[x86] fix assert with horizontal math + broadcast of vector (PR43402)
[llvm-core.git] / lib / CodeGen / SelectionDAG / LegalizeVectorOps.cpp
blob7b929704d7a337f5652b700e71c518f593074f6b
1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::LegalizeVectors method.
11 // The vector legalizer looks for vector operations which might need to be
12 // scalarized and legalizes them. This is a separate step from Legalize because
13 // scalarizing can introduce illegal types. For example, suppose we have an
14 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition
15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
16 // operation, which introduces nodes with the illegal type i64 which must be
17 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
18 // the operation must be unrolled, which introduces nodes with the illegal
19 // type i8 which must be promoted.
21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
22 // or operations that happen to take a vector which are custom-lowered;
23 // the legalization for such operations never produces nodes
24 // with illegal types, so it's okay to put off legalizing them until
25 // SelectionDAG::Legalize runs.
27 //===----------------------------------------------------------------------===//
29 #include "llvm/ADT/APInt.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/SelectionDAG.h"
35 #include "llvm/CodeGen/SelectionDAGNodes.h"
36 #include "llvm/CodeGen/TargetLowering.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/MachineValueType.h"
43 #include "llvm/Support/MathExtras.h"
44 #include <cassert>
45 #include <cstdint>
46 #include <iterator>
47 #include <utility>
49 using namespace llvm;
51 #define DEBUG_TYPE "legalizevectorops"
53 namespace {
55 class VectorLegalizer {
56 SelectionDAG& DAG;
57 const TargetLowering &TLI;
58 bool Changed = false; // Keep track of whether anything changed
60 /// For nodes that are of legal width, and that have more than one use, this
61 /// map indicates what regularized operand to use. This allows us to avoid
62 /// legalizing the same thing more than once.
63 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
65 /// Adds a node to the translation cache.
66 void AddLegalizedOperand(SDValue From, SDValue To) {
67 LegalizedNodes.insert(std::make_pair(From, To));
68 // If someone requests legalization of the new node, return itself.
69 if (From != To)
70 LegalizedNodes.insert(std::make_pair(To, To));
73 /// Legalizes the given node.
74 SDValue LegalizeOp(SDValue Op);
76 /// Assuming the node is legal, "legalize" the results.
77 SDValue TranslateLegalizeResults(SDValue Op, SDValue Result);
79 /// Implements unrolling a VSETCC.
80 SDValue UnrollVSETCC(SDValue Op);
82 /// Implement expand-based legalization of vector operations.
83 ///
84 /// This is just a high-level routine to dispatch to specific code paths for
85 /// operations to legalize them.
86 SDValue Expand(SDValue Op);
88 /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if
89 /// FP_TO_SINT isn't legal.
90 SDValue ExpandFP_TO_UINT(SDValue Op);
92 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
93 /// SINT_TO_FLOAT and SHR on vectors isn't legal.
94 SDValue ExpandUINT_TO_FLOAT(SDValue Op);
96 /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
97 SDValue ExpandSEXTINREG(SDValue Op);
99 /// Implement expansion for ANY_EXTEND_VECTOR_INREG.
101 /// Shuffles the low lanes of the operand into place and bitcasts to the proper
102 /// type. The contents of the bits in the extended part of each element are
103 /// undef.
104 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op);
106 /// Implement expansion for SIGN_EXTEND_VECTOR_INREG.
108 /// Shuffles the low lanes of the operand into place, bitcasts to the proper
109 /// type, then shifts left and arithmetic shifts right to introduce a sign
110 /// extension.
111 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op);
113 /// Implement expansion for ZERO_EXTEND_VECTOR_INREG.
115 /// Shuffles the low lanes of the operand into place and blends zeros into
116 /// the remaining lanes, finally bitcasting to the proper type.
117 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op);
119 /// Implement expand-based legalization of ABS vector operations.
120 /// If following expanding is legal/custom then do it:
121 /// (ABS x) --> (XOR (ADD x, (SRA x, sizeof(x)-1)), (SRA x, sizeof(x)-1))
122 /// else unroll the operation.
123 SDValue ExpandABS(SDValue Op);
125 /// Expand bswap of vectors into a shuffle if legal.
126 SDValue ExpandBSWAP(SDValue Op);
128 /// Implement vselect in terms of XOR, AND, OR when blend is not
129 /// supported by the target.
130 SDValue ExpandVSELECT(SDValue Op);
131 SDValue ExpandSELECT(SDValue Op);
132 SDValue ExpandLoad(SDValue Op);
133 SDValue ExpandStore(SDValue Op);
134 SDValue ExpandFNEG(SDValue Op);
135 SDValue ExpandFSUB(SDValue Op);
136 SDValue ExpandBITREVERSE(SDValue Op);
137 SDValue ExpandCTPOP(SDValue Op);
138 SDValue ExpandCTLZ(SDValue Op);
139 SDValue ExpandCTTZ(SDValue Op);
140 SDValue ExpandFunnelShift(SDValue Op);
141 SDValue ExpandROT(SDValue Op);
142 SDValue ExpandFMINNUM_FMAXNUM(SDValue Op);
143 SDValue ExpandUADDSUBO(SDValue Op);
144 SDValue ExpandSADDSUBO(SDValue Op);
145 SDValue ExpandMULO(SDValue Op);
146 SDValue ExpandAddSubSat(SDValue Op);
147 SDValue ExpandFixedPointMul(SDValue Op);
148 SDValue ExpandStrictFPOp(SDValue Op);
150 /// Implements vector promotion.
152 /// This is essentially just bitcasting the operands to a different type and
153 /// bitcasting the result back to the original type.
154 SDValue Promote(SDValue Op);
156 /// Implements [SU]INT_TO_FP vector promotion.
158 /// This is a [zs]ext of the input operand to a larger integer type.
159 SDValue PromoteINT_TO_FP(SDValue Op);
161 /// Implements FP_TO_[SU]INT vector promotion of the result type.
163 /// It is promoted to a larger integer type. The result is then
164 /// truncated back to the original type.
165 SDValue PromoteFP_TO_INT(SDValue Op);
167 public:
168 VectorLegalizer(SelectionDAG& dag) :
169 DAG(dag), TLI(dag.getTargetLoweringInfo()) {}
171 /// Begin legalizer the vector operations in the DAG.
172 bool Run();
175 } // end anonymous namespace
177 bool VectorLegalizer::Run() {
178 // Before we start legalizing vector nodes, check if there are any vectors.
