[x86] fix assert with horizontal math + broadcast of vector (PR43402)
[llvm-core.git] / lib / Target / AMDGPU / AMDGPUAtomicOptimizer.cpp
blobba8343142c63c64385c174317bedb372bf106e2a
1 //===-- AMDGPUAtomicOptimizer.cpp -----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This pass optimizes atomic operations by using a single lane of a wavefront
11 /// to perform the atomic operation, thus reducing contention on that memory
12 /// location.
14 //===----------------------------------------------------------------------===//
16 #include "AMDGPU.h"
17 #include "AMDGPUSubtarget.h"
18 #include "SIDefines.h"
19 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
20 #include "llvm/CodeGen/TargetPassConfig.h"
21 #include "llvm/IR/IRBuilder.h"
22 #include "llvm/IR/InstVisitor.h"
23 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
25 #define DEBUG_TYPE "amdgpu-atomic-optimizer"
27 using namespace llvm;
28 using namespace llvm::AMDGPU;
30 namespace {
32 struct ReplacementInfo {
33 Instruction *I;
34 AtomicRMWInst::BinOp Op;
35 unsigned ValIdx;
36 bool ValDivergent;
39 class AMDGPUAtomicOptimizer : public FunctionPass,
40 public InstVisitor<AMDGPUAtomicOptimizer> {
41 private:
42 SmallVector<ReplacementInfo, 8> ToReplace;
43 const LegacyDivergenceAnalysis *DA;
44 const DataLayout *DL;
45 DominatorTree *DT;
46 const GCNSubtarget *ST;
47 bool IsPixelShader;
49 Value *buildScan(IRBuilder<> &B, AtomicRMWInst::BinOp Op, Value *V,
50 Value *const Identity) const;
51 Value *buildShiftRight(IRBuilder<> &B, Value *V, Value *const Identity) const;
52 void optimizeAtomic(Instruction &I, AtomicRMWInst::BinOp Op, unsigned ValIdx,
53 bool ValDivergent) const;
55 public:
56 static char ID;
58 AMDGPUAtomicOptimizer() : FunctionPass(ID) {}
60 bool runOnFunction(Function &F) override;
62 void getAnalysisUsage(AnalysisUsage &AU) const override {
63 AU.addPreserved<DominatorTreeWrapperPass>();
64 AU.addRequired<LegacyDivergenceAnalysis>();
65 AU.addRequired<TargetPassConfig>();
68 void visitAtomicRMWInst(AtomicRMWInst &I);
69 void visitIntrinsicInst(IntrinsicInst &I);
72 } // namespace
74 char AMDGPUAtomicOptimizer::ID = 0;
76 char &llvm::AMDGPUAtomicOptimizerID = AMDGPUAtomicOptimizer::ID;
78 bool AMDGPUAtomicOptimizer::runOnFunction(Function &F) {
79 if (skipFunction(F)) {
80 return false;
83 DA = &getAnalysis<LegacyDivergenceAnalysis>();
84 DL = &F.getParent()->getDataLayout();
85 DominatorTreeWrapperPass *const DTW =
86 getAnalysisIfAvailable<DominatorTreeWrapperPass>();
87 DT = DTW ? &DTW->getDomTree() : nullptr;
88 const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>();
89 const TargetMachine &TM = TPC.getTM<TargetMachine>();
90 ST = &TM.getSubtarget<GCNSubtarget>(F);
91 IsPixelShader = F.getCallingConv() == CallingConv::AMDGPU_PS;
93 visit(F);
95 const bool Changed = !ToReplace.empty();
97 for (ReplacementInfo &Info : ToReplace) {
98 optimizeAtomic(*Info.I, Info.Op, Info.ValIdx, Info.ValDivergent);
101 ToReplace.clear();
103 return Changed;
106 void AMDGPUAtomicOptimizer::visitAtomicRMWInst(AtomicRMWInst &I) {
107 // Early exit for unhandled address space atomic instructions.
