1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This implements the TargetLowering class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine
&tm
)
39 : TargetLoweringBase(tm
) {}
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode
) const {
45 bool TargetLowering::isPositionIndependent() const {
46 return getTargetMachine().isPositionIndependent();
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG
&DAG
, SDNode
*Node
,
52 SDValue
&Chain
) const {
53 const Function
&F
= DAG
.getMachineFunction().getFunction();
55 // Conservatively require the attributes of the call to match those of
56 // the return. Ignore NoAlias and NonNull because they don't affect the
58 AttributeList CallerAttrs
= F
.getAttributes();
59 if (AttrBuilder(CallerAttrs
, AttributeList::ReturnIndex
)
60 .removeAttribute(Attribute::NoAlias
)
61 .removeAttribute(Attribute::NonNull
)
65 // It's not safe to eliminate the sign / zero extension of the return value.
66 if (CallerAttrs
.hasAttribute(AttributeList::ReturnIndex
, Attribute::ZExt
) ||
67 CallerAttrs
.hasAttribute(AttributeList::ReturnIndex
, Attribute::SExt
))
70 // Check if the only use is a function return node.
71 return isUsedByReturnOnly(Node
, Chain
);
74 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo
&MRI
,
75 const uint32_t *CallerPreservedMask
,
76 const SmallVectorImpl
<CCValAssign
> &ArgLocs
,
77 const SmallVectorImpl
<SDValue
> &OutVals
) const {
78 for (unsigned I
= 0, E
= ArgLocs
.size(); I
!= E
; ++I
) {
79 const CCValAssign
&ArgLoc
= ArgLocs
[I
];
80 if (!ArgLoc
.isRegLoc())
82 Register Reg
= ArgLoc
.getLocReg();
83 // Only look at callee saved registers.
84 if (MachineOperand::clobbersPhysReg(CallerPreservedMask
, Reg
))
86 // Check that we pass the value used for the caller.
87 // (We look for a CopyFromReg reading a virtual register that is used
88 // for the function live-in value of register Reg)
89 SDValue Value
= OutVals
[I
];
90 if (Value
->getOpcode() != ISD::CopyFromReg
)
92 unsigned ArgReg
= cast
<RegisterSDNode
>(Value
->getOperand(1))->getReg();
93 if (MRI
.getLiveInPhysReg(ArgReg
) != Reg
)
99 /// Set CallLoweringInfo attribute flags based on a call instruction
100 /// and called function attributes.
101 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase
*Call
,
103 IsSExt
= Call
->paramHasAttr(ArgIdx
, Attribute::SExt
);
104 IsZExt
= Call
->paramHasAttr(ArgIdx
, Attribute::ZExt
);
105 IsInReg
= Call
->paramHasAttr(ArgIdx
, Attribute::InReg
);
106 IsSRet
= Call
->paramHasAttr(ArgIdx
, Attribute::StructRet
);
107 IsNest
= Call
->paramHasAttr(ArgIdx
, Attribute::Nest
);
108 IsByVal
= Call
->paramHasAttr(ArgIdx
, Attribute::ByVal
);
109 IsInAlloca
= Call
->paramHasAttr(ArgIdx
, Attribute::InAlloca
);
110 IsReturned
= Call
->paramHasAttr(ArgIdx
, Attribute::Returned
);
111 IsSwiftSelf
= Call
->paramHasAttr(ArgIdx
, Attribute::SwiftSelf
);
112 IsSwiftError
= Call
->paramHasAttr(ArgIdx
, Attribute::SwiftError
);
113 Alignment
= Call
->getParamAlignment(ArgIdx
);
115 if (Call
->paramHasAttr(ArgIdx
, Attribute::ByVal
))
116 ByValType
= Call
->getParamByValType(ArgIdx
);
119 /// Generate a libcall taking the given operands as arguments and returning a
120 /// result of type RetVT.
121 std::pair
<SDValue
, SDValue
>
122 TargetLowering::makeLibCall(SelectionDAG
&DAG
, RTLIB::Libcall LC
, EVT RetVT
,
123 ArrayRef
<SDValue
> Ops
,
124 MakeLibCallOptions CallOptions
,
125 const SDLoc
&dl
) const {
126 TargetLowering::ArgListTy Args
;
127 Args
.reserve(Ops
.size());
129 TargetLowering::ArgListEntry Entry
;
130 for (unsigned i
= 0; i
< Ops
.size(); ++i
) {
131 SDValue NewOp
= Ops
[i
];
133 Entry
.Ty
= Entry
.Node
.getValueType().getTypeForEVT(*DAG
.getContext());
134 Entry
.IsSExt
= shouldSignExtendTypeInLibCall(NewOp
.getValueType(),
136 Entry
.IsZExt
= !Entry
.IsSExt
;
138 if (CallOptions
.IsSoften
&&
139 !shouldExtendTypeInLibCall(CallOptions
.OpsVTBeforeSoften
[i
])) {
140 Entry
.IsSExt
= Entry
.IsZExt
= false;
142 Args
.push_back(Entry
);
145 if (LC
== RTLIB::UNKNOWN_LIBCALL
)
146 report_fatal_error("Unsupported library call operation!");
147 SDValue Callee
= DAG
.getExternalSymbol(getLibcallName(LC
),
148 getPointerTy(DAG
.getDataLayout()));
150 Type
*RetTy
= RetVT
.getTypeForEVT(*DAG
.getContext());
151 TargetLowering::CallLoweringInfo
CLI(DAG
);
152 bool signExtend
= shouldSignExtendTypeInLibCall(RetVT
, CallOptions
.IsSExt
);
153 bool zeroExtend
= !signExtend
;
155 if (CallOptions
.IsSoften
&&
156 !shouldExtendTypeInLibCall(CallOptions
.RetVTBeforeSoften
)) {
157 signExtend
= zeroExtend
= false;
161 .setChain(DAG
.getEntryNode())
162 .setLibCallee(getLibcallCallingConv(LC
), RetTy
, Callee
, std::move(Args
))
163 .setNoReturn(CallOptions
.DoesNotReturn
)
164 .setDiscardResult(!CallOptions
.IsReturnValueUsed
)
165 .setIsPostTypeLegalization(CallOptions
.IsPostTypeLegalization
)
166 .setSExtResult(signExtend
)
167 .setZExtResult(zeroExtend
);
168 return LowerCallTo(CLI
);
172 TargetLowering::findOptimalMemOpLowering(std::vector
<EVT
> &MemOps
,
173 unsigned Limit
, uint64_t Size
,
174 unsigned DstAlign
, unsigned SrcAlign
,
179 unsigned DstAS
, unsigned SrcAS
,
180 const AttributeList
&FuncAttributes
) const {
181 // If 'SrcAlign' is zero, that means the memory operation does not need to
182 // load the value, i.e. memset or memcpy from constant string. Otherwise,
183 // it's the inferred alignment of the source. 'DstAlign', on the other hand,
184 // is the specified alignment of the memory operation. If it is zero, that
185 // means it's possible to change the alignment of the destination.
186 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
187 // not need to be loaded.
188 if (!(SrcAlign
== 0 || SrcAlign
>= DstAlign
))
191 EVT VT
= getOptimalMemOpType(Size
, DstAlign
, SrcAlign
,
192 IsMemset
, ZeroMemset
, MemcpyStrSrc
,
195 if (VT
== MVT::Other
) {
196 // Use the largest integer type whose alignment constraints are satisfied.
197 // We only need to check DstAlign here as SrcAlign is always greater or
198 // equal to DstAlign (or zero).
200 while (DstAlign
&& DstAlign
< VT
.getSizeInBits() / 8 &&
201 !allowsMisalignedMemoryAccesses(VT
, DstAS
, DstAlign
))
202 VT
= (MVT::SimpleValueType
)(VT
.getSimpleVT().SimpleTy
- 1);
203 assert(VT
.isInteger());
205 // Find the largest legal integer type.
207 while (!isTypeLegal(LVT
))
208 LVT
= (MVT::SimpleValueType
)(LVT
.SimpleTy
- 1);
209 assert(LVT
.isInteger());
211 // If the type we've chosen is larger than the largest legal integer type
212 // then use that instead.
217 unsigned NumMemOps
= 0;
219 unsigned VTSize
= VT
.getSizeInBits() / 8;
220 while (VTSize
> Size
) {
221 // For now, only use non-vector load / store's for the left-over pieces.
226 if (VT
.isVector() || VT
.isFloatingPoint()) {
227 NewVT
= (VT
.getSizeInBits() > 64) ? MVT::i64
: MVT::i32
;
228 if (isOperationLegalOrCustom(ISD::STORE
, NewVT
) &&
229 isSafeMemOpType(NewVT
.getSimpleVT()))
231 else if (NewVT
== MVT::i64
&&
232 isOperationLegalOrCustom(ISD::STORE
, MVT::f64
) &&
233 isSafeMemOpType(MVT::f64
)) {
234 // i64 is usually not legal on 32-bit targets, but f64 may be.
242 NewVT
= (MVT::SimpleValueType
)(NewVT
.getSimpleVT().SimpleTy
- 1);
243 if (NewVT
== MVT::i8
)
245 } while (!isSafeMemOpType(NewVT
.getSimpleVT()));
247 NewVTSize
= NewVT
.getSizeInBits() / 8;
249 // If the new VT cannot cover all of the remaining bits, then consider
250 // issuing a (or a pair of) unaligned and overlapping load / store.
252 if (NumMemOps
&& AllowOverlap
&& NewVTSize
< Size
&&
253 allowsMisalignedMemoryAccesses(VT
, DstAS
, DstAlign
,
254 MachineMemOperand::MONone
, &Fast
) &&
263 if (++NumMemOps
> Limit
)
266 MemOps
.push_back(VT
);
273 /// Soften the operands of a comparison. This code is shared among BR_CC,
274 /// SELECT_CC, and SETCC handlers.
275 void TargetLowering::softenSetCCOperands(SelectionDAG
&DAG
, EVT VT
,
276 SDValue
&NewLHS
, SDValue
&NewRHS
,
277 ISD::CondCode
&CCCode
,
278 const SDLoc
&dl
, const SDValue OldLHS
,
279 const SDValue OldRHS
) const {
280 assert((VT
== MVT::f32
|| VT
== MVT::f64
|| VT
== MVT::f128
|| VT
== MVT::ppcf128
)
281 && "Unsupported setcc type!");
283 // Expand into one or more soft-fp libcall(s).
284 RTLIB::Libcall LC1
= RTLIB::UNKNOWN_LIBCALL
, LC2
= RTLIB::UNKNOWN_LIBCALL
;
285 bool ShouldInvertCC
= false;
289 LC1
= (VT
== MVT::f32
) ? RTLIB::OEQ_F32
:
290 (VT
== MVT::f64
) ? RTLIB::OEQ_F64
:
291 (VT
== MVT::f128
) ? RTLIB::OEQ_F128
: RTLIB::OEQ_PPCF128
;
295 LC1
= (VT
== MVT::f32
) ? RTLIB::UNE_F32
:
296 (VT
== MVT::f64
) ? RTLIB::UNE_F64
:
297 (VT
== MVT::f128
) ? RTLIB::UNE_F128
: RTLIB::UNE_PPCF128
;
301 LC1
= (VT
== MVT::f32
) ? RTLIB::OGE_F32
:
302 (VT
== MVT::f64
) ? RTLIB::OGE_F64
:
303 (VT
== MVT::f128
) ? RTLIB::OGE_F128
: RTLIB::OGE_PPCF128
;
307 LC1
= (VT
== MVT::f32
) ? RTLIB::OLT_F32
:
308 (VT
== MVT::f64
) ? RTLIB::OLT_F64
:
309 (VT
== MVT::f128
) ? RTLIB::OLT_F128
: RTLIB::OLT_PPCF128
;
313 LC1
= (VT
== MVT::f32
) ? RTLIB::OLE_F32
:
314 (VT
== MVT::f64
) ? RTLIB::OLE_F64
:
315 (VT
== MVT::f128
) ? RTLIB::OLE_F128
: RTLIB::OLE_PPCF128
;
319 LC1
= (VT
== MVT::f32
) ? RTLIB::OGT_F32
:
320 (VT
== MVT::f64
) ? RTLIB::OGT_F64
:
321 (VT
== MVT::f128
) ? RTLIB::OGT_F128
: RTLIB::OGT_PPCF128
;
324 LC1
= (VT
== MVT::f32
) ? RTLIB::UO_F32
:
325 (VT
== MVT::f64
) ? RTLIB::UO_F64
:
326 (VT
== MVT::f128
) ? RTLIB::UO_F128
: RTLIB::UO_PPCF128
;
329 LC1
= (VT
== MVT::f32
) ? RTLIB::O_F32
:
330 (VT
== MVT::f64
) ? RTLIB::O_F64
:
331 (VT
== MVT::f128
) ? RTLIB::O_F128
: RTLIB::O_PPCF128
;
334 // SETONE = SETOLT | SETOGT
335 LC1
= (VT
== MVT::f32
) ? RTLIB::OLT_F32
:
336 (VT
== MVT::f64
) ? RTLIB::OLT_F64
:
337 (VT
== MVT::f128
) ? RTLIB::OLT_F128
: RTLIB::OLT_PPCF128
;
338 LC2
= (VT
== MVT::f32
) ? RTLIB::OGT_F32
:
339 (VT
== MVT::f64
) ? RTLIB::OGT_F64
:
340 (VT
== MVT::f128
) ? RTLIB::OGT_F128
: RTLIB::OGT_PPCF128
;
343 LC1
= (VT
== MVT::f32
) ? RTLIB::UO_F32
:
344 (VT
== MVT::f64
) ? RTLIB::UO_F64
:
345 (VT
== MVT::f128
) ? RTLIB::UO_F128
: RTLIB::UO_PPCF128
;
346 LC2
= (VT
== MVT::f32
) ? RTLIB::OEQ_F32
:
347 (VT
== MVT::f64
) ? RTLIB::OEQ_F64
:
348 (VT
== MVT::f128
) ? RTLIB::OEQ_F128
: RTLIB::OEQ_PPCF128
;
351 // Invert CC for unordered comparisons
352 ShouldInvertCC
= true;
355 LC1
= (VT
== MVT::f32
) ? RTLIB::OGE_F32
:
356 (VT
== MVT::f64
) ? RTLIB::OGE_F64
:
357 (VT
== MVT::f128
) ? RTLIB::OGE_F128
: RTLIB::OGE_PPCF128
;
360 LC1
= (VT
== MVT::f32
) ? RTLIB::OGT_F32
:
361 (VT
== MVT::f64
) ? RTLIB::OGT_F64
:
362 (VT
== MVT::f128
) ? RTLIB::OGT_F128
: RTLIB::OGT_PPCF128
;
365 LC1
= (VT
== MVT::f32
) ? RTLIB::OLE_F32
:
366 (VT
== MVT::f64
) ? RTLIB::OLE_F64
:
367 (VT
== MVT::f128
) ? RTLIB::OLE_F128
: RTLIB::OLE_PPCF128
;
370 LC1
= (VT
== MVT::f32
) ? RTLIB::OLT_F32
:
371 (VT
== MVT::f64
) ? RTLIB::OLT_F64
:
372 (VT
== MVT::f128
) ? RTLIB::OLT_F128
: RTLIB::OLT_PPCF128
;
374 default: llvm_unreachable("Do not know how to soften this setcc!");
378 // Use the target specific return value for comparions lib calls.
379 EVT RetVT
= getCmpLibcallReturnType();
380 SDValue Ops
[2] = {NewLHS
, NewRHS
};
381 TargetLowering::MakeLibCallOptions CallOptions
;
382 EVT OpsVT
[2] = { OldLHS
.getValueType(),
383 OldRHS
.getValueType() };
384 CallOptions
.setTypeListBeforeSoften(OpsVT
, RetVT
, true);
385 NewLHS
= makeLibCall(DAG
, LC1
, RetVT
, Ops
, CallOptions
, dl
).first
;
386 NewRHS
= DAG
.getConstant(0, dl
, RetVT
);
388 CCCode
= getCmpLibcallCC(LC1
);
390 CCCode
= getSetCCInverse(CCCode
, /*isInteger=*/true);
392 if (LC2
!= RTLIB::UNKNOWN_LIBCALL
) {
393 SDValue Tmp
= DAG
.getNode(
395 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), RetVT
),
396 NewLHS
, NewRHS
, DAG
.getCondCode(CCCode
));
397 NewLHS
= makeLibCall(DAG
, LC2
, RetVT
, Ops
, CallOptions
, dl
).first
;
398 NewLHS
= DAG
.getNode(
400 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), RetVT
),
401 NewLHS
, NewRHS
, DAG
.getCondCode(getCmpLibcallCC(LC2
)));
402 NewLHS
= DAG
.getNode(ISD::OR
, dl
, Tmp
.getValueType(), Tmp
, NewLHS
);
407 /// Return the entry encoding for a jump table in the current function. The
408 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
409 unsigned TargetLowering::getJumpTableEncoding() const {
410 // In non-pic modes, just use the address of a block.
411 if (!isPositionIndependent())
412 return MachineJumpTableInfo::EK_BlockAddress
;
414 // In PIC mode, if the target supports a GPRel32 directive, use it.
415 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
416 return MachineJumpTableInfo::EK_GPRel32BlockAddress
;
418 // Otherwise, use a label difference.
419 return MachineJumpTableInfo::EK_LabelDifference32
;
422 SDValue
TargetLowering::getPICJumpTableRelocBase(SDValue Table
,
423 SelectionDAG
&DAG
) const {
424 // If our PIC model is GP relative, use the global offset table as the base.
425 unsigned JTEncoding
= getJumpTableEncoding();
427 if ((JTEncoding
== MachineJumpTableInfo::EK_GPRel64BlockAddress
) ||
428 (JTEncoding
== MachineJumpTableInfo::EK_GPRel32BlockAddress
))
429 return DAG
.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG
.getDataLayout()));
434 /// This returns the relocation base for the given PIC jumptable, the same as
435 /// getPICJumpTableRelocBase, but as an MCExpr.
437 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction
*MF
,
438 unsigned JTI
,MCContext
&Ctx
) const{
439 // The normal PIC reloc base is the label at the start of the jump table.
440 return MCSymbolRefExpr::create(MF
->getJTISymbol(JTI
, Ctx
), Ctx
);
444 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode
*GA
) const {
445 const TargetMachine
&TM
= getTargetMachine();
446 const GlobalValue
*GV
= GA
->getGlobal();
448 // If the address is not even local to this DSO we will have to load it from
449 // a got and then add the offset.
450 if (!TM
.shouldAssumeDSOLocal(*GV
->getParent(), GV
))
453 // If the code is position independent we will have to add a base register.
454 if (isPositionIndependent())
457 // Otherwise we can do it.
461 //===----------------------------------------------------------------------===//
462 // Optimization Methods
463 //===----------------------------------------------------------------------===//
465 /// If the specified instruction has a constant integer operand and there are
466 /// bits set in that constant that are not demanded, then clear those bits and
468 bool TargetLowering::ShrinkDemandedConstant(SDValue Op
, const APInt
&Demanded
,
469 TargetLoweringOpt
&TLO
) const {
471 unsigned Opcode
= Op
.getOpcode();
473 // Do target-specific constant optimization.
474 if (targetShrinkDemandedConstant(Op
, Demanded
, TLO
))
475 return TLO
.New
.getNode();
477 // FIXME: ISD::SELECT, ISD::SELECT_CC
484 auto *Op1C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
488 // If this is a 'not' op, don't touch it because that's a canonical form.
489 const APInt
&C
= Op1C
->getAPIntValue();
490 if (Opcode
== ISD::XOR
&& Demanded
.isSubsetOf(C
))
493 if (!C
.isSubsetOf(Demanded
)) {
494 EVT VT
= Op
.getValueType();
495 SDValue NewC
= TLO
.DAG
.getConstant(Demanded
& C
, DL
, VT
);
496 SDValue NewOp
= TLO
.DAG
.getNode(Opcode
, DL
, VT
, Op
.getOperand(0), NewC
);
497 return TLO
.CombineTo(Op
, NewOp
);
507 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
508 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
509 /// generalized for targets with other types of implicit widening casts.
510 bool TargetLowering::ShrinkDemandedOp(SDValue Op
, unsigned BitWidth
,
511 const APInt
&Demanded
,
512 TargetLoweringOpt
&TLO
) const {
513 assert(Op
.getNumOperands() == 2 &&
514 "ShrinkDemandedOp only supports binary operators!");
515 assert(Op
.getNode()->getNumValues() == 1 &&
516 "ShrinkDemandedOp only supports nodes with one result!");
518 SelectionDAG
&DAG
= TLO
.DAG
;
521 // Early return, as this function cannot handle vector types.
522 if (Op
.getValueType().isVector())
525 // Don't do this if the node has another user, which may require the
527 if (!Op
.getNode()->hasOneUse())
530 // Search for the smallest integer type with free casts to and from
531 // Op's type. For expedience, just check power-of-2 integer types.
532 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
533 unsigned DemandedSize
= Demanded
.getActiveBits();
534 unsigned SmallVTBits
= DemandedSize
;
535 if (!isPowerOf2_32(SmallVTBits
))
536 SmallVTBits
= NextPowerOf2(SmallVTBits
);
537 for (; SmallVTBits
< BitWidth
; SmallVTBits
= NextPowerOf2(SmallVTBits
)) {
538 EVT SmallVT
= EVT::getIntegerVT(*DAG
.getContext(), SmallVTBits
);
539 if (TLI
.isTruncateFree(Op
.getValueType(), SmallVT
) &&
540 TLI
.isZExtFree(SmallVT
, Op
.getValueType())) {
541 // We found a type with free casts.
542 SDValue X
= DAG
.getNode(
543 Op
.getOpcode(), dl
, SmallVT
,
544 DAG
.getNode(ISD::TRUNCATE
, dl
, SmallVT
, Op
.getOperand(0)),
545 DAG
.getNode(ISD::TRUNCATE
, dl
, SmallVT
, Op
.getOperand(1)));
546 assert(DemandedSize
<= SmallVTBits
&& "Narrowed below demanded bits?");
547 SDValue Z
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, Op
.getValueType(), X
);
548 return TLO
.CombineTo(Op
, Z
);
554 bool TargetLowering::SimplifyDemandedBits(SDValue Op
, const APInt
&DemandedBits
,
555 DAGCombinerInfo
&DCI
) const {
556 SelectionDAG
&DAG
= DCI
.DAG
;
557 TargetLoweringOpt
TLO(DAG
, !DCI
.isBeforeLegalize(),
558 !DCI
.isBeforeLegalizeOps());
561 bool Simplified
= SimplifyDemandedBits(Op
, DemandedBits
, Known
, TLO
);
563 DCI
.AddToWorklist(Op
.getNode());
564 DCI
.CommitTargetLoweringOpt(TLO
);
569 bool TargetLowering::SimplifyDemandedBits(SDValue Op
, const APInt
&DemandedBits
,
571 TargetLoweringOpt
&TLO
,
573 bool AssumeSingleUse
) const {
574 EVT VT
= Op
.getValueType();
575 APInt DemandedElts
= VT
.isVector()
576 ? APInt::getAllOnesValue(VT
.getVectorNumElements())
578 return SimplifyDemandedBits(Op
, DemandedBits
, DemandedElts
, Known
, TLO
, Depth
,
582 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
583 // TODO: Under what circumstances can we create nodes? Constant folding?
584 SDValue
TargetLowering::SimplifyMultipleUseDemandedBits(
585 SDValue Op
, const APInt
&DemandedBits
, const APInt
&DemandedElts
,
586 SelectionDAG
&DAG
, unsigned Depth
) const {
587 // Limit search depth.
588 if (Depth
>= SelectionDAG::MaxRecursionDepth
)
595 // Not demanding any bits/elts from Op.
596 if (DemandedBits
== 0 || DemandedElts
== 0)
597 return DAG
.getUNDEF(Op
.getValueType());
599 unsigned NumElts
= DemandedElts
.getBitWidth();
600 KnownBits LHSKnown
, RHSKnown
;
601 switch (Op
.getOpcode()) {
603 SDValue Src
= peekThroughBitcasts(Op
.getOperand(0));
604 EVT SrcVT
= Src
.getValueType();
605 EVT DstVT
= Op
.getValueType();
606 unsigned NumSrcEltBits
= SrcVT
.getScalarSizeInBits();
607 unsigned NumDstEltBits
= DstVT
.getScalarSizeInBits();
609 if (NumSrcEltBits
== NumDstEltBits
)
610 if (SDValue V
= SimplifyMultipleUseDemandedBits(
611 Src
, DemandedBits
, DemandedElts
, DAG
, Depth
+ 1))
612 return DAG
.getBitcast(DstVT
, V
);
614 // TODO - bigendian once we have test coverage.
615 if (SrcVT
.isVector() && (NumDstEltBits
% NumSrcEltBits
) == 0 &&
616 DAG
.getDataLayout().isLittleEndian()) {
617 unsigned Scale
= NumDstEltBits
/ NumSrcEltBits
;
618 unsigned NumSrcElts
= SrcVT
.getVectorNumElements();
619 APInt DemandedSrcBits
= APInt::getNullValue(NumSrcEltBits
);
620 APInt DemandedSrcElts
= APInt::getNullValue(NumSrcElts
);
621 for (unsigned i
= 0; i
!= Scale
; ++i
) {
622 unsigned Offset
= i
* NumSrcEltBits
;
623 APInt Sub
= DemandedBits
.extractBits(NumSrcEltBits
, Offset
);
624 if (!Sub
.isNullValue()) {
625 DemandedSrcBits
|= Sub
;
626 for (unsigned j
= 0; j
!= NumElts
; ++j
)
628 DemandedSrcElts
.setBit((j
* Scale
) + i
);
632 if (SDValue V
= SimplifyMultipleUseDemandedBits(
633 Src
, DemandedSrcBits
, DemandedSrcElts
, DAG
, Depth
+ 1))
634 return DAG
.getBitcast(DstVT
, V
);
637 // TODO - bigendian once we have test coverage.
638 if ((NumSrcEltBits
% NumDstEltBits
) == 0 &&
639 DAG
.getDataLayout().isLittleEndian()) {
640 unsigned Scale
= NumSrcEltBits
/ NumDstEltBits
;
641 unsigned NumSrcElts
= SrcVT
.isVector() ? SrcVT
.getVectorNumElements() : 1;
642 APInt DemandedSrcBits
= APInt::getNullValue(NumSrcEltBits
);
643 APInt DemandedSrcElts
= APInt::getNullValue(NumSrcElts
);
644 for (unsigned i
= 0; i
!= NumElts
; ++i
)
645 if (DemandedElts
[i
]) {
646 unsigned Offset
= (i
% Scale
) * NumDstEltBits
;
647 DemandedSrcBits
.insertBits(DemandedBits
, Offset
);
648 DemandedSrcElts
.setBit(i
/ Scale
);
651 if (SDValue V
= SimplifyMultipleUseDemandedBits(
652 Src
, DemandedSrcBits
, DemandedSrcElts
, DAG
, Depth
+ 1))
653 return DAG
.getBitcast(DstVT
, V
);
659 LHSKnown
= DAG
.computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
660 RHSKnown
= DAG
.computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
662 // If all of the demanded bits are known 1 on one side, return the other.
663 // These bits cannot contribute to the result of the 'and' in this
665 if (DemandedBits
.isSubsetOf(LHSKnown
.Zero
| RHSKnown
.One
))
666 return Op
.getOperand(0);
667 if (DemandedBits
.isSubsetOf(RHSKnown
.Zero
| LHSKnown
.One
))
668 return Op
.getOperand(1);
672 LHSKnown
= DAG
.computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
673 RHSKnown
= DAG
.computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
675 // If all of the demanded bits are known zero on one side, return the
676 // other. These bits cannot contribute to the result of the 'or' in this
678 if (DemandedBits
.isSubsetOf(LHSKnown
.One
| RHSKnown
.Zero
))
679 return Op
.getOperand(0);
680 if (DemandedBits
.isSubsetOf(RHSKnown
.One
| LHSKnown
.Zero
))
681 return Op
.getOperand(1);
685 LHSKnown
= DAG
.computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
686 RHSKnown
= DAG
.computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
688 // If all of the demanded bits are known zero on one side, return the
690 if (DemandedBits
.isSubsetOf(RHSKnown
.Zero
))
691 return Op
.getOperand(0);
692 if (DemandedBits
.isSubsetOf(LHSKnown
.Zero
))
693 return Op
.getOperand(1);
696 case ISD::SIGN_EXTEND_INREG
: {
697 // If none of the extended bits are demanded, eliminate the sextinreg.
698 EVT ExVT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
699 if (DemandedBits
.getActiveBits() <= ExVT
.getScalarSizeInBits())
700 return Op
.getOperand(0);
703 case ISD::INSERT_VECTOR_ELT
: {
704 // If we don't demand the inserted element, return the base vector.
705 SDValue Vec
= Op
.getOperand(0);
706 auto *CIdx
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
707 EVT VecVT
= Vec
.getValueType();
708 if (CIdx
&& CIdx
->getAPIntValue().ult(VecVT
.getVectorNumElements()) &&
709 !DemandedElts
[CIdx
->getZExtValue()])
713 case ISD::VECTOR_SHUFFLE
: {
714 ArrayRef
<int> ShuffleMask
= cast
<ShuffleVectorSDNode
>(Op
)->getMask();
716 // If all the demanded elts are from one operand and are inline,
717 // then we can use the operand directly.
718 bool AllUndef
= true, IdentityLHS
= true, IdentityRHS
= true;
719 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
720 int M
= ShuffleMask
[i
];
721 if (M
< 0 || !DemandedElts
[i
])
724 IdentityLHS
&= (M
== (int)i
);
725 IdentityRHS
&= ((M
- NumElts
) == i
);
729 return DAG
.getUNDEF(Op
.getValueType());
731 return Op
.getOperand(0);
733 return Op
.getOperand(1);
737 if (Op
.getOpcode() >= ISD::BUILTIN_OP_END
)
738 if (SDValue V
= SimplifyMultipleUseDemandedBitsForTargetNode(
739 Op
, DemandedBits
, DemandedElts
, DAG
, Depth
))
746 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
747 /// result of Op are ever used downstream. If we can use this information to
748 /// simplify Op, create a new simplified DAG node and return true, returning the
749 /// original and new nodes in Old and New. Otherwise, analyze the expression and
750 /// return a mask of Known bits for the expression (used to simplify the
751 /// caller). The Known bits may only be accurate for those bits in the
752 /// OriginalDemandedBits and OriginalDemandedElts.
753 bool TargetLowering::SimplifyDemandedBits(
754 SDValue Op
, const APInt
&OriginalDemandedBits
,
755 const APInt
&OriginalDemandedElts
, KnownBits
&Known
, TargetLoweringOpt
&TLO
,
756 unsigned Depth
, bool AssumeSingleUse
) const {
757 unsigned BitWidth
= OriginalDemandedBits
.getBitWidth();
758 assert(Op
.getScalarValueSizeInBits() == BitWidth
&&
759 "Mask size mismatches value type size!");
761 unsigned NumElts
= OriginalDemandedElts
.getBitWidth();
762 assert((!Op
.getValueType().isVector() ||
763 NumElts
== Op
.getValueType().getVectorNumElements()) &&
764 "Unexpected vector size");
766 APInt DemandedBits
= OriginalDemandedBits
;
767 APInt DemandedElts
= OriginalDemandedElts
;
769 auto &DL
= TLO
.DAG
.getDataLayout();
771 // Don't know anything.
772 Known
= KnownBits(BitWidth
);
778 if (Op
.getOpcode() == ISD::Constant
) {
779 // We know all of the bits for a constant!
780 Known
.One
= cast
<ConstantSDNode
>(Op
)->getAPIntValue();
781 Known
.Zero
= ~Known
.One
;
785 // Other users may use these bits.
786 EVT VT
= Op
.getValueType();
787 if (!Op
.getNode()->hasOneUse() && !AssumeSingleUse
) {
789 // If not at the root, Just compute the Known bits to
790 // simplify things downstream.
791 Known
= TLO
.DAG
.computeKnownBits(Op
, DemandedElts
, Depth
);
794 // If this is the root being simplified, allow it to have multiple uses,
795 // just set the DemandedBits/Elts to all bits.
796 DemandedBits
= APInt::getAllOnesValue(BitWidth
);
797 DemandedElts
= APInt::getAllOnesValue(NumElts
);
798 } else if (OriginalDemandedBits
== 0 || OriginalDemandedElts
== 0) {
799 // Not demanding any bits/elts from Op.
800 return TLO
.CombineTo(Op
, TLO
.DAG
.getUNDEF(VT
));
801 } else if (Depth
>= SelectionDAG::MaxRecursionDepth
) {
802 // Limit search depth.
806 KnownBits Known2
, KnownOut
;
807 switch (Op
.getOpcode()) {
808 case ISD::TargetConstant
:
809 llvm_unreachable("Can't simplify this node");
810 case ISD::SCALAR_TO_VECTOR
: {
811 if (!DemandedElts
[0])
812 return TLO
.CombineTo(Op
, TLO
.DAG
.getUNDEF(VT
));
815 SDValue Src
= Op
.getOperand(0);
816 unsigned SrcBitWidth
= Src
.getScalarValueSizeInBits();
817 APInt SrcDemandedBits
= DemandedBits
.zextOrSelf(SrcBitWidth
);
818 if (SimplifyDemandedBits(Src
, SrcDemandedBits
, SrcKnown
, TLO
, Depth
+ 1))
820 Known
= SrcKnown
.zextOrTrunc(BitWidth
, false);
823 case ISD::BUILD_VECTOR
:
824 // Collect the known bits that are shared by every demanded element.
825 // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
826 Known
= TLO
.DAG
.computeKnownBits(Op
, DemandedElts
, Depth
);
827 return false; // Don't fall through, will infinitely loop.
829 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
);
830 if (getTargetConstantFromLoad(LD
)) {
831 Known
= TLO
.DAG
.computeKnownBits(Op
, DemandedElts
, Depth
);
832 return false; // Don't fall through, will infinitely loop.
836 case ISD::INSERT_VECTOR_ELT
: {
837 SDValue Vec
= Op
.getOperand(0);
838 SDValue Scl
= Op
.getOperand(1);
839 auto *CIdx
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
840 EVT VecVT
= Vec
.getValueType();
842 // If index isn't constant, assume we need all vector elements AND the
844 APInt
DemandedVecElts(DemandedElts
);
845 if (CIdx
&& CIdx
->getAPIntValue().ult(VecVT
.getVectorNumElements())) {
846 unsigned Idx
= CIdx
->getZExtValue();
847 DemandedVecElts
.clearBit(Idx
);
849 // Inserted element is not required.
850 if (!DemandedElts
[Idx
])
851 return TLO
.CombineTo(Op
, Vec
);
855 unsigned NumSclBits
= Scl
.getScalarValueSizeInBits();
856 APInt DemandedSclBits
= DemandedBits
.zextOrTrunc(NumSclBits
);
857 if (SimplifyDemandedBits(Scl
, DemandedSclBits
, KnownScl
, TLO
, Depth
+ 1))
860 Known
= KnownScl
.zextOrTrunc(BitWidth
, false);
863 if (SimplifyDemandedBits(Vec
, DemandedBits
, DemandedVecElts
, KnownVec
, TLO
,
867 if (!!DemandedVecElts
) {
868 Known
.One
&= KnownVec
.One
;
869 Known
.Zero
&= KnownVec
.Zero
;
874 case ISD::INSERT_SUBVECTOR
: {
875 SDValue Base
= Op
.getOperand(0);
876 SDValue Sub
= Op
.getOperand(1);
877 EVT SubVT
= Sub
.getValueType();
878 unsigned NumSubElts
= SubVT
.getVectorNumElements();
880 // If index isn't constant, assume we need the original demanded base
881 // elements and ALL the inserted subvector elements.
882 APInt BaseElts
= DemandedElts
;
883 APInt SubElts
= APInt::getAllOnesValue(NumSubElts
);
884 if (isa
<ConstantSDNode
>(Op
.getOperand(2))) {
885 const APInt
&Idx
= Op
.getConstantOperandAPInt(2);
886 if (Idx
.ule(NumElts
- NumSubElts
)) {
887 unsigned SubIdx
= Idx
.getZExtValue();
888 SubElts
= DemandedElts
.extractBits(NumSubElts
, SubIdx
);
889 BaseElts
.insertBits(APInt::getNullValue(NumSubElts
), SubIdx
);
893 KnownBits KnownSub
, KnownBase
;
894 if (SimplifyDemandedBits(Sub
, DemandedBits
, SubElts
, KnownSub
, TLO
,
897 if (SimplifyDemandedBits(Base
, DemandedBits
, BaseElts
, KnownBase
, TLO
,
901 Known
.Zero
.setAllBits();
902 Known
.One
.setAllBits();
904 Known
.One
&= KnownSub
.One
;
905 Known
.Zero
&= KnownSub
.Zero
;
908 Known
.One
&= KnownBase
.One
;
909 Known
.Zero
&= KnownBase
.Zero
;
913 case ISD::EXTRACT_SUBVECTOR
: {
914 // If index isn't constant, assume we need all the source vector elements.
915 SDValue Src
= Op
.getOperand(0);
916 ConstantSDNode
*SubIdx
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
917 unsigned NumSrcElts
= Src
.getValueType().getVectorNumElements();
918 APInt SrcElts
= APInt::getAllOnesValue(NumSrcElts
);
919 if (SubIdx
&& SubIdx
->getAPIntValue().ule(NumSrcElts
- NumElts
)) {
920 // Offset the demanded elts by the subvector index.
921 uint64_t Idx
= SubIdx
->getZExtValue();
922 SrcElts
= DemandedElts
.zextOrSelf(NumSrcElts
).shl(Idx
);
924 if (SimplifyDemandedBits(Src
, DemandedBits
, SrcElts
, Known
, TLO
, Depth
+ 1))
928 case ISD::CONCAT_VECTORS
: {
929 Known
.Zero
.setAllBits();
930 Known
.One
.setAllBits();
931 EVT SubVT
= Op
.getOperand(0).getValueType();
932 unsigned NumSubVecs
= Op
.getNumOperands();
933 unsigned NumSubElts
= SubVT
.getVectorNumElements();
934 for (unsigned i
= 0; i
!= NumSubVecs
; ++i
) {
935 APInt DemandedSubElts
=
936 DemandedElts
.extractBits(NumSubElts
, i
* NumSubElts
);
937 if (SimplifyDemandedBits(Op
.getOperand(i
), DemandedBits
, DemandedSubElts
,
938 Known2
, TLO
, Depth
+ 1))
940 // Known bits are shared by every demanded subvector element.
941 if (!!DemandedSubElts
) {
942 Known
.One
&= Known2
.One
;
943 Known
.Zero
&= Known2
.Zero
;
948 case ISD::VECTOR_SHUFFLE
: {
949 ArrayRef
<int> ShuffleMask
= cast
<ShuffleVectorSDNode
>(Op
)->getMask();
951 // Collect demanded elements from shuffle operands..
952 APInt
DemandedLHS(NumElts
, 0);
953 APInt
DemandedRHS(NumElts
, 0);
954 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
955 if (!DemandedElts
[i
])
957 int M
= ShuffleMask
[i
];
959 // For UNDEF elements, we don't know anything about the common state of
960 // the shuffle result.
961 DemandedLHS
.clearAllBits();
962 DemandedRHS
.clearAllBits();
965 assert(0 <= M
&& M
< (int)(2 * NumElts
) && "Shuffle index out of range");
966 if (M
< (int)NumElts
)
967 DemandedLHS
.setBit(M
);
969 DemandedRHS
.setBit(M
- NumElts
);
972 if (!!DemandedLHS
|| !!DemandedRHS
) {
973 SDValue Op0
= Op
.getOperand(0);
974 SDValue Op1
= Op
.getOperand(1);
976 Known
.Zero
.setAllBits();
977 Known
.One
.setAllBits();
979 if (SimplifyDemandedBits(Op0
, DemandedBits
, DemandedLHS
, Known2
, TLO
,
982 Known
.One
&= Known2
.One
;
983 Known
.Zero
&= Known2
.Zero
;
986 if (SimplifyDemandedBits(Op1
, DemandedBits
, DemandedRHS
, Known2
, TLO
,
989 Known
.One
&= Known2
.One
;
990 Known
.Zero
&= Known2
.Zero
;
993 // Attempt to avoid multi-use ops if we don't need anything from them.
994 SDValue DemandedOp0
= SimplifyMultipleUseDemandedBits(
995 Op0
, DemandedBits
, DemandedLHS
, TLO
.DAG
, Depth
+ 1);
996 SDValue DemandedOp1
= SimplifyMultipleUseDemandedBits(
997 Op1
, DemandedBits
, DemandedRHS
, TLO
.DAG
, Depth
+ 1);
998 if (DemandedOp0
|| DemandedOp1
) {
999 Op0
= DemandedOp0
? DemandedOp0
: Op0
;
1000 Op1
= DemandedOp1
? DemandedOp1
: Op1
;
1001 SDValue NewOp
= TLO
.DAG
.getVectorShuffle(VT
, dl
, Op0
, Op1
, ShuffleMask
);
1002 return TLO
.CombineTo(Op
, NewOp
);
1008 SDValue Op0
= Op
.getOperand(0);
1009 SDValue Op1
= Op
.getOperand(1);
1011 // If the RHS is a constant, check to see if the LHS would be zero without
1012 // using the bits from the RHS. Below, we use knowledge about the RHS to
1013 // simplify the LHS, here we're using information from the LHS to simplify
1015 if (ConstantSDNode
*RHSC
= isConstOrConstSplat(Op1
)) {
1016 // Do not increment Depth here; that can cause an infinite loop.
1017 KnownBits LHSKnown
= TLO
.DAG
.computeKnownBits(Op0
, DemandedElts
, Depth
);
1018 // If the LHS already has zeros where RHSC does, this 'and' is dead.
