1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the SelectionDAG::LegalizeVectors method.
11 // The vector legalizer looks for vector operations which might need to be
12 // scalarized and legalizes them. This is a separate step from Legalize because
13 // scalarizing can introduce illegal types. For example, suppose we have an
14 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition
15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
16 // operation, which introduces nodes with the illegal type i64 which must be
17 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
18 // the operation must be unrolled, which introduces nodes with the illegal
19 // type i8 which must be promoted.
21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
22 // or operations that happen to take a vector which are custom-lowered;
23 // the legalization for such operations never produces nodes
24 // with illegal types, so it's okay to put off legalizing them until
25 // SelectionDAG::Legalize runs.
27 //===----------------------------------------------------------------------===//
29 #include "llvm/ADT/APInt.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/SelectionDAG.h"
35 #include "llvm/CodeGen/SelectionDAGNodes.h"
36 #include "llvm/CodeGen/TargetLowering.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/MachineValueType.h"
43 #include "llvm/Support/MathExtras.h"
51 #define DEBUG_TYPE "legalizevectorops"
55 class VectorLegalizer
{
57 const TargetLowering
&TLI
;
58 bool Changed
= false; // Keep track of whether anything changed
60 /// For nodes that are of legal width, and that have more than one use, this
61 /// map indicates what regularized operand to use. This allows us to avoid
62 /// legalizing the same thing more than once.
63 SmallDenseMap
<SDValue
, SDValue
, 64> LegalizedNodes
;
65 /// Adds a node to the translation cache.
66 void AddLegalizedOperand(SDValue From
, SDValue To
) {
67 LegalizedNodes
.insert(std::make_pair(From
, To
));
68 // If someone requests legalization of the new node, return itself.
70 LegalizedNodes
.insert(std::make_pair(To
, To
));
73 /// Legalizes the given node.
74 SDValue
LegalizeOp(SDValue Op
);
76 /// Assuming the node is legal, "legalize" the results.
77 SDValue
TranslateLegalizeResults(SDValue Op
, SDValue Result
);
79 /// Implements unrolling a VSETCC.
80 SDValue
UnrollVSETCC(SDValue Op
);
82 /// Implement expand-based legalization of vector operations.
84 /// This is just a high-level routine to dispatch to specific code paths for
85 /// operations to legalize them.
86 SDValue
Expand(SDValue Op
);
88 /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if
89 /// FP_TO_SINT isn't legal.
90 SDValue
ExpandFP_TO_UINT(SDValue Op
);
92 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
93 /// SINT_TO_FLOAT and SHR on vectors isn't legal.
94 SDValue
ExpandUINT_TO_FLOAT(SDValue Op
);
96 /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
97 SDValue
ExpandSEXTINREG(SDValue Op
);
99 /// Implement expansion for ANY_EXTEND_VECTOR_INREG.
101 /// Shuffles the low lanes of the operand into place and bitcasts to the proper
102 /// type. The contents of the bits in the extended part of each element are
104 SDValue
ExpandANY_EXTEND_VECTOR_INREG(SDValue Op
);
106 /// Implement expansion for SIGN_EXTEND_VECTOR_INREG.
108 /// Shuffles the low lanes of the operand into place, bitcasts to the proper
109 /// type, then shifts left and arithmetic shifts right to introduce a sign
111 SDValue
ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op
);
113 /// Implement expansion for ZERO_EXTEND_VECTOR_INREG.
115 /// Shuffles the low lanes of the operand into place and blends zeros into
116 /// the remaining lanes, finally bitcasting to the proper type.
117 SDValue
ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op
);
119 /// Implement expand-based legalization of ABS vector operations.
120 /// If following expanding is legal/custom then do it:
121 /// (ABS x) --> (XOR (ADD x, (SRA x, sizeof(x)-1)), (SRA x, sizeof(x)-1))
122 /// else unroll the operation.
123 SDValue
ExpandABS(SDValue Op
);
125 /// Expand bswap of vectors into a shuffle if legal.
126 SDValue
ExpandBSWAP(SDValue Op
);
128 /// Implement vselect in terms of XOR, AND, OR when blend is not
129 /// supported by the target.
130 SDValue
ExpandVSELECT(SDValue Op
);
131 SDValue
ExpandSELECT(SDValue Op
);
132 SDValue
ExpandLoad(SDValue Op
);
133 SDValue
ExpandStore(SDValue Op
);
134 SDValue
ExpandFNEG(SDValue Op
);
135 SDValue
ExpandFSUB(SDValue Op
);
136 SDValue
ExpandBITREVERSE(SDValue Op
);
137 SDValue
ExpandCTPOP(SDValue Op
);
138 SDValue
ExpandCTLZ(SDValue Op
);
139 SDValue
ExpandCTTZ(SDValue Op
);
140 SDValue
ExpandFunnelShift(SDValue Op
);
141 SDValue
ExpandROT(SDValue Op
);
142 SDValue
ExpandFMINNUM_FMAXNUM(SDValue Op
);
143 SDValue
ExpandUADDSUBO(SDValue Op
);
144 SDValue
ExpandSADDSUBO(SDValue Op
);
145 SDValue
ExpandMULO(SDValue Op
);
146 SDValue
ExpandAddSubSat(SDValue Op
);
147 SDValue
ExpandFixedPointMul(SDValue Op
);
148 SDValue
ExpandStrictFPOp(SDValue Op
);
150 /// Implements vector promotion.
152 /// This is essentially just bitcasting the operands to a different type and
153 /// bitcasting the result back to the original type.
154 SDValue
Promote(SDValue Op
);
156 /// Implements [SU]INT_TO_FP vector promotion.
158 /// This is a [zs]ext of the input operand to a larger integer type.
159 SDValue
PromoteINT_TO_FP(SDValue Op
);
161 /// Implements FP_TO_[SU]INT vector promotion of the result type.
163 /// It is promoted to a larger integer type. The result is then
164 /// truncated back to the original type.
165 SDValue
PromoteFP_TO_INT(SDValue Op
);
168 VectorLegalizer(SelectionDAG
& dag
) :
169 DAG(dag
), TLI(dag
.getTargetLoweringInfo()) {}
171 /// Begin legalizer the vector operations in the DAG.
175 } // end anonymous namespace
177 bool VectorLegalizer::Run() {
178 // Before we start legalizing vector nodes, check if there are any vectors.
179 bool HasVectors
= false;
180 for (SelectionDAG::allnodes_iterator I
= DAG
.allnodes_begin(),
181 E
= std::prev(DAG
.allnodes_end()); I
!= std::next(E
); ++I
) {
182 // Check if the values of the nodes contain vectors. We don't need to check
183 // the operands because we are going to check their values at some point.
184 for (SDNode::value_iterator J
= I
->value_begin(), E
= I
->value_end();
186 HasVectors
|= J
->isVector();
188 // If we found a vector node we can start the legalization.
193 // If this basic block has no vectors then no need to legalize vectors.
197 // The legalize process is inherently a bottom-up recursive process (users
198 // legalize their uses before themselves). Given infinite stack space, we
199 // could just start legalizing on the root and traverse the whole graph. In
200 // practice however, this causes us to run out of stack space on large basic
201 // blocks. To avoid this problem, compute an ordering of the nodes where each
202 // node is only legalized after all of its operands are legalized.
203 DAG
.AssignTopologicalOrder();
204 for (SelectionDAG::allnodes_iterator I
= DAG
.allnodes_begin(),
205 E
= std::prev(DAG
.allnodes_end()); I
!= std::next(E
); ++I
)
206 LegalizeOp(SDValue(&*I
, 0));
208 // Finally, it's possible the root changed. Get the new root.
