
.getContext());
2182 TargetLowering::ArgListTy Args
;
2183 TargetLowering::ArgListEntry Entry
;
2184 for (const SDValue
&Op
: Node
->op_values()) {
2185 EVT ArgVT
= Op
.getValueType();
2186 Type
*ArgTy
= ArgVT
.getTypeForEVT(*DAG
.getContext());
2189 Entry
.IsSExt
= isSigned
;
2190 Entry
.IsZExt
= !isSigned
;
2191 Args
.push_back(Entry
);
2194 // Also pass the return address of the remainder.
2195 SDValue FIPtr
= DAG
.CreateStackTemporary(RetVT
);
2197 Entry
.Ty
= RetTy
->getPointerTo();
2198 Entry
.IsSExt
= isSigned
;
2199 Entry
.IsZExt
= !isSigned
;
2200 Args
.push_back(Entry
);
2202 SDValue Callee
= DAG
.getExternalSymbol(TLI
.getLibcallName(LC
),
2203 TLI
.getPointerTy(DAG
.getDataLayout()));
2206 TargetLowering::CallLoweringInfo
CLI(DAG
);
2209 .setLibCallee(TLI
.getLibcallCallingConv(LC
), RetTy
, Callee
,
2211 .setSExtResult(isSigned
)
2212 .setZExtResult(!isSigned
);
2214 std::pair
<SDValue
, SDValue
> CallInfo
= TLI
.LowerCallTo(CLI
);
2216 // Remainder is loaded back from the stack frame.
2218 DAG
.getLoad(RetVT
, dl
, CallInfo
.second
, FIPtr
, MachinePointerInfo());
2219 Results
.push_back(CallInfo
.first
);
2220 Results
.push_back(Rem
);
2223 /// Return true if sincos libcall is available.
2224 static bool isSinCosLibcallAvailable(SDNode
*Node
, const TargetLowering
&TLI
) {
2226 switch (Node
->getSimpleValueType(0).SimpleTy
) {
2227 default: llvm_unreachable("Unexpected request for libcall!");
2228 case MVT::f32
: LC
= RTLIB::SINCOS_F32
; break;
2229 case MVT::f64
: LC
= RTLIB::SINCOS_F64
; break;
2230 case MVT::f80
: LC
= RTLIB::SINCOS_F80
; break;
2231 case MVT::f128
: LC
= RTLIB::SINCOS_F128
; break;
2232 case MVT::ppcf128
: LC
= RTLIB::SINCOS_PPCF128
; break;
2234 return TLI
.getLibcallName(LC
) != nullptr;
2237 /// Only issue sincos libcall if both sin and cos are needed.
2238 static bool useSinCos(SDNode
*Node
) {
2239 unsigned OtherOpcode
= Node
->getOpcode() == ISD::FSIN
2240 ? ISD::FCOS
: ISD::FSIN
;
2242 SDValue Op0
= Node
->getOperand(0);
2243 for (SDNode::use_iterator UI
= Op0
.getNode()->use_begin(),
2244 UE
= Op0
.getNode()->use_end(); UI
!= UE
; ++UI
) {
2248 // The other user might have been turned into sincos already.
2249 if (User
->getOpcode() == OtherOpcode
|| User
->getOpcode() == ISD::FSINCOS
)
2255 /// Issue libcalls to sincos to compute sin / cos pairs.
2257 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode
*Node
,
2258 SmallVectorImpl
<SDValue
> &Results
) {
2260 switch (Node
->getSimpleValueType(0).SimpleTy
) {
2261 default: llvm_unreachable("Unexpected request for libcall!");
2262 case MVT::f32
: LC
= RTLIB::SINCOS_F32
; break;
2263 case MVT::f64
: LC
= RTLIB::SINCOS_F64
; break;
2264 case MVT::f80
: LC
= RTLIB::SINCOS_F80
; break;
2265 case MVT::f128
: LC
= RTLIB::SINCOS_F128
; break;
2266 case MVT::ppcf128
: LC
= RTLIB::SINCOS_PPCF128
; break;
2269 // The input chain to this libcall is the entry node of the function.
2270 // Legalizing the call will automatically add the previous call to the
2272 SDValue InChain
= DAG
.getEntryNode();
2274 EVT RetVT
= Node
->getValueType(0);
2275 Type
*RetTy
= RetVT
.getTypeForEVT(*DAG
.getContext());
2277 TargetLowering::ArgListTy Args
;
2278 TargetLowering::ArgListEntry Entry
;
2280 // Pass the argument.
2281 Entry
.Node
= Node
->getOperand(0);
2283 Entry
.IsSExt
= false;
2284 Entry
.IsZExt
= false;
2285 Args
.push_back(Entry
);
2287 // Pass the return address of sin.
2288 SDValue SinPtr
= DAG
.CreateStackTemporary(RetVT
);
2289 Entry
.Node
= SinPtr
;
2290 Entry
.Ty
= RetTy
->getPointerTo();
2291 Entry
.IsSExt
= false;
2292 Entry
.IsZExt
= false;
2293 Args
.push_back(Entry
);
2295 // Also pass the return address of the cos.
2296 SDValue CosPtr
= DAG
.CreateStackTemporary(RetVT
);
2297 Entry
.Node
= CosPtr
;
2298 Entry
.Ty
= RetTy
->getPointerTo();
2299 Entry
.IsSExt
= false;
2300 Entry
.IsZExt
= false;
2301 Args
.push_back(Entry
);
2303 SDValue Callee
= DAG
.getExternalSymbol(TLI
.getLibcallName(LC
),
2304 TLI
.getPointerTy(DAG
.getDataLayout()));
2307 TargetLowering::CallLoweringInfo
CLI(DAG
);
2308 CLI
.setDebugLoc(dl
).setChain(InChain
).setLibCallee(
2309 TLI
.getLibcallCallingConv(LC
), Type::getVoidTy(*DAG
.getContext()), Callee
,
2312 std::pair
<SDValue
, SDValue
> CallInfo
= TLI
.LowerCallTo(CLI
);
2315 DAG
.getLoad(RetVT
, dl
, CallInfo
.second
, SinPtr
, MachinePointerInfo()));
2317 DAG
.getLoad(RetVT
, dl
, CallInfo
.second
, CosPtr
, MachinePointerInfo()));
2320 /// This function is responsible for legalizing a
2321 /// INT_TO_FP operation of the specified operand when the target requests that
2322 /// we expand it. At this point, we know that the result and operand types are
2323 /// legal for the target.
2324 SDValue
SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned
, SDValue Op0
,
2327 EVT SrcVT
= Op0
.getValueType();
2329 // TODO: Should any fast-math-flags be set for the created nodes?
2330 LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n");
2331 if (SrcVT
== MVT::i32
&& TLI
.isTypeLegal(MVT::f64
)) {
2332 LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double "
2335 // Get the stack frame index of a 8 byte buffer.
2336 SDValue StackSlot
= DAG
.CreateStackTemporary(MVT::f64
);
2338 // word offset constant for Hi/Lo address computation
2339 SDValue WordOff
= DAG
.getConstant(sizeof(int), dl
,
2340 StackSlot
.getValueType());
2341 // set up Hi and Lo (into buffer) address based on endian
2342 SDValue Hi
= StackSlot
;
2343 SDValue Lo
= DAG
.getNode(ISD::ADD
, dl
, StackSlot
.getValueType(),
2344 StackSlot
, WordOff
);
2345 if (DAG
.getDataLayout().isLittleEndian())
2348 // if signed map to unsigned space
2351 // constant used to invert sign bit (signed to unsigned mapping)
2352 SDValue SignBit
= DAG
.getConstant(0x80000000u
, dl
, MVT::i32
);
2353 Op0Mapped
= DAG
.getNode(ISD::XOR
, dl
, MVT::i32
, Op0
, SignBit
);
2357 // store the lo of the constructed double - based on integer input
2358 SDValue Store1
= DAG
.getStore(DAG
.getEntryNode(), dl
, Op0Mapped
, Lo
,
2359 MachinePointerInfo());
2360 // initial hi portion of constructed double
2361 SDValue InitialHi
= DAG
.getConstant(0x43300000u
, dl
, MVT::i32
);
2362 // store the hi of the constructed double - biased exponent
2364 DAG
.getStore(Store1
, dl
, InitialHi
, Hi
, MachinePointerInfo());
2365 // load the constructed double
2367 DAG
.getLoad(MVT::f64
, dl
, Store2
, StackSlot
, MachinePointerInfo());
2368 // FP constant to bias correct the final result
2369 SDValue Bias
= DAG
.getConstantFP(isSigned
?
2370 BitsToDouble(0x4330000080000000ULL
) :
2371 BitsToDouble(0x4330000000000000ULL
),
2373 // subtract the bias
2374 SDValue Sub
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f64
, Load
, Bias
);
2376 SDValue Result
= DAG
.getFPExtendOrRound(Sub
, dl
, DestVT
);
2379 assert(!isSigned
&& "Legalize cannot Expand SINT_TO_FP for i64 yet");
2380 // Code below here assumes !isSigned without checking again.
2382 SDValue Tmp1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, DestVT
, Op0
);
2384 SDValue SignSet
= DAG
.getSetCC(dl
, getSetCCResultType(SrcVT
), Op0
,
2385 DAG
.getConstant(0, dl
, SrcVT
), ISD::SETLT
);
2386 SDValue Zero
= DAG
.getIntPtrConstant(0, dl
),
2387 Four
= DAG
.getIntPtrConstant(4, dl
);
2388 SDValue CstOffset
= DAG
.getSelect(dl
, Zero
.getValueType(),
2389 SignSet
, Four
, Zero
);
2391 // If the sign bit of the integer is set, the large number will be treated
2392 // as a negative number. To counteract this, the dynamic code adds an
2393 // offset depending on the data type.
2395 switch (SrcVT
.getSimpleVT().SimpleTy
) {
2396 default: llvm_unreachable("Unsupported integer type!");
2397 case MVT::i8
: FF
= 0x43800000ULL
; break; // 2^8 (as a float)
2398 case MVT::i16
: FF
= 0x47800000ULL
; break; // 2^16 (as a float)
2399 case MVT::i32
: FF
= 0x4F800000ULL
; break; // 2^32 (as a float)
2400 case MVT::i64
: FF
= 0x5F800000ULL
; break; // 2^64 (as a float)
2402 if (DAG
.getDataLayout().isLittleEndian())
2404 Constant
*FudgeFactor
= ConstantInt::get(
2405 Type::getInt64Ty(*DAG
.getContext()), FF
);
2408 DAG
.getConstantPool(FudgeFactor
, TLI
.getPointerTy(DAG
.getDataLayout()));
2409 unsigned Alignment
= cast
<ConstantPoolSDNode
>(CPIdx
)->getAlignment();
2410 CPIdx
= DAG
.getNode(ISD::ADD
, dl
, CPIdx
.getValueType(), CPIdx
, CstOffset
);
2411 Alignment
= std::min(Alignment
, 4u);
2413 if (DestVT
== MVT::f32
)
2414 FudgeInReg
= DAG
.getLoad(
2415 MVT::f32
, dl
, DAG
.getEntryNode(), CPIdx
,
2416 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()),
2419 SDValue Load
= DAG
.getExtLoad(
2420 ISD::EXTLOAD
, dl
, DestVT
, DAG
.getEntryNode(), CPIdx
,
2421 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()), MVT::f32
,
2423 HandleSDNode
Handle(Load
);
2424 LegalizeOp(Load
.getNode());
2425 FudgeInReg
= Handle
.getValue();
2428 return DAG
.getNode(ISD::FADD
, dl
, DestVT
, Tmp1
, FudgeInReg
);
2431 /// This function is responsible for legalizing a
2432 /// *INT_TO_FP operation of the specified operand when the target requests that
2433 /// we promote it. At this point, we know that the result and operand types are
2434 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2435 /// operation that takes a larger input.
2436 SDValue
SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp
, EVT DestVT
,
2439 // First step, figure out the appropriate *INT_TO_FP operation to use.
2440 EVT NewInTy
= LegalOp
.getValueType();
2442 unsigned OpToUse
= 0;
2444 // Scan for the appropriate larger type to use.
2446 NewInTy
= (MVT::SimpleValueType
)(NewInTy
.getSimpleVT().SimpleTy
+1);
2447 assert(NewInTy
.isInteger() && "Ran out of possibilities!");
2449 // If the target supports SINT_TO_FP of this type, use it.
2450 if (TLI
.isOperationLegalOrCustom(ISD::SINT_TO_FP
, NewInTy
)) {
2451 OpToUse
= ISD::SINT_TO_FP
;
2454 if (isSigned
) continue;
2456 // If the target supports UINT_TO_FP of this type, use it.
2457 if (TLI
.isOperationLegalOrCustom(ISD::UINT_TO_FP
, NewInTy
)) {
2458 OpToUse
= ISD::UINT_TO_FP
;
2462 // Otherwise, try a larger type.
2465 // Okay, we found the operation and type to use. Zero extend our input to the
2466 // desired type then run the operation on it.
2467 return DAG
.getNode(OpToUse
, dl
, DestVT
,
2468 DAG
.getNode(isSigned
? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
,
2469 dl
, NewInTy
, LegalOp
));
2472 /// This function is responsible for legalizing a
2473 /// FP_TO_*INT operation of the specified operand when the target requests that
2474 /// we promote it. At this point, we know that the result and operand types are
2475 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2476 /// operation that returns a larger result.
2477 SDValue
SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp
, EVT DestVT
,
2480 // First step, figure out the appropriate FP_TO*INT operation to use.
2481 EVT NewOutTy
= DestVT
;
2483 unsigned OpToUse
= 0;
2485 // Scan for the appropriate larger type to use.
2487 NewOutTy
= (MVT::SimpleValueType
)(NewOutTy
.getSimpleVT().SimpleTy
+1);
2488 assert(NewOutTy
.isInteger() && "Ran out of possibilities!");
2490 // A larger signed type can hold all unsigned values of the requested type,
2491 // so using FP_TO_SINT is valid
2492 if (TLI
.isOperationLegalOrCustom(ISD::FP_TO_SINT
, NewOutTy
)) {
2493 OpToUse
= ISD::FP_TO_SINT
;
2497 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT.
2498 if (!isSigned
&& TLI
.isOperationLegalOrCustom(ISD::FP_TO_UINT
, NewOutTy
)) {
2499 OpToUse
= ISD::FP_TO_UINT
;
2503 // Otherwise, try a larger type.