179 bool HasVectors = false;
180 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
181 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
182 // Check if the values of the nodes contain vectors. We don't need to check
183 // the operands because we are going to check their values at some point.
184 for (SDNode::value_iterator J = I->value_begin(), E = I->value_end();
185 J != E; ++J)
186 HasVectors |= J->isVector();
188 // If we found a vector node we can start the legalization.
189 if (HasVectors)
190 break;
193 // If this basic block has no vectors then no need to legalize vectors.
194 if (!HasVectors)
195 return false;
197 // The legalize process is inherently a bottom-up recursive process (users
198 // legalize their uses before themselves). Given infinite stack space, we
199 // could just start legalizing on the root and traverse the whole graph. In
200 // practice however, this causes us to run out of stack space on large basic
201 // blocks. To avoid this problem, compute an ordering of the nodes where each
202 // node is only legalized after all of its operands are legalized.
203 DAG.AssignTopologicalOrder();
204 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
205 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
206 LegalizeOp(SDValue(&*I, 0));
208 // Finally, it's possible the root changed. Get the new root.
209 SDValue OldRoot = DAG.getRoot();
210 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
211 DAG.setRoot(LegalizedNodes[OldRoot]);
213 LegalizedNodes.clear();
215 // Remove dead nodes now.
216 DAG.RemoveDeadNodes();
218 return Changed;
221 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) {
222 // Generic legalization: just pass the operand through.
223 for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i)
224 AddLegalizedOperand(Op.getValue(i), Result.getValue(i));
225 return Result.getValue(Op.getResNo());
228 SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
229 // Note that LegalizeOp may be reentered even from single-use nodes, which
230 // means that we always must cache transformed nodes.
231 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
232 if (I != LegalizedNodes.end()) return I->second;
234 SDNode* Node = Op.getNode();
236 // Legalize the operands
237 SmallVector<SDValue, 8> Ops;
238 for (const SDValue &Op : Node->op_values())
239 Ops.push_back(LegalizeOp(Op));
241 SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops),
242 Op.getResNo());
244 if (Op.getOpcode() == ISD::LOAD) {
245 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
246 ISD::LoadExtType ExtType = LD->getExtensionType();
247 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) {
248 LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: ";
249 Node->dump(&DAG));
250 switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0),
251 LD->getMemoryVT())) {
252 default: llvm_unreachable("This action is not supported yet!");
253 case TargetLowering::Legal:
254 return TranslateLegalizeResults(Op, Result);
255 case TargetLowering::Custom:
256 if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) {
257 assert(Lowered->getNumValues() == Op->getNumValues() &&
258 "Unexpected number of results");
259 if (Lowered != Result) {
260 // Make sure the new code is also legal.
261 Lowered = LegalizeOp(Lowered);
262 Changed = true;
264 return TranslateLegalizeResults(Op, Lowered);
266 LLVM_FALLTHROUGH;
267 case TargetLowering::Expand:
268 Changed = true;
269 return ExpandLoad(Op);
272 } else if (Op.getOpcode() == ISD::STORE) {
273 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
274 EVT StVT = ST->getMemoryVT();
275 MVT ValVT = ST->getValue().getSimpleValueType();
276 if (StVT.isVector() && ST->isTruncatingStore()) {
277 LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: ";
278 Node->dump(&DAG));
279 switch (TLI.getTruncStoreAction(ValVT, StVT)) {
280 default: llvm_unreachable("This action is not supported yet!");
281 case TargetLowering::Legal:
282 return TranslateLegalizeResults(Op, Result);
283 case TargetLowering::Custom: {
284 SDValue Lowered = TLI.LowerOperation(Result, DAG);
285 if (Lowered != Result) {
286 // Make sure the new code is also legal.
287 Lowered = LegalizeOp(Lowered);
288 Changed = true;
290 return TranslateLegalizeResults(Op, Lowered);
292 case TargetLowering::Expand:
293 Changed = true;
294 return ExpandStore(Op);
299 bool HasVectorValueOrOp = false;
300 for (auto J = Node->value_begin(), E = Node->value_end(); J != E; ++J)
301 HasVectorValueOrOp |= J->isVector();
302 for (const SDValue &Op : Node->op_values())
303 HasVectorValueOrOp |= Op.getValueType().isVector();
305 if (!HasVectorValueOrOp)
306 return TranslateLegalizeResults(Op, Result);
308 TargetLowering::LegalizeAction Action = TargetLowering::Legal;
309 switch (Op.getOpcode()) {
310 default:
311 return TranslateLegalizeResults(Op, Result);
312 case ISD::STRICT_FADD:
313 case ISD::STRICT_FSUB:
314 case ISD::STRICT_FMUL:
315 case ISD::STRICT_FDIV:
316 case ISD::STRICT_FREM:
317 case ISD::STRICT_FSQRT:
318 case ISD::STRICT_FMA:
319 case ISD::STRICT_FPOW:
320 case ISD::STRICT_FPOWI:
321 case ISD::STRICT_FSIN:
322 case ISD::STRICT_FCOS:
323 case ISD::STRICT_FEXP:
324 case ISD::STRICT_FEXP2:
325 case ISD::STRICT_FLOG:
326 case ISD::STRICT_FLOG10:
327 case ISD::STRICT_FLOG2:
328 case ISD::STRICT_FRINT:
329 case ISD::STRICT_FNEARBYINT:
330 case ISD::STRICT_FMAXNUM:
331 case ISD::STRICT_FMINNUM:
332 case ISD::STRICT_FCEIL:
333 case ISD::STRICT_FFLOOR:
334 case ISD::STRICT_FROUND:
335 case ISD::STRICT_FTRUNC:
336 case ISD::STRICT_FP_TO_SINT:
337 case ISD::STRICT_FP_TO_UINT:
338 case ISD::STRICT_FP_ROUND:
339 case ISD::STRICT_FP_EXTEND:
340 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
341 // If we're asked to expand a strict vector floating-point operation,
342 // by default we're going to simply unroll it. That is usually the
343 // best approach, except in the case where the resulting strict (scalar)
344 // operations would themselves use the fallback mutation to non-strict.
345 // In that specific case, just do the fallback on the vector op.
