[x86] fix assert with horizontal math + broadcast of vector (PR43402)
[llvm-core.git] / lib / IR / Value.cpp
blobc66cbddafd9a849958d7d21e7702766295cd3c7b
1 //===-- Value.cpp - Implement the Value class -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Value, ValueHandle, and User classes.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/IR/Value.h"
14 #include "LLVMContextImpl.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/IR/Constant.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/DerivedUser.h"
23 #include "llvm/IR/GetElementPtrTypeIterator.h"
24 #include "llvm/IR/InstrTypes.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/IR/Statepoint.h"
30 #include "llvm/IR/ValueHandle.h"
31 #include "llvm/IR/ValueSymbolTable.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/ManagedStatic.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <algorithm>
38 using namespace llvm;
40 static cl::opt<unsigned> NonGlobalValueMaxNameSize(
41 "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
42 cl::desc("Maximum size for the name of non-global values."));
44 //===----------------------------------------------------------------------===//
45 // Value Class
46 //===----------------------------------------------------------------------===//
47 static inline Type *checkType(Type *Ty) {
48 assert(Ty && "Value defined with a null type: Error!");
49 return Ty;
52 Value::Value(Type *ty, unsigned scid)
53 : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid),
54 HasValueHandle(0), SubclassOptionalData(0), SubclassData(0),
55 NumUserOperands(0), IsUsedByMD(false), HasName(false) {
56 static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)");
57 // FIXME: Why isn't this in the subclass gunk??
58 // Note, we cannot call isa<CallInst> before the CallInst has been
59 // constructed.
60 if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke ||
61 SubclassID == Instruction::CallBr)
62 assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
63 "invalid CallInst type!");
64 else if (SubclassID != BasicBlockVal &&
65 (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal))
66 assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
67 "Cannot create non-first-class values except for constants!");
68 static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned),
69 "Value too big");
72 Value::~Value() {
73 // Notify all ValueHandles (if present) that this value is going away.
74 if (HasValueHandle)
75 ValueHandleBase::ValueIsDeleted(this);
76 if (isUsedByMetadata())
77 ValueAsMetadata::handleDeletion(this);
79 #ifndef NDEBUG // Only in -g mode...
80 // Check to make sure that there are no uses of this value that are still
81 // around when the value is destroyed. If there are, then we have a dangling
82 // reference and something is wrong. This code is here to print out where
83 // the value is still being referenced.
85 if (!use_empty()) {
86 dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n";
87 for (auto *U : users())
88 dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n";
90 #endif
91 assert(use_empty() && "Uses remain when a value is destroyed!");
93 // If this value is named, destroy the name. This should not be in a symtab
94 // at this point.
95 destroyValueName();
98 void Value::deleteValue() {
99 switch (getValueID()) {
100 #define HANDLE_VALUE(Name) \
101 case Value::Name##Val: \
102 delete static_cast<Name *>(this); \
103 break;
104 #define HANDLE_MEMORY_VALUE(Name) \
105 case Value::Name##Val: \
106 static_cast<DerivedUser *>(this)->DeleteValue( \
107 static_cast<DerivedUser *>(this)); \
108 break;
109 #define HANDLE_INSTRUCTION(Name) /* nothing */
110 #include "llvm/IR/Value.def"
112 #define HANDLE_INST(N, OPC, CLASS) \
113 case Value::InstructionVal + Instruction::OPC: \
114 delete static_cast<CLASS *>(this); \
115 break;
116 #define HANDLE_USER_INST(N, OPC, CLASS)
117 #include "llvm/IR/Instruction.def"
119 default:
120 llvm_unreachable("attempting to delete unknown value kind");
124 void Value::destroyValueName() {
125 ValueName *Name = getValueName();
126 if (Name)
127 Name->Destroy();
128 setValueName(nullptr);
131 bool Value::hasNUses(unsigned N) const {
132 return hasNItems(use_begin(), use_end(), N);
135 bool Value::hasNUsesOrMore(unsigned N) const {
136 return hasNItemsOrMore(use_begin(), use_end(), N);
139 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
140 // This can be computed either by scanning the instructions in BB, or by
141 // scanning the use list of this Value. Both lists can be very long, but
142 // usually one is quite short.