2506 // Okay, we found the operation and type to use.
2507 SDValue Operation
= DAG
.getNode(OpToUse
, dl
, NewOutTy
, LegalOp
);
2509 // Truncate the result of the extended FP_TO_*INT operation to the desired
2511 return DAG
.getNode(ISD::TRUNCATE
, dl
, DestVT
, Operation
);
2514 /// Legalize a BITREVERSE scalar/vector operation as a series of mask + shifts.
2515 SDValue
SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op
, const SDLoc
&dl
) {
2516 EVT VT
= Op
.getValueType();
2517 EVT SHVT
= TLI
.getShiftAmountTy(VT
, DAG
.getDataLayout());
2518 unsigned Sz
= VT
.getScalarSizeInBits();
2520 SDValue Tmp
, Tmp2
, Tmp3
;
2522 // If we can, perform BSWAP first and then the mask+swap the i4, then i2
2523 // and finally the i1 pairs.
2524 // TODO: We can easily support i4/i2 legal types if any target ever does.
2525 if (Sz
>= 8 && isPowerOf2_32(Sz
)) {
2526 // Create the masks - repeating the pattern every byte.
2527 APInt MaskHi4
= APInt::getSplat(Sz
, APInt(8, 0xF0));
2528 APInt MaskHi2
= APInt::getSplat(Sz
, APInt(8, 0xCC));
2529 APInt MaskHi1
= APInt::getSplat(Sz
, APInt(8, 0xAA));
2530 APInt MaskLo4
= APInt::getSplat(Sz
, APInt(8, 0x0F));
2531 APInt MaskLo2
= APInt::getSplat(Sz
, APInt(8, 0x33));
2532 APInt MaskLo1
= APInt::getSplat(Sz
, APInt(8, 0x55));
2534 // BSWAP if the type is wider than a single byte.
2535 Tmp
= (Sz
> 8 ? DAG
.getNode(ISD::BSWAP
, dl
, VT
, Op
) : Op
);
2537 // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4)
2538 Tmp2
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp
, DAG
.getConstant(MaskHi4
, dl
, VT
));
2539 Tmp3
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp
, DAG
.getConstant(MaskLo4
, dl
, VT
));
2540 Tmp2
= DAG
.getNode(ISD::SRL
, dl
, VT
, Tmp2
, DAG
.getConstant(4, dl
, SHVT
));
2541 Tmp3
= DAG
.getNode(ISD::SHL
, dl
, VT
, Tmp3
, DAG
.getConstant(4, dl
, SHVT
));
2542 Tmp
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp2
, Tmp3
);
2544 // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2)
2545 Tmp2
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp
, DAG
.getConstant(MaskHi2
, dl
, VT
));
2546 Tmp3
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp
, DAG
.getConstant(MaskLo2
, dl
, VT
));
2547 Tmp2
= DAG
.getNode(ISD::SRL
, dl
, VT
, Tmp2
, DAG
.getConstant(2, dl
, SHVT
));
2548 Tmp3
= DAG
.getNode(ISD::SHL
, dl
, VT
, Tmp3
, DAG
.getConstant(2, dl
, SHVT
));
2549 Tmp
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp2
, Tmp3
);
2551 // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1)
2552 Tmp2
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp
, DAG
.getConstant(MaskHi1
, dl
, VT
));
2553 Tmp3
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp
, DAG
.getConstant(MaskLo1
, dl
, VT
));
2554 Tmp2
= DAG
.getNode(ISD::SRL
, dl
, VT
, Tmp2
, DAG
.getConstant(1, dl
, SHVT
));
2555 Tmp3
= DAG
.getNode(ISD::SHL
, dl
, VT
, Tmp3
, DAG
.getConstant(1, dl
, SHVT
));
2556 Tmp
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp2
, Tmp3
);
2560 Tmp
= DAG
.getConstant(0, dl
, VT
);
2561 for (unsigned I
= 0, J
= Sz
-1; I
< Sz
; ++I
, --J
) {
2564 DAG
.getNode(ISD::SHL
, dl
, VT
, Op
, DAG
.getConstant(J
- I
, dl
, SHVT
));
2567 DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, DAG
.getConstant(I
- J
, dl
, SHVT
));
2571 Tmp2
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp2
, DAG
.getConstant(Shift
, dl
, VT
));
2572 Tmp
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp
, Tmp2
);
2578 /// Open code the operations for BSWAP of the specified operation.
2579 SDValue
SelectionDAGLegalize::ExpandBSWAP(SDValue Op
, const SDLoc
&dl
) {
2580 EVT VT
= Op
.getValueType();
2581 EVT SHVT
= TLI
.getShiftAmountTy(VT
, DAG
.getDataLayout());
2582 SDValue Tmp1
, Tmp2
, Tmp3
, Tmp4
, Tmp5
, Tmp6
, Tmp7
, Tmp8
;
2583 switch (VT
.getSimpleVT().getScalarType().SimpleTy
) {
2584 default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2586 // Use a rotate by 8. This can be further expanded if necessary.
2587 return DAG
.getNode(ISD::ROTL
, dl
, VT
, Op
, DAG
.getConstant(8, dl
, SHVT
));
2589 Tmp4
= DAG
.getNode(ISD::SHL
, dl
, VT
, Op
, DAG
.getConstant(24, dl
, SHVT
));
2590 Tmp3
= DAG
.getNode(ISD::SHL
, dl
, VT
, Op
, DAG
.getConstant(8, dl
, SHVT
));
2591 Tmp2
= DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, DAG
.getConstant(8, dl
, SHVT
));
2592 Tmp1
= DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, DAG
.getConstant(24, dl
, SHVT
));
2593 Tmp3
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp3
,
2594 DAG
.getConstant(0xFF0000, dl
, VT
));
2595 Tmp2
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp2
, DAG
.getConstant(0xFF00, dl
, VT
));
2596 Tmp4
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp4
, Tmp3
);
2597 Tmp2
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp2
, Tmp1
);
2598 return DAG
.getNode(ISD::OR
, dl
, VT
, Tmp4
, Tmp2
);
2600 Tmp8
= DAG
.getNode(ISD::SHL
, dl
, VT
, Op
, DAG
.getConstant(56, dl
, SHVT
));
2601 Tmp7
= DAG
.getNode(ISD::SHL
, dl
, VT
, Op
, DAG
.getConstant(40, dl
, SHVT
));
2602 Tmp6
= DAG
.getNode(ISD::SHL
, dl
, VT
, Op
, DAG
.getConstant(24, dl
, SHVT
));
2603 Tmp5
= DAG
.getNode(ISD::SHL
, dl
, VT
, Op
, DAG
.getConstant(8, dl
, SHVT
));
2604 Tmp4
= DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, DAG
.getConstant(8, dl
, SHVT
));
2605 Tmp3
= DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, DAG
.getConstant(24, dl
, SHVT
));
2606 Tmp2
= DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, DAG
.getConstant(40, dl
, SHVT
));
2607 Tmp1
= DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, DAG
.getConstant(56, dl
, SHVT
));
2608 Tmp7
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp7
,
2609 DAG
.getConstant(255ULL<<48, dl
, VT
));
2610 Tmp6
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp6
,
2611 DAG
.getConstant(255ULL<<40, dl
, VT
));
2612 Tmp5
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp5
,
2613 DAG
.getConstant(255ULL<<32, dl
, VT
));
2614 Tmp4
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp4
,
2615 DAG
.getConstant(255ULL<<24, dl
, VT
));
2616 Tmp3
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp3
,
2617 DAG
.getConstant(255ULL<<16, dl
, VT
));
2618 Tmp2
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp2
,
2619 DAG
.getConstant(255ULL<<8 , dl
, VT
));
2620 Tmp8
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp8
, Tmp7
);
2621 Tmp6
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp6
, Tmp5
);
2622 Tmp4
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp4
, Tmp3
);
2623 Tmp2
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp2
, Tmp1
);
2624 Tmp8
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp8
, Tmp6
);
2625 Tmp4
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp4
, Tmp2
);
2626 return DAG
.getNode(ISD::OR
, dl
, VT
, Tmp8
, Tmp4
);
2630 bool SelectionDAGLegalize::ExpandNode(SDNode
*Node
) {
2631 LLVM_DEBUG(dbgs() << "Trying to expand node\n");
2632 SmallVector
<SDValue
, 8> Results
;
2634 SDValue Tmp1
, Tmp2
, Tmp3
, Tmp4
;
2636 switch (Node
->getOpcode()) {
2638 if (TLI
.expandABS(Node
, Tmp1
, DAG
))
2639 Results
.push_back(Tmp1
);
2642 if (TLI
.expandCTPOP(Node
, Tmp1
, DAG
))
2643 Results
.push_back(Tmp1
);
2646 case ISD::CTLZ_ZERO_UNDEF
:
2647 if (TLI
.expandCTLZ(Node
, Tmp1
, DAG
))
2648 Results
.push_back(Tmp1
);
2651 case ISD::CTTZ_ZERO_UNDEF
:
2652 if (TLI
.expandCTTZ(Node
, Tmp1
, DAG
))
2653 Results
.push_back(Tmp1
);
2655 case ISD::BITREVERSE
:
2656 Results
.push_back(ExpandBITREVERSE(Node
->getOperand(0), dl
));
2659 Results
.push_back(ExpandBSWAP(Node
->getOperand(0), dl
));
2661 case ISD::FRAMEADDR
:
2662 case ISD::RETURNADDR
:
2663 case ISD::FRAME_TO_ARGS_OFFSET
:
2664 Results
.push_back(DAG
.getConstant(0, dl
, Node
->getValueType(0)));
2666 case ISD::EH_DWARF_CFA
: {
2667 SDValue CfaArg
= DAG
.getSExtOrTrunc(Node
->getOperand(0), dl
,
2668 TLI
.getPointerTy(DAG
.getDataLayout()));
2669 SDValue Offset
= DAG
.getNode(ISD::ADD
, dl
,
2670 CfaArg
.getValueType(),
2671 DAG
.getNode(ISD::FRAME_TO_ARGS_OFFSET
, dl
,
2672 CfaArg
.getValueType()),
2674 SDValue FA
= DAG
.getNode(
2675 ISD::FRAMEADDR
, dl
, TLI
.getPointerTy(DAG
.getDataLayout()),
2676 DAG
.getConstant(0, dl
, TLI
.getPointerTy(DAG
.getDataLayout())));
2677 Results
.push_back(DAG
.getNode(ISD::ADD
, dl
, FA
.getValueType(),
2681 case ISD::FLT_ROUNDS_
:
2682 Results
.push_back(DAG
.getConstant(1, dl
, Node
->getValueType(0)));
2684 case ISD::EH_RETURN
:
2688 case ISD::EH_SJLJ_LONGJMP
:
2689 // If the target didn't expand these, there's nothing to do, so just
2690 // preserve the chain and be done.
2691 Results
.push_back(Node
->getOperand(0));
2693 case ISD::READCYCLECOUNTER
:
2694 // If the target didn't expand this, just return 'zero' and preserve the
2696 Results
.append(Node
->getNumValues() - 1,
2697 DAG
.getConstant(0, dl
, Node
->getValueType(0)));
2698 Results
.push_back(Node
->getOperand(0));
2700 case ISD::EH_SJLJ_SETJMP
:
2701 // If the target didn't expand this, just return 'zero' and preserve the
2703 Results
.push_back(DAG
.getConstant(0, dl
, MVT::i32
));
2704 Results
.push_back(Node
->getOperand(0));
2706 case ISD::ATOMIC_LOAD
: {
2707 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
2708 SDValue Zero
= DAG
.getConstant(0, dl
, Node
->getValueType(0));
2709 SDVTList VTs
= DAG
.getVTList(Node
->getValueType(0), MVT::Other
);
2710 SDValue Swap
= DAG
.getAtomicCmpSwap(
2711 ISD::ATOMIC_CMP_SWAP
, dl
, cast
<AtomicSDNode
>(Node
)->getMemoryVT(), VTs
,
2712 Node
->getOperand(0), Node
->getOperand(1), Zero
, Zero
,
2713 cast
<AtomicSDNode
>(Node
)->getMemOperand());
2714 Results
.push_back(Swap
.getValue(0));
2715 Results
.push_back(Swap
.getValue(1));
2718 case ISD::ATOMIC_STORE
: {
2719 // There is no libcall for atomic store; fake it with ATOMIC_SWAP.
2720 SDValue Swap
= DAG
.getAtomic(ISD::ATOMIC_SWAP
, dl
,
2721 cast
<AtomicSDNode
>(Node
)->getMemoryVT(),
2722 Node
->getOperand(0),
2723 Node
->getOperand(1), Node
->getOperand(2),
2724 cast
<AtomicSDNode
>(Node
)->getMemOperand());
2725 Results
.push_back(Swap
.getValue(1));
2728 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS
: {
2729 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and
2730 // splits out the success value as a comparison. Expanding the resulting
2731 // ATOMIC_CMP_SWAP will produce a libcall.