209 SDValue OldRoot
= DAG
.getRoot();
210 assert(LegalizedNodes
.count(OldRoot
) && "Root didn't get legalized?");
211 DAG
.setRoot(LegalizedNodes
[OldRoot
]);
213 LegalizedNodes
.clear();
215 // Remove dead nodes now.
216 DAG
.RemoveDeadNodes();
221 SDValue
VectorLegalizer::TranslateLegalizeResults(SDValue Op
, SDValue Result
) {
222 // Generic legalization: just pass the operand through.
223 for (unsigned i
= 0, e
= Op
.getNode()->getNumValues(); i
!= e
; ++i
)
224 AddLegalizedOperand(Op
.getValue(i
), Result
.getValue(i
));
225 return Result
.getValue(Op
.getResNo());
228 SDValue
VectorLegalizer::LegalizeOp(SDValue Op
) {
229 // Note that LegalizeOp may be reentered even from single-use nodes, which
230 // means that we always must cache transformed nodes.
231 DenseMap
<SDValue
, SDValue
>::iterator I
= LegalizedNodes
.find(Op
);
232 if (I
!= LegalizedNodes
.end()) return I
->second
;
234 SDNode
* Node
= Op
.getNode();
236 // Legalize the operands
237 SmallVector
<SDValue
, 8> Ops
;
238 for (const SDValue
&Op
: Node
->op_values())
239 Ops
.push_back(LegalizeOp(Op
));
241 SDValue Result
= SDValue(DAG
.UpdateNodeOperands(Op
.getNode(), Ops
),
244 if (Op
.getOpcode() == ISD::LOAD
) {
245 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
.getNode());
246 ISD::LoadExtType ExtType
= LD
->getExtensionType();
247 if (LD
->getMemoryVT().isVector() && ExtType
!= ISD::NON_EXTLOAD
) {
248 LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: ";
250 switch (TLI
.getLoadExtAction(LD
->getExtensionType(), LD
->getValueType(0),
251 LD
->getMemoryVT())) {
252 default: llvm_unreachable("This action is not supported yet!");
253 case TargetLowering::Legal
:
254 return TranslateLegalizeResults(Op
, Result
);
255 case TargetLowering::Custom
:
256 if (SDValue Lowered
= TLI
.LowerOperation(Result
, DAG
)) {
257 assert(Lowered
->getNumValues() == Op
->getNumValues() &&
258 "Unexpected number of results");
259 if (Lowered
!= Result
) {
260 // Make sure the new code is also legal.
261 Lowered
= LegalizeOp(Lowered
);
264 return TranslateLegalizeResults(Op
, Lowered
);
267 case TargetLowering::Expand
:
269 return ExpandLoad(Op
);
272 } else if (Op
.getOpcode() == ISD::STORE
) {
273 StoreSDNode
*ST
= cast
<StoreSDNode
>(Op
.getNode());
274 EVT StVT
= ST
->getMemoryVT();
275 MVT ValVT
= ST
->getValue().getSimpleValueType();
276 if (StVT
.isVector() && ST
->isTruncatingStore()) {
277 LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: ";
279 switch (TLI
.getTruncStoreAction(ValVT
, StVT
)) {
280 default: llvm_unreachable("This action is not supported yet!");
281 case TargetLowering::Legal
:
282 return TranslateLegalizeResults(Op
, Result
);
283 case TargetLowering::Custom
: {
284 SDValue Lowered
= TLI
.LowerOperation(Result
, DAG
);
285 if (Lowered
!= Result
) {
286 // Make sure the new code is also legal.
287 Lowered
= LegalizeOp(Lowered
);
290 return TranslateLegalizeResults(Op
, Lowered
);
292 case TargetLowering::Expand
:
294 return ExpandStore(Op
);
299 bool HasVectorValueOrOp
= false;
300 for (auto J
= Node
->value_begin(), E
= Node
->value_end(); J
!= E
; ++J
)
301 HasVectorValueOrOp
|= J
->isVector();
302 for (const SDValue
&Op
: Node
->op_values())
303 HasVectorValueOrOp
|= Op
.getValueType().isVector();
305 if (!HasVectorValueOrOp
)
306 return TranslateLegalizeResults(Op
, Result
);
308 TargetLowering::LegalizeAction Action
= TargetLowering::Legal
;
309 switch (Op
.getOpcode()) {
311 return TranslateLegalizeResults(Op
, Result
);
312 case ISD::STRICT_FADD
:
313 case ISD::STRICT_FSUB
:
314 case ISD::STRICT_FMUL
:
315 case ISD::STRICT_FDIV
:
316 case ISD::STRICT_FREM
:
317 case ISD::STRICT_FSQRT
:
318 case ISD::STRICT_FMA
:
319 case ISD::STRICT_FPOW
:
320 case ISD::STRICT_FPOWI
:
321 case ISD::STRICT_FSIN
:
322 case ISD::STRICT_FCOS
:
323 case ISD::STRICT_FEXP
:
324 case ISD::STRICT_FEXP2
:
325 case ISD::STRICT_FLOG
:
326 case ISD::STRICT_FLOG10
:
327 case ISD::STRICT_FLOG2
:
328 case ISD::STRICT_FRINT
:
329 case ISD::STRICT_FNEARBYINT
:
330 case ISD::STRICT_FMAXNUM
:
331 case ISD::STRICT_FMINNUM
:
332 case ISD::STRICT_FCEIL
:
333 case ISD::STRICT_FFLOOR
:
334 case ISD::STRICT_FROUND
:
335 case ISD::STRICT_FTRUNC
:
336 case ISD::STRICT_FP_TO_SINT
:
337 case ISD::STRICT_FP_TO_UINT
:
338 case ISD::STRICT_FP_ROUND
:
339 case ISD::STRICT_FP_EXTEND
:
340 Action
= TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0));
341 // If we're asked to expand a strict vector floating-point operation,
342 // by default we're going to simply unroll it. That is usually the
343 // best approach, except in the case where the resulting strict (scalar)
344 // operations would themselves use the fallback mutation to non-strict.
345 // In that specific case, just do the fallback on the vector op.
346 if (Action
== TargetLowering::Expand
&&
347 TLI
.getStrictFPOperationAction(Node
->getOpcode(),
348 Node
->getValueType(0))
349 == TargetLowering::Legal
) {
350 EVT EltVT
= Node
->getValueType(0).getVectorElementType();
351 if (TLI
.getOperationAction(Node
->getOpcode(), EltVT
)
352 == TargetLowering::Expand
&&
353 TLI
.getStrictFPOperationAction(Node
->getOpcode(), EltVT
)
354 == TargetLowering::Legal
)
355 Action
= TargetLowering::Legal
;
386 case ISD::BITREVERSE
:
389 case ISD::CTLZ_ZERO_UNDEF
:
390 case ISD::CTTZ_ZERO_UNDEF
:
396 case ISD::ZERO_EXTEND
:
397 case ISD::ANY_EXTEND
:
399 case ISD::SIGN_EXTEND
:
400 case ISD::FP_TO_SINT
:
401 case ISD::FP_TO_UINT
:
406 case ISD::FMINNUM_IEEE
:
407 case ISD::FMAXNUM_IEEE
:
424 case ISD::FNEARBYINT
:
430 case ISD::SIGN_EXTEND_INREG
:
431 case ISD::ANY_EXTEND_VECTOR_INREG
:
432 case ISD::SIGN_EXTEND_VECTOR_INREG
:
433 case ISD::ZERO_EXTEND_VECTOR_INREG
:
446 case ISD::FCANONICALIZE
:
451 Action
= TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0));
454 case ISD::SMULFIXSAT
:
456 case ISD::UMULFIXSAT
: {
457 unsigned Scale
= Node
->getConstantOperandVal(2);
458 Action
= TLI
.getFixedPointOperationAction(Node
->getOpcode(),
459 Node
->getValueType(0), Scale
);
462 case ISD::SINT_TO_FP
:
463 case ISD::UINT_TO_FP
:
464 case ISD::VECREDUCE_ADD
:
465 case ISD::VECREDUCE_MUL
:
466 case ISD::VECREDUCE_AND
:
467 case ISD::VECREDUCE_OR
:
468 case ISD::VECREDUCE_XOR
:
469 case ISD::VECREDUCE_SMAX
:
470 case ISD::VECREDUCE_SMIN
:
471 case ISD::VECREDUCE_UMAX
:
472 case ISD::VECREDUCE_UMIN
:
473 case ISD::VECREDUCE_FADD
:
474 case ISD::VECREDUCE_FMUL
:
475 case ISD::VECREDUCE_FMAX
:
476 case ISD::VECREDUCE_FMIN
:
477 Action
= TLI
.getOperationAction(Node
->getOpcode(),
478 Node
->getOperand(0).getValueType());
482 LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node
->dump(&DAG
));
485 default: llvm_unreachable("This action is not supported yet!");
486 case TargetLowering::Promote
:
487 Result
= Promote(Op
);
490 case TargetLowering::Legal
:
491 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
493 case TargetLowering::Custom
: {
494 LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
495 if (SDValue Tmp1
= TLI
.LowerOperation(Op
, DAG
)) {
496 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
500 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
503 case TargetLowering::Expand
:
507 // Make sure that the generated code is itself legal.