346 if (Action == TargetLowering::Expand &&
347 TLI.getStrictFPOperationAction(Node->getOpcode(),
348 Node->getValueType(0))
349 == TargetLowering::Legal) {
350 EVT EltVT = Node->getValueType(0).getVectorElementType();
351 if (TLI.getOperationAction(Node->getOpcode(), EltVT)
352 == TargetLowering::Expand &&
353 TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT)
354 == TargetLowering::Legal)
355 Action = TargetLowering::Legal;
357 break;
358 case ISD::ADD:
359 case ISD::SUB:
360 case ISD::MUL:
361 case ISD::MULHS:
362 case ISD::MULHU:
363 case ISD::SDIV:
364 case ISD::UDIV:
365 case ISD::SREM:
366 case ISD::UREM:
367 case ISD::SDIVREM:
368 case ISD::UDIVREM:
369 case ISD::FADD:
370 case ISD::FSUB:
371 case ISD::FMUL:
372 case ISD::FDIV:
373 case ISD::FREM:
374 case ISD::AND:
375 case ISD::OR:
376 case ISD::XOR:
377 case ISD::SHL:
378 case ISD::SRA:
379 case ISD::SRL:
380 case ISD::FSHL:
381 case ISD::FSHR:
382 case ISD::ROTL:
383 case ISD::ROTR:
384 case ISD::ABS:
385 case ISD::BSWAP:
386 case ISD::BITREVERSE:
387 case ISD::CTLZ:
388 case ISD::CTTZ:
389 case ISD::CTLZ_ZERO_UNDEF:
390 case ISD::CTTZ_ZERO_UNDEF:
391 case ISD::CTPOP:
392 case ISD::SELECT:
393 case ISD::VSELECT:
394 case ISD::SELECT_CC:
395 case ISD::SETCC:
396 case ISD::ZERO_EXTEND:
397 case ISD::ANY_EXTEND:
398 case ISD::TRUNCATE:
399 case ISD::SIGN_EXTEND:
400 case ISD::FP_TO_SINT:
401 case ISD::FP_TO_UINT:
402 case ISD::FNEG:
403 case ISD::FABS:
404 case ISD::FMINNUM:
405 case ISD::FMAXNUM:
406 case ISD::FMINNUM_IEEE:
407 case ISD::FMAXNUM_IEEE:
408 case ISD::FMINIMUM:
409 case ISD::FMAXIMUM:
410 case ISD::FCOPYSIGN:
411 case ISD::FSQRT:
412 case ISD::FSIN:
413 case ISD::FCOS:
414 case ISD::FPOWI:
415 case ISD::FPOW:
416 case ISD::FLOG:
417 case ISD::FLOG2:
418 case ISD::FLOG10:
419 case ISD::FEXP:
420 case ISD::FEXP2:
421 case ISD::FCEIL:
422 case ISD::FTRUNC:
423 case ISD::FRINT:
424 case ISD::FNEARBYINT:
425 case ISD::FROUND:
426 case ISD::FFLOOR:
427 case ISD::FP_ROUND:
428 case ISD::FP_EXTEND:
429 case ISD::FMA:
430 case ISD::SIGN_EXTEND_INREG:
431 case ISD::ANY_EXTEND_VECTOR_INREG:
432 case ISD::SIGN_EXTEND_VECTOR_INREG:
433 case ISD::ZERO_EXTEND_VECTOR_INREG:
434 case ISD::SMIN:
435 case ISD::SMAX:
436 case ISD::UMIN:
437 case ISD::UMAX:
438 case ISD::SMUL_LOHI:
439 case ISD::UMUL_LOHI:
440 case ISD::SADDO:
441 case ISD::UADDO:
442 case ISD::SSUBO:
443 case ISD::USUBO:
444 case ISD::SMULO:
445 case ISD::UMULO:
446 case ISD::FCANONICALIZE:
447 case ISD::SADDSAT:
448 case ISD::UADDSAT:
449 case ISD::SSUBSAT:
450 case ISD::USUBSAT:
451 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
452 break;
453 case ISD::SMULFIX:
454 case ISD::SMULFIXSAT:
455 case ISD::UMULFIX:
456 case ISD::UMULFIXSAT: {
457 unsigned Scale = Node->getConstantOperandVal(2);
458 Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
459 Node->getValueType(0), Scale);
460 break;
462 case ISD::SINT_TO_FP:
463 case ISD::UINT_TO_FP:
464 case ISD::VECREDUCE_ADD:
465 case ISD::VECREDUCE_MUL:
466 case ISD::VECREDUCE_AND:
467 case ISD::VECREDUCE_OR:
468 case ISD::VECREDUCE_XOR:
469 case ISD::VECREDUCE_SMAX:
470 case ISD::VECREDUCE_SMIN:
471 case ISD::VECREDUCE_UMAX:
472 case ISD::VECREDUCE_UMIN:
473 case ISD::VECREDUCE_FADD:
474 case ISD::VECREDUCE_FMUL:
475 case ISD::VECREDUCE_FMAX:
476 case ISD::VECREDUCE_FMIN:
477 Action = TLI.getOperationAction(Node->getOpcode(),
478 Node->getOperand(0).getValueType());
479 break;
482 LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG));
484 switch (Action) {
485 default: llvm_unreachable("This action is not supported yet!");
486 case TargetLowering::Promote:
487 Result = Promote(Op);
488 Changed = true;
489 break;
490 case TargetLowering::Legal:
491 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
492 break;
493 case TargetLowering::Custom: {
494 LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
495 if (SDValue Tmp1 = TLI.LowerOperation(Op, DAG)) {
496 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
497 Result = Tmp1;
498 break;
500 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
501 LLVM_FALLTHROUGH;
503 case TargetLowering::Expand:
504 Result = Expand(Op);
507 // Make sure that the generated code is itself legal.
508 if (Result != Op) {
509 Result = LegalizeOp(Result);
510 Changed = true;
513 // Note that LegalizeOp may be reentered even from single-use nodes, which
514 // means that we always must cache transformed nodes.
515 AddLegalizedOperand(Op, Result);
516 return Result;
519 SDValue VectorLegalizer::Promote(SDValue Op) {
520 // For a few operations there is a specific concept for promotion based on
521 // the operand's type.
522 switch (Op.getOpcode()) {
523 case ISD::SINT_TO_FP:
524 case ISD::UINT_TO_FP:
525 // "Promote" the operation by extending the operand.
526 return PromoteINT_TO_FP(Op);
527 case ISD::FP_TO_UINT:
528 case ISD::FP_TO_SINT:
529 // Promote the operation by extending the operand.