108 switch (I.getPointerAddressSpace()) {
109 default:
110 return;
111 case AMDGPUAS::GLOBAL_ADDRESS:
112 case AMDGPUAS::LOCAL_ADDRESS:
113 break;
116 AtomicRMWInst::BinOp Op = I.getOperation();
118 switch (Op) {
119 default:
120 return;
121 case AtomicRMWInst::Add:
122 case AtomicRMWInst::Sub:
123 case AtomicRMWInst::And:
124 case AtomicRMWInst::Or:
125 case AtomicRMWInst::Xor:
126 case AtomicRMWInst::Max:
127 case AtomicRMWInst::Min:
128 case AtomicRMWInst::UMax:
129 case AtomicRMWInst::UMin:
130 break;
133 const unsigned PtrIdx = 0;
134 const unsigned ValIdx = 1;
136 // If the pointer operand is divergent, then each lane is doing an atomic
137 // operation on a different address, and we cannot optimize that.
138 if (DA->isDivergentUse(&I.getOperandUse(PtrIdx))) {
139 return;
142 const bool ValDivergent = DA->isDivergentUse(&I.getOperandUse(ValIdx));
144 // If the value operand is divergent, each lane is contributing a different
145 // value to the atomic calculation. We can only optimize divergent values if
146 // we have DPP available on our subtarget, and the atomic operation is 32
147 // bits.
148 if (ValDivergent &&
149 (!ST->hasDPP() || DL->getTypeSizeInBits(I.getType()) != 32)) {
150 return;
153 // If we get here, we can optimize the atomic using a single wavefront-wide
154 // atomic operation to do the calculation for the entire wavefront, so
155 // remember the instruction so we can come back to it.
156 const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
158 ToReplace.push_back(Info);
161 void AMDGPUAtomicOptimizer::visitIntrinsicInst(IntrinsicInst &I) {
162 AtomicRMWInst::BinOp Op;
164 switch (I.getIntrinsicID()) {
165 default:
166 return;
167 case Intrinsic::amdgcn_buffer_atomic_add:
168 case Intrinsic::amdgcn_struct_buffer_atomic_add:
169 case Intrinsic::amdgcn_raw_buffer_atomic_add:
170 Op = AtomicRMWInst::Add;
171 break;
172 case Intrinsic::amdgcn_buffer_atomic_sub:
173 case Intrinsic::amdgcn_struct_buffer_atomic_sub:
174 case Intrinsic::amdgcn_raw_buffer_atomic_sub:
175 Op = AtomicRMWInst::Sub;
176 break;
177 case Intrinsic::amdgcn_buffer_atomic_and:
178 case Intrinsic::amdgcn_struct_buffer_atomic_and:
179 case Intrinsic::amdgcn_raw_buffer_atomic_and:
180 Op = AtomicRMWInst::And;
181 break;
182 case Intrinsic::amdgcn_buffer_atomic_or:
183 case Intrinsic::amdgcn_struct_buffer_atomic_or:
184 case Intrinsic::amdgcn_raw_buffer_atomic_or:
185 Op = AtomicRMWInst::Or;
186 break;
187 case Intrinsic::amdgcn_buffer_atomic_xor:
188 case Intrinsic::amdgcn_struct_buffer_atomic_xor:
189 case Intrinsic::amdgcn_raw_buffer_atomic_xor:
190 Op = AtomicRMWInst::Xor;
191 break;
192 case Intrinsic::amdgcn_buffer_atomic_smin:
193 case Intrinsic::amdgcn_struct_buffer_atomic_smin:
194 case Intrinsic::amdgcn_raw_buffer_atomic_smin:
195 Op = AtomicRMWInst::Min;
196 break;
197 case Intrinsic::amdgcn_buffer_atomic_umin:
198 case Intrinsic::amdgcn_struct_buffer_atomic_umin:
199 case Intrinsic::amdgcn_raw_buffer_atomic_umin:
200 Op = AtomicRMWInst::UMin;
201 break;
202 case Intrinsic::amdgcn_buffer_atomic_smax:
203 case Intrinsic::amdgcn_struct_buffer_atomic_smax:
204 case Intrinsic::amdgcn_raw_buffer_atomic_smax:
205 Op = AtomicRMWInst::Max;
206 break;
207 case Intrinsic::amdgcn_buffer_atomic_umax:
208 case Intrinsic::amdgcn_struct_buffer_atomic_umax:
209 case Intrinsic::amdgcn_raw_buffer_atomic_umax:
210 Op = AtomicRMWInst::UMax;
211 break;
214 const unsigned ValIdx = 0;
216 const bool ValDivergent = DA->isDivergentUse(&I.getOperandUse(ValIdx));
218 // If the value operand is divergent, each lane is contributing a different
219 // value to the atomic calculation. We can only optimize divergent values if
220 // we have DPP available on our subtarget, and the atomic operation is 32
221 // bits.