1019 if ((LHSKnown
.Zero
& DemandedBits
) ==
1020 (~RHSC
->getAPIntValue() & DemandedBits
))
1021 return TLO
.CombineTo(Op
, Op0
);
1023 // If any of the set bits in the RHS are known zero on the LHS, shrink
1025 if (ShrinkDemandedConstant(Op
, ~LHSKnown
.Zero
& DemandedBits
, TLO
))
1028 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1029 // constant, but if this 'and' is only clearing bits that were just set by
1030 // the xor, then this 'and' can be eliminated by shrinking the mask of
1031 // the xor. For example, for a 32-bit X:
1032 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1033 if (isBitwiseNot(Op0
) && Op0
.hasOneUse() &&
1034 LHSKnown
.One
== ~RHSC
->getAPIntValue()) {
1035 SDValue Xor
= TLO
.DAG
.getNode(ISD::XOR
, dl
, VT
, Op0
.getOperand(0), Op1
);
1036 return TLO
.CombineTo(Op
, Xor
);
1040 if (SimplifyDemandedBits(Op1
, DemandedBits
, DemandedElts
, Known
, TLO
,
1043 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1044 if (SimplifyDemandedBits(Op0
, ~Known
.Zero
& DemandedBits
, DemandedElts
,
1045 Known2
, TLO
, Depth
+ 1))
1047 assert(!Known2
.hasConflict() && "Bits known to be one AND zero?");
1049 // Attempt to avoid multi-use ops if we don't need anything from them.
1050 if (!DemandedBits
.isAllOnesValue() || !DemandedElts
.isAllOnesValue()) {
1051 SDValue DemandedOp0
= SimplifyMultipleUseDemandedBits(
1052 Op0
, DemandedBits
, DemandedElts
, TLO
.DAG
, Depth
+ 1);
1053 SDValue DemandedOp1
= SimplifyMultipleUseDemandedBits(
1054 Op1
, DemandedBits
, DemandedElts
, TLO
.DAG
, Depth
+ 1);
1055 if (DemandedOp0
|| DemandedOp1
) {
1056 Op0
= DemandedOp0
? DemandedOp0
: Op0
;
1057 Op1
= DemandedOp1
? DemandedOp1
: Op1
;
1058 SDValue NewOp
= TLO
.DAG
.getNode(Op
.getOpcode(), dl
, VT
, Op0
, Op1
);
1059 return TLO
.CombineTo(Op
, NewOp
);
1063 // If all of the demanded bits are known one on one side, return the other.
1064 // These bits cannot contribute to the result of the 'and'.
1065 if (DemandedBits
.isSubsetOf(Known2
.Zero
| Known
.One
))
1066 return TLO
.CombineTo(Op
, Op0
);
1067 if (DemandedBits
.isSubsetOf(Known
.Zero
| Known2
.One
))
1068 return TLO
.CombineTo(Op
, Op1
);
1069 // If all of the demanded bits in the inputs are known zeros, return zero.
1070 if (DemandedBits
.isSubsetOf(Known
.Zero
| Known2
.Zero
))
1071 return TLO
.CombineTo(Op
, TLO
.DAG
.getConstant(0, dl
, VT
));
1072 // If the RHS is a constant, see if we can simplify it.
1073 if (ShrinkDemandedConstant(Op
, ~Known2
.Zero
& DemandedBits
, TLO
))
1075 // If the operation can be done in a smaller type, do so.
1076 if (ShrinkDemandedOp(Op
, BitWidth
, DemandedBits
, TLO
))
1079 // Output known-1 bits are only known if set in both the LHS & RHS.
1080 Known
.One
&= Known2
.One
;
1081 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1082 Known
.Zero
|= Known2
.Zero
;
1086 SDValue Op0
= Op
.getOperand(0);
1087 SDValue Op1
= Op
.getOperand(1);
1089 if (SimplifyDemandedBits(Op1
, DemandedBits
, DemandedElts
, Known
, TLO
,
1092 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1093 if (SimplifyDemandedBits(Op0
, ~Known
.One
& DemandedBits
, DemandedElts
,
1094 Known2
, TLO
, Depth
+ 1))
1096 assert(!Known2
.hasConflict() && "Bits known to be one AND zero?");
1098 // Attempt to avoid multi-use ops if we don't need anything from them.
1099 if (!DemandedBits
.isAllOnesValue() || !DemandedElts
.isAllOnesValue()) {
1100 SDValue DemandedOp0
= SimplifyMultipleUseDemandedBits(
1101 Op0
, DemandedBits
, DemandedElts
, TLO
.DAG
, Depth
+ 1);
1102 SDValue DemandedOp1
= SimplifyMultipleUseDemandedBits(
1103 Op1
, DemandedBits
, DemandedElts
, TLO
.DAG
, Depth
+ 1);
1104 if (DemandedOp0
|| DemandedOp1
) {
1105 Op0
= DemandedOp0
? DemandedOp0
: Op0
;
1106 Op1
= DemandedOp1
? DemandedOp1
: Op1
;
1107 SDValue NewOp
= TLO
.DAG
.getNode(Op
.getOpcode(), dl
, VT
, Op0
, Op1
);
1108 return TLO
.CombineTo(Op
, NewOp
);
1112 // If all of the demanded bits are known zero on one side, return the other.
1113 // These bits cannot contribute to the result of the 'or'.
1114 if (DemandedBits
.isSubsetOf(Known2
.One
| Known
.Zero
))
1115 return TLO
.CombineTo(Op
, Op0
);
1116 if (DemandedBits
.isSubsetOf(Known
.One
| Known2
.Zero
))
1117 return TLO
.CombineTo(Op
, Op1
);
1118 // If the RHS is a constant, see if we can simplify it.
1119 if (ShrinkDemandedConstant(Op
, DemandedBits
, TLO
))
1121 // If the operation can be done in a smaller type, do so.
1122 if (ShrinkDemandedOp(Op
, BitWidth
, DemandedBits
, TLO
))
1125 // Output known-0 bits are only known if clear in both the LHS & RHS.
1126 Known
.Zero
&= Known2
.Zero
;
1127 // Output known-1 are known to be set if set in either the LHS | RHS.
1128 Known
.One
|= Known2
.One
;
1132 SDValue Op0
= Op
.getOperand(0);
1133 SDValue Op1
= Op
.getOperand(1);
1135 if (SimplifyDemandedBits(Op1
, DemandedBits
, DemandedElts
, Known
, TLO
,
1138 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1139 if (SimplifyDemandedBits(Op0
, DemandedBits
, DemandedElts
, Known2
, TLO
,
1142 assert(!Known2
.hasConflict() && "Bits known to be one AND zero?");
1144 // Attempt to avoid multi-use ops if we don't need anything from them.
1145 if (!DemandedBits
.isAllOnesValue() || !DemandedElts
.isAllOnesValue()) {
1146 SDValue DemandedOp0
= SimplifyMultipleUseDemandedBits(
1147 Op0
, DemandedBits
, DemandedElts
, TLO
.DAG
, Depth
+ 1);
1148 SDValue DemandedOp1
= SimplifyMultipleUseDemandedBits(
1149 Op1
, DemandedBits
, DemandedElts
, TLO
.DAG
, Depth
+ 1);
1150 if (DemandedOp0
|| DemandedOp1
) {
1151 Op0
= DemandedOp0
? DemandedOp0
: Op0
;
1152 Op1
= DemandedOp1
? DemandedOp1
: Op1
;
1153 SDValue NewOp
= TLO
.DAG
.getNode(Op
.getOpcode(), dl
, VT
, Op0
, Op1
);
1154 return TLO
.CombineTo(Op
, NewOp
);
1158 // If all of the demanded bits are known zero on one side, return the other.
1159 // These bits cannot contribute to the result of the 'xor'.
1160 if (DemandedBits
.isSubsetOf(Known
.Zero
))
1161 return TLO
.CombineTo(Op
, Op0
);
1162 if (DemandedBits
.isSubsetOf(Known2
.Zero
))
1163 return TLO
.CombineTo(Op
, Op1
);
1164 // If the operation can be done in a smaller type, do so.
1165 if (ShrinkDemandedOp(Op
, BitWidth
, DemandedBits
, TLO
))
1168 // If all of the unknown bits are known to be zero on one side or the other
1169 // (but not both) turn this into an *inclusive* or.
1170 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1171 if (DemandedBits
.isSubsetOf(Known
.Zero
| Known2
.Zero
))
1172 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::OR
, dl
, VT
, Op0
, Op1
));
1174 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1175 KnownOut
.Zero
= (Known
.Zero
& Known2
.Zero
) | (Known
.One
& Known2
.One
);
1176 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1177 KnownOut
.One
= (Known
.Zero
& Known2
.One
) | (Known
.One
& Known2
.Zero
);
1179 if (ConstantSDNode
*C
= isConstOrConstSplat(Op1
)) {
1180 // If one side is a constant, and all of the known set bits on the other
1181 // side are also set in the constant, turn this into an AND, as we know
1182 // the bits will be cleared.
1183 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1184 // NB: it is okay if more bits are known than are requested
1185 if (C
->getAPIntValue() == Known2
.One
) {
1187 TLO
.DAG
.getConstant(~C
->getAPIntValue() & DemandedBits
, dl
, VT
);
1188 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::AND
, dl
, VT
, Op0
, ANDC
));
1191 // If the RHS is a constant, see if we can change it. Don't alter a -1
1192 // constant because that's a 'not' op, and that is better for combining
1194 if (!C
->isAllOnesValue()) {
1195 if (DemandedBits
.isSubsetOf(C
->getAPIntValue())) {
1196 // We're flipping all demanded bits. Flip the undemanded bits too.
1197 SDValue New
= TLO
.DAG
.getNOT(dl
, Op0
, VT
);
1198 return TLO
.CombineTo(Op
, New
);
1200 // If we can't turn this into a 'not', try to shrink the constant.
1201 if (ShrinkDemandedConstant(Op
, DemandedBits
, TLO
))
1206 Known
= std::move(KnownOut
);
1210 if (SimplifyDemandedBits(Op
.getOperand(2), DemandedBits
, Known
, TLO
,
1213 if (SimplifyDemandedBits(Op
.getOperand(1), DemandedBits
, Known2
, TLO
,
1216 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1217 assert(!Known2
.hasConflict() && "Bits known to be one AND zero?");
1219 // If the operands are constants, see if we can simplify them.
1220 if (ShrinkDemandedConstant(Op
, DemandedBits
, TLO
))
1223 // Only known if known in both the LHS and RHS.
1224 Known
.One
&= Known2
.One
;
1225 Known
.Zero
&= Known2
.Zero
;
1227 case ISD::SELECT_CC
:
1228 if (SimplifyDemandedBits(Op
.getOperand(3), DemandedBits
, Known
, TLO
,
1231 if (SimplifyDemandedBits(Op
.getOperand(2), DemandedBits
, Known2
, TLO
,
1234 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1235 assert(!Known2
.hasConflict() && "Bits known to be one AND zero?");
1237 // If the operands are constants, see if we can simplify them.
1238 if (ShrinkDemandedConstant(Op
, DemandedBits
, TLO
))
1241 // Only known if known in both the LHS and RHS.
1242 Known
.One
&= Known2
.One
;
1243 Known
.Zero
&= Known2
.Zero
;
1246 SDValue Op0
= Op
.getOperand(0);
1247 SDValue Op1
= Op
.getOperand(1);
1248 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(2))->get();
1249 // If (1) we only need the sign-bit, (2) the setcc operands are the same
1250 // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1251 // -1, we may be able to bypass the setcc.
1252 if (DemandedBits
.isSignMask() &&
1253 Op0
.getScalarValueSizeInBits() == BitWidth
&&
1254 getBooleanContents(VT
) ==
1255 BooleanContent::ZeroOrNegativeOneBooleanContent
) {
1256 // If we're testing X < 0, then this compare isn't needed - just use X!
1257 // FIXME: We're limiting to integer types here, but this should also work
1258 // if we don't care about FP signed-zero. The use of SETLT with FP means
1259 // that we don't care about NaNs.
1260 if (CC
== ISD::SETLT
&& Op1
.getValueType().isInteger() &&
1261 (isNullConstant(Op1
) || ISD::isBuildVectorAllZeros(Op1
.getNode())))
1262 return TLO
.CombineTo(Op
, Op0
);
1264 // TODO: Should we check for other forms of sign-bit comparisons?
1265 // Examples: X <= -1, X >= 0
1267 if (getBooleanContents(Op0
.getValueType()) ==
1268 TargetLowering::ZeroOrOneBooleanContent
&&
1270 Known
.Zero
.setBitsFrom(1);
1274 SDValue Op0
= Op
.getOperand(0);
1275 SDValue Op1
= Op
.getOperand(1);
1277 if (ConstantSDNode
*SA
= isConstOrConstSplat(Op1
, DemandedElts
)) {
1278 // If the shift count is an invalid immediate, don't do anything.
1279 if (SA
->getAPIntValue().uge(BitWidth
))
1282 unsigned ShAmt
= SA
->getZExtValue();
1284 return TLO
.CombineTo(Op
, Op0
);
1286 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1287 // single shift. We can do this if the bottom bits (which are shifted
1288 // out) are never demanded.
1289 // TODO - support non-uniform vector amounts.
1290 if (Op0
.getOpcode() == ISD::SRL
) {
1291 if (!DemandedBits
.intersects(APInt::getLowBitsSet(BitWidth
, ShAmt
))) {
1292 if (ConstantSDNode
*SA2
=
1293 isConstOrConstSplat(Op0
.getOperand(1), DemandedElts
)) {
1294 if (SA2
->getAPIntValue().ult(BitWidth
)) {
1295 unsigned C1
= SA2
->getZExtValue();
1296 unsigned Opc
= ISD::SHL
;
1297 int Diff
= ShAmt
- C1
;
1303 SDValue NewSA
= TLO
.DAG
.getConstant(Diff
, dl
, Op1
.getValueType());
1304 return TLO
.CombineTo(
1305 Op
, TLO
.DAG
.getNode(Opc
, dl
, VT
, Op0
.getOperand(0), NewSA
));
1311 if (SimplifyDemandedBits(Op0
, DemandedBits
.lshr(ShAmt
), DemandedElts
,
1312 Known
, TLO
, Depth
+ 1))
1315 // Try shrinking the operation as long as the shift amount will still be
1317 if ((ShAmt
< DemandedBits
.getActiveBits()) &&
1318 ShrinkDemandedOp(Op
, BitWidth
, DemandedBits
, TLO
))
1321 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1322 // are not demanded. This will likely allow the anyext to be folded away.
1323 if (Op0
.getOpcode() == ISD::ANY_EXTEND
) {
1324 SDValue InnerOp
= Op0
.getOperand(0);
1325 EVT InnerVT
= InnerOp
.getValueType();
1326 unsigned InnerBits
= InnerVT
.getScalarSizeInBits();
1327 if (ShAmt
< InnerBits
&& DemandedBits
.getActiveBits() <= InnerBits
&&
1328 isTypeDesirableForOp(ISD::SHL
, InnerVT
)) {
1329 EVT ShTy
= getShiftAmountTy(InnerVT
, DL
);
1330 if (!APInt(BitWidth
, ShAmt
).isIntN(ShTy
.getSizeInBits()))
1333 TLO
.DAG
.getNode(ISD::SHL
, dl
, InnerVT
, InnerOp
,
1334 TLO
.DAG
.getConstant(ShAmt
, dl
, ShTy
));
1335 return TLO
.CombineTo(
1336 Op
, TLO
.DAG
.getNode(ISD::ANY_EXTEND
, dl
, VT
, NarrowShl
));
1338 // Repeat the SHL optimization above in cases where an extension
1339 // intervenes: (shl (anyext (shr x, c1)), c2) to
1340 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits
1341 // aren't demanded (as above) and that the shifted upper c1 bits of
1342 // x aren't demanded.
1343 if (Op0
.hasOneUse() && InnerOp
.getOpcode() == ISD::SRL
&&
1344 InnerOp
.hasOneUse()) {
1345 if (ConstantSDNode
*SA2
=
1346 isConstOrConstSplat(InnerOp
.getOperand(1))) {
1347 unsigned InnerShAmt
= SA2
->getLimitedValue(InnerBits
);
1348 if (InnerShAmt
< ShAmt
&& InnerShAmt
< InnerBits
&&
1349 DemandedBits
.getActiveBits() <=
1350 (InnerBits
- InnerShAmt
+ ShAmt
) &&
1351 DemandedBits
.countTrailingZeros() >= ShAmt
) {
1352 SDValue NewSA
= TLO
.DAG
.getConstant(ShAmt
- InnerShAmt
, dl
,
1353 Op1
.getValueType());
1354 SDValue NewExt
= TLO
.DAG
.getNode(ISD::ANY_EXTEND
, dl
, VT
,
1355 InnerOp
.getOperand(0));
1356 return TLO
.CombineTo(
1357 Op
, TLO
.DAG
.getNode(ISD::SHL
, dl
, VT
, NewExt
, NewSA
));
1363 Known
.Zero
<<= ShAmt
;
1364 Known
.One
<<= ShAmt
;
1365 // low bits known zero.
1366 Known
.Zero
.setLowBits(ShAmt
);
1371 SDValue Op0
= Op
.getOperand(0);
1372 SDValue Op1
= Op
.getOperand(1);
1374 if (ConstantSDNode
*SA
= isConstOrConstSplat(Op1
, DemandedElts
)) {
1375 // If the shift count is an invalid immediate, don't do anything.
1376 if (SA
->getAPIntValue().uge(BitWidth
))
1379 unsigned ShAmt
= SA
->getZExtValue();
1381 return TLO
.CombineTo(Op
, Op0
);
1383 EVT ShiftVT
= Op1
.getValueType();
1384 APInt InDemandedMask
= (DemandedBits
<< ShAmt
);
1386 // If the shift is exact, then it does demand the low bits (and knows that
1388 if (Op
->getFlags().hasExact())
1389 InDemandedMask
.setLowBits(ShAmt
);
1391 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1392 // single shift. We can do this if the top bits (which are shifted out)
1393 // are never demanded.
1394 // TODO - support non-uniform vector amounts.
1395 if (Op0
.getOpcode() == ISD::SHL
) {
1396 if (ConstantSDNode
*SA2
=
1397 isConstOrConstSplat(Op0
.getOperand(1), DemandedElts
)) {
1398 if (!DemandedBits
.intersects(
1399 APInt::getHighBitsSet(BitWidth
, ShAmt
))) {
1400 if (SA2
->getAPIntValue().ult(BitWidth
)) {
1401 unsigned C1
= SA2
->getZExtValue();
1402 unsigned Opc
= ISD::SRL
;
1403 int Diff
= ShAmt
- C1
;
1409 SDValue NewSA
= TLO
.DAG
.getConstant(Diff
, dl
, ShiftVT
);
1410 return TLO
.CombineTo(
1411 Op
, TLO
.DAG
.getNode(Opc
, dl
, VT
, Op0
.getOperand(0), NewSA
));
1417 // Compute the new bits that are at the top now.
1418 if (SimplifyDemandedBits(Op0
, InDemandedMask
, DemandedElts
, Known
, TLO
,
1421 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1422 Known
.Zero
.lshrInPlace(ShAmt
);
1423 Known
.One
.lshrInPlace(ShAmt
);
1425 Known
.Zero
.setHighBits(ShAmt
); // High bits known zero.
1430 SDValue Op0
= Op
.getOperand(0);
1431 SDValue Op1
= Op
.getOperand(1);
1433 // If this is an arithmetic shift right and only the low-bit is set, we can
1434 // always convert this into a logical shr, even if the shift amount is
1435 // variable. The low bit of the shift cannot be an input sign bit unless
1436 // the shift amount is >= the size of the datatype, which is undefined.
1437 if (DemandedBits
.isOneValue())
1438 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::SRL
, dl
, VT
, Op0
, Op1
));
1440 if (ConstantSDNode
*SA
= isConstOrConstSplat(Op1
, DemandedElts
)) {
1441 // If the shift count is an invalid immediate, don't do anything.
1442 if (SA
->getAPIntValue().uge(BitWidth
))
1445 unsigned ShAmt
= SA
->getZExtValue();
1447 return TLO
.CombineTo(Op
, Op0
);
1449 APInt InDemandedMask
= (DemandedBits
<< ShAmt
);
1451 // If the shift is exact, then it does demand the low bits (and knows that
1453 if (Op
->getFlags().hasExact())
1454 InDemandedMask
.setLowBits(ShAmt
);
1456 // If any of the demanded bits are produced by the sign extension, we also
1457 // demand the input sign bit.
1458 if (DemandedBits
.countLeadingZeros() < ShAmt
)
1459 InDemandedMask
.setSignBit();
1461 if (SimplifyDemandedBits(Op0
, InDemandedMask
, DemandedElts
, Known
, TLO
,
1464 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1465 Known
.Zero
.lshrInPlace(ShAmt
);
1466 Known
.One
.lshrInPlace(ShAmt
);
1468 // If the input sign bit is known to be zero, or if none of the top bits
1469 // are demanded, turn this into an unsigned shift right.
1470 if (Known
.Zero
[BitWidth
- ShAmt
- 1] ||
1471 DemandedBits
.countLeadingZeros() >= ShAmt
) {
1473 Flags
.setExact(Op
->getFlags().hasExact());
1474 return TLO
.CombineTo(
1475 Op
, TLO
.DAG
.getNode(ISD::SRL
, dl
, VT
, Op0
, Op1
, Flags
));
1478 int Log2
= DemandedBits
.exactLogBase2();
1480 // The bit must come from the sign.
1482 TLO
.DAG
.getConstant(BitWidth
- 1 - Log2
, dl
, Op1
.getValueType());
1483 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::SRL
, dl
, VT
, Op0
, NewSA
));
1486 if (Known
.One
[BitWidth
- ShAmt
- 1])
1487 // New bits are known one.
1488 Known
.One
.setHighBits(ShAmt
);
1494 SDValue Op0
= Op
.getOperand(0);
1495 SDValue Op1
= Op
.getOperand(1);
1496 SDValue Op2
= Op
.getOperand(2);
1497 bool IsFSHL
= (Op
.getOpcode() == ISD::FSHL
);
1499 if (ConstantSDNode
*SA
= isConstOrConstSplat(Op2
, DemandedElts
)) {
1500 unsigned Amt
= SA
->getAPIntValue().urem(BitWidth
);
1502 // For fshl, 0-shift returns the 1st arg.
1503 // For fshr, 0-shift returns the 2nd arg.
1505 if (SimplifyDemandedBits(IsFSHL
? Op0
: Op1
, DemandedBits
, DemandedElts
,
1506 Known
, TLO
, Depth
+ 1))
1511 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1512 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1513 APInt Demanded0
= DemandedBits
.lshr(IsFSHL
? Amt
: (BitWidth
- Amt
));
1514 APInt Demanded1
= DemandedBits
<< (IsFSHL
? (BitWidth
- Amt
) : Amt
);
1515 if (SimplifyDemandedBits(Op0
, Demanded0
, DemandedElts
, Known2
, TLO
,
1518 if (SimplifyDemandedBits(Op1
, Demanded1
, DemandedElts
, Known
, TLO
,
1522 Known2
.One
<<= (IsFSHL
? Amt
: (BitWidth
- Amt
));
1523 Known2
.Zero
<<= (IsFSHL
? Amt
: (BitWidth
- Amt
));
1524 Known
.One
.lshrInPlace(IsFSHL
? (BitWidth
- Amt
) : Amt
);
1525 Known
.Zero
.lshrInPlace(IsFSHL
? (BitWidth
- Amt
) : Amt
);
1526 Known
.One
|= Known2
.One
;
1527 Known
.Zero
|= Known2
.Zero
;
1531 case ISD::BITREVERSE
: {
1532 SDValue Src
= Op
.getOperand(0);
1533 APInt DemandedSrcBits
= DemandedBits
.reverseBits();
1534 if (SimplifyDemandedBits(Src
, DemandedSrcBits
, DemandedElts
, Known2
, TLO
,
1537 Known
.One
= Known2
.One
.reverseBits();
1538 Known
.Zero
= Known2
.Zero
.reverseBits();
1541 case ISD::SIGN_EXTEND_INREG
: {
1542 SDValue Op0
= Op
.getOperand(0);
1543 EVT ExVT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
1544 unsigned ExVTBits
= ExVT
.getScalarSizeInBits();
1546 // If we only care about the highest bit, don't bother shifting right.
1547 if (DemandedBits
.isSignMask()) {
1548 unsigned NumSignBits
= TLO
.DAG
.ComputeNumSignBits(Op0
);
1549 bool AlreadySignExtended
= NumSignBits
>= BitWidth
- ExVTBits
+ 1;
1550 // However if the input is already sign extended we expect the sign
1551 // extension to be dropped altogether later and do not simplify.
1552 if (!AlreadySignExtended
) {
1553 // Compute the correct shift amount type, which must be getShiftAmountTy
1554 // for scalar types after legalization.
1555 EVT ShiftAmtTy
= VT
;
1556 if (TLO
.LegalTypes() && !ShiftAmtTy
.isVector())
1557 ShiftAmtTy
= getShiftAmountTy(ShiftAmtTy
, DL
);
1560 TLO
.DAG
.getConstant(BitWidth
- ExVTBits
, dl
, ShiftAmtTy
);
1561 return TLO
.CombineTo(Op
,
1562 TLO
.DAG
.getNode(ISD::SHL
, dl
, VT
, Op0
, ShiftAmt
));
1566 // If none of the extended bits are demanded, eliminate the sextinreg.
1567 if (DemandedBits
.getActiveBits() <= ExVTBits
)
1568 return TLO
.CombineTo(Op
, Op0
);
1570 APInt InputDemandedBits
= DemandedBits
.getLoBits(ExVTBits
);
1572 // Since the sign extended bits are demanded, we know that the sign
1574 InputDemandedBits
.setBit(ExVTBits
- 1);
1576 if (SimplifyDemandedBits(Op0
, InputDemandedBits
, Known
, TLO
, Depth
+ 1))
1578 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1580 // If the sign bit of the input is known set or clear, then we know the
1581 // top bits of the result.
1583 // If the input sign bit is known zero, convert this into a zero extension.
1584 if (Known
.Zero
[ExVTBits
- 1])
1585 return TLO
.CombineTo(
1586 Op
, TLO
.DAG
.getZeroExtendInReg(Op0
, dl
, ExVT
.getScalarType()));
1588 APInt Mask
= APInt::getLowBitsSet(BitWidth
, ExVTBits
);
1589 if (Known
.One
[ExVTBits
- 1]) { // Input sign bit known set
1590 Known
.One
.setBitsFrom(ExVTBits
);
1592 } else { // Input sign bit unknown
1598 case ISD::BUILD_PAIR
: {
1599 EVT HalfVT
= Op
.getOperand(0).getValueType();
1600 unsigned HalfBitWidth
= HalfVT
.getScalarSizeInBits();
1602 APInt MaskLo
= DemandedBits
.getLoBits(HalfBitWidth
).trunc(HalfBitWidth
);
1603 APInt MaskHi
= DemandedBits
.getHiBits(HalfBitWidth
).trunc(HalfBitWidth
);
1605 KnownBits KnownLo
, KnownHi
;
1607 if (SimplifyDemandedBits(Op
.getOperand(0), MaskLo
, KnownLo
, TLO
, Depth
+ 1))
1610 if (SimplifyDemandedBits(Op
.getOperand(1), MaskHi
, KnownHi
, TLO
, Depth
+ 1))
1613 Known
.Zero
= KnownLo
.Zero
.zext(BitWidth
) |
1614 KnownHi
.Zero
.zext(BitWidth
).shl(HalfBitWidth
);
1616 Known
.One
= KnownLo
.One
.zext(BitWidth
) |
1617 KnownHi
.One
.zext(BitWidth
).shl(HalfBitWidth
);
1620 case ISD::ZERO_EXTEND
:
1621 case ISD::ZERO_EXTEND_VECTOR_INREG
: {
1622 SDValue Src
= Op
.getOperand(0);
1623 EVT SrcVT
= Src
.getValueType();
1624 unsigned InBits
= SrcVT
.getScalarSizeInBits();
1625 unsigned InElts
= SrcVT
.isVector() ? SrcVT
.getVectorNumElements() : 1;
1626 bool IsVecInReg
= Op
.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG
;
1628 // If none of the top bits are demanded, convert this into an any_extend.
1629 if (DemandedBits
.getActiveBits() <= InBits
) {
1630 // If we only need the non-extended bits of the bottom element
1631 // then we can just bitcast to the result.
1632 if (IsVecInReg
&& DemandedElts
== 1 &&
1633 VT
.getSizeInBits() == SrcVT
.getSizeInBits() &&
1634 TLO
.DAG
.getDataLayout().isLittleEndian())
1635 return TLO
.CombineTo(Op
, TLO
.DAG
.getBitcast(VT
, Src
));
1638 IsVecInReg
? ISD::ANY_EXTEND_VECTOR_INREG
: ISD::ANY_EXTEND
;
1639 if (!TLO
.LegalOperations() || isOperationLegal(Opc
, VT
))
1640 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(Opc
, dl
, VT
, Src
));
1643 APInt InDemandedBits
= DemandedBits
.trunc(InBits
);
1644 APInt InDemandedElts
= DemandedElts
.zextOrSelf(InElts
);
1645 if (SimplifyDemandedBits(Src
, InDemandedBits
, InDemandedElts
, Known
, TLO
,
1648 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1649 assert(Known
.getBitWidth() == InBits
&& "Src width has changed?");
1650 Known
= Known
.zext(BitWidth
, true /* ExtendedBitsAreKnownZero */);
1653 case ISD::SIGN_EXTEND
:
1654 case ISD::SIGN_EXTEND_VECTOR_INREG
: {
1655 SDValue Src
= Op
.getOperand(0);
1656 EVT SrcVT
= Src
.getValueType();
1657 unsigned InBits
= SrcVT
.getScalarSizeInBits();
1658 unsigned InElts
= SrcVT
.isVector() ? SrcVT
.getVectorNumElements() : 1;
1659 bool IsVecInReg
= Op
.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG
;
1661 // If none of the top bits are demanded, convert this into an any_extend.
1662 if (DemandedBits
.getActiveBits() <= InBits
) {
1663 // If we only need the non-extended bits of the bottom element
1664 // then we can just bitcast to the result.
1665 if (IsVecInReg
&& DemandedElts
== 1 &&
1666 VT
.getSizeInBits() == SrcVT
.getSizeInBits() &&
1667 TLO
.DAG
.getDataLayout().isLittleEndian())
1668 return TLO
.CombineTo(Op
, TLO
.DAG
.getBitcast(VT
, Src
));
1671 IsVecInReg
? ISD::ANY_EXTEND_VECTOR_INREG
: ISD::ANY_EXTEND
;
1672 if (!TLO
.LegalOperations() || isOperationLegal(Opc
, VT
))
1673 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(Opc
, dl
, VT
, Src
));
1676 APInt InDemandedBits
= DemandedBits
.trunc(InBits
);
1677 APInt InDemandedElts
= DemandedElts
.zextOrSelf(InElts
);
1679 // Since some of the sign extended bits are demanded, we know that the sign
1681 InDemandedBits
.setBit(InBits
- 1);
1683 if (SimplifyDemandedBits(Src
, InDemandedBits
, InDemandedElts
, Known
, TLO
,
1686 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1687 assert(Known
.getBitWidth() == InBits
&& "Src width has changed?");
1689 // If the sign bit is known one, the top bits match.
1690 Known
= Known
.sext(BitWidth
);
1692 // If the sign bit is known zero, convert this to a zero extend.
1693 if (Known
.isNonNegative()) {
1695 IsVecInReg
? ISD::ZERO_EXTEND_VECTOR_INREG
: ISD::ZERO_EXTEND
;
1696 if (!TLO
.LegalOperations() || isOperationLegal(Opc
, VT
))
1697 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(Opc
, dl
, VT
, Src
));
1701 case ISD::ANY_EXTEND
:
1702 case ISD::ANY_EXTEND_VECTOR_INREG
: {
1703 SDValue Src
= Op
.getOperand(0);
1704 EVT SrcVT
= Src
.getValueType();
1705 unsigned InBits
= SrcVT
.getScalarSizeInBits();
1706 unsigned InElts
= SrcVT
.isVector() ? SrcVT
.getVectorNumElements() : 1;
1707 bool IsVecInReg
= Op
.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG
;
1709 // If we only need the bottom element then we can just bitcast.
1710 // TODO: Handle ANY_EXTEND?
1711 if (IsVecInReg
&& DemandedElts
== 1 &&
1712 VT
.getSizeInBits() == SrcVT
.getSizeInBits() &&
1713 TLO
.DAG
.getDataLayout().isLittleEndian())
1714 return TLO
.CombineTo(Op
, TLO
.DAG
.getBitcast(VT
, Src
));
1716 APInt InDemandedBits
= DemandedBits
.trunc(InBits
);
1717 APInt InDemandedElts
= DemandedElts
.zextOrSelf(InElts
);
1718 if (SimplifyDemandedBits(Src
, InDemandedBits
, InDemandedElts
, Known
, TLO
,
1721 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1722 assert(Known
.getBitWidth() == InBits
&& "Src width has changed?");
1723 Known
= Known
.zext(BitWidth
, false /* => any extend */);
1726 case ISD::TRUNCATE
: {
1727 SDValue Src
= Op
.getOperand(0);
1729 // Simplify the input, using demanded bit information, and compute the known
1730 // zero/one bits live out.
1731 unsigned OperandBitWidth
= Src
.getScalarValueSizeInBits();
1732 APInt TruncMask
= DemandedBits
.zext(OperandBitWidth
);
1733 if (SimplifyDemandedBits(Src
, TruncMask
, Known
, TLO
, Depth
+ 1))
1735 Known
= Known
.trunc(BitWidth
);
1737 // Attempt to avoid multi-use ops if we don't need anything from them.
1738 if (SDValue NewSrc
= SimplifyMultipleUseDemandedBits(
1739 Src
, TruncMask
, DemandedElts
, TLO
.DAG
, Depth
+ 1))
1740 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, NewSrc
));
1742 // If the input is only used by this truncate, see if we can shrink it based
1743 // on the known demanded bits.
1744 if (Src
.getNode()->hasOneUse()) {
1745 switch (Src
.getOpcode()) {
1749 // Shrink SRL by a constant if none of the high bits shifted in are
1751 if (TLO
.LegalTypes() && !isTypeDesirableForOp(ISD::SRL
, VT
))
1752 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1756 auto *ShAmt
= dyn_cast
<ConstantSDNode
>(Src
.getOperand(1));
1757 if (!ShAmt
|| ShAmt
->getAPIntValue().uge(BitWidth
))
1760 SDValue Shift
= Src
.getOperand(1);
1761 uint64_t ShVal
= ShAmt
->getZExtValue();
1763 if (TLO
.LegalTypes())
1764 Shift
= TLO
.DAG
.getConstant(ShVal
, dl
, getShiftAmountTy(VT
, DL
));
1767 APInt::getHighBitsSet(OperandBitWidth
, OperandBitWidth
- BitWidth
);
1768 HighBits
.lshrInPlace(ShVal
);
1769 HighBits
= HighBits
.trunc(BitWidth
);
1771 if (!(HighBits
& DemandedBits
)) {
1772 // None of the shifted in bits are needed. Add a truncate of the
1773 // shift input, then shift it.
1775 TLO
.DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Src
.getOperand(0));
1776 return TLO
.CombineTo(
1777 Op
, TLO
.DAG
.getNode(ISD::SRL
, dl
, VT
, NewTrunc
, Shift
));
1783 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1786 case ISD::AssertZext
: {
1787 // AssertZext demands all of the high bits, plus any of the low bits
1788 // demanded by its users.
1789 EVT ZVT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
1790 APInt InMask
= APInt::getLowBitsSet(BitWidth
, ZVT
.getSizeInBits());
1791 if (SimplifyDemandedBits(Op
.getOperand(0), ~InMask
| DemandedBits
, Known
,
1794 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1796 Known
.Zero
|= ~InMask
;
1799 case ISD::EXTRACT_VECTOR_ELT
: {
1800 SDValue Src
= Op
.getOperand(0);
1801 SDValue Idx
= Op
.getOperand(1);
1802 unsigned NumSrcElts
= Src
.getValueType().getVectorNumElements();
1803 unsigned EltBitWidth
= Src
.getScalarValueSizeInBits();
1805 // Demand the bits from every vector element without a constant index.
1806 APInt DemandedSrcElts
= APInt::getAllOnesValue(NumSrcElts
);
1807 if (auto *CIdx
= dyn_cast
<ConstantSDNode
>(Idx
))
1808 if (CIdx
->getAPIntValue().ult(NumSrcElts
))
1809 DemandedSrcElts
= APInt::getOneBitSet(NumSrcElts
, CIdx
->getZExtValue());
1811 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
1812 // anything about the extended bits.
1813 APInt DemandedSrcBits
= DemandedBits
;
1814 if (BitWidth
> EltBitWidth
)
1815 DemandedSrcBits
= DemandedSrcBits
.trunc(EltBitWidth
);
1817 if (SimplifyDemandedBits(Src
, DemandedSrcBits
, DemandedSrcElts
, Known2
, TLO
,
1822 if (BitWidth
> EltBitWidth
)
1823 Known
= Known
.zext(BitWidth
, false /* => any extend */);
1826 case ISD::BITCAST
: {
1827 SDValue Src
= Op
.getOperand(0);
1828 EVT SrcVT
= Src
.getValueType();
1829 unsigned NumSrcEltBits
= SrcVT
.getScalarSizeInBits();
1831 // If this is an FP->Int bitcast and if the sign bit is the only
1832 // thing demanded, turn this into a FGETSIGN.
1833 if (!TLO
.LegalOperations() && !VT
.isVector() && !SrcVT
.isVector() &&
1834 DemandedBits
== APInt::getSignMask(Op
.getValueSizeInBits()) &&
1835 SrcVT
.isFloatingPoint()) {
1836 bool OpVTLegal
= isOperationLegalOrCustom(ISD::FGETSIGN
, VT
);
1837 bool i32Legal
= isOperationLegalOrCustom(ISD::FGETSIGN
, MVT::i32
);
1838 if ((OpVTLegal
|| i32Legal
) && VT
.isSimple() && SrcVT
!= MVT::f16
&&
1839 SrcVT
!= MVT::f128
) {
1840 // Cannot eliminate/lower SHL for f128 yet.
1841 EVT Ty
= OpVTLegal
? VT
: MVT::i32
;
1842 // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1843 // place. We expect the SHL to be eliminated by other optimizations.
1844 SDValue Sign
= TLO
.DAG
.getNode(ISD::FGETSIGN
, dl
, Ty
, Src
);
1845 unsigned OpVTSizeInBits
= Op
.getValueSizeInBits();
1846 if (!OpVTLegal
&& OpVTSizeInBits
> 32)
1847 Sign
= TLO
.DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, Sign
);
1848 unsigned ShVal
= Op
.getValueSizeInBits() - 1;
1849 SDValue ShAmt
= TLO
.DAG
.getConstant(ShVal
, dl
, VT
);
1850 return TLO
.CombineTo(Op
,
1851 TLO
.DAG
.getNode(ISD::SHL
, dl
, VT
, Sign
, ShAmt
));
1855 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
1856 // Demand the elt/bit if any of the original elts/bits are demanded.
1857 // TODO - bigendian once we have test coverage.
1858 if (SrcVT
.isVector() && (BitWidth
% NumSrcEltBits
) == 0 &&
1859 TLO
.DAG
.getDataLayout().isLittleEndian()) {
1860 unsigned Scale
= BitWidth
/ NumSrcEltBits
;
1861 unsigned NumSrcElts
= SrcVT
.getVectorNumElements();
1862 APInt DemandedSrcBits
= APInt::getNullValue(NumSrcEltBits
);
1863 APInt DemandedSrcElts
= APInt::getNullValue(NumSrcElts
);
1864 for (unsigned i
= 0; i
!= Scale
; ++i
) {
1865 unsigned Offset
= i
* NumSrcEltBits
;
1866 APInt Sub
= DemandedBits
.extractBits(NumSrcEltBits
, Offset
);
1867 if (!Sub
.isNullValue()) {
1868 DemandedSrcBits
|= Sub
;
1869 for (unsigned j
= 0; j
!= NumElts
; ++j
)
1870 if (DemandedElts
[j
])
1871 DemandedSrcElts
.setBit((j
* Scale
) + i
);
1875 APInt KnownSrcUndef
, KnownSrcZero
;
1876 if (SimplifyDemandedVectorElts(Src
, DemandedSrcElts
, KnownSrcUndef
,
1877 KnownSrcZero
, TLO
, Depth
+ 1))
1880 KnownBits KnownSrcBits
;
1881 if (SimplifyDemandedBits(Src
, DemandedSrcBits
, DemandedSrcElts
,
1882 KnownSrcBits
, TLO
, Depth
+ 1))
1884 } else if ((NumSrcEltBits
% BitWidth
) == 0 &&
1885 TLO
.DAG
.getDataLayout().isLittleEndian()) {
1886 unsigned Scale
= NumSrcEltBits
/ BitWidth
;
1887 unsigned NumSrcElts
= SrcVT
.isVector() ? SrcVT
.getVectorNumElements() : 1;
1888 APInt DemandedSrcBits
= APInt::getNullValue(NumSrcEltBits
);
1889 APInt DemandedSrcElts
= APInt::getNullValue(NumSrcElts
);
1890 for (unsigned i
= 0; i
!= NumElts
; ++i
)
1891 if (DemandedElts
[i
]) {
1892 unsigned Offset
= (i
% Scale
) * BitWidth
;
1893 DemandedSrcBits
.insertBits(DemandedBits
, Offset
);
1894 DemandedSrcElts
.setBit(i
/ Scale
);
1897 if (SrcVT
.isVector()) {
1898 APInt KnownSrcUndef
, KnownSrcZero
;
1899 if (SimplifyDemandedVectorElts(Src
, DemandedSrcElts
, KnownSrcUndef
,
1900 KnownSrcZero
, TLO
, Depth
+ 1))
1904 KnownBits KnownSrcBits
;
1905 if (SimplifyDemandedBits(Src
, DemandedSrcBits
, DemandedSrcElts
,
1906 KnownSrcBits
, TLO
, Depth
+ 1))
1910 // If this is a bitcast, let computeKnownBits handle it. Only do this on a
1911 // recursive call where Known may be useful to the caller.
1913 Known
= TLO
.DAG
.computeKnownBits(Op
, DemandedElts
, Depth
);
1921 // Add, Sub, and Mul don't demand any bits in positions beyond that
1922 // of the highest bit demanded of them.