144 // Scan both lists simultaneously until one is exhausted. This limits the
145 // search to the shorter list.
146 BasicBlock::const_iterator BI = BB->begin(), BE = BB->end();
147 const_user_iterator UI = user_begin(), UE = user_end();
148 for (; BI != BE && UI != UE; ++BI, ++UI) {
149 // Scan basic block: Check if this Value is used by the instruction at BI.
150 if (is_contained(BI->operands(), this))
151 return true;
152 // Scan use list: Check if the use at UI is in BB.
153 const auto *User = dyn_cast<Instruction>(*UI);
154 if (User && User->getParent() == BB)
155 return true;
157 return false;
160 unsigned Value::getNumUses() const {
161 return (unsigned)std::distance(use_begin(), use_end());
164 static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
165 ST = nullptr;
166 if (Instruction *I = dyn_cast<Instruction>(V)) {
167 if (BasicBlock *P = I->getParent())
168 if (Function *PP = P->getParent())
169 ST = PP->getValueSymbolTable();
170 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
171 if (Function *P = BB->getParent())
172 ST = P->getValueSymbolTable();
173 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
174 if (Module *P = GV->getParent())
175 ST = &P->getValueSymbolTable();
176 } else if (Argument *A = dyn_cast<Argument>(V)) {
177 if (Function *P = A->getParent())
178 ST = P->getValueSymbolTable();
179 } else {
180 assert(isa<Constant>(V) && "Unknown value type!");
181 return true; // no name is setable for this.
183 return false;
186 ValueName *Value::getValueName() const {
187 if (!HasName) return nullptr;
189 LLVMContext &Ctx = getContext();
190 auto I = Ctx.pImpl->ValueNames.find(this);
191 assert(I != Ctx.pImpl->ValueNames.end() &&
192 "No name entry found!");
194 return I->second;
197 void Value::setValueName(ValueName *VN) {
198 LLVMContext &Ctx = getContext();
200 assert(HasName == Ctx.pImpl->ValueNames.count(this) &&
201 "HasName bit out of sync!");
203 if (!VN) {
204 if (HasName)
205 Ctx.pImpl->ValueNames.erase(this);
206 HasName = false;
207 return;
210 HasName = true;
211 Ctx.pImpl->ValueNames[this] = VN;
214 StringRef Value::getName() const {
215 // Make sure the empty string is still a C string. For historical reasons,
216 // some clients want to call .data() on the result and expect it to be null
217 // terminated.
218 if (!hasName())
219 return StringRef("", 0);
220 return getValueName()->getKey();
223 void Value::setNameImpl(const Twine &NewName) {
224 // Fast-path: LLVMContext can be set to strip out non-GlobalValue names
225 if (getContext().shouldDiscardValueNames() && !isa<GlobalValue>(this))
226 return;
228 // Fast path for common IRBuilder case of setName("") when there is no name.
229 if (NewName.isTriviallyEmpty() && !hasName())
230 return;
232 SmallString<256> NameData;
233 StringRef NameRef = NewName.toStringRef(NameData);
234 assert(NameRef.find_first_of(0) == StringRef::npos &&
235 "Null bytes are not allowed in names");
237 // Name isn't changing?
238 if (getName() == NameRef)
239 return;
241 // Cap the size of non-GlobalValue names.
242 if (NameRef.size() > NonGlobalValueMaxNameSize && !isa<GlobalValue>(this))
243 NameRef =
244 NameRef.substr(0, std::max(1u, (unsigned)NonGlobalValueMaxNameSize));
246 assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
248 // Get the symbol table to update for this object.
249 ValueSymbolTable *ST;
250 if (getSymTab(this, ST))
251 return; // Cannot set a name on this value (e.g. constant).