509 Result
= LegalizeOp(Result
);
513 // Note that LegalizeOp may be reentered even from single-use nodes, which
514 // means that we always must cache transformed nodes.
515 AddLegalizedOperand(Op
, Result
);
519 SDValue
VectorLegalizer::Promote(SDValue Op
) {
520 // For a few operations there is a specific concept for promotion based on
521 // the operand's type.
522 switch (Op
.getOpcode()) {
523 case ISD::SINT_TO_FP
:
524 case ISD::UINT_TO_FP
:
525 // "Promote" the operation by extending the operand.
526 return PromoteINT_TO_FP(Op
);
527 case ISD::FP_TO_UINT
:
528 case ISD::FP_TO_SINT
:
529 // Promote the operation by extending the operand.
530 return PromoteFP_TO_INT(Op
);
533 // There are currently two cases of vector promotion:
534 // 1) Bitcasting a vector of integers to a different type to a vector of the
535 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
536 // 2) Extending a vector of floats to a vector of the same number of larger
537 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
538 MVT VT
= Op
.getSimpleValueType();
539 assert(Op
.getNode()->getNumValues() == 1 &&
540 "Can't promote a vector with multiple results!");
541 MVT NVT
= TLI
.getTypeToPromoteTo(Op
.getOpcode(), VT
);
543 SmallVector
<SDValue
, 4> Operands(Op
.getNumOperands());
545 for (unsigned j
= 0; j
!= Op
.getNumOperands(); ++j
) {
546 if (Op
.getOperand(j
).getValueType().isVector())
549 .getVectorElementType()
550 .isFloatingPoint() &&
551 NVT
.isVector() && NVT
.getVectorElementType().isFloatingPoint())
552 Operands
[j
] = DAG
.getNode(ISD::FP_EXTEND
, dl
, NVT
, Op
.getOperand(j
));
554 Operands
[j
] = DAG
.getNode(ISD::BITCAST
, dl
, NVT
, Op
.getOperand(j
));
556 Operands
[j
] = Op
.getOperand(j
);
559 Op
= DAG
.getNode(Op
.getOpcode(), dl
, NVT
, Operands
, Op
.getNode()->getFlags());
560 if ((VT
.isFloatingPoint() && NVT
.isFloatingPoint()) ||
561 (VT
.isVector() && VT
.getVectorElementType().isFloatingPoint() &&
562 NVT
.isVector() && NVT
.getVectorElementType().isFloatingPoint()))
563 return DAG
.getNode(ISD::FP_ROUND
, dl
, VT
, Op
, DAG
.getIntPtrConstant(0, dl
));
565 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Op
);
568 SDValue
VectorLegalizer::PromoteINT_TO_FP(SDValue Op
) {
569 // INT_TO_FP operations may require the input operand be promoted even
570 // when the type is otherwise legal.
571 MVT VT
= Op
.getOperand(0).getSimpleValueType();
572 MVT NVT
= TLI
.getTypeToPromoteTo(Op
.getOpcode(), VT
);
573 assert(NVT
.getVectorNumElements() == VT
.getVectorNumElements() &&
574 "Vectors have different number of elements!");
577 SmallVector
<SDValue
, 4> Operands(Op
.getNumOperands());
579 unsigned Opc
= Op
.getOpcode() == ISD::UINT_TO_FP
? ISD::ZERO_EXTEND
:
581 for (unsigned j
= 0; j
!= Op
.getNumOperands(); ++j
) {
582 if (Op
.getOperand(j
).getValueType().isVector())
583 Operands
[j
] = DAG
.getNode(Opc
, dl
, NVT
, Op
.getOperand(j
));
585 Operands
[j
] = Op
.getOperand(j
);
588 return DAG
.getNode(Op
.getOpcode(), dl
, Op
.getValueType(), Operands
);
591 // For FP_TO_INT we promote the result type to a vector type with wider
592 // elements and then truncate the result. This is different from the default
593 // PromoteVector which uses bitcast to promote thus assumning that the
594 // promoted vector type has the same overall size.
595 SDValue
VectorLegalizer::PromoteFP_TO_INT(SDValue Op
) {
596 MVT VT
= Op
.getSimpleValueType();
597 MVT NVT
= TLI
.getTypeToPromoteTo(Op
.getOpcode(), VT
);
598 assert(NVT
.getVectorNumElements() == VT
.getVectorNumElements() &&
599 "Vectors have different number of elements!");
601 unsigned NewOpc
= Op
->getOpcode();
602 // Change FP_TO_UINT to FP_TO_SINT if possible.
603 // TODO: Should we only do this if FP_TO_UINT itself isn't legal?
604 if (NewOpc
== ISD::FP_TO_UINT
&&
605 TLI
.isOperationLegalOrCustom(ISD::FP_TO_SINT
, NVT
))
606 NewOpc
= ISD::FP_TO_SINT
;
609 SDValue Promoted
= DAG
.getNode(NewOpc
, dl
, NVT
, Op
.getOperand(0));
611 // Assert that the converted value fits in the original type. If it doesn't
612 // (eg: because the value being converted is too big), then the result of the
613 // original operation was undefined anyway, so the assert is still correct.
614 Promoted
= DAG
.getNode(Op
->getOpcode() == ISD::FP_TO_UINT
? ISD::AssertZext
617 DAG
.getValueType(VT
.getScalarType()));
618 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Promoted
);
621 SDValue
VectorLegalizer::ExpandLoad(SDValue Op
) {
622 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
.getNode());
624 EVT SrcVT
= LD
->getMemoryVT();
625 EVT SrcEltVT
= SrcVT
.getScalarType();
626 unsigned NumElem
= SrcVT
.getVectorNumElements();
630 if (SrcVT
.getVectorNumElements() > 1 && !SrcEltVT
.isByteSized()) {
633 SmallVector
<SDValue
, 8> Vals
;
634 SmallVector
<SDValue
, 8> LoadChains
;
636 EVT DstEltVT
= LD
->getValueType(0).getScalarType();
637 SDValue Chain
= LD
->getChain();
638 SDValue BasePTR
= LD
->getBasePtr();
639 ISD::LoadExtType ExtType
= LD
->getExtensionType();
641 // When elements in a vector is not byte-addressable, we cannot directly
642 // load each element by advancing pointer, which could only address bytes.
643 // Instead, we load all significant words, mask bits off, and concatenate
644 // them to form each element. Finally, they are extended to destination
645 // scalar type to build the destination vector.