1923 SDValue Op0
= Op
.getOperand(0), Op1
= Op
.getOperand(1);
1924 SDNodeFlags Flags
= Op
.getNode()->getFlags();
1925 unsigned DemandedBitsLZ
= DemandedBits
.countLeadingZeros();
1926 APInt LoMask
= APInt::getLowBitsSet(BitWidth
, BitWidth
- DemandedBitsLZ
);
1927 if (SimplifyDemandedBits(Op0
, LoMask
, DemandedElts
, Known2
, TLO
,
1929 SimplifyDemandedBits(Op1
, LoMask
, DemandedElts
, Known2
, TLO
,
1931 // See if the operation should be performed at a smaller bit width.
1932 ShrinkDemandedOp(Op
, BitWidth
, DemandedBits
, TLO
)) {
1933 if (Flags
.hasNoSignedWrap() || Flags
.hasNoUnsignedWrap()) {
1934 // Disable the nsw and nuw flags. We can no longer guarantee that we
1935 // won't wrap after simplification.
1936 Flags
.setNoSignedWrap(false);
1937 Flags
.setNoUnsignedWrap(false);
1939 TLO
.DAG
.getNode(Op
.getOpcode(), dl
, VT
, Op0
, Op1
, Flags
);
1940 return TLO
.CombineTo(Op
, NewOp
);
1945 // Attempt to avoid multi-use ops if we don't need anything from them.
1946 if (!LoMask
.isAllOnesValue() || !DemandedElts
.isAllOnesValue()) {
1947 SDValue DemandedOp0
= SimplifyMultipleUseDemandedBits(
1948 Op0
, LoMask
, DemandedElts
, TLO
.DAG
, Depth
+ 1);
1949 SDValue DemandedOp1
= SimplifyMultipleUseDemandedBits(
1950 Op1
, LoMask
, DemandedElts
, TLO
.DAG
, Depth
+ 1);
1951 if (DemandedOp0
|| DemandedOp1
) {
1952 Flags
.setNoSignedWrap(false);
1953 Flags
.setNoUnsignedWrap(false);
1954 Op0
= DemandedOp0
? DemandedOp0
: Op0
;
1955 Op1
= DemandedOp1
? DemandedOp1
: Op1
;
1957 TLO
.DAG
.getNode(Op
.getOpcode(), dl
, VT
, Op0
, Op1
, Flags
);
1958 return TLO
.CombineTo(Op
, NewOp
);
1962 // If we have a constant operand, we may be able to turn it into -1 if we
1963 // do not demand the high bits. This can make the constant smaller to
1964 // encode, allow more general folding, or match specialized instruction
1965 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
1966 // is probably not useful (and could be detrimental).
1967 ConstantSDNode
*C
= isConstOrConstSplat(Op1
);
1968 APInt HighMask
= APInt::getHighBitsSet(BitWidth
, DemandedBitsLZ
);
1969 if (C
&& !C
->isAllOnesValue() && !C
->isOne() &&
1970 (C
->getAPIntValue() | HighMask
).isAllOnesValue()) {
1971 SDValue Neg1
= TLO
.DAG
.getAllOnesConstant(dl
, VT
);
1972 // Disable the nsw and nuw flags. We can no longer guarantee that we
1973 // won't wrap after simplification.
1974 Flags
.setNoSignedWrap(false);
1975 Flags
.setNoUnsignedWrap(false);
1976 SDValue NewOp
= TLO
.DAG
.getNode(Op
.getOpcode(), dl
, VT
, Op0
, Neg1
, Flags
);
1977 return TLO
.CombineTo(Op
, NewOp
);
1983 if (Op
.getOpcode() >= ISD::BUILTIN_OP_END
) {
1984 if (SimplifyDemandedBitsForTargetNode(Op
, DemandedBits
, DemandedElts
,
1990 // Just use computeKnownBits to compute output bits.
1991 Known
= TLO
.DAG
.computeKnownBits(Op
, DemandedElts
, Depth
);
1995 // If we know the value of all of the demanded bits, return this as a
1997 if (DemandedBits
.isSubsetOf(Known
.Zero
| Known
.One
)) {
1998 // Avoid folding to a constant if any OpaqueConstant is involved.
1999 const SDNode
*N
= Op
.getNode();
2000 for (SDNodeIterator I
= SDNodeIterator::begin(N
),
2001 E
= SDNodeIterator::end(N
);
2004 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
))
2008 // TODO: Handle float bits as well.
2010 return TLO
.CombineTo(Op
, TLO
.DAG
.getConstant(Known
.One
, dl
, VT
));
2016 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op
,
2017 const APInt
&DemandedElts
,
2020 DAGCombinerInfo
&DCI
) const {
2021 SelectionDAG
&DAG
= DCI
.DAG
;
2022 TargetLoweringOpt
TLO(DAG
, !DCI
.isBeforeLegalize(),
2023 !DCI
.isBeforeLegalizeOps());
2026 SimplifyDemandedVectorElts(Op
, DemandedElts
, KnownUndef
, KnownZero
, TLO
);
2028 DCI
.AddToWorklist(Op
.getNode());
2029 DCI
.CommitTargetLoweringOpt(TLO
);
2035 /// Given a vector binary operation and known undefined elements for each input
2036 /// operand, compute whether each element of the output is undefined.
2037 static APInt
getKnownUndefForVectorBinop(SDValue BO
, SelectionDAG
&DAG
,
2038 const APInt
&UndefOp0
,
2039 const APInt
&UndefOp1
) {
2040 EVT VT
= BO
.getValueType();
2041 assert(DAG
.getTargetLoweringInfo().isBinOp(BO
.getOpcode()) && VT
.isVector() &&
2042 "Vector binop only");
2044 EVT EltVT
= VT
.getVectorElementType();
2045 unsigned NumElts
= VT
.getVectorNumElements();
2046 assert(UndefOp0
.getBitWidth() == NumElts
&&
2047 UndefOp1
.getBitWidth() == NumElts
&& "Bad type for undef analysis");
2049 auto getUndefOrConstantElt
= [&](SDValue V
, unsigned Index
,
2050 const APInt
&UndefVals
) {
2051 if (UndefVals
[Index
])
2052 return DAG
.getUNDEF(EltVT
);
2054 if (auto *BV
= dyn_cast
<BuildVectorSDNode
>(V
)) {
2055 // Try hard to make sure that the getNode() call is not creating temporary
2056 // nodes. Ignore opaque integers because they do not constant fold.
2057 SDValue Elt
= BV
->getOperand(Index
);
2058 auto *C
= dyn_cast
<ConstantSDNode
>(Elt
);
2059 if (isa
<ConstantFPSDNode
>(Elt
) || Elt
.isUndef() || (C
&& !C
->isOpaque()))
2066 APInt KnownUndef
= APInt::getNullValue(NumElts
);
2067 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
2068 // If both inputs for this element are either constant or undef and match
2069 // the element type, compute the constant/undef result for this element of
2071 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2072 // not handle FP constants. The code within getNode() should be refactored
2073 // to avoid the danger of creating a bogus temporary node here.
2074 SDValue C0
= getUndefOrConstantElt(BO
.getOperand(0), i
, UndefOp0
);
2075 SDValue C1
= getUndefOrConstantElt(BO
.getOperand(1), i
, UndefOp1
);
2076 if (C0
&& C1
&& C0
.getValueType() == EltVT
&& C1
.getValueType() == EltVT
)
2077 if (DAG
.getNode(BO
.getOpcode(), SDLoc(BO
), EltVT
, C0
, C1
).isUndef())
2078 KnownUndef
.setBit(i
);
2083 bool TargetLowering::SimplifyDemandedVectorElts(
2084 SDValue Op
, const APInt
&OriginalDemandedElts
, APInt
&KnownUndef
,
2085 APInt
&KnownZero
, TargetLoweringOpt
&TLO
, unsigned Depth
,
2086 bool AssumeSingleUse
) const {
2087 EVT VT
= Op
.getValueType();
2088 APInt DemandedElts
= OriginalDemandedElts
;
2089 unsigned NumElts
= DemandedElts
.getBitWidth();
2090 assert(VT
.isVector() && "Expected vector op");
2091 assert(VT
.getVectorNumElements() == NumElts
&&
2092 "Mask size mismatches value type element count!");
2094 KnownUndef
= KnownZero
= APInt::getNullValue(NumElts
);
2098 KnownUndef
.setAllBits();
2102 // If Op has other users, assume that all elements are needed.
2103 if (!Op
.getNode()->hasOneUse() && !AssumeSingleUse
)
2104 DemandedElts
.setAllBits();
2106 // Not demanding any elements from Op.
2107 if (DemandedElts
== 0) {
2108 KnownUndef
.setAllBits();
2109 return TLO
.CombineTo(Op
, TLO
.DAG
.getUNDEF(VT
));
2112 // Limit search depth.
2113 if (Depth
>= SelectionDAG::MaxRecursionDepth
)
2117 unsigned EltSizeInBits
= VT
.getScalarSizeInBits();
2119 switch (Op
.getOpcode()) {
2120 case ISD::SCALAR_TO_VECTOR
: {
2121 if (!DemandedElts
[0]) {
2122 KnownUndef
.setAllBits();
2123 return TLO
.CombineTo(Op
, TLO
.DAG
.getUNDEF(VT
));
2125 KnownUndef
.setHighBits(NumElts
- 1);
2128 case ISD::BITCAST
: {
2129 SDValue Src
= Op
.getOperand(0);
2130 EVT SrcVT
= Src
.getValueType();
2132 // We only handle vectors here.
2133 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2134 if (!SrcVT
.isVector())
2137 // Fast handling of 'identity' bitcasts.
2138 unsigned NumSrcElts
= SrcVT
.getVectorNumElements();
2139 if (NumSrcElts
== NumElts
)
2140 return SimplifyDemandedVectorElts(Src
, DemandedElts
, KnownUndef
,
2141 KnownZero
, TLO
, Depth
+ 1);
2143 APInt SrcZero
, SrcUndef
;
2144 APInt SrcDemandedElts
= APInt::getNullValue(NumSrcElts
);
2146 // Bitcast from 'large element' src vector to 'small element' vector, we
2147 // must demand a source element if any DemandedElt maps to it.
2148 if ((NumElts
% NumSrcElts
) == 0) {
2149 unsigned Scale
= NumElts
/ NumSrcElts
;
2150 for (unsigned i
= 0; i
!= NumElts
; ++i
)
2151 if (DemandedElts
[i
])
2152 SrcDemandedElts
.setBit(i
/ Scale
);
2154 if (SimplifyDemandedVectorElts(Src
, SrcDemandedElts
, SrcUndef
, SrcZero
,
2158 // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2159 // of the large element.
2160 // TODO - bigendian once we have test coverage.
2161 if (TLO
.DAG
.getDataLayout().isLittleEndian()) {
2162 unsigned SrcEltSizeInBits
= SrcVT
.getScalarSizeInBits();
2163 APInt SrcDemandedBits
= APInt::getNullValue(SrcEltSizeInBits
);
2164 for (unsigned i
= 0; i
!= NumElts
; ++i
)
2165 if (DemandedElts
[i
]) {
2166 unsigned Ofs
= (i
% Scale
) * EltSizeInBits
;
2167 SrcDemandedBits
.setBits(Ofs
, Ofs
+ EltSizeInBits
);
2171 if (SimplifyDemandedBits(Src
, SrcDemandedBits
, Known
, TLO
, Depth
+ 1))
2175 // If the src element is zero/undef then all the output elements will be -
2176 // only demanded elements are guaranteed to be correct.
2177 for (unsigned i
= 0; i
!= NumSrcElts
; ++i
) {
2178 if (SrcDemandedElts
[i
]) {
2180 KnownZero
.setBits(i
* Scale
, (i
+ 1) * Scale
);
2182 KnownUndef
.setBits(i
* Scale
, (i
+ 1) * Scale
);
2187 // Bitcast from 'small element' src vector to 'large element' vector, we
2188 // demand all smaller source elements covered by the larger demanded element
2190 if ((NumSrcElts
% NumElts
) == 0) {
2191 unsigned Scale
= NumSrcElts
/ NumElts
;
2192 for (unsigned i
= 0; i
!= NumElts
; ++i
)
2193 if (DemandedElts
[i
])
2194 SrcDemandedElts
.setBits(i
* Scale
, (i
+ 1) * Scale
);
2196 if (SimplifyDemandedVectorElts(Src
, SrcDemandedElts
, SrcUndef
, SrcZero
,
2200 // If all the src elements covering an output element are zero/undef, then
2201 // the output element will be as well, assuming it was demanded.
2202 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
2203 if (DemandedElts
[i
]) {
2204 if (SrcZero
.extractBits(Scale
, i
* Scale
).isAllOnesValue())
2205 KnownZero
.setBit(i
);
2206 if (SrcUndef
.extractBits(Scale
, i
* Scale
).isAllOnesValue())
2207 KnownUndef
.setBit(i
);
2213 case ISD::BUILD_VECTOR
: {
2214 // Check all elements and simplify any unused elements with UNDEF.
2215 if (!DemandedElts
.isAllOnesValue()) {
2216 // Don't simplify BROADCASTS.
2217 if (llvm::any_of(Op
->op_values(),
2218 [&](SDValue Elt
) { return Op
.getOperand(0) != Elt
; })) {
2219 SmallVector
<SDValue
, 32> Ops(Op
->op_begin(), Op
->op_end());
2220 bool Updated
= false;
2221 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
2222 if (!DemandedElts
[i
] && !Ops
[i
].isUndef()) {
2223 Ops
[i
] = TLO
.DAG
.getUNDEF(Ops
[0].getValueType());
2224 KnownUndef
.setBit(i
);
2229 return TLO
.CombineTo(Op
, TLO
.DAG
.getBuildVector(VT
, DL
, Ops
));
2232 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
2233 SDValue SrcOp
= Op
.getOperand(i
);
2234 if (SrcOp
.isUndef()) {
2235 KnownUndef
.setBit(i
);
2236 } else if (EltSizeInBits
== SrcOp
.getScalarValueSizeInBits() &&
2237 (isNullConstant(SrcOp
) || isNullFPConstant(SrcOp
))) {
2238 KnownZero
.setBit(i
);
2243 case ISD::CONCAT_VECTORS
: {
2244 EVT SubVT
= Op
.getOperand(0).getValueType();
2245 unsigned NumSubVecs
= Op
.getNumOperands();
2246 unsigned NumSubElts
= SubVT
.getVectorNumElements();
2247 for (unsigned i
= 0; i
!= NumSubVecs
; ++i
) {
2248 SDValue SubOp
= Op
.getOperand(i
);
2249 APInt SubElts
= DemandedElts
.extractBits(NumSubElts
, i
* NumSubElts
);
2250 APInt SubUndef
, SubZero
;
2251 if (SimplifyDemandedVectorElts(SubOp
, SubElts
, SubUndef
, SubZero
, TLO
,
2254 KnownUndef
.insertBits(SubUndef
, i
* NumSubElts
);
2255 KnownZero
.insertBits(SubZero
, i
* NumSubElts
);
2259 case ISD::INSERT_SUBVECTOR
: {
2260 if (!isa
<ConstantSDNode
>(Op
.getOperand(2)))
2262 SDValue Base
= Op
.getOperand(0);
2263 SDValue Sub
= Op
.getOperand(1);
2264 EVT SubVT
= Sub
.getValueType();
2265 unsigned NumSubElts
= SubVT
.getVectorNumElements();
2266 const APInt
&Idx
= Op
.getConstantOperandAPInt(2);
2267 if (Idx
.ugt(NumElts
- NumSubElts
))
2269 unsigned SubIdx
= Idx
.getZExtValue();
2270 APInt SubElts
= DemandedElts
.extractBits(NumSubElts
, SubIdx
);
2271 APInt SubUndef
, SubZero
;
2272 if (SimplifyDemandedVectorElts(Sub
, SubElts
, SubUndef
, SubZero
, TLO
,
2275 APInt BaseElts
= DemandedElts
;
2276 BaseElts
.insertBits(APInt::getNullValue(NumSubElts
), SubIdx
);
2278 // If none of the base operand elements are demanded, replace it with undef.
2279 if (!BaseElts
&& !Base
.isUndef())
2280 return TLO
.CombineTo(Op
,
2281 TLO
.DAG
.getNode(ISD::INSERT_SUBVECTOR
, DL
, VT
,
2282 TLO
.DAG
.getUNDEF(VT
),
2286 if (SimplifyDemandedVectorElts(Base
, BaseElts
, KnownUndef
, KnownZero
, TLO
,
2289 KnownUndef
.insertBits(SubUndef
, SubIdx
);
2290 KnownZero
.insertBits(SubZero
, SubIdx
);
2293 case ISD::EXTRACT_SUBVECTOR
: {
2294 SDValue Src
= Op
.getOperand(0);
2295 ConstantSDNode
*SubIdx
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
2296 unsigned NumSrcElts
= Src
.getValueType().getVectorNumElements();
2297 if (SubIdx
&& SubIdx
->getAPIntValue().ule(NumSrcElts
- NumElts
)) {
2298 // Offset the demanded elts by the subvector index.
2299 uint64_t Idx
= SubIdx
->getZExtValue();
2300 APInt SrcElts
= DemandedElts
.zextOrSelf(NumSrcElts
).shl(Idx
);
2301 APInt SrcUndef
, SrcZero
;
2302 if (SimplifyDemandedVectorElts(Src
, SrcElts
, SrcUndef
, SrcZero
, TLO
,
2305 KnownUndef
= SrcUndef
.extractBits(NumElts
, Idx
);
2306 KnownZero
= SrcZero
.extractBits(NumElts
, Idx
);
2310 case ISD::INSERT_VECTOR_ELT
: {
2311 SDValue Vec
= Op
.getOperand(0);
2312 SDValue Scl
= Op
.getOperand(1);
2313 auto *CIdx
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
2315 // For a legal, constant insertion index, if we don't need this insertion
2316 // then strip it, else remove it from the demanded elts.
2317 if (CIdx
&& CIdx
->getAPIntValue().ult(NumElts
)) {
2318 unsigned Idx
= CIdx
->getZExtValue();
2319 if (!DemandedElts
[Idx
])
2320 return TLO
.CombineTo(Op
, Vec
);
2322 APInt
DemandedVecElts(DemandedElts
);
2323 DemandedVecElts
.clearBit(Idx
);
2324 if (SimplifyDemandedVectorElts(Vec
, DemandedVecElts
, KnownUndef
,
2325 KnownZero
, TLO
, Depth
+ 1))
2328 KnownUndef
.clearBit(Idx
);
2330 KnownUndef
.setBit(Idx
);
2332 KnownZero
.clearBit(Idx
);
2333 if (isNullConstant(Scl
) || isNullFPConstant(Scl
))
2334 KnownZero
.setBit(Idx
);
2338 APInt VecUndef
, VecZero
;
2339 if (SimplifyDemandedVectorElts(Vec
, DemandedElts
, VecUndef
, VecZero
, TLO
,
2342 // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2345 case ISD::VSELECT
: {
2346 // Try to transform the select condition based on the current demanded
2348 // TODO: If a condition element is undef, we can choose from one arm of the
2349 // select (and if one arm is undef, then we can propagate that to the
2351 // TODO - add support for constant vselect masks (see IR version of this).
2352 APInt UnusedUndef
, UnusedZero
;
2353 if (SimplifyDemandedVectorElts(Op
.getOperand(0), DemandedElts
, UnusedUndef
,
2354 UnusedZero
, TLO
, Depth
+ 1))
2357 // See if we can simplify either vselect operand.
2358 APInt
DemandedLHS(DemandedElts
);
2359 APInt
DemandedRHS(DemandedElts
);
2360 APInt UndefLHS
, ZeroLHS
;
2361 APInt UndefRHS
, ZeroRHS
;
2362 if (SimplifyDemandedVectorElts(Op
.getOperand(1), DemandedLHS
, UndefLHS
,
2363 ZeroLHS
, TLO
, Depth
+ 1))
2365 if (SimplifyDemandedVectorElts(Op
.getOperand(2), DemandedRHS
, UndefRHS
,
2366 ZeroRHS
, TLO
, Depth
+ 1))
2369 KnownUndef
= UndefLHS
& UndefRHS
;
2370 KnownZero
= ZeroLHS
& ZeroRHS
;
2373 case ISD::VECTOR_SHUFFLE
: {
2374 ArrayRef
<int> ShuffleMask
= cast
<ShuffleVectorSDNode
>(Op
)->getMask();
2376 // Collect demanded elements from shuffle operands..
2377 APInt
DemandedLHS(NumElts
, 0);
2378 APInt
DemandedRHS(NumElts
, 0);
2379 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
2380 int M
= ShuffleMask
[i
];
2381 if (M
< 0 || !DemandedElts
[i
])
2383 assert(0 <= M
&& M
< (int)(2 * NumElts
) && "Shuffle index out of range");
2384 if (M
< (int)NumElts
)
2385 DemandedLHS
.setBit(M
);
2387 DemandedRHS
.setBit(M
- NumElts
);
2390 // See if we can simplify either shuffle operand.
2391 APInt UndefLHS
, ZeroLHS
;
2392 APInt UndefRHS
, ZeroRHS
;
2393 if (SimplifyDemandedVectorElts(Op
.getOperand(0), DemandedLHS
, UndefLHS
,
2394 ZeroLHS
, TLO
, Depth
+ 1))
2396 if (SimplifyDemandedVectorElts(Op
.getOperand(1), DemandedRHS
, UndefRHS
,
2397 ZeroRHS
, TLO
, Depth
+ 1))
2400 // Simplify mask using undef elements from LHS/RHS.
2401 bool Updated
= false;
2402 bool IdentityLHS
= true, IdentityRHS
= true;
2403 SmallVector
<int, 32> NewMask(ShuffleMask
.begin(), ShuffleMask
.end());
2404 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
2405 int &M
= NewMask
[i
];
2408 if (!DemandedElts
[i
] || (M
< (int)NumElts
&& UndefLHS
[M
]) ||
2409 (M
>= (int)NumElts
&& UndefRHS
[M
- NumElts
])) {
2413 IdentityLHS
&= (M
< 0) || (M
== (int)i
);
2414 IdentityRHS
&= (M
< 0) || ((M
- NumElts
) == i
);
2417 // Update legal shuffle masks based on demanded elements if it won't reduce
2418 // to Identity which can cause premature removal of the shuffle mask.
2419 if (Updated
&& !IdentityLHS
&& !IdentityRHS
&& !TLO
.LegalOps
) {
2420 SDValue LegalShuffle
=
2421 buildLegalVectorShuffle(VT
, DL
, Op
.getOperand(0), Op
.getOperand(1),
2424 return TLO
.CombineTo(Op
, LegalShuffle
);
2427 // Propagate undef/zero elements from LHS/RHS.
2428 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
2429 int M
= ShuffleMask
[i
];
2431 KnownUndef
.setBit(i
);
2432 } else if (M
< (int)NumElts
) {
2434 KnownUndef
.setBit(i
);
2436 KnownZero
.setBit(i
);
2438 if (UndefRHS
[M
- NumElts
])
2439 KnownUndef
.setBit(i
);
2440 if (ZeroRHS
[M
- NumElts
])
2441 KnownZero
.setBit(i
);
2446 case ISD::ANY_EXTEND_VECTOR_INREG
:
2447 case ISD::SIGN_EXTEND_VECTOR_INREG
:
2448 case ISD::ZERO_EXTEND_VECTOR_INREG
: {
2449 APInt SrcUndef
, SrcZero
;
2450 SDValue Src
= Op
.getOperand(0);
2451 unsigned NumSrcElts
= Src
.getValueType().getVectorNumElements();
2452 APInt DemandedSrcElts
= DemandedElts
.zextOrSelf(NumSrcElts
);
2453 if (SimplifyDemandedVectorElts(Src
, DemandedSrcElts
, SrcUndef
, SrcZero
, TLO
,
2456 KnownZero
= SrcZero
.zextOrTrunc(NumElts
);
2457 KnownUndef
= SrcUndef
.zextOrTrunc(NumElts
);
2459 if (Op
.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG
&&
2460 Op
.getValueSizeInBits() == Src
.getValueSizeInBits() &&
2461 DemandedSrcElts
== 1 && TLO
.DAG
.getDataLayout().isLittleEndian()) {
2462 // aext - if we just need the bottom element then we can bitcast.
2463 return TLO
.CombineTo(Op
, TLO
.DAG
.getBitcast(VT
, Src
));
2466 if (Op
.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG
) {
2467 // zext(undef) upper bits are guaranteed to be zero.
2468 if (DemandedElts
.isSubsetOf(KnownUndef
))
2469 return TLO
.CombineTo(Op
, TLO
.DAG
.getConstant(0, SDLoc(Op
), VT
));
2470 KnownUndef
.clearAllBits();
2475 // TODO: There are more binop opcodes that could be handled here - MUL, MIN,
2476 // MAX, saturated math, etc.
2486 APInt UndefRHS
, ZeroRHS
;
2487 if (SimplifyDemandedVectorElts(Op
.getOperand(1), DemandedElts
, UndefRHS
,
2488 ZeroRHS
, TLO
, Depth
+ 1))
2490 APInt UndefLHS
, ZeroLHS
;
2491 if (SimplifyDemandedVectorElts(Op
.getOperand(0), DemandedElts
, UndefLHS
,
2492 ZeroLHS
, TLO
, Depth
+ 1))
2495 KnownZero
= ZeroLHS
& ZeroRHS
;
2496 KnownUndef
= getKnownUndefForVectorBinop(Op
, TLO
.DAG
, UndefLHS
, UndefRHS
);
2504 APInt UndefRHS
, ZeroRHS
;
2505 if (SimplifyDemandedVectorElts(Op
.getOperand(1), DemandedElts
, UndefRHS
,
2506 ZeroRHS
, TLO
, Depth
+ 1))
2508 APInt UndefLHS
, ZeroLHS
;
2509 if (SimplifyDemandedVectorElts(Op
.getOperand(0), DemandedElts
, UndefLHS
,
2510 ZeroLHS
, TLO
, Depth
+ 1))
2513 KnownZero
= ZeroLHS
;
2514 KnownUndef
= UndefLHS
& UndefRHS
; // TODO: use getKnownUndefForVectorBinop?
2519 APInt SrcUndef
, SrcZero
;
2520 if (SimplifyDemandedVectorElts(Op
.getOperand(1), DemandedElts
, SrcUndef
,
2521 SrcZero
, TLO
, Depth
+ 1))
2523 if (SimplifyDemandedVectorElts(Op
.getOperand(0), DemandedElts
, KnownUndef
,
2524 KnownZero
, TLO
, Depth
+ 1))
2527 // If either side has a zero element, then the result element is zero, even
2528 // if the other is an UNDEF.
2529 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2530 // and then handle 'and' nodes with the rest of the binop opcodes.
2531 KnownZero
|= SrcZero
;
2532 KnownUndef
&= SrcUndef
;
2533 KnownUndef
&= ~KnownZero
;
2537 case ISD::SIGN_EXTEND
:
2538 case ISD::ZERO_EXTEND
:
2539 if (SimplifyDemandedVectorElts(Op
.getOperand(0), DemandedElts
, KnownUndef
,
2540 KnownZero
, TLO
, Depth
+ 1))
2543 if (Op
.getOpcode() == ISD::ZERO_EXTEND
) {
2544 // zext(undef) upper bits are guaranteed to be zero.
2545 if (DemandedElts
.isSubsetOf(KnownUndef
))
2546 return TLO
.CombineTo(Op
, TLO
.DAG
.getConstant(0, SDLoc(Op
), VT
));
2547 KnownUndef
.clearAllBits();
2551 if (Op
.getOpcode() >= ISD::BUILTIN_OP_END
) {
2552 if (SimplifyDemandedVectorEltsForTargetNode(Op
, DemandedElts
, KnownUndef
,
2553 KnownZero
, TLO
, Depth
))
2557 APInt DemandedBits
= APInt::getAllOnesValue(EltSizeInBits
);
2558 if (SimplifyDemandedBits(Op
, DemandedBits
, OriginalDemandedElts
, Known
,
2559 TLO
, Depth
, AssumeSingleUse
))
2565 assert((KnownUndef
& KnownZero
) == 0 && "Elements flagged as undef AND zero");
2567 // Constant fold all undef cases.
2568 // TODO: Handle zero cases as well.
2569 if (DemandedElts
.isSubsetOf(KnownUndef
))
2570 return TLO
.CombineTo(Op
, TLO
.DAG
.getUNDEF(VT
));
2575 /// Determine which of the bits specified in Mask are known to be either zero or
2576 /// one and return them in the Known.
2577 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op
,
2579 const APInt
&DemandedElts
,
2580 const SelectionDAG
&DAG
,
2581 unsigned Depth
) const {
2582 assert((Op
.getOpcode() >= ISD::BUILTIN_OP_END
||
2583 Op
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
||
2584 Op
.getOpcode() == ISD::INTRINSIC_W_CHAIN
||
2585 Op
.getOpcode() == ISD::INTRINSIC_VOID
) &&
2586 "Should use MaskedValueIsZero if you don't know whether Op"
2587 " is a target node!");
2591 void TargetLowering::computeKnownBitsForTargetInstr(
2592 Register R
, KnownBits
&Known
, const APInt
&DemandedElts
,
2593 const MachineRegisterInfo
&MRI
, unsigned Depth
) const {
2597 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op
,
2599 const APInt
&DemandedElts
,
2600 const SelectionDAG
&DAG
,
2601 unsigned Depth
) const {
2602 assert(isa
<FrameIndexSDNode
>(Op
) && "expected FrameIndex");
2604 if (unsigned Align
= DAG
.InferPtrAlignment(Op
)) {
2605 // The low bits are known zero if the pointer is aligned.
2606 Known
.Zero
.setLowBits(Log2_32(Align
));
2610 /// This method can be implemented by targets that want to expose additional
2611 /// information about sign bits to the DAG Combiner.
2612 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op
,
2614 const SelectionDAG
&,
2615 unsigned Depth
) const {
2616 assert((Op
.getOpcode() >= ISD::BUILTIN_OP_END
||
2617 Op
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
||
2618 Op
.getOpcode() == ISD::INTRINSIC_W_CHAIN
||
2619 Op
.getOpcode() == ISD::INTRINSIC_VOID
) &&
2620 "Should use ComputeNumSignBits if you don't know whether Op"
2621 " is a target node!");
2625 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2626 SDValue Op
, const APInt
&DemandedElts
, APInt
&KnownUndef
, APInt
&KnownZero
,
2627 TargetLoweringOpt
&TLO
, unsigned Depth
) const {
2628 assert((Op
.getOpcode() >= ISD::BUILTIN_OP_END
||
2629 Op
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
||
2630 Op
.getOpcode() == ISD::INTRINSIC_W_CHAIN
||
2631 Op
.getOpcode() == ISD::INTRINSIC_VOID
) &&
2632 "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2633 " is a target node!");
2637 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2638 SDValue Op
, const APInt
&DemandedBits
, const APInt
&DemandedElts
,
2639 KnownBits
&Known
, TargetLoweringOpt
&TLO
, unsigned Depth
) const {
2640 assert((Op
.getOpcode() >= ISD::BUILTIN_OP_END
||
2641 Op
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
||
2642 Op
.getOpcode() == ISD::INTRINSIC_W_CHAIN
||
2643 Op
.getOpcode() == ISD::INTRINSIC_VOID
) &&
2644 "Should use SimplifyDemandedBits if you don't know whether Op"
2645 " is a target node!");
2646 computeKnownBitsForTargetNode(Op
, Known
, DemandedElts
, TLO
.DAG
, Depth
);
2650 SDValue
TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
2651 SDValue Op
, const APInt
&DemandedBits
, const APInt
&DemandedElts
,
2652 SelectionDAG
&DAG
, unsigned Depth
) const {
2654 (Op
.getOpcode() >= ISD::BUILTIN_OP_END
||
2655 Op
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
||
2656 Op
.getOpcode() == ISD::INTRINSIC_W_CHAIN
||
2657 Op
.getOpcode() == ISD::INTRINSIC_VOID
) &&
2658 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
2659 " is a target node!");
2664 TargetLowering::buildLegalVectorShuffle(EVT VT
, const SDLoc
&DL
, SDValue N0
,
2665 SDValue N1
, MutableArrayRef
<int> Mask
,
2666 SelectionDAG
&DAG
) const {
2667 bool LegalMask
= isShuffleMaskLegal(Mask
, VT
);
2670 ShuffleVectorSDNode::commuteMask(Mask
);
2671 LegalMask
= isShuffleMaskLegal(Mask
, VT
);
2677 return DAG
.getVectorShuffle(VT
, DL
, N0
, N1
, Mask
);
2680 const Constant
*TargetLowering::getTargetConstantFromLoad(LoadSDNode
*) const {
2684 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op
,
2685 const SelectionDAG
&DAG
,
2687 unsigned Depth
) const {
2688 assert((Op
.getOpcode() >= ISD::BUILTIN_OP_END
||
2689 Op
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
||
2690 Op
.getOpcode() == ISD::INTRINSIC_W_CHAIN
||
2691 Op
.getOpcode() == ISD::INTRINSIC_VOID
) &&
2692 "Should use isKnownNeverNaN if you don't know whether Op"
2693 " is a target node!");
2697 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
2698 // work with truncating build vectors and vectors with elements of less than
2700 bool TargetLowering::isConstTrueVal(const SDNode
*N
) const {
2705 if (auto *CN
= dyn_cast
<ConstantSDNode
>(N
)) {
2706 CVal
= CN
->getAPIntValue();
2707 } else if (auto *BV
= dyn_cast
<BuildVectorSDNode
>(N
)) {
2708 auto *CN
= BV
->getConstantSplatNode();
2712 // If this is a truncating build vector, truncate the splat value.
2713 // Otherwise, we may fail to match the expected values below.
2714 unsigned BVEltWidth
= BV
->getValueType(0).getScalarSizeInBits();
2715 CVal
= CN
->getAPIntValue();
2716 if (BVEltWidth
< CVal
.getBitWidth())
2717 CVal
= CVal
.trunc(BVEltWidth
);
2722 switch (getBooleanContents(N
->getValueType(0))) {
2723 case UndefinedBooleanContent
:
2725 case ZeroOrOneBooleanContent
:
2726 return CVal
.isOneValue();
2727 case ZeroOrNegativeOneBooleanContent
:
2728 return CVal
.isAllOnesValue();
2731 llvm_unreachable("Invalid boolean contents");
2734 bool TargetLowering::isConstFalseVal(const SDNode
*N
) const {
2738 const ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(N
);
2740 const BuildVectorSDNode
*BV
= dyn_cast
<BuildVectorSDNode
>(N
);
2744 // Only interested in constant splats, we don't care about undef
2745 // elements in identifying boolean constants and getConstantSplatNode
2746 // returns NULL if all ops are undef;
2747 CN
= BV
->getConstantSplatNode();
2752 if (getBooleanContents(N
->getValueType(0)) == UndefinedBooleanContent
)
2753 return !CN
->getAPIntValue()[0];
2755 return CN
->isNullValue();
2758 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode
*N
, EVT VT
,
2763 TargetLowering::BooleanContent Cnt
= getBooleanContents(VT
);
2765 case TargetLowering::ZeroOrOneBooleanContent
:
2766 // An extended value of 1 is always true, unless its original type is i1,
2767 // in which case it will be sign extended to -1.
2768 return (N
->isOne() && !SExt
) || (SExt
&& (N
->getValueType(0) != MVT::i1
));
2769 case TargetLowering::UndefinedBooleanContent
:
2770 case TargetLowering::ZeroOrNegativeOneBooleanContent
:
2771 return N
->isAllOnesValue() && SExt
;
2773 llvm_unreachable("Unexpected enumeration.");
2776 /// This helper function of SimplifySetCC tries to optimize the comparison when
2777 /// either operand of the SetCC node is a bitwise-and instruction.
2778 SDValue
TargetLowering::foldSetCCWithAnd(EVT VT
, SDValue N0
, SDValue N1
,
2779 ISD::CondCode Cond
, const SDLoc
&DL
,
2780 DAGCombinerInfo
&DCI
) const {
2781 // Match these patterns in any of their permutations:
2784 if (N1
.getOpcode() == ISD::AND
&& N0
.getOpcode() != ISD::AND
)
2787 EVT OpVT
= N0
.getValueType();
2788 if (N0
.getOpcode() != ISD::AND
|| !OpVT
.isInteger() ||
2789 (Cond
!= ISD::SETEQ
&& Cond
!= ISD::SETNE
))
2793 if (N0
.getOperand(0) == N1
) {
2794 X
= N0
.getOperand(1);
2795 Y
= N0
.getOperand(0);
2796 } else if (N0
.getOperand(1) == N1
) {
2797 X
= N0
.getOperand(0);
2798 Y
= N0
.getOperand(1);
2803 SelectionDAG
&DAG
= DCI
.DAG
;
2804 SDValue Zero
= DAG
.getConstant(0, DL
, OpVT
);
2805 if (DAG
.isKnownToBeAPowerOfTwo(Y
)) {
2806 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
2807 // Note that where Y is variable and is known to have at most one bit set
2808 // (for example, if it is Z & 1) we cannot do this; the expressions are not
2809 // equivalent when Y == 0.
2810 Cond
= ISD::getSetCCInverse(Cond
, /*isInteger=*/true);
2811 if (DCI
.isBeforeLegalizeOps() ||
2812 isCondCodeLegal(Cond
, N0
.getSimpleValueType()))
2813 return DAG
.getSetCC(DL
, VT
, N0
, Zero
, Cond
);
2814 } else if (N0
.hasOneUse() && hasAndNotCompare(Y
)) {
2815 // If the target supports an 'and-not' or 'and-complement' logic operation,
2816 // try to use that to make a comparison operation more efficient.
2817 // But don't do this transform if the mask is a single bit because there are
2818 // more efficient ways to deal with that case (for example, 'bt' on x86 or
2819 // 'rlwinm' on PPC).
2821 // Bail out if the compare operand that we want to turn into a zero is
2822 // already a zero (otherwise, infinite loop).
2823 auto *YConst
= dyn_cast
<ConstantSDNode
>(Y
);
2824 if (YConst
&& YConst
->isNullValue())
2827 // Transform this into: ~X & Y == 0.
2828 SDValue NotX
= DAG
.getNOT(SDLoc(X
), X
, OpVT
);
2829 SDValue NewAnd
= DAG
.getNode(ISD::AND
, SDLoc(N0
), OpVT
, NotX
, Y
);
2830 return DAG
.getSetCC(DL
, VT
, NewAnd
, Zero
, Cond
);
2836 /// There are multiple IR patterns that could be checking whether certain
2837 /// truncation of a signed number would be lossy or not. The pattern which is
2838 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
2839 /// We are looking for the following pattern: (KeptBits is a constant)
2840 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
2841 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
2842 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0
2843 /// We will unfold it into the natural trunc+sext pattern:
2844 /// ((%x << C) a>> C) dstcond %x
2845 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x)
2846 SDValue
TargetLowering::optimizeSetCCOfSignedTruncationCheck(
2847 EVT SCCVT
, SDValue N0
, SDValue N1
, ISD::CondCode Cond
, DAGCombinerInfo
&DCI
,
2848 const SDLoc
&DL
) const {
2849 // We must be comparing with a constant.
2851 if (!(C1
= dyn_cast
<ConstantSDNode
>(N1
)))
2854 // N0 should be: add %x, (1 << (KeptBits-1))
2855 if (N0
->getOpcode() != ISD::ADD
)
2858 // And we must be 'add'ing a constant.
2859 ConstantSDNode
*C01
;
2860 if (!(C01
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1))))
2863 SDValue X
= N0
->getOperand(0);
2864 EVT XVT
= X
.getValueType();
2866 // Validate constants ...
2868 APInt I1
= C1
->getAPIntValue();
2870 ISD::CondCode NewCond
;
2871 if (Cond
== ISD::CondCode::SETULT
) {
2872 NewCond
= ISD::CondCode::SETEQ
;
2873 } else if (Cond
== ISD::CondCode::SETULE
) {
2874 NewCond
= ISD::CondCode::SETEQ
;
2875 // But need to 'canonicalize' the constant.
2877 } else if (Cond
== ISD::CondCode::SETUGT
) {
2878 NewCond
= ISD::CondCode::SETNE
;
2879 // But need to 'canonicalize' the constant.
2881 } else if (Cond
== ISD::CondCode::SETUGE
) {
2882 NewCond
= ISD::CondCode::SETNE
;
2886 APInt I01
= C01
->getAPIntValue();
2888 auto checkConstants
= [&I1
, &I01
]() -> bool {
2889 // Both of them must be power-of-two, and the constant from setcc is bigger.
2890 return I1
.ugt(I01
) && I1
.isPowerOf2() && I01
.isPowerOf2();
2893 if (checkConstants()) {
2894 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256
2896 // What if we invert constants? (and the target predicate)
2899 NewCond
= getSetCCInverse(NewCond
, /*isInteger=*/true);
2900 if (!checkConstants())
2902 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256
2905 // They are power-of-two, so which bit is set?
2906 const unsigned KeptBits
= I1
.logBase2();
2907 const unsigned KeptBitsMinusOne
= I01
.logBase2();
2910 if (KeptBits
!= (KeptBitsMinusOne
+ 1))
2912 assert(KeptBits
> 0 && KeptBits
< XVT
.getSizeInBits() && "unreachable");
2914 // We don't want to do this in every single case.
2915 SelectionDAG
&DAG
= DCI
.DAG
;
2916 if (!DAG
.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
2920 const unsigned MaskedBits
= XVT
.getSizeInBits() - KeptBits
;
2921 assert(MaskedBits
> 0 && MaskedBits
< XVT
.getSizeInBits() && "unreachable");
2923 // Unfold into: ((%x << C) a>> C) cond %x
2924 // Where 'cond' will be either 'eq' or 'ne'.
