[x86] fix assert with horizontal math + broadcast of vector (PR43402)
[llvm-core.git] / lib / CodeGen / SelectionDAG / ScheduleDAGVLIW.cpp
blobab06b55b49fdda9404458ed8f02abb3948edfb1e
1 //===- ScheduleDAGVLIW.cpp - SelectionDAG list scheduler for VLIW -*- C++ -*-=//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements a top-down list scheduler, using standard algorithms.
10 // The basic approach uses a priority queue of available nodes to schedule.
11 // One at a time, nodes are taken from the priority queue (thus in priority
12 // order), checked for legality to schedule, and emitted if legal.
14 // Nodes may not be legal to schedule either due to structural hazards (e.g.
15 // pipeline or resource constraints) or because an input to the instruction has
16 // not completed execution.
18 //===----------------------------------------------------------------------===//
20 #include "ScheduleDAGSDNodes.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/LatencyPriorityQueue.h"
23 #include "llvm/CodeGen/ResourcePriorityQueue.h"
24 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
25 #include "llvm/CodeGen/SchedulerRegistry.h"
26 #include "llvm/CodeGen/SelectionDAGISel.h"
27 #include "llvm/CodeGen/TargetInstrInfo.h"
28 #include "llvm/CodeGen/TargetRegisterInfo.h"
29 #include "llvm/CodeGen/TargetSubtargetInfo.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include <climits>
35 using namespace llvm;
37 #define DEBUG_TYPE "pre-RA-sched"
39 STATISTIC(NumNoops , "Number of noops inserted");
40 STATISTIC(NumStalls, "Number of pipeline stalls");
42 static RegisterScheduler
43 VLIWScheduler("vliw-td", "VLIW scheduler",
44 createVLIWDAGScheduler);
46 namespace {
47 //===----------------------------------------------------------------------===//
48 /// ScheduleDAGVLIW - The actual DFA list scheduler implementation. This
49 /// supports / top-down scheduling.
50 ///
51 class ScheduleDAGVLIW : public ScheduleDAGSDNodes {
52 private:
53 /// AvailableQueue - The priority queue to use for the available SUnits.
54 ///
55 SchedulingPriorityQueue *AvailableQueue;
57 /// PendingQueue - This contains all of the instructions whose operands have
58 /// been issued, but their results are not ready yet (due to the latency of
59 /// the operation). Once the operands become available, the instruction is
60 /// added to the AvailableQueue.
61 std::vector<SUnit*> PendingQueue;
63 /// HazardRec - The hazard recognizer to use.
64 ScheduleHazardRecognizer *HazardRec;
66 /// AA - AliasAnalysis for making memory reference queries.
67 AliasAnalysis *AA;
69 public:
70 ScheduleDAGVLIW(MachineFunction &mf,
71 AliasAnalysis *aa,
72 SchedulingPriorityQueue *availqueue)
73 : ScheduleDAGSDNodes(mf), AvailableQueue(availqueue), AA(aa) {
74 const TargetSubtargetInfo &STI = mf.getSubtarget();
75 HazardRec = STI.getInstrInfo()->CreateTargetHazardRecognizer(&STI, this);
78 ~ScheduleDAGVLIW() override {
79 delete HazardRec;
80 delete AvailableQueue;
83 void Schedule() override;
85 private:
86 void releaseSucc(SUnit *SU, const SDep &D);
87 void releaseSuccessors(SUnit *SU);
88 void scheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
89 void listScheduleTopDown();
91 } // end anonymous namespace
93 /// Schedule - Schedule the DAG using list scheduling.
94 void ScheduleDAGVLIW::Schedule() {
95 LLVM_DEBUG(dbgs() << "********** List Scheduling " << printMBBReference(*BB)
96 << " '" << BB->getName() << "' **********\n");
98 // Build the scheduling graph.
99 BuildSchedGraph(AA);
101 AvailableQueue->initNodes(SUnits);
103 listScheduleTopDown();
105 AvailableQueue->releaseState();
108 //===----------------------------------------------------------------------===//
109 // Top-Down Scheduling
110 //===----------------------------------------------------------------------===//
112 /// releaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
113 /// the PendingQueue if the count reaches zero. Also update its cycle bound.
114 void ScheduleDAGVLIW::releaseSucc(SUnit *SU, const SDep &D) {
115 SUnit *SuccSU = D.getSUnit();
117 #ifndef NDEBUG
118 if (SuccSU->NumPredsLeft == 0) {
119 dbgs() << "*** Scheduling failed! ***\n";
120 dumpNode(*SuccSU);
121 dbgs() << " has been released too many times!\n";
122 llvm_unreachable(nullptr);
124 #endif
125 assert(!D.isWeak() && "unexpected artificial DAG edge");
127 --SuccSU->NumPredsLeft;
129 SuccSU->setDepthToAtLeast(SU->getDepth() + D.getLatency());
131 // If all the node's predecessors are scheduled, this node is ready
132 // to be scheduled. Ignore the special ExitSU node.