2732 SDVTList VTs
= DAG
.getVTList(Node
->getValueType(0), MVT::Other
);
2733 SDValue Res
= DAG
.getAtomicCmpSwap(
2734 ISD::ATOMIC_CMP_SWAP
, dl
, cast
<AtomicSDNode
>(Node
)->getMemoryVT(), VTs
,
2735 Node
->getOperand(0), Node
->getOperand(1), Node
->getOperand(2),
2736 Node
->getOperand(3), cast
<MemSDNode
>(Node
)->getMemOperand());
2738 SDValue ExtRes
= Res
;
2740 SDValue RHS
= Node
->getOperand(1);
2742 EVT AtomicType
= cast
<AtomicSDNode
>(Node
)->getMemoryVT();
2743 EVT OuterType
= Node
->getValueType(0);
2744 switch (TLI
.getExtendForAtomicOps()) {
2745 case ISD::SIGN_EXTEND
:
2746 LHS
= DAG
.getNode(ISD::AssertSext
, dl
, OuterType
, Res
,
2747 DAG
.getValueType(AtomicType
));
2748 RHS
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, OuterType
,
2749 Node
->getOperand(2), DAG
.getValueType(AtomicType
));
2752 case ISD::ZERO_EXTEND
:
2753 LHS
= DAG
.getNode(ISD::AssertZext
, dl
, OuterType
, Res
,
2754 DAG
.getValueType(AtomicType
));
2755 RHS
= DAG
.getZeroExtendInReg(Node
->getOperand(2), dl
, AtomicType
);
2758 case ISD::ANY_EXTEND
:
2759 LHS
= DAG
.getZeroExtendInReg(Res
, dl
, AtomicType
);
2760 RHS
= DAG
.getZeroExtendInReg(Node
->getOperand(2), dl
, AtomicType
);
2763 llvm_unreachable("Invalid atomic op extension");
2767 DAG
.getSetCC(dl
, Node
->getValueType(1), LHS
, RHS
, ISD::SETEQ
);
2769 Results
.push_back(ExtRes
.getValue(0));
2770 Results
.push_back(Success
);
2771 Results
.push_back(Res
.getValue(1));
2774 case ISD::DYNAMIC_STACKALLOC
:
2775 ExpandDYNAMIC_STACKALLOC(Node
, Results
);
2777 case ISD::MERGE_VALUES
:
2778 for (unsigned i
= 0; i
< Node
->getNumValues(); i
++)
2779 Results
.push_back(Node
->getOperand(i
));
2782 EVT VT
= Node
->getValueType(0);
2784 Results
.push_back(DAG
.getConstant(0, dl
, VT
));
2786 assert(VT
.isFloatingPoint() && "Unknown value type!");
2787 Results
.push_back(DAG
.getConstantFP(0, dl
, VT
));
2791 case ISD::STRICT_FP_ROUND
:
2792 // This expansion does not honor the "strict" properties anyway,
2793 // so prefer falling back to the non-strict operation if legal.
2794 if (TLI
.getStrictFPOperationAction(Node
->getOpcode(),
2795 Node
->getValueType(0))
2796 == TargetLowering::Legal
)
2798 Tmp1
= EmitStackConvert(Node
->getOperand(1),
2799 Node
->getValueType(0),
2800 Node
->getValueType(0), dl
, Node
->getOperand(0));
2801 ReplaceNode(Node
, Tmp1
.getNode());
2802 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n");
2806 Tmp1
= EmitStackConvert(Node
->getOperand(0),
2807 Node
->getValueType(0),
2808 Node
->getValueType(0), dl
);
2809 Results
.push_back(Tmp1
);
2811 case ISD::STRICT_FP_EXTEND
:
2812 // This expansion does not honor the "strict" properties anyway,
2813 // so prefer falling back to the non-strict operation if legal.
2814 if (TLI
.getStrictFPOperationAction(Node
->getOpcode(),
2815 Node
->getValueType(0))
2816 == TargetLowering::Legal
)
2818 Tmp1
= EmitStackConvert(Node
->getOperand(1),
2819 Node
->getOperand(1).getValueType(),
2820 Node
->getValueType(0), dl
, Node
->getOperand(0));
2821 ReplaceNode(Node
, Tmp1
.getNode());
2822 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n");
2824 case ISD::FP_EXTEND
:
2825 Tmp1
= EmitStackConvert(Node
->getOperand(0),
2826 Node
->getOperand(0).getValueType(),
2827 Node
->getValueType(0), dl
);
2828 Results
.push_back(Tmp1
);
2830 case ISD::SIGN_EXTEND_INREG
: {
2831 EVT ExtraVT
= cast
<VTSDNode
>(Node
->getOperand(1))->getVT();
2832 EVT VT
= Node
->getValueType(0);
2834 // An in-register sign-extend of a boolean is a negation:
2835 // 'true' (1) sign-extended is -1.
2836 // 'false' (0) sign-extended is 0.
2837 // However, we must mask the high bits of the source operand because the
2838 // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero.
2840 // TODO: Do this for vectors too?
2841 if (ExtraVT
.getSizeInBits() == 1) {
2842 SDValue One
= DAG
.getConstant(1, dl
, VT
);
2843 SDValue And
= DAG
.getNode(ISD::AND
, dl
, VT
, Node
->getOperand(0), One
);
2844 SDValue Zero
= DAG
.getConstant(0, dl
, VT
);
2845 SDValue Neg
= DAG
.getNode(ISD::SUB
, dl
, VT
, Zero
, And
);
2846 Results
.push_back(Neg
);
2850 // NOTE: we could fall back on load/store here too for targets without
2851 // SRA. However, it is doubtful that any exist.
2852 EVT ShiftAmountTy
= TLI
.getShiftAmountTy(VT
, DAG
.getDataLayout());
2853 unsigned BitsDiff
= VT
.getScalarSizeInBits() -
2854 ExtraVT
.getScalarSizeInBits();
2855 SDValue ShiftCst
= DAG
.getConstant(BitsDiff
, dl
, ShiftAmountTy
);
2856 Tmp1
= DAG
.getNode(ISD::SHL
, dl
, Node
->getValueType(0),
2857 Node
->getOperand(0), ShiftCst
);
2858 Tmp1
= DAG
.getNode(ISD::SRA
, dl
, Node
->getValueType(0), Tmp1
, ShiftCst
);
2859 Results
.push_back(Tmp1
);
2862 case ISD::UINT_TO_FP
:
2863 if (TLI
.expandUINT_TO_FP(Node
, Tmp1
, DAG
)) {
2864 Results
.push_back(Tmp1
);
2868 case ISD::SINT_TO_FP
:
2869 Tmp1
= ExpandLegalINT_TO_FP(Node
->getOpcode() == ISD::SINT_TO_FP
,
2870 Node
->getOperand(0), Node
->getValueType(0), dl
);
2871 Results
.push_back(Tmp1
);
2873 case ISD::FP_TO_SINT
:
2874 if (TLI
.expandFP_TO_SINT(Node
, Tmp1
, DAG
))
2875 Results
.push_back(Tmp1
);
2877 case ISD::STRICT_FP_TO_SINT
:
2878 if (TLI
.expandFP_TO_SINT(Node
, Tmp1
, DAG
)) {
2879 ReplaceNode(Node
, Tmp1
.getNode());
2880 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_SINT node\n");
2884 case ISD::FP_TO_UINT
:
2885 if (TLI
.expandFP_TO_UINT(Node
, Tmp1
, Tmp2
, DAG
))
2886 Results
.push_back(Tmp1
);
2888 case ISD::STRICT_FP_TO_UINT
:
2889 if (TLI
.expandFP_TO_UINT(Node
, Tmp1
, Tmp2
, DAG
)) {
2890 // Relink the chain.
2891 DAG
.ReplaceAllUsesOfValueWith(SDValue(Node
,1), Tmp2
);
2892 // Replace the new UINT result.
2893 ReplaceNodeWithValue(SDValue(Node
, 0), Tmp1
);
2894 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_UINT node\n");
2899 Results
.push_back(ExpandArgFPLibCall(Node
, RTLIB::LROUND_F32
,
2900 RTLIB::LROUND_F64
, RTLIB::LROUND_F80
,
2902 RTLIB::LROUND_PPCF128
));
2905 Results
.push_back(ExpandArgFPLibCall(Node
, RTLIB::LLROUND_F32
,
2906 RTLIB::LLROUND_F64
, RTLIB::LLROUND_F80
,
2907 RTLIB::LLROUND_F128
,
2908 RTLIB::LLROUND_PPCF128
));
2911 Results
.push_back(ExpandArgFPLibCall(Node
, RTLIB::LRINT_F32
,
2912 RTLIB::LRINT_F64
, RTLIB::LRINT_F80
,
2914 RTLIB::LRINT_PPCF128
));
2917 Results
.push_back(ExpandArgFPLibCall(Node
, RTLIB::LLRINT_F32
,
2918 RTLIB::LLRINT_F64
, RTLIB::LLRINT_F80
,
2920 RTLIB::LLRINT_PPCF128
));
2923 Results
.push_back(DAG
.expandVAArg(Node
));
2924 Results
.push_back(Results
[0].getValue(1));
2927 Results
.push_back(DAG
.expandVACopy(Node
));
2929 case ISD::EXTRACT_VECTOR_ELT
:
2930 if (Node
->getOperand(0).getValueType().getVectorNumElements() == 1)
2931 // This must be an access of the only element. Return it.
2932 Tmp1
= DAG
.getNode(ISD::BITCAST
, dl
, Node
->getValueType(0),
2933 Node
->getOperand(0));
2935 Tmp1
= ExpandExtractFromVectorThroughStack(SDValue(Node
, 0));
2936 Results
.push_back(Tmp1
);
2938 case ISD::EXTRACT_SUBVECTOR
:
2939 Results
.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node
, 0)));
2941 case ISD::INSERT_SUBVECTOR
:
2942 Results
.push_back(ExpandInsertToVectorThroughStack(SDValue(Node
, 0)));
2944 case ISD::CONCAT_VECTORS
:
2945 Results
.push_back(ExpandVectorBuildThroughStack(Node
));
2947 case ISD::SCALAR_TO_VECTOR
:
2948 Results
.push_back(ExpandSCALAR_TO_VECTOR(Node
));
2950 case ISD::INSERT_VECTOR_ELT
:
2951 Results
.push_back(ExpandINSERT_VECTOR_ELT(Node
->getOperand(0),
2952 Node
->getOperand(1),
2953 Node
->getOperand(2), dl
));
2955 case ISD::VECTOR_SHUFFLE
: {
2956 SmallVector
<int, 32> NewMask
;
2957 ArrayRef
<int> Mask
= cast
<ShuffleVectorSDNode
>(Node
)->getMask();
2959 EVT VT
= Node
->getValueType(0);
2960 EVT EltVT
= VT
.getVectorElementType();
2961 SDValue Op0
= Node
->getOperand(0);
2962 SDValue Op1
= Node
->getOperand(1);
2963 if (!TLI
.isTypeLegal(EltVT
)) {
2964 EVT NewEltVT
= TLI
.getTypeToTransformTo(*DAG
.getContext(), EltVT
);
2966 // BUILD_VECTOR operands are allowed to be wider than the element type.
2967 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept
2969 if (NewEltVT
.bitsLT(EltVT
)) {
2970 // Convert shuffle node.
2971 // If original node was v4i64 and the new EltVT is i32,
2972 // cast operands to v8i32 and re-build the mask.
2974 // Calculate new VT, the size of the new VT should be equal to original.
2976 EVT::getVectorVT(*DAG
.getContext(), NewEltVT
,
2977 VT
.getSizeInBits() / NewEltVT
.getSizeInBits());
2978 assert(NewVT
.bitsEq(VT
));
2980 // cast operands to new VT
2981 Op0
= DAG
.getNode(ISD::BITCAST
, dl
, NewVT
, Op0
);
2982 Op1
= DAG
.getNode(ISD::BITCAST
, dl
, NewVT
, Op1
);
2984 // Convert the shuffle mask
2985 unsigned int factor
=
2986 NewVT
.getVectorNumElements()/VT
.getVectorNumElements();
2988 // EltVT gets smaller
2991 for (unsigned i
= 0; i
< VT
.getVectorNumElements(); ++i
) {
2993 for (unsigned fi
= 0; fi
< factor
; ++fi
)
2994 NewMask
.push_back(Mask
[i
]);
2997 for (unsigned fi
= 0; fi
< factor
; ++fi
)
2998 NewMask
.push_back(Mask
[i
]*factor
+fi
);
3006 unsigned NumElems
= VT
.getVectorNumElements();
3007 SmallVector
<SDValue
, 16> Ops
;
3008 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
3010 Ops
.push_back(DAG
.getUNDEF(EltVT
));
3013 unsigned Idx
= Mask
[i
];
3015 Ops
.push_back(DAG
.getNode(
3016 ISD::EXTRACT_VECTOR_ELT
, dl
, EltVT
, Op0
,
3017 DAG
.getConstant(Idx
, dl
, TLI
.getVectorIdxTy(DAG
.getDataLayout()))));
3019 Ops
.push_back(DAG
.getNode(
3020 ISD::EXTRACT_VECTOR_ELT
, dl
, EltVT
, Op1
,
3021 DAG
.getConstant(Idx
- NumElems
, dl
,
3022 TLI
.getVectorIdxTy(DAG
.getDataLayout()))));
3025 Tmp1
= DAG
.getBuildVector(VT
, dl
, Ops
);
3026 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type.
3027 Tmp1
= DAG
.getNode(ISD::BITCAST
, dl
, Node
->getValueType(0), Tmp1
);
3028 Results
.push_back(Tmp1
);
3031 case ISD::EXTRACT_ELEMENT
: {
3032 EVT OpTy
= Node
->getOperand(0).getValueType();
3033 if (cast
<ConstantSDNode
>(Node
->getOperand(1))->getZExtValue()) {
3035 Tmp1
= DAG
.getNode(ISD::SRL
, dl
, OpTy
, Node
->getOperand(0),
3036 DAG
.getConstant(OpTy
.getSizeInBits() / 2, dl
,
3037 TLI
.getShiftAmountTy(
3038 Node
->getOperand(0).getValueType(),
3039 DAG
.getDataLayout())));
3040 Tmp1
= DAG
.getNode(ISD::TRUNCATE
, dl
, Node
->getValueType(0), Tmp1
);
3043 Tmp1
= DAG
.getNode(ISD::TRUNCATE
, dl
, Node
->getValueType(0),
3044 Node
->getOperand(0));
3046 Results
.push_back(Tmp1
);
3049 case ISD::STACKSAVE
:
3050 // Expand to CopyFromReg if the target set
3051 // StackPointerRegisterToSaveRestore.
3052 if (unsigned SP
= TLI
.getStackPointerRegisterToSaveRestore()) {
3053 Results
.push_back(DAG
.getCopyFromReg(Node
->getOperand(0), dl
, SP
,
3054 Node
->getValueType(0)));
3055 Results
.push_back(Results
[0].getValue(1));
3057 Results
.push_back(DAG
.getUNDEF(Node
->getValueType(0)));
3058 Results
.push_back(Node
->getOperand(0));
3061 case ISD::STACKRESTORE
:
3062 // Expand to CopyToReg if the target set
3063 // StackPointerRegisterToSaveRestore.