253 if (!ST) { // No symbol table to update? Just do the change.
254 if (NameRef.empty()) {
255 // Free the name for this value.
256 destroyValueName();
257 return;
260 // NOTE: Could optimize for the case the name is shrinking to not deallocate
261 // then reallocated.
262 destroyValueName();
264 // Create the new name.
265 setValueName(ValueName::Create(NameRef));
266 getValueName()->setValue(this);
267 return;
270 // NOTE: Could optimize for the case the name is shrinking to not deallocate
271 // then reallocated.
272 if (hasName()) {
273 // Remove old name.
274 ST->removeValueName(getValueName());
275 destroyValueName();
277 if (NameRef.empty())
278 return;
281 // Name is changing to something new.
282 setValueName(ST->createValueName(NameRef, this));
285 void Value::setName(const Twine &NewName) {
286 setNameImpl(NewName);
287 if (Function *F = dyn_cast<Function>(this))
288 F->recalculateIntrinsicID();
291 void Value::takeName(Value *V) {
292 ValueSymbolTable *ST = nullptr;
293 // If this value has a name, drop it.
294 if (hasName()) {
295 // Get the symtab this is in.
296 if (getSymTab(this, ST)) {
297 // We can't set a name on this value, but we need to clear V's name if
298 // it has one.
299 if (V->hasName()) V->setName("");
300 return; // Cannot set a name on this value (e.g. constant).
303 // Remove old name.
304 if (ST)
305 ST->removeValueName(getValueName());
306 destroyValueName();
309 // Now we know that this has no name.
311 // If V has no name either, we're done.
312 if (!V->hasName()) return;
314 // Get this's symtab if we didn't before.
315 if (!ST) {
316 if (getSymTab(this, ST)) {
317 // Clear V's name.
318 V->setName("");
319 return; // Cannot set a name on this value (e.g. constant).
323 // Get V's ST, this should always succed, because V has a name.
324 ValueSymbolTable *VST;
325 bool Failure = getSymTab(V, VST);
326 assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
328 // If these values are both in the same symtab, we can do this very fast.
329 // This works even if both values have no symtab yet.
330 if (ST == VST) {
331 // Take the name!
332 setValueName(V->getValueName());
333 V->setValueName(nullptr);
334 getValueName()->setValue(this);
335 return;
338 // Otherwise, things are slightly more complex. Remove V's name from VST and
339 // then reinsert it into ST.
341 if (VST)
342 VST->removeValueName(V->getValueName());
343 setValueName(V->getValueName());
344 V->setValueName(nullptr);
345 getValueName()->setValue(this);
347 if (ST)
348 ST->reinsertValue(this);
351 void Value::assertModuleIsMaterializedImpl() const {
352 #ifndef NDEBUG
353 const GlobalValue *GV = dyn_cast<GlobalValue>(this);
354 if (!GV)
355 return;
356 const Module *M = GV->getParent();
357 if (!M)
358 return;
359 assert(M->isMaterialized());
360 #endif
363 #ifndef NDEBUG
364 static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr,
365 Constant *C) {
366 if (!Cache.insert(Expr).second)
367 return false;
369 for (auto &O : Expr->operands()) {
370 if (O == C)
371 return true;
372 auto *CE = dyn_cast<ConstantExpr>(O);
373 if (!CE)
374 continue;
375 if (contains(Cache, CE, C))
376 return true;
378 return false;
381 static bool contains(Value *Expr, Value *V) {
382 if (Expr == V)
383 return true;
385 auto *C = dyn_cast<Constant>(V);
386 if (!C)
387 return false;
389 auto *CE = dyn_cast<ConstantExpr>(Expr);
390 if (!CE)
391 return false;
393 SmallPtrSet<ConstantExpr *, 4> Cache;
394 return contains(Cache, CE, C);
396 #endif // NDEBUG
398 void Value::doRAUW(Value *New, ReplaceMetadataUses ReplaceMetaUses) {
399 assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
400 assert(!contains(New, this) &&
401 "this->replaceAllUsesWith(expr(this)) is NOT valid!");
402 assert(New->getType() == getType() &&
403 "replaceAllUses of value with new value of different type!");
405 // Notify all ValueHandles (if present) that this value is going away.