530 return PromoteFP_TO_INT(Op);
533 // There are currently two cases of vector promotion:
534 // 1) Bitcasting a vector of integers to a different type to a vector of the
535 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
536 // 2) Extending a vector of floats to a vector of the same number of larger
537 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
538 MVT VT = Op.getSimpleValueType();
539 assert(Op.getNode()->getNumValues() == 1 &&
540 "Can't promote a vector with multiple results!");
541 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
542 SDLoc dl(Op);
543 SmallVector<SDValue, 4> Operands(Op.getNumOperands());
545 for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
546 if (Op.getOperand(j).getValueType().isVector())
547 if (Op.getOperand(j)
548 .getValueType()
549 .getVectorElementType()
550 .isFloatingPoint() &&
551 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
552 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j));
553 else
554 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j));
555 else
556 Operands[j] = Op.getOperand(j);
559 Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags());
560 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
561 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
562 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
563 return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl));
564 else
565 return DAG.getNode(ISD::BITCAST, dl, VT, Op);
568 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) {
569 // INT_TO_FP operations may require the input operand be promoted even
570 // when the type is otherwise legal.
571 MVT VT = Op.getOperand(0).getSimpleValueType();
572 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
573 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
574 "Vectors have different number of elements!");
576 SDLoc dl(Op);
577 SmallVector<SDValue, 4> Operands(Op.getNumOperands());
579 unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND :
580 ISD::SIGN_EXTEND;
581 for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
582 if (Op.getOperand(j).getValueType().isVector())
583 Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j));
584 else
585 Operands[j] = Op.getOperand(j);
588 return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands);
591 // For FP_TO_INT we promote the result type to a vector type with wider
592 // elements and then truncate the result. This is different from the default
593 // PromoteVector which uses bitcast to promote thus assumning that the
594 // promoted vector type has the same overall size.
595 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op) {
596 MVT VT = Op.getSimpleValueType();
597 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
598 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
599 "Vectors have different number of elements!");
601 unsigned NewOpc = Op->getOpcode();
602 // Change FP_TO_UINT to FP_TO_SINT if possible.
603 // TODO: Should we only do this if FP_TO_UINT itself isn't legal?
604 if (NewOpc == ISD::FP_TO_UINT &&
605 TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
606 NewOpc = ISD::FP_TO_SINT;
608 SDLoc dl(Op);
609 SDValue Promoted = DAG.getNode(NewOpc, dl, NVT, Op.getOperand(0));
611 // Assert that the converted value fits in the original type. If it doesn't
612 // (eg: because the value being converted is too big), then the result of the
613 // original operation was undefined anyway, so the assert is still correct.
614 Promoted = DAG.getNode(Op->getOpcode() == ISD::FP_TO_UINT ? ISD::AssertZext
615 : ISD::AssertSext,
616 dl, NVT, Promoted,
617 DAG.getValueType(VT.getScalarType()));
618 return DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted);
621 SDValue VectorLegalizer::ExpandLoad(SDValue Op) {
622 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
624 EVT SrcVT = LD->getMemoryVT();
625 EVT SrcEltVT = SrcVT.getScalarType();
626 unsigned NumElem = SrcVT.getVectorNumElements();
628 SDValue NewChain;
629 SDValue Value;
630 if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) {
631 SDLoc dl(Op);
633 SmallVector<SDValue, 8> Vals;
634 SmallVector<SDValue, 8> LoadChains;
636 EVT DstEltVT = LD->getValueType(0).getScalarType();
637 SDValue Chain = LD->getChain();
638 SDValue BasePTR = LD->getBasePtr();
639 ISD::LoadExtType ExtType = LD->getExtensionType();
641 // When elements in a vector is not byte-addressable, we cannot directly
642 // load each element by advancing pointer, which could only address bytes.
643 // Instead, we load all significant words, mask bits off, and concatenate
644 // them to form each element. Finally, they are extended to destination
645 // scalar type to build the destination vector.
646 EVT WideVT = TLI.getPointerTy(DAG.getDataLayout());
648 assert(WideVT.isRound() &&
649 "Could not handle the sophisticated case when the widest integer is"
650 " not power of 2.");
651 assert(WideVT.bitsGE(SrcEltVT) &&
652 "Type is not legalized?");
654 unsigned WideBytes = WideVT.getStoreSize();
655 unsigned Offset = 0;
656 unsigned RemainingBytes = SrcVT.getStoreSize();
657 SmallVector<SDValue, 8> LoadVals;
658 while (RemainingBytes > 0) {
659 SDValue ScalarLoad;
660 unsigned LoadBytes = WideBytes;
662 if (RemainingBytes >= LoadBytes) {
663 ScalarLoad =
664 DAG.getLoad(WideVT, dl, Chain, BasePTR,
665 LD->getPointerInfo().getWithOffset(Offset),
666 MinAlign(LD->getAlignment(), Offset),
667 LD->getMemOperand()->getFlags(), LD->getAAInfo());
668 } else {
669 EVT LoadVT = WideVT;
670 while (RemainingBytes < LoadBytes) {
671 LoadBytes >>= 1; // Reduce the load size by half.
672 LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3);
674 ScalarLoad =
675 DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR,
676 LD->getPointerInfo().getWithOffset(Offset), LoadVT,
677 MinAlign(LD->getAlignment(), Offset),
678 LD->getMemOperand()->getFlags(), LD->getAAInfo());
681 RemainingBytes -= LoadBytes;
682 Offset += LoadBytes;
684 BasePTR = DAG.getObjectPtrOffset(dl, BasePTR, LoadBytes);
686 LoadVals.push_back(ScalarLoad.getValue(0));
687 LoadChains.push_back(ScalarLoad.getValue(1));
690 unsigned BitOffset = 0;
691 unsigned WideIdx = 0;
692 unsigned WideBits = WideVT.getSizeInBits();
694 // Extract bits, pack and extend/trunc them into destination type.