3064 if (unsigned SP
= TLI
.getStackPointerRegisterToSaveRestore()) {
3065 Results
.push_back(DAG
.getCopyToReg(Node
->getOperand(0), dl
, SP
,
3066 Node
->getOperand(1)));
3068 Results
.push_back(Node
->getOperand(0));
3071 case ISD::GET_DYNAMIC_AREA_OFFSET
:
3072 Results
.push_back(DAG
.getConstant(0, dl
, Node
->getValueType(0)));
3073 Results
.push_back(Results
[0].getValue(0));
3075 case ISD::FCOPYSIGN
:
3076 Results
.push_back(ExpandFCOPYSIGN(Node
));
3079 // Expand Y = FNEG(X) -> Y = SUB -0.0, X
3080 Tmp1
= DAG
.getConstantFP(-0.0, dl
, Node
->getValueType(0));
3081 // TODO: If FNEG has fast-math-flags, propagate them to the FSUB.
3082 Tmp1
= DAG
.getNode(ISD::FSUB
, dl
, Node
->getValueType(0), Tmp1
,
3083 Node
->getOperand(0));
3084 Results
.push_back(Tmp1
);
3087 Results
.push_back(ExpandFABS(Node
));
3093 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
3095 switch (Node
->getOpcode()) {
3096 default: llvm_unreachable("How did we get here?");
3097 case ISD::SMAX
: Pred
= ISD::SETGT
; break;
3098 case ISD::SMIN
: Pred
= ISD::SETLT
; break;
3099 case ISD::UMAX
: Pred
= ISD::SETUGT
; break;
3100 case ISD::UMIN
: Pred
= ISD::SETULT
; break;
3102 Tmp1
= Node
->getOperand(0);
3103 Tmp2
= Node
->getOperand(1);
3104 Tmp1
= DAG
.getSelectCC(dl
, Tmp1
, Tmp2
, Tmp1
, Tmp2
, Pred
);
3105 Results
.push_back(Tmp1
);
3109 case ISD::FMAXNUM
: {
3110 if (SDValue Expanded
= TLI
.expandFMINNUM_FMAXNUM(Node
, DAG
))
3111 Results
.push_back(Expanded
);
3116 EVT VT
= Node
->getValueType(0);
3117 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin /
3118 // fcos which share the same operand and both are used.
3119 if ((TLI
.isOperationLegalOrCustom(ISD::FSINCOS
, VT
) ||
3120 isSinCosLibcallAvailable(Node
, TLI
))
3121 && useSinCos(Node
)) {
3122 SDVTList VTs
= DAG
.getVTList(VT
, VT
);
3123 Tmp1
= DAG
.getNode(ISD::FSINCOS
, dl
, VTs
, Node
->getOperand(0));
3124 if (Node
->getOpcode() == ISD::FCOS
)
3125 Tmp1
= Tmp1
.getValue(1);
3126 Results
.push_back(Tmp1
);
3131 llvm_unreachable("Illegal fmad should never be formed");
3133 case ISD::FP16_TO_FP
:
3134 if (Node
->getValueType(0) != MVT::f32
) {
3135 // We can extend to types bigger than f32 in two steps without changing
3136 // the result. Since "f16 -> f32" is much more commonly available, give
3137 // CodeGen the option of emitting that before resorting to a libcall.
3139 DAG
.getNode(ISD::FP16_TO_FP
, dl
, MVT::f32
, Node
->getOperand(0));
3141 DAG
.getNode(ISD::FP_EXTEND
, dl
, Node
->getValueType(0), Res
));
3144 case ISD::FP_TO_FP16
:
3145 LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n");
3146 if (!TLI
.useSoftFloat() && TM
.Options
.UnsafeFPMath
) {
3147 SDValue Op
= Node
->getOperand(0);
3148 MVT SVT
= Op
.getSimpleValueType();
3149 if ((SVT
== MVT::f64
|| SVT
== MVT::f80
) &&
3150 TLI
.isOperationLegalOrCustom(ISD::FP_TO_FP16
, MVT::f32
)) {
3151 // Under fastmath, we can expand this node into a fround followed by
3152 // a float-half conversion.
3153 SDValue FloatVal
= DAG
.getNode(ISD::FP_ROUND
, dl
, MVT::f32
, Op
,
3154 DAG
.getIntPtrConstant(0, dl
));
3156 DAG
.getNode(ISD::FP_TO_FP16
, dl
, Node
->getValueType(0), FloatVal
));
3160 case ISD::ConstantFP
: {
3161 ConstantFPSDNode
*CFP
= cast
<ConstantFPSDNode
>(Node
);
3162 // Check to see if this FP immediate is already legal.
3163 // If this is a legal constant, turn it into a TargetConstantFP node.
3164 if (!TLI
.isFPImmLegal(CFP
->getValueAPF(), Node
->getValueType(0),
3165 DAG
.getMachineFunction().getFunction().hasOptSize()))
3166 Results
.push_back(ExpandConstantFP(CFP
, true));
3169 case ISD::Constant
: {
3170 ConstantSDNode
*CP
= cast
<ConstantSDNode
>(Node
);
3171 Results
.push_back(ExpandConstant(CP
));
3175 EVT VT
= Node
->getValueType(0);
3176 if (TLI
.isOperationLegalOrCustom(ISD::FADD
, VT
) &&
3177 TLI
.isOperationLegalOrCustom(ISD::FNEG
, VT
)) {
3178 const SDNodeFlags Flags
= Node
->getFlags();
3179 Tmp1
= DAG
.getNode(ISD::FNEG
, dl
, VT
, Node
->getOperand(1));
3180 Tmp1
= DAG
.getNode(ISD::FADD
, dl
, VT
, Node
->getOperand(0), Tmp1
, Flags
);
3181 Results
.push_back(Tmp1
);
3186 EVT VT
= Node
->getValueType(0);
3187 assert(TLI
.isOperationLegalOrCustom(ISD::ADD
, VT
) &&
3188 TLI
.isOperationLegalOrCustom(ISD::XOR
, VT
) &&
3189 "Don't know how to expand this subtraction!");
3190 Tmp1
= DAG
.getNode(ISD::XOR
, dl
, VT
, Node
->getOperand(1),
3191 DAG
.getConstant(APInt::getAllOnesValue(VT
.getSizeInBits()), dl
,
3193 Tmp1
= DAG
.getNode(ISD::ADD
, dl
, VT
, Tmp1
, DAG
.getConstant(1, dl
, VT
));
3194 Results
.push_back(DAG
.getNode(ISD::ADD
, dl
, VT
, Node
->getOperand(0), Tmp1
));
3199 EVT VT
= Node
->getValueType(0);
3200 bool isSigned
= Node
->getOpcode() == ISD::SREM
;
3201 unsigned DivOpc
= isSigned
? ISD::SDIV
: ISD::UDIV
;
3202 unsigned DivRemOpc
= isSigned
? ISD::SDIVREM
: ISD::UDIVREM
;
3203 Tmp2
= Node
->getOperand(0);
3204 Tmp3
= Node
->getOperand(1);
3205 if (TLI
.isOperationLegalOrCustom(DivRemOpc
, VT
)) {
3206 SDVTList VTs
= DAG
.getVTList(VT
, VT
);
3207 Tmp1
= DAG
.getNode(DivRemOpc
, dl
, VTs
, Tmp2
, Tmp3
).getValue(1);
3208 Results
.push_back(Tmp1
);
3209 } else if (TLI
.isOperationLegalOrCustom(DivOpc
, VT
)) {
3211 Tmp1
= DAG
.getNode(DivOpc
, dl
, VT
, Tmp2
, Tmp3
);
3212 Tmp1
= DAG
.getNode(ISD::MUL
, dl
, VT
, Tmp1
, Tmp3
);
3213 Tmp1
= DAG
.getNode(ISD::SUB
, dl
, VT
, Tmp2
, Tmp1
);
3214 Results
.push_back(Tmp1
);
3220 bool isSigned
= Node
->getOpcode() == ISD::SDIV
;
3221 unsigned DivRemOpc
= isSigned
? ISD::SDIVREM
: ISD::UDIVREM
;
3222 EVT VT
= Node
->getValueType(0);
3223 if (TLI
.isOperationLegalOrCustom(DivRemOpc
, VT
)) {
3224 SDVTList VTs
= DAG
.getVTList(VT
, VT
);
3225 Tmp1
= DAG
.getNode(DivRemOpc
, dl
, VTs
, Node
->getOperand(0),
3226 Node
->getOperand(1));
3227 Results
.push_back(Tmp1
);
3233 unsigned ExpandOpcode
=
3234 Node
->getOpcode() == ISD::MULHU
? ISD::UMUL_LOHI
: ISD::SMUL_LOHI
;
3235 EVT VT
= Node
->getValueType(0);
3236 SDVTList VTs
= DAG
.getVTList(VT
, VT
);
3238 Tmp1
= DAG
.getNode(ExpandOpcode
, dl
, VTs
, Node
->getOperand(0),
3239 Node
->getOperand(1));
3240 Results
.push_back(Tmp1
.getValue(1));
3243 case ISD::UMUL_LOHI
:
3244 case ISD::SMUL_LOHI
: {
3245 SDValue LHS
= Node
->getOperand(0);
3246 SDValue RHS
= Node
->getOperand(1);
3247 MVT VT
= LHS
.getSimpleValueType();
3248 unsigned MULHOpcode
=
3249 Node
->getOpcode() == ISD::UMUL_LOHI
? ISD::MULHU
: ISD::MULHS
;
3251 if (TLI
.isOperationLegalOrCustom(MULHOpcode
, VT
)) {
3252 Results
.push_back(DAG
.getNode(ISD::MUL
, dl
, VT
, LHS
, RHS
));
3253 Results
.push_back(DAG
.getNode(MULHOpcode
, dl
, VT
, LHS
, RHS
));
3257 SmallVector
<SDValue
, 4> Halves
;
3258 EVT HalfType
= EVT(VT
).getHalfSizedIntegerVT(*DAG
.getContext());
3259 assert(TLI
.isTypeLegal(HalfType
));
3260 if (TLI
.expandMUL_LOHI(Node
->getOpcode(), VT
, Node
, LHS
, RHS
, Halves
,
3262 TargetLowering::MulExpansionKind::Always
)) {
3263 for (unsigned i
= 0; i
< 2; ++i
) {
3264 SDValue Lo
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, Halves
[2 * i
]);
3265 SDValue Hi
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, VT
, Halves
[2 * i
+ 1]);
3266 SDValue Shift
= DAG
.getConstant(
3267 HalfType
.getScalarSizeInBits(), dl
,
3268 TLI
.getShiftAmountTy(HalfType
, DAG
.getDataLayout()));
3269 Hi
= DAG
.getNode(ISD::SHL
, dl
, VT
, Hi
, Shift
);
3270 Results
.push_back(DAG
.getNode(ISD::OR
, dl
, VT
, Lo
, Hi
));
3277 EVT VT
= Node
->getValueType(0);
3278 SDVTList VTs
= DAG
.getVTList(VT
, VT
);
3279 // See if multiply or divide can be lowered using two-result operations.
3280 // We just need the low half of the multiply; try both the signed
3281 // and unsigned forms. If the target supports both SMUL_LOHI and
3282 // UMUL_LOHI, form a preference by checking which forms of plain
3283 // MULH it supports.
3284 bool HasSMUL_LOHI
= TLI
.isOperationLegalOrCustom(ISD::SMUL_LOHI
, VT
);
3285 bool HasUMUL_LOHI
= TLI
.isOperationLegalOrCustom(ISD::UMUL_LOHI
, VT
);
3286 bool HasMULHS
= TLI
.isOperationLegalOrCustom(ISD::MULHS
, VT
);
3287 bool HasMULHU
= TLI
.isOperationLegalOrCustom(ISD::MULHU
, VT
);
3288 unsigned OpToUse
= 0;
3289 if (HasSMUL_LOHI
&& !HasMULHS
) {
3290 OpToUse
= ISD::SMUL_LOHI
;
3291 } else if (HasUMUL_LOHI
&& !HasMULHU
) {
3292 OpToUse
= ISD::UMUL_LOHI
;
3293 } else if (HasSMUL_LOHI
) {
3294 OpToUse
= ISD::SMUL_LOHI
;
3295 } else if (HasUMUL_LOHI
) {
3296 OpToUse
= ISD::UMUL_LOHI
;
3299 Results
.push_back(DAG
.getNode(OpToUse
, dl
, VTs
, Node
->getOperand(0),
3300 Node
->getOperand(1)));
3305 EVT HalfType
= VT
.getHalfSizedIntegerVT(*DAG
.getContext());
3306 if (TLI
.isOperationLegalOrCustom(ISD::ZERO_EXTEND
, VT
) &&
3307 TLI
.isOperationLegalOrCustom(ISD::ANY_EXTEND
, VT
) &&
3308 TLI
.isOperationLegalOrCustom(ISD::SHL
, VT
) &&
3309 TLI
.isOperationLegalOrCustom(ISD::OR
, VT
) &&
3310 TLI
.expandMUL(Node
, Lo
, Hi
, HalfType
, DAG
,
3311 TargetLowering::MulExpansionKind::OnlyLegalOrCustom
)) {
3312 Lo
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, Lo
);
3313 Hi
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, VT
, Hi
);
3315 DAG
.getConstant(HalfType
.getSizeInBits(), dl
,
3316 TLI
.getShiftAmountTy(HalfType
, DAG
.getDataLayout()));
3317 Hi
= DAG
.getNode(ISD::SHL
, dl
, VT
, Hi
, Shift
);
3318 Results
.push_back(DAG
.getNode(ISD::OR
, dl
, VT
, Lo
, Hi
));
3324 if (TLI
.expandFunnelShift(Node
, Tmp1
, DAG
))
3325 Results
.push_back(Tmp1
);
3329 if (TLI
.expandROT(Node
, Tmp1
, DAG
))
3330 Results
.push_back(Tmp1
);
3336 Results
.push_back(TLI
.expandAddSubSat(Node
, DAG
));
3339 case ISD::SMULFIXSAT
:
3341 case ISD::UMULFIXSAT
:
3342 Results
.push_back(TLI
.expandFixedPointMul(Node
, DAG
));
3345 case ISD::SUBCARRY
: {
3346 SDValue LHS
= Node
->getOperand(0);
3347 SDValue RHS
= Node
->getOperand(1);
3348 SDValue Carry
= Node
->getOperand(2);
3350 bool IsAdd
= Node
->getOpcode() == ISD::ADDCARRY
;
3352 // Initial add of the 2 operands.
3353 unsigned Op
= IsAdd
? ISD::ADD
: ISD::SUB
;
3354 EVT VT
= LHS
.getValueType();
3355 SDValue Sum
= DAG
.getNode(Op
, dl
, VT
, LHS
, RHS
);
3357 // Initial check for overflow.