406 if (HasValueHandle)
407 ValueHandleBase::ValueIsRAUWd(this, New);
408 if (ReplaceMetaUses == ReplaceMetadataUses::Yes && isUsedByMetadata())
409 ValueAsMetadata::handleRAUW(this, New);
411 while (!materialized_use_empty()) {
412 Use &U = *UseList;
413 // Must handle Constants specially, we cannot call replaceUsesOfWith on a
414 // constant because they are uniqued.
415 if (auto *C = dyn_cast<Constant>(U.getUser())) {
416 if (!isa<GlobalValue>(C)) {
417 C->handleOperandChange(this, New);
418 continue;
422 U.set(New);
425 if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
426 BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
429 void Value::replaceAllUsesWith(Value *New) {
430 doRAUW(New, ReplaceMetadataUses::Yes);
433 void Value::replaceNonMetadataUsesWith(Value *New) {
434 doRAUW(New, ReplaceMetadataUses::No);
437 // Like replaceAllUsesWith except it does not handle constants or basic blocks.
438 // This routine leaves uses within BB.
439 void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) {
440 assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!");
441 assert(!contains(New, this) &&
442 "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!");
443 assert(New->getType() == getType() &&
444 "replaceUses of value with new value of different type!");
445 assert(BB && "Basic block that may contain a use of 'New' must be defined\n");
447 replaceUsesWithIf(New, [BB](Use &U) {
448 auto *I = dyn_cast<Instruction>(U.getUser());
449 // Don't replace if it's an instruction in the BB basic block.
450 return !I || I->getParent() != BB;
454 namespace {
455 // Various metrics for how much to strip off of pointers.
456 enum PointerStripKind {
457 PSK_ZeroIndices,
458 PSK_ZeroIndicesSameRepresentation,
459 PSK_ZeroIndicesAndInvariantGroups,
460 PSK_InBoundsConstantIndices,
461 PSK_InBounds
464 template <PointerStripKind StripKind>
465 static const Value *stripPointerCastsAndOffsets(const Value *V) {
466 if (!V->getType()->isPointerTy())
467 return V;
469 // Even though we don't look through PHI nodes, we could be called on an
470 // instruction in an unreachable block, which may be on a cycle.
471 SmallPtrSet<const Value *, 4> Visited;
473 Visited.insert(V);
474 do {
475 if (auto *GEP = dyn_cast<GEPOperator>(V)) {
476 switch (StripKind) {
477 case PSK_ZeroIndices:
478 case PSK_ZeroIndicesSameRepresentation:
479 case PSK_ZeroIndicesAndInvariantGroups:
480 if (!GEP->hasAllZeroIndices())
481 return V;
482 break;
483 case PSK_InBoundsConstantIndices:
484 if (!GEP->hasAllConstantIndices())
485 return V;
486 LLVM_FALLTHROUGH;
487 case PSK_InBounds:
488 if (!GEP->isInBounds())
489 return V;
490 break;
492 V = GEP->getPointerOperand();
493 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
494 V = cast<Operator>(V)->getOperand(0);
495 } else if (StripKind != PSK_ZeroIndicesSameRepresentation &&
496 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
497 // TODO: If we know an address space cast will not change the
498 // representation we could look through it here as well.
499 V = cast<Operator>(V)->getOperand(0);
500 } else {
501 if (const auto *Call = dyn_cast<CallBase>(V)) {
502 if (const Value *RV = Call->getReturnedArgOperand()) {
503 V = RV;
504 continue;
506 // The result of launder.invariant.group must alias it's argument,
507 // but it can't be marked with returned attribute, that's why it needs
508 // special case.