222 if (ValDivergent &&
223 (!ST->hasDPP() || DL->getTypeSizeInBits(I.getType()) != 32)) {
224 return;
227 // If any of the other arguments to the intrinsic are divergent, we can't
228 // optimize the operation.
229 for (unsigned Idx = 1; Idx < I.getNumOperands(); Idx++) {
230 if (DA->isDivergentUse(&I.getOperandUse(Idx))) {
231 return;
235 // If we get here, we can optimize the atomic using a single wavefront-wide
236 // atomic operation to do the calculation for the entire wavefront, so
237 // remember the instruction so we can come back to it.
238 const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
240 ToReplace.push_back(Info);
243 // Use the builder to create the non-atomic counterpart of the specified
244 // atomicrmw binary op.
245 static Value *buildNonAtomicBinOp(IRBuilder<> &B, AtomicRMWInst::BinOp Op,
246 Value *LHS, Value *RHS) {
247 CmpInst::Predicate Pred;
249 switch (Op) {
250 default:
251 llvm_unreachable("Unhandled atomic op");
252 case AtomicRMWInst::Add:
253 return B.CreateBinOp(Instruction::Add, LHS, RHS);
254 case AtomicRMWInst::Sub:
255 return B.CreateBinOp(Instruction::Sub, LHS, RHS);
256 case AtomicRMWInst::And:
257 return B.CreateBinOp(Instruction::And, LHS, RHS);
258 case AtomicRMWInst::Or:
259 return B.CreateBinOp(Instruction::Or, LHS, RHS);
260 case AtomicRMWInst::Xor:
261 return B.CreateBinOp(Instruction::Xor, LHS, RHS);
263 case AtomicRMWInst::Max:
264 Pred = CmpInst::ICMP_SGT;
265 break;
266 case AtomicRMWInst::Min:
267 Pred = CmpInst::ICMP_SLT;
268 break;
269 case AtomicRMWInst::UMax:
270 Pred = CmpInst::ICMP_UGT;
271 break;
272 case AtomicRMWInst::UMin:
273 Pred = CmpInst::ICMP_ULT;
274 break;
276 Value *Cond = B.CreateICmp(Pred, LHS, RHS);
277 return B.CreateSelect(Cond, LHS, RHS);
280 // Use the builder to create an inclusive scan of V across the wavefront, with
281 // all lanes active.
282 Value *AMDGPUAtomicOptimizer::buildScan(IRBuilder<> &B, AtomicRMWInst::BinOp Op,
283 Value *V, Value *const Identity) const {
284 Type *const Ty = V->getType();
285 Module *M = B.GetInsertBlock()->getModule();
286 Function *UpdateDPP =
287 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_update_dpp, Ty);
288 Function *PermLaneX16 =
289 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_permlanex16, {});
290 Function *ReadLane =
291 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_readlane, {});
293 for (unsigned Idx = 0; Idx < 4; Idx++) {
294 V = buildNonAtomicBinOp(
295 B, Op, V,
296 B.CreateCall(UpdateDPP,
297 {Identity, V, B.getInt32(DPP::ROW_SHR0 | 1 << Idx),
298 B.getInt32(0xf), B.getInt32(0xf), B.getFalse()}));
300 if (ST->hasDPPBroadcasts()) {
301 // GFX9 has DPP row broadcast operations.