646 EVT WideVT
= TLI
.getPointerTy(DAG
.getDataLayout());
648 assert(WideVT
.isRound() &&
649 "Could not handle the sophisticated case when the widest integer is"
651 assert(WideVT
.bitsGE(SrcEltVT
) &&
652 "Type is not legalized?");
654 unsigned WideBytes
= WideVT
.getStoreSize();
656 unsigned RemainingBytes
= SrcVT
.getStoreSize();
657 SmallVector
<SDValue
, 8> LoadVals
;
658 while (RemainingBytes
> 0) {
660 unsigned LoadBytes
= WideBytes
;
662 if (RemainingBytes
>= LoadBytes
) {
664 DAG
.getLoad(WideVT
, dl
, Chain
, BasePTR
,
665 LD
->getPointerInfo().getWithOffset(Offset
),
666 MinAlign(LD
->getAlignment(), Offset
),
667 LD
->getMemOperand()->getFlags(), LD
->getAAInfo());
670 while (RemainingBytes
< LoadBytes
) {
671 LoadBytes
>>= 1; // Reduce the load size by half.
672 LoadVT
= EVT::getIntegerVT(*DAG
.getContext(), LoadBytes
<< 3);
675 DAG
.getExtLoad(ISD::EXTLOAD
, dl
, WideVT
, Chain
, BasePTR
,
676 LD
->getPointerInfo().getWithOffset(Offset
), LoadVT
,
677 MinAlign(LD
->getAlignment(), Offset
),
678 LD
->getMemOperand()->getFlags(), LD
->getAAInfo());
681 RemainingBytes
-= LoadBytes
;
684 BasePTR
= DAG
.getObjectPtrOffset(dl
, BasePTR
, LoadBytes
);
686 LoadVals
.push_back(ScalarLoad
.getValue(0));
687 LoadChains
.push_back(ScalarLoad
.getValue(1));
690 unsigned BitOffset
= 0;
691 unsigned WideIdx
= 0;
692 unsigned WideBits
= WideVT
.getSizeInBits();
694 // Extract bits, pack and extend/trunc them into destination type.
695 unsigned SrcEltBits
= SrcEltVT
.getSizeInBits();
696 SDValue SrcEltBitMask
= DAG
.getConstant(
697 APInt::getLowBitsSet(WideBits
, SrcEltBits
), dl
, WideVT
);
699 for (unsigned Idx
= 0; Idx
!= NumElem
; ++Idx
) {
700 assert(BitOffset
< WideBits
&& "Unexpected offset!");
702 SDValue ShAmt
= DAG
.getConstant(
703 BitOffset
, dl
, TLI
.getShiftAmountTy(WideVT
, DAG
.getDataLayout()));
704 SDValue Lo
= DAG
.getNode(ISD::SRL
, dl
, WideVT
, LoadVals
[WideIdx
], ShAmt
);
706 BitOffset
+= SrcEltBits
;
707 if (BitOffset
>= WideBits
) {
709 BitOffset
-= WideBits
;
711 ShAmt
= DAG
.getConstant(
712 SrcEltBits
- BitOffset
, dl
,
713 TLI
.getShiftAmountTy(WideVT
, DAG
.getDataLayout()));
715 DAG
.getNode(ISD::SHL
, dl
, WideVT
, LoadVals
[WideIdx
], ShAmt
);
716 Lo
= DAG
.getNode(ISD::OR
, dl
, WideVT
, Lo
, Hi
);
720 Lo
= DAG
.getNode(ISD::AND
, dl
, WideVT
, Lo
, SrcEltBitMask
);
723 default: llvm_unreachable("Unknown extended-load op!");
725 Lo
= DAG
.getAnyExtOrTrunc(Lo
, dl
, DstEltVT
);
728 Lo
= DAG
.getZExtOrTrunc(Lo
, dl
, DstEltVT
);
732 DAG
.getConstant(WideBits
- SrcEltBits
, dl
,
733 TLI
.getShiftAmountTy(WideVT
, DAG
.getDataLayout()));
734 Lo
= DAG
.getNode(ISD::SHL
, dl
, WideVT
, Lo
, ShAmt
);
735 Lo
= DAG
.getNode(ISD::SRA
, dl
, WideVT
, Lo
, ShAmt
);
736 Lo
= DAG
.getSExtOrTrunc(Lo
, dl
, DstEltVT
);
742 NewChain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, LoadChains
);
743 Value
= DAG
.getBuildVector(Op
.getNode()->getValueType(0), dl
, Vals
);
745 SDValue Scalarized
= TLI
.scalarizeVectorLoad(LD
, DAG
);
746 // Skip past MERGE_VALUE node if known.
747 if (Scalarized
->getOpcode() == ISD::MERGE_VALUES
) {
748 NewChain
= Scalarized
.getOperand(1);
749 Value
= Scalarized
.getOperand(0);
751 NewChain
= Scalarized
.getValue(1);
752 Value
= Scalarized
.getValue(0);
756 AddLegalizedOperand(Op
.getValue(0), Value
);
757 AddLegalizedOperand(Op
.getValue(1), NewChain
);
759 return (Op
.getResNo() ? NewChain
: Value
);
762 SDValue
VectorLegalizer::ExpandStore(SDValue Op
) {
763 StoreSDNode
*ST
= cast
<StoreSDNode
>(Op
.getNode());
764 SDValue TF
= TLI
.scalarizeVectorStore(ST
, DAG
);
765 AddLegalizedOperand(Op
, TF
);
769 SDValue
VectorLegalizer::Expand(SDValue Op
) {
770 switch (Op
->getOpcode()) {
771 case ISD::SIGN_EXTEND_INREG
:
772 return ExpandSEXTINREG(Op
);
773 case ISD::ANY_EXTEND_VECTOR_INREG
:
774 return ExpandANY_EXTEND_VECTOR_INREG(Op
);
775 case ISD::SIGN_EXTEND_VECTOR_INREG
:
776 return ExpandSIGN_EXTEND_VECTOR_INREG(Op
);
777 case ISD::ZERO_EXTEND_VECTOR_INREG
:
778 return ExpandZERO_EXTEND_VECTOR_INREG(Op
);
780 return ExpandBSWAP(Op
);
782 return ExpandVSELECT(Op
);
784 return ExpandSELECT(Op
);
785 case ISD::FP_TO_UINT
:
786 return ExpandFP_TO_UINT(Op
);
787 case ISD::UINT_TO_FP
:
788 return ExpandUINT_TO_FLOAT(Op
);
790 return ExpandFNEG(Op
);
792 return ExpandFSUB(Op
);
794 return UnrollVSETCC(Op
);
796 return ExpandABS(Op
);
797 case ISD::BITREVERSE
:
798 return ExpandBITREVERSE(Op
);
800 return ExpandCTPOP(Op
);
802 case ISD::CTLZ_ZERO_UNDEF
:
803 return ExpandCTLZ(Op
);
805 case ISD::CTTZ_ZERO_UNDEF
:
806 return ExpandCTTZ(Op
);
809 return ExpandFunnelShift(Op
);
812 return ExpandROT(Op
);
815 return ExpandFMINNUM_FMAXNUM(Op
);
818 return ExpandUADDSUBO(Op
);
821 return ExpandSADDSUBO(Op
);
824 return ExpandMULO(Op
);
829 return ExpandAddSubSat(Op
);
832 return ExpandFixedPointMul(Op
);
833 case ISD::SMULFIXSAT
:
834 case ISD::UMULFIXSAT
:
835 // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly
836 // why. Maybe it results in worse codegen compared to the unroll for some
837 // targets? This should probably be investigated. And if we still prefer to
838 // unroll an explanation could be helpful.