509 if (StripKind == PSK_ZeroIndicesAndInvariantGroups &&
510 (Call->getIntrinsicID() == Intrinsic::launder_invariant_group ||
511 Call->getIntrinsicID() == Intrinsic::strip_invariant_group)) {
512 V = Call->getArgOperand(0);
513 continue;
516 return V;
518 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
519 } while (Visited.insert(V).second);
521 return V;
523 } // end anonymous namespace
525 const Value *Value::stripPointerCasts() const {
526 return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this);
529 const Value *Value::stripPointerCastsSameRepresentation() const {
530 return stripPointerCastsAndOffsets<PSK_ZeroIndicesSameRepresentation>(this);
533 const Value *Value::stripInBoundsConstantOffsets() const {
534 return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this);
537 const Value *Value::stripPointerCastsAndInvariantGroups() const {
538 return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndInvariantGroups>(this);
541 const Value *
542 Value::stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset,
543 bool AllowNonInbounds) const {
544 if (!getType()->isPtrOrPtrVectorTy())
545 return this;
547 unsigned BitWidth = Offset.getBitWidth();
548 assert(BitWidth == DL.getIndexTypeSizeInBits(getType()) &&
549 "The offset bit width does not match the DL specification.");
551 // Even though we don't look through PHI nodes, we could be called on an
552 // instruction in an unreachable block, which may be on a cycle.
553 SmallPtrSet<const Value *, 4> Visited;
554 Visited.insert(this);
555 const Value *V = this;
556 do {
557 if (auto *GEP = dyn_cast<GEPOperator>(V)) {
558 // If in-bounds was requested, we do not strip non-in-bounds GEPs.
559 if (!AllowNonInbounds && !GEP->isInBounds())
560 return V;
562 // If one of the values we have visited is an addrspacecast, then
563 // the pointer type of this GEP may be different from the type
564 // of the Ptr parameter which was passed to this function. This
565 // means when we construct GEPOffset, we need to use the size
566 // of GEP's pointer type rather than the size of the original
567 // pointer type.
568 APInt GEPOffset(DL.getIndexTypeSizeInBits(V->getType()), 0);
569 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
570 return V;
572 // Stop traversal if the pointer offset wouldn't fit in the bit-width
573 // provided by the Offset argument. This can happen due to AddrSpaceCast
574 // stripping.
575 if (GEPOffset.getMinSignedBits() > BitWidth)
576 return V;
578 Offset += GEPOffset.sextOrTrunc(BitWidth);
579 V = GEP->getPointerOperand();
580 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
581 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
582 V = cast<Operator>(V)->getOperand(0);
583 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
584 if (!GA->isInterposable())
585 V = GA->getAliasee();
586 } else if (const auto *Call = dyn_cast<CallBase>(V)) {
587 if (const Value *RV = Call->getReturnedArgOperand())
588 V = RV;
590 assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!");
591 } while (Visited.insert(V).second);
593 return V;
596 const Value *Value::stripInBoundsOffsets() const {
597 return stripPointerCastsAndOffsets<PSK_InBounds>(this);
600 uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL,
601 bool &CanBeNull) const {
602 assert(getType()->isPointerTy() && "must be pointer");
604 uint64_t DerefBytes = 0;
605 CanBeNull = false;
606 if (const Argument *A = dyn_cast<Argument>(this)) {
607 DerefBytes = A->getDereferenceableBytes();
608 if (DerefBytes == 0 && (A->hasByValAttr() || A->hasStructRetAttr())) {
609 Type *PT = cast<PointerType>(A->getType())->getElementType();
610 if (PT->isSized())
611 DerefBytes = DL.getTypeStoreSize(PT);
613 if (DerefBytes == 0) {
614 DerefBytes = A->getDereferenceableOrNullBytes();
615 CanBeNull = true;
617 } else if (const auto *Call = dyn_cast<CallBase>(this)) {
618 DerefBytes = Call->getDereferenceableBytes(AttributeList::ReturnIndex);
619 if (DerefBytes == 0) {
620 DerefBytes =
621 Call->getDereferenceableOrNullBytes(AttributeList::ReturnIndex);