3358 EVT CarryType
= Node
->getValueType(1);
3359 EVT SetCCType
= getSetCCResultType(Node
->getValueType(0));
3360 ISD::CondCode CC
= IsAdd
? ISD::SETULT
: ISD::SETUGT
;
3361 SDValue Overflow
= DAG
.getSetCC(dl
, SetCCType
, Sum
, LHS
, CC
);
3363 // Add of the sum and the carry.
3365 DAG
.getZeroExtendInReg(DAG
.getZExtOrTrunc(Carry
, dl
, VT
), dl
, MVT::i1
);
3366 SDValue Sum2
= DAG
.getNode(Op
, dl
, VT
, Sum
, CarryExt
);
3368 // Second check for overflow. If we are adding, we can only overflow if the
3369 // initial sum is all 1s ang the carry is set, resulting in a new sum of 0.
3370 // If we are subtracting, we can only overflow if the initial sum is 0 and
3371 // the carry is set, resulting in a new sum of all 1s.
3372 SDValue Zero
= DAG
.getConstant(0, dl
, VT
);
3374 IsAdd
? DAG
.getSetCC(dl
, SetCCType
, Sum2
, Zero
, ISD::SETEQ
)
3375 : DAG
.getSetCC(dl
, SetCCType
, Sum
, Zero
, ISD::SETEQ
);
3376 Overflow2
= DAG
.getNode(ISD::AND
, dl
, SetCCType
, Overflow2
,
3377 DAG
.getZExtOrTrunc(Carry
, dl
, SetCCType
));
3379 SDValue ResultCarry
=
3380 DAG
.getNode(ISD::OR
, dl
, SetCCType
, Overflow
, Overflow2
);
3382 Results
.push_back(Sum2
);
3383 Results
.push_back(DAG
.getBoolExtOrTrunc(ResultCarry
, dl
, CarryType
, VT
));
3388 SDValue Result
, Overflow
;
3389 TLI
.expandSADDSUBO(Node
, Result
, Overflow
, DAG
);
3390 Results
.push_back(Result
);
3391 Results
.push_back(Overflow
);
3396 SDValue Result
, Overflow
;
3397 TLI
.expandUADDSUBO(Node
, Result
, Overflow
, DAG
);
3398 Results
.push_back(Result
);
3399 Results
.push_back(Overflow
);
3404 SDValue Result
, Overflow
;
3405 if (TLI
.expandMULO(Node
, Result
, Overflow
, DAG
)) {
3406 Results
.push_back(Result
);
3407 Results
.push_back(Overflow
);
3411 case ISD::BUILD_PAIR
: {
3412 EVT PairTy
= Node
->getValueType(0);
3413 Tmp1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, PairTy
, Node
->getOperand(0));
3414 Tmp2
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, PairTy
, Node
->getOperand(1));
3416 ISD::SHL
, dl
, PairTy
, Tmp2
,
3417 DAG
.getConstant(PairTy
.getSizeInBits() / 2, dl
,
3418 TLI
.getShiftAmountTy(PairTy
, DAG
.getDataLayout())));
3419 Results
.push_back(DAG
.getNode(ISD::OR
, dl
, PairTy
, Tmp1
, Tmp2
));
3423 Tmp1
= Node
->getOperand(0);
3424 Tmp2
= Node
->getOperand(1);
3425 Tmp3
= Node
->getOperand(2);
3426 if (Tmp1
.getOpcode() == ISD::SETCC
) {
3427 Tmp1
= DAG
.getSelectCC(dl
, Tmp1
.getOperand(0), Tmp1
.getOperand(1),
3429 cast
<CondCodeSDNode
>(Tmp1
.getOperand(2))->get());
3431 Tmp1
= DAG
.getSelectCC(dl
, Tmp1
,
3432 DAG
.getConstant(0, dl
, Tmp1
.getValueType()),
3433 Tmp2
, Tmp3
, ISD::SETNE
);
3435 Tmp1
->setFlags(Node
->getFlags());
3436 Results
.push_back(Tmp1
);
3439 SDValue Chain
= Node
->getOperand(0);
3440 SDValue Table
= Node
->getOperand(1);
3441 SDValue Index
= Node
->getOperand(2);
3443 const DataLayout
&TD
= DAG
.getDataLayout();
3444 EVT PTy
= TLI
.getPointerTy(TD
);
3446 unsigned EntrySize
=
3447 DAG
.getMachineFunction().getJumpTableInfo()->getEntrySize(TD
);
3449 // For power-of-two jumptable entry sizes convert multiplication to a shift.
3450 // This transformation needs to be done here since otherwise the MIPS
3451 // backend will end up emitting a three instruction multiply sequence
3452 // instead of a single shift and MSP430 will call a runtime function.
3453 if (llvm::isPowerOf2_32(EntrySize
))
3454 Index
= DAG
.getNode(
3455 ISD::SHL
, dl
, Index
.getValueType(), Index
,
3456 DAG
.getConstant(llvm::Log2_32(EntrySize
), dl
, Index
.getValueType()));
3458 Index
= DAG
.getNode(ISD::MUL
, dl
, Index
.getValueType(), Index
,
3459 DAG
.getConstant(EntrySize
, dl
, Index
.getValueType()));
3460 SDValue Addr
= DAG
.getNode(ISD::ADD
, dl
, Index
.getValueType(),
3463 EVT MemVT
= EVT::getIntegerVT(*DAG
.getContext(), EntrySize
* 8);
3464 SDValue LD
= DAG
.getExtLoad(
3465 ISD::SEXTLOAD
, dl
, PTy
, Chain
, Addr
,
3466 MachinePointerInfo::getJumpTable(DAG
.getMachineFunction()), MemVT
);
3468 if (TLI
.isJumpTableRelative()) {
3469 // For PIC, the sequence is:
3470 // BRIND(load(Jumptable + index) + RelocBase)
3471 // RelocBase can be JumpTable, GOT or some sort of global base.
3472 Addr
= DAG
.getNode(ISD::ADD
, dl
, PTy
, Addr
,
3473 TLI
.getPICJumpTableRelocBase(Table
, DAG
));
3476 Tmp1
= TLI
.expandIndirectJTBranch(dl
, LD
.getValue(1), Addr
, DAG
);
3477 Results
.push_back(Tmp1
);
3481 // Expand brcond's setcc into its constituent parts and create a BR_CC
3483 Tmp1
= Node
->getOperand(0);
3484 Tmp2
= Node
->getOperand(1);
3485 if (Tmp2
.getOpcode() == ISD::SETCC
) {
3486 Tmp1
= DAG
.getNode(ISD::BR_CC
, dl
, MVT::Other
,
3487 Tmp1
, Tmp2
.getOperand(2),
3488 Tmp2
.getOperand(0), Tmp2
.getOperand(1),
3489 Node
->getOperand(2));
3491 // We test only the i1 bit. Skip the AND if UNDEF or another AND.
3492 if (Tmp2
.isUndef() ||
3493 (Tmp2
.getOpcode() == ISD::AND
&&
3494 isa
<ConstantSDNode
>(Tmp2
.getOperand(1)) &&
3495 cast
<ConstantSDNode
>(Tmp2
.getOperand(1))->getZExtValue() == 1))
3498 Tmp3
= DAG
.getNode(ISD::AND
, dl
, Tmp2
.getValueType(), Tmp2
,
3499 DAG
.getConstant(1, dl
, Tmp2
.getValueType()));
3500 Tmp1
= DAG
.getNode(ISD::BR_CC
, dl
, MVT::Other
, Tmp1
,
3501 DAG
.getCondCode(ISD::SETNE
), Tmp3
,
3502 DAG
.getConstant(0, dl
, Tmp3
.getValueType()),
3503 Node
->getOperand(2));
3505 Results
.push_back(Tmp1
);
3508 Tmp1
= Node
->getOperand(0);
3509 Tmp2
= Node
->getOperand(1);
3510 Tmp3
= Node
->getOperand(2);
3511 bool Legalized
= LegalizeSetCCCondCode(Node
->getValueType(0), Tmp1
, Tmp2
,
3512 Tmp3
, NeedInvert
, dl
);
3515 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3516 // condition code, create a new SETCC node.
3518 Tmp1
= DAG
.getNode(ISD::SETCC
, dl
, Node
->getValueType(0),
3519 Tmp1
, Tmp2
, Tmp3
, Node
->getFlags());
3521 // If we expanded the SETCC by inverting the condition code, then wrap
3522 // the existing SETCC in a NOT to restore the intended condition.
3524 Tmp1
= DAG
.getLogicalNOT(dl
, Tmp1
, Tmp1
->getValueType(0));
3526 Results
.push_back(Tmp1
);
3530 // Otherwise, SETCC for the given comparison type must be completely
3531 // illegal; expand it into a SELECT_CC.
3532 EVT VT
= Node
->getValueType(0);
3534 switch (TLI
.getBooleanContents(Tmp1
.getValueType())) {
3535 case TargetLowering::ZeroOrOneBooleanContent
:
3536 case TargetLowering::UndefinedBooleanContent
:
3539 case TargetLowering::ZeroOrNegativeOneBooleanContent
:
3543 Tmp1
= DAG
.getNode(ISD::SELECT_CC
, dl
, VT
, Tmp1
, Tmp2
,
3544 DAG
.getConstant(TrueValue
, dl
, VT
),
3545 DAG
.getConstant(0, dl
, VT
),
3547 Tmp1
->setFlags(Node
->getFlags());
3548 Results
.push_back(Tmp1
);
3551 case ISD::SELECT_CC
: {
3552 Tmp1
= Node
->getOperand(0); // LHS
3553 Tmp2
= Node
->getOperand(1); // RHS
3554 Tmp3
= Node
->getOperand(2); // True
3555 Tmp4
= Node
->getOperand(3); // False
3556 EVT VT
= Node
->getValueType(0);
3557 SDValue CC
= Node
->getOperand(4);
3558 ISD::CondCode CCOp
= cast
<CondCodeSDNode
>(CC
)->get();
3560 if (TLI
.isCondCodeLegalOrCustom(CCOp
, Tmp1
.getSimpleValueType())) {
3561 // If the condition code is legal, then we need to expand this
3562 // node using SETCC and SELECT.
3563 EVT CmpVT
= Tmp1
.getValueType();
3564 assert(!TLI
.isOperationExpand(ISD::SELECT
, VT
) &&
3565 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be "
3567 EVT CCVT
= getSetCCResultType(CmpVT
);
3568 SDValue Cond
= DAG
.getNode(ISD::SETCC
, dl
, CCVT
, Tmp1
, Tmp2
, CC
, Node
->getFlags());
3569 Results
.push_back(DAG
.getSelect(dl
, VT
, Cond
, Tmp3
, Tmp4
));
3573 // SELECT_CC is legal, so the condition code must not be.
3574 bool Legalized
= false;
3575 // Try to legalize by inverting the condition. This is for targets that
3576 // might support an ordered version of a condition, but not the unordered
3577 // version (or vice versa).
3578 ISD::CondCode InvCC
= ISD::getSetCCInverse(CCOp
,
3579 Tmp1
.getValueType().isInteger());
3580 if (TLI
.isCondCodeLegalOrCustom(InvCC
, Tmp1
.getSimpleValueType())) {
3581 // Use the new condition code and swap true and false
3583 Tmp1
= DAG
.getSelectCC(dl
, Tmp1
, Tmp2
, Tmp4
, Tmp3
, InvCC
);
3584 Tmp1
->setFlags(Node
->getFlags());
3586 // If The inverse is not legal, then try to swap the arguments using
3587 // the inverse condition code.
3588 ISD::CondCode SwapInvCC
= ISD::getSetCCSwappedOperands(InvCC
);
3589 if (TLI
.isCondCodeLegalOrCustom(SwapInvCC
, Tmp1
.getSimpleValueType())) {
3590 // The swapped inverse condition is legal, so swap true and false,
3593 Tmp1
= DAG
.getSelectCC(dl
, Tmp2
, Tmp1
, Tmp4
, Tmp3
, SwapInvCC
);
3594 Tmp1
->setFlags(Node
->getFlags());
3599 Legalized
= LegalizeSetCCCondCode(
3600 getSetCCResultType(Tmp1
.getValueType()), Tmp1
, Tmp2
, CC
, NeedInvert
,
3603 assert(Legalized
&& "Can't legalize SELECT_CC with legal condition!");
3605 // If we expanded the SETCC by inverting the condition code, then swap
3606 // the True/False operands to match.
3608 std::swap(Tmp3
, Tmp4
);
3610 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3611 // condition code, create a new SELECT_CC node.
3613 Tmp1
= DAG
.getNode(ISD::SELECT_CC
, dl
, Node
->getValueType(0),
3614 Tmp1
, Tmp2
, Tmp3
, Tmp4
, CC
);
3616 Tmp2
= DAG
.getConstant(0, dl
, Tmp1
.getValueType());
3617 CC
= DAG
.getCondCode(ISD::SETNE
);
3618 Tmp1
= DAG
.getNode(ISD::SELECT_CC
, dl
, Node
->getValueType(0), Tmp1
,
3619 Tmp2
, Tmp3
, Tmp4
, CC
);
3621 Tmp1
->setFlags(Node
->getFlags());
3623 Results
.push_back(Tmp1
);
3627 Tmp1
= Node
->getOperand(0); // Chain
3628 Tmp2
= Node
->getOperand(2); // LHS
3629 Tmp3
= Node
->getOperand(3); // RHS
3630 Tmp4
= Node
->getOperand(1); // CC
3632 bool Legalized
= LegalizeSetCCCondCode(getSetCCResultType(
3633 Tmp2
.getValueType()), Tmp2
, Tmp3
, Tmp4
, NeedInvert
, dl
);
3635 assert(Legalized
&& "Can't legalize BR_CC with legal condition!");
3637 assert(!NeedInvert
&& "Don't know how to invert BR_CC!");
3639 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC
3641 if (Tmp4
.getNode()) {
3642 Tmp1
= DAG
.getNode(ISD::BR_CC
, dl
, Node
->getValueType(0), Tmp1
,
3643 Tmp4
, Tmp2
, Tmp3
, Node
->getOperand(4));
3645 Tmp3
= DAG
.getConstant(0, dl
, Tmp2
.getValueType());
3646 Tmp4
= DAG
.getCondCode(ISD::SETNE
);
3647 Tmp1
= DAG
.getNode(ISD::BR_CC
, dl
, Node
->getValueType(0), Tmp1
, Tmp4
,
3648 Tmp2
, Tmp3
, Node
->getOperand(4));
3650 Results
.push_back(Tmp1
);
3653 case ISD::BUILD_VECTOR
:
3654 Results
.push_back(ExpandBUILD_VECTOR(Node
));
3659 // Scalarize vector SRA/SRL/SHL.