133 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) {
134 PendingQueue.push_back(SuccSU);
138 void ScheduleDAGVLIW::releaseSuccessors(SUnit *SU) {
139 // Top down: release successors.
140 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
141 I != E; ++I) {
142 assert(!I->isAssignedRegDep() &&
143 "The list-td scheduler doesn't yet support physreg dependencies!");
145 releaseSucc(SU, *I);
149 /// scheduleNodeTopDown - Add the node to the schedule. Decrement the pending
150 /// count of its successors. If a successor pending count is zero, add it to
151 /// the Available queue.
152 void ScheduleDAGVLIW::scheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
153 LLVM_DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
154 LLVM_DEBUG(dumpNode(*SU));
156 Sequence.push_back(SU);
157 assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!");
158 SU->setDepthToAtLeast(CurCycle);
160 releaseSuccessors(SU);
161 SU->isScheduled = true;
162 AvailableQueue->scheduledNode(SU);
165 /// listScheduleTopDown - The main loop of list scheduling for top-down
166 /// schedulers.
167 void ScheduleDAGVLIW::listScheduleTopDown() {
168 unsigned CurCycle = 0;
170 // Release any successors of the special Entry node.
171 releaseSuccessors(&EntrySU);
173 // All leaves to AvailableQueue.
174 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
175 // It is available if it has no predecessors.
176 if (SUnits[i].Preds.empty()) {
177 AvailableQueue->push(&SUnits[i]);
178 SUnits[i].isAvailable = true;
182 // While AvailableQueue is not empty, grab the node with the highest
183 // priority. If it is not ready put it back. Schedule the node.
184 std::vector<SUnit*> NotReady;
185 Sequence.reserve(SUnits.size());
186 while (!AvailableQueue->empty() || !PendingQueue.empty()) {
187 // Check to see if any of the pending instructions are ready to issue. If
188 // so, add them to the available queue.
189 for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
190 if (PendingQueue[i]->getDepth() == CurCycle) {
191 AvailableQueue->push(PendingQueue[i]);
192 PendingQueue[i]->isAvailable = true;
193 PendingQueue[i] = PendingQueue.back();
194 PendingQueue.pop_back();
195 --i; --e;
197 else {
198 assert(PendingQueue[i]->getDepth() > CurCycle && "Negative latency?");
202 // If there are no instructions available, don't try to issue anything, and
203 // don't advance the hazard recognizer.
204 if (AvailableQueue->empty()) {
205 // Reset DFA state.
206 AvailableQueue->scheduledNode(nullptr);
207 ++CurCycle;
208 continue;
211 SUnit *FoundSUnit = nullptr;
213 bool HasNoopHazards = false;
214 while (!AvailableQueue->empty()) {
215 SUnit *CurSUnit = AvailableQueue->pop();
217 ScheduleHazardRecognizer::HazardType HT =
218 HazardRec->getHazardType(CurSUnit, 0/*no stalls*/);
219 if (HT == ScheduleHazardRecognizer::NoHazard) {
220 FoundSUnit = CurSUnit;
221 break;
224 // Remember if this is a noop hazard.
225 HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
227 NotReady.push_back(CurSUnit);
230 // Add the nodes that aren't ready back onto the available list.
231 if (!NotReady.empty()) {
232 AvailableQueue->push_all(NotReady);
233 NotReady.clear();
236 // If we found a node to schedule, do it now.
237 if (FoundSUnit) {
238 scheduleNodeTopDown(FoundSUnit, CurCycle);
239 HazardRec->EmitInstruction(FoundSUnit);
241 // If this is a pseudo-op node, we don't want to increment the current
242 // cycle.
243 if (FoundSUnit->Latency) // Don't increment CurCycle for pseudo-ops!
244 ++CurCycle;
245 } else if (!HasNoopHazards) {
246 // Otherwise, we have a pipeline stall, but no other problem, just advance
247 // the current cycle and try again.
248 LLVM_DEBUG(dbgs() << "*** Advancing cycle, no work to do\n");
249 HazardRec->AdvanceCycle();
250 ++NumStalls;
251 ++CurCycle;
252 } else {
253 // Otherwise, we have no instructions to issue and we have instructions
254 // that will fault if we don't do this right. This is the case for
255 // processors without pipeline interlocks and other cases.
256 LLVM_DEBUG(dbgs() << "*** Emitting noop\n");
257 HazardRec->EmitNoop();
258 Sequence.push_back(nullptr); // NULL here means noop
259 ++NumNoops;
260 ++CurCycle;
264 #ifndef NDEBUG
265 VerifyScheduledSequence(/*isBottomUp=*/false);
266 #endif
269 //===----------------------------------------------------------------------===//
270 // Public Constructor Functions
271 //===----------------------------------------------------------------------===//
273 /// createVLIWDAGScheduler - This creates a top-down list scheduler.
274 ScheduleDAGSDNodes *
275 llvm::createVLIWDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) {
276 return new ScheduleDAGVLIW(*IS->MF, IS->AA, new ResourcePriorityQueue(IS));