695 unsigned SrcEltBits = SrcEltVT.getSizeInBits();
696 SDValue SrcEltBitMask = DAG.getConstant(
697 APInt::getLowBitsSet(WideBits, SrcEltBits), dl, WideVT);
699 for (unsigned Idx = 0; Idx != NumElem; ++Idx) {
700 assert(BitOffset < WideBits && "Unexpected offset!");
702 SDValue ShAmt = DAG.getConstant(
703 BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
704 SDValue Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt);
706 BitOffset += SrcEltBits;
707 if (BitOffset >= WideBits) {
708 WideIdx++;
709 BitOffset -= WideBits;
710 if (BitOffset > 0) {
711 ShAmt = DAG.getConstant(
712 SrcEltBits - BitOffset, dl,
713 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
714 SDValue Hi =
715 DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt);
716 Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi);
720 Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask);
722 switch (ExtType) {
723 default: llvm_unreachable("Unknown extended-load op!");
724 case ISD::EXTLOAD:
725 Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT);
726 break;
727 case ISD::ZEXTLOAD:
728 Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT);
729 break;
730 case ISD::SEXTLOAD:
731 ShAmt =
732 DAG.getConstant(WideBits - SrcEltBits, dl,
733 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
734 Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt);
735 Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt);
736 Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT);
737 break;
739 Vals.push_back(Lo);
742 NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
743 Value = DAG.getBuildVector(Op.getNode()->getValueType(0), dl, Vals);
744 } else {
745 SDValue Scalarized = TLI.scalarizeVectorLoad(LD, DAG);
746 // Skip past MERGE_VALUE node if known.
747 if (Scalarized->getOpcode() == ISD::MERGE_VALUES) {
748 NewChain = Scalarized.getOperand(1);
749 Value = Scalarized.getOperand(0);
750 } else {
751 NewChain = Scalarized.getValue(1);
752 Value = Scalarized.getValue(0);
756 AddLegalizedOperand(Op.getValue(0), Value);
757 AddLegalizedOperand(Op.getValue(1), NewChain);
759 return (Op.getResNo() ? NewChain : Value);
762 SDValue VectorLegalizer::ExpandStore(SDValue Op) {
763 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
764 SDValue TF = TLI.scalarizeVectorStore(ST, DAG);
765 AddLegalizedOperand(Op, TF);
766 return TF;
769 SDValue VectorLegalizer::Expand(SDValue Op) {
770 switch (Op->getOpcode()) {
771 case ISD::SIGN_EXTEND_INREG:
772 return ExpandSEXTINREG(Op);
773 case ISD::ANY_EXTEND_VECTOR_INREG:
774 return ExpandANY_EXTEND_VECTOR_INREG(Op);
775 case ISD::SIGN_EXTEND_VECTOR_INREG:
776 return ExpandSIGN_EXTEND_VECTOR_INREG(Op);
777 case ISD::ZERO_EXTEND_VECTOR_INREG:
778 return ExpandZERO_EXTEND_VECTOR_INREG(Op);
779 case ISD::BSWAP:
780 return ExpandBSWAP(Op);
781 case ISD::VSELECT:
782 return ExpandVSELECT(Op);
783 case ISD::SELECT:
784 return ExpandSELECT(Op);
785 case ISD::FP_TO_UINT:
786 return ExpandFP_TO_UINT(Op);
787 case ISD::UINT_TO_FP:
788 return ExpandUINT_TO_FLOAT(Op);
789 case ISD::FNEG:
790 return ExpandFNEG(Op);
791 case ISD::FSUB:
792 return ExpandFSUB(Op);
793 case ISD::SETCC:
794 return UnrollVSETCC(Op);
795 case ISD::ABS:
796 return ExpandABS(Op);
797 case ISD::BITREVERSE:
798 return ExpandBITREVERSE(Op);
799 case ISD::CTPOP:
800 return ExpandCTPOP(Op);
801 case ISD::CTLZ:
802 case ISD::CTLZ_ZERO_UNDEF:
803 return ExpandCTLZ(Op);
804 case ISD::CTTZ:
805 case ISD::CTTZ_ZERO_UNDEF:
806 return ExpandCTTZ(Op);
807 case ISD::FSHL:
808 case ISD::FSHR:
809 return ExpandFunnelShift(Op);
810 case ISD::ROTL:
811 case ISD::ROTR:
812 return ExpandROT(Op);
813 case ISD::FMINNUM:
814 case ISD::FMAXNUM:
815 return ExpandFMINNUM_FMAXNUM(Op);
816 case ISD::UADDO:
817 case ISD::USUBO:
818 return ExpandUADDSUBO(Op);
819 case ISD::SADDO:
820 case ISD::SSUBO:
821 return ExpandSADDSUBO(Op);
822 case ISD::UMULO:
823 case ISD::SMULO:
824 return ExpandMULO(Op);
825 case ISD::USUBSAT:
826 case ISD::SSUBSAT:
827 case ISD::UADDSAT:
828 case ISD::SADDSAT:
829 return ExpandAddSubSat(Op);
830 case ISD::SMULFIX:
831 case ISD::UMULFIX:
832 return ExpandFixedPointMul(Op);
833 case ISD::SMULFIXSAT:
834 case ISD::UMULFIXSAT:
835 // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly
836 // why. Maybe it results in worse codegen compared to the unroll for some
837 // targets? This should probably be investigated. And if we still prefer to
838 // unroll an explanation could be helpful.
839 return DAG.UnrollVectorOp(Op.getNode());
840 case ISD::STRICT_FADD:
841 case ISD::STRICT_FSUB:
842 case ISD::STRICT_FMUL:
843 case ISD::STRICT_FDIV:
844 case ISD::STRICT_FREM:
845 case ISD::STRICT_FSQRT:
846 case ISD::STRICT_FMA:
847 case ISD::STRICT_FPOW:
848 case ISD::STRICT_FPOWI:
849 case ISD::STRICT_FSIN:
850 case ISD::STRICT_FCOS:
851 case ISD::STRICT_FEXP:
852 case ISD::STRICT_FEXP2:
853 case ISD::STRICT_FLOG:
854 case ISD::STRICT_FLOG10:
855 case ISD::STRICT_FLOG2:
856 case ISD::STRICT_FRINT:
857 case ISD::STRICT_FNEARBYINT:
858 case ISD::STRICT_FMAXNUM:
859 case ISD::STRICT_FMINNUM:
860 case ISD::STRICT_FCEIL:
861 case ISD::STRICT_FFLOOR:
862 case ISD::STRICT_FROUND:
863 case ISD::STRICT_FTRUNC:
864 case ISD::STRICT_FP_TO_SINT:
865 case ISD::STRICT_FP_TO_UINT:
866 return ExpandStrictFPOp(Op);
867 case ISD::VECREDUCE_ADD:
868 case ISD::VECREDUCE_MUL:
869 case ISD::VECREDUCE_AND:
870 case ISD::VECREDUCE_OR:
871 case ISD::VECREDUCE_XOR:
872 case ISD::VECREDUCE_SMAX:
873 case ISD::VECREDUCE_SMIN:
874 case ISD::VECREDUCE_UMAX:
875 case ISD::VECREDUCE_UMIN:
876 case ISD::VECREDUCE_FADD:
877 case ISD::VECREDUCE_FMUL:
878 case ISD::VECREDUCE_FMAX:
879 case ISD::VECREDUCE_FMIN:
880 return TLI.expandVecReduce(Op.getNode(), DAG);
881 default:
882 return DAG.UnrollVectorOp(Op.getNode());
886 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) {
887 // Lower a select instruction where the condition is a scalar and the
888 // operands are vectors. Lower this select to VSELECT and implement it
889 // using XOR AND OR. The selector bit is broadcasted.