622 CanBeNull = true;
624 } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) {
625 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) {
626 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
627 DerefBytes = CI->getLimitedValue();
629 if (DerefBytes == 0) {
630 if (MDNode *MD =
631 LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
632 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
633 DerefBytes = CI->getLimitedValue();
635 CanBeNull = true;
637 } else if (auto *IP = dyn_cast<IntToPtrInst>(this)) {
638 if (MDNode *MD = IP->getMetadata(LLVMContext::MD_dereferenceable)) {
639 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
640 DerefBytes = CI->getLimitedValue();
642 if (DerefBytes == 0) {
643 if (MDNode *MD =
644 IP->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
645 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
646 DerefBytes = CI->getLimitedValue();
648 CanBeNull = true;
650 } else if (auto *AI = dyn_cast<AllocaInst>(this)) {
651 if (!AI->isArrayAllocation()) {
652 DerefBytes = DL.getTypeStoreSize(AI->getAllocatedType());
653 CanBeNull = false;
655 } else if (auto *GV = dyn_cast<GlobalVariable>(this)) {
656 if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) {
657 // TODO: Don't outright reject hasExternalWeakLinkage but set the
658 // CanBeNull flag.
659 DerefBytes = DL.getTypeStoreSize(GV->getValueType());
660 CanBeNull = false;
663 return DerefBytes;
666 unsigned Value::getPointerAlignment(const DataLayout &DL) const {
667 assert(getType()->isPointerTy() && "must be pointer");
669 unsigned Align = 0;
670 if (auto *GO = dyn_cast<GlobalObject>(this)) {
671 if (isa<Function>(GO)) {
672 MaybeAlign FunctionPtrAlign = DL.getFunctionPtrAlign();
673 unsigned Align = FunctionPtrAlign ? FunctionPtrAlign->value() : 0;
674 switch (DL.getFunctionPtrAlignType()) {
675 case DataLayout::FunctionPtrAlignType::Independent:
676 return Align;
677 case DataLayout::FunctionPtrAlignType::MultipleOfFunctionAlign:
678 return std::max(Align, GO->getAlignment());
681 Align = GO->getAlignment();
682 if (Align == 0) {
683 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
684 Type *ObjectType = GVar->getValueType();
685 if (ObjectType->isSized()) {
686 // If the object is defined in the current Module, we'll be giving
687 // it the preferred alignment. Otherwise, we have to assume that it
688 // may only have the minimum ABI alignment.
689 if (GVar->isStrongDefinitionForLinker())
690 Align = DL.getPreferredAlignment(GVar);
691 else
692 Align = DL.getABITypeAlignment(ObjectType);
696 } else if (const Argument *A = dyn_cast<Argument>(this)) {
697 Align = A->getParamAlignment();
699 if (!Align && A->hasStructRetAttr()) {
700 // An sret parameter has at least the ABI alignment of the return type.
701 Type *EltTy = cast<PointerType>(A->getType())->getElementType();
702 if (EltTy->isSized())
703 Align = DL.getABITypeAlignment(EltTy);
705 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) {
706 Align = AI->getAlignment();
707 if (Align == 0) {
708 Type *AllocatedType = AI->getAllocatedType();
709 if (AllocatedType->isSized())
710 Align = DL.getPrefTypeAlignment(AllocatedType);
712 } else if (const auto *Call = dyn_cast<CallBase>(this)) {
713 Align = Call->getRetAlignment();
714 if (Align == 0 && Call->getCalledFunction())
715 Align = Call->getCalledFunction()->getAttributes().getRetAlignment();
716 } else if (const LoadInst *LI = dyn_cast<LoadInst>(this))
717 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) {
718 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
719 Align = CI->getLimitedValue();
722 return Align;
725 const Value *Value::DoPHITranslation(const BasicBlock *CurBB,
726 const BasicBlock *PredBB) const {
727 auto *PN = dyn_cast<PHINode>(this);
728 if (PN && PN->getParent() == CurBB)
729 return PN->getIncomingValueForBlock(PredBB);
730 return this;
733 LLVMContext &Value::getContext() const { return VTy->getContext(); }
735 void Value::reverseUseList() {
736 if (!UseList || !UseList->Next)
737 // No need to reverse 0 or 1 uses.