2925 SDValue ShiftAmt
= DAG
.getConstant(MaskedBits
, DL
, XVT
);
2926 SDValue T0
= DAG
.getNode(ISD::SHL
, DL
, XVT
, X
, ShiftAmt
);
2927 SDValue T1
= DAG
.getNode(ISD::SRA
, DL
, XVT
, T0
, ShiftAmt
);
2928 SDValue T2
= DAG
.getSetCC(DL
, SCCVT
, T1
, X
, NewCond
);
2933 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
2934 SDValue
TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
2935 EVT SCCVT
, SDValue N0
, SDValue N1C
, ISD::CondCode Cond
,
2936 DAGCombinerInfo
&DCI
, const SDLoc
&DL
) const {
2937 assert(isConstOrConstSplat(N1C
) &&
2938 isConstOrConstSplat(N1C
)->getAPIntValue().isNullValue() &&
2939 "Should be a comparison with 0.");
2940 assert((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
2941 "Valid only for [in]equality comparisons.");
2943 unsigned NewShiftOpcode
;
2946 SelectionDAG
&DAG
= DCI
.DAG
;
2947 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2949 // Look for '(C l>>/<< Y)'.
2950 auto Match
= [&NewShiftOpcode
, &X
, &C
, &Y
, &TLI
, &DAG
](SDValue V
) {
2951 // The shift should be one-use.
2954 unsigned OldShiftOpcode
= V
.getOpcode();
2955 switch (OldShiftOpcode
) {
2957 NewShiftOpcode
= ISD::SRL
;
2960 NewShiftOpcode
= ISD::SHL
;
2963 return false; // must be a logical shift.
2965 // We should be shifting a constant.
2966 // FIXME: best to use isConstantOrConstantVector().
2967 C
= V
.getOperand(0);
2968 ConstantSDNode
*CC
=
2969 isConstOrConstSplat(C
, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
2972 Y
= V
.getOperand(1);
2974 ConstantSDNode
*XC
=
2975 isConstOrConstSplat(X
, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
2976 return TLI
.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
2977 X
, XC
, CC
, Y
, OldShiftOpcode
, NewShiftOpcode
, DAG
);
2980 // LHS of comparison should be an one-use 'and'.
2981 if (N0
.getOpcode() != ISD::AND
|| !N0
.hasOneUse())
2984 X
= N0
.getOperand(0);
2985 SDValue Mask
= N0
.getOperand(1);
2987 // 'and' is commutative!
2994 EVT VT
= X
.getValueType();
2997 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
2998 SDValue T0
= DAG
.getNode(NewShiftOpcode
, DL
, VT
, X
, Y
);
2999 SDValue T1
= DAG
.getNode(ISD::AND
, DL
, VT
, T0
, C
);
3000 SDValue T2
= DAG
.getSetCC(DL
, SCCVT
, T1
, N1C
, Cond
);
3004 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3005 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3006 /// handle the commuted versions of these patterns.
3007 SDValue
TargetLowering::foldSetCCWithBinOp(EVT VT
, SDValue N0
, SDValue N1
,
3008 ISD::CondCode Cond
, const SDLoc
&DL
,
3009 DAGCombinerInfo
&DCI
) const {
3010 unsigned BOpcode
= N0
.getOpcode();
3011 assert((BOpcode
== ISD::ADD
|| BOpcode
== ISD::SUB
|| BOpcode
== ISD::XOR
) &&
3012 "Unexpected binop");
3013 assert((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) && "Unexpected condcode");
3015 // (X + Y) == X --> Y == 0
3016 // (X - Y) == X --> Y == 0
3017 // (X ^ Y) == X --> Y == 0
3018 SelectionDAG
&DAG
= DCI
.DAG
;
3019 EVT OpVT
= N0
.getValueType();
3020 SDValue X
= N0
.getOperand(0);
3021 SDValue Y
= N0
.getOperand(1);
3023 return DAG
.getSetCC(DL
, VT
, Y
, DAG
.getConstant(0, DL
, OpVT
), Cond
);
3028 // (X + Y) == Y --> X == 0
3029 // (X ^ Y) == Y --> X == 0
3030 if (BOpcode
== ISD::ADD
|| BOpcode
== ISD::XOR
)
3031 return DAG
.getSetCC(DL
, VT
, X
, DAG
.getConstant(0, DL
, OpVT
), Cond
);
3033 // The shift would not be valid if the operands are boolean (i1).
3034 if (!N0
.hasOneUse() || OpVT
.getScalarSizeInBits() == 1)
3037 // (X - Y) == Y --> X == Y << 1
3038 EVT ShiftVT
= getShiftAmountTy(OpVT
, DAG
.getDataLayout(),
3039 !DCI
.isBeforeLegalize());
3040 SDValue One
= DAG
.getConstant(1, DL
, ShiftVT
);
3041 SDValue YShl1
= DAG
.getNode(ISD::SHL
, DL
, N1
.getValueType(), Y
, One
);
3042 if (!DCI
.isCalledByLegalizer())
3043 DCI
.AddToWorklist(YShl1
.getNode());
3044 return DAG
.getSetCC(DL
, VT
, X
, YShl1
, Cond
);
3047 /// Try to simplify a setcc built with the specified operands and cc. If it is
3048 /// unable to simplify it, return a null SDValue.
3049 SDValue
TargetLowering::SimplifySetCC(EVT VT
, SDValue N0
, SDValue N1
,
3050 ISD::CondCode Cond
, bool foldBooleans
,
3051 DAGCombinerInfo
&DCI
,
3052 const SDLoc
&dl
) const {
3053 SelectionDAG
&DAG
= DCI
.DAG
;
3054 EVT OpVT
= N0
.getValueType();
3056 // Constant fold or commute setcc.
3057 if (SDValue Fold
= DAG
.FoldSetCC(VT
, N0
, N1
, Cond
, dl
))
3060 // Ensure that the constant occurs on the RHS and fold constant comparisons.
3061 // TODO: Handle non-splat vector constants. All undef causes trouble.
3062 ISD::CondCode SwappedCC
= ISD::getSetCCSwappedOperands(Cond
);
3063 if (isConstOrConstSplat(N0
) &&
3064 (DCI
.isBeforeLegalizeOps() ||
3065 isCondCodeLegal(SwappedCC
, N0
.getSimpleValueType())))
3066 return DAG
.getSetCC(dl
, VT
, N1
, N0
, SwappedCC
);
3068 // If we have a subtract with the same 2 non-constant operands as this setcc
3069 // -- but in reverse order -- then try to commute the operands of this setcc
3070 // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3071 // instruction on some targets.
3072 if (!isConstOrConstSplat(N0
) && !isConstOrConstSplat(N1
) &&
3073 (DCI
.isBeforeLegalizeOps() ||
3074 isCondCodeLegal(SwappedCC
, N0
.getSimpleValueType())) &&
3075 DAG
.getNodeIfExists(ISD::SUB
, DAG
.getVTList(OpVT
), { N1
, N0
} ) &&
3076 !DAG
.getNodeIfExists(ISD::SUB
, DAG
.getVTList(OpVT
), { N0
, N1
} ))
3077 return DAG
.getSetCC(dl
, VT
, N1
, N0
, SwappedCC
);
3079 if (auto *N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode())) {
3080 const APInt
&C1
= N1C
->getAPIntValue();
3082 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3083 // equality comparison, then we're just comparing whether X itself is
3085 if (N0
.getOpcode() == ISD::SRL
&& (C1
.isNullValue() || C1
.isOneValue()) &&
3086 N0
.getOperand(0).getOpcode() == ISD::CTLZ
&&
3087 N0
.getOperand(1).getOpcode() == ISD::Constant
) {
3088 const APInt
&ShAmt
= N0
.getConstantOperandAPInt(1);
3089 if ((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
3090 ShAmt
== Log2_32(N0
.getValueSizeInBits())) {
3091 if ((C1
== 0) == (Cond
== ISD::SETEQ
)) {
3092 // (srl (ctlz x), 5) == 0 -> X != 0
3093 // (srl (ctlz x), 5) != 1 -> X != 0
3096 // (srl (ctlz x), 5) != 0 -> X == 0
3097 // (srl (ctlz x), 5) == 1 -> X == 0
3100 SDValue Zero
= DAG
.getConstant(0, dl
, N0
.getValueType());
3101 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0).getOperand(0),
3107 // Look through truncs that don't change the value of a ctpop.
3108 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::TRUNCATE
)
3109 CTPOP
= N0
.getOperand(0);
3111 if (CTPOP
.hasOneUse() && CTPOP
.getOpcode() == ISD::CTPOP
&&
3113 N0
.getValueSizeInBits() > Log2_32_Ceil(CTPOP
.getValueSizeInBits()))) {
3114 EVT CTVT
= CTPOP
.getValueType();
3115 SDValue CTOp
= CTPOP
.getOperand(0);
3117 // (ctpop x) u< 2 -> (x & x-1) == 0
3118 // (ctpop x) u> 1 -> (x & x-1) != 0
3119 if ((Cond
== ISD::SETULT
&& C1
== 2) || (Cond
== ISD::SETUGT
&& C1
== 1)){
3120 SDValue NegOne
= DAG
.getAllOnesConstant(dl
, CTVT
);
3121 SDValue Add
= DAG
.getNode(ISD::ADD
, dl
, CTVT
, CTOp
, NegOne
);
3122 SDValue And
= DAG
.getNode(ISD::AND
, dl
, CTVT
, CTOp
, Add
);
3123 ISD::CondCode CC
= Cond
== ISD::SETULT
? ISD::SETEQ
: ISD::SETNE
;
3124 return DAG
.getSetCC(dl
, VT
, And
, DAG
.getConstant(0, dl
, CTVT
), CC
);
3127 // If ctpop is not supported, expand a power-of-2 comparison based on it.
3128 if (C1
== 1 && !isOperationLegalOrCustom(ISD::CTPOP
, CTVT
) &&
3129 (Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
)) {
3130 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3131 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3132 SDValue Zero
= DAG
.getConstant(0, dl
, CTVT
);
3133 SDValue NegOne
= DAG
.getAllOnesConstant(dl
, CTVT
);
3134 ISD::CondCode InvCond
= ISD::getSetCCInverse(Cond
, true);
3135 SDValue Add
= DAG
.getNode(ISD::ADD
, dl
, CTVT
, CTOp
, NegOne
);
3136 SDValue And
= DAG
.getNode(ISD::AND
, dl
, CTVT
, CTOp
, Add
);
3137 SDValue LHS
= DAG
.getSetCC(dl
, VT
, CTOp
, Zero
, InvCond
);
3138 SDValue RHS
= DAG
.getSetCC(dl
, VT
, And
, Zero
, Cond
);
3139 unsigned LogicOpcode
= Cond
== ISD::SETEQ
? ISD::AND
: ISD::OR
;
3140 return DAG
.getNode(LogicOpcode
, dl
, VT
, LHS
, RHS
);
3144 // (zext x) == C --> x == (trunc C)
3145 // (sext x) == C --> x == (trunc C)
3146 if ((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
3147 DCI
.isBeforeLegalize() && N0
->hasOneUse()) {
3148 unsigned MinBits
= N0
.getValueSizeInBits();
3150 bool Signed
= false;
3151 if (N0
->getOpcode() == ISD::ZERO_EXTEND
) {
3153 MinBits
= N0
->getOperand(0).getValueSizeInBits();
3154 PreExt
= N0
->getOperand(0);
3155 } else if (N0
->getOpcode() == ISD::AND
) {
3156 // DAGCombine turns costly ZExts into ANDs
3157 if (auto *C
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1)))
3158 if ((C
->getAPIntValue()+1).isPowerOf2()) {
3159 MinBits
= C
->getAPIntValue().countTrailingOnes();
3160 PreExt
= N0
->getOperand(0);
3162 } else if (N0
->getOpcode() == ISD::SIGN_EXTEND
) {
3164 MinBits
= N0
->getOperand(0).getValueSizeInBits();
3165 PreExt
= N0
->getOperand(0);
3167 } else if (auto *LN0
= dyn_cast
<LoadSDNode
>(N0
)) {
3168 // ZEXTLOAD / SEXTLOAD
3169 if (LN0
->getExtensionType() == ISD::ZEXTLOAD
) {
3170 MinBits
= LN0
->getMemoryVT().getSizeInBits();
3172 } else if (LN0
->getExtensionType() == ISD::SEXTLOAD
) {
3174 MinBits
= LN0
->getMemoryVT().getSizeInBits();
3179 // Figure out how many bits we need to preserve this constant.
3180 unsigned ReqdBits
= Signed
?
3181 C1
.getBitWidth() - C1
.getNumSignBits() + 1 :
3184 // Make sure we're not losing bits from the constant.
3186 MinBits
< C1
.getBitWidth() &&
3187 MinBits
>= ReqdBits
) {
3188 EVT MinVT
= EVT::getIntegerVT(*DAG
.getContext(), MinBits
);
3189 if (isTypeDesirableForOp(ISD::SETCC
, MinVT
)) {
3190 // Will get folded away.
3191 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, dl
, MinVT
, PreExt
);
3192 if (MinBits
== 1 && C1
== 1)
3193 // Invert the condition.
3194 return DAG
.getSetCC(dl
, VT
, Trunc
, DAG
.getConstant(0, dl
, MVT::i1
),
3195 Cond
== ISD::SETEQ
? ISD::SETNE
: ISD::SETEQ
);
3196 SDValue C
= DAG
.getConstant(C1
.trunc(MinBits
), dl
, MinVT
);
3197 return DAG
.getSetCC(dl
, VT
, Trunc
, C
, Cond
);
3200 // If truncating the setcc operands is not desirable, we can still
3201 // simplify the expression in some cases:
3202 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3203 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3204 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3205 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3206 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3207 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3208 SDValue TopSetCC
= N0
->getOperand(0);
3209 unsigned N0Opc
= N0
->getOpcode();
3210 bool SExt
= (N0Opc
== ISD::SIGN_EXTEND
);
3211 if (TopSetCC
.getValueType() == MVT::i1
&& VT
== MVT::i1
&&
3212 TopSetCC
.getOpcode() == ISD::SETCC
&&
3213 (N0Opc
== ISD::ZERO_EXTEND
|| N0Opc
== ISD::SIGN_EXTEND
) &&
3214 (isConstFalseVal(N1C
) ||
3215 isExtendedTrueVal(N1C
, N0
->getValueType(0), SExt
))) {
3217 bool Inverse
= (N1C
->isNullValue() && Cond
== ISD::SETEQ
) ||
3218 (!N1C
->isNullValue() && Cond
== ISD::SETNE
);
3223 ISD::CondCode InvCond
= ISD::getSetCCInverse(
3224 cast
<CondCodeSDNode
>(TopSetCC
.getOperand(2))->get(),
3225 TopSetCC
.getOperand(0).getValueType().isInteger());
3226 return DAG
.getSetCC(dl
, VT
, TopSetCC
.getOperand(0),
3227 TopSetCC
.getOperand(1),
3233 // If the LHS is '(and load, const)', the RHS is 0, the test is for
3234 // equality or unsigned, and all 1 bits of the const are in the same
3235 // partial word, see if we can shorten the load.
3236 if (DCI
.isBeforeLegalize() &&
3237 !ISD::isSignedIntSetCC(Cond
) &&
3238 N0
.getOpcode() == ISD::AND
&& C1
== 0 &&
3239 N0
.getNode()->hasOneUse() &&
3240 isa
<LoadSDNode
>(N0
.getOperand(0)) &&
3241 N0
.getOperand(0).getNode()->hasOneUse() &&
3242 isa
<ConstantSDNode
>(N0
.getOperand(1))) {
3243 LoadSDNode
*Lod
= cast
<LoadSDNode
>(N0
.getOperand(0));
3245 unsigned bestWidth
= 0, bestOffset
= 0;
3246 if (Lod
->isSimple() && Lod
->isUnindexed()) {
3247 unsigned origWidth
= N0
.getValueSizeInBits();
3248 unsigned maskWidth
= origWidth
;
3249 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3250 // 8 bits, but have to be careful...
3251 if (Lod
->getExtensionType() != ISD::NON_EXTLOAD
)
3252 origWidth
= Lod
->getMemoryVT().getSizeInBits();
3253 const APInt
&Mask
= N0
.getConstantOperandAPInt(1);
3254 for (unsigned width
= origWidth
/ 2; width
>=8; width
/= 2) {
3255 APInt newMask
= APInt::getLowBitsSet(maskWidth
, width
);
3256 for (unsigned offset
=0; offset
<origWidth
/width
; offset
++) {
3257 if (Mask
.isSubsetOf(newMask
)) {
3258 if (DAG
.getDataLayout().isLittleEndian())
3259 bestOffset
= (uint64_t)offset
* (width
/8);
3261 bestOffset
= (origWidth
/width
- offset
- 1) * (width
/8);
3262 bestMask
= Mask
.lshr(offset
* (width
/8) * 8);
3271 EVT newVT
= EVT::getIntegerVT(*DAG
.getContext(), bestWidth
);
3272 if (newVT
.isRound() &&
3273 shouldReduceLoadWidth(Lod
, ISD::NON_EXTLOAD
, newVT
)) {
3274 EVT PtrType
= Lod
->getOperand(1).getValueType();
3275 SDValue Ptr
= Lod
->getBasePtr();
3276 if (bestOffset
!= 0)
3277 Ptr
= DAG
.getNode(ISD::ADD
, dl
, PtrType
, Lod
->getBasePtr(),
3278 DAG
.getConstant(bestOffset
, dl
, PtrType
));
3279 unsigned NewAlign
= MinAlign(Lod
->getAlignment(), bestOffset
);
3280 SDValue NewLoad
= DAG
.getLoad(
3281 newVT
, dl
, Lod
->getChain(), Ptr
,
3282 Lod
->getPointerInfo().getWithOffset(bestOffset
), NewAlign
);
3283 return DAG
.getSetCC(dl
, VT
,
3284 DAG
.getNode(ISD::AND
, dl
, newVT
, NewLoad
,
3285 DAG
.getConstant(bestMask
.trunc(bestWidth
),
3287 DAG
.getConstant(0LL, dl
, newVT
), Cond
);
3292 // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3293 if (N0
.getOpcode() == ISD::ZERO_EXTEND
) {
3294 unsigned InSize
= N0
.getOperand(0).getValueSizeInBits();
3296 // If the comparison constant has bits in the upper part, the
3297 // zero-extended value could never match.
3298 if (C1
.intersects(APInt::getHighBitsSet(C1
.getBitWidth(),
3299 C1
.getBitWidth() - InSize
))) {
3304 return DAG
.getConstant(0, dl
, VT
);
3308 return DAG
.getConstant(1, dl
, VT
);
3311 // True if the sign bit of C1 is set.
3312 return DAG
.getConstant(C1
.isNegative(), dl
, VT
);
3315 // True if the sign bit of C1 isn't set.
3316 return DAG
.getConstant(C1
.isNonNegative(), dl
, VT
);
3322 // Otherwise, we can perform the comparison with the low bits.
3330 EVT newVT
= N0
.getOperand(0).getValueType();
3331 if (DCI
.isBeforeLegalizeOps() ||
3332 (isOperationLegal(ISD::SETCC
, newVT
) &&
3333 isCondCodeLegal(Cond
, newVT
.getSimpleVT()))) {
3335 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), newVT
);
3336 SDValue NewConst
= DAG
.getConstant(C1
.trunc(InSize
), dl
, newVT
);
3338 SDValue NewSetCC
= DAG
.getSetCC(dl
, NewSetCCVT
, N0
.getOperand(0),
3340 return DAG
.getBoolExtOrTrunc(NewSetCC
, dl
, VT
, N0
.getValueType());
3345 break; // todo, be more careful with signed comparisons
3347 } else if (N0
.getOpcode() == ISD::SIGN_EXTEND_INREG
&&
3348 (Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
)) {
3349 EVT ExtSrcTy
= cast
<VTSDNode
>(N0
.getOperand(1))->getVT();
3350 unsigned ExtSrcTyBits
= ExtSrcTy
.getSizeInBits();
3351 EVT ExtDstTy
= N0
.getValueType();
3352 unsigned ExtDstTyBits
= ExtDstTy
.getSizeInBits();
3354 // If the constant doesn't fit into the number of bits for the source of
3355 // the sign extension, it is impossible for both sides to be equal.
3356 if (C1
.getMinSignedBits() > ExtSrcTyBits
)
3357 return DAG
.getConstant(Cond
== ISD::SETNE
, dl
, VT
);
3360 EVT Op0Ty
= N0
.getOperand(0).getValueType();
3361 if (Op0Ty
== ExtSrcTy
) {
3362 ZextOp
= N0
.getOperand(0);
3364 APInt Imm
= APInt::getLowBitsSet(ExtDstTyBits
, ExtSrcTyBits
);
3365 ZextOp
= DAG
.getNode(ISD::AND
, dl
, Op0Ty
, N0
.getOperand(0),
3366 DAG
.getConstant(Imm
, dl
, Op0Ty
));
3368 if (!DCI
.isCalledByLegalizer())
3369 DCI
.AddToWorklist(ZextOp
.getNode());
3370 // Otherwise, make this a use of a zext.
3371 return DAG
.getSetCC(dl
, VT
, ZextOp
,
3372 DAG
.getConstant(C1
& APInt::getLowBitsSet(
3377 } else if ((N1C
->isNullValue() || N1C
->isOne()) &&
3378 (Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
)) {
3379 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
3380 if (N0
.getOpcode() == ISD::SETCC
&&
3381 isTypeLegal(VT
) && VT
.bitsLE(N0
.getValueType())) {
3382 bool TrueWhenTrue
= (Cond
== ISD::SETEQ
) ^ (!N1C
->isOne());
3384 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, N0
);
3385 // Invert the condition.
3386 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N0
.getOperand(2))->get();
3387 CC
= ISD::getSetCCInverse(CC
,
3388 N0
.getOperand(0).getValueType().isInteger());
3389 if (DCI
.isBeforeLegalizeOps() ||
3390 isCondCodeLegal(CC
, N0
.getOperand(0).getSimpleValueType()))
3391 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0), N0
.getOperand(1), CC
);
3394 if ((N0
.getOpcode() == ISD::XOR
||
3395 (N0
.getOpcode() == ISD::AND
&&
3396 N0
.getOperand(0).getOpcode() == ISD::XOR
&&
3397 N0
.getOperand(1) == N0
.getOperand(0).getOperand(1))) &&
3398 isa
<ConstantSDNode
>(N0
.getOperand(1)) &&
3399 cast
<ConstantSDNode
>(N0
.getOperand(1))->isOne()) {
3400 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
3401 // can only do this if the top bits are known zero.
3402 unsigned BitWidth
= N0
.getValueSizeInBits();
3403 if (DAG
.MaskedValueIsZero(N0
,
3404 APInt::getHighBitsSet(BitWidth
,
3406 // Okay, get the un-inverted input value.
3408 if (N0
.getOpcode() == ISD::XOR
) {
3409 Val
= N0
.getOperand(0);
3411 assert(N0
.getOpcode() == ISD::AND
&&
3412 N0
.getOperand(0).getOpcode() == ISD::XOR
);
3413 // ((X^1)&1)^1 -> X & 1
3414 Val
= DAG
.getNode(ISD::AND
, dl
, N0
.getValueType(),
3415 N0
.getOperand(0).getOperand(0),
3419 return DAG
.getSetCC(dl
, VT
, Val
, N1
,
3420 Cond
== ISD::SETEQ
? ISD::SETNE
: ISD::SETEQ
);
3422 } else if (N1C
->isOne() &&
3424 getBooleanContents(N0
->getValueType(0)) ==
3425 ZeroOrOneBooleanContent
)) {
3427 if (Op0
.getOpcode() == ISD::TRUNCATE
)
3428 Op0
= Op0
.getOperand(0);
3430 if ((Op0
.getOpcode() == ISD::XOR
) &&
3431 Op0
.getOperand(0).getOpcode() == ISD::SETCC
&&
3432 Op0
.getOperand(1).getOpcode() == ISD::SETCC
) {
3433 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3434 Cond
= (Cond
== ISD::SETEQ
) ? ISD::SETNE
: ISD::SETEQ
;
3435 return DAG
.getSetCC(dl
, VT
, Op0
.getOperand(0), Op0
.getOperand(1),
3438 if (Op0
.getOpcode() == ISD::AND
&&
3439 isa
<ConstantSDNode
>(Op0
.getOperand(1)) &&
3440 cast
<ConstantSDNode
>(Op0
.getOperand(1))->isOne()) {
3441 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3442 if (Op0
.getValueType().bitsGT(VT
))
3443 Op0
= DAG
.getNode(ISD::AND
, dl
, VT
,
3444 DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Op0
.getOperand(0)),
3445 DAG
.getConstant(1, dl
, VT
));
3446 else if (Op0
.getValueType().bitsLT(VT
))
3447 Op0
= DAG
.getNode(ISD::AND
, dl
, VT
,
3448 DAG
.getNode(ISD::ANY_EXTEND
, dl
, VT
, Op0
.getOperand(0)),
3449 DAG
.getConstant(1, dl
, VT
));
3451 return DAG
.getSetCC(dl
, VT
, Op0
,
3452 DAG
.getConstant(0, dl
, Op0
.getValueType()),
3453 Cond
== ISD::SETEQ
? ISD::SETNE
: ISD::SETEQ
);
3455 if (Op0
.getOpcode() == ISD::AssertZext
&&
3456 cast
<VTSDNode
>(Op0
.getOperand(1))->getVT() == MVT::i1
)
3457 return DAG
.getSetCC(dl
, VT
, Op0
,
3458 DAG
.getConstant(0, dl
, Op0
.getValueType()),
3459 Cond
== ISD::SETEQ
? ISD::SETNE
: ISD::SETEQ
);
3464 // icmp eq/ne (urem %x, %y), 0
3465 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3467 if (N0
.getOpcode() == ISD::UREM
&& N1C
->isNullValue() &&
3468 (Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
)) {
3469 KnownBits XKnown
= DAG
.computeKnownBits(N0
.getOperand(0));
3470 KnownBits YKnown
= DAG
.computeKnownBits(N0
.getOperand(1));
3471 if (XKnown
.countMaxPopulation() == 1 && YKnown
.countMinPopulation() >= 2)
3472 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0), N1
, Cond
);
3476 optimizeSetCCOfSignedTruncationCheck(VT
, N0
, N1
, Cond
, DCI
, dl
))
3480 // These simplifications apply to splat vectors as well.
3481 // TODO: Handle more splat vector cases.
3482 if (auto *N1C
= isConstOrConstSplat(N1
)) {
3483 const APInt
&C1
= N1C
->getAPIntValue();
3485 APInt MinVal
, MaxVal
;
3486 unsigned OperandBitSize
= N1C
->getValueType(0).getScalarSizeInBits();
3487 if (ISD::isSignedIntSetCC(Cond
)) {
3488 MinVal
= APInt::getSignedMinValue(OperandBitSize
);
3489 MaxVal
= APInt::getSignedMaxValue(OperandBitSize
);
3491 MinVal
= APInt::getMinValue(OperandBitSize
);
3492 MaxVal
= APInt::getMaxValue(OperandBitSize
);
3495 // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3496 if (Cond
== ISD::SETGE
|| Cond
== ISD::SETUGE
) {
3497 // X >= MIN --> true
3499 return DAG
.getBoolConstant(true, dl
, VT
, OpVT
);
3501 if (!VT
.isVector()) { // TODO: Support this for vectors.
3502 // X >= C0 --> X > (C0 - 1)
3504 ISD::CondCode NewCC
= (Cond
== ISD::SETGE
) ? ISD::SETGT
: ISD::SETUGT
;
3505 if ((DCI
.isBeforeLegalizeOps() ||
3506 isCondCodeLegal(NewCC
, VT
.getSimpleVT())) &&
3507 (!N1C
->isOpaque() || (C
.getBitWidth() <= 64 &&
3508 isLegalICmpImmediate(C
.getSExtValue())))) {
3509 return DAG
.getSetCC(dl
, VT
, N0
,
3510 DAG
.getConstant(C
, dl
, N1
.getValueType()),
3516 if (Cond
== ISD::SETLE
|| Cond
== ISD::SETULE
) {
3517 // X <= MAX --> true
3519 return DAG
.getBoolConstant(true, dl
, VT
, OpVT
);
3521 // X <= C0 --> X < (C0 + 1)
3522 if (!VT
.isVector()) { // TODO: Support this for vectors.
3524 ISD::CondCode NewCC
= (Cond
== ISD::SETLE
) ? ISD::SETLT
: ISD::SETULT
;
3525 if ((DCI
.isBeforeLegalizeOps() ||
3526 isCondCodeLegal(NewCC
, VT
.getSimpleVT())) &&
3527 (!N1C
->isOpaque() || (C
.getBitWidth() <= 64 &&
3528 isLegalICmpImmediate(C
.getSExtValue())))) {
3529 return DAG
.getSetCC(dl
, VT
, N0
,
3530 DAG
.getConstant(C
, dl
, N1
.getValueType()),
3536 if (Cond
== ISD::SETLT
|| Cond
== ISD::SETULT
) {
3538 return DAG
.getBoolConstant(false, dl
, VT
, OpVT
); // X < MIN --> false
3540 // TODO: Support this for vectors after legalize ops.
3541 if (!VT
.isVector() || DCI
.isBeforeLegalizeOps()) {
3542 // Canonicalize setlt X, Max --> setne X, Max
3544 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETNE
);
3546 // If we have setult X, 1, turn it into seteq X, 0
3548 return DAG
.getSetCC(dl
, VT
, N0
,
3549 DAG
.getConstant(MinVal
, dl
, N0
.getValueType()),
3554 if (Cond
== ISD::SETGT
|| Cond
== ISD::SETUGT
) {
3556 return DAG
.getBoolConstant(false, dl
, VT
, OpVT
); // X > MAX --> false
3558 // TODO: Support this for vectors after legalize ops.
3559 if (!VT
.isVector() || DCI
.isBeforeLegalizeOps()) {
3560 // Canonicalize setgt X, Min --> setne X, Min
3562 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETNE
);
3564 // If we have setugt X, Max-1, turn it into seteq X, Max
3566 return DAG
.getSetCC(dl
, VT
, N0
,
3567 DAG
.getConstant(MaxVal
, dl
, N0
.getValueType()),
3572 if (Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) {
3573 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
3574 if (C1
.isNullValue())
3575 if (SDValue CC
= optimizeSetCCByHoistingAndByConstFromLogicalShift(
3576 VT
, N0
, N1
, Cond
, DCI
, dl
))
3580 // If we have "setcc X, C0", check to see if we can shrink the immediate
3582 // TODO: Support this for vectors after legalize ops.
3583 if (!VT
.isVector() || DCI
.isBeforeLegalizeOps()) {
3584 // SETUGT X, SINTMAX -> SETLT X, 0
3585 if (Cond
== ISD::SETUGT
&&
3586 C1
== APInt::getSignedMaxValue(OperandBitSize
))
3587 return DAG
.getSetCC(dl
, VT
, N0
,
3588 DAG
.getConstant(0, dl
, N1
.getValueType()),
3591 // SETULT X, SINTMIN -> SETGT X, -1
3592 if (Cond
== ISD::SETULT
&&
3593 C1
== APInt::getSignedMinValue(OperandBitSize
)) {
3594 SDValue ConstMinusOne
=
3595 DAG
.getConstant(APInt::getAllOnesValue(OperandBitSize
), dl
,
3597 return DAG
.getSetCC(dl
, VT
, N0
, ConstMinusOne
, ISD::SETGT
);
3602 // Back to non-vector simplifications.
3603 // TODO: Can we do these for vector splats?
3604 if (auto *N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode())) {
3605 const APInt
&C1
= N1C
->getAPIntValue();
3607 // Fold bit comparisons when we can.
3608 if ((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
3609 (VT
== N0
.getValueType() ||
3610 (isTypeLegal(VT
) && VT
.bitsLE(N0
.getValueType()))) &&
3611 N0
.getOpcode() == ISD::AND
) {
3612 auto &DL
= DAG
.getDataLayout();
3613 if (auto *AndRHS
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
3614 EVT ShiftTy
= getShiftAmountTy(N0
.getValueType(), DL
,
3615 !DCI
.isBeforeLegalize());
3616 if (Cond
== ISD::SETNE
&& C1
== 0) {// (X & 8) != 0 --> (X & 8) >> 3
3617 // Perform the xform if the AND RHS is a single bit.
3618 if (AndRHS
->getAPIntValue().isPowerOf2()) {
3619 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
,
3620 DAG
.getNode(ISD::SRL
, dl
, N0
.getValueType(), N0
,
3621 DAG
.getConstant(AndRHS
->getAPIntValue().logBase2(), dl
,
3624 } else if (Cond
== ISD::SETEQ
&& C1
== AndRHS
->getAPIntValue()) {
3625 // (X & 8) == 8 --> (X & 8) >> 3
3626 // Perform the xform if C1 is a single bit.
3627 if (C1
.isPowerOf2()) {
3628 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
,
3629 DAG
.getNode(ISD::SRL
, dl
, N0
.getValueType(), N0
,
3630 DAG
.getConstant(C1
.logBase2(), dl
,
3637 if (C1
.getMinSignedBits() <= 64 &&
3638 !isLegalICmpImmediate(C1
.getSExtValue())) {
3639 // (X & -256) == 256 -> (X >> 8) == 1
3640 if ((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
3641 N0
.getOpcode() == ISD::AND
&& N0
.hasOneUse()) {
3642 if (auto *AndRHS
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
3643 const APInt
&AndRHSC
= AndRHS
->getAPIntValue();
3644 if ((-AndRHSC
).isPowerOf2() && (AndRHSC
& C1
) == C1
) {
3645 unsigned ShiftBits
= AndRHSC
.countTrailingZeros();
3646 auto &DL
= DAG
.getDataLayout();
3647 EVT ShiftTy
= getShiftAmountTy(N0
.getValueType(), DL
,
3648 !DCI
.isBeforeLegalize());
3649 EVT CmpTy
= N0
.getValueType();
3650 SDValue Shift
= DAG
.getNode(ISD::SRL
, dl
, CmpTy
, N0
.getOperand(0),
3651 DAG
.getConstant(ShiftBits
, dl
,
3653 SDValue CmpRHS
= DAG
.getConstant(C1
.lshr(ShiftBits
), dl
, CmpTy
);
3654 return DAG
.getSetCC(dl
, VT
, Shift
, CmpRHS
, Cond
);
3657 } else if (Cond
== ISD::SETULT
|| Cond
== ISD::SETUGE
||
3658 Cond
== ISD::SETULE
|| Cond
== ISD::SETUGT
) {
3659 bool AdjOne
= (Cond
== ISD::SETULE
|| Cond
== ISD::SETUGT
);
3660 // X < 0x100000000 -> (X >> 32) < 1
3661 // X >= 0x100000000 -> (X >> 32) >= 1
3662 // X <= 0x0ffffffff -> (X >> 32) < 1
3663 // X > 0x0ffffffff -> (X >> 32) >= 1
3666 ISD::CondCode NewCond
= Cond
;
3668 ShiftBits
= C1
.countTrailingOnes();
3670 NewCond
= (Cond
== ISD::SETULE
) ? ISD::SETULT
: ISD::SETUGE
;
3672 ShiftBits
= C1
.countTrailingZeros();
3674 NewC
.lshrInPlace(ShiftBits
);
3675 if (ShiftBits
&& NewC
.getMinSignedBits() <= 64 &&
3676 isLegalICmpImmediate(NewC
.getSExtValue())) {
3677 auto &DL
= DAG
.getDataLayout();
3678 EVT ShiftTy
= getShiftAmountTy(N0
.getValueType(), DL
,
3679 !DCI
.isBeforeLegalize());
3680 EVT CmpTy
= N0
.getValueType();
3681 SDValue Shift
= DAG
.getNode(ISD::SRL
, dl
, CmpTy
, N0
,
3682 DAG
.getConstant(ShiftBits
, dl
, ShiftTy
));
3683 SDValue CmpRHS
= DAG
.getConstant(NewC
, dl
, CmpTy
);
3684 return DAG
.getSetCC(dl
, VT
, Shift
, CmpRHS
, NewCond
);
3690 if (!isa
<ConstantFPSDNode
>(N0
) && isa
<ConstantFPSDNode
>(N1
)) {
3691 auto *CFP
= cast
<ConstantFPSDNode
>(N1
);
3692 assert(!CFP
->getValueAPF().isNaN() && "Unexpected NaN value");
3694 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
3695 // constant if knowing that the operand is non-nan is enough. We prefer to
3696 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
3698 if (Cond
== ISD::SETO
|| Cond
== ISD::SETUO
)
3699 return DAG
.getSetCC(dl
, VT
, N0
, N0
, Cond
);
3701 // setcc (fneg x), C -> setcc swap(pred) x, -C
3702 if (N0
.getOpcode() == ISD::FNEG
) {
3703 ISD::CondCode SwapCond
= ISD::getSetCCSwappedOperands(Cond
);
3704 if (DCI
.isBeforeLegalizeOps() ||
3705 isCondCodeLegal(SwapCond
, N0
.getSimpleValueType())) {
3706 SDValue NegN1
= DAG
.getNode(ISD::FNEG
, dl
, N0
.getValueType(), N1
);
3707 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0), NegN1
, SwapCond
);
3711 // If the condition is not legal, see if we can find an equivalent one
3713 if (!isCondCodeLegal(Cond
, N0
.getSimpleValueType())) {
3714 // If the comparison was an awkward floating-point == or != and one of
3715 // the comparison operands is infinity or negative infinity, convert the
3716 // condition to a less-awkward <= or >=.
3717 if (CFP
->getValueAPF().isInfinity()) {
3718 if (CFP
->getValueAPF().isNegative()) {
3719 if (Cond
== ISD::SETOEQ
&&
3720 isCondCodeLegal(ISD::SETOLE
, N0
.getSimpleValueType()))
3721 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETOLE
);
3722 if (Cond
== ISD::SETUEQ
&&
3723 isCondCodeLegal(ISD::SETOLE
, N0
.getSimpleValueType()))
3724 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETULE
);
3725 if (Cond
== ISD::SETUNE
&&
3726 isCondCodeLegal(ISD::SETUGT
, N0
.getSimpleValueType()))
3727 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETUGT
);
3728 if (Cond
== ISD::SETONE
&&
3729 isCondCodeLegal(ISD::SETUGT
, N0
.getSimpleValueType()))
3730 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETOGT
);
3732 if (Cond
== ISD::SETOEQ
&&
3733 isCondCodeLegal(ISD::SETOGE
, N0
.getSimpleValueType()))
3734 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETOGE
);
3735 if (Cond
== ISD::SETUEQ
&&
3736 isCondCodeLegal(ISD::SETOGE
, N0
.getSimpleValueType()))
3737 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETUGE
);
3738 if (Cond
== ISD::SETUNE
&&
3739 isCondCodeLegal(ISD::SETULT
, N0
.getSimpleValueType()))
3740 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETULT
);
3741 if (Cond
== ISD::SETONE
&&
3742 isCondCodeLegal(ISD::SETULT
, N0
.getSimpleValueType()))
3743 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETOLT
);
3750 // The sext(setcc()) => setcc() optimization relies on the appropriate
3751 // constant being emitted.
3752 assert(!N0
.getValueType().isInteger() &&
3753 "Integer types should be handled by FoldSetCC");
3755 bool EqTrue
= ISD::isTrueWhenEqual(Cond
);
3756 unsigned UOF
= ISD::getUnorderedFlavor(Cond
);
3757 if (UOF
== 2) // FP operators that are undefined on NaNs.
3758 return DAG
.getBoolConstant(EqTrue
, dl
, VT
, OpVT
);
3759 if (UOF
== unsigned(EqTrue
))
3760 return DAG
.getBoolConstant(EqTrue
, dl
, VT
, OpVT
);
3761 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
3762 // if it is not already.
3763 ISD::CondCode NewCond
= UOF
== 0 ? ISD::SETO
: ISD::SETUO
;
3764 if (NewCond
!= Cond
&&
3765 (DCI
.isBeforeLegalizeOps() ||
3766 isCondCodeLegal(NewCond
, N0
.getSimpleValueType())))
3767 return DAG
.getSetCC(dl
, VT
, N0
, N1
, NewCond
);
3770 if ((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
3771 N0
.getValueType().isInteger()) {
3772 if (N0
.getOpcode() == ISD::ADD
|| N0
.getOpcode() == ISD::SUB
||
3773 N0
.getOpcode() == ISD::XOR
) {
3774 // Simplify (X+Y) == (X+Z) --> Y == Z
3775 if (N0
.getOpcode() == N1
.getOpcode()) {
3776 if (N0
.getOperand(0) == N1
.getOperand(0))
3777 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(1), N1
.getOperand(1), Cond
);
3778 if (N0
.getOperand(1) == N1
.getOperand(1))
3779 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0), N1
.getOperand(0), Cond
);
3780 if (isCommutativeBinOp(N0
.getOpcode())) {
3781 // If X op Y == Y op X, try other combinations.
3782 if (N0
.getOperand(0) == N1
.getOperand(1))
3783 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(1), N1
.getOperand(0),
3785 if (N0
.getOperand(1) == N1
.getOperand(0))
3786 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0), N1
.getOperand(1),
3791 // If RHS is a legal immediate value for a compare instruction, we need
3792 // to be careful about increasing register pressure needlessly.
3793 bool LegalRHSImm
= false;
3795 if (auto *RHSC
= dyn_cast
<ConstantSDNode
>(N1
)) {
3796 if (auto *LHSR
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
3797 // Turn (X+C1) == C2 --> X == C2-C1
3798 if (N0
.getOpcode() == ISD::ADD
&& N0
.getNode()->hasOneUse()) {
3799 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0),
3800 DAG
.getConstant(RHSC
->getAPIntValue()-
3801 LHSR
->getAPIntValue(),
3802 dl
, N0
.getValueType()), Cond
);
3805 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
3806 if (N0
.getOpcode() == ISD::XOR
)
3807 // If we know that all of the inverted bits are zero, don't bother
3808 // performing the inversion.
3809 if (DAG
.MaskedValueIsZero(N0
.getOperand(0), ~LHSR
->getAPIntValue()))
3811 DAG
.getSetCC(dl
, VT
, N0
.getOperand(0),
3812 DAG
.getConstant(LHSR
->getAPIntValue() ^
3813 RHSC
->getAPIntValue(),
3814 dl
, N0
.getValueType()),
3818 // Turn (C1-X) == C2 --> X == C1-C2
3819 if (auto *SUBC
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(0))) {
3820 if (N0
.getOpcode() == ISD::SUB
&& N0
.getNode()->hasOneUse()) {
3822 DAG
.getSetCC(dl
, VT
, N0
.getOperand(1),
3823 DAG
.getConstant(SUBC
->getAPIntValue() -
3824 RHSC
->getAPIntValue(),
3825 dl
, N0
.getValueType()),
3830 // Could RHSC fold directly into a compare?