839 return DAG
.UnrollVectorOp(Op
.getNode());
840 case ISD::STRICT_FADD
:
841 case ISD::STRICT_FSUB
:
842 case ISD::STRICT_FMUL
:
843 case ISD::STRICT_FDIV
:
844 case ISD::STRICT_FREM
:
845 case ISD::STRICT_FSQRT
:
846 case ISD::STRICT_FMA
:
847 case ISD::STRICT_FPOW
:
848 case ISD::STRICT_FPOWI
:
849 case ISD::STRICT_FSIN
:
850 case ISD::STRICT_FCOS
:
851 case ISD::STRICT_FEXP
:
852 case ISD::STRICT_FEXP2
:
853 case ISD::STRICT_FLOG
:
854 case ISD::STRICT_FLOG10
:
855 case ISD::STRICT_FLOG2
:
856 case ISD::STRICT_FRINT
:
857 case ISD::STRICT_FNEARBYINT
:
858 case ISD::STRICT_FMAXNUM
:
859 case ISD::STRICT_FMINNUM
:
860 case ISD::STRICT_FCEIL
:
861 case ISD::STRICT_FFLOOR
:
862 case ISD::STRICT_FROUND
:
863 case ISD::STRICT_FTRUNC
:
864 case ISD::STRICT_FP_TO_SINT
:
865 case ISD::STRICT_FP_TO_UINT
:
866 return ExpandStrictFPOp(Op
);
867 case ISD::VECREDUCE_ADD
:
868 case ISD::VECREDUCE_MUL
:
869 case ISD::VECREDUCE_AND
:
870 case ISD::VECREDUCE_OR
:
871 case ISD::VECREDUCE_XOR
:
872 case ISD::VECREDUCE_SMAX
:
873 case ISD::VECREDUCE_SMIN
:
874 case ISD::VECREDUCE_UMAX
:
875 case ISD::VECREDUCE_UMIN
:
876 case ISD::VECREDUCE_FADD
:
877 case ISD::VECREDUCE_FMUL
:
878 case ISD::VECREDUCE_FMAX
:
879 case ISD::VECREDUCE_FMIN
:
880 return TLI
.expandVecReduce(Op
.getNode(), DAG
);
882 return DAG
.UnrollVectorOp(Op
.getNode());
886 SDValue
VectorLegalizer::ExpandSELECT(SDValue Op
) {
887 // Lower a select instruction where the condition is a scalar and the
888 // operands are vectors. Lower this select to VSELECT and implement it
889 // using XOR AND OR. The selector bit is broadcasted.
890 EVT VT
= Op
.getValueType();
893 SDValue Mask
= Op
.getOperand(0);
894 SDValue Op1
= Op
.getOperand(1);
895 SDValue Op2
= Op
.getOperand(2);
897 assert(VT
.isVector() && !Mask
.getValueType().isVector()
898 && Op1
.getValueType() == Op2
.getValueType() && "Invalid type");
900 // If we can't even use the basic vector operations of
901 // AND,OR,XOR, we will have to scalarize the op.
902 // Notice that the operation may be 'promoted' which means that it is
903 // 'bitcasted' to another type which is handled.
904 // Also, we need to be able to construct a splat vector using BUILD_VECTOR.
905 if (TLI
.getOperationAction(ISD::AND
, VT
) == TargetLowering::Expand
||
906 TLI
.getOperationAction(ISD::XOR
, VT
) == TargetLowering::Expand
||
907 TLI
.getOperationAction(ISD::OR
, VT
) == TargetLowering::Expand
||
908 TLI
.getOperationAction(ISD::BUILD_VECTOR
, VT
) == TargetLowering::Expand
)
909 return DAG
.UnrollVectorOp(Op
.getNode());
911 // Generate a mask operand.
912 EVT MaskTy
= VT
.changeVectorElementTypeToInteger();
914 // What is the size of each element in the vector mask.
915 EVT BitTy
= MaskTy
.getScalarType();
917 Mask
= DAG
.getSelect(DL
, BitTy
, Mask
,
918 DAG
.getConstant(APInt::getAllOnesValue(BitTy
.getSizeInBits()), DL
,
920 DAG
.getConstant(0, DL
, BitTy
));
922 // Broadcast the mask so that the entire vector is all-one or all zero.
923 Mask
= DAG
.getSplatBuildVector(MaskTy
, DL
, Mask
);
925 // Bitcast the operands to be the same type as the mask.
926 // This is needed when we select between FP types because
927 // the mask is a vector of integers.
928 Op1
= DAG
.getNode(ISD::BITCAST
, DL
, MaskTy
, Op1
);
929 Op2
= DAG
.getNode(ISD::BITCAST
, DL
, MaskTy
, Op2
);
931 SDValue AllOnes
= DAG
.getConstant(
932 APInt::getAllOnesValue(BitTy
.getSizeInBits()), DL
, MaskTy
);
933 SDValue NotMask
= DAG
.getNode(ISD::XOR
, DL
, MaskTy
, Mask
, AllOnes
);
935 Op1
= DAG
.getNode(ISD::AND
, DL
, MaskTy
, Op1
, Mask
);
936 Op2
= DAG
.getNode(ISD::AND
, DL
, MaskTy
, Op2
, NotMask
);
937 SDValue Val
= DAG
.getNode(ISD::OR
, DL
, MaskTy
, Op1
, Op2
);
938 return DAG
.getNode(ISD::BITCAST
, DL
, Op
.getValueType(), Val
);
941 SDValue
VectorLegalizer::ExpandSEXTINREG(SDValue Op
) {
942 EVT VT
= Op
.getValueType();
944 // Make sure that the SRA and SHL instructions are available.
945 if (TLI
.getOperationAction(ISD::SRA
, VT
) == TargetLowering::Expand
||
946 TLI
.getOperationAction(ISD::SHL
, VT
) == TargetLowering::Expand
)
947 return DAG
.UnrollVectorOp(Op
.getNode());
950 EVT OrigTy
= cast
<VTSDNode
>(Op
->getOperand(1))->getVT();
952 unsigned BW
= VT
.getScalarSizeInBits();
953 unsigned OrigBW
= OrigTy
.getScalarSizeInBits();
954 SDValue ShiftSz
= DAG
.getConstant(BW
- OrigBW
, DL
, VT
);
956 Op
= Op
.getOperand(0);
957 Op
= DAG
.getNode(ISD::SHL
, DL
, VT
, Op
, ShiftSz
);
958 return DAG
.getNode(ISD::SRA
, DL
, VT
, Op
, ShiftSz
);
961 // Generically expand a vector anyext in register to a shuffle of the relevant
962 // lanes into the appropriate locations, with other lanes left undef.
963 SDValue
VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op
) {
965 EVT VT
= Op
.getValueType();
966 int NumElements
= VT
.getVectorNumElements();
967 SDValue Src
= Op
.getOperand(0);
968 EVT SrcVT
= Src
.getValueType();
969 int NumSrcElements
= SrcVT
.getVectorNumElements();
971 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
972 // into a larger vector type.
973 if (SrcVT
.bitsLE(VT
)) {
974 assert((VT
.getSizeInBits() % SrcVT
.getScalarSizeInBits()) == 0 &&
975 "ANY_EXTEND_VECTOR_INREG vector size mismatch");
976 NumSrcElements
= VT
.getSizeInBits() / SrcVT
.getScalarSizeInBits();
977 SrcVT
= EVT::getVectorVT(*DAG
.getContext(), SrcVT
.getScalarType(),
980 ISD::INSERT_SUBVECTOR
, DL
, SrcVT
, DAG
.getUNDEF(SrcVT
), Src
,
981 DAG
.getConstant(0, DL
, TLI
.getVectorIdxTy(DAG
.getDataLayout())));
984 // Build a base mask of undef shuffles.