302 V = buildNonAtomicBinOp(
303 B, Op, V,
304 B.CreateCall(UpdateDPP,
305 {Identity, V, B.getInt32(DPP::BCAST15), B.getInt32(0xa),
306 B.getInt32(0xf), B.getFalse()}));
307 V = buildNonAtomicBinOp(
308 B, Op, V,
309 B.CreateCall(UpdateDPP,
310 {Identity, V, B.getInt32(DPP::BCAST31), B.getInt32(0xc),
311 B.getInt32(0xf), B.getFalse()}));
312 } else {
313 // On GFX10 all DPP operations are confined to a single row. To get cross-
314 // row operations we have to use permlane or readlane.
316 // Combine lane 15 into lanes 16..31 (and, for wave 64, lane 47 into lanes
317 // 48..63).
318 Value *const PermX =
319 B.CreateCall(PermLaneX16, {V, V, B.getInt32(-1), B.getInt32(-1),
320 B.getFalse(), B.getFalse()});
321 V = buildNonAtomicBinOp(
322 B, Op, V,
323 B.CreateCall(UpdateDPP,
324 {Identity, PermX, B.getInt32(DPP::QUAD_PERM_ID),
325 B.getInt32(0xa), B.getInt32(0xf), B.getFalse()}));
326 if (!ST->isWave32()) {
327 // Combine lane 31 into lanes 32..63.
328 Value *const Lane31 = B.CreateCall(ReadLane, {V, B.getInt32(31)});
329 V = buildNonAtomicBinOp(
330 B, Op, V,
331 B.CreateCall(UpdateDPP,
332 {Identity, Lane31, B.getInt32(DPP::QUAD_PERM_ID),
333 B.getInt32(0xc), B.getInt32(0xf), B.getFalse()}));
336 return V;
339 // Use the builder to create a shift right of V across the wavefront, with all
340 // lanes active, to turn an inclusive scan into an exclusive scan.
341 Value *AMDGPUAtomicOptimizer::buildShiftRight(IRBuilder<> &B, Value *V,
342 Value *const Identity) const {
343 Type *const Ty = V->getType();
344 Module *M = B.GetInsertBlock()->getModule();
345 Function *UpdateDPP =
346 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_update_dpp, Ty);
347 Function *ReadLane =
348 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_readlane, {});
349 Function *WriteLane =
350 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_writelane, {});
352 if (ST->hasDPPWavefrontShifts()) {
353 // GFX9 has DPP wavefront shift operations.
354 V = B.CreateCall(UpdateDPP,
355 {Identity, V, B.getInt32(DPP::WAVE_SHR1), B.getInt32(0xf),
356 B.getInt32(0xf), B.getFalse()});
357 } else {
358 // On GFX10 all DPP operations are confined to a single row. To get cross-
359 // row operations we have to use permlane or readlane.
360 Value *Old = V;
361 V = B.CreateCall(UpdateDPP,
362 {Identity, V, B.getInt32(DPP::ROW_SHR0 + 1),
363 B.getInt32(0xf), B.getInt32(0xf), B.getFalse()});
365 // Copy the old lane 15 to the new lane 16.
366 V = B.CreateCall(WriteLane, {B.CreateCall(ReadLane, {Old, B.getInt32(15)}),
367 B.getInt32(16), V});
369 if (!ST->isWave32()) {
370 // Copy the old lane 31 to the new lane 32.
371 V = B.CreateCall(
372 WriteLane,
373 {B.CreateCall(ReadLane, {Old, B.getInt32(31)}), B.getInt32(32), V});
375 // Copy the old lane 47 to the new lane 48.