890 EVT VT = Op.getValueType();
891 SDLoc DL(Op);
893 SDValue Mask = Op.getOperand(0);
894 SDValue Op1 = Op.getOperand(1);
895 SDValue Op2 = Op.getOperand(2);
897 assert(VT.isVector() && !Mask.getValueType().isVector()
898 && Op1.getValueType() == Op2.getValueType() && "Invalid type");
900 // If we can't even use the basic vector operations of
901 // AND,OR,XOR, we will have to scalarize the op.
902 // Notice that the operation may be 'promoted' which means that it is
903 // 'bitcasted' to another type which is handled.
904 // Also, we need to be able to construct a splat vector using BUILD_VECTOR.
905 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
906 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
907 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
908 TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand)
909 return DAG.UnrollVectorOp(Op.getNode());
911 // Generate a mask operand.
912 EVT MaskTy = VT.changeVectorElementTypeToInteger();
914 // What is the size of each element in the vector mask.
915 EVT BitTy = MaskTy.getScalarType();
917 Mask = DAG.getSelect(DL, BitTy, Mask,
918 DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL,
919 BitTy),
920 DAG.getConstant(0, DL, BitTy));
922 // Broadcast the mask so that the entire vector is all-one or all zero.
923 Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask);
925 // Bitcast the operands to be the same type as the mask.
926 // This is needed when we select between FP types because
927 // the mask is a vector of integers.
928 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
929 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
931 SDValue AllOnes = DAG.getConstant(
932 APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy);
933 SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes);
935 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
936 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
937 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
938 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
941 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) {
942 EVT VT = Op.getValueType();
944 // Make sure that the SRA and SHL instructions are available.
945 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
946 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
947 return DAG.UnrollVectorOp(Op.getNode());
949 SDLoc DL(Op);
950 EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT();
952 unsigned BW = VT.getScalarSizeInBits();
953 unsigned OrigBW = OrigTy.getScalarSizeInBits();
954 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
956 Op = Op.getOperand(0);
957 Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz);
958 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
961 // Generically expand a vector anyext in register to a shuffle of the relevant
962 // lanes into the appropriate locations, with other lanes left undef.
963 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) {
964 SDLoc DL(Op);
965 EVT VT = Op.getValueType();
966 int NumElements = VT.getVectorNumElements();
967 SDValue Src = Op.getOperand(0);
968 EVT SrcVT = Src.getValueType();
969 int NumSrcElements = SrcVT.getVectorNumElements();
971 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
972 // into a larger vector type.
973 if (SrcVT.bitsLE(VT)) {
974 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
975 "ANY_EXTEND_VECTOR_INREG vector size mismatch");
976 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
977 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
978 NumSrcElements);
979 Src = DAG.getNode(
980 ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), Src,
981 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
984 // Build a base mask of undef shuffles.
985 SmallVector<int, 16> ShuffleMask;
986 ShuffleMask.resize(NumSrcElements, -1);
988 // Place the extended lanes into the correct locations.
989 int ExtLaneScale = NumSrcElements / NumElements;
990 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
991 for (int i = 0; i < NumElements; ++i)
992 ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
994 return DAG.getNode(
995 ISD::BITCAST, DL, VT,
996 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
999 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) {
1000 SDLoc DL(Op);
1001 EVT VT = Op.getValueType();
1002 SDValue Src = Op.getOperand(0);
1003 EVT SrcVT = Src.getValueType();
1005 // First build an any-extend node which can be legalized above when we
1006 // recurse through it.
1007 Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src);
1009 // Now we need sign extend. Do this by shifting the elements. Even if these
1010 // aren't legal operations, they have a better chance of being legalized
1011 // without full scalarization than the sign extension does.
1012 unsigned EltWidth = VT.getScalarSizeInBits();
1013 unsigned SrcEltWidth = SrcVT.getScalarSizeInBits();
1014 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
1015 return DAG.getNode(ISD::SRA, DL, VT,
1016 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
1017 ShiftAmount);
1020 // Generically expand a vector zext in register to a shuffle of the relevant
1021 // lanes into the appropriate locations, a blend of zero into the high bits,
1022 // and a bitcast to the wider element type.
1023 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) {
1024 SDLoc DL(Op);
1025 EVT VT = Op.getValueType();
1026 int NumElements = VT.getVectorNumElements();
1027 SDValue Src = Op.getOperand(0);
1028 EVT SrcVT = Src.getValueType();
1029 int NumSrcElements = SrcVT.getVectorNumElements();
1031 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
1032 // into a larger vector type.
1033 if (SrcVT.bitsLE(VT)) {
1034 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
1035 "ZERO_EXTEND_VECTOR_INREG vector size mismatch");
1036 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
1037 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
1038 NumSrcElements);
1039 Src = DAG.getNode(
1040 ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), Src,
1041 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
1044 // Build up a zero vector to blend into this one.
1045 SDValue Zero = DAG.getConstant(0, DL, SrcVT);
1047 // Shuffle the incoming lanes into the correct position, and pull all other
1048 // lanes from the zero vector.
1049 SmallVector<int, 16> ShuffleMask;
1050 ShuffleMask.reserve(NumSrcElements);
1051 for (int i = 0; i < NumSrcElements; ++i)
1052 ShuffleMask.push_back(i);
1054 int ExtLaneScale = NumSrcElements / NumElements;
1055 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
1056 for (int i = 0; i < NumElements; ++i)
1057 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
1059 return DAG.getNode(ISD::BITCAST, DL, VT,
1060 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
1063 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) {
1064 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
1065 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
1066 for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
1067 ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
1070 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) {
1071 EVT VT = Op.getValueType();
1073 // Generate a byte wise shuffle mask for the BSWAP.
1074 SmallVector<int, 16> ShuffleMask;
1075 createBSWAPShuffleMask(VT, ShuffleMask);
1076 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
1078 // Only emit a shuffle if the mask is legal.