738 return;
740 Use *Head = UseList;
741 Use *Current = UseList->Next;
742 Head->Next = nullptr;
743 while (Current) {
744 Use *Next = Current->Next;
745 Current->Next = Head;
746 Head->setPrev(&Current->Next);
747 Head = Current;
748 Current = Next;
750 UseList = Head;
751 Head->setPrev(&UseList);
754 bool Value::isSwiftError() const {
755 auto *Arg = dyn_cast<Argument>(this);
756 if (Arg)
757 return Arg->hasSwiftErrorAttr();
758 auto *Alloca = dyn_cast<AllocaInst>(this);
759 if (!Alloca)
760 return false;
761 return Alloca->isSwiftError();
764 //===----------------------------------------------------------------------===//
765 // ValueHandleBase Class
766 //===----------------------------------------------------------------------===//
768 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
769 assert(List && "Handle list is null?");
771 // Splice ourselves into the list.
772 Next = *List;
773 *List = this;
774 setPrevPtr(List);
775 if (Next) {
776 Next->setPrevPtr(&Next);
777 assert(getValPtr() == Next->getValPtr() && "Added to wrong list?");
781 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
782 assert(List && "Must insert after existing node");
784 Next = List->Next;
785 setPrevPtr(&List->Next);
786 List->Next = this;
787 if (Next)
788 Next->setPrevPtr(&Next);
791 void ValueHandleBase::AddToUseList() {
792 assert(getValPtr() && "Null pointer doesn't have a use list!");
794 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
796 if (getValPtr()->HasValueHandle) {
797 // If this value already has a ValueHandle, then it must be in the
798 // ValueHandles map already.
799 ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()];
800 assert(Entry && "Value doesn't have any handles?");
801 AddToExistingUseList(&Entry);
802 return;
805 // Ok, it doesn't have any handles yet, so we must insert it into the
806 // DenseMap. However, doing this insertion could cause the DenseMap to
807 // reallocate itself, which would invalidate all of the PrevP pointers that
808 // point into the old table. Handle this by checking for reallocation and
809 // updating the stale pointers only if needed.
810 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
811 const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
813 ValueHandleBase *&Entry = Handles[getValPtr()];
814 assert(!Entry && "Value really did already have handles?");
815 AddToExistingUseList(&Entry);
816 getValPtr()->HasValueHandle = true;
818 // If reallocation didn't happen or if this was the first insertion, don't
819 // walk the table.
820 if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
821 Handles.size() == 1) {
822 return;
825 // Okay, reallocation did happen. Fix the Prev Pointers.
826 for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
827 E = Handles.end(); I != E; ++I) {
828 assert(I->second && I->first == I->second->getValPtr() &&
829 "List invariant broken!");
830 I->second->setPrevPtr(&I->second);
834 void ValueHandleBase::RemoveFromUseList() {
835 assert(getValPtr() && getValPtr()->HasValueHandle &&
836 "Pointer doesn't have a use list!");
838 // Unlink this from its use list.
839 ValueHandleBase **PrevPtr = getPrevPtr();
840 assert(*PrevPtr == this && "List invariant broken");
842 *PrevPtr = Next;
843 if (Next) {
844 assert(Next->getPrevPtr() == &Next && "List invariant broken");
845 Next->setPrevPtr(PrevPtr);
846 return;
849 // If the Next pointer was null, then it is possible that this was the last
850 // ValueHandle watching VP. If so, delete its entry from the ValueHandles
851 // map.