376 V = B.CreateCall(
377 WriteLane,
378 {B.CreateCall(ReadLane, {Old, B.getInt32(47)}), B.getInt32(48), V});
382 return V;
385 static APInt getIdentityValueForAtomicOp(AtomicRMWInst::BinOp Op,
386 unsigned BitWidth) {
387 switch (Op) {
388 default:
389 llvm_unreachable("Unhandled atomic op");
390 case AtomicRMWInst::Add:
391 case AtomicRMWInst::Sub:
392 case AtomicRMWInst::Or:
393 case AtomicRMWInst::Xor:
394 case AtomicRMWInst::UMax:
395 return APInt::getMinValue(BitWidth);
396 case AtomicRMWInst::And:
397 case AtomicRMWInst::UMin:
398 return APInt::getMaxValue(BitWidth);
399 case AtomicRMWInst::Max:
400 return APInt::getSignedMinValue(BitWidth);
401 case AtomicRMWInst::Min:
402 return APInt::getSignedMaxValue(BitWidth);
406 void AMDGPUAtomicOptimizer::optimizeAtomic(Instruction &I,
407 AtomicRMWInst::BinOp Op,
408 unsigned ValIdx,
409 bool ValDivergent) const {
410 // Start building just before the instruction.
411 IRBuilder<> B(&I);
413 // If we are in a pixel shader, because of how we have to mask out helper
414 // lane invocations, we need to record the entry and exit BB's.
415 BasicBlock *PixelEntryBB = nullptr;
416 BasicBlock *PixelExitBB = nullptr;
418 // If we're optimizing an atomic within a pixel shader, we need to wrap the
419 // entire atomic operation in a helper-lane check. We do not want any helper
420 // lanes that are around only for the purposes of derivatives to take part
421 // in any cross-lane communication, and we use a branch on whether the lane is
422 // live to do this.
423 if (IsPixelShader) {
424 // Record I's original position as the entry block.
425 PixelEntryBB = I.getParent();
427 Value *const Cond = B.CreateIntrinsic(Intrinsic::amdgcn_ps_live, {}, {});
428 Instruction *const NonHelperTerminator =
429 SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr);
431 // Record I's new position as the exit block.
432 PixelExitBB = I.getParent();
434 I.moveBefore(NonHelperTerminator);
435 B.SetInsertPoint(&I);
438 Type *const Ty = I.getType();
439 const unsigned TyBitWidth = DL->getTypeSizeInBits(Ty);
440 Type *const VecTy = VectorType::get(B.getInt32Ty(), 2);
442 // This is the value in the atomic operation we need to combine in order to
443 // reduce the number of atomic operations.
444 Value *const V = I.getOperand(ValIdx);
446 // We need to know how many lanes are active within the wavefront, and we do
447 // this by doing a ballot of active lanes.
448 Type *const WaveTy = B.getIntNTy(ST->getWavefrontSize());
449 CallInst *const Ballot = B.CreateIntrinsic(
450 Intrinsic::amdgcn_icmp, {WaveTy, B.getInt32Ty()},
451 {B.getInt32(1), B.getInt32(0), B.getInt32(CmpInst::ICMP_NE)});
453 // We need to know how many lanes are active within the wavefront that are
454 // below us. If we counted each lane linearly starting from 0, a lane is
455 // below us only if its associated index was less than ours. We do this by
456 // using the mbcnt intrinsic.
457 Value *Mbcnt;
458 if (ST->isWave32()) {
459 Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_lo, {},
460 {Ballot, B.getInt32(0)});
461 } else {
462 Value *const BitCast = B.CreateBitCast(Ballot, VecTy);
463 Value *const ExtractLo = B.CreateExtractElement(BitCast, B.getInt32(0));
464 Value *const ExtractHi = B.CreateExtractElement(BitCast, B.getInt32(1));
465 Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_lo, {},
466 {ExtractLo, B.getInt32(0)});
467 Mbcnt =
468 B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_hi, {}, {ExtractHi, Mbcnt});
470 Mbcnt = B.CreateIntCast(Mbcnt, Ty, false);
472 Value *const Identity = B.getInt(getIdentityValueForAtomicOp(Op, TyBitWidth));
474 Value *ExclScan = nullptr;
475 Value *NewV = nullptr;
477 // If we have a divergent value in each lane, we need to combine the value
478 // using DPP.
479 if (ValDivergent) {
480 // First we need to set all inactive invocations to the identity value, so
481 // that they can correctly contribute to the final result.