3831 if (RHSC
->getValueType(0).getSizeInBits() <= 64)
3832 LegalRHSImm
= isLegalICmpImmediate(RHSC
->getSExtValue());
3835 // (X+Y) == X --> Y == 0 and similar folds.
3836 // Don't do this if X is an immediate that can fold into a cmp
3837 // instruction and X+Y has other uses. It could be an induction variable
3838 // chain, and the transform would increase register pressure.
3839 if (!LegalRHSImm
|| N0
.hasOneUse())
3840 if (SDValue V
= foldSetCCWithBinOp(VT
, N0
, N1
, Cond
, dl
, DCI
))
3844 if (N1
.getOpcode() == ISD::ADD
|| N1
.getOpcode() == ISD::SUB
||
3845 N1
.getOpcode() == ISD::XOR
)
3846 if (SDValue V
= foldSetCCWithBinOp(VT
, N1
, N0
, Cond
, dl
, DCI
))
3849 if (SDValue V
= foldSetCCWithAnd(VT
, N0
, N1
, Cond
, dl
, DCI
))
3853 // Fold remainder of division by a constant.
3854 if ((N0
.getOpcode() == ISD::UREM
|| N0
.getOpcode() == ISD::SREM
) &&
3855 N0
.hasOneUse() && (Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
)) {
3856 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
3858 // When division is cheap or optimizing for minimum size,
3859 // fall through to DIVREM creation by skipping this fold.
3860 if (!isIntDivCheap(VT
, Attr
) && !Attr
.hasFnAttribute(Attribute::MinSize
)) {
3861 if (N0
.getOpcode() == ISD::UREM
) {
3862 if (SDValue Folded
= buildUREMEqFold(VT
, N0
, N1
, Cond
, DCI
, dl
))
3864 } else if (N0
.getOpcode() == ISD::SREM
) {
3865 if (SDValue Folded
= buildSREMEqFold(VT
, N0
, N1
, Cond
, DCI
, dl
))
3871 // Fold away ALL boolean setcc's.
3872 if (N0
.getValueType().getScalarType() == MVT::i1
&& foldBooleans
) {
3875 default: llvm_unreachable("Unknown integer setcc!");
3876 case ISD::SETEQ
: // X == Y -> ~(X^Y)
3877 Temp
= DAG
.getNode(ISD::XOR
, dl
, OpVT
, N0
, N1
);
3878 N0
= DAG
.getNOT(dl
, Temp
, OpVT
);
3879 if (!DCI
.isCalledByLegalizer())
3880 DCI
.AddToWorklist(Temp
.getNode());
3882 case ISD::SETNE
: // X != Y --> (X^Y)
3883 N0
= DAG
.getNode(ISD::XOR
, dl
, OpVT
, N0
, N1
);
3885 case ISD::SETGT
: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
3886 case ISD::SETULT
: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
3887 Temp
= DAG
.getNOT(dl
, N0
, OpVT
);
3888 N0
= DAG
.getNode(ISD::AND
, dl
, OpVT
, N1
, Temp
);
3889 if (!DCI
.isCalledByLegalizer())
3890 DCI
.AddToWorklist(Temp
.getNode());
3892 case ISD::SETLT
: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
3893 case ISD::SETUGT
: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
3894 Temp
= DAG
.getNOT(dl
, N1
, OpVT
);
3895 N0
= DAG
.getNode(ISD::AND
, dl
, OpVT
, N0
, Temp
);
3896 if (!DCI
.isCalledByLegalizer())
3897 DCI
.AddToWorklist(Temp
.getNode());
3899 case ISD::SETULE
: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
3900 case ISD::SETGE
: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
3901 Temp
= DAG
.getNOT(dl
, N0
, OpVT
);
3902 N0
= DAG
.getNode(ISD::OR
, dl
, OpVT
, N1
, Temp
);
3903 if (!DCI
.isCalledByLegalizer())
3904 DCI
.AddToWorklist(Temp
.getNode());
3906 case ISD::SETUGE
: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
3907 case ISD::SETLE
: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
3908 Temp
= DAG
.getNOT(dl
, N1
, OpVT
);
3909 N0
= DAG
.getNode(ISD::OR
, dl
, OpVT
, N0
, Temp
);
3912 if (VT
.getScalarType() != MVT::i1
) {
3913 if (!DCI
.isCalledByLegalizer())
3914 DCI
.AddToWorklist(N0
.getNode());
3915 // FIXME: If running after legalize, we probably can't do this.
3916 ISD::NodeType ExtendCode
= getExtendForContent(getBooleanContents(OpVT
));
3917 N0
= DAG
.getNode(ExtendCode
, dl
, VT
, N0
);
3922 // Could not fold it.
3926 /// Returns true (and the GlobalValue and the offset) if the node is a
3927 /// GlobalAddress + offset.
3928 bool TargetLowering::isGAPlusOffset(SDNode
*WN
, const GlobalValue
*&GA
,
3929 int64_t &Offset
) const {
3931 SDNode
*N
= unwrapAddress(SDValue(WN
, 0)).getNode();
3933 if (auto *GASD
= dyn_cast
<GlobalAddressSDNode
>(N
)) {
3934 GA
= GASD
->getGlobal();
3935 Offset
+= GASD
->getOffset();
3939 if (N
->getOpcode() == ISD::ADD
) {
3940 SDValue N1
= N
->getOperand(0);
3941 SDValue N2
= N
->getOperand(1);
3942 if (isGAPlusOffset(N1
.getNode(), GA
, Offset
)) {
3943 if (auto *V
= dyn_cast
<ConstantSDNode
>(N2
)) {
3944 Offset
+= V
->getSExtValue();
3947 } else if (isGAPlusOffset(N2
.getNode(), GA
, Offset
)) {
3948 if (auto *V
= dyn_cast
<ConstantSDNode
>(N1
)) {
3949 Offset
+= V
->getSExtValue();
3958 SDValue
TargetLowering::PerformDAGCombine(SDNode
*N
,
3959 DAGCombinerInfo
&DCI
) const {
3960 // Default implementation: no optimization.
3964 //===----------------------------------------------------------------------===//
3965 // Inline Assembler Implementation Methods
3966 //===----------------------------------------------------------------------===//
3968 TargetLowering::ConstraintType
3969 TargetLowering::getConstraintType(StringRef Constraint
) const {
3970 unsigned S
= Constraint
.size();
3973 switch (Constraint
[0]) {
3976 return C_RegisterClass
;
3978 case 'o': // offsetable
3979 case 'V': // not offsetable
3981 case 'n': // Simple Integer
3982 case 'E': // Floating Point Constant
3983 case 'F': // Floating Point Constant
3985 case 'i': // Simple Integer or Relocatable Constant
3986 case 's': // Relocatable Constant
3987 case 'p': // Address.
3988 case 'X': // Allow ANY value.
3989 case 'I': // Target registers.
4003 if (S
> 1 && Constraint
[0] == '{' && Constraint
[S
- 1] == '}') {
4004 if (S
== 8 && Constraint
.substr(1, 6) == "memory") // "{memory}"
4011 /// Try to replace an X constraint, which matches anything, with another that
4012 /// has more specific requirements based on the type of the corresponding
4014 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT
) const {
4015 if (ConstraintVT
.isInteger())
4017 if (ConstraintVT
.isFloatingPoint())
4018 return "f"; // works for many targets
4022 SDValue
TargetLowering::LowerAsmOutputForConstraint(
4023 SDValue
&Chain
, SDValue
&Flag
, SDLoc DL
, const AsmOperandInfo
&OpInfo
,
4024 SelectionDAG
&DAG
) const {
4028 /// Lower the specified operand into the Ops vector.
4029 /// If it is invalid, don't add anything to Ops.
4030 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op
,
4031 std::string
&Constraint
,
4032 std::vector
<SDValue
> &Ops
,
4033 SelectionDAG
&DAG
) const {
4035 if (Constraint
.length() > 1) return;
4037 char ConstraintLetter
= Constraint
[0];
4038 switch (ConstraintLetter
) {
4040 case 'X': // Allows any operand; labels (basic block) use this.
4041 if (Op
.getOpcode() == ISD::BasicBlock
||
4042 Op
.getOpcode() == ISD::TargetBlockAddress
) {
4047 case 'i': // Simple Integer or Relocatable Constant
4048 case 'n': // Simple Integer
4049 case 's': { // Relocatable Constant
4051 GlobalAddressSDNode
*GA
;
4053 BlockAddressSDNode
*BA
;
4054 uint64_t Offset
= 0;
4056 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4057 // etc., since getelementpointer is variadic. We can't use
4058 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4059 // while in this case the GA may be furthest from the root node which is
4060 // likely an ISD::ADD.
4062 if ((GA
= dyn_cast
<GlobalAddressSDNode
>(Op
)) && ConstraintLetter
!= 'n') {
4063 Ops
.push_back(DAG
.getTargetGlobalAddress(GA
->getGlobal(), SDLoc(Op
),
4064 GA
->getValueType(0),
4065 Offset
+ GA
->getOffset()));
4067 } else if ((C
= dyn_cast
<ConstantSDNode
>(Op
)) &&
4068 ConstraintLetter
!= 's') {
4069 // gcc prints these as sign extended. Sign extend value to 64 bits
4070 // now; without this it would get ZExt'd later in
4071 // ScheduleDAGSDNodes::EmitNode, which is very generic.
4072 bool IsBool
= C
->getConstantIntValue()->getBitWidth() == 1;
4073 BooleanContent BCont
= getBooleanContents(MVT::i64
);
4074 ISD::NodeType ExtOpc
= IsBool
? getExtendForContent(BCont
)
4076 int64_t ExtVal
= ExtOpc
== ISD::ZERO_EXTEND
? C
->getZExtValue()
4077 : C
->getSExtValue();
4078 Ops
.push_back(DAG
.getTargetConstant(Offset
+ ExtVal
,
4079 SDLoc(C
), MVT::i64
));
4081 } else if ((BA
= dyn_cast
<BlockAddressSDNode
>(Op
)) &&
4082 ConstraintLetter
!= 'n') {
4083 Ops
.push_back(DAG
.getTargetBlockAddress(
4084 BA
->getBlockAddress(), BA
->getValueType(0),
4085 Offset
+ BA
->getOffset(), BA
->getTargetFlags()));
4088 const unsigned OpCode
= Op
.getOpcode();
4089 if (OpCode
== ISD::ADD
|| OpCode
== ISD::SUB
) {
4090 if ((C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(0))))
4091 Op
= Op
.getOperand(1);
4092 // Subtraction is not commutative.
4093 else if (OpCode
== ISD::ADD
&&
4094 (C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))))
4095 Op
= Op
.getOperand(0);
4098 Offset
+= (OpCode
== ISD::ADD
? 1 : -1) * C
->getSExtValue();
4109 std::pair
<unsigned, const TargetRegisterClass
*>
4110 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo
*RI
,
4111 StringRef Constraint
,
4113 if (Constraint
.empty() || Constraint
[0] != '{')
4114 return std::make_pair(0u, static_cast<TargetRegisterClass
*>(nullptr));
4115 assert(*(Constraint
.end() - 1) == '}' && "Not a brace enclosed constraint?");
4117 // Remove the braces from around the name.
4118 StringRef
RegName(Constraint
.data() + 1, Constraint
.size() - 2);
4120 std::pair
<unsigned, const TargetRegisterClass
*> R
=
4121 std::make_pair(0u, static_cast<const TargetRegisterClass
*>(nullptr));
4123 // Figure out which register class contains this reg.
4124 for (const TargetRegisterClass
*RC
: RI
->regclasses()) {
4125 // If none of the value types for this register class are valid, we
4126 // can't use it. For example, 64-bit reg classes on 32-bit targets.
4127 if (!isLegalRC(*RI
, *RC
))
4130 for (TargetRegisterClass::iterator I
= RC
->begin(), E
= RC
->end();
4132 if (RegName
.equals_lower(RI
->getRegAsmName(*I
))) {
4133 std::pair
<unsigned, const TargetRegisterClass
*> S
=
4134 std::make_pair(*I
, RC
);
4136 // If this register class has the requested value type, return it,
4137 // otherwise keep searching and return the first class found
4138 // if no other is found which explicitly has the requested type.
4139 if (RI
->isTypeLegalForClass(*RC
, VT
))
4150 //===----------------------------------------------------------------------===//
4151 // Constraint Selection.
4153 /// Return true of this is an input operand that is a matching constraint like
4155 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4156 assert(!ConstraintCode
.empty() && "No known constraint!");
4157 return isdigit(static_cast<unsigned char>(ConstraintCode
[0]));
4160 /// If this is an input matching constraint, this method returns the output
4161 /// operand it matches.
4162 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4163 assert(!ConstraintCode
.empty() && "No known constraint!");
4164 return atoi(ConstraintCode
.c_str());
4167 /// Split up the constraint string from the inline assembly value into the
4168 /// specific constraints and their prefixes, and also tie in the associated
4170 /// If this returns an empty vector, and if the constraint string itself
4171 /// isn't empty, there was an error parsing.
4172 TargetLowering::AsmOperandInfoVector
4173 TargetLowering::ParseConstraints(const DataLayout
&DL
,
4174 const TargetRegisterInfo
*TRI
,
4175 ImmutableCallSite CS
) const {
4176 /// Information about all of the constraints.
4177 AsmOperandInfoVector ConstraintOperands
;
4178 const InlineAsm
*IA
= cast
<InlineAsm
>(CS
.getCalledValue());
4179 unsigned maCount
= 0; // Largest number of multiple alternative constraints.
4181 // Do a prepass over the constraints, canonicalizing them, and building up the
4182 // ConstraintOperands list.
4183 unsigned ArgNo
= 0; // ArgNo - The argument of the CallInst.
4184 unsigned ResNo
= 0; // ResNo - The result number of the next output.
4186 for (InlineAsm::ConstraintInfo
&CI
: IA
->ParseConstraints()) {
4187 ConstraintOperands
.emplace_back(std::move(CI
));
4188 AsmOperandInfo
&OpInfo
= ConstraintOperands
.back();
4190 // Update multiple alternative constraint count.
4191 if (OpInfo
.multipleAlternatives
.size() > maCount
)
4192 maCount
= OpInfo
.multipleAlternatives
.size();
4194 OpInfo
.ConstraintVT
= MVT::Other
;
4196 // Compute the value type for each operand.
4197 switch (OpInfo
.Type
) {
4198 case InlineAsm::isOutput
:
4199 // Indirect outputs just consume an argument.
4200 if (OpInfo
.isIndirect
) {
4201 OpInfo
.CallOperandVal
= const_cast<Value
*>(CS
.getArgument(ArgNo
++));
4205 // The return value of the call is this value. As such, there is no
4206 // corresponding argument.
4207 assert(!CS
.getType()->isVoidTy() &&
4209 if (StructType
*STy
= dyn_cast
<StructType
>(CS
.getType())) {
4210 OpInfo
.ConstraintVT
=
4211 getSimpleValueType(DL
, STy
->getElementType(ResNo
));
4213 assert(ResNo
== 0 && "Asm only has one result!");
4214 OpInfo
.ConstraintVT
= getSimpleValueType(DL
, CS
.getType());
4218 case InlineAsm::isInput
:
4219 OpInfo
.CallOperandVal
= const_cast<Value
*>(CS
.getArgument(ArgNo
++));
4221 case InlineAsm::isClobber
:
4226 if (OpInfo
.CallOperandVal
) {
4227 llvm::Type
*OpTy
= OpInfo
.CallOperandVal
->getType();
4228 if (OpInfo
.isIndirect
) {
4229 llvm::PointerType
*PtrTy
= dyn_cast
<PointerType
>(OpTy
);
4231 report_fatal_error("Indirect operand for inline asm not a pointer!");
4232 OpTy
= PtrTy
->getElementType();
4235 // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4236 if (StructType
*STy
= dyn_cast
<StructType
>(OpTy
))
4237 if (STy
->getNumElements() == 1)
4238 OpTy
= STy
->getElementType(0);
4240 // If OpTy is not a single value, it may be a struct/union that we
4241 // can tile with integers.
4242 if (!OpTy
->isSingleValueType() && OpTy
->isSized()) {
4243 unsigned BitSize
= DL
.getTypeSizeInBits(OpTy
);
4252 OpInfo
.ConstraintVT
=
4253 MVT::getVT(IntegerType::get(OpTy
->getContext(), BitSize
), true);
4256 } else if (PointerType
*PT
= dyn_cast
<PointerType
>(OpTy
)) {
4257 unsigned PtrSize
= DL
.getPointerSizeInBits(PT
->getAddressSpace());
4258 OpInfo
.ConstraintVT
= MVT::getIntegerVT(PtrSize
);
4260 OpInfo
.ConstraintVT
= MVT::getVT(OpTy
, true);
4265 // If we have multiple alternative constraints, select the best alternative.
4266 if (!ConstraintOperands
.empty()) {
4268 unsigned bestMAIndex
= 0;
4269 int bestWeight
= -1;
4270 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match.
4273 // Compute the sums of the weights for each alternative, keeping track
4274 // of the best (highest weight) one so far.
4275 for (maIndex
= 0; maIndex
< maCount
; ++maIndex
) {
4277 for (unsigned cIndex
= 0, eIndex
= ConstraintOperands
.size();
4278 cIndex
!= eIndex
; ++cIndex
) {
4279 AsmOperandInfo
&OpInfo
= ConstraintOperands
[cIndex
];
4280 if (OpInfo
.Type
== InlineAsm::isClobber
)
4283 // If this is an output operand with a matching input operand,
4284 // look up the matching input. If their types mismatch, e.g. one
4285 // is an integer, the other is floating point, or their sizes are
4286 // different, flag it as an maCantMatch.
4287 if (OpInfo
.hasMatchingInput()) {
4288 AsmOperandInfo
&Input
= ConstraintOperands
[OpInfo
.MatchingInput
];
4289 if (OpInfo
.ConstraintVT
!= Input
.ConstraintVT
) {
4290 if ((OpInfo
.ConstraintVT
.isInteger() !=
4291 Input
.ConstraintVT
.isInteger()) ||
4292 (OpInfo
.ConstraintVT
.getSizeInBits() !=
4293 Input
.ConstraintVT
.getSizeInBits())) {
4294 weightSum
= -1; // Can't match.
4299 weight
= getMultipleConstraintMatchWeight(OpInfo
, maIndex
);
4304 weightSum
+= weight
;
4307 if (weightSum
> bestWeight
) {
4308 bestWeight
= weightSum
;
4309 bestMAIndex
= maIndex
;
4313 // Now select chosen alternative in each constraint.
4314 for (unsigned cIndex
= 0, eIndex
= ConstraintOperands
.size();
4315 cIndex
!= eIndex
; ++cIndex
) {
4316 AsmOperandInfo
&cInfo
= ConstraintOperands
[cIndex
];
4317 if (cInfo
.Type
== InlineAsm::isClobber
)
4319 cInfo
.selectAlternative(bestMAIndex
);
4324 // Check and hook up tied operands, choose constraint code to use.
4325 for (unsigned cIndex
= 0, eIndex
= ConstraintOperands
.size();
4326 cIndex
!= eIndex
; ++cIndex
) {
4327 AsmOperandInfo
&OpInfo
= ConstraintOperands
[cIndex
];
4329 // If this is an output operand with a matching input operand, look up the
4330 // matching input. If their types mismatch, e.g. one is an integer, the
4331 // other is floating point, or their sizes are different, flag it as an
4333 if (OpInfo
.hasMatchingInput()) {
4334 AsmOperandInfo
&Input
= ConstraintOperands
[OpInfo
.MatchingInput
];
4336 if (OpInfo
.ConstraintVT
!= Input
.ConstraintVT
) {
4337 std::pair
<unsigned, const TargetRegisterClass
*> MatchRC
=
4338 getRegForInlineAsmConstraint(TRI
, OpInfo
.ConstraintCode
,
4339 OpInfo
.ConstraintVT
);
4340 std::pair
<unsigned, const TargetRegisterClass
*> InputRC
=
4341 getRegForInlineAsmConstraint(TRI
, Input
.ConstraintCode
,
4342 Input
.ConstraintVT
);
4343 if ((OpInfo
.ConstraintVT
.isInteger() !=
4344 Input
.ConstraintVT
.isInteger()) ||
4345 (MatchRC
.second
!= InputRC
.second
)) {
4346 report_fatal_error("Unsupported asm: input constraint"
4347 " with a matching output constraint of"
4348 " incompatible type!");
4354 return ConstraintOperands
;
4357 /// Return an integer indicating how general CT is.
4358 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT
) {
4360 case TargetLowering::C_Immediate
:
4361 case TargetLowering::C_Other
:
4362 case TargetLowering::C_Unknown
:
4364 case TargetLowering::C_Register
:
4366 case TargetLowering::C_RegisterClass
:
4368 case TargetLowering::C_Memory
:
4371 llvm_unreachable("Invalid constraint type");
4374 /// Examine constraint type and operand type and determine a weight value.
4375 /// This object must already have been set up with the operand type
4376 /// and the current alternative constraint selected.
4377 TargetLowering::ConstraintWeight
4378 TargetLowering::getMultipleConstraintMatchWeight(
4379 AsmOperandInfo
&info
, int maIndex
) const {
4380 InlineAsm::ConstraintCodeVector
*rCodes
;
4381 if (maIndex
>= (int)info
.multipleAlternatives
.size())
4382 rCodes
= &info
.Codes
;
4384 rCodes
= &info
.multipleAlternatives
[maIndex
].Codes
;
4385 ConstraintWeight BestWeight
= CW_Invalid
;
4387 // Loop over the options, keeping track of the most general one.
4388 for (unsigned i
= 0, e
= rCodes
->size(); i
!= e
; ++i
) {
4389 ConstraintWeight weight
=
4390 getSingleConstraintMatchWeight(info
, (*rCodes
)[i
].c_str());
4391 if (weight
> BestWeight
)
4392 BestWeight
= weight
;
4398 /// Examine constraint type and operand type and determine a weight value.
4399 /// This object must already have been set up with the operand type
4400 /// and the current alternative constraint selected.
4401 TargetLowering::ConstraintWeight
4402 TargetLowering::getSingleConstraintMatchWeight(
4403 AsmOperandInfo
&info
, const char *constraint
) const {
4404 ConstraintWeight weight
= CW_Invalid
;
4405 Value
*CallOperandVal
= info
.CallOperandVal
;
4406 // If we don't have a value, we can't do a match,
4407 // but allow it at the lowest weight.
4408 if (!CallOperandVal
)
4410 // Look at the constraint type.
4411 switch (*constraint
) {
4412 case 'i': // immediate integer.
4413 case 'n': // immediate integer with a known value.
4414 if (isa
<ConstantInt
>(CallOperandVal
))
4415 weight
= CW_Constant
;
4417 case 's': // non-explicit intregal immediate.
4418 if (isa
<GlobalValue
>(CallOperandVal
))
4419 weight
= CW_Constant
;
4421 case 'E': // immediate float if host format.
4422 case 'F': // immediate float.
4423 if (isa
<ConstantFP
>(CallOperandVal
))
4424 weight
= CW_Constant
;
4426 case '<': // memory operand with autodecrement.
4427 case '>': // memory operand with autoincrement.
4428 case 'm': // memory operand.
4429 case 'o': // offsettable memory operand
4430 case 'V': // non-offsettable memory operand
4433 case 'r': // general register.
4434 case 'g': // general register, memory operand or immediate integer.
4435 // note: Clang converts "g" to "imr".
4436 if (CallOperandVal
->getType()->isIntegerTy())
4437 weight
= CW_Register
;
4439 case 'X': // any operand.
4441 weight
= CW_Default
;
4447 /// If there are multiple different constraints that we could pick for this
4448 /// operand (e.g. "imr") try to pick the 'best' one.
4449 /// This is somewhat tricky: constraints fall into four classes:
4450 /// Other -> immediates and magic values
4451 /// Register -> one specific register
4452 /// RegisterClass -> a group of regs
4453 /// Memory -> memory
4454 /// Ideally, we would pick the most specific constraint possible: if we have
4455 /// something that fits into a register, we would pick it. The problem here
4456 /// is that if we have something that could either be in a register or in
4457 /// memory that use of the register could cause selection of *other*
4458 /// operands to fail: they might only succeed if we pick memory. Because of
4459 /// this the heuristic we use is:
4461 /// 1) If there is an 'other' constraint, and if the operand is valid for
4462 /// that constraint, use it. This makes us take advantage of 'i'
4463 /// constraints when available.
4464 /// 2) Otherwise, pick the most general constraint present. This prefers
4465 /// 'm' over 'r', for example.
4467 static void ChooseConstraint(TargetLowering::AsmOperandInfo
&OpInfo
,
4468 const TargetLowering
&TLI
,
4469 SDValue Op
, SelectionDAG
*DAG
) {
4470 assert(OpInfo
.Codes
.size() > 1 && "Doesn't have multiple constraint options");
4471 unsigned BestIdx
= 0;
4472 TargetLowering::ConstraintType BestType
= TargetLowering::C_Unknown
;
4473 int BestGenerality
= -1;
4475 // Loop over the options, keeping track of the most general one.
4476 for (unsigned i
= 0, e
= OpInfo
.Codes
.size(); i
!= e
; ++i
) {
4477 TargetLowering::ConstraintType CType
=
4478 TLI
.getConstraintType(OpInfo
.Codes
[i
]);
4480 // If this is an 'other' or 'immediate' constraint, see if the operand is
4481 // valid for it. For example, on X86 we might have an 'rI' constraint. If
4482 // the operand is an integer in the range [0..31] we want to use I (saving a
4483 // load of a register), otherwise we must use 'r'.
4484 if ((CType
== TargetLowering::C_Other
||
4485 CType
== TargetLowering::C_Immediate
) && Op
.getNode()) {
4486 assert(OpInfo
.Codes
[i
].size() == 1 &&
4487 "Unhandled multi-letter 'other' constraint");
4488 std::vector
<SDValue
> ResultOps
;
4489 TLI
.LowerAsmOperandForConstraint(Op
, OpInfo
.Codes
[i
],
4491 if (!ResultOps
.empty()) {
4498 // Things with matching constraints can only be registers, per gcc
4499 // documentation. This mainly affects "g" constraints.
4500 if (CType
== TargetLowering::C_Memory
&& OpInfo
.hasMatchingInput())
4503 // This constraint letter is more general than the previous one, use it.
4504 int Generality
= getConstraintGenerality(CType
);
4505 if (Generality
> BestGenerality
) {
4508 BestGenerality
= Generality
;
4512 OpInfo
.ConstraintCode
= OpInfo
.Codes
[BestIdx
];
4513 OpInfo
.ConstraintType
= BestType
;
4516 /// Determines the constraint code and constraint type to use for the specific
4517 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4518 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo
&OpInfo
,
4520 SelectionDAG
*DAG
) const {
4521 assert(!OpInfo
.Codes
.empty() && "Must have at least one constraint");
4523 // Single-letter constraints ('r') are very common.
4524 if (OpInfo
.Codes
.size() == 1) {
4525 OpInfo
.ConstraintCode
= OpInfo
.Codes
[0];
4526 OpInfo
.ConstraintType
= getConstraintType(OpInfo
.ConstraintCode
);
4528 ChooseConstraint(OpInfo
, *this, Op
, DAG
);
4531 // 'X' matches anything.
4532 if (OpInfo
.ConstraintCode
== "X" && OpInfo
.CallOperandVal
) {
4533 // Labels and constants are handled elsewhere ('X' is the only thing
4534 // that matches labels). For Functions, the type here is the type of
4535 // the result, which is not what we want to look at; leave them alone.
4536 Value
*v
= OpInfo
.CallOperandVal
;
4537 if (isa
<BasicBlock
>(v
) || isa
<ConstantInt
>(v
) || isa
<Function
>(v
)) {
4538 OpInfo
.CallOperandVal
= v
;
4542 if (Op
.getNode() && Op
.getOpcode() == ISD::TargetBlockAddress
)
4545 // Otherwise, try to resolve it to something we know about by looking at
4546 // the actual operand type.
4547 if (const char *Repl
= LowerXConstraint(OpInfo
.ConstraintVT
)) {
4548 OpInfo
.ConstraintCode
= Repl
;
4549 OpInfo
.ConstraintType
= getConstraintType(OpInfo
.ConstraintCode
);
4554 /// Given an exact SDIV by a constant, create a multiplication
4555 /// with the multiplicative inverse of the constant.
4556 static SDValue
BuildExactSDIV(const TargetLowering
&TLI
, SDNode
*N
,
4557 const SDLoc
&dl
, SelectionDAG
&DAG
,
4558 SmallVectorImpl
<SDNode
*> &Created
) {
4559 SDValue Op0
= N
->getOperand(0);
4560 SDValue Op1
= N
->getOperand(1);
4561 EVT VT
= N
->getValueType(0);
4562 EVT SVT
= VT
.getScalarType();
4563 EVT ShVT
= TLI
.getShiftAmountTy(VT
, DAG
.getDataLayout());
4564 EVT ShSVT
= ShVT
.getScalarType();
4566 bool UseSRA
= false;
4567 SmallVector
<SDValue
, 16> Shifts
, Factors
;
4569 auto BuildSDIVPattern
= [&](ConstantSDNode
*C
) {
4570 if (C
->isNullValue())
4572 APInt Divisor
= C
->getAPIntValue();
4573 unsigned Shift
= Divisor
.countTrailingZeros();
4575 Divisor
.ashrInPlace(Shift
);
4578 // Calculate the multiplicative inverse, using Newton's method.
4580 APInt Factor
= Divisor
;
4581 while ((t
= Divisor
* Factor
) != 1)
4582 Factor
*= APInt(Divisor
.getBitWidth(), 2) - t
;
4583 Shifts
.push_back(DAG
.getConstant(Shift
, dl
, ShSVT
));
4584 Factors
.push_back(DAG
.getConstant(Factor
, dl
, SVT
));
4588 // Collect all magic values from the build vector.
4589 if (!ISD::matchUnaryPredicate(Op1
, BuildSDIVPattern
))
4592 SDValue Shift
, Factor
;
4593 if (VT
.isVector()) {
4594 Shift
= DAG
.getBuildVector(ShVT
, dl
, Shifts
);
4595 Factor
= DAG
.getBuildVector(VT
, dl
, Factors
);
4598 Factor
= Factors
[0];
4603 // Shift the value upfront if it is even, so the LSB is one.
4605 // TODO: For UDIV use SRL instead of SRA.
4607 Flags
.setExact(true);
4608 Res
= DAG
.getNode(ISD::SRA
, dl
, VT
, Res
, Shift
, Flags
);
4609 Created
.push_back(Res
.getNode());
4612 return DAG
.getNode(ISD::MUL
, dl
, VT
, Res
, Factor
);
4615 SDValue
TargetLowering::BuildSDIVPow2(SDNode
*N
, const APInt
&Divisor
,
4617 SmallVectorImpl
<SDNode
*> &Created
) const {
4618 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
4619 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4620 if (TLI
.isIntDivCheap(N
->getValueType(0), Attr
))
4621 return SDValue(N
, 0); // Lower SDIV as SDIV
4625 /// Given an ISD::SDIV node expressing a divide by constant,
4626 /// return a DAG expression to select that will generate the same value by
4627 /// multiplying by a magic number.
4628 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4629 SDValue
TargetLowering::BuildSDIV(SDNode
*N
, SelectionDAG
&DAG
,
4630 bool IsAfterLegalization
,
4631 SmallVectorImpl
<SDNode
*> &Created
) const {
4633 EVT VT
= N
->getValueType(0);
4634 EVT SVT
= VT
.getScalarType();
4635 EVT ShVT
= getShiftAmountTy(VT
, DAG
.getDataLayout());
4636 EVT ShSVT
= ShVT
.getScalarType();
4637 unsigned EltBits
= VT
.getScalarSizeInBits();
4639 // Check to see if we can do this.
4640 // FIXME: We should be more aggressive here.
4641 if (!isTypeLegal(VT
))
4644 // If the sdiv has an 'exact' bit we can use a simpler lowering.
4645 if (N
->getFlags().hasExact())
4646 return BuildExactSDIV(*this, N
, dl
, DAG
, Created
);
4648 SmallVector
<SDValue
, 16> MagicFactors
, Factors
, Shifts
, ShiftMasks
;
4650 auto BuildSDIVPattern
= [&](ConstantSDNode
*C
) {
4651 if (C
->isNullValue())
4654 const APInt
&Divisor
= C
->getAPIntValue();
4655 APInt::ms magics
= Divisor
.magic();
4656 int NumeratorFactor
= 0;
4659 if (Divisor
.isOneValue() || Divisor
.isAllOnesValue()) {
4660 // If d is +1/-1, we just multiply the numerator by +1/-1.
4661 NumeratorFactor
= Divisor
.getSExtValue();
4665 } else if (Divisor
.isStrictlyPositive() && magics
.m
.isNegative()) {
4666 // If d > 0 and m < 0, add the numerator.
4667 NumeratorFactor
= 1;
4668 } else if (Divisor
.isNegative() && magics
.m
.isStrictlyPositive()) {
4669 // If d < 0 and m > 0, subtract the numerator.
4670 NumeratorFactor
= -1;
4673 MagicFactors
.push_back(DAG
.getConstant(magics
.m
, dl
, SVT
));
4674 Factors
.push_back(DAG
.getConstant(NumeratorFactor
, dl
, SVT
));
4675 Shifts
.push_back(DAG
.getConstant(magics
.s
, dl
, ShSVT
));
4676 ShiftMasks
.push_back(DAG
.getConstant(ShiftMask
, dl
, SVT
));
4680 SDValue N0
= N
->getOperand(0);
4681 SDValue N1
= N
->getOperand(1);
4683 // Collect the shifts / magic values from each element.
4684 if (!ISD::matchUnaryPredicate(N1
, BuildSDIVPattern
))
4687 SDValue MagicFactor
, Factor
, Shift
, ShiftMask
;
4688 if (VT
.isVector()) {
4689 MagicFactor
= DAG
.getBuildVector(VT
, dl
, MagicFactors
);
4690 Factor
= DAG
.getBuildVector(VT
, dl
, Factors
);
4691 Shift
= DAG
.getBuildVector(ShVT
, dl
, Shifts
);
4692 ShiftMask
= DAG
.getBuildVector(VT
, dl
, ShiftMasks
);
4694 MagicFactor
= MagicFactors
[0];
4695 Factor
= Factors
[0];
4697 ShiftMask
= ShiftMasks
[0];
4700 // Multiply the numerator (operand 0) by the magic value.
4701 // FIXME: We should support doing a MUL in a wider type.
4703 if (IsAfterLegalization
? isOperationLegal(ISD::MULHS
, VT
)
4704 : isOperationLegalOrCustom(ISD::MULHS
, VT
))
4705 Q
= DAG
.getNode(ISD::MULHS
, dl
, VT
, N0
, MagicFactor
);
4706 else if (IsAfterLegalization
? isOperationLegal(ISD::SMUL_LOHI
, VT
)
4707 : isOperationLegalOrCustom(ISD::SMUL_LOHI
, VT
)) {
4709 DAG
.getNode(ISD::SMUL_LOHI
, dl
, DAG
.getVTList(VT
, VT
), N0
, MagicFactor
);
4710 Q
= SDValue(LoHi
.getNode(), 1);
4712 return SDValue(); // No mulhs or equivalent.
4713 Created
.push_back(Q
.getNode());
4715 // (Optionally) Add/subtract the numerator using Factor.
4716 Factor
= DAG
.getNode(ISD::MUL
, dl
, VT
, N0
, Factor
);
4717 Created
.push_back(Factor
.getNode());
4718 Q
= DAG
.getNode(ISD::ADD
, dl
, VT
, Q
, Factor
);
4719 Created
.push_back(Q
.getNode());
4721 // Shift right algebraic by shift value.
4722 Q
= DAG
.getNode(ISD::SRA
, dl
, VT
, Q
, Shift
);
4723 Created
.push_back(Q
.getNode());
4725 // Extract the sign bit, mask it and add it to the quotient.
4726 SDValue SignShift
= DAG
.getConstant(EltBits
- 1, dl
, ShVT
);
4727 SDValue T
= DAG
.getNode(ISD::SRL
, dl
, VT
, Q
, SignShift
);
4728 Created
.push_back(T
.getNode());
4729 T
= DAG
.getNode(ISD::AND
, dl
, VT
, T
, ShiftMask
);
4730 Created
.push_back(T
.getNode());
4731 return DAG
.getNode(ISD::ADD
, dl
, VT
, Q
, T
);
4734 /// Given an ISD::UDIV node expressing a divide by constant,
4735 /// return a DAG expression to select that will generate the same value by
4736 /// multiplying by a magic number.
4737 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4738 SDValue
TargetLowering::BuildUDIV(SDNode
*N
, SelectionDAG
&DAG
,
4739 bool IsAfterLegalization
,
4740 SmallVectorImpl
<SDNode
*> &Created
) const {
4742 EVT VT
= N
->getValueType(0);
4743 EVT SVT
= VT
.getScalarType();
4744 EVT ShVT
= getShiftAmountTy(VT
, DAG
.getDataLayout());
4745 EVT ShSVT
= ShVT
.getScalarType();
4746 unsigned EltBits
= VT
.getScalarSizeInBits();
4748 // Check to see if we can do this.
4749 // FIXME: We should be more aggressive here.
4750 if (!isTypeLegal(VT
))
4753 bool UseNPQ
= false;
4754 SmallVector
<SDValue
, 16> PreShifts
, PostShifts
, MagicFactors
, NPQFactors
;
4756 auto BuildUDIVPattern
= [&](ConstantSDNode
*C
) {
4757 if (C
->isNullValue())
4759 // FIXME: We should use a narrower constant when the upper
4760 // bits are known to be zero.
4761 APInt Divisor
= C
->getAPIntValue();
4762 APInt::mu magics
= Divisor
.magicu();
4763 unsigned PreShift
= 0, PostShift
= 0;
4765 // If the divisor is even, we can avoid using the expensive fixup by
4766 // shifting the divided value upfront.
4767 if (magics
.a
!= 0 && !Divisor
[0]) {
4768 PreShift
= Divisor
.countTrailingZeros();
4769 // Get magic number for the shifted divisor.
4770 magics
= Divisor
.lshr(PreShift
).magicu(PreShift
);
4771 assert(magics
.a
== 0 && "Should use cheap fixup now");
4774 APInt Magic
= magics
.m
;
4777 if (magics
.a
== 0 || Divisor
.isOneValue()) {
4778 assert(magics
.s
< Divisor
.getBitWidth() &&
4779 "We shouldn't generate an undefined shift!");
4780 PostShift
= magics
.s
;
4783 PostShift
= magics
.s
- 1;
4787 PreShifts
.push_back(DAG
.getConstant(PreShift
, dl
, ShSVT
));
4788 MagicFactors
.push_back(DAG
.getConstant(Magic
, dl
, SVT
));
4789 NPQFactors
.push_back(
4790 DAG
.getConstant(SelNPQ
? APInt::getOneBitSet(EltBits
, EltBits
- 1)
4791 : APInt::getNullValue(EltBits
),
4793 PostShifts
.push_back(DAG
.getConstant(PostShift
, dl
, ShSVT
));
4798 SDValue N0
= N
->getOperand(0);
4799 SDValue N1
= N
->getOperand(1);
4801 // Collect the shifts/magic values from each element.
4802 if (!ISD::matchUnaryPredicate(N1
, BuildUDIVPattern
))
4805 SDValue PreShift
, PostShift
, MagicFactor
, NPQFactor
;
4806 if (VT
.isVector()) {
4807 PreShift
= DAG
.getBuildVector(ShVT
, dl
, PreShifts
);
4808 MagicFactor
= DAG
.getBuildVector(VT
, dl
, MagicFactors
);
4809 NPQFactor
= DAG
.getBuildVector(VT
, dl
, NPQFactors
);
4810 PostShift
= DAG
.getBuildVector(ShVT
, dl
, PostShifts
);
4812 PreShift
= PreShifts
[0];
4813 MagicFactor
= MagicFactors
[0];
4814 PostShift
= PostShifts
[0];
4818 Q
= DAG
.getNode(ISD::SRL
, dl
, VT
, Q
, PreShift
);
4819 Created
.push_back(Q
.getNode());
4821 // FIXME: We should support doing a MUL in a wider type.
4822 auto GetMULHU
= [&](SDValue X
, SDValue Y
) {
4823 if (IsAfterLegalization
? isOperationLegal(ISD::MULHU
, VT
)
4824 : isOperationLegalOrCustom(ISD::MULHU
, VT
))
4825 return DAG
.getNode(ISD::MULHU
, dl
, VT
, X
, Y
);
4826 if (IsAfterLegalization
? isOperationLegal(ISD::UMUL_LOHI
, VT
)
4827 : isOperationLegalOrCustom(ISD::UMUL_LOHI
, VT
)) {
4829 DAG
.getNode(ISD::UMUL_LOHI
, dl
, DAG
.getVTList(VT
, VT
), X
, Y
);
4830 return SDValue(LoHi
.getNode(), 1);
4832 return SDValue(); // No mulhu or equivalent
4835 // Multiply the numerator (operand 0) by the magic value.
4836 Q
= GetMULHU(Q
, MagicFactor
);
4840 Created
.push_back(Q
.getNode());
4843 SDValue NPQ
= DAG
.getNode(ISD::SUB
, dl
, VT
, N0
, Q
);
4844 Created
.push_back(NPQ
.getNode());
4846 // For vectors we might have a mix of non-NPQ/NPQ paths, so use
4847 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
4849 NPQ
= GetMULHU(NPQ
, NPQFactor
);
4851 NPQ
= DAG
.getNode(ISD::SRL
, dl
, VT
, NPQ
, DAG
.getConstant(1, dl
, ShVT
));
4853 Created
.push_back(NPQ
.getNode());
4855 Q
= DAG
.getNode(ISD::ADD
, dl
, VT
, NPQ
, Q
);
4856 Created
.push_back(Q
.getNode());
4859 Q
= DAG
.getNode(ISD::SRL
, dl
, VT
, Q
, PostShift
);
4860 Created
.push_back(Q
.getNode());
4862 SDValue One
= DAG
.getConstant(1, dl
, VT
);
4863 SDValue IsOne
= DAG
.getSetCC(dl
, VT
, N1
, One
, ISD::SETEQ
);
4864 return DAG
.getSelect(dl
, VT
, IsOne
, N0
, Q
);
4867 /// If all values in Values that *don't* match the predicate are same 'splat'
4868 /// value, then replace all values with that splat value.