852 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
853 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
854 if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
855 Handles.erase(getValPtr());
856 getValPtr()->HasValueHandle = false;
860 void ValueHandleBase::ValueIsDeleted(Value *V) {
861 assert(V->HasValueHandle && "Should only be called if ValueHandles present");
863 // Get the linked list base, which is guaranteed to exist since the
864 // HasValueHandle flag is set.
865 LLVMContextImpl *pImpl = V->getContext().pImpl;
866 ValueHandleBase *Entry = pImpl->ValueHandles[V];
867 assert(Entry && "Value bit set but no entries exist");
869 // We use a local ValueHandleBase as an iterator so that ValueHandles can add
870 // and remove themselves from the list without breaking our iteration. This
871 // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
872 // Note that we deliberately do not the support the case when dropping a value
873 // handle results in a new value handle being permanently added to the list
874 // (as might occur in theory for CallbackVH's): the new value handle will not
875 // be processed and the checking code will mete out righteous punishment if
876 // the handle is still present once we have finished processing all the other
877 // value handles (it is fine to momentarily add then remove a value handle).
878 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
879 Iterator.RemoveFromUseList();
880 Iterator.AddToExistingUseListAfter(Entry);
881 assert(Entry->Next == &Iterator && "Loop invariant broken.");
883 switch (Entry->getKind()) {
884 case Assert:
885 break;
886 case Weak:
887 case WeakTracking:
888 // WeakTracking and Weak just go to null, which unlinks them
889 // from the list.
890 Entry->operator=(nullptr);
891 break;
892 case Callback:
893 // Forward to the subclass's implementation.
894 static_cast<CallbackVH*>(Entry)->deleted();
895 break;
899 // All callbacks, weak references, and assertingVHs should be dropped by now.
900 if (V->HasValueHandle) {
901 #ifndef NDEBUG // Only in +Asserts mode...
902 dbgs() << "While deleting: " << *V->getType() << " %" << V->getName()
903 << "\n";
904 if (pImpl->ValueHandles[V]->getKind() == Assert)
905 llvm_unreachable("An asserting value handle still pointed to this"
906 " value!");
908 #endif
909 llvm_unreachable("All references to V were not removed?");
913 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
914 assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
915 assert(Old != New && "Changing value into itself!");
916 assert(Old->getType() == New->getType() &&
917 "replaceAllUses of value with new value of different type!");
919 // Get the linked list base, which is guaranteed to exist since the
920 // HasValueHandle flag is set.
921 LLVMContextImpl *pImpl = Old->getContext().pImpl;
922 ValueHandleBase *Entry = pImpl->ValueHandles[Old];
924 assert(Entry && "Value bit set but no entries exist");
926 // We use a local ValueHandleBase as an iterator so that
927 // ValueHandles can add and remove themselves from the list without
928 // breaking our iteration. This is not really an AssertingVH; we
929 // just have to give ValueHandleBase some kind.
930 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
931 Iterator.RemoveFromUseList();
932 Iterator.AddToExistingUseListAfter(Entry);
933 assert(Entry->Next == &Iterator && "Loop invariant broken.");
935 switch (Entry->getKind()) {
936 case Assert:
937 case Weak:
938 // Asserting and Weak handles do not follow RAUW implicitly.
939 break;
940 case WeakTracking:
941 // Weak goes to the new value, which will unlink it from Old's list.
942 Entry->operator=(New);
943 break;
944 case Callback:
945 // Forward to the subclass's implementation.
946 static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
947 break;
951 #ifndef NDEBUG
952 // If any new weak value handles were added while processing the
953 // list, then complain about it now.
954 if (Old->HasValueHandle)
955 for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
956 switch (Entry->getKind()) {
957 case WeakTracking:
958 dbgs() << "After RAUW from " << *Old->getType() << " %"
959 << Old->getName() << " to " << *New->getType() << " %"
960 << New->getName() << "\n";
961 llvm_unreachable(
962 "A weak tracking value handle still pointed to the old value!\n");
963 default:
964 break;
966 #endif
969 // Pin the vtable to this file.
970 void CallbackVH::anchor() {}