3660 EVT VT
= Node
->getValueType(0);
3661 assert(VT
.isVector() && "Unable to legalize non-vector shift");
3662 assert(TLI
.isTypeLegal(VT
.getScalarType())&& "Element type must be legal");
3663 unsigned NumElem
= VT
.getVectorNumElements();
3665 SmallVector
<SDValue
, 8> Scalars
;
3666 for (unsigned Idx
= 0; Idx
< NumElem
; Idx
++) {
3667 SDValue Ex
= DAG
.getNode(
3668 ISD::EXTRACT_VECTOR_ELT
, dl
, VT
.getScalarType(), Node
->getOperand(0),
3669 DAG
.getConstant(Idx
, dl
, TLI
.getVectorIdxTy(DAG
.getDataLayout())));
3670 SDValue Sh
= DAG
.getNode(
3671 ISD::EXTRACT_VECTOR_ELT
, dl
, VT
.getScalarType(), Node
->getOperand(1),
3672 DAG
.getConstant(Idx
, dl
, TLI
.getVectorIdxTy(DAG
.getDataLayout())));
3673 Scalars
.push_back(DAG
.getNode(Node
->getOpcode(), dl
,
3674 VT
.getScalarType(), Ex
, Sh
));
3677 SDValue Result
= DAG
.getBuildVector(Node
->getValueType(0), dl
, Scalars
);
3678 ReplaceNode(SDValue(Node
, 0), Result
);
3681 case ISD::VECREDUCE_FADD
:
3682 case ISD::VECREDUCE_FMUL
:
3683 case ISD::VECREDUCE_ADD
:
3684 case ISD::VECREDUCE_MUL
:
3685 case ISD::VECREDUCE_AND
:
3686 case ISD::VECREDUCE_OR
:
3687 case ISD::VECREDUCE_XOR
:
3688 case ISD::VECREDUCE_SMAX
:
3689 case ISD::VECREDUCE_SMIN
:
3690 case ISD::VECREDUCE_UMAX
:
3691 case ISD::VECREDUCE_UMIN
:
3692 case ISD::VECREDUCE_FMAX
:
3693 case ISD::VECREDUCE_FMIN
:
3694 Results
.push_back(TLI
.expandVecReduce(Node
, DAG
));
3696 case ISD::GLOBAL_OFFSET_TABLE
:
3697 case ISD::GlobalAddress
:
3698 case ISD::GlobalTLSAddress
:
3699 case ISD::ExternalSymbol
:
3700 case ISD::ConstantPool
:
3701 case ISD::JumpTable
:
3702 case ISD::INTRINSIC_W_CHAIN
:
3703 case ISD::INTRINSIC_WO_CHAIN
:
3704 case ISD::INTRINSIC_VOID
:
3705 // FIXME: Custom lowering for these operations shouldn't return null!
3709 if (Results
.empty() && Node
->isStrictFPOpcode()) {
3710 // FIXME: We were asked to expand a strict floating-point operation,
3711 // but there is currently no expansion implemented that would preserve
3712 // the "strict" properties. For now, we just fall back to the non-strict
3713 // version if that is legal on the target. The actual mutation of the
3714 // operation will happen in SelectionDAGISel::DoInstructionSelection.
3715 if (TLI
.getStrictFPOperationAction(Node
->getOpcode(),
3716 Node
->getValueType(0))
3717 == TargetLowering::Legal
)
3721 // Replace the original node with the legalized result.
3722 if (Results
.empty()) {
3723 LLVM_DEBUG(dbgs() << "Cannot expand node\n");
3727 LLVM_DEBUG(dbgs() << "Successfully expanded node\n");
3728 ReplaceNode(Node
, Results
.data());
3732 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode
*Node
) {
3733 LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n");
3734 SmallVector
<SDValue
, 8> Results
;
3736 // FIXME: Check flags on the node to see if we can use a finite call.
3737 bool CanUseFiniteLibCall
= TM
.Options
.NoInfsFPMath
&& TM
.Options
.NoNaNsFPMath
;
3738 unsigned Opc
= Node
->getOpcode();
3740 case ISD::ATOMIC_FENCE
: {
3741 // If the target didn't lower this, lower it to '__sync_synchronize()' call
3742 // FIXME: handle "fence singlethread" more efficiently.
3743 TargetLowering::ArgListTy Args
;
3745 TargetLowering::CallLoweringInfo
CLI(DAG
);
3747 .setChain(Node
->getOperand(0))
3749 CallingConv::C
, Type::getVoidTy(*DAG
.getContext()),
3750 DAG
.getExternalSymbol("__sync_synchronize",
3751 TLI
.getPointerTy(DAG
.getDataLayout())),
3754 std::pair
<SDValue
, SDValue
> CallResult
= TLI
.LowerCallTo(CLI
);
3756 Results
.push_back(CallResult
.second
);
3759 // By default, atomic intrinsics are marked Legal and lowered. Targets
3760 // which don't support them directly, however, may want libcalls, in which
3761 // case they mark them Expand, and we get here.
3762 case ISD::ATOMIC_SWAP
:
3763 case ISD::ATOMIC_LOAD_ADD
:
3764 case ISD::ATOMIC_LOAD_SUB
:
3765 case ISD::ATOMIC_LOAD_AND
:
3766 case ISD::ATOMIC_LOAD_CLR
:
3767 case ISD::ATOMIC_LOAD_OR
:
3768 case ISD::ATOMIC_LOAD_XOR
:
3769 case ISD::ATOMIC_LOAD_NAND
:
3770 case ISD::ATOMIC_LOAD_MIN
:
3771 case ISD::ATOMIC_LOAD_MAX
:
3772 case ISD::ATOMIC_LOAD_UMIN
:
3773 case ISD::ATOMIC_LOAD_UMAX
:
3774 case ISD::ATOMIC_CMP_SWAP
: {
3775 MVT VT
= cast
<AtomicSDNode
>(Node
)->getMemoryVT().getSimpleVT();
3776 RTLIB::Libcall LC
= RTLIB::getSYNC(Opc
, VT
);
3777 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&& "Unexpected atomic op or value type!");
3779 std::pair
<SDValue
, SDValue
> Tmp
= ExpandChainLibCall(LC
, Node
, false);
3780 Results
.push_back(Tmp
.first
);
3781 Results
.push_back(Tmp
.second
);
3785 // If this operation is not supported, lower it to 'abort()' call
3786 TargetLowering::ArgListTy Args
;
3787 TargetLowering::CallLoweringInfo
CLI(DAG
);
3789 .setChain(Node
->getOperand(0))
3790 .setLibCallee(CallingConv::C
, Type::getVoidTy(*DAG
.getContext()),
3791 DAG
.getExternalSymbol(
3792 "abort", TLI
.getPointerTy(DAG
.getDataLayout())),
3794 std::pair
<SDValue
, SDValue
> CallResult
= TLI
.LowerCallTo(CLI
);
3796 Results
.push_back(CallResult
.second
);
3800 case ISD::STRICT_FMINNUM
:
3801 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::FMIN_F32
, RTLIB::FMIN_F64
,
3802 RTLIB::FMIN_F80
, RTLIB::FMIN_F128
,
3803 RTLIB::FMIN_PPCF128
));
3806 case ISD::STRICT_FMAXNUM
:
3807 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::FMAX_F32
, RTLIB::FMAX_F64
,
3808 RTLIB::FMAX_F80
, RTLIB::FMAX_F128
,
3809 RTLIB::FMAX_PPCF128
));
3812 case ISD::STRICT_FSQRT
:
3813 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::SQRT_F32
, RTLIB::SQRT_F64
,
3814 RTLIB::SQRT_F80
, RTLIB::SQRT_F128
,
3815 RTLIB::SQRT_PPCF128
));
3818 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::CBRT_F32
, RTLIB::CBRT_F64
,
3819 RTLIB::CBRT_F80
, RTLIB::CBRT_F128
,
3820 RTLIB::CBRT_PPCF128
));
3823 case ISD::STRICT_FSIN
:
3824 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::SIN_F32
, RTLIB::SIN_F64
,
3825 RTLIB::SIN_F80
, RTLIB::SIN_F128
,
3826 RTLIB::SIN_PPCF128
));
3829 case ISD::STRICT_FCOS
:
3830 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::COS_F32
, RTLIB::COS_F64
,
3831 RTLIB::COS_F80
, RTLIB::COS_F128
,
3832 RTLIB::COS_PPCF128
));
3835 // Expand into sincos libcall.
3836 ExpandSinCosLibCall(Node
, Results
);
3839 case ISD::STRICT_FLOG
:
3840 if (CanUseFiniteLibCall
&& DAG
.getLibInfo().has(LibFunc_log_finite
))
3841 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::LOG_FINITE_F32
,
3842 RTLIB::LOG_FINITE_F64
,
3843 RTLIB::LOG_FINITE_F80
,
3844 RTLIB::LOG_FINITE_F128
,
3845 RTLIB::LOG_FINITE_PPCF128
));
3847 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::LOG_F32
, RTLIB::LOG_F64
,
3848 RTLIB::LOG_F80
, RTLIB::LOG_F128
,
3849 RTLIB::LOG_PPCF128
));
3852 case ISD::STRICT_FLOG2
:
3853 if (CanUseFiniteLibCall
&& DAG
.getLibInfo().has(LibFunc_log2_finite
))
3854 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::LOG2_FINITE_F32
,
3855 RTLIB::LOG2_FINITE_F64
,
3856 RTLIB::LOG2_FINITE_F80
,
3857 RTLIB::LOG2_FINITE_F128
,
3858 RTLIB::LOG2_FINITE_PPCF128
));
3860 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::LOG2_F32
, RTLIB::LOG2_F64
,
3861 RTLIB::LOG2_F80
, RTLIB::LOG2_F128
,
3862 RTLIB::LOG2_PPCF128
));
3865 case ISD::STRICT_FLOG10
:
3866 if (CanUseFiniteLibCall
&& DAG
.getLibInfo().has(LibFunc_log10_finite
))
3867 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::LOG10_FINITE_F32
,
3868 RTLIB::LOG10_FINITE_F64
,
3869 RTLIB::LOG10_FINITE_F80
,
3870 RTLIB::LOG10_FINITE_F128
,
3871 RTLIB::LOG10_FINITE_PPCF128
));
3873 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::LOG10_F32
, RTLIB::LOG10_F64
,
3874 RTLIB::LOG10_F80
, RTLIB::LOG10_F128
,
3875 RTLIB::LOG10_PPCF128
));
3878 case ISD::STRICT_FEXP
:
3879 if (CanUseFiniteLibCall
&& DAG
.getLibInfo().has(LibFunc_exp_finite
))
3880 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::EXP_FINITE_F32
,
3881 RTLIB::EXP_FINITE_F64
,
3882 RTLIB::EXP_FINITE_F80
,
3883 RTLIB::EXP_FINITE_F128
,
3884 RTLIB::EXP_FINITE_PPCF128
));
3886 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::EXP_F32
, RTLIB::EXP_F64
,
3887 RTLIB::EXP_F80
, RTLIB::EXP_F128
,
3888 RTLIB::EXP_PPCF128
));
3891 case ISD::STRICT_FEXP2
:
3892 if (CanUseFiniteLibCall
&& DAG
.getLibInfo().has(LibFunc_exp2_finite
))
3893 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::EXP2_FINITE_F32
,
3894 RTLIB::EXP2_FINITE_F64
,
3895 RTLIB::EXP2_FINITE_F80
,
3896 RTLIB::EXP2_FINITE_F128
,
3897 RTLIB::EXP2_FINITE_PPCF128
));
3899 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::EXP2_F32
, RTLIB::EXP2_F64
,
3900 RTLIB::EXP2_F80
, RTLIB::EXP2_F128
,
3901 RTLIB::EXP2_PPCF128
));
3904 case ISD::STRICT_FTRUNC
:
3905 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::TRUNC_F32
, RTLIB::TRUNC_F64
,
3906 RTLIB::TRUNC_F80
, RTLIB::TRUNC_F128
,
3907 RTLIB::TRUNC_PPCF128
));
3910 case ISD::STRICT_FFLOOR
:
3911 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::FLOOR_F32
, RTLIB::FLOOR_F64
,
3912 RTLIB::FLOOR_F80
, RTLIB::FLOOR_F128
,
3913 RTLIB::FLOOR_PPCF128
));
3916 case ISD::STRICT_FCEIL
:
3917 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::CEIL_F32
, RTLIB::CEIL_F64
,
3918 RTLIB::CEIL_F80
, RTLIB::CEIL_F128
,
3919 RTLIB::CEIL_PPCF128
));
3922 case ISD::STRICT_FRINT
:
3923 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::RINT_F32
, RTLIB::RINT_F64
,
3924 RTLIB::RINT_F80
, RTLIB::RINT_F128
,
3925 RTLIB::RINT_PPCF128
));
3927 case ISD::FNEARBYINT
:
3928 case ISD::STRICT_FNEARBYINT
:
3929 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::NEARBYINT_F32
,
3930 RTLIB::NEARBYINT_F64
,
3931 RTLIB::NEARBYINT_F80
,
3932 RTLIB::NEARBYINT_F128
,
3933 RTLIB::NEARBYINT_PPCF128
));
3936 case ISD::STRICT_FROUND
:
3937 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::ROUND_F32
,
3941 RTLIB::ROUND_PPCF128
));
3944 case ISD::STRICT_FPOWI
:
3945 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::POWI_F32
, RTLIB::POWI_F64
,
3946 RTLIB::POWI_F80
, RTLIB::POWI_F128
,
3947 RTLIB::POWI_PPCF128
));
3950 case ISD::STRICT_FPOW
:
3951 if (CanUseFiniteLibCall
&& DAG
.getLibInfo().has(LibFunc_pow_finite
))
3952 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::POW_FINITE_F32
,
3953 RTLIB::POW_FINITE_F64
,
3954 RTLIB::POW_FINITE_F80
,
3955 RTLIB::POW_FINITE_F128
,
3956 RTLIB::POW_FINITE_PPCF128
));
3958 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::POW_F32
, RTLIB::POW_F64
,
3959 RTLIB::POW_F80
, RTLIB::POW_F128
,
3960 RTLIB::POW_PPCF128
));
3963 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::DIV_F32
, RTLIB::DIV_F64
,
3964 RTLIB::DIV_F80
, RTLIB::DIV_F128
,
3965 RTLIB::DIV_PPCF128
));
3968 case ISD::STRICT_FREM
:
3969 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::REM_F32
, RTLIB::REM_F64
,
3970 RTLIB::REM_F80
, RTLIB::REM_F128
,
3971 RTLIB::REM_PPCF128
));
3974 case ISD::STRICT_FMA
:
3975 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::FMA_F32
, RTLIB::FMA_F64
,
3976 RTLIB::FMA_F80
, RTLIB::FMA_F128
,
3977 RTLIB::FMA_PPCF128
));
3980 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::ADD_F32
, RTLIB::ADD_F64
,
3981 RTLIB::ADD_F80
, RTLIB::ADD_F128
,
3982 RTLIB::ADD_PPCF128
));
3985 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::MUL_F32
, RTLIB::MUL_F64
,
3986 RTLIB::MUL_F80
, RTLIB::MUL_F128
,
3987 RTLIB::MUL_PPCF128
));
3989 case ISD::FP16_TO_FP
:
3990 if (Node
->getValueType(0) == MVT::f32
) {
3991 Results
.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32
, Node
, false));
3994 case ISD::FP_TO_FP16
: {
3996 RTLIB::getFPROUND(Node
->getOperand(0).getValueType(), MVT::f16
);
3997 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&& "Unable to expand fp_to_fp16");
3998 Results
.push_back(ExpandLibCall(LC
, Node
, false));
4002 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::SUB_F32
, RTLIB::SUB_F64
,
4003 RTLIB::SUB_F80
, RTLIB::SUB_F128
,
4004 RTLIB::SUB_PPCF128
));
4007 Results
.push_back(ExpandIntLibCall(Node
, true,
4009 RTLIB::SREM_I16
, RTLIB::SREM_I32
,
4010 RTLIB::SREM_I64
, RTLIB::SREM_I128
));
4013 Results
.push_back(ExpandIntLibCall(Node
, false,
4015 RTLIB::UREM_I16
, RTLIB::UREM_I32
,
4016 RTLIB::UREM_I64
, RTLIB::UREM_I128
));
4019 Results
.push_back(ExpandIntLibCall(Node
, true,
4021 RTLIB::SDIV_I16
, RTLIB::SDIV_I32
,
4022 RTLIB::SDIV_I64
, RTLIB::SDIV_I128
));
4025 Results
.push_back(ExpandIntLibCall(Node
, false,
4027 RTLIB::UDIV_I16
, RTLIB::UDIV_I32
,
4028 RTLIB::UDIV_I64
, RTLIB::UDIV_I128
));
4032 // Expand into divrem libcall
4033 ExpandDivRemLibCall(Node
, Results
);
4036 Results
.push_back(ExpandIntLibCall(Node
, false,
4038 RTLIB::MUL_I16
, RTLIB::MUL_I32
,
4039 RTLIB::MUL_I64
, RTLIB::MUL_I128
));
4041 case ISD::CTLZ_ZERO_UNDEF
:
4042 switch (Node
->getSimpleValueType(0).SimpleTy
) {
4044 llvm_unreachable("LibCall explicitly requested, but not available");
4046 Results
.push_back(ExpandLibCall(RTLIB::CTLZ_I32
, Node
, false));
4049 Results
.push_back(ExpandLibCall(RTLIB::CTLZ_I64
, Node
, false));
4052 Results
.push_back(ExpandLibCall(RTLIB::CTLZ_I128
, Node
, false));
4058 // Replace the original node with the legalized result.