482 NewV = B.CreateIntrinsic(Intrinsic::amdgcn_set_inactive, Ty, {V, Identity});
484 const AtomicRMWInst::BinOp ScanOp =
485 Op == AtomicRMWInst::Sub ? AtomicRMWInst::Add : Op;
486 NewV = buildScan(B, ScanOp, NewV, Identity);
487 ExclScan = buildShiftRight(B, NewV, Identity);
489 // Read the value from the last lane, which has accumlated the values of
490 // each active lane in the wavefront. This will be our new value which we
491 // will provide to the atomic operation.
492 Value *const LastLaneIdx = B.getInt32(ST->getWavefrontSize() - 1);
493 if (TyBitWidth == 64) {
494 Value *const ExtractLo = B.CreateTrunc(NewV, B.getInt32Ty());
495 Value *const ExtractHi =
496 B.CreateTrunc(B.CreateLShr(NewV, 32), B.getInt32Ty());
497 CallInst *const ReadLaneLo = B.CreateIntrinsic(
498 Intrinsic::amdgcn_readlane, {}, {ExtractLo, LastLaneIdx});
499 CallInst *const ReadLaneHi = B.CreateIntrinsic(
500 Intrinsic::amdgcn_readlane, {}, {ExtractHi, LastLaneIdx});
501 Value *const PartialInsert = B.CreateInsertElement(
502 UndefValue::get(VecTy), ReadLaneLo, B.getInt32(0));
503 Value *const Insert =
504 B.CreateInsertElement(PartialInsert, ReadLaneHi, B.getInt32(1));
505 NewV = B.CreateBitCast(Insert, Ty);
506 } else if (TyBitWidth == 32) {
507 NewV = B.CreateIntrinsic(Intrinsic::amdgcn_readlane, {},
508 {NewV, LastLaneIdx});
509 } else {
510 llvm_unreachable("Unhandled atomic bit width");
513 // Finally mark the readlanes in the WWM section.
514 NewV = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, NewV);
515 } else {
516 switch (Op) {
517 default:
518 llvm_unreachable("Unhandled atomic op");
520 case AtomicRMWInst::Add:
521 case AtomicRMWInst::Sub: {
522 // The new value we will be contributing to the atomic operation is the
523 // old value times the number of active lanes.
524 Value *const Ctpop = B.CreateIntCast(
525 B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Ty, false);
526 NewV = B.CreateMul(V, Ctpop);
527 break;
530 case AtomicRMWInst::And:
531 case AtomicRMWInst::Or:
532 case AtomicRMWInst::Max:
533 case AtomicRMWInst::Min:
534 case AtomicRMWInst::UMax:
535 case AtomicRMWInst::UMin:
536 // These operations with a uniform value are idempotent: doing the atomic
537 // operation multiple times has the same effect as doing it once.
538 NewV = V;
539 break;
541 case AtomicRMWInst::Xor:
542 // The new value we will be contributing to the atomic operation is the
543 // old value times the parity of the number of active lanes.
544 Value *const Ctpop = B.CreateIntCast(
545 B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Ty, false);
546 NewV = B.CreateMul(V, B.CreateAnd(Ctpop, 1));
547 break;
551 // We only want a single lane to enter our new control flow, and we do this
552 // by checking if there are any active lanes below us. Only one lane will
553 // have 0 active lanes below us, so that will be the only one to progress.
554 Value *const Cond = B.CreateICmpEQ(Mbcnt, B.getIntN(TyBitWidth, 0));
556 // Store I's original basic block before we split the block.
557 BasicBlock *const EntryBB = I.getParent();
559 // We need to introduce some new control flow to force a single lane to be
560 // active. We do this by splitting I's basic block at I, and introducing the
561 // new block such that:
562 // entry --> single_lane -\
563 // \------------------> exit
564 Instruction *const SingleLaneTerminator =
565 SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr);
567 // Move the IR builder into single_lane next.
568 B.SetInsertPoint(SingleLaneTerminator);
570 // Clone the original atomic operation into single lane, replacing the
571 // original value with our newly created one.
572 Instruction *const NewI = I.clone();
573 B.Insert(NewI);
574 NewI->setOperand(ValIdx, NewV);
576 // Move the IR builder into exit next, and start inserting just before the
577 // original instruction.