1079 if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT))
1080 return DAG.UnrollVectorOp(Op.getNode());
1082 SDLoc DL(Op);
1083 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
1084 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask);
1085 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
1088 SDValue VectorLegalizer::ExpandBITREVERSE(SDValue Op) {
1089 EVT VT = Op.getValueType();
1091 // If we have the scalar operation, it's probably cheaper to unroll it.
1092 if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType()))
1093 return DAG.UnrollVectorOp(Op.getNode());
1095 // If the vector element width is a whole number of bytes, test if its legal
1096 // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
1097 // vector. This greatly reduces the number of bit shifts necessary.
1098 unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
1099 if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) {
1100 SmallVector<int, 16> BSWAPMask;
1101 createBSWAPShuffleMask(VT, BSWAPMask);
1103 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size());
1104 if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) &&
1105 (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) ||
1106 (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) &&
1107 TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) &&
1108 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) &&
1109 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) {
1110 SDLoc DL(Op);
1111 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
1112 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
1113 BSWAPMask);
1114 Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op);
1115 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
1119 // If we have the appropriate vector bit operations, it is better to use them
1120 // than unrolling and expanding each component.
1121 if (!TLI.isOperationLegalOrCustom(ISD::SHL, VT) ||
1122 !TLI.isOperationLegalOrCustom(ISD::SRL, VT) ||
1123 !TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
1124 !TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT))
1125 return DAG.UnrollVectorOp(Op.getNode());
1127 // Let LegalizeDAG handle this later.
1128 return Op;
1131 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) {
1132 // Implement VSELECT in terms of XOR, AND, OR
1133 // on platforms which do not support blend natively.
1134 SDLoc DL(Op);
1136 SDValue Mask = Op.getOperand(0);
1137 SDValue Op1 = Op.getOperand(1);
1138 SDValue Op2 = Op.getOperand(2);
1140 EVT VT = Mask.getValueType();
1142 // If we can't even use the basic vector operations of
1143 // AND,OR,XOR, we will have to scalarize the op.
1144 // Notice that the operation may be 'promoted' which means that it is
1145 // 'bitcasted' to another type which is handled.
1146 // This operation also isn't safe with AND, OR, XOR when the boolean
1147 // type is 0/1 as we need an all ones vector constant to mask with.
1148 // FIXME: Sign extend 1 to all ones if thats legal on the target.
1149 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
1150 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
1151 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
1152 TLI.getBooleanContents(Op1.getValueType()) !=
1153 TargetLowering::ZeroOrNegativeOneBooleanContent)
1154 return DAG.UnrollVectorOp(Op.getNode());
1156 // If the mask and the type are different sizes, unroll the vector op. This
1157 // can occur when getSetCCResultType returns something that is different in
1158 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
1159 if (VT.getSizeInBits() != Op1.getValueSizeInBits())
1160 return DAG.UnrollVectorOp(Op.getNode());
1162 // Bitcast the operands to be the same type as the mask.
1163 // This is needed when we select between FP types because
1164 // the mask is a vector of integers.
1165 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
1166 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
1168 SDValue AllOnes = DAG.getConstant(
1169 APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT);
1170 SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes);
1172 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
1173 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
1174 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
1175 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
1178 SDValue VectorLegalizer::ExpandABS(SDValue Op) {
1179 // Attempt to expand using TargetLowering.
1180 SDValue Result;
1181 if (TLI.expandABS(Op.getNode(), Result, DAG))
1182 return Result;
1184 // Otherwise go ahead and unroll.
1185 return DAG.UnrollVectorOp(Op.getNode());
1188 SDValue VectorLegalizer::ExpandFP_TO_UINT(SDValue Op) {
1189 // Attempt to expand using TargetLowering.
1190 SDValue Result, Chain;
1191 if (TLI.expandFP_TO_UINT(Op.getNode(), Result, Chain, DAG)) {
1192 if (Op.getNode()->isStrictFPOpcode())
1193 // Relink the chain
1194 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Chain);
1195 return Result;
1198 // Otherwise go ahead and unroll.
1199 return DAG.UnrollVectorOp(Op.getNode());
1202 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) {
1203 EVT VT = Op.getOperand(0).getValueType();
1204 SDLoc DL(Op);
1206 // Attempt to expand using TargetLowering.
1207 SDValue Result;
1208 if (TLI.expandUINT_TO_FP(Op.getNode(), Result, DAG))
1209 return Result;
1211 // Make sure that the SINT_TO_FP and SRL instructions are available.
1212 if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand ||
1213 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand)
1214 return DAG.UnrollVectorOp(Op.getNode());
1216 unsigned BW = VT.getScalarSizeInBits();
1217 assert((BW == 64 || BW == 32) &&
1218 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
1220 SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT);
1222 // Constants to clear the upper part of the word.
1223 // Notice that we can also use SHL+SHR, but using a constant is slightly
1224 // faster on x86.
1225 uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF;
1226 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
1228 // Two to the power of half-word-size.
1229 SDValue TWOHW = DAG.getConstantFP(1ULL << (BW / 2), DL, Op.getValueType());
1231 // Clear upper part of LO, lower HI
1232 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord);
1233 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask);
1235 // Convert hi and lo to floats
1236 // Convert the hi part back to the upper values
1237 // TODO: Can any fast-math-flags be set on these nodes?
1238 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI);
1239 fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW);
1240 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO);
1242 // Add the two halves
1243 return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO);
1246 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) {
1247 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) {
1248 SDLoc DL(Op);
1249 SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType());
1250 // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
1251 return DAG.getNode(ISD::FSUB, DL, Op.getValueType(),
1252 Zero, Op.getOperand(0));
1254 return DAG.UnrollVectorOp(Op.getNode());
1257 SDValue VectorLegalizer::ExpandFSUB(SDValue Op) {
1258 // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal,
1259 // we can defer this to operation legalization where it will be lowered as
1260 // a+(-b).