985 SmallVector
<int, 16> ShuffleMask
;
986 ShuffleMask
.resize(NumSrcElements
, -1);
988 // Place the extended lanes into the correct locations.
989 int ExtLaneScale
= NumSrcElements
/ NumElements
;
990 int EndianOffset
= DAG
.getDataLayout().isBigEndian() ? ExtLaneScale
- 1 : 0;
991 for (int i
= 0; i
< NumElements
; ++i
)
992 ShuffleMask
[i
* ExtLaneScale
+ EndianOffset
] = i
;
995 ISD::BITCAST
, DL
, VT
,
996 DAG
.getVectorShuffle(SrcVT
, DL
, Src
, DAG
.getUNDEF(SrcVT
), ShuffleMask
));
999 SDValue
VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op
) {
1001 EVT VT
= Op
.getValueType();
1002 SDValue Src
= Op
.getOperand(0);
1003 EVT SrcVT
= Src
.getValueType();
1005 // First build an any-extend node which can be legalized above when we
1006 // recurse through it.
1007 Op
= DAG
.getNode(ISD::ANY_EXTEND_VECTOR_INREG
, DL
, VT
, Src
);
1009 // Now we need sign extend. Do this by shifting the elements. Even if these
1010 // aren't legal operations, they have a better chance of being legalized
1011 // without full scalarization than the sign extension does.
1012 unsigned EltWidth
= VT
.getScalarSizeInBits();
1013 unsigned SrcEltWidth
= SrcVT
.getScalarSizeInBits();
1014 SDValue ShiftAmount
= DAG
.getConstant(EltWidth
- SrcEltWidth
, DL
, VT
);
1015 return DAG
.getNode(ISD::SRA
, DL
, VT
,
1016 DAG
.getNode(ISD::SHL
, DL
, VT
, Op
, ShiftAmount
),
1020 // Generically expand a vector zext in register to a shuffle of the relevant
1021 // lanes into the appropriate locations, a blend of zero into the high bits,
1022 // and a bitcast to the wider element type.
1023 SDValue
VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op
) {
1025 EVT VT
= Op
.getValueType();
1026 int NumElements
= VT
.getVectorNumElements();
1027 SDValue Src
= Op
.getOperand(0);
1028 EVT SrcVT
= Src
.getValueType();
1029 int NumSrcElements
= SrcVT
.getVectorNumElements();
1031 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
1032 // into a larger vector type.
1033 if (SrcVT
.bitsLE(VT
)) {
1034 assert((VT
.getSizeInBits() % SrcVT
.getScalarSizeInBits()) == 0 &&
1035 "ZERO_EXTEND_VECTOR_INREG vector size mismatch");
1036 NumSrcElements
= VT
.getSizeInBits() / SrcVT
.getScalarSizeInBits();
1037 SrcVT
= EVT::getVectorVT(*DAG
.getContext(), SrcVT
.getScalarType(),
1040 ISD::INSERT_SUBVECTOR
, DL
, SrcVT
, DAG
.getUNDEF(SrcVT
), Src
,
1041 DAG
.getConstant(0, DL
, TLI
.getVectorIdxTy(DAG
.getDataLayout())));
1044 // Build up a zero vector to blend into this one.
1045 SDValue Zero
= DAG
.getConstant(0, DL
, SrcVT
);
1047 // Shuffle the incoming lanes into the correct position, and pull all other
1048 // lanes from the zero vector.
1049 SmallVector
<int, 16> ShuffleMask
;
1050 ShuffleMask
.reserve(NumSrcElements
);
1051 for (int i
= 0; i
< NumSrcElements
; ++i
)
1052 ShuffleMask
.push_back(i
);
1054 int ExtLaneScale
= NumSrcElements
/ NumElements
;
1055 int EndianOffset
= DAG
.getDataLayout().isBigEndian() ? ExtLaneScale
- 1 : 0;
1056 for (int i
= 0; i
< NumElements
; ++i
)
1057 ShuffleMask
[i
* ExtLaneScale
+ EndianOffset
] = NumSrcElements
+ i
;
1059 return DAG
.getNode(ISD::BITCAST
, DL
, VT
,
1060 DAG
.getVectorShuffle(SrcVT
, DL
, Zero
, Src
, ShuffleMask
));
1063 static void createBSWAPShuffleMask(EVT VT
, SmallVectorImpl
<int> &ShuffleMask
) {
1064 int ScalarSizeInBytes
= VT
.getScalarSizeInBits() / 8;
1065 for (int I
= 0, E
= VT
.getVectorNumElements(); I
!= E
; ++I
)
1066 for (int J
= ScalarSizeInBytes
- 1; J
>= 0; --J
)
1067 ShuffleMask
.push_back((I
* ScalarSizeInBytes
) + J
);
1070 SDValue
VectorLegalizer::ExpandBSWAP(SDValue Op
) {
1071 EVT VT
= Op
.getValueType();
1073 // Generate a byte wise shuffle mask for the BSWAP.
1074 SmallVector
<int, 16> ShuffleMask
;
1075 createBSWAPShuffleMask(VT
, ShuffleMask
);
1076 EVT ByteVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::i8
, ShuffleMask
.size());
1078 // Only emit a shuffle if the mask is legal.
1079 if (!TLI
.isShuffleMaskLegal(ShuffleMask
, ByteVT
))
1080 return DAG
.UnrollVectorOp(Op
.getNode());
1083 Op
= DAG
.getNode(ISD::BITCAST
, DL
, ByteVT
, Op
.getOperand(0));
1084 Op
= DAG
.getVectorShuffle(ByteVT
, DL
, Op
, DAG
.getUNDEF(ByteVT
), ShuffleMask
);
1085 return DAG
.getNode(ISD::BITCAST
, DL
, VT
, Op
);
1088 SDValue
VectorLegalizer::ExpandBITREVERSE(SDValue Op
) {
1089 EVT VT
= Op
.getValueType();
1091 // If we have the scalar operation, it's probably cheaper to unroll it.
1092 if (TLI
.isOperationLegalOrCustom(ISD::BITREVERSE
, VT
.getScalarType()))
1093 return DAG
.UnrollVectorOp(Op
.getNode());
1095 // If the vector element width is a whole number of bytes, test if its legal
1096 // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
1097 // vector. This greatly reduces the number of bit shifts necessary.
1098 unsigned ScalarSizeInBits
= VT
.getScalarSizeInBits();
1099 if (ScalarSizeInBits
> 8 && (ScalarSizeInBits
% 8) == 0) {
1100 SmallVector
<int, 16> BSWAPMask
;
1101 createBSWAPShuffleMask(VT
, BSWAPMask
);
1103 EVT ByteVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::i8
, BSWAPMask
.size());
1104 if (TLI
.isShuffleMaskLegal(BSWAPMask
, ByteVT
) &&
1105 (TLI
.isOperationLegalOrCustom(ISD::BITREVERSE
, ByteVT
) ||
1106 (TLI
.isOperationLegalOrCustom(ISD::SHL
, ByteVT
) &&
1107 TLI
.isOperationLegalOrCustom(ISD::SRL
, ByteVT
) &&
1108 TLI
.isOperationLegalOrCustomOrPromote(ISD::AND
, ByteVT
) &&
1109 TLI
.isOperationLegalOrCustomOrPromote(ISD::OR
, ByteVT
)))) {
1111 Op
= DAG
.getNode(ISD::BITCAST
, DL
, ByteVT
, Op
.getOperand(0));
1112 Op
= DAG
.getVectorShuffle(ByteVT
, DL
, Op
, DAG
.getUNDEF(ByteVT
),
1114 Op
= DAG
.getNode(ISD::BITREVERSE
, DL
, ByteVT
, Op
);
1115 return DAG
.getNode(ISD::BITCAST
, DL
, VT
, Op
);
1119 // If we have the appropriate vector bit operations, it is better to use them
1120 // than unrolling and expanding each component.