4869 /// Else, if AlternativeReplacement was provided, then replace all values that
4870 /// do match predicate with AlternativeReplacement value.
4872 turnVectorIntoSplatVector(MutableArrayRef
<SDValue
> Values
,
4873 std::function
<bool(SDValue
)> Predicate
,
4874 SDValue AlternativeReplacement
= SDValue()) {
4875 SDValue Replacement
;
4876 // Is there a value for which the Predicate does *NOT* match? What is it?
4877 auto SplatValue
= llvm::find_if_not(Values
, Predicate
);
4878 if (SplatValue
!= Values
.end()) {
4879 // Does Values consist only of SplatValue's and values matching Predicate?
4880 if (llvm::all_of(Values
, [Predicate
, SplatValue
](SDValue Value
) {
4881 return Value
== *SplatValue
|| Predicate(Value
);
4882 })) // Then we shall replace values matching predicate with SplatValue.
4883 Replacement
= *SplatValue
;
4886 // Oops, we did not find the "baseline" splat value.
4887 if (!AlternativeReplacement
)
4888 return; // Nothing to do.
4889 // Let's replace with provided value then.
4890 Replacement
= AlternativeReplacement
;
4892 std::replace_if(Values
.begin(), Values
.end(), Predicate
, Replacement
);
4895 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
4896 /// where the divisor is constant and the comparison target is zero,
4897 /// return a DAG expression that will generate the same comparison result
4898 /// using only multiplications, additions and shifts/rotations.
4899 /// Ref: "Hacker's Delight" 10-17.
4900 SDValue
TargetLowering::buildUREMEqFold(EVT SETCCVT
, SDValue REMNode
,
4901 SDValue CompTargetNode
,
4903 DAGCombinerInfo
&DCI
,
4904 const SDLoc
&DL
) const {
4905 SmallVector
<SDNode
*, 2> Built
;
4906 if (SDValue Folded
= prepareUREMEqFold(SETCCVT
, REMNode
, CompTargetNode
, Cond
,
4908 for (SDNode
*N
: Built
)
4909 DCI
.AddToWorklist(N
);
4917 TargetLowering::prepareUREMEqFold(EVT SETCCVT
, SDValue REMNode
,
4918 SDValue CompTargetNode
, ISD::CondCode Cond
,
4919 DAGCombinerInfo
&DCI
, const SDLoc
&DL
,
4920 SmallVectorImpl
<SDNode
*> &Created
) const {
4921 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
4922 // - D must be constant, with D = D0 * 2^K where D0 is odd
4923 // - P is the multiplicative inverse of D0 modulo 2^W
4924 // - Q = floor(((2^W) - 1) / D)
4925 // where W is the width of the common type of N and D.
4926 assert((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
4927 "Only applicable for (in)equality comparisons.");
4929 SelectionDAG
&DAG
= DCI
.DAG
;
4931 EVT VT
= REMNode
.getValueType();
4932 EVT SVT
= VT
.getScalarType();
4933 EVT ShVT
= getShiftAmountTy(VT
, DAG
.getDataLayout());
4934 EVT ShSVT
= ShVT
.getScalarType();
4936 // If MUL is unavailable, we cannot proceed in any case.
4937 if (!isOperationLegalOrCustom(ISD::MUL
, VT
))
4940 // TODO: Could support comparing with non-zero too.
4941 ConstantSDNode
*CompTarget
= isConstOrConstSplat(CompTargetNode
);
4942 if (!CompTarget
|| !CompTarget
->isNullValue())
4945 bool HadOneDivisor
= false;
4946 bool AllDivisorsAreOnes
= true;
4947 bool HadEvenDivisor
= false;
4948 bool AllDivisorsArePowerOfTwo
= true;
4949 SmallVector
<SDValue
, 16> PAmts
, KAmts
, QAmts
;
4951 auto BuildUREMPattern
= [&](ConstantSDNode
*C
) {
4952 // Division by 0 is UB. Leave it to be constant-folded elsewhere.
4953 if (C
->isNullValue())
4956 const APInt
&D
= C
->getAPIntValue();
4957 // If all divisors are ones, we will prefer to avoid the fold.
4958 HadOneDivisor
|= D
.isOneValue();
4959 AllDivisorsAreOnes
&= D
.isOneValue();
4961 // Decompose D into D0 * 2^K
4962 unsigned K
= D
.countTrailingZeros();
4963 assert((!D
.isOneValue() || (K
== 0)) && "For divisor '1' we won't rotate.");
4964 APInt D0
= D
.lshr(K
);
4966 // D is even if it has trailing zeros.
4967 HadEvenDivisor
|= (K
!= 0);
4968 // D is a power-of-two if D0 is one.
4969 // If all divisors are power-of-two, we will prefer to avoid the fold.
4970 AllDivisorsArePowerOfTwo
&= D0
.isOneValue();
4973 // 2^W requires W + 1 bits, so we have to extend and then truncate.
4974 unsigned W
= D
.getBitWidth();
4975 APInt P
= D0
.zext(W
+ 1)
4976 .multiplicativeInverse(APInt::getSignedMinValue(W
+ 1))
4978 assert(!P
.isNullValue() && "No multiplicative inverse!"); // unreachable
4979 assert((D0
* P
).isOneValue() && "Multiplicative inverse sanity check.");
4981 // Q = floor((2^W - 1) / D)
4982 APInt Q
= APInt::getAllOnesValue(W
).udiv(D
);
4984 assert(APInt::getAllOnesValue(ShSVT
.getSizeInBits()).ugt(K
) &&
4985 "We are expecting that K is always less than all-ones for ShSVT");
4987 // If the divisor is 1 the result can be constant-folded.
4988 if (D
.isOneValue()) {
4989 // Set P and K amount to a bogus values so we can try to splat them.
4992 assert(Q
.isAllOnesValue() &&
4993 "Expecting all-ones comparison for one divisor");
4996 PAmts
.push_back(DAG
.getConstant(P
, DL
, SVT
));
4998 DAG
.getConstant(APInt(ShSVT
.getSizeInBits(), K
), DL
, ShSVT
));
4999 QAmts
.push_back(DAG
.getConstant(Q
, DL
, SVT
));
5003 SDValue N
= REMNode
.getOperand(0);
5004 SDValue D
= REMNode
.getOperand(1);
5006 // Collect the values from each element.
5007 if (!ISD::matchUnaryPredicate(D
, BuildUREMPattern
))
5010 // If this is a urem by a one, avoid the fold since it can be constant-folded.
5011 if (AllDivisorsAreOnes
)
5014 // If this is a urem by a powers-of-two, avoid the fold since it can be
5015 // best implemented as a bit test.
5016 if (AllDivisorsArePowerOfTwo
)
5019 SDValue PVal
, KVal
, QVal
;
5020 if (VT
.isVector()) {
5021 if (HadOneDivisor
) {
5022 // Try to turn PAmts into a splat, since we don't care about the values
5023 // that are currently '0'. If we can't, just keep '0'`s.
5024 turnVectorIntoSplatVector(PAmts
, isNullConstant
);
5025 // Try to turn KAmts into a splat, since we don't care about the values
5026 // that are currently '-1'. If we can't, change them to '0'`s.
5027 turnVectorIntoSplatVector(KAmts
, isAllOnesConstant
,
5028 DAG
.getConstant(0, DL
, ShSVT
));
5031 PVal
= DAG
.getBuildVector(VT
, DL
, PAmts
);
5032 KVal
= DAG
.getBuildVector(ShVT
, DL
, KAmts
);
5033 QVal
= DAG
.getBuildVector(VT
, DL
, QAmts
);
5041 SDValue Op0
= DAG
.getNode(ISD::MUL
, DL
, VT
, N
, PVal
);
5042 Created
.push_back(Op0
.getNode());
5044 // Rotate right only if any divisor was even. We avoid rotates for all-odd
5045 // divisors as a performance improvement, since rotating by 0 is a no-op.
5046 if (HadEvenDivisor
) {
5047 // We need ROTR to do this.
5048 if (!isOperationLegalOrCustom(ISD::ROTR
, VT
))
5051 Flags
.setExact(true);
5052 // UREM: (rotr (mul N, P), K)
5053 Op0
= DAG
.getNode(ISD::ROTR
, DL
, VT
, Op0
, KVal
, Flags
);
5054 Created
.push_back(Op0
.getNode());
5057 // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5058 return DAG
.getSetCC(DL
, SETCCVT
, Op0
, QVal
,
5059 ((Cond
== ISD::SETEQ
) ? ISD::SETULE
: ISD::SETUGT
));
5062 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5063 /// where the divisor is constant and the comparison target is zero,
5064 /// return a DAG expression that will generate the same comparison result
5065 /// using only multiplications, additions and shifts/rotations.
5066 /// Ref: "Hacker's Delight" 10-17.
5067 SDValue
TargetLowering::buildSREMEqFold(EVT SETCCVT
, SDValue REMNode
,
5068 SDValue CompTargetNode
,
5070 DAGCombinerInfo
&DCI
,
5071 const SDLoc
&DL
) const {
5072 SmallVector
<SDNode
*, 7> Built
;
5073 if (SDValue Folded
= prepareSREMEqFold(SETCCVT
, REMNode
, CompTargetNode
, Cond
,
5075 assert(Built
.size() <= 7 && "Max size prediction failed.");
5076 for (SDNode
*N
: Built
)
5077 DCI
.AddToWorklist(N
);
5085 TargetLowering::prepareSREMEqFold(EVT SETCCVT
, SDValue REMNode
,
5086 SDValue CompTargetNode
, ISD::CondCode Cond
,
5087 DAGCombinerInfo
&DCI
, const SDLoc
&DL
,
5088 SmallVectorImpl
<SDNode
*> &Created
) const {
5090 // (seteq/ne (srem N, D), 0)
5092 // (setule/ugt (rotr (add (mul N, P), A), K), Q)
5094 // - D must be constant, with D = D0 * 2^K where D0 is odd
5095 // - P is the multiplicative inverse of D0 modulo 2^W
5096 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5097 // - Q = floor((2 * A) / (2^K))
5098 // where W is the width of the common type of N and D.
5099 assert((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
5100 "Only applicable for (in)equality comparisons.");
5102 SelectionDAG
&DAG
= DCI
.DAG
;
5104 EVT VT
= REMNode
.getValueType();
5105 EVT SVT
= VT
.getScalarType();
5106 EVT ShVT
= getShiftAmountTy(VT
, DAG
.getDataLayout());
5107 EVT ShSVT
= ShVT
.getScalarType();
5109 // If MUL is unavailable, we cannot proceed in any case.
5110 if (!isOperationLegalOrCustom(ISD::MUL
, VT
))
5113 // TODO: Could support comparing with non-zero too.
5114 ConstantSDNode
*CompTarget
= isConstOrConstSplat(CompTargetNode
);
5115 if (!CompTarget
|| !CompTarget
->isNullValue())
5118 bool HadIntMinDivisor
= false;
5119 bool HadOneDivisor
= false;
5120 bool AllDivisorsAreOnes
= true;
5121 bool HadEvenDivisor
= false;
5122 bool NeedToApplyOffset
= false;
5123 bool AllDivisorsArePowerOfTwo
= true;
5124 SmallVector
<SDValue
, 16> PAmts
, AAmts
, KAmts
, QAmts
;
5126 auto BuildSREMPattern
= [&](ConstantSDNode
*C
) {
5127 // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5128 if (C
->isNullValue())
5131 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5133 // WARNING: this fold is only valid for positive divisors!
5134 APInt D
= C
->getAPIntValue();
5136 D
.negate(); // `rem %X, -C` is equivalent to `rem %X, C`
5138 HadIntMinDivisor
|= D
.isMinSignedValue();
5140 // If all divisors are ones, we will prefer to avoid the fold.
5141 HadOneDivisor
|= D
.isOneValue();
5142 AllDivisorsAreOnes
&= D
.isOneValue();
5144 // Decompose D into D0 * 2^K
5145 unsigned K
= D
.countTrailingZeros();
5146 assert((!D
.isOneValue() || (K
== 0)) && "For divisor '1' we won't rotate.");
5147 APInt D0
= D
.lshr(K
);
5149 if (!D
.isMinSignedValue()) {
5150 // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5151 // we don't care about this lane in this fold, we'll special-handle it.
5152 HadEvenDivisor
|= (K
!= 0);
5155 // D is a power-of-two if D0 is one. This includes INT_MIN.
5156 // If all divisors are power-of-two, we will prefer to avoid the fold.
5157 AllDivisorsArePowerOfTwo
&= D0
.isOneValue();
5160 // 2^W requires W + 1 bits, so we have to extend and then truncate.
5161 unsigned W
= D
.getBitWidth();
5162 APInt P
= D0
.zext(W
+ 1)
5163 .multiplicativeInverse(APInt::getSignedMinValue(W
+ 1))
5165 assert(!P
.isNullValue() && "No multiplicative inverse!"); // unreachable
5166 assert((D0
* P
).isOneValue() && "Multiplicative inverse sanity check.");
5168 // A = floor((2^(W - 1) - 1) / D0) & -2^K
5169 APInt A
= APInt::getSignedMaxValue(W
).udiv(D0
);
5172 if (!D
.isMinSignedValue()) {
5173 // If divisor INT_MIN, then we don't care about this lane in this fold,
5174 // we'll special-handle it.
5175 NeedToApplyOffset
|= A
!= 0;
5178 // Q = floor((2 * A) / (2^K))
5179 APInt Q
= (2 * A
).udiv(APInt::getOneBitSet(W
, K
));
5181 assert(APInt::getAllOnesValue(SVT
.getSizeInBits()).ugt(A
) &&
5182 "We are expecting that A is always less than all-ones for SVT");
5183 assert(APInt::getAllOnesValue(ShSVT
.getSizeInBits()).ugt(K
) &&
5184 "We are expecting that K is always less than all-ones for ShSVT");
5186 // If the divisor is 1 the result can be constant-folded. Likewise, we
5187 // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5188 if (D
.isOneValue()) {
5189 // Set P, A and K to a bogus values so we can try to splat them.
5194 // x ?% 1 == 0 <--> true <--> x u<= -1
5198 PAmts
.push_back(DAG
.getConstant(P
, DL
, SVT
));
5199 AAmts
.push_back(DAG
.getConstant(A
, DL
, SVT
));
5201 DAG
.getConstant(APInt(ShSVT
.getSizeInBits(), K
), DL
, ShSVT
));
5202 QAmts
.push_back(DAG
.getConstant(Q
, DL
, SVT
));
5206 SDValue N
= REMNode
.getOperand(0);
5207 SDValue D
= REMNode
.getOperand(1);
5209 // Collect the values from each element.
5210 if (!ISD::matchUnaryPredicate(D
, BuildSREMPattern
))
5213 // If this is a srem by a one, avoid the fold since it can be constant-folded.
5214 if (AllDivisorsAreOnes
)
5217 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5218 // since it can be best implemented as a bit test.
5219 if (AllDivisorsArePowerOfTwo
)
5222 SDValue PVal
, AVal
, KVal
, QVal
;
5223 if (VT
.isVector()) {
5224 if (HadOneDivisor
) {
5225 // Try to turn PAmts into a splat, since we don't care about the values
5226 // that are currently '0'. If we can't, just keep '0'`s.
5227 turnVectorIntoSplatVector(PAmts
, isNullConstant
);
5228 // Try to turn AAmts into a splat, since we don't care about the
5229 // values that are currently '-1'. If we can't, change them to '0'`s.
5230 turnVectorIntoSplatVector(AAmts
, isAllOnesConstant
,
5231 DAG
.getConstant(0, DL
, SVT
));
5232 // Try to turn KAmts into a splat, since we don't care about the values
5233 // that are currently '-1'. If we can't, change them to '0'`s.
5234 turnVectorIntoSplatVector(KAmts
, isAllOnesConstant
,
5235 DAG
.getConstant(0, DL
, ShSVT
));
5238 PVal
= DAG
.getBuildVector(VT
, DL
, PAmts
);
5239 AVal
= DAG
.getBuildVector(VT
, DL
, AAmts
);
5240 KVal
= DAG
.getBuildVector(ShVT
, DL
, KAmts
);
5241 QVal
= DAG
.getBuildVector(VT
, DL
, QAmts
);
5250 SDValue Op0
= DAG
.getNode(ISD::MUL
, DL
, VT
, N
, PVal
);
5251 Created
.push_back(Op0
.getNode());
5253 if (NeedToApplyOffset
) {
5254 // We need ADD to do this.
5255 if (!isOperationLegalOrCustom(ISD::ADD
, VT
))
5258 // (add (mul N, P), A)
5259 Op0
= DAG
.getNode(ISD::ADD
, DL
, VT
, Op0
, AVal
);
5260 Created
.push_back(Op0
.getNode());
5263 // Rotate right only if any divisor was even. We avoid rotates for all-odd
5264 // divisors as a performance improvement, since rotating by 0 is a no-op.
5265 if (HadEvenDivisor
) {
5266 // We need ROTR to do this.
5267 if (!isOperationLegalOrCustom(ISD::ROTR
, VT
))
5270 Flags
.setExact(true);
5271 // SREM: (rotr (add (mul N, P), A), K)
5272 Op0
= DAG
.getNode(ISD::ROTR
, DL
, VT
, Op0
, KVal
, Flags
);
5273 Created
.push_back(Op0
.getNode());
5276 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5278 DAG
.getSetCC(DL
, SETCCVT
, Op0
, QVal
,
5279 ((Cond
== ISD::SETEQ
) ? ISD::SETULE
: ISD::SETUGT
));
5281 // If we didn't have lanes with INT_MIN divisor, then we're done.
5282 if (!HadIntMinDivisor
)
5285 // That fold is only valid for positive divisors. Which effectively means,
5286 // it is invalid for INT_MIN divisors. So if we have such a lane,
5287 // we must fix-up results for said lanes.
5288 assert(VT
.isVector() && "Can/should only get here for vectors.");
5290 if (!isOperationLegalOrCustom(ISD::SETEQ
, VT
) ||
5291 !isOperationLegalOrCustom(ISD::AND
, VT
) ||
5292 !isOperationLegalOrCustom(Cond
, VT
) ||
5293 !isOperationLegalOrCustom(ISD::VSELECT
, VT
))
5296 Created
.push_back(Fold
.getNode());
5298 SDValue IntMin
= DAG
.getConstant(
5299 APInt::getSignedMinValue(SVT
.getScalarSizeInBits()), DL
, VT
);
5300 SDValue IntMax
= DAG
.getConstant(
5301 APInt::getSignedMaxValue(SVT
.getScalarSizeInBits()), DL
, VT
);
5303 DAG
.getConstant(APInt::getNullValue(SVT
.getScalarSizeInBits()), DL
, VT
);
5305 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5306 SDValue DivisorIsIntMin
= DAG
.getSetCC(DL
, SETCCVT
, D
, IntMin
, ISD::SETEQ
);
5307 Created
.push_back(DivisorIsIntMin
.getNode());
5309 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0
5310 SDValue Masked
= DAG
.getNode(ISD::AND
, DL
, VT
, N
, IntMax
);
5311 Created
.push_back(Masked
.getNode());
5312 SDValue MaskedIsZero
= DAG
.getSetCC(DL
, SETCCVT
, Masked
, Zero
, Cond
);
5313 Created
.push_back(MaskedIsZero
.getNode());
5315 // To produce final result we need to blend 2 vectors: 'SetCC' and
5316 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5317 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5318 // constant-folded, select can get lowered to a shuffle with constant mask.
5320 DAG
.getNode(ISD::VSELECT
, DL
, VT
, DivisorIsIntMin
, MaskedIsZero
, Fold
);
5325 bool TargetLowering::
5326 verifyReturnAddressArgumentIsConstant(SDValue Op
, SelectionDAG
&DAG
) const {
5327 if (!isa
<ConstantSDNode
>(Op
.getOperand(0))) {
5328 DAG
.getContext()->emitError("argument to '__builtin_return_address' must "
5329 "be a constant integer");
5336 char TargetLowering::isNegatibleForFree(SDValue Op
, SelectionDAG
&DAG
,
5337 bool LegalOperations
, bool ForCodeSize
,
5338 unsigned Depth
) const {
5339 // fneg is removable even if it has multiple uses.
5340 if (Op
.getOpcode() == ISD::FNEG
)
5343 // Don't allow anything with multiple uses unless we know it is free.
5344 EVT VT
= Op
.getValueType();
5345 const SDNodeFlags Flags
= Op
->getFlags();
5346 const TargetOptions
&Options
= DAG
.getTarget().Options
;
5347 if (!Op
.hasOneUse() && !(Op
.getOpcode() == ISD::FP_EXTEND
&&
5348 isFPExtFree(VT
, Op
.getOperand(0).getValueType())))
5351 // Don't recurse exponentially.
5352 if (Depth
> SelectionDAG::MaxRecursionDepth
)
5355 switch (Op
.getOpcode()) {
5356 case ISD::ConstantFP
: {
5357 if (!LegalOperations
)
5360 // Don't invert constant FP values after legalization unless the target says
5361 // the negated constant is legal.
5362 return isOperationLegal(ISD::ConstantFP
, VT
) ||
5363 isFPImmLegal(neg(cast
<ConstantFPSDNode
>(Op
)->getValueAPF()), VT
,
5366 case ISD::BUILD_VECTOR
: {
5367 // Only permit BUILD_VECTOR of constants.
5368 if (llvm::any_of(Op
->op_values(), [&](SDValue N
) {
5369 return !N
.isUndef() && !isa
<ConstantFPSDNode
>(N
);
5372 if (!LegalOperations
)
5374 if (isOperationLegal(ISD::ConstantFP
, VT
) &&
5375 isOperationLegal(ISD::BUILD_VECTOR
, VT
))
5377 return llvm::all_of(Op
->op_values(), [&](SDValue N
) {
5378 return N
.isUndef() ||
5379 isFPImmLegal(neg(cast
<ConstantFPSDNode
>(N
)->getValueAPF()), VT
,
5384 if (!Options
.NoSignedZerosFPMath
&& !Flags
.hasNoSignedZeros())
5387 // After operation legalization, it might not be legal to create new FSUBs.
5388 if (LegalOperations
&& !isOperationLegalOrCustom(ISD::FSUB
, VT
))
5391 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
5392 if (char V
= isNegatibleForFree(Op
.getOperand(0), DAG
, LegalOperations
,
5393 ForCodeSize
, Depth
+ 1))
5395 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
5396 return isNegatibleForFree(Op
.getOperand(1), DAG
, LegalOperations
,
5397 ForCodeSize
, Depth
+ 1);
5399 // We can't turn -(A-B) into B-A when we honor signed zeros.
5400 if (!Options
.NoSignedZerosFPMath
&& !Flags
.hasNoSignedZeros())
5403 // fold (fneg (fsub A, B)) -> (fsub B, A)
5408 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
5409 if (char V
= isNegatibleForFree(Op
.getOperand(0), DAG
, LegalOperations
,
5410 ForCodeSize
, Depth
+ 1))
5413 // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
5414 if (auto *C
= isConstOrConstSplatFP(Op
.getOperand(1)))
5415 if (C
->isExactlyValue(2.0) && Op
.getOpcode() == ISD::FMUL
)
5418 return isNegatibleForFree(Op
.getOperand(1), DAG
, LegalOperations
,
5419 ForCodeSize
, Depth
+ 1);
5423 if (!Options
.NoSignedZerosFPMath
&& !Flags
.hasNoSignedZeros())
5426 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5427 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5428 char V2
= isNegatibleForFree(Op
.getOperand(2), DAG
, LegalOperations
,
5429 ForCodeSize
, Depth
+ 1);
5433 // One of Op0/Op1 must be cheaply negatible, then select the cheapest.
5434 char V0
= isNegatibleForFree(Op
.getOperand(0), DAG
, LegalOperations
,
5435 ForCodeSize
, Depth
+ 1);
5436 char V1
= isNegatibleForFree(Op
.getOperand(1), DAG
, LegalOperations
,
5437 ForCodeSize
, Depth
+ 1);
5438 char V01
= std::max(V0
, V1
);
5439 return V01
? std::max(V01
, V2
) : 0;
5442 case ISD::FP_EXTEND
:
5445 return isNegatibleForFree(Op
.getOperand(0), DAG
, LegalOperations
,
5446 ForCodeSize
, Depth
+ 1);
5452 SDValue
TargetLowering::getNegatedExpression(SDValue Op
, SelectionDAG
&DAG
,
5453 bool LegalOperations
,
5455 unsigned Depth
) const {
5456 // fneg is removable even if it has multiple uses.
5457 if (Op
.getOpcode() == ISD::FNEG
)
5458 return Op
.getOperand(0);
5460 assert(Depth
<= SelectionDAG::MaxRecursionDepth
&&
5461 "getNegatedExpression doesn't match isNegatibleForFree");
5462 const SDNodeFlags Flags
= Op
->getFlags();
5464 switch (Op
.getOpcode()) {
5465 case ISD::ConstantFP
: {
5466 APFloat V
= cast
<ConstantFPSDNode
>(Op
)->getValueAPF();
5468 return DAG
.getConstantFP(V
, SDLoc(Op
), Op
.getValueType());
5470 case ISD::BUILD_VECTOR
: {
5471 SmallVector
<SDValue
, 4> Ops
;
5472 for (SDValue C
: Op
->op_values()) {
5477 APFloat V
= cast
<ConstantFPSDNode
>(C
)->getValueAPF();
5479 Ops
.push_back(DAG
.getConstantFP(V
, SDLoc(Op
), C
.getValueType()));
5481 return DAG
.getBuildVector(Op
.getValueType(), SDLoc(Op
), Ops
);
5484 assert((DAG
.getTarget().Options
.NoSignedZerosFPMath
||
5485 Flags
.hasNoSignedZeros()) &&
5486 "Expected NSZ fp-flag");
5488 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
5489 if (isNegatibleForFree(Op
.getOperand(0), DAG
, LegalOperations
, ForCodeSize
,
5491 return DAG
.getNode(ISD::FSUB
, SDLoc(Op
), Op
.getValueType(),
5492 getNegatedExpression(Op
.getOperand(0), DAG
,
5493 LegalOperations
, ForCodeSize
,
5495 Op
.getOperand(1), Flags
);
5496 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
5497 return DAG
.getNode(ISD::FSUB
, SDLoc(Op
), Op
.getValueType(),
5498 getNegatedExpression(Op
.getOperand(1), DAG
,
5499 LegalOperations
, ForCodeSize
,
5501 Op
.getOperand(0), Flags
);
5503 // fold (fneg (fsub 0, B)) -> B
5504 if (ConstantFPSDNode
*N0CFP
=
5505 isConstOrConstSplatFP(Op
.getOperand(0), /*AllowUndefs*/ true))
5506 if (N0CFP
->isZero())
5507 return Op
.getOperand(1);
5509 // fold (fneg (fsub A, B)) -> (fsub B, A)
5510 return DAG
.getNode(ISD::FSUB
, SDLoc(Op
), Op
.getValueType(),
5511 Op
.getOperand(1), Op
.getOperand(0), Flags
);
5515 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
5516 if (isNegatibleForFree(Op
.getOperand(0), DAG
, LegalOperations
, ForCodeSize
,
5518 return DAG
.getNode(Op
.getOpcode(), SDLoc(Op
), Op
.getValueType(),
5519 getNegatedExpression(Op
.getOperand(0), DAG
,
5520 LegalOperations
, ForCodeSize
,
5522 Op
.getOperand(1), Flags
);
5524 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
5526 Op
.getOpcode(), SDLoc(Op
), Op
.getValueType(), Op
.getOperand(0),
5527 getNegatedExpression(Op
.getOperand(1), DAG
, LegalOperations
,
5528 ForCodeSize
, Depth
+ 1),
5533 assert((DAG
.getTarget().Options
.NoSignedZerosFPMath
||
5534 Flags
.hasNoSignedZeros()) &&
5535 "Expected NSZ fp-flag");
5537 SDValue Neg2
= getNegatedExpression(Op
.getOperand(2), DAG
, LegalOperations
,
5538 ForCodeSize
, Depth
+ 1);
5540 char V0
= isNegatibleForFree(Op
.getOperand(0), DAG
, LegalOperations
,
5541 ForCodeSize
, Depth
+ 1);
5542 char V1
= isNegatibleForFree(Op
.getOperand(1), DAG
, LegalOperations
,
5543 ForCodeSize
, Depth
+ 1);
5545 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5546 SDValue Neg0
= getNegatedExpression(
5547 Op
.getOperand(0), DAG
, LegalOperations
, ForCodeSize
, Depth
+ 1);
5548 return DAG
.getNode(Op
.getOpcode(), SDLoc(Op
), Op
.getValueType(), Neg0
,
5549 Op
.getOperand(1), Neg2
, Flags
);
5552 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5553 SDValue Neg1
= getNegatedExpression(Op
.getOperand(1), DAG
, LegalOperations
,
5554 ForCodeSize
, Depth
+ 1);
5555 return DAG
.getNode(Op
.getOpcode(), SDLoc(Op
), Op
.getValueType(),
5556 Op
.getOperand(0), Neg1
, Neg2
, Flags
);
5559 case ISD::FP_EXTEND
:
5561 return DAG
.getNode(Op
.getOpcode(), SDLoc(Op
), Op
.getValueType(),
5562 getNegatedExpression(Op
.getOperand(0), DAG
,
5563 LegalOperations
, ForCodeSize
,
5566 return DAG
.getNode(ISD::FP_ROUND
, SDLoc(Op
), Op
.getValueType(),
5567 getNegatedExpression(Op
.getOperand(0), DAG
,
5568 LegalOperations
, ForCodeSize
,
5573 llvm_unreachable("Unknown code");
5576 //===----------------------------------------------------------------------===//
5577 // Legalization Utilities
5578 //===----------------------------------------------------------------------===//
5580 bool TargetLowering::expandMUL_LOHI(unsigned Opcode
, EVT VT
, SDLoc dl
,
5581 SDValue LHS
, SDValue RHS
,
5582 SmallVectorImpl
<SDValue
> &Result
,
5583 EVT HiLoVT
, SelectionDAG
&DAG
,
5584 MulExpansionKind Kind
, SDValue LL
,
5585 SDValue LH
, SDValue RL
, SDValue RH
) const {
5586 assert(Opcode
== ISD::MUL
|| Opcode
== ISD::UMUL_LOHI
||
5587 Opcode
== ISD::SMUL_LOHI
);
5589 bool HasMULHS
= (Kind
== MulExpansionKind::Always
) ||
5590 isOperationLegalOrCustom(ISD::MULHS
, HiLoVT
);
5591 bool HasMULHU
= (Kind
== MulExpansionKind::Always
) ||
5592 isOperationLegalOrCustom(ISD::MULHU
, HiLoVT
);
5593 bool HasSMUL_LOHI
= (Kind
== MulExpansionKind::Always
) ||
5594 isOperationLegalOrCustom(ISD::SMUL_LOHI
, HiLoVT
);
5595 bool HasUMUL_LOHI
= (Kind
== MulExpansionKind::Always
) ||
5596 isOperationLegalOrCustom(ISD::UMUL_LOHI
, HiLoVT
);
5598 if (!HasMULHU
&& !HasMULHS
&& !HasUMUL_LOHI
&& !HasSMUL_LOHI
)
5601 unsigned OuterBitSize
= VT
.getScalarSizeInBits();
5602 unsigned InnerBitSize
= HiLoVT
.getScalarSizeInBits();
5603 unsigned LHSSB
= DAG
.ComputeNumSignBits(LHS
);
5604 unsigned RHSSB
= DAG
.ComputeNumSignBits(RHS
);
5606 // LL, LH, RL, and RH must be either all NULL or all set to a value.
5607 assert((LL
.getNode() && LH
.getNode() && RL
.getNode() && RH
.getNode()) ||
5608 (!LL
.getNode() && !LH
.getNode() && !RL
.getNode() && !RH
.getNode()));
5610 SDVTList VTs
= DAG
.getVTList(HiLoVT
, HiLoVT
);
5611 auto MakeMUL_LOHI
= [&](SDValue L
, SDValue R
, SDValue
&Lo
, SDValue
&Hi
,
5612 bool Signed
) -> bool {
5613 if ((Signed
&& HasSMUL_LOHI
) || (!Signed
&& HasUMUL_LOHI
)) {
5614 Lo
= DAG
.getNode(Signed
? ISD::SMUL_LOHI
: ISD::UMUL_LOHI
, dl
, VTs
, L
, R
);
5615 Hi
= SDValue(Lo
.getNode(), 1);
5618 if ((Signed
&& HasMULHS
) || (!Signed
&& HasMULHU
)) {
5619 Lo
= DAG
.getNode(ISD::MUL
, dl
, HiLoVT
, L
, R
);
5620 Hi
= DAG
.getNode(Signed
? ISD::MULHS
: ISD::MULHU
, dl
, HiLoVT
, L
, R
);
5628 if (!LL
.getNode() && !RL
.getNode() &&
5629 isOperationLegalOrCustom(ISD::TRUNCATE
, HiLoVT
)) {
5630 LL
= DAG
.getNode(ISD::TRUNCATE
, dl
, HiLoVT
, LHS
);
5631 RL
= DAG
.getNode(ISD::TRUNCATE
, dl
, HiLoVT
, RHS
);
5637 APInt HighMask
= APInt::getHighBitsSet(OuterBitSize
, InnerBitSize
);
5638 if (DAG
.MaskedValueIsZero(LHS
, HighMask
) &&
5639 DAG
.MaskedValueIsZero(RHS
, HighMask
)) {
5640 // The inputs are both zero-extended.
5641 if (MakeMUL_LOHI(LL
, RL
, Lo
, Hi
, false)) {
5642 Result
.push_back(Lo
);
5643 Result
.push_back(Hi
);
5644 if (Opcode
!= ISD::MUL
) {
5645 SDValue Zero
= DAG
.getConstant(0, dl
, HiLoVT
);
5646 Result
.push_back(Zero
);
5647 Result
.push_back(Zero
);
5653 if (!VT
.isVector() && Opcode
== ISD::MUL
&& LHSSB
> InnerBitSize
&&
5654 RHSSB
> InnerBitSize
) {
5655 // The input values are both sign-extended.
5656 // TODO non-MUL case?
5657 if (MakeMUL_LOHI(LL
, RL
, Lo
, Hi
, true)) {
5658 Result
.push_back(Lo
);
5659 Result
.push_back(Hi
);
5664 unsigned ShiftAmount
= OuterBitSize
- InnerBitSize
;
5665 EVT ShiftAmountTy
= getShiftAmountTy(VT
, DAG
.getDataLayout());
5666 if (APInt::getMaxValue(ShiftAmountTy
.getSizeInBits()).ult(ShiftAmount
)) {
5667 // FIXME getShiftAmountTy does not always return a sensible result when VT
5668 // is an illegal type, and so the type may be too small to fit the shift
5669 // amount. Override it with i32. The shift will have to be legalized.
5670 ShiftAmountTy
= MVT::i32
;
5672 SDValue Shift
= DAG
.getConstant(ShiftAmount
, dl
, ShiftAmountTy
);
5674 if (!LH
.getNode() && !RH
.getNode() &&
5675 isOperationLegalOrCustom(ISD::SRL
, VT
) &&
5676 isOperationLegalOrCustom(ISD::TRUNCATE
, HiLoVT
)) {
5677 LH
= DAG
.getNode(ISD::SRL
, dl
, VT
, LHS
, Shift
);
5678 LH
= DAG
.getNode(ISD::TRUNCATE
, dl
, HiLoVT
, LH
);
5679 RH
= DAG
.getNode(ISD::SRL
, dl
, VT
, RHS
, Shift
);
5680 RH
= DAG
.getNode(ISD::TRUNCATE
, dl
, HiLoVT
, RH
);
5686 if (!MakeMUL_LOHI(LL
, RL
, Lo
, Hi
, false))
5689 Result
.push_back(Lo
);
5691 if (Opcode
== ISD::MUL
) {
5692 RH
= DAG
.getNode(ISD::MUL
, dl
, HiLoVT
, LL
, RH
);
5693 LH
= DAG
.getNode(ISD::MUL
, dl
, HiLoVT
, LH
, RL
);
5694 Hi
= DAG
.getNode(ISD::ADD
, dl
, HiLoVT
, Hi
, RH
);
5695 Hi
= DAG
.getNode(ISD::ADD
, dl
, HiLoVT
, Hi
, LH
);
5696 Result
.push_back(Hi
);
5700 // Compute the full width result.
5701 auto Merge
= [&](SDValue Lo
, SDValue Hi
) -> SDValue
{
5702 Lo
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, Lo
);
5703 Hi
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, Hi
);
5704 Hi
= DAG
.getNode(ISD::SHL
, dl
, VT
, Hi
, Shift
);
5705 return DAG
.getNode(ISD::OR
, dl
, VT
, Lo
, Hi
);
5708 SDValue Next
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, Hi
);
5709 if (!MakeMUL_LOHI(LL
, RH
, Lo
, Hi
, false))
5712 // This is effectively the add part of a multiply-add of half-sized operands,
5713 // so it cannot overflow.
5714 Next
= DAG
.getNode(ISD::ADD
, dl
, VT
, Next
, Merge(Lo
, Hi
));
5716 if (!MakeMUL_LOHI(LH
, RL
, Lo
, Hi
, false))
5719 SDValue Zero
= DAG
.getConstant(0, dl
, HiLoVT
);
5720 EVT BoolType
= getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
5722 bool UseGlue
= (isOperationLegalOrCustom(ISD::ADDC
, VT
) &&
5723 isOperationLegalOrCustom(ISD::ADDE
, VT
));
5725 Next
= DAG
.getNode(ISD::ADDC
, dl
, DAG
.getVTList(VT
, MVT::Glue
), Next
,
5728 Next
= DAG
.getNode(ISD::ADDCARRY
, dl
, DAG
.getVTList(VT
, BoolType
), Next
,
5729 Merge(Lo
, Hi
), DAG
.getConstant(0, dl
, BoolType
));
5731 SDValue Carry
= Next
.getValue(1);
5732 Result
.push_back(DAG
.getNode(ISD::TRUNCATE
, dl
, HiLoVT
, Next
));
5733 Next
= DAG
.getNode(ISD::SRL
, dl
, VT
, Next
, Shift
);
5735 if (!MakeMUL_LOHI(LH
, RH
, Lo
, Hi
, Opcode
== ISD::SMUL_LOHI
))
5739 Hi
= DAG
.getNode(ISD::ADDE
, dl
, DAG
.getVTList(HiLoVT
, MVT::Glue
), Hi
, Zero
,
5742 Hi
= DAG
.getNode(ISD::ADDCARRY
, dl
, DAG
.getVTList(HiLoVT
, BoolType
), Hi
,
5745 Next
= DAG
.getNode(ISD::ADD
, dl
, VT
, Next
, Merge(Lo
, Hi
));
5747 if (Opcode
== ISD::SMUL_LOHI
) {
5748 SDValue NextSub
= DAG
.getNode(ISD::SUB
, dl
, VT
, Next
,
5749 DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, RL
));
5750 Next
= DAG
.getSelectCC(dl
, LH
, Zero
, NextSub
, Next
, ISD::SETLT
);
5752 NextSub
= DAG
.getNode(ISD::SUB
, dl
, VT
, Next
,
5753 DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, LL
));
5754 Next
= DAG
.getSelectCC(dl
, RH
, Zero
, NextSub
, Next
, ISD::SETLT
);
5757 Result
.push_back(DAG
.getNode(ISD::TRUNCATE
, dl
, HiLoVT
, Next
));
5758 Next
= DAG
.getNode(ISD::SRL
, dl
, VT
, Next
, Shift
);
5759 Result
.push_back(DAG
.getNode(ISD::TRUNCATE
, dl
, HiLoVT
, Next
));
5763 bool TargetLowering::expandMUL(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
, EVT HiLoVT
,
5764 SelectionDAG
&DAG
, MulExpansionKind Kind
,
5765 SDValue LL
, SDValue LH
, SDValue RL
,
5767 SmallVector
<SDValue
, 2> Result
;
5768 bool Ok
= expandMUL_LOHI(N
->getOpcode(), N
->getValueType(0), N
,
5769 N
->getOperand(0), N
->getOperand(1), Result
, HiLoVT
,
5770 DAG
, Kind
, LL
, LH
, RL
, RH
);
5772 assert(Result
.size() == 2);
5779 bool TargetLowering::expandFunnelShift(SDNode
*Node
, SDValue
&Result
,
5780 SelectionDAG
&DAG
) const {
5781 EVT VT
= Node
->getValueType(0);
5783 if (VT
.isVector() && (!isOperationLegalOrCustom(ISD::SHL
, VT
) ||
5784 !isOperationLegalOrCustom(ISD::SRL
, VT
) ||
5785 !isOperationLegalOrCustom(ISD::SUB
, VT
) ||
5786 !isOperationLegalOrCustomOrPromote(ISD::OR
, VT
)))
5789 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5790 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5791 SDValue X
= Node
->getOperand(0);
5792 SDValue Y
= Node
->getOperand(1);
5793 SDValue Z
= Node
->getOperand(2);
5795 unsigned EltSizeInBits
= VT
.getScalarSizeInBits();
5796 bool IsFSHL
= Node
->getOpcode() == ISD::FSHL
;
5797 SDLoc
DL(SDValue(Node
, 0));
5799 EVT ShVT
= Z
.getValueType();
5800 SDValue BitWidthC
= DAG
.getConstant(EltSizeInBits
, DL
, ShVT
);
5801 SDValue Zero
= DAG
.getConstant(0, DL
, ShVT
);
5804 if (isPowerOf2_32(EltSizeInBits
)) {
5805 SDValue Mask
= DAG
.getConstant(EltSizeInBits
- 1, DL
, ShVT
);
5806 ShAmt
= DAG
.getNode(ISD::AND
, DL
, ShVT
, Z
, Mask
);
5808 ShAmt
= DAG
.getNode(ISD::UREM
, DL
, ShVT
, Z
, BitWidthC
);
5811 SDValue InvShAmt
= DAG
.getNode(ISD::SUB
, DL
, ShVT
, BitWidthC
, ShAmt
);
5812 SDValue ShX
= DAG
.getNode(ISD::SHL
, DL
, VT
, X
, IsFSHL
? ShAmt
: InvShAmt
);
5813 SDValue ShY
= DAG
.getNode(ISD::SRL
, DL
, VT
, Y
, IsFSHL
? InvShAmt
: ShAmt
);
5814 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, VT
, ShX
, ShY
);
5816 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
5817 // and that is undefined. We must compare and select to avoid UB.