1261 EVT VT = Op.getValueType();
1262 if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
1263 TLI.isOperationLegalOrCustom(ISD::FADD, VT))
1264 return Op; // Defer to LegalizeDAG
1266 return DAG.UnrollVectorOp(Op.getNode());
1269 SDValue VectorLegalizer::ExpandCTPOP(SDValue Op) {
1270 SDValue Result;
1271 if (TLI.expandCTPOP(Op.getNode(), Result, DAG))
1272 return Result;
1274 return DAG.UnrollVectorOp(Op.getNode());
1277 SDValue VectorLegalizer::ExpandCTLZ(SDValue Op) {
1278 SDValue Result;
1279 if (TLI.expandCTLZ(Op.getNode(), Result, DAG))
1280 return Result;
1282 return DAG.UnrollVectorOp(Op.getNode());
1285 SDValue VectorLegalizer::ExpandCTTZ(SDValue Op) {
1286 SDValue Result;
1287 if (TLI.expandCTTZ(Op.getNode(), Result, DAG))
1288 return Result;
1290 return DAG.UnrollVectorOp(Op.getNode());
1293 SDValue VectorLegalizer::ExpandFunnelShift(SDValue Op) {
1294 SDValue Result;
1295 if (TLI.expandFunnelShift(Op.getNode(), Result, DAG))
1296 return Result;
1298 return DAG.UnrollVectorOp(Op.getNode());
1301 SDValue VectorLegalizer::ExpandROT(SDValue Op) {
1302 SDValue Result;
1303 if (TLI.expandROT(Op.getNode(), Result, DAG))
1304 return Result;
1306 return DAG.UnrollVectorOp(Op.getNode());
1309 SDValue VectorLegalizer::ExpandFMINNUM_FMAXNUM(SDValue Op) {
1310 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Op.getNode(), DAG))
1311 return Expanded;
1312 return DAG.UnrollVectorOp(Op.getNode());
1315 SDValue VectorLegalizer::ExpandUADDSUBO(SDValue Op) {
1316 SDValue Result, Overflow;
1317 TLI.expandUADDSUBO(Op.getNode(), Result, Overflow, DAG);
1319 if (Op.getResNo() == 0) {
1320 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Overflow));
1321 return Result;
1322 } else {
1323 AddLegalizedOperand(Op.getValue(0), LegalizeOp(Result));
1324 return Overflow;
1328 SDValue VectorLegalizer::ExpandSADDSUBO(SDValue Op) {
1329 SDValue Result, Overflow;
1330 TLI.expandSADDSUBO(Op.getNode(), Result, Overflow, DAG);
1332 if (Op.getResNo() == 0) {
1333 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Overflow));
1334 return Result;
1335 } else {
1336 AddLegalizedOperand(Op.getValue(0), LegalizeOp(Result));
1337 return Overflow;
1341 SDValue VectorLegalizer::ExpandMULO(SDValue Op) {
1342 SDValue Result, Overflow;
1343 if (!TLI.expandMULO(Op.getNode(), Result, Overflow, DAG))
1344 std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Op.getNode());
1346 if (Op.getResNo() == 0) {
1347 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Overflow));
1348 return Result;
1349 } else {
1350 AddLegalizedOperand(Op.getValue(0), LegalizeOp(Result));
1351 return Overflow;
1355 SDValue VectorLegalizer::ExpandAddSubSat(SDValue Op) {
1356 if (SDValue Expanded = TLI.expandAddSubSat(Op.getNode(), DAG))
1357 return Expanded;
1358 return DAG.UnrollVectorOp(Op.getNode());
1361 SDValue VectorLegalizer::ExpandFixedPointMul(SDValue Op) {
1362 if (SDValue Expanded = TLI.expandFixedPointMul(Op.getNode(), DAG))
1363 return Expanded;
1364 return DAG.UnrollVectorOp(Op.getNode());
1367 SDValue VectorLegalizer::ExpandStrictFPOp(SDValue Op) {
1368 EVT VT = Op.getValueType();
1369 EVT EltVT = VT.getVectorElementType();
1370 unsigned NumElems = VT.getVectorNumElements();
1371 unsigned NumOpers = Op.getNumOperands();
1372 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1373 EVT ValueVTs[] = {EltVT, MVT::Other};
1374 SDValue Chain = Op.getOperand(0);
1375 SDLoc dl(Op);
1377 SmallVector<SDValue, 32> OpValues;
1378 SmallVector<SDValue, 32> OpChains;
1379 for (unsigned i = 0; i < NumElems; ++i) {
1380 SmallVector<SDValue, 4> Opers;
1381 SDValue Idx = DAG.getConstant(i, dl,
1382 TLI.getVectorIdxTy(DAG.getDataLayout()));
1384 // The Chain is the first operand.
1385 Opers.push_back(Chain);
1387 // Now process the remaining operands.
1388 for (unsigned j = 1; j < NumOpers; ++j) {
1389 SDValue Oper = Op.getOperand(j);
1390 EVT OperVT = Oper.getValueType();
1392 if (OperVT.isVector())
1393 Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
1394 OperVT.getVectorElementType(), Oper, Idx);
1396 Opers.push_back(Oper);
1399 SDValue ScalarOp = DAG.getNode(Op->getOpcode(), dl, ValueVTs, Opers);
1401 OpValues.push_back(ScalarOp.getValue(0));
1402 OpChains.push_back(ScalarOp.getValue(1));
1405 SDValue Result = DAG.getBuildVector(VT, dl, OpValues);
1406 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains);
1408 AddLegalizedOperand(Op.getValue(0), Result);
1409 AddLegalizedOperand(Op.getValue(1), NewChain);
1411 return Op.getResNo() ? NewChain : Result;
1414 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) {
1415 EVT VT = Op.getValueType();
1416 unsigned NumElems = VT.getVectorNumElements();
1417 EVT EltVT = VT.getVectorElementType();
1418 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2);
1419 EVT TmpEltVT = LHS.getValueType().getVectorElementType();
1420 SDLoc dl(Op);
1421 SmallVector<SDValue, 8> Ops(NumElems);
1422 for (unsigned i = 0; i < NumElems; ++i) {
1423 SDValue LHSElem = DAG.getNode(
1424 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
1425 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1426 SDValue RHSElem = DAG.getNode(
1427 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
1428 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1429 Ops[i] = DAG.getNode(ISD::SETCC, dl,
1430 TLI.getSetCCResultType(DAG.getDataLayout(),
1431 *DAG.getContext(), TmpEltVT),
1432 LHSElem, RHSElem, CC);
1433 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i],
1434 DAG.getConstant(APInt::getAllOnesValue
1435 (EltVT.getSizeInBits()), dl, EltVT),
1436 DAG.getConstant(0, dl, EltVT));
1438 return DAG.getBuildVector(VT, dl, Ops);
1441 bool SelectionDAG::LegalizeVectors() {
1442 return VectorLegalizer(*this).Run();