578 B.SetInsertPoint(&I);
580 const bool NeedResult = !I.use_empty();
581 if (NeedResult) {
582 // Create a PHI node to get our new atomic result into the exit block.
583 PHINode *const PHI = B.CreatePHI(Ty, 2);
584 PHI->addIncoming(UndefValue::get(Ty), EntryBB);
585 PHI->addIncoming(NewI, SingleLaneTerminator->getParent());
587 // We need to broadcast the value who was the lowest active lane (the first
588 // lane) to all other lanes in the wavefront. We use an intrinsic for this,
589 // but have to handle 64-bit broadcasts with two calls to this intrinsic.
590 Value *BroadcastI = nullptr;
592 if (TyBitWidth == 64) {
593 Value *const ExtractLo = B.CreateTrunc(PHI, B.getInt32Ty());
594 Value *const ExtractHi =
595 B.CreateTrunc(B.CreateLShr(PHI, 32), B.getInt32Ty());
596 CallInst *const ReadFirstLaneLo =
597 B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractLo);
598 CallInst *const ReadFirstLaneHi =
599 B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractHi);
600 Value *const PartialInsert = B.CreateInsertElement(
601 UndefValue::get(VecTy), ReadFirstLaneLo, B.getInt32(0));
602 Value *const Insert =
603 B.CreateInsertElement(PartialInsert, ReadFirstLaneHi, B.getInt32(1));
604 BroadcastI = B.CreateBitCast(Insert, Ty);
605 } else if (TyBitWidth == 32) {
607 BroadcastI = B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, PHI);
608 } else {
609 llvm_unreachable("Unhandled atomic bit width");
612 // Now that we have the result of our single atomic operation, we need to
613 // get our individual lane's slice into the result. We use the lane offset
614 // we previously calculated combined with the atomic result value we got
615 // from the first lane, to get our lane's index into the atomic result.
616 Value *LaneOffset = nullptr;
617 if (ValDivergent) {
618 LaneOffset = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, ExclScan);
619 } else {
620 switch (Op) {
621 default:
622 llvm_unreachable("Unhandled atomic op");
623 case AtomicRMWInst::Add:
624 case AtomicRMWInst::Sub:
625 LaneOffset = B.CreateMul(V, Mbcnt);
626 break;
627 case AtomicRMWInst::And:
628 case AtomicRMWInst::Or:
629 case AtomicRMWInst::Max:
630 case AtomicRMWInst::Min:
631 case AtomicRMWInst::UMax:
632 case AtomicRMWInst::UMin:
633 LaneOffset = B.CreateSelect(Cond, Identity, V);
634 break;
635 case AtomicRMWInst::Xor:
636 LaneOffset = B.CreateMul(V, B.CreateAnd(Mbcnt, 1));
637 break;
640 Value *const Result = buildNonAtomicBinOp(B, Op, BroadcastI, LaneOffset);
642 if (IsPixelShader) {
643 // Need a final PHI to reconverge to above the helper lane branch mask.
644 B.SetInsertPoint(PixelExitBB->getFirstNonPHI());
646 PHINode *const PHI = B.CreatePHI(Ty, 2);
647 PHI->addIncoming(UndefValue::get(Ty), PixelEntryBB);
648 PHI->addIncoming(Result, I.getParent());
649 I.replaceAllUsesWith(PHI);
650 } else {
651 // Replace the original atomic instruction with the new one.
652 I.replaceAllUsesWith(Result);
656 // And delete the original.
657 I.eraseFromParent();
660 INITIALIZE_PASS_BEGIN(AMDGPUAtomicOptimizer, DEBUG_TYPE,
661 "AMDGPU atomic optimizations", false, false)
662 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
663 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
664 INITIALIZE_PASS_END(AMDGPUAtomicOptimizer, DEBUG_TYPE,
665 "AMDGPU atomic optimizations", false, false)
667 FunctionPass *llvm::createAMDGPUAtomicOptimizerPass() {
668 return new AMDGPUAtomicOptimizer();