5818 EVT CCVT
= getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), ShVT
);
5820 // For fshl, 0-shift returns the 1st arg (X).
5821 // For fshr, 0-shift returns the 2nd arg (Y).
5822 SDValue IsZeroShift
= DAG
.getSetCC(DL
, CCVT
, ShAmt
, Zero
, ISD::SETEQ
);
5823 Result
= DAG
.getSelect(DL
, VT
, IsZeroShift
, IsFSHL
? X
: Y
, Or
);
5827 // TODO: Merge with expandFunnelShift.
5828 bool TargetLowering::expandROT(SDNode
*Node
, SDValue
&Result
,
5829 SelectionDAG
&DAG
) const {
5830 EVT VT
= Node
->getValueType(0);
5831 unsigned EltSizeInBits
= VT
.getScalarSizeInBits();
5832 bool IsLeft
= Node
->getOpcode() == ISD::ROTL
;
5833 SDValue Op0
= Node
->getOperand(0);
5834 SDValue Op1
= Node
->getOperand(1);
5835 SDLoc
DL(SDValue(Node
, 0));
5837 EVT ShVT
= Op1
.getValueType();
5838 SDValue BitWidthC
= DAG
.getConstant(EltSizeInBits
, DL
, ShVT
);
5840 // If a rotate in the other direction is legal, use it.
5841 unsigned RevRot
= IsLeft
? ISD::ROTR
: ISD::ROTL
;
5842 if (isOperationLegal(RevRot
, VT
)) {
5843 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, ShVT
, BitWidthC
, Op1
);
5844 Result
= DAG
.getNode(RevRot
, DL
, VT
, Op0
, Sub
);
5848 if (VT
.isVector() && (!isOperationLegalOrCustom(ISD::SHL
, VT
) ||
5849 !isOperationLegalOrCustom(ISD::SRL
, VT
) ||
5850 !isOperationLegalOrCustom(ISD::SUB
, VT
) ||
5851 !isOperationLegalOrCustomOrPromote(ISD::OR
, VT
) ||
5852 !isOperationLegalOrCustomOrPromote(ISD::AND
, VT
)))
5856 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
5857 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
5859 assert(isPowerOf2_32(EltSizeInBits
) && EltSizeInBits
> 1 &&
5860 "Expecting the type bitwidth to be a power of 2");
5861 unsigned ShOpc
= IsLeft
? ISD::SHL
: ISD::SRL
;
5862 unsigned HsOpc
= IsLeft
? ISD::SRL
: ISD::SHL
;
5863 SDValue BitWidthMinusOneC
= DAG
.getConstant(EltSizeInBits
- 1, DL
, ShVT
);
5864 SDValue NegOp1
= DAG
.getNode(ISD::SUB
, DL
, ShVT
, BitWidthC
, Op1
);
5865 SDValue And0
= DAG
.getNode(ISD::AND
, DL
, ShVT
, Op1
, BitWidthMinusOneC
);
5866 SDValue And1
= DAG
.getNode(ISD::AND
, DL
, ShVT
, NegOp1
, BitWidthMinusOneC
);
5867 Result
= DAG
.getNode(ISD::OR
, DL
, VT
, DAG
.getNode(ShOpc
, DL
, VT
, Op0
, And0
),
5868 DAG
.getNode(HsOpc
, DL
, VT
, Op0
, And1
));
5872 bool TargetLowering::expandFP_TO_SINT(SDNode
*Node
, SDValue
&Result
,
5873 SelectionDAG
&DAG
) const {
5874 unsigned OpNo
= Node
->isStrictFPOpcode() ? 1 : 0;
5875 SDValue Src
= Node
->getOperand(OpNo
);
5876 EVT SrcVT
= Src
.getValueType();
5877 EVT DstVT
= Node
->getValueType(0);
5878 SDLoc
dl(SDValue(Node
, 0));
5880 // FIXME: Only f32 to i64 conversions are supported.
5881 if (SrcVT
!= MVT::f32
|| DstVT
!= MVT::i64
)
5884 if (Node
->isStrictFPOpcode())
5885 // When a NaN is converted to an integer a trap is allowed. We can't
5886 // use this expansion here because it would eliminate that trap. Other
5887 // traps are also allowed and cannot be eliminated. See
5888 // IEEE 754-2008 sec 5.8.
5891 // Expand f32 -> i64 conversion
5892 // This algorithm comes from compiler-rt's implementation of fixsfdi:
5893 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
5894 unsigned SrcEltBits
= SrcVT
.getScalarSizeInBits();
5895 EVT IntVT
= SrcVT
.changeTypeToInteger();
5896 EVT IntShVT
= getShiftAmountTy(IntVT
, DAG
.getDataLayout());
5898 SDValue ExponentMask
= DAG
.getConstant(0x7F800000, dl
, IntVT
);
5899 SDValue ExponentLoBit
= DAG
.getConstant(23, dl
, IntVT
);
5900 SDValue Bias
= DAG
.getConstant(127, dl
, IntVT
);
5901 SDValue SignMask
= DAG
.getConstant(APInt::getSignMask(SrcEltBits
), dl
, IntVT
);
5902 SDValue SignLowBit
= DAG
.getConstant(SrcEltBits
- 1, dl
, IntVT
);
5903 SDValue MantissaMask
= DAG
.getConstant(0x007FFFFF, dl
, IntVT
);
5905 SDValue Bits
= DAG
.getNode(ISD::BITCAST
, dl
, IntVT
, Src
);
5907 SDValue ExponentBits
= DAG
.getNode(
5908 ISD::SRL
, dl
, IntVT
, DAG
.getNode(ISD::AND
, dl
, IntVT
, Bits
, ExponentMask
),
5909 DAG
.getZExtOrTrunc(ExponentLoBit
, dl
, IntShVT
));
5910 SDValue Exponent
= DAG
.getNode(ISD::SUB
, dl
, IntVT
, ExponentBits
, Bias
);
5912 SDValue Sign
= DAG
.getNode(ISD::SRA
, dl
, IntVT
,
5913 DAG
.getNode(ISD::AND
, dl
, IntVT
, Bits
, SignMask
),
5914 DAG
.getZExtOrTrunc(SignLowBit
, dl
, IntShVT
));
5915 Sign
= DAG
.getSExtOrTrunc(Sign
, dl
, DstVT
);
5917 SDValue R
= DAG
.getNode(ISD::OR
, dl
, IntVT
,
5918 DAG
.getNode(ISD::AND
, dl
, IntVT
, Bits
, MantissaMask
),
5919 DAG
.getConstant(0x00800000, dl
, IntVT
));
5921 R
= DAG
.getZExtOrTrunc(R
, dl
, DstVT
);
5923 R
= DAG
.getSelectCC(
5924 dl
, Exponent
, ExponentLoBit
,
5925 DAG
.getNode(ISD::SHL
, dl
, DstVT
, R
,
5927 DAG
.getNode(ISD::SUB
, dl
, IntVT
, Exponent
, ExponentLoBit
),
5929 DAG
.getNode(ISD::SRL
, dl
, DstVT
, R
,
5931 DAG
.getNode(ISD::SUB
, dl
, IntVT
, ExponentLoBit
, Exponent
),
5935 SDValue Ret
= DAG
.getNode(ISD::SUB
, dl
, DstVT
,
5936 DAG
.getNode(ISD::XOR
, dl
, DstVT
, R
, Sign
), Sign
);
5938 Result
= DAG
.getSelectCC(dl
, Exponent
, DAG
.getConstant(0, dl
, IntVT
),
5939 DAG
.getConstant(0, dl
, DstVT
), Ret
, ISD::SETLT
);
5943 bool TargetLowering::expandFP_TO_UINT(SDNode
*Node
, SDValue
&Result
,
5945 SelectionDAG
&DAG
) const {
5946 SDLoc
dl(SDValue(Node
, 0));
5947 unsigned OpNo
= Node
->isStrictFPOpcode() ? 1 : 0;
5948 SDValue Src
= Node
->getOperand(OpNo
);
5950 EVT SrcVT
= Src
.getValueType();
5951 EVT DstVT
= Node
->getValueType(0);
5953 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), SrcVT
);
5955 // Only expand vector types if we have the appropriate vector bit operations.
5956 unsigned SIntOpcode
= Node
->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT
:
5958 if (DstVT
.isVector() && (!isOperationLegalOrCustom(SIntOpcode
, DstVT
) ||
5959 !isOperationLegalOrCustomOrPromote(ISD::XOR
, SrcVT
)))
5962 // If the maximum float value is smaller then the signed integer range,
5963 // the destination signmask can't be represented by the float, so we can
5964 // just use FP_TO_SINT directly.
5965 const fltSemantics
&APFSem
= DAG
.EVTToAPFloatSemantics(SrcVT
);
5966 APFloat
APF(APFSem
, APInt::getNullValue(SrcVT
.getScalarSizeInBits()));
5967 APInt SignMask
= APInt::getSignMask(DstVT
.getScalarSizeInBits());
5968 if (APFloat::opOverflow
&
5969 APF
.convertFromAPInt(SignMask
, false, APFloat::rmNearestTiesToEven
)) {
5970 if (Node
->isStrictFPOpcode()) {
5971 Result
= DAG
.getNode(ISD::STRICT_FP_TO_SINT
, dl
, { DstVT
, MVT::Other
},
5972 { Node
->getOperand(0), Src
});
5973 Chain
= Result
.getValue(1);
5975 Result
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, DstVT
, Src
);
5979 SDValue Cst
= DAG
.getConstantFP(APF
, dl
, SrcVT
);
5980 SDValue Sel
= DAG
.getSetCC(dl
, SetCCVT
, Src
, Cst
, ISD::SETLT
);
5982 bool Strict
= Node
->isStrictFPOpcode() ||
5983 shouldUseStrictFP_TO_INT(SrcVT
, DstVT
, /*IsSigned*/ false);
5986 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
5987 // signmask then offset (the result of which should be fully representable).
5988 // Sel = Src < 0x8000000000000000
5989 // Val = select Sel, Src, Src - 0x8000000000000000
5990 // Ofs = select Sel, 0, 0x8000000000000000
5991 // Result = fp_to_sint(Val) ^ Ofs
5993 // TODO: Should any fast-math-flags be set for the FSUB?
5995 if (Node
->isStrictFPOpcode())
5996 SrcBiased
= DAG
.getNode(ISD::STRICT_FSUB
, dl
, { SrcVT
, MVT::Other
},
5997 { Node
->getOperand(0), Src
, Cst
});
5999 SrcBiased
= DAG
.getNode(ISD::FSUB
, dl
, SrcVT
, Src
, Cst
);
6000 SDValue Val
= DAG
.getSelect(dl
, SrcVT
, Sel
, Src
, SrcBiased
);
6001 SDValue Ofs
= DAG
.getSelect(dl
, DstVT
, Sel
, DAG
.getConstant(0, dl
, DstVT
),
6002 DAG
.getConstant(SignMask
, dl
, DstVT
));
6004 if (Node
->isStrictFPOpcode()) {
6005 SInt
= DAG
.getNode(ISD::STRICT_FP_TO_SINT
, dl
, { DstVT
, MVT::Other
},
6006 { SrcBiased
.getValue(1), Val
});
6007 Chain
= SInt
.getValue(1);
6009 SInt
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, DstVT
, Val
);
6010 Result
= DAG
.getNode(ISD::XOR
, dl
, DstVT
, SInt
, Ofs
);
6012 // Expand based on maximum range of FP_TO_SINT:
6013 // True = fp_to_sint(Src)
6014 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6015 // Result = select (Src < 0x8000000000000000), True, False
6017 SDValue True
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, DstVT
, Src
);
6018 // TODO: Should any fast-math-flags be set for the FSUB?
6019 SDValue False
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, DstVT
,
6020 DAG
.getNode(ISD::FSUB
, dl
, SrcVT
, Src
, Cst
));
6021 False
= DAG
.getNode(ISD::XOR
, dl
, DstVT
, False
,
6022 DAG
.getConstant(SignMask
, dl
, DstVT
));
6023 Result
= DAG
.getSelect(dl
, DstVT
, Sel
, True
, False
);
6028 bool TargetLowering::expandUINT_TO_FP(SDNode
*Node
, SDValue
&Result
,
6029 SelectionDAG
&DAG
) const {
6030 SDValue Src
= Node
->getOperand(0);
6031 EVT SrcVT
= Src
.getValueType();
6032 EVT DstVT
= Node
->getValueType(0);
6034 if (SrcVT
.getScalarType() != MVT::i64
)
6037 SDLoc
dl(SDValue(Node
, 0));
6038 EVT ShiftVT
= getShiftAmountTy(SrcVT
, DAG
.getDataLayout());
6040 if (DstVT
.getScalarType() == MVT::f32
) {
6041 // Only expand vector types if we have the appropriate vector bit
6043 if (SrcVT
.isVector() &&
6044 (!isOperationLegalOrCustom(ISD::SRL
, SrcVT
) ||
6045 !isOperationLegalOrCustom(ISD::FADD
, DstVT
) ||
6046 !isOperationLegalOrCustom(ISD::SINT_TO_FP
, SrcVT
) ||
6047 !isOperationLegalOrCustomOrPromote(ISD::OR
, SrcVT
) ||
6048 !isOperationLegalOrCustomOrPromote(ISD::AND
, SrcVT
)))
6051 // For unsigned conversions, convert them to signed conversions using the
6052 // algorithm from the x86_64 __floatundidf in compiler_rt.
6053 SDValue Fast
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, DstVT
, Src
);
6055 SDValue ShiftConst
= DAG
.getConstant(1, dl
, ShiftVT
);
6056 SDValue Shr
= DAG
.getNode(ISD::SRL
, dl
, SrcVT
, Src
, ShiftConst
);
6057 SDValue AndConst
= DAG
.getConstant(1, dl
, SrcVT
);
6058 SDValue And
= DAG
.getNode(ISD::AND
, dl
, SrcVT
, Src
, AndConst
);
6059 SDValue Or
= DAG
.getNode(ISD::OR
, dl
, SrcVT
, And
, Shr
);
6061 SDValue SignCvt
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, DstVT
, Or
);
6062 SDValue Slow
= DAG
.getNode(ISD::FADD
, dl
, DstVT
, SignCvt
, SignCvt
);
6064 // TODO: This really should be implemented using a branch rather than a
6065 // select. We happen to get lucky and machinesink does the right
6066 // thing most of the time. This would be a good candidate for a
6067 // pseudo-op, or, even better, for whole-function isel.
6069 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), SrcVT
);
6071 SDValue SignBitTest
= DAG
.getSetCC(
6072 dl
, SetCCVT
, Src
, DAG
.getConstant(0, dl
, SrcVT
), ISD::SETLT
);
6073 Result
= DAG
.getSelect(dl
, DstVT
, SignBitTest
, Slow
, Fast
);
6077 if (DstVT
.getScalarType() == MVT::f64
) {
6078 // Only expand vector types if we have the appropriate vector bit
6080 if (SrcVT
.isVector() &&
6081 (!isOperationLegalOrCustom(ISD::SRL
, SrcVT
) ||
6082 !isOperationLegalOrCustom(ISD::FADD
, DstVT
) ||
6083 !isOperationLegalOrCustom(ISD::FSUB
, DstVT
) ||
6084 !isOperationLegalOrCustomOrPromote(ISD::OR
, SrcVT
) ||
6085 !isOperationLegalOrCustomOrPromote(ISD::AND
, SrcVT
)))
6088 // Implementation of unsigned i64 to f64 following the algorithm in
6089 // __floatundidf in compiler_rt. This implementation has the advantage
6090 // of performing rounding correctly, both in the default rounding mode
6091 // and in all alternate rounding modes.
6092 SDValue TwoP52
= DAG
.getConstant(UINT64_C(0x4330000000000000), dl
, SrcVT
);
6093 SDValue TwoP84PlusTwoP52
= DAG
.getConstantFP(
6094 BitsToDouble(UINT64_C(0x4530000000100000)), dl
, DstVT
);
6095 SDValue TwoP84
= DAG
.getConstant(UINT64_C(0x4530000000000000), dl
, SrcVT
);
6096 SDValue LoMask
= DAG
.getConstant(UINT64_C(0x00000000FFFFFFFF), dl
, SrcVT
);
6097 SDValue HiShift
= DAG
.getConstant(32, dl
, ShiftVT
);
6099 SDValue Lo
= DAG
.getNode(ISD::AND
, dl
, SrcVT
, Src
, LoMask
);
6100 SDValue Hi
= DAG
.getNode(ISD::SRL
, dl
, SrcVT
, Src
, HiShift
);
6101 SDValue LoOr
= DAG
.getNode(ISD::OR
, dl
, SrcVT
, Lo
, TwoP52
);
6102 SDValue HiOr
= DAG
.getNode(ISD::OR
, dl
, SrcVT
, Hi
, TwoP84
);
6103 SDValue LoFlt
= DAG
.getBitcast(DstVT
, LoOr
);
6104 SDValue HiFlt
= DAG
.getBitcast(DstVT
, HiOr
);
6105 SDValue HiSub
= DAG
.getNode(ISD::FSUB
, dl
, DstVT
, HiFlt
, TwoP84PlusTwoP52
);
6106 Result
= DAG
.getNode(ISD::FADD
, dl
, DstVT
, LoFlt
, HiSub
);
6113 SDValue
TargetLowering::expandFMINNUM_FMAXNUM(SDNode
*Node
,
6114 SelectionDAG
&DAG
) const {
6116 unsigned NewOp
= Node
->getOpcode() == ISD::FMINNUM
?
6117 ISD::FMINNUM_IEEE
: ISD::FMAXNUM_IEEE
;
6118 EVT VT
= Node
->getValueType(0);
6119 if (isOperationLegalOrCustom(NewOp
, VT
)) {
6120 SDValue Quiet0
= Node
->getOperand(0);
6121 SDValue Quiet1
= Node
->getOperand(1);
6123 if (!Node
->getFlags().hasNoNaNs()) {
6124 // Insert canonicalizes if it's possible we need to quiet to get correct
6126 if (!DAG
.isKnownNeverSNaN(Quiet0
)) {
6127 Quiet0
= DAG
.getNode(ISD::FCANONICALIZE
, dl
, VT
, Quiet0
,
6130 if (!DAG
.isKnownNeverSNaN(Quiet1
)) {
6131 Quiet1
= DAG
.getNode(ISD::FCANONICALIZE
, dl
, VT
, Quiet1
,
6136 return DAG
.getNode(NewOp
, dl
, VT
, Quiet0
, Quiet1
, Node
->getFlags());
6139 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
6140 // instead if there are no NaNs.
6141 if (Node
->getFlags().hasNoNaNs()) {
6142 unsigned IEEE2018Op
=
6143 Node
->getOpcode() == ISD::FMINNUM
? ISD::FMINIMUM
: ISD::FMAXIMUM
;
6144 if (isOperationLegalOrCustom(IEEE2018Op
, VT
)) {
6145 return DAG
.getNode(IEEE2018Op
, dl
, VT
, Node
->getOperand(0),
6146 Node
->getOperand(1), Node
->getFlags());
6153 bool TargetLowering::expandCTPOP(SDNode
*Node
, SDValue
&Result
,
6154 SelectionDAG
&DAG
) const {
6156 EVT VT
= Node
->getValueType(0);
6157 EVT ShVT
= getShiftAmountTy(VT
, DAG
.getDataLayout());
6158 SDValue Op
= Node
->getOperand(0);
6159 unsigned Len
= VT
.getScalarSizeInBits();
6160 assert(VT
.isInteger() && "CTPOP not implemented for this type.");
6162 // TODO: Add support for irregular type lengths.
6163 if (!(Len
<= 128 && Len
% 8 == 0))
6166 // Only expand vector types if we have the appropriate vector bit operations.
6167 if (VT
.isVector() && (!isOperationLegalOrCustom(ISD::ADD
, VT
) ||
6168 !isOperationLegalOrCustom(ISD::SUB
, VT
) ||
6169 !isOperationLegalOrCustom(ISD::SRL
, VT
) ||
6170 (Len
!= 8 && !isOperationLegalOrCustom(ISD::MUL
, VT
)) ||
6171 !isOperationLegalOrCustomOrPromote(ISD::AND
, VT
)))
6174 // This is the "best" algorithm from
6175 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
6177 DAG
.getConstant(APInt::getSplat(Len
, APInt(8, 0x55)), dl
, VT
);
6179 DAG
.getConstant(APInt::getSplat(Len
, APInt(8, 0x33)), dl
, VT
);
6181 DAG
.getConstant(APInt::getSplat(Len
, APInt(8, 0x0F)), dl
, VT
);
6183 DAG
.getConstant(APInt::getSplat(Len
, APInt(8, 0x01)), dl
, VT
);
6185 // v = v - ((v >> 1) & 0x55555555...)
6186 Op
= DAG
.getNode(ISD::SUB
, dl
, VT
, Op
,
6187 DAG
.getNode(ISD::AND
, dl
, VT
,
6188 DAG
.getNode(ISD::SRL
, dl
, VT
, Op
,
6189 DAG
.getConstant(1, dl
, ShVT
)),
6191 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
6192 Op
= DAG
.getNode(ISD::ADD
, dl
, VT
, DAG
.getNode(ISD::AND
, dl
, VT
, Op
, Mask33
),
6193 DAG
.getNode(ISD::AND
, dl
, VT
,
6194 DAG
.getNode(ISD::SRL
, dl
, VT
, Op
,
6195 DAG
.getConstant(2, dl
, ShVT
)),
6197 // v = (v + (v >> 4)) & 0x0F0F0F0F...
6198 Op
= DAG
.getNode(ISD::AND
, dl
, VT
,
6199 DAG
.getNode(ISD::ADD
, dl
, VT
, Op
,
6200 DAG
.getNode(ISD::SRL
, dl
, VT
, Op
,
6201 DAG
.getConstant(4, dl
, ShVT
))),
6203 // v = (v * 0x01010101...) >> (Len - 8)
6206 DAG
.getNode(ISD::SRL
, dl
, VT
, DAG
.getNode(ISD::MUL
, dl
, VT
, Op
, Mask01
),
6207 DAG
.getConstant(Len
- 8, dl
, ShVT
));
6213 bool TargetLowering::expandCTLZ(SDNode
*Node
, SDValue
&Result
,
6214 SelectionDAG
&DAG
) const {
6216 EVT VT
= Node
->getValueType(0);
6217 EVT ShVT
= getShiftAmountTy(VT
, DAG
.getDataLayout());
6218 SDValue Op
= Node
->getOperand(0);
6219 unsigned NumBitsPerElt
= VT
.getScalarSizeInBits();
6221 // If the non-ZERO_UNDEF version is supported we can use that instead.
6222 if (Node
->getOpcode() == ISD::CTLZ_ZERO_UNDEF
&&
6223 isOperationLegalOrCustom(ISD::CTLZ
, VT
)) {
6224 Result
= DAG
.getNode(ISD::CTLZ
, dl
, VT
, Op
);
6228 // If the ZERO_UNDEF version is supported use that and handle the zero case.
6229 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF
, VT
)) {
6231 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
6232 SDValue CTLZ
= DAG
.getNode(ISD::CTLZ_ZERO_UNDEF
, dl
, VT
, Op
);
6233 SDValue Zero
= DAG
.getConstant(0, dl
, VT
);
6234 SDValue SrcIsZero
= DAG
.getSetCC(dl
, SetCCVT
, Op
, Zero
, ISD::SETEQ
);
6235 Result
= DAG
.getNode(ISD::SELECT
, dl
, VT
, SrcIsZero
,
6236 DAG
.getConstant(NumBitsPerElt
, dl
, VT
), CTLZ
);
6240 // Only expand vector types if we have the appropriate vector bit operations.
6241 if (VT
.isVector() && (!isPowerOf2_32(NumBitsPerElt
) ||
6242 !isOperationLegalOrCustom(ISD::CTPOP
, VT
) ||
6243 !isOperationLegalOrCustom(ISD::SRL
, VT
) ||
6244 !isOperationLegalOrCustomOrPromote(ISD::OR
, VT
)))
6247 // for now, we do this:
6248 // x = x | (x >> 1);
6249 // x = x | (x >> 2);
6251 // x = x | (x >>16);
6252 // x = x | (x >>32); // for 64-bit input
6253 // return popcount(~x);
6255 // Ref: "Hacker's Delight" by Henry Warren
6256 for (unsigned i
= 0; (1U << i
) <= (NumBitsPerElt
/ 2); ++i
) {
6257 SDValue Tmp
= DAG
.getConstant(1ULL << i
, dl
, ShVT
);
6258 Op
= DAG
.getNode(ISD::OR
, dl
, VT
, Op
,
6259 DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, Tmp
));
6261 Op
= DAG
.getNOT(dl
, Op
, VT
);
6262 Result
= DAG
.getNode(ISD::CTPOP
, dl
, VT
, Op
);
6266 bool TargetLowering::expandCTTZ(SDNode
*Node
, SDValue
&Result
,
6267 SelectionDAG
&DAG
) const {
6269 EVT VT
= Node
->getValueType(0);
6270 SDValue Op
= Node
->getOperand(0);
6271 unsigned NumBitsPerElt
= VT
.getScalarSizeInBits();
6273 // If the non-ZERO_UNDEF version is supported we can use that instead.
6274 if (Node
->getOpcode() == ISD::CTTZ_ZERO_UNDEF
&&
6275 isOperationLegalOrCustom(ISD::CTTZ
, VT
)) {
6276 Result
= DAG
.getNode(ISD::CTTZ
, dl
, VT
, Op
);
6280 // If the ZERO_UNDEF version is supported use that and handle the zero case.
6281 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF
, VT
)) {
6283 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
6284 SDValue CTTZ
= DAG
.getNode(ISD::CTTZ_ZERO_UNDEF
, dl
, VT
, Op
);
6285 SDValue Zero
= DAG
.getConstant(0, dl
, VT
);
6286 SDValue SrcIsZero
= DAG
.getSetCC(dl
, SetCCVT
, Op
, Zero
, ISD::SETEQ
);
6287 Result
= DAG
.getNode(ISD::SELECT
, dl
, VT
, SrcIsZero
,
6288 DAG
.getConstant(NumBitsPerElt
, dl
, VT
), CTTZ
);
6292 // Only expand vector types if we have the appropriate vector bit operations.
6293 if (VT
.isVector() && (!isPowerOf2_32(NumBitsPerElt
) ||
6294 (!isOperationLegalOrCustom(ISD::CTPOP
, VT
) &&
6295 !isOperationLegalOrCustom(ISD::CTLZ
, VT
)) ||
6296 !isOperationLegalOrCustom(ISD::SUB
, VT
) ||
6297 !isOperationLegalOrCustomOrPromote(ISD::AND
, VT
) ||
6298 !isOperationLegalOrCustomOrPromote(ISD::XOR
, VT
)))
6301 // for now, we use: { return popcount(~x & (x - 1)); }
6302 // unless the target has ctlz but not ctpop, in which case we use:
6303 // { return 32 - nlz(~x & (x-1)); }
6304 // Ref: "Hacker's Delight" by Henry Warren
6305 SDValue Tmp
= DAG
.getNode(
6306 ISD::AND
, dl
, VT
, DAG
.getNOT(dl
, Op
, VT
),
6307 DAG
.getNode(ISD::SUB
, dl
, VT
, Op
, DAG
.getConstant(1, dl
, VT
)));
6309 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
6310 if (isOperationLegal(ISD::CTLZ
, VT
) && !isOperationLegal(ISD::CTPOP
, VT
)) {
6312 DAG
.getNode(ISD::SUB
, dl
, VT
, DAG
.getConstant(NumBitsPerElt
, dl
, VT
),
6313 DAG
.getNode(ISD::CTLZ
, dl
, VT
, Tmp
));
6317 Result
= DAG
.getNode(ISD::CTPOP
, dl
, VT
, Tmp
);
6321 bool TargetLowering::expandABS(SDNode
*N
, SDValue
&Result
,
6322 SelectionDAG
&DAG
) const {
6324 EVT VT
= N
->getValueType(0);
6325 EVT ShVT
= getShiftAmountTy(VT
, DAG
.getDataLayout());
6326 SDValue Op
= N
->getOperand(0);
6328 // Only expand vector types if we have the appropriate vector operations.
6329 if (VT
.isVector() && (!isOperationLegalOrCustom(ISD::SRA
, VT
) ||
6330 !isOperationLegalOrCustom(ISD::ADD
, VT
) ||
6331 !isOperationLegalOrCustomOrPromote(ISD::XOR
, VT
)))
6335 DAG
.getNode(ISD::SRA
, dl
, VT
, Op
,
6336 DAG
.getConstant(VT
.getScalarSizeInBits() - 1, dl
, ShVT
));
6337 SDValue Add
= DAG
.getNode(ISD::ADD
, dl
, VT
, Op
, Shift
);
6338 Result
= DAG
.getNode(ISD::XOR
, dl
, VT
, Add
, Shift
);
6342 SDValue
TargetLowering::scalarizeVectorLoad(LoadSDNode
*LD
,
6343 SelectionDAG
&DAG
) const {
6345 SDValue Chain
= LD
->getChain();
6346 SDValue BasePTR
= LD
->getBasePtr();
6347 EVT SrcVT
= LD
->getMemoryVT();
6348 ISD::LoadExtType ExtType
= LD
->getExtensionType();
6350 unsigned NumElem
= SrcVT
.getVectorNumElements();
6352 EVT SrcEltVT
= SrcVT
.getScalarType();
6353 EVT DstEltVT
= LD
->getValueType(0).getScalarType();
6355 unsigned Stride
= SrcEltVT
.getSizeInBits() / 8;
6356 assert(SrcEltVT
.isByteSized());
6358 SmallVector
<SDValue
, 8> Vals
;
6359 SmallVector
<SDValue
, 8> LoadChains
;
6361 for (unsigned Idx
= 0; Idx
< NumElem
; ++Idx
) {
6362 SDValue ScalarLoad
=
6363 DAG
.getExtLoad(ExtType
, SL
, DstEltVT
, Chain
, BasePTR
,
6364 LD
->getPointerInfo().getWithOffset(Idx
* Stride
),
6365 SrcEltVT
, MinAlign(LD
->getAlignment(), Idx
* Stride
),
6366 LD
->getMemOperand()->getFlags(), LD
->getAAInfo());
6368 BasePTR
= DAG
.getObjectPtrOffset(SL
, BasePTR
, Stride
);
6370 Vals
.push_back(ScalarLoad
.getValue(0));
6371 LoadChains
.push_back(ScalarLoad
.getValue(1));
6374 SDValue NewChain
= DAG
.getNode(ISD::TokenFactor
, SL
, MVT::Other
, LoadChains
);
6375 SDValue Value
= DAG
.getBuildVector(LD
->getValueType(0), SL
, Vals
);
6377 return DAG
.getMergeValues({Value
, NewChain
}, SL
);
6380 SDValue
TargetLowering::scalarizeVectorStore(StoreSDNode
*ST
,
6381 SelectionDAG
&DAG
) const {
6384 SDValue Chain
= ST
->getChain();
6385 SDValue BasePtr
= ST
->getBasePtr();
6386 SDValue Value
= ST
->getValue();
6387 EVT StVT
= ST
->getMemoryVT();
6389 // The type of the data we want to save
6390 EVT RegVT
= Value
.getValueType();
6391 EVT RegSclVT
= RegVT
.getScalarType();
6393 // The type of data as saved in memory.
6394 EVT MemSclVT
= StVT
.getScalarType();
6396 EVT IdxVT
= getVectorIdxTy(DAG
.getDataLayout());
6397 unsigned NumElem
= StVT
.getVectorNumElements();
6399 // A vector must always be stored in memory as-is, i.e. without any padding
6400 // between the elements, since various code depend on it, e.g. in the
6401 // handling of a bitcast of a vector type to int, which may be done with a
6402 // vector store followed by an integer load. A vector that does not have
6403 // elements that are byte-sized must therefore be stored as an integer
6404 // built out of the extracted vector elements.
6405 if (!MemSclVT
.isByteSized()) {
6406 unsigned NumBits
= StVT
.getSizeInBits();
6407 EVT IntVT
= EVT::getIntegerVT(*DAG
.getContext(), NumBits
);
6409 SDValue CurrVal
= DAG
.getConstant(0, SL
, IntVT
);
6411 for (unsigned Idx
= 0; Idx
< NumElem
; ++Idx
) {
6412 SDValue Elt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, RegSclVT
, Value
,
6413 DAG
.getConstant(Idx
, SL
, IdxVT
));
6414 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SL
, MemSclVT
, Elt
);
6415 SDValue ExtElt
= DAG
.getNode(ISD::ZERO_EXTEND
, SL
, IntVT
, Trunc
);
6416 unsigned ShiftIntoIdx
=
6417 (DAG
.getDataLayout().isBigEndian() ? (NumElem
- 1) - Idx
: Idx
);
6418 SDValue ShiftAmount
=
6419 DAG
.getConstant(ShiftIntoIdx
* MemSclVT
.getSizeInBits(), SL
, IntVT
);
6420 SDValue ShiftedElt
=
6421 DAG
.getNode(ISD::SHL
, SL
, IntVT
, ExtElt
, ShiftAmount
);
6422 CurrVal
= DAG
.getNode(ISD::OR
, SL
, IntVT
, CurrVal
, ShiftedElt
);
6425 return DAG
.getStore(Chain
, SL
, CurrVal
, BasePtr
, ST
->getPointerInfo(),
6426 ST
->getAlignment(), ST
->getMemOperand()->getFlags(),
6430 // Store Stride in bytes
6431 unsigned Stride
= MemSclVT
.getSizeInBits() / 8;
6432 assert(Stride
&& "Zero stride!");
6433 // Extract each of the elements from the original vector and save them into
6434 // memory individually.
6435 SmallVector
<SDValue
, 8> Stores
;
6436 for (unsigned Idx
= 0; Idx
< NumElem
; ++Idx
) {
6437 SDValue Elt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, RegSclVT
, Value
,
6438 DAG
.getConstant(Idx
, SL
, IdxVT
));
6440 SDValue Ptr
= DAG
.getObjectPtrOffset(SL
, BasePtr
, Idx
* Stride
);
6442 // This scalar TruncStore may be illegal, but we legalize it later.
6443 SDValue Store
= DAG
.getTruncStore(
6444 Chain
, SL
, Elt
, Ptr
, ST
->getPointerInfo().getWithOffset(Idx
* Stride
),
6445 MemSclVT
, MinAlign(ST
->getAlignment(), Idx
* Stride
),
6446 ST
->getMemOperand()->getFlags(), ST
->getAAInfo());
6448 Stores
.push_back(Store
);
6451 return DAG
.getNode(ISD::TokenFactor
, SL
, MVT::Other
, Stores
);
6454 std::pair
<SDValue
, SDValue
>
6455 TargetLowering::expandUnalignedLoad(LoadSDNode
*LD
, SelectionDAG
&DAG
) const {
6456 assert(LD
->getAddressingMode() == ISD::UNINDEXED
&&
6457 "unaligned indexed loads not implemented!");
6458 SDValue Chain
= LD
->getChain();
6459 SDValue Ptr
= LD
->getBasePtr();
6460 EVT VT
= LD
->getValueType(0);
6461 EVT LoadedVT
= LD
->getMemoryVT();
6463 auto &MF
= DAG
.getMachineFunction();
6465 if (VT
.isFloatingPoint() || VT
.isVector()) {
6466 EVT intVT
= EVT::getIntegerVT(*DAG
.getContext(), LoadedVT
.getSizeInBits());
6467 if (isTypeLegal(intVT
) && isTypeLegal(LoadedVT
)) {
6468 if (!isOperationLegalOrCustom(ISD::LOAD
, intVT
) &&
6469 LoadedVT
.isVector()) {
6470 // Scalarize the load and let the individual components be handled.
6471 SDValue Scalarized
= scalarizeVectorLoad(LD
, DAG
);
6472 if (Scalarized
->getOpcode() == ISD::MERGE_VALUES
)
6473 return std::make_pair(Scalarized
.getOperand(0), Scalarized
.getOperand(1));
6474 return std::make_pair(Scalarized
.getValue(0), Scalarized
.getValue(1));
6477 // Expand to a (misaligned) integer load of the same size,
6478 // then bitconvert to floating point or vector.
6479 SDValue newLoad
= DAG
.getLoad(intVT
, dl
, Chain
, Ptr
,
6480 LD
->getMemOperand());
6481 SDValue Result
= DAG
.getNode(ISD::BITCAST
, dl
, LoadedVT
, newLoad
);
6483 Result
= DAG
.getNode(VT
.isFloatingPoint() ? ISD::FP_EXTEND
:
6484 ISD::ANY_EXTEND
, dl
, VT
, Result
);
6486 return std::make_pair(Result
, newLoad
.getValue(1));
6489 // Copy the value to a (aligned) stack slot using (unaligned) integer
6490 // loads and stores, then do a (aligned) load from the stack slot.
6491 MVT RegVT
= getRegisterType(*DAG
.getContext(), intVT
);
6492 unsigned LoadedBytes
= LoadedVT
.getStoreSize();
6493 unsigned RegBytes
= RegVT
.getSizeInBits() / 8;
6494 unsigned NumRegs
= (LoadedBytes
+ RegBytes
- 1) / RegBytes
;
6496 // Make sure the stack slot is also aligned for the register type.
6497 SDValue StackBase
= DAG
.CreateStackTemporary(LoadedVT
, RegVT
);
6498 auto FrameIndex
= cast
<FrameIndexSDNode
>(StackBase
.getNode())->getIndex();
6499 SmallVector
<SDValue
, 8> Stores
;
6500 SDValue StackPtr
= StackBase
;
6501 unsigned Offset
= 0;
6503 EVT PtrVT
= Ptr
.getValueType();
6504 EVT StackPtrVT
= StackPtr
.getValueType();
6506 SDValue PtrIncrement
= DAG
.getConstant(RegBytes
, dl
, PtrVT
);
6507 SDValue StackPtrIncrement
= DAG
.getConstant(RegBytes
, dl
, StackPtrVT
);
6509 // Do all but one copies using the full register width.
6510 for (unsigned i
= 1; i
< NumRegs
; i
++) {
6511 // Load one integer register's worth from the original location.
6512 SDValue Load
= DAG
.getLoad(
6513 RegVT
, dl
, Chain
, Ptr
, LD
->getPointerInfo().getWithOffset(Offset
),
6514 MinAlign(LD
->getAlignment(), Offset
), LD
->getMemOperand()->getFlags(),
6516 // Follow the load with a store to the stack slot. Remember the store.
6517 Stores
.push_back(DAG
.getStore(
6518 Load
.getValue(1), dl
, Load
, StackPtr
,
6519 MachinePointerInfo::getFixedStack(MF
, FrameIndex
, Offset
)));
6520 // Increment the pointers.
6523 Ptr
= DAG
.getObjectPtrOffset(dl
, Ptr
, PtrIncrement
);
6524 StackPtr
= DAG
.getObjectPtrOffset(dl
, StackPtr
, StackPtrIncrement
);
6527 // The last copy may be partial. Do an extending load.
6528 EVT MemVT
= EVT::getIntegerVT(*DAG
.getContext(),
6529 8 * (LoadedBytes
- Offset
));
6531 DAG
.getExtLoad(ISD::EXTLOAD
, dl
, RegVT
, Chain
, Ptr
,
6532 LD
->getPointerInfo().getWithOffset(Offset
), MemVT
,
6533 MinAlign(LD
->getAlignment(), Offset
),
6534 LD
->getMemOperand()->getFlags(), LD
->getAAInfo());
6535 // Follow the load with a store to the stack slot. Remember the store.
6536 // On big-endian machines this requires a truncating store to ensure
6537 // that the bits end up in the right place.
6538 Stores
.push_back(DAG
.getTruncStore(
6539 Load
.getValue(1), dl
, Load
, StackPtr
,
6540 MachinePointerInfo::getFixedStack(MF
, FrameIndex
, Offset
), MemVT
));
6542 // The order of the stores doesn't matter - say it with a TokenFactor.
6543 SDValue TF
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Stores
);
6545 // Finally, perform the original load only redirected to the stack slot.
6546 Load
= DAG
.getExtLoad(LD
->getExtensionType(), dl
, VT
, TF
, StackBase
,
6547 MachinePointerInfo::getFixedStack(MF
, FrameIndex
, 0),
6550 // Callers expect a MERGE_VALUES node.