1121 if (!TLI
.isOperationLegalOrCustom(ISD::SHL
, VT
) ||
1122 !TLI
.isOperationLegalOrCustom(ISD::SRL
, VT
) ||
1123 !TLI
.isOperationLegalOrCustomOrPromote(ISD::AND
, VT
) ||
1124 !TLI
.isOperationLegalOrCustomOrPromote(ISD::OR
, VT
))
1125 return DAG
.UnrollVectorOp(Op
.getNode());
1127 // Let LegalizeDAG handle this later.
1131 SDValue
VectorLegalizer::ExpandVSELECT(SDValue Op
) {
1132 // Implement VSELECT in terms of XOR, AND, OR
1133 // on platforms which do not support blend natively.
1136 SDValue Mask
= Op
.getOperand(0);
1137 SDValue Op1
= Op
.getOperand(1);
1138 SDValue Op2
= Op
.getOperand(2);
1140 EVT VT
= Mask
.getValueType();
1142 // If we can't even use the basic vector operations of
1143 // AND,OR,XOR, we will have to scalarize the op.
1144 // Notice that the operation may be 'promoted' which means that it is
1145 // 'bitcasted' to another type which is handled.
1146 // This operation also isn't safe with AND, OR, XOR when the boolean
1147 // type is 0/1 as we need an all ones vector constant to mask with.
1148 // FIXME: Sign extend 1 to all ones if thats legal on the target.
1149 if (TLI
.getOperationAction(ISD::AND
, VT
) == TargetLowering::Expand
||
1150 TLI
.getOperationAction(ISD::XOR
, VT
) == TargetLowering::Expand
||
1151 TLI
.getOperationAction(ISD::OR
, VT
) == TargetLowering::Expand
||
1152 TLI
.getBooleanContents(Op1
.getValueType()) !=
1153 TargetLowering::ZeroOrNegativeOneBooleanContent
)
1154 return DAG
.UnrollVectorOp(Op
.getNode());
1156 // If the mask and the type are different sizes, unroll the vector op. This
1157 // can occur when getSetCCResultType returns something that is different in
1158 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
1159 if (VT
.getSizeInBits() != Op1
.getValueSizeInBits())
1160 return DAG
.UnrollVectorOp(Op
.getNode());
1162 // Bitcast the operands to be the same type as the mask.
1163 // This is needed when we select between FP types because
1164 // the mask is a vector of integers.
1165 Op1
= DAG
.getNode(ISD::BITCAST
, DL
, VT
, Op1
);
1166 Op2
= DAG
.getNode(ISD::BITCAST
, DL
, VT
, Op2
);
1168 SDValue AllOnes
= DAG
.getConstant(
1169 APInt::getAllOnesValue(VT
.getScalarSizeInBits()), DL
, VT
);
1170 SDValue NotMask
= DAG
.getNode(ISD::XOR
, DL
, VT
, Mask
, AllOnes
);
1172 Op1
= DAG
.getNode(ISD::AND
, DL
, VT
, Op1
, Mask
);
1173 Op2
= DAG
.getNode(ISD::AND
, DL
, VT
, Op2
, NotMask
);
1174 SDValue Val
= DAG
.getNode(ISD::OR
, DL
, VT
, Op1
, Op2
);
1175 return DAG
.getNode(ISD::BITCAST
, DL
, Op
.getValueType(), Val
);
1178 SDValue
VectorLegalizer::ExpandABS(SDValue Op
) {
1179 // Attempt to expand using TargetLowering.
1181 if (TLI
.expandABS(Op
.getNode(), Result
, DAG
))
1184 // Otherwise go ahead and unroll.
1185 return DAG
.UnrollVectorOp(Op
.getNode());
1188 SDValue
VectorLegalizer::ExpandFP_TO_UINT(SDValue Op
) {
1189 // Attempt to expand using TargetLowering.
1190 SDValue Result
, Chain
;
1191 if (TLI
.expandFP_TO_UINT(Op
.getNode(), Result
, Chain
, DAG
)) {
1192 if (Op
.getNode()->isStrictFPOpcode())
1194 DAG
.ReplaceAllUsesOfValueWith(Op
.getValue(1), Chain
);
1198 // Otherwise go ahead and unroll.
1199 return DAG
.UnrollVectorOp(Op
.getNode());
1202 SDValue
VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op
) {
1203 EVT VT
= Op
.getOperand(0).getValueType();
1206 // Attempt to expand using TargetLowering.
1208 if (TLI
.expandUINT_TO_FP(Op
.getNode(), Result
, DAG
))
1211 // Make sure that the SINT_TO_FP and SRL instructions are available.
1212 if (TLI
.getOperationAction(ISD::SINT_TO_FP
, VT
) == TargetLowering::Expand
||
1213 TLI
.getOperationAction(ISD::SRL
, VT
) == TargetLowering::Expand
)
1214 return DAG
.UnrollVectorOp(Op
.getNode());
1216 unsigned BW
= VT
.getScalarSizeInBits();
1217 assert((BW
== 64 || BW
== 32) &&
1218 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
1220 SDValue HalfWord
= DAG
.getConstant(BW
/ 2, DL
, VT
);
1222 // Constants to clear the upper part of the word.
1223 // Notice that we can also use SHL+SHR, but using a constant is slightly
1225 uint64_t HWMask
= (BW
== 64) ? 0x00000000FFFFFFFF : 0x0000FFFF;
1226 SDValue HalfWordMask
= DAG
.getConstant(HWMask
, DL
, VT
);
1228 // Two to the power of half-word-size.
1229 SDValue TWOHW
= DAG
.getConstantFP(1ULL << (BW
/ 2), DL
, Op
.getValueType());
1231 // Clear upper part of LO, lower HI
1232 SDValue HI
= DAG
.getNode(ISD::SRL
, DL
, VT
, Op
.getOperand(0), HalfWord
);
1233 SDValue LO
= DAG
.getNode(ISD::AND
, DL
, VT
, Op
.getOperand(0), HalfWordMask
);
1235 // Convert hi and lo to floats
1236 // Convert the hi part back to the upper values
1237 // TODO: Can any fast-math-flags be set on these nodes?