4059 if (!Results
.empty()) {
4060 LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n");
4061 ReplaceNode(Node
, Results
.data());
4063 LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n");
4066 // Determine the vector type to use in place of an original scalar element when
4067 // promoting equally sized vectors.
4068 static MVT
getPromotedVectorElementType(const TargetLowering
&TLI
,
4069 MVT EltVT
, MVT NewEltVT
) {
4070 unsigned OldEltsPerNewElt
= EltVT
.getSizeInBits() / NewEltVT
.getSizeInBits();
4071 MVT MidVT
= MVT::getVectorVT(NewEltVT
, OldEltsPerNewElt
);
4072 assert(TLI
.isTypeLegal(MidVT
) && "unexpected");
4076 void SelectionDAGLegalize::PromoteNode(SDNode
*Node
) {
4077 LLVM_DEBUG(dbgs() << "Trying to promote node\n");
4078 SmallVector
<SDValue
, 8> Results
;
4079 MVT OVT
= Node
->getSimpleValueType(0);
4080 if (Node
->getOpcode() == ISD::UINT_TO_FP
||
4081 Node
->getOpcode() == ISD::SINT_TO_FP
||
4082 Node
->getOpcode() == ISD::SETCC
||
4083 Node
->getOpcode() == ISD::EXTRACT_VECTOR_ELT
||
4084 Node
->getOpcode() == ISD::INSERT_VECTOR_ELT
) {
4085 OVT
= Node
->getOperand(0).getSimpleValueType();
4087 if (Node
->getOpcode() == ISD::BR_CC
)
4088 OVT
= Node
->getOperand(2).getSimpleValueType();
4089 MVT NVT
= TLI
.getTypeToPromoteTo(Node
->getOpcode(), OVT
);
4091 SDValue Tmp1
, Tmp2
, Tmp3
;
4092 switch (Node
->getOpcode()) {
4094 case ISD::CTTZ_ZERO_UNDEF
:
4096 case ISD::CTLZ_ZERO_UNDEF
:
4098 // Zero extend the argument.
4099 Tmp1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, NVT
, Node
->getOperand(0));
4100 if (Node
->getOpcode() == ISD::CTTZ
) {
4101 // The count is the same in the promoted type except if the original
4102 // value was zero. This can be handled by setting the bit just off
4103 // the top of the original type.
4104 auto TopBit
= APInt::getOneBitSet(NVT
.getSizeInBits(),
4105 OVT
.getSizeInBits());
4106 Tmp1
= DAG
.getNode(ISD::OR
, dl
, NVT
, Tmp1
,
4107 DAG
.getConstant(TopBit
, dl
, NVT
));
4109 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is
4110 // already the correct result.
4111 Tmp1
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Tmp1
);
4112 if (Node
->getOpcode() == ISD::CTLZ
||
4113 Node
->getOpcode() == ISD::CTLZ_ZERO_UNDEF
) {
4114 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
4115 Tmp1
= DAG
.getNode(ISD::SUB
, dl
, NVT
, Tmp1
,
4116 DAG
.getConstant(NVT
.getSizeInBits() -
4117 OVT
.getSizeInBits(), dl
, NVT
));
4119 Results
.push_back(DAG
.getNode(ISD::TRUNCATE
, dl
, OVT
, Tmp1
));
4121 case ISD::BITREVERSE
:
4123 unsigned DiffBits
= NVT
.getSizeInBits() - OVT
.getSizeInBits();
4124 Tmp1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, NVT
, Node
->getOperand(0));
4125 Tmp1
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Tmp1
);
4127 ISD::SRL
, dl
, NVT
, Tmp1
,
4128 DAG
.getConstant(DiffBits
, dl
,
4129 TLI
.getShiftAmountTy(NVT
, DAG
.getDataLayout())));
4131 Results
.push_back(DAG
.getNode(ISD::TRUNCATE
, dl
, OVT
, Tmp1
));
4134 case ISD::FP_TO_UINT
:
4135 case ISD::FP_TO_SINT
:
4136 Tmp1
= PromoteLegalFP_TO_INT(Node
->getOperand(0), Node
->getValueType(0),
4137 Node
->getOpcode() == ISD::FP_TO_SINT
, dl
);
4138 Results
.push_back(Tmp1
);
4140 case ISD::UINT_TO_FP
:
4141 case ISD::SINT_TO_FP
:
4142 Tmp1
= PromoteLegalINT_TO_FP(Node
->getOperand(0), Node
->getValueType(0),
4143 Node
->getOpcode() == ISD::SINT_TO_FP
, dl
);
4144 Results
.push_back(Tmp1
);
4147 SDValue Chain
= Node
->getOperand(0); // Get the chain.
4148 SDValue Ptr
= Node
->getOperand(1); // Get the pointer.
4151 if (OVT
.isVector()) {
4152 TruncOp
= ISD::BITCAST
;
4154 assert(OVT
.isInteger()
4155 && "VAARG promotion is supported only for vectors or integer types");
4156 TruncOp
= ISD::TRUNCATE
;
4159 // Perform the larger operation, then convert back
4160 Tmp1
= DAG
.getVAArg(NVT
, dl
, Chain
, Ptr
, Node
->getOperand(2),
4161 Node
->getConstantOperandVal(3));
4162 Chain
= Tmp1
.getValue(1);
4164 Tmp2
= DAG
.getNode(TruncOp
, dl
, OVT
, Tmp1
);
4166 // Modified the chain result - switch anything that used the old chain to
4168 DAG
.ReplaceAllUsesOfValueWith(SDValue(Node
, 0), Tmp2
);
4169 DAG
.ReplaceAllUsesOfValueWith(SDValue(Node
, 1), Chain
);
4171 UpdatedNodes
->insert(Tmp2
.getNode());
4172 UpdatedNodes
->insert(Chain
.getNode());
4185 unsigned ExtOp
, TruncOp
;
4186 if (OVT
.isVector()) {
4187 ExtOp
= ISD::BITCAST
;
4188 TruncOp
= ISD::BITCAST
;
4190 assert(OVT
.isInteger() && "Cannot promote logic operation");
4192 switch (Node
->getOpcode()) {
4194 ExtOp
= ISD::ANY_EXTEND
;
4198 ExtOp
= ISD::SIGN_EXTEND
;
4202 ExtOp
= ISD::ZERO_EXTEND
;
4205 TruncOp
= ISD::TRUNCATE
;
4207 // Promote each of the values to the new type.
4208 Tmp1
= DAG
.getNode(ExtOp
, dl
, NVT
, Node
->getOperand(0));
4209 Tmp2
= DAG
.getNode(ExtOp
, dl
, NVT
, Node
->getOperand(1));
4210 // Perform the larger operation, then convert back
4211 Tmp1
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Tmp1
, Tmp2
);
4212 Results
.push_back(DAG
.getNode(TruncOp
, dl
, OVT
, Tmp1
));
4215 case ISD::UMUL_LOHI
:
4216 case ISD::SMUL_LOHI
: {
4217 // Promote to a multiply in a wider integer type.
4218 unsigned ExtOp
= Node
->getOpcode() == ISD::UMUL_LOHI
? ISD::ZERO_EXTEND
4220 Tmp1
= DAG
.getNode(ExtOp
, dl
, NVT
, Node
->getOperand(0));
4221 Tmp2
= DAG
.getNode(ExtOp
, dl
, NVT
, Node
->getOperand(1));
4222 Tmp1
= DAG
.getNode(ISD::MUL
, dl
, NVT
, Tmp1
, Tmp2
);
4224 auto &DL
= DAG
.getDataLayout();
4225 unsigned OriginalSize
= OVT
.getScalarSizeInBits();
4227 ISD::SRL
, dl
, NVT
, Tmp1
,
4228 DAG
.getConstant(OriginalSize
, dl
, TLI
.getScalarShiftAmountTy(DL
, NVT
)));
4229 Results
.push_back(DAG
.getNode(ISD::TRUNCATE
, dl
, OVT
, Tmp1
));
4230 Results
.push_back(DAG
.getNode(ISD::TRUNCATE
, dl
, OVT
, Tmp2
));
4234 unsigned ExtOp
, TruncOp
;
4235 if (Node
->getValueType(0).isVector() ||
4236 Node
->getValueType(0).getSizeInBits() == NVT
.getSizeInBits()) {
4237 ExtOp
= ISD::BITCAST
;
4238 TruncOp
= ISD::BITCAST
;
4239 } else if (Node
->getValueType(0).isInteger()) {
4240 ExtOp
= ISD::ANY_EXTEND
;
4241 TruncOp
= ISD::TRUNCATE
;
4243 ExtOp
= ISD::FP_EXTEND
;
4244 TruncOp
= ISD::FP_ROUND
;
4246 Tmp1
= Node
->getOperand(0);
4247 // Promote each of the values to the new type.
4248 Tmp2
= DAG
.getNode(ExtOp
, dl
, NVT
, Node
->getOperand(1));
4249 Tmp3
= DAG
.getNode(ExtOp
, dl
, NVT
, Node
->getOperand(2));
4250 // Perform the larger operation, then round down.
4251 Tmp1
= DAG
.getSelect(dl
, NVT
, Tmp1
, Tmp2
, Tmp3
);
4252 Tmp1
->setFlags(Node
->getFlags());
4253 if (TruncOp
!= ISD::FP_ROUND
)
4254 Tmp1
= DAG
.getNode(TruncOp
, dl
, Node
->getValueType(0), Tmp1
);
4256 Tmp1
= DAG
.getNode(TruncOp
, dl
, Node
->getValueType(0), Tmp1
,
4257 DAG
.getIntPtrConstant(0, dl
));
4258 Results
.push_back(Tmp1
);
4261 case ISD::VECTOR_SHUFFLE
: {
4262 ArrayRef
<int> Mask
= cast
<ShuffleVectorSDNode
>(Node
)->getMask();
4264 // Cast the two input vectors.
4265 Tmp1
= DAG
.getNode(ISD::BITCAST
, dl
, NVT
, Node
->getOperand(0));
4266 Tmp2
= DAG
.getNode(ISD::BITCAST
, dl
, NVT
, Node
->getOperand(1));
4268 // Convert the shuffle mask to the right # elements.