6551 return std::make_pair(Load
, TF
);
6554 assert(LoadedVT
.isInteger() && !LoadedVT
.isVector() &&
6555 "Unaligned load of unsupported type.");
6557 // Compute the new VT that is half the size of the old one. This is an
6559 unsigned NumBits
= LoadedVT
.getSizeInBits();
6561 NewLoadedVT
= EVT::getIntegerVT(*DAG
.getContext(), NumBits
/2);
6564 unsigned Alignment
= LD
->getAlignment();
6565 unsigned IncrementSize
= NumBits
/ 8;
6566 ISD::LoadExtType HiExtType
= LD
->getExtensionType();
6568 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
6569 if (HiExtType
== ISD::NON_EXTLOAD
)
6570 HiExtType
= ISD::ZEXTLOAD
;
6572 // Load the value in two parts
6574 if (DAG
.getDataLayout().isLittleEndian()) {
6575 Lo
= DAG
.getExtLoad(ISD::ZEXTLOAD
, dl
, VT
, Chain
, Ptr
, LD
->getPointerInfo(),
6576 NewLoadedVT
, Alignment
, LD
->getMemOperand()->getFlags(),
6579 Ptr
= DAG
.getObjectPtrOffset(dl
, Ptr
, IncrementSize
);
6580 Hi
= DAG
.getExtLoad(HiExtType
, dl
, VT
, Chain
, Ptr
,
6581 LD
->getPointerInfo().getWithOffset(IncrementSize
),
6582 NewLoadedVT
, MinAlign(Alignment
, IncrementSize
),
6583 LD
->getMemOperand()->getFlags(), LD
->getAAInfo());
6585 Hi
= DAG
.getExtLoad(HiExtType
, dl
, VT
, Chain
, Ptr
, LD
->getPointerInfo(),
6586 NewLoadedVT
, Alignment
, LD
->getMemOperand()->getFlags(),
6589 Ptr
= DAG
.getObjectPtrOffset(dl
, Ptr
, IncrementSize
);
6590 Lo
= DAG
.getExtLoad(ISD::ZEXTLOAD
, dl
, VT
, Chain
, Ptr
,
6591 LD
->getPointerInfo().getWithOffset(IncrementSize
),
6592 NewLoadedVT
, MinAlign(Alignment
, IncrementSize
),
6593 LD
->getMemOperand()->getFlags(), LD
->getAAInfo());
6596 // aggregate the two parts
6597 SDValue ShiftAmount
=
6598 DAG
.getConstant(NumBits
, dl
, getShiftAmountTy(Hi
.getValueType(),
6599 DAG
.getDataLayout()));
6600 SDValue Result
= DAG
.getNode(ISD::SHL
, dl
, VT
, Hi
, ShiftAmount
);
6601 Result
= DAG
.getNode(ISD::OR
, dl
, VT
, Result
, Lo
);
6603 SDValue TF
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Lo
.getValue(1),
6606 return std::make_pair(Result
, TF
);
6609 SDValue
TargetLowering::expandUnalignedStore(StoreSDNode
*ST
,
6610 SelectionDAG
&DAG
) const {
6611 assert(ST
->getAddressingMode() == ISD::UNINDEXED
&&
6612 "unaligned indexed stores not implemented!");
6613 SDValue Chain
= ST
->getChain();
6614 SDValue Ptr
= ST
->getBasePtr();
6615 SDValue Val
= ST
->getValue();
6616 EVT VT
= Val
.getValueType();
6617 int Alignment
= ST
->getAlignment();
6618 auto &MF
= DAG
.getMachineFunction();
6619 EVT StoreMemVT
= ST
->getMemoryVT();
6622 if (StoreMemVT
.isFloatingPoint() || StoreMemVT
.isVector()) {
6623 EVT intVT
= EVT::getIntegerVT(*DAG
.getContext(), VT
.getSizeInBits());
6624 if (isTypeLegal(intVT
)) {
6625 if (!isOperationLegalOrCustom(ISD::STORE
, intVT
) &&
6626 StoreMemVT
.isVector()) {
6627 // Scalarize the store and let the individual components be handled.
6628 SDValue Result
= scalarizeVectorStore(ST
, DAG
);
6631 // Expand to a bitconvert of the value to the integer type of the
6632 // same size, then a (misaligned) int store.
6633 // FIXME: Does not handle truncating floating point stores!
6634 SDValue Result
= DAG
.getNode(ISD::BITCAST
, dl
, intVT
, Val
);
6635 Result
= DAG
.getStore(Chain
, dl
, Result
, Ptr
, ST
->getPointerInfo(),
6636 Alignment
, ST
->getMemOperand()->getFlags());
6639 // Do a (aligned) store to a stack slot, then copy from the stack slot
6640 // to the final destination using (unaligned) integer loads and stores.
6641 MVT RegVT
= getRegisterType(
6643 EVT::getIntegerVT(*DAG
.getContext(), StoreMemVT
.getSizeInBits()));
6644 EVT PtrVT
= Ptr
.getValueType();
6645 unsigned StoredBytes
= StoreMemVT
.getStoreSize();
6646 unsigned RegBytes
= RegVT
.getSizeInBits() / 8;
6647 unsigned NumRegs
= (StoredBytes
+ RegBytes
- 1) / RegBytes
;
6649 // Make sure the stack slot is also aligned for the register type.
6650 SDValue StackPtr
= DAG
.CreateStackTemporary(StoreMemVT
, RegVT
);
6651 auto FrameIndex
= cast
<FrameIndexSDNode
>(StackPtr
.getNode())->getIndex();
6653 // Perform the original store, only redirected to the stack slot.
6654 SDValue Store
= DAG
.getTruncStore(
6655 Chain
, dl
, Val
, StackPtr
,
6656 MachinePointerInfo::getFixedStack(MF
, FrameIndex
, 0), StoreMemVT
);
6658 EVT StackPtrVT
= StackPtr
.getValueType();
6660 SDValue PtrIncrement
= DAG
.getConstant(RegBytes
, dl
, PtrVT
);
6661 SDValue StackPtrIncrement
= DAG
.getConstant(RegBytes
, dl
, StackPtrVT
);
6662 SmallVector
<SDValue
, 8> Stores
;
6663 unsigned Offset
= 0;
6665 // Do all but one copies using the full register width.
6666 for (unsigned i
= 1; i
< NumRegs
; i
++) {
6667 // Load one integer register's worth from the stack slot.
6668 SDValue Load
= DAG
.getLoad(
6669 RegVT
, dl
, Store
, StackPtr
,
6670 MachinePointerInfo::getFixedStack(MF
, FrameIndex
, Offset
));
6671 // Store it to the final location. Remember the store.
6672 Stores
.push_back(DAG
.getStore(Load
.getValue(1), dl
, Load
, Ptr
,
6673 ST
->getPointerInfo().getWithOffset(Offset
),
6674 MinAlign(ST
->getAlignment(), Offset
),
6675 ST
->getMemOperand()->getFlags()));
6676 // Increment the pointers.
6678 StackPtr
= DAG
.getObjectPtrOffset(dl
, StackPtr
, StackPtrIncrement
);
6679 Ptr
= DAG
.getObjectPtrOffset(dl
, Ptr
, PtrIncrement
);
6682 // The last store may be partial. Do a truncating store. On big-endian
6683 // machines this requires an extending load from the stack slot to ensure
6684 // that the bits are in the right place.
6686 EVT::getIntegerVT(*DAG
.getContext(), 8 * (StoredBytes
- Offset
));
6688 // Load from the stack slot.
6689 SDValue Load
= DAG
.getExtLoad(
6690 ISD::EXTLOAD
, dl
, RegVT
, Store
, StackPtr
,
6691 MachinePointerInfo::getFixedStack(MF
, FrameIndex
, Offset
), LoadMemVT
);
6694 DAG
.getTruncStore(Load
.getValue(1), dl
, Load
, Ptr
,
6695 ST
->getPointerInfo().getWithOffset(Offset
), LoadMemVT
,
6696 MinAlign(ST
->getAlignment(), Offset
),
6697 ST
->getMemOperand()->getFlags(), ST
->getAAInfo()));
6698 // The order of the stores doesn't matter - say it with a TokenFactor.
6699 SDValue Result
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Stores
);
6703 assert(StoreMemVT
.isInteger() && !StoreMemVT
.isVector() &&
6704 "Unaligned store of unknown type.");
6705 // Get the half-size VT
6706 EVT NewStoredVT
= StoreMemVT
.getHalfSizedIntegerVT(*DAG
.getContext());
6707 int NumBits
= NewStoredVT
.getSizeInBits();
6708 int IncrementSize
= NumBits
/ 8;
6710 // Divide the stored value in two parts.
6711 SDValue ShiftAmount
= DAG
.getConstant(
6712 NumBits
, dl
, getShiftAmountTy(Val
.getValueType(), DAG
.getDataLayout()));
6714 SDValue Hi
= DAG
.getNode(ISD::SRL
, dl
, VT
, Val
, ShiftAmount
);
6716 // Store the two parts
6717 SDValue Store1
, Store2
;
6718 Store1
= DAG
.getTruncStore(Chain
, dl
,
6719 DAG
.getDataLayout().isLittleEndian() ? Lo
: Hi
,
6720 Ptr
, ST
->getPointerInfo(), NewStoredVT
, Alignment
,
6721 ST
->getMemOperand()->getFlags());
6723 Ptr
= DAG
.getObjectPtrOffset(dl
, Ptr
, IncrementSize
);
6724 Alignment
= MinAlign(Alignment
, IncrementSize
);
6725 Store2
= DAG
.getTruncStore(
6726 Chain
, dl
, DAG
.getDataLayout().isLittleEndian() ? Hi
: Lo
, Ptr
,
6727 ST
->getPointerInfo().getWithOffset(IncrementSize
), NewStoredVT
, Alignment
,
6728 ST
->getMemOperand()->getFlags(), ST
->getAAInfo());
6731 DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Store1
, Store2
);
6736 TargetLowering::IncrementMemoryAddress(SDValue Addr
, SDValue Mask
,
6737 const SDLoc
&DL
, EVT DataVT
,
6739 bool IsCompressedMemory
) const {
6741 EVT AddrVT
= Addr
.getValueType();
6742 EVT MaskVT
= Mask
.getValueType();
6743 assert(DataVT
.getVectorNumElements() == MaskVT
.getVectorNumElements() &&
6744 "Incompatible types of Data and Mask");
6745 if (IsCompressedMemory
) {
6746 // Incrementing the pointer according to number of '1's in the mask.
6747 EVT MaskIntVT
= EVT::getIntegerVT(*DAG
.getContext(), MaskVT
.getSizeInBits());
6748 SDValue MaskInIntReg
= DAG
.getBitcast(MaskIntVT
, Mask
);
6749 if (MaskIntVT
.getSizeInBits() < 32) {
6750 MaskInIntReg
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, MVT::i32
, MaskInIntReg
);
6751 MaskIntVT
= MVT::i32
;
6754 // Count '1's with POPCNT.
6755 Increment
= DAG
.getNode(ISD::CTPOP
, DL
, MaskIntVT
, MaskInIntReg
);
6756 Increment
= DAG
.getZExtOrTrunc(Increment
, DL
, AddrVT
);
6757 // Scale is an element size in bytes.
6758 SDValue Scale
= DAG
.getConstant(DataVT
.getScalarSizeInBits() / 8, DL
,
6760 Increment
= DAG
.getNode(ISD::MUL
, DL
, AddrVT
, Increment
, Scale
);
6762 Increment
= DAG
.getConstant(DataVT
.getStoreSize(), DL
, AddrVT
);
6764 return DAG
.getNode(ISD::ADD
, DL
, AddrVT
, Addr
, Increment
);
6767 static SDValue
clampDynamicVectorIndex(SelectionDAG
&DAG
,
6771 if (isa
<ConstantSDNode
>(Idx
))
6774 EVT IdxVT
= Idx
.getValueType();
6775 unsigned NElts
= VecVT
.getVectorNumElements();
6776 if (isPowerOf2_32(NElts
)) {
6777 APInt Imm
= APInt::getLowBitsSet(IdxVT
.getSizeInBits(),
6779 return DAG
.getNode(ISD::AND
, dl
, IdxVT
, Idx
,
6780 DAG
.getConstant(Imm
, dl
, IdxVT
));
6783 return DAG
.getNode(ISD::UMIN
, dl
, IdxVT
, Idx
,
6784 DAG
.getConstant(NElts
- 1, dl
, IdxVT
));
6787 SDValue
TargetLowering::getVectorElementPointer(SelectionDAG
&DAG
,
6788 SDValue VecPtr
, EVT VecVT
,
6789 SDValue Index
) const {
6791 // Make sure the index type is big enough to compute in.
6792 Index
= DAG
.getZExtOrTrunc(Index
, dl
, VecPtr
.getValueType());
6794 EVT EltVT
= VecVT
.getVectorElementType();
6796 // Calculate the element offset and add it to the pointer.
6797 unsigned EltSize
= EltVT
.getSizeInBits() / 8; // FIXME: should be ABI size.
6798 assert(EltSize
* 8 == EltVT
.getSizeInBits() &&
6799 "Converting bits to bytes lost precision");
6801 Index
= clampDynamicVectorIndex(DAG
, Index
, VecVT
, dl
);
6803 EVT IdxVT
= Index
.getValueType();
6805 Index
= DAG
.getNode(ISD::MUL
, dl
, IdxVT
, Index
,
6806 DAG
.getConstant(EltSize
, dl
, IdxVT
));
6807 return DAG
.getNode(ISD::ADD
, dl
, IdxVT
, VecPtr
, Index
);
6810 //===----------------------------------------------------------------------===//
6811 // Implementation of Emulated TLS Model
6812 //===----------------------------------------------------------------------===//
6814 SDValue
TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode
*GA
,
6815 SelectionDAG
&DAG
) const {
6816 // Access to address of TLS varialbe xyz is lowered to a function call:
6817 // __emutls_get_address( address of global variable named "__emutls_v.xyz" )
6818 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
6819 PointerType
*VoidPtrType
= Type::getInt8PtrTy(*DAG
.getContext());
6824 std::string NameString
= ("__emutls_v." + GA
->getGlobal()->getName()).str();
6825 Module
*VariableModule
= const_cast<Module
*>(GA
->getGlobal()->getParent());
6826 StringRef
EmuTlsVarName(NameString
);
6827 GlobalVariable
*EmuTlsVar
= VariableModule
->getNamedGlobal(EmuTlsVarName
);
6828 assert(EmuTlsVar
&& "Cannot find EmuTlsVar ");
6829 Entry
.Node
= DAG
.getGlobalAddress(EmuTlsVar
, dl
, PtrVT
);
6830 Entry
.Ty
= VoidPtrType
;
6831 Args
.push_back(Entry
);
6833 SDValue EmuTlsGetAddr
= DAG
.getExternalSymbol("__emutls_get_address", PtrVT
);
6835 TargetLowering::CallLoweringInfo
CLI(DAG
);
6836 CLI
.setDebugLoc(dl
).setChain(DAG
.getEntryNode());
6837 CLI
.setLibCallee(CallingConv::C
, VoidPtrType
, EmuTlsGetAddr
, std::move(Args
));
6838 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
6840 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
6841 // At last for X86 targets, maybe good for other targets too?
6842 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
6843 MFI
.setAdjustsStack(true); // Is this only for X86 target?
6844 MFI
.setHasCalls(true);
6846 assert((GA
->getOffset() == 0) &&
6847 "Emulated TLS must have zero offset in GlobalAddressSDNode");
6848 return CallResult
.first
;
6851 SDValue
TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op
,
6852 SelectionDAG
&DAG
) const {
6853 assert((Op
->getOpcode() == ISD::SETCC
) && "Input has to be a SETCC node.");
6856 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(2))->get();
6858 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
6859 if (C
->isNullValue() && CC
== ISD::SETEQ
) {
6860 EVT VT
= Op
.getOperand(0).getValueType();
6861 SDValue Zext
= Op
.getOperand(0);
6862 if (VT
.bitsLT(MVT::i32
)) {
6864 Zext
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, Op
.getOperand(0));
6866 unsigned Log2b
= Log2_32(VT
.getSizeInBits());
6867 SDValue Clz
= DAG
.getNode(ISD::CTLZ
, dl
, VT
, Zext
);
6868 SDValue Scc
= DAG
.getNode(ISD::SRL
, dl
, VT
, Clz
,
6869 DAG
.getConstant(Log2b
, dl
, MVT::i32
));
6870 return DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Scc
);
6876 SDValue
TargetLowering::expandAddSubSat(SDNode
*Node
, SelectionDAG
&DAG
) const {
6877 unsigned Opcode
= Node
->getOpcode();
6878 SDValue LHS
= Node
->getOperand(0);
6879 SDValue RHS
= Node
->getOperand(1);
6880 EVT VT
= LHS
.getValueType();
6883 assert(VT
== RHS
.getValueType() && "Expected operands to be the same type");
6884 assert(VT
.isInteger() && "Expected operands to be integers");
6886 // usub.sat(a, b) -> umax(a, b) - b
6887 if (Opcode
== ISD::USUBSAT
&& isOperationLegalOrCustom(ISD::UMAX
, VT
)) {
6888 SDValue Max
= DAG
.getNode(ISD::UMAX
, dl
, VT
, LHS
, RHS
);
6889 return DAG
.getNode(ISD::SUB
, dl
, VT
, Max
, RHS
);
6892 if (Opcode
== ISD::UADDSAT
&& isOperationLegalOrCustom(ISD::UMIN
, VT
)) {
6893 SDValue InvRHS
= DAG
.getNOT(dl
, RHS
, VT
);
6894 SDValue Min
= DAG
.getNode(ISD::UMIN
, dl
, VT
, LHS
, InvRHS
);
6895 return DAG
.getNode(ISD::ADD
, dl
, VT
, Min
, RHS
);
6898 unsigned OverflowOp
;
6901 OverflowOp
= ISD::SADDO
;
6904 OverflowOp
= ISD::UADDO
;
6907 OverflowOp
= ISD::SSUBO
;
6910 OverflowOp
= ISD::USUBO
;
6913 llvm_unreachable("Expected method to receive signed or unsigned saturation "
6914 "addition or subtraction node.");
6917 unsigned BitWidth
= LHS
.getScalarValueSizeInBits();
6918 EVT BoolVT
= getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
6919 SDValue Result
= DAG
.getNode(OverflowOp
, dl
, DAG
.getVTList(VT
, BoolVT
),
6921 SDValue SumDiff
= Result
.getValue(0);
6922 SDValue Overflow
= Result
.getValue(1);
6923 SDValue Zero
= DAG
.getConstant(0, dl
, VT
);
6924 SDValue AllOnes
= DAG
.getAllOnesConstant(dl
, VT
);
6926 if (Opcode
== ISD::UADDSAT
) {
6927 if (getBooleanContents(VT
) == ZeroOrNegativeOneBooleanContent
) {
6928 // (LHS + RHS) | OverflowMask
6929 SDValue OverflowMask
= DAG
.getSExtOrTrunc(Overflow
, dl
, VT
);
6930 return DAG
.getNode(ISD::OR
, dl
, VT
, SumDiff
, OverflowMask
);
6932 // Overflow ? 0xffff.... : (LHS + RHS)
6933 return DAG
.getSelect(dl
, VT
, Overflow
, AllOnes
, SumDiff
);
6934 } else if (Opcode
== ISD::USUBSAT
) {
6935 if (getBooleanContents(VT
) == ZeroOrNegativeOneBooleanContent
) {
6936 // (LHS - RHS) & ~OverflowMask
6937 SDValue OverflowMask
= DAG
.getSExtOrTrunc(Overflow
, dl
, VT
);
6938 SDValue Not
= DAG
.getNOT(dl
, OverflowMask
, VT
);
6939 return DAG
.getNode(ISD::AND
, dl
, VT
, SumDiff
, Not
);
6941 // Overflow ? 0 : (LHS - RHS)
6942 return DAG
.getSelect(dl
, VT
, Overflow
, Zero
, SumDiff
);
6944 // SatMax -> Overflow && SumDiff < 0
6945 // SatMin -> Overflow && SumDiff >= 0
6946 APInt MinVal
= APInt::getSignedMinValue(BitWidth
);
6947 APInt MaxVal
= APInt::getSignedMaxValue(BitWidth
);
6948 SDValue SatMin
= DAG
.getConstant(MinVal
, dl
, VT
);
6949 SDValue SatMax
= DAG
.getConstant(MaxVal
, dl
, VT
);
6950 SDValue SumNeg
= DAG
.getSetCC(dl
, BoolVT
, SumDiff
, Zero
, ISD::SETLT
);
6951 Result
= DAG
.getSelect(dl
, VT
, SumNeg
, SatMax
, SatMin
);
6952 return DAG
.getSelect(dl
, VT
, Overflow
, Result
, SumDiff
);
6957 TargetLowering::expandFixedPointMul(SDNode
*Node
, SelectionDAG
&DAG
) const {
6958 assert((Node
->getOpcode() == ISD::SMULFIX
||
6959 Node
->getOpcode() == ISD::UMULFIX
||
6960 Node
->getOpcode() == ISD::SMULFIXSAT
||
6961 Node
->getOpcode() == ISD::UMULFIXSAT
) &&
6962 "Expected a fixed point multiplication opcode");
6965 SDValue LHS
= Node
->getOperand(0);
6966 SDValue RHS
= Node
->getOperand(1);
6967 EVT VT
= LHS
.getValueType();
6968 unsigned Scale
= Node
->getConstantOperandVal(2);
6969 bool Saturating
= (Node
->getOpcode() == ISD::SMULFIXSAT
||
6970 Node
->getOpcode() == ISD::UMULFIXSAT
);
6971 bool Signed
= (Node
->getOpcode() == ISD::SMULFIX
||
6972 Node
->getOpcode() == ISD::SMULFIXSAT
);
6973 EVT BoolVT
= getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
6974 unsigned VTSize
= VT
.getScalarSizeInBits();
6977 // [us]mul.fix(a, b, 0) -> mul(a, b)
6979 if (isOperationLegalOrCustom(ISD::MUL
, VT
))
6980 return DAG
.getNode(ISD::MUL
, dl
, VT
, LHS
, RHS
);
6981 } else if (Signed
&& isOperationLegalOrCustom(ISD::SMULO
, VT
)) {
6983 DAG
.getNode(ISD::SMULO
, dl
, DAG
.getVTList(VT
, BoolVT
), LHS
, RHS
);
6984 SDValue Product
= Result
.getValue(0);
6985 SDValue Overflow
= Result
.getValue(1);
6986 SDValue Zero
= DAG
.getConstant(0, dl
, VT
);
6988 APInt MinVal
= APInt::getSignedMinValue(VTSize
);
6989 APInt MaxVal
= APInt::getSignedMaxValue(VTSize
);
6990 SDValue SatMin
= DAG
.getConstant(MinVal
, dl
, VT
);
6991 SDValue SatMax
= DAG
.getConstant(MaxVal
, dl
, VT
);
6992 SDValue ProdNeg
= DAG
.getSetCC(dl
, BoolVT
, Product
, Zero
, ISD::SETLT
);
6993 Result
= DAG
.getSelect(dl
, VT
, ProdNeg
, SatMax
, SatMin
);
6994 return DAG
.getSelect(dl
, VT
, Overflow
, Result
, Product
);
6995 } else if (!Signed
&& isOperationLegalOrCustom(ISD::UMULO
, VT
)) {
6997 DAG
.getNode(ISD::UMULO
, dl
, DAG
.getVTList(VT
, BoolVT
), LHS
, RHS
);
6998 SDValue Product
= Result
.getValue(0);
6999 SDValue Overflow
= Result
.getValue(1);
7001 APInt MaxVal
= APInt::getMaxValue(VTSize
);
7002 SDValue SatMax
= DAG
.getConstant(MaxVal
, dl
, VT
);
7003 return DAG
.getSelect(dl
, VT
, Overflow
, SatMax
, Product
);
7007 assert(((Signed
&& Scale
< VTSize
) || (!Signed
&& Scale
<= VTSize
)) &&
7008 "Expected scale to be less than the number of bits if signed or at "
7009 "most the number of bits if unsigned.");
7010 assert(LHS
.getValueType() == RHS
.getValueType() &&
7011 "Expected both operands to be the same type");
7013 // Get the upper and lower bits of the result.
7015 unsigned LoHiOp
= Signed
? ISD::SMUL_LOHI
: ISD::UMUL_LOHI
;
7016 unsigned HiOp
= Signed
? ISD::MULHS
: ISD::MULHU
;
7017 if (isOperationLegalOrCustom(LoHiOp
, VT
)) {
7018 SDValue Result
= DAG
.getNode(LoHiOp
, dl
, DAG
.getVTList(VT
, VT
), LHS
, RHS
);
7019 Lo
= Result
.getValue(0);
7020 Hi
= Result
.getValue(1);
7021 } else if (isOperationLegalOrCustom(HiOp
, VT
)) {
7022 Lo
= DAG
.getNode(ISD::MUL
, dl
, VT
, LHS
, RHS
);
7023 Hi
= DAG
.getNode(HiOp
, dl
, VT
, LHS
, RHS
);
7024 } else if (VT
.isVector()) {
7027 report_fatal_error("Unable to expand fixed point multiplication.");
7030 if (Scale
== VTSize
)
7031 // Result is just the top half since we'd be shifting by the width of the
7032 // operand. Overflow impossible so this works for both UMULFIX and
7036 // The result will need to be shifted right by the scale since both operands
7037 // are scaled. The result is given to us in 2 halves, so we only want part of
7038 // both in the result.
7039 EVT ShiftTy
= getShiftAmountTy(VT
, DAG
.getDataLayout());
7040 SDValue Result
= DAG
.getNode(ISD::FSHR
, dl
, VT
, Hi
, Lo
,
7041 DAG
.getConstant(Scale
, dl
, ShiftTy
));
7046 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
7047 // widened multiplication) aren't all zeroes.
7049 // Saturate to max if ((Hi >> Scale) != 0),
7050 // which is the same as if (Hi > ((1 << Scale) - 1))
7051 APInt MaxVal
= APInt::getMaxValue(VTSize
);
7052 SDValue LowMask
= DAG
.getConstant(APInt::getLowBitsSet(VTSize
, Scale
),
7054 Result
= DAG
.getSelectCC(dl
, Hi
, LowMask
,
7055 DAG
.getConstant(MaxVal
, dl
, VT
), Result
,
7061 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
7062 // widened multiplication) aren't all ones or all zeroes.
7064 SDValue SatMin
= DAG
.getConstant(APInt::getSignedMinValue(VTSize
), dl
, VT
);
7065 SDValue SatMax
= DAG
.getConstant(APInt::getSignedMaxValue(VTSize
), dl
, VT
);
7068 SDValue Sign
= DAG
.getNode(ISD::SRA
, dl
, VT
, Lo
,
7069 DAG
.getConstant(VTSize
- 1, dl
, ShiftTy
));
7070 SDValue Overflow
= DAG
.getSetCC(dl
, BoolVT
, Hi
, Sign
, ISD::SETNE
);
7071 // Saturated to SatMin if wide product is negative, and SatMax if wide
7072 // product is positive ...
7073 SDValue Zero
= DAG
.getConstant(0, dl
, VT
);
7074 SDValue ResultIfOverflow
= DAG
.getSelectCC(dl
, Hi
, Zero
, SatMin
, SatMax
,
7076 // ... but only if we overflowed.
7077 return DAG
.getSelect(dl
, VT
, Overflow
, ResultIfOverflow
, Result
);
7080 // We handled Scale==0 above so all the bits to examine is in Hi.
7082 // Saturate to max if ((Hi >> (Scale - 1)) > 0),
7083 // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
7084 SDValue LowMask
= DAG
.getConstant(APInt::getLowBitsSet(VTSize
, Scale
- 1),
7086 Result
= DAG
.getSelectCC(dl
, Hi
, LowMask
, SatMax
, Result
, ISD::SETGT
);
7087 // Saturate to min if (Hi >> (Scale - 1)) < -1),
7088 // which is the same as if (HI < (-1 << (Scale - 1))
7090 DAG
.getConstant(APInt::getHighBitsSet(VTSize
, VTSize
- Scale
+ 1),
7092 Result
= DAG
.getSelectCC(dl
, Hi
, HighMask
, SatMin
, Result
, ISD::SETLT
);
7096 void TargetLowering::expandUADDSUBO(
7097 SDNode
*Node
, SDValue
&Result
, SDValue
&Overflow
, SelectionDAG
&DAG
) const {
7099 SDValue LHS
= Node
->getOperand(0);
7100 SDValue RHS
= Node
->getOperand(1);
7101 bool IsAdd
= Node
->getOpcode() == ISD::UADDO
;
7103 // If ADD/SUBCARRY is legal, use that instead.
7104 unsigned OpcCarry
= IsAdd
? ISD::ADDCARRY
: ISD::SUBCARRY
;
7105 if (isOperationLegalOrCustom(OpcCarry
, Node
->getValueType(0))) {
7106 SDValue CarryIn
= DAG
.getConstant(0, dl
, Node
->getValueType(1));
7107 SDValue NodeCarry
= DAG
.getNode(OpcCarry
, dl
, Node
->getVTList(),
7108 { LHS
, RHS
, CarryIn
});
7109 Result
= SDValue(NodeCarry
.getNode(), 0);
7110 Overflow
= SDValue(NodeCarry
.getNode(), 1);
7114 Result
= DAG
.getNode(IsAdd
? ISD::ADD
: ISD::SUB
, dl
,
7115 LHS
.getValueType(), LHS
, RHS
);
7117 EVT ResultType
= Node
->getValueType(1);
7118 EVT SetCCType
= getSetCCResultType(
7119 DAG
.getDataLayout(), *DAG
.getContext(), Node
->getValueType(0));
7120 ISD::CondCode CC
= IsAdd
? ISD::SETULT
: ISD::SETUGT
;
7121 SDValue SetCC
= DAG
.getSetCC(dl
, SetCCType
, Result
, LHS
, CC
);
7122 Overflow
= DAG
.getBoolExtOrTrunc(SetCC
, dl
, ResultType
, ResultType
);
7125 void TargetLowering::expandSADDSUBO(
7126 SDNode
*Node
, SDValue
&Result
, SDValue
&Overflow
, SelectionDAG
&DAG
) const {
7128 SDValue LHS
= Node
->getOperand(0);
7129 SDValue RHS
= Node
->getOperand(1);
7130 bool IsAdd
= Node
->getOpcode() == ISD::SADDO
;
7132 Result
= DAG
.getNode(IsAdd
? ISD::ADD
: ISD::SUB
, dl
,
7133 LHS
.getValueType(), LHS
, RHS
);
7135 EVT ResultType
= Node
->getValueType(1);
7136 EVT OType
= getSetCCResultType(
7137 DAG
.getDataLayout(), *DAG
.getContext(), Node
->getValueType(0));
7139 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
7140 unsigned OpcSat
= IsAdd
? ISD::SADDSAT
: ISD::SSUBSAT
;
7141 if (isOperationLegalOrCustom(OpcSat
, LHS
.getValueType())) {
7142 SDValue Sat
= DAG
.getNode(OpcSat
, dl
, LHS
.getValueType(), LHS
, RHS
);
7143 SDValue SetCC
= DAG
.getSetCC(dl
, OType
, Result
, Sat
, ISD::SETNE
);
7144 Overflow
= DAG
.getBoolExtOrTrunc(SetCC
, dl
, ResultType
, ResultType
);
7148 SDValue Zero
= DAG
.getConstant(0, dl
, LHS
.getValueType());
7150 // LHSSign -> LHS >= 0
7151 // RHSSign -> RHS >= 0
7152 // SumSign -> Result >= 0
7155 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
7157 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
7158 SDValue LHSSign
= DAG
.getSetCC(dl
, OType
, LHS
, Zero
, ISD::SETGE
);
7159 SDValue RHSSign
= DAG
.getSetCC(dl
, OType
, RHS
, Zero
, ISD::SETGE
);
7160 SDValue SignsMatch
= DAG
.getSetCC(dl
, OType
, LHSSign
, RHSSign
,
7161 IsAdd
? ISD::SETEQ
: ISD::SETNE
);
7163 SDValue SumSign
= DAG
.getSetCC(dl
, OType
, Result
, Zero
, ISD::SETGE
);
7164 SDValue SumSignNE
= DAG
.getSetCC(dl
, OType
, LHSSign
, SumSign
, ISD::SETNE
);
7166 SDValue Cmp
= DAG
.getNode(ISD::AND
, dl
, OType
, SignsMatch
, SumSignNE
);
7167 Overflow
= DAG
.getBoolExtOrTrunc(Cmp
, dl
, ResultType
, ResultType
);
7170 bool TargetLowering::expandMULO(SDNode
*Node
, SDValue
&Result
,
7171 SDValue
&Overflow
, SelectionDAG
&DAG
) const {
7173 EVT VT
= Node
->getValueType(0);
7174 EVT SetCCVT
= getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
7175 SDValue LHS
= Node
->getOperand(0);
7176 SDValue RHS
= Node
->getOperand(1);
7177 bool isSigned
= Node
->getOpcode() == ISD::SMULO
;
7179 // For power-of-two multiplications we can use a simpler shift expansion.
7180 if (ConstantSDNode
*RHSC
= isConstOrConstSplat(RHS
)) {
7181 const APInt
&C
= RHSC
->getAPIntValue();
7182 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
7183 if (C
.isPowerOf2()) {
7184 // smulo(x, signed_min) is same as umulo(x, signed_min).
7185 bool UseArithShift
= isSigned
&& !C
.isMinSignedValue();
7186 EVT ShiftAmtTy
= getShiftAmountTy(VT
, DAG
.getDataLayout());
7187 SDValue ShiftAmt
= DAG
.getConstant(C
.logBase2(), dl
, ShiftAmtTy
);
7188 Result
= DAG
.getNode(ISD::SHL
, dl
, VT
, LHS
, ShiftAmt
);
7189 Overflow
= DAG
.getSetCC(dl
, SetCCVT
,
7190 DAG
.getNode(UseArithShift
? ISD::SRA
: ISD::SRL
,
7191 dl
, VT
, Result
, ShiftAmt
),
7197 EVT WideVT
= EVT::getIntegerVT(*DAG
.getContext(), VT
.getScalarSizeInBits() * 2);
7199 WideVT
= EVT::getVectorVT(*DAG
.getContext(), WideVT
,
7200 VT
.getVectorNumElements());
7204 static const unsigned Ops
[2][3] =
7205 { { ISD::MULHU
, ISD::UMUL_LOHI
, ISD::ZERO_EXTEND
},
7206 { ISD::MULHS
, ISD::SMUL_LOHI
, ISD::SIGN_EXTEND
}};
7207 if (isOperationLegalOrCustom(Ops
[isSigned
][0], VT
)) {
7208 BottomHalf
= DAG
.getNode(ISD::MUL
, dl
, VT
, LHS
, RHS
);
7209 TopHalf
= DAG
.getNode(Ops
[isSigned
][0], dl
, VT
, LHS
, RHS
);
7210 } else if (isOperationLegalOrCustom(Ops
[isSigned
][1], VT
)) {
7211 BottomHalf
= DAG
.getNode(Ops
[isSigned
][1], dl
, DAG
.getVTList(VT
, VT
), LHS
,
7213 TopHalf
= BottomHalf
.getValue(1);
7214 } else if (isTypeLegal(WideVT
)) {
7215 LHS
= DAG
.getNode(Ops
[isSigned
][2], dl
, WideVT
, LHS
);
7216 RHS
= DAG
.getNode(Ops
[isSigned
][2], dl
, WideVT
, RHS
);
7217 SDValue Mul
= DAG
.getNode(ISD::MUL
, dl
, WideVT
, LHS
, RHS
);
7218 BottomHalf
= DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Mul
);
7219 SDValue ShiftAmt
= DAG
.getConstant(VT
.getScalarSizeInBits(), dl
,
7220 getShiftAmountTy(WideVT
, DAG
.getDataLayout()));
7221 TopHalf
= DAG
.getNode(ISD::TRUNCATE
, dl
, VT
,
7222 DAG
.getNode(ISD::SRL
, dl
, WideVT
, Mul
, ShiftAmt
));
7227 // We can fall back to a libcall with an illegal type for the MUL if we
7228 // have a libcall big enough.
7229 // Also, we can fall back to a division in some cases, but that's a big
7230 // performance hit in the general case.
7231 RTLIB::Libcall LC
= RTLIB::UNKNOWN_LIBCALL
;
7232 if (WideVT
== MVT::i16
)
7233 LC
= RTLIB::MUL_I16
;
7234 else if (WideVT
== MVT::i32
)
7235 LC
= RTLIB::MUL_I32
;
7236 else if (WideVT
== MVT::i64
)
7237 LC
= RTLIB::MUL_I64
;
7238 else if (WideVT
== MVT::i128
)
7239 LC
= RTLIB::MUL_I128
;
7240 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&& "Cannot expand this operation!");
7245 // The high part is obtained by SRA'ing all but one of the bits of low
7247 unsigned LoSize
= VT
.getSizeInBits();
7249 DAG
.getNode(ISD::SRA
, dl
, VT
, LHS
,
7250 DAG
.getConstant(LoSize
- 1, dl
,
7251 getPointerTy(DAG
.getDataLayout())));
7253 DAG
.getNode(ISD::SRA
, dl
, VT
, RHS
,
7254 DAG
.getConstant(LoSize
- 1, dl
,
7255 getPointerTy(DAG
.getDataLayout())));
7257 HiLHS
= DAG
.getConstant(0, dl
, VT
);
7258 HiRHS
= DAG
.getConstant(0, dl
, VT
);
7261 // Here we're passing the 2 arguments explicitly as 4 arguments that are
7262 // pre-lowered to the correct types. This all depends upon WideVT not
7263 // being a legal type for the architecture and thus has to be split to
7266 TargetLowering::MakeLibCallOptions CallOptions
;
7267 CallOptions
.setSExt(isSigned
);
7268 CallOptions
.setIsPostTypeLegalization(true);
7269 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG
.getDataLayout())) {
7270 // Halves of WideVT are packed into registers in different order
7271 // depending on platform endianness. This is usually handled by
7272 // the C calling convention, but we can't defer to it in
7274 SDValue Args
[] = { LHS
, HiLHS
, RHS
, HiRHS
};
7275 Ret
= makeLibCall(DAG
, LC
, WideVT
, Args
, CallOptions
, dl
).first
;
7277 SDValue Args
[] = { HiLHS
, LHS
, HiRHS
, RHS
};
7278 Ret
= makeLibCall(DAG
, LC
, WideVT
, Args
, CallOptions
, dl
).first
;
7280 assert(Ret
.getOpcode() == ISD::MERGE_VALUES
&&
7281 "Ret value is a collection of constituent nodes holding result.");
7282 if (DAG
.getDataLayout().isLittleEndian()) {
7284 BottomHalf
= Ret
.getOperand(0);
7285 TopHalf
= Ret
.getOperand(1);
7287 BottomHalf
= Ret
.getOperand(1);
7288 TopHalf
= Ret
.getOperand(0);
7292 Result
= BottomHalf
;
7294 SDValue ShiftAmt
= DAG
.getConstant(
7295 VT
.getScalarSizeInBits() - 1, dl
,
7296 getShiftAmountTy(BottomHalf
.getValueType(), DAG
.getDataLayout()));
7297 SDValue Sign
= DAG
.getNode(ISD::SRA
, dl
, VT
, BottomHalf
, ShiftAmt
);
7298 Overflow
= DAG
.getSetCC(dl
, SetCCVT
, TopHalf
, Sign
, ISD::SETNE
);
7300 Overflow
= DAG
.getSetCC(dl
, SetCCVT
, TopHalf
,
7301 DAG
.getConstant(0, dl
, VT
), ISD::SETNE
);
7304 // Truncate the result if SetCC returns a larger type than needed.
7305 EVT RType
= Node
->getValueType(1);
7306 if (RType
.getSizeInBits() < Overflow
.getValueSizeInBits())
7307 Overflow
= DAG
.getNode(ISD::TRUNCATE
, dl
, RType
, Overflow
);
7309 assert(RType
.getSizeInBits() == Overflow
.getValueSizeInBits() &&
7310 "Unexpected result type for S/UMULO legalization");
7314 SDValue
TargetLowering::expandVecReduce(SDNode
*Node
, SelectionDAG
&DAG
) const {
7316 bool NoNaN
= Node
->getFlags().hasNoNaNs();
7317 unsigned BaseOpcode
= 0;
7318 switch (Node
->getOpcode()) {
7319 default: llvm_unreachable("Expected VECREDUCE opcode");
7320 case ISD::VECREDUCE_FADD
: BaseOpcode
= ISD::FADD
; break;
7321 case ISD::VECREDUCE_FMUL
: BaseOpcode
= ISD::FMUL
; break;
7322 case ISD::VECREDUCE_ADD
: BaseOpcode
= ISD::ADD
; break;
7323 case ISD::VECREDUCE_MUL
: BaseOpcode
= ISD::MUL
; break;
7324 case ISD::VECREDUCE_AND
: BaseOpcode
= ISD::AND
; break;
7325 case ISD::VECREDUCE_OR
: BaseOpcode
= ISD::OR
; break;
7326 case ISD::VECREDUCE_XOR
: BaseOpcode
= ISD::XOR
; break;
7327 case ISD::VECREDUCE_SMAX
: BaseOpcode
= ISD::SMAX
; break;
7328 case ISD::VECREDUCE_SMIN
: BaseOpcode
= ISD::SMIN
; break;
7329 case ISD::VECREDUCE_UMAX
: BaseOpcode
= ISD::UMAX
; break;
7330 case ISD::VECREDUCE_UMIN
: BaseOpcode
= ISD::UMIN
; break;
7331 case ISD::VECREDUCE_FMAX
:
7332 BaseOpcode
= NoNaN
? ISD::FMAXNUM
: ISD::FMAXIMUM
;
7334 case ISD::VECREDUCE_FMIN
:
7335 BaseOpcode
= NoNaN
? ISD::FMINNUM
: ISD::FMINIMUM
;
7339 SDValue Op
= Node
->getOperand(0);
7340 EVT VT
= Op
.getValueType();
7342 // Try to use a shuffle reduction for power of two vectors.
7343 if (VT
.isPow2VectorType()) {
7344 while (VT
.getVectorNumElements() > 1) {
7345 EVT HalfVT
= VT
.getHalfNumVectorElementsVT(*DAG
.getContext());
7346 if (!isOperationLegalOrCustom(BaseOpcode
, HalfVT
))
7350 std::tie(Lo
, Hi
) = DAG
.SplitVector(Op
, dl
);
7351 Op
= DAG
.getNode(BaseOpcode
, dl
, HalfVT
, Lo
, Hi
);
7356 EVT EltVT
= VT
.getVectorElementType();
7357 unsigned NumElts
= VT
.getVectorNumElements();
7359 SmallVector
<SDValue
, 8> Ops
;
7360 DAG
.ExtractVectorElements(Op
, Ops
, 0, NumElts
);
7362 SDValue Res
= Ops
[0];
7363 for (unsigned i
= 1; i
< NumElts
; i
++)
7364 Res
= DAG
.getNode(BaseOpcode
, dl
, EltVT
, Res
, Ops
[i
], Node
->getFlags());
7366 // Result type may be wider than element type.
7367 if (EltVT
!= Node
->getValueType(0))
7368 Res
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, Node
->getValueType(0), Res
);