1238 SDValue fHI
= DAG
.getNode(ISD::SINT_TO_FP
, DL
, Op
.getValueType(), HI
);
1239 fHI
= DAG
.getNode(ISD::FMUL
, DL
, Op
.getValueType(), fHI
, TWOHW
);
1240 SDValue fLO
= DAG
.getNode(ISD::SINT_TO_FP
, DL
, Op
.getValueType(), LO
);
1242 // Add the two halves
1243 return DAG
.getNode(ISD::FADD
, DL
, Op
.getValueType(), fHI
, fLO
);
1246 SDValue
VectorLegalizer::ExpandFNEG(SDValue Op
) {
1247 if (TLI
.isOperationLegalOrCustom(ISD::FSUB
, Op
.getValueType())) {
1249 SDValue Zero
= DAG
.getConstantFP(-0.0, DL
, Op
.getValueType());
1250 // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
1251 return DAG
.getNode(ISD::FSUB
, DL
, Op
.getValueType(),
1252 Zero
, Op
.getOperand(0));
1254 return DAG
.UnrollVectorOp(Op
.getNode());
1257 SDValue
VectorLegalizer::ExpandFSUB(SDValue Op
) {
1258 // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal,
1259 // we can defer this to operation legalization where it will be lowered as
1261 EVT VT
= Op
.getValueType();
1262 if (TLI
.isOperationLegalOrCustom(ISD::FNEG
, VT
) &&
1263 TLI
.isOperationLegalOrCustom(ISD::FADD
, VT
))
1264 return Op
; // Defer to LegalizeDAG
1266 return DAG
.UnrollVectorOp(Op
.getNode());
1269 SDValue
VectorLegalizer::ExpandCTPOP(SDValue Op
) {
1271 if (TLI
.expandCTPOP(Op
.getNode(), Result
, DAG
))
1274 return DAG
.UnrollVectorOp(Op
.getNode());
1277 SDValue
VectorLegalizer::ExpandCTLZ(SDValue Op
) {
1279 if (TLI
.expandCTLZ(Op
.getNode(), Result
, DAG
))
1282 return DAG
.UnrollVectorOp(Op
.getNode());
1285 SDValue
VectorLegalizer::ExpandCTTZ(SDValue Op
) {
1287 if (TLI
.expandCTTZ(Op
.getNode(), Result
, DAG
))
1290 return DAG
.UnrollVectorOp(Op
.getNode());
1293 SDValue
VectorLegalizer::ExpandFunnelShift(SDValue Op
) {
1295 if (TLI
.expandFunnelShift(Op
.getNode(), Result
, DAG
))
1298 return DAG
.UnrollVectorOp(Op
.getNode());
1301 SDValue
VectorLegalizer::ExpandROT(SDValue Op
) {
1303 if (TLI
.expandROT(Op
.getNode(), Result
, DAG
))
1306 return DAG
.UnrollVectorOp(Op
.getNode());
1309 SDValue
VectorLegalizer::ExpandFMINNUM_FMAXNUM(SDValue Op
) {
1310 if (SDValue Expanded
= TLI
.expandFMINNUM_FMAXNUM(Op
.getNode(), DAG
))
1312 return DAG
.UnrollVectorOp(Op
.getNode());
1315 SDValue
VectorLegalizer::ExpandUADDSUBO(SDValue Op
) {
1316 SDValue Result
, Overflow
;
1317 TLI
.expandUADDSUBO(Op
.getNode(), Result
, Overflow
, DAG
);
1319 if (Op
.getResNo() == 0) {
1320 AddLegalizedOperand(Op
.getValue(1), LegalizeOp(Overflow
));
1323 AddLegalizedOperand(Op
.getValue(0), LegalizeOp(Result
));
1328 SDValue
VectorLegalizer::ExpandSADDSUBO(SDValue Op
) {
1329 SDValue Result
, Overflow
;
1330 TLI
.expandSADDSUBO(Op
.getNode(), Result
, Overflow
, DAG
);
1332 if (Op
.getResNo() == 0) {
1333 AddLegalizedOperand(Op
.getValue(1), LegalizeOp(Overflow
));
1336 AddLegalizedOperand(Op
.getValue(0), LegalizeOp(Result
));
1341 SDValue
VectorLegalizer::ExpandMULO(SDValue Op
) {
1342 SDValue Result
, Overflow
;
1343 if (!TLI
.expandMULO(Op
.getNode(), Result
, Overflow
, DAG
))
1344 std::tie(Result
, Overflow
) = DAG
.UnrollVectorOverflowOp(Op
.getNode());
1346 if (Op
.getResNo() == 0) {
1347 AddLegalizedOperand(Op
.getValue(1), LegalizeOp(Overflow
));
1350 AddLegalizedOperand(Op
.getValue(0), LegalizeOp(Result
));
1355 SDValue
VectorLegalizer::ExpandAddSubSat(SDValue Op
) {
1356 if (SDValue Expanded
= TLI
.expandAddSubSat(Op
.getNode(), DAG
))
1358 return DAG
.UnrollVectorOp(Op
.getNode());
1361 SDValue
VectorLegalizer::ExpandFixedPointMul(SDValue Op
) {
1362 if (SDValue Expanded
= TLI
.expandFixedPointMul(Op
.getNode(), DAG
))
1364 return DAG
.UnrollVectorOp(Op
.getNode());
1367 SDValue
VectorLegalizer::ExpandStrictFPOp(SDValue Op
) {
1368 EVT VT
= Op
.getValueType();
1369 EVT EltVT
= VT
.getVectorElementType();
1370 unsigned NumElems
= VT
.getVectorNumElements();
1371 unsigned NumOpers
= Op
.getNumOperands();
1372 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
1373 EVT ValueVTs
[] = {EltVT
, MVT::Other
};
1374 SDValue Chain
= Op
.getOperand(0);
1377 SmallVector
<SDValue
, 32> OpValues
;
1378 SmallVector
<SDValue
, 32> OpChains
;
1379 for (unsigned i
= 0; i
< NumElems
; ++i
) {
1380 SmallVector
<SDValue
, 4> Opers
;
1381 SDValue Idx
= DAG
.getConstant(i
, dl
,
1382 TLI
.getVectorIdxTy(DAG
.getDataLayout()));
1384 // The Chain is the first operand.
1385 Opers
.push_back(Chain
);
1387 // Now process the remaining operands.
1388 for (unsigned j
= 1; j
< NumOpers
; ++j
) {
1389 SDValue Oper
= Op
.getOperand(j
);
1390 EVT OperVT
= Oper
.getValueType();
1392 if (OperVT
.isVector())
1393 Oper
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
,
1394 OperVT
.getVectorElementType(), Oper
, Idx
);
1396 Opers
.push_back(Oper
);
1399 SDValue ScalarOp
= DAG
.getNode(Op
->getOpcode(), dl
, ValueVTs
, Opers
);
1401 OpValues
.push_back(ScalarOp
.getValue(0));
1402 OpChains
.push_back(ScalarOp
.getValue(1));
1405 SDValue Result
= DAG
.getBuildVector(VT
, dl
, OpValues
);
1406 SDValue NewChain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, OpChains
);
1408 AddLegalizedOperand(Op
.getValue(0), Result
);
1409 AddLegalizedOperand(Op
.getValue(1), NewChain
);
1411 return Op
.getResNo() ? NewChain
: Result
;
1414 SDValue
VectorLegalizer::UnrollVSETCC(SDValue Op
) {
1415 EVT VT
= Op
.getValueType();
1416 unsigned NumElems
= VT
.getVectorNumElements();
1417 EVT EltVT
= VT
.getVectorElementType();
1418 SDValue LHS
= Op
.getOperand(0), RHS
= Op
.getOperand(1), CC
= Op
.getOperand(2);
1419 EVT TmpEltVT
= LHS
.getValueType().getVectorElementType();
1421 SmallVector
<SDValue
, 8> Ops(NumElems
);
1422 for (unsigned i
= 0; i
< NumElems
; ++i
) {
1423 SDValue LHSElem
= DAG
.getNode(
1424 ISD::EXTRACT_VECTOR_ELT
, dl
, TmpEltVT
, LHS
,
1425 DAG
.getConstant(i
, dl
, TLI
.getVectorIdxTy(DAG
.getDataLayout())));
1426 SDValue RHSElem
= DAG
.getNode(
1427 ISD::EXTRACT_VECTOR_ELT
, dl
, TmpEltVT
, RHS
,
1428 DAG
.getConstant(i
, dl
, TLI
.getVectorIdxTy(DAG
.getDataLayout())));
1429 Ops
[i
] = DAG
.getNode(ISD::SETCC
, dl
,
1430 TLI
.getSetCCResultType(DAG
.getDataLayout(),
1431 *DAG
.getContext(), TmpEltVT
),
1432 LHSElem
, RHSElem
, CC
);
1433 Ops
[i
] = DAG
.getSelect(dl
, EltVT
, Ops
[i
],
1434 DAG
.getConstant(APInt::getAllOnesValue
1435 (EltVT
.getSizeInBits()), dl
, EltVT
),
1436 DAG
.getConstant(0, dl
, EltVT
));
1438 return DAG
.getBuildVector(VT
, dl
, Ops
);
1441 bool SelectionDAG::LegalizeVectors() {
1442 return VectorLegalizer(*this).Run();