4269 Tmp1
= ShuffleWithNarrowerEltType(NVT
, OVT
, dl
, Tmp1
, Tmp2
, Mask
);
4270 Tmp1
= DAG
.getNode(ISD::BITCAST
, dl
, OVT
, Tmp1
);
4271 Results
.push_back(Tmp1
);
4275 unsigned ExtOp
= ISD::FP_EXTEND
;
4276 if (NVT
.isInteger()) {
4277 ISD::CondCode CCCode
=
4278 cast
<CondCodeSDNode
>(Node
->getOperand(2))->get();
4279 ExtOp
= isSignedIntSetCC(CCCode
) ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
4281 Tmp1
= DAG
.getNode(ExtOp
, dl
, NVT
, Node
->getOperand(0));
4282 Tmp2
= DAG
.getNode(ExtOp
, dl
, NVT
, Node
->getOperand(1));
4283 Results
.push_back(DAG
.getNode(ISD::SETCC
, dl
, Node
->getValueType(0), Tmp1
,
4284 Tmp2
, Node
->getOperand(2), Node
->getFlags()));
4288 unsigned ExtOp
= ISD::FP_EXTEND
;
4289 if (NVT
.isInteger()) {
4290 ISD::CondCode CCCode
=
4291 cast
<CondCodeSDNode
>(Node
->getOperand(1))->get();
4292 ExtOp
= isSignedIntSetCC(CCCode
) ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
4294 Tmp1
= DAG
.getNode(ExtOp
, dl
, NVT
, Node
->getOperand(2));
4295 Tmp2
= DAG
.getNode(ExtOp
, dl
, NVT
, Node
->getOperand(3));
4296 Results
.push_back(DAG
.getNode(ISD::BR_CC
, dl
, Node
->getValueType(0),
4297 Node
->getOperand(0), Node
->getOperand(1),
4298 Tmp1
, Tmp2
, Node
->getOperand(4)));
4309 Tmp1
= DAG
.getNode(ISD::FP_EXTEND
, dl
, NVT
, Node
->getOperand(0));
4310 Tmp2
= DAG
.getNode(ISD::FP_EXTEND
, dl
, NVT
, Node
->getOperand(1));
4311 Tmp3
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Tmp1
, Tmp2
,
4313 Results
.push_back(DAG
.getNode(ISD::FP_ROUND
, dl
, OVT
,
4314 Tmp3
, DAG
.getIntPtrConstant(0, dl
)));
4317 Tmp1
= DAG
.getNode(ISD::FP_EXTEND
, dl
, NVT
, Node
->getOperand(0));
4318 Tmp2
= DAG
.getNode(ISD::FP_EXTEND
, dl
, NVT
, Node
->getOperand(1));
4319 Tmp3
= DAG
.getNode(ISD::FP_EXTEND
, dl
, NVT
, Node
->getOperand(2));
4321 DAG
.getNode(ISD::FP_ROUND
, dl
, OVT
,
4322 DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Tmp1
, Tmp2
, Tmp3
),
4323 DAG
.getIntPtrConstant(0, dl
)));
4325 case ISD::FCOPYSIGN
:
4327 Tmp1
= DAG
.getNode(ISD::FP_EXTEND
, dl
, NVT
, Node
->getOperand(0));
4328 Tmp2
= Node
->getOperand(1);
4329 Tmp3
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Tmp1
, Tmp2
);
4331 // fcopysign doesn't change anything but the sign bit, so
4332 // (fp_round (fcopysign (fpext a), b))
4334 // (fp_round (fpext a))
4335 // which is a no-op. Mark it as a TRUNCating FP_ROUND.
4336 const bool isTrunc
= (Node
->getOpcode() == ISD::FCOPYSIGN
);
4337 Results
.push_back(DAG
.getNode(ISD::FP_ROUND
, dl
, OVT
,
4338 Tmp3
, DAG
.getIntPtrConstant(isTrunc
, dl
)));
4344 case ISD::FNEARBYINT
:
4357 Tmp1
= DAG
.getNode(ISD::FP_EXTEND
, dl
, NVT
, Node
->getOperand(0));
4358 Tmp2
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Tmp1
);
4359 Results
.push_back(DAG
.getNode(ISD::FP_ROUND
, dl
, OVT
,
4360 Tmp2
, DAG
.getIntPtrConstant(0, dl
)));
4362 case ISD::BUILD_VECTOR
: {
4363 MVT EltVT
= OVT
.getVectorElementType();
4364 MVT NewEltVT
= NVT
.getVectorElementType();
4366 // Handle bitcasts to a different vector type with the same total bit size
4368 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32
4370 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y))
4372 assert(NVT
.isVector() && OVT
.getSizeInBits() == NVT
.getSizeInBits() &&
4373 "Invalid promote type for build_vector");
4374 assert(NewEltVT
.bitsLT(EltVT
) && "not handled");
4376 MVT MidVT
= getPromotedVectorElementType(TLI
, EltVT
, NewEltVT
);
4378 SmallVector
<SDValue
, 8> NewOps
;
4379 for (unsigned I
= 0, E
= Node
->getNumOperands(); I
!= E
; ++I
) {
4380 SDValue Op
= Node
->getOperand(I
);
4381 NewOps
.push_back(DAG
.getNode(ISD::BITCAST
, SDLoc(Op
), MidVT
, Op
));
4385 SDValue Concat
= DAG
.getNode(ISD::CONCAT_VECTORS
, SL
, NVT
, NewOps
);
4386 SDValue CvtVec
= DAG
.getNode(ISD::BITCAST
, SL
, OVT
, Concat
);
4387 Results
.push_back(CvtVec
);
4390 case ISD::EXTRACT_VECTOR_ELT
: {
4391 MVT EltVT
= OVT
.getVectorElementType();
4392 MVT NewEltVT
= NVT
.getVectorElementType();
4394 // Handle bitcasts to a different vector type with the same total bit size.
4396 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32
4398 // v4i32:castx = bitcast x:v2i64
4401 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
4402 // (i32 (extract_vector_elt castx, (2 * y + 1)))
4405 assert(NVT
.isVector() && OVT
.getSizeInBits() == NVT
.getSizeInBits() &&
4406 "Invalid promote type for extract_vector_elt");
4407 assert(NewEltVT
.bitsLT(EltVT
) && "not handled");
4409 MVT MidVT
= getPromotedVectorElementType(TLI
, EltVT
, NewEltVT
);
4410 unsigned NewEltsPerOldElt
= MidVT
.getVectorNumElements();
4412 SDValue Idx
= Node
->getOperand(1);
4413 EVT IdxVT
= Idx
.getValueType();
4415 SDValue Factor
= DAG
.getConstant(NewEltsPerOldElt
, SL
, IdxVT
);
4416 SDValue NewBaseIdx
= DAG
.getNode(ISD::MUL
, SL
, IdxVT
, Idx
, Factor
);
4418 SDValue CastVec
= DAG
.getNode(ISD::BITCAST
, SL
, NVT
, Node
->getOperand(0));
4420 SmallVector
<SDValue
, 8> NewOps
;
4421 for (unsigned I
= 0; I
< NewEltsPerOldElt
; ++I
) {
4422 SDValue IdxOffset
= DAG
.getConstant(I
, SL
, IdxVT
);
4423 SDValue TmpIdx
= DAG
.getNode(ISD::ADD
, SL
, IdxVT
, NewBaseIdx
, IdxOffset
);
4425 SDValue Elt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, NewEltVT
,
4427 NewOps
.push_back(Elt
);
4430 SDValue NewVec
= DAG
.getBuildVector(MidVT
, SL
, NewOps
);
4431 Results
.push_back(DAG
.getNode(ISD::BITCAST
, SL
, EltVT
, NewVec
));
4434 case ISD::INSERT_VECTOR_ELT
: {
4435 MVT EltVT
= OVT
.getVectorElementType();
4436 MVT NewEltVT
= NVT
.getVectorElementType();
4438 // Handle bitcasts to a different vector type with the same total bit size
4440 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32
4442 // v4i32:castx = bitcast x:v2i64
4443 // v2i32:casty = bitcast y:i64
4446 // (v4i32 insert_vector_elt
4447 // (v4i32 insert_vector_elt v4i32:castx,
4448 // (extract_vector_elt casty, 0), 2 * z),
4449 // (extract_vector_elt casty, 1), (2 * z + 1))
4451 assert(NVT
.isVector() && OVT
.getSizeInBits() == NVT
.getSizeInBits() &&
4452 "Invalid promote type for insert_vector_elt");
4453 assert(NewEltVT
.bitsLT(EltVT
) && "not handled");
4455 MVT MidVT
= getPromotedVectorElementType(TLI
, EltVT
, NewEltVT
);
4456 unsigned NewEltsPerOldElt
= MidVT
.getVectorNumElements();
4458 SDValue Val
= Node
->getOperand(1);
4459 SDValue Idx
= Node
->getOperand(2);
4460 EVT IdxVT
= Idx
.getValueType();
4463 SDValue Factor
= DAG
.getConstant(NewEltsPerOldElt
, SDLoc(), IdxVT
);
4464 SDValue NewBaseIdx
= DAG
.getNode(ISD::MUL
, SL
, IdxVT
, Idx
, Factor
);
4466 SDValue CastVec
= DAG
.getNode(ISD::BITCAST
, SL
, NVT
, Node
->getOperand(0));
4467 SDValue CastVal
= DAG
.getNode(ISD::BITCAST
, SL
, MidVT
, Val
);
4469 SDValue NewVec
= CastVec
;
4470 for (unsigned I
= 0; I
< NewEltsPerOldElt
; ++I
) {
4471 SDValue IdxOffset
= DAG
.getConstant(I
, SL
, IdxVT
);
4472 SDValue InEltIdx
= DAG
.getNode(ISD::ADD
, SL
, IdxVT
, NewBaseIdx
, IdxOffset
);
4474 SDValue Elt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, NewEltVT
,
4475 CastVal
, IdxOffset
);
4477 NewVec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, SL
, NVT
,
4478 NewVec
, Elt
, InEltIdx
);
4481 Results
.push_back(DAG
.getNode(ISD::BITCAST
, SL
, OVT
, NewVec
));
4484 case ISD::SCALAR_TO_VECTOR
: {
4485 MVT EltVT
= OVT
.getVectorElementType();
4486 MVT NewEltVT
= NVT
.getVectorElementType();
4488 // Handle bitcasts to different vector type with the same total bit size.
4490 // e.g. v2i64 = scalar_to_vector x:i64
4492 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef)
4495 MVT MidVT
= getPromotedVectorElementType(TLI
, EltVT
, NewEltVT
);
4496 SDValue Val
= Node
->getOperand(0);
4499 SDValue CastVal
= DAG
.getNode(ISD::BITCAST
, SL
, MidVT
, Val
);
4500 SDValue Undef
= DAG
.getUNDEF(MidVT
);
4502 SmallVector
<SDValue
, 8> NewElts
;
4503 NewElts
.push_back(CastVal
);
4504 for (unsigned I
= 1, NElts
= OVT
.getVectorNumElements(); I
!= NElts
; ++I
)
4505 NewElts
.push_back(Undef
);
4507 SDValue Concat
= DAG
.getNode(ISD::CONCAT_VECTORS
, SL
, NVT
, NewElts
);
4508 SDValue CvtVec
= DAG
.getNode(ISD::BITCAST
, SL
, OVT
, Concat
);
4509 Results
.push_back(CvtVec
);
4512 case ISD::ATOMIC_SWAP
: {
4513 AtomicSDNode
*AM
= cast
<AtomicSDNode
>(Node
);
4515 SDValue CastVal
= DAG
.getNode(ISD::BITCAST
, SL
, NVT
, AM
->getVal());
4516 assert(NVT
.getSizeInBits() == OVT
.getSizeInBits() &&
4517 "unexpected promotion type");
4518 assert(AM
->getMemoryVT().getSizeInBits() == NVT
.getSizeInBits() &&
4519 "unexpected atomic_swap with illegal type");
4522 = DAG
.getAtomic(ISD::ATOMIC_SWAP
, SL
, NVT
,
4523 DAG
.getVTList(NVT
, MVT::Other
),
4524 { AM
->getChain(), AM
->getBasePtr(), CastVal
},
4525 AM
->getMemOperand());
4526 Results
.push_back(DAG
.getNode(ISD::BITCAST
, SL
, OVT
, NewAtomic
));
4527 Results
.push_back(NewAtomic
.getValue(1));
4532 // Replace the original node with the legalized result.
4533 if (!Results
.empty()) {
4534 LLVM_DEBUG(dbgs() << "Successfully promoted node\n");
4535 ReplaceNode(Node
, Results
.data());
4537 LLVM_DEBUG(dbgs() << "Could not promote node\n");
4540 /// This is the entry point for the file.
4541 void SelectionDAG::Legalize() {
4542 AssignTopologicalOrder();
4544 SmallPtrSet
<SDNode
*, 16> LegalizedNodes
;
4545 // Use a delete listener to remove nodes which were deleted during
4546 // legalization from LegalizeNodes. This is needed to handle the situation
4547 // where a new node is allocated by the object pool to the same address of a
4548 // previously deleted node.
4549 DAGNodeDeletedListener
DeleteListener(
4551 [&LegalizedNodes
](SDNode
*N
, SDNode
*E
) { LegalizedNodes
.erase(N
); });
4553 SelectionDAGLegalize
Legalizer(*this, LegalizedNodes
);
4555 // Visit all the nodes. We start in topological order, so that we see
4556 // nodes with their original operands intact. Legalization can produce
4557 // new nodes which may themselves need to be legalized. Iterate until all
4558 // nodes have been legalized.
4560 bool AnyLegalized
= false;
4561 for (auto NI
= allnodes_end(); NI
!= allnodes_begin();) {
4565 if (N
->use_empty() && N
!= getRoot().getNode()) {
4571 if (LegalizedNodes
.insert(N
).second
) {
4572 AnyLegalized
= true;
4573 Legalizer
.LegalizeOp(N
);
4575 if (N
->use_empty() && N
!= getRoot().getNode()) {
4586 // Remove dead nodes now.
4590 bool SelectionDAG::LegalizeOp(SDNode
*N
,
4591 SmallSetVector
<SDNode
*, 16> &UpdatedNodes
) {
4592 SmallPtrSet
<SDNode
*, 16> LegalizedNodes
;
4593 SelectionDAGLegalize
Legalizer(*this, LegalizedNodes
, &UpdatedNodes
);
4595 // Directly insert the node in question, and legalize it. This will recurse
4596 // as needed through operands.
4597 LegalizedNodes
.insert(N
);
4598 Legalizer
.LegalizeOp(N
);
4600 return LegalizedNodes
.count(N
);