[x86] fix assert with horizontal math + broadcast of vector (PR43402)
[llvm-core.git] / lib / Target / AMDGPU / AMDGPUPrintfRuntimeBinding.cpp
blob261d6287763f4d5b524d61790b53753376281567
1 //=== AMDGPUPrintfRuntimeBinding.cpp - OpenCL printf implementation -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 // \file
9 //
10 // The pass bind printfs to a kernel arg pointer that will be bound to a buffer
11 // later by the runtime.
13 // This pass traverses the functions in the module and converts
14 // each call to printf to a sequence of operations that
15 // store the following into the printf buffer:
16 // - format string (passed as a module's metadata unique ID)
17 // - bitwise copies of printf arguments
18 // The backend passes will need to store metadata in the kernel
19 //===----------------------------------------------------------------------===//
21 #include "AMDGPU.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/CodeGen/Passes.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/InstVisitor.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
41 using namespace llvm;
43 #define DEBUG_TYPE "printfToRuntime"
44 #define DWORD_ALIGN 4
46 namespace {
47 class LLVM_LIBRARY_VISIBILITY AMDGPUPrintfRuntimeBinding final
48 : public ModulePass,
49 public InstVisitor<AMDGPUPrintfRuntimeBinding> {
51 public:
52 static char ID;
54 explicit AMDGPUPrintfRuntimeBinding();
56 void visitCallSite(CallSite CS) {
57 Function *F = CS.getCalledFunction();
58 if (F && F->hasName() && F->getName() == "printf")
59 Printfs.push_back(CS.getInstruction());
62 private:
63 bool runOnModule(Module &M) override;
64 void getConversionSpecifiers(SmallVectorImpl<char> &OpConvSpecifiers,
65 StringRef fmt, size_t num_ops) const;
67 bool shouldPrintAsStr(char Specifier, Type *OpType) const;
68 bool
69 lowerPrintfForGpu(Module &M,
70 function_ref<const TargetLibraryInfo &(Function &)> GetTLI);
72 void getAnalysisUsage(AnalysisUsage &AU) const override {
73 AU.addRequired<TargetLibraryInfoWrapperPass>();
74 AU.addRequired<DominatorTreeWrapperPass>();
77 Value *simplify(Instruction *I, const TargetLibraryInfo *TLI) {
78 return SimplifyInstruction(I, {*TD, TLI, DT});
81 const DataLayout *TD;
82 const DominatorTree *DT;
83 SmallVector<Value *, 32> Printfs;
85 } // namespace
87 char AMDGPUPrintfRuntimeBinding::ID = 0;
89 INITIALIZE_PASS_BEGIN(AMDGPUPrintfRuntimeBinding,
90 "amdgpu-printf-runtime-binding", "AMDGPU Printf lowering",
91 false, false)
92 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
93 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
94 INITIALIZE_PASS_END(AMDGPUPrintfRuntimeBinding, "amdgpu-printf-runtime-binding",
95 "AMDGPU Printf lowering", false, false)
97 char &llvm::AMDGPUPrintfRuntimeBindingID = AMDGPUPrintfRuntimeBinding::ID;
99 namespace llvm {
100 ModulePass *createAMDGPUPrintfRuntimeBinding() {
101 return new AMDGPUPrintfRuntimeBinding();
103 } // namespace llvm
105 AMDGPUPrintfRuntimeBinding::AMDGPUPrintfRuntimeBinding()
106 : ModulePass(ID), TD(nullptr), DT(nullptr) {
107 initializeAMDGPUPrintfRuntimeBindingPass(*PassRegistry::getPassRegistry());
110 void AMDGPUPrintfRuntimeBinding::getConversionSpecifiers(
111 SmallVectorImpl<char> &OpConvSpecifiers, StringRef Fmt,
112 size_t NumOps) const {
113 // not all format characters are collected.
114 // At this time the format characters of interest
115 // are %p and %s, which use to know if we
116 // are either storing a literal string or a
117 // pointer to the printf buffer.
118 static const char ConvSpecifiers[] = "cdieEfgGaosuxXp";
119 size_t CurFmtSpecifierIdx = 0;
120 size_t PrevFmtSpecifierIdx = 0;
122 while ((CurFmtSpecifierIdx = Fmt.find_first_of(
123 ConvSpecifiers, CurFmtSpecifierIdx)) != StringRef::npos) {
124 bool ArgDump = false;
125 StringRef CurFmt = Fmt.substr(PrevFmtSpecifierIdx,
126 CurFmtSpecifierIdx - PrevFmtSpecifierIdx);
127 size_t pTag = CurFmt.find_last_of("%");
128 if (pTag != StringRef::npos) {
129 ArgDump = true;
130 while (pTag && CurFmt[--pTag] == '%') {
131 ArgDump = !ArgDump;
135 if (ArgDump)
136 OpConvSpecifiers.push_back(Fmt[CurFmtSpecifierIdx]);
138 PrevFmtSpecifierIdx = ++CurFmtSpecifierIdx;
142 bool AMDGPUPrintfRuntimeBinding::shouldPrintAsStr(char Specifier,
143 Type *OpType) const {
144 if (Specifier != 's')
145 return false;
146 const PointerType *PT = dyn_cast<PointerType>(OpType);
147 if (!PT || PT->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
148 return false;
149 Type *ElemType = PT->getContainedType(0);
150 if (ElemType->getTypeID() != Type::IntegerTyID)
151 return false;
152 IntegerType *ElemIType = cast<IntegerType>(ElemType);
153 return ElemIType->getBitWidth() == 8;
156 bool AMDGPUPrintfRuntimeBinding::lowerPrintfForGpu(
157 Module &M, function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
158 LLVMContext &Ctx = M.getContext();
159 IRBuilder<> Builder(Ctx);
160 Type *I32Ty = Type::getInt32Ty(Ctx);
161 unsigned UniqID = 0;
162 // NB: This is important for this string size to be divizable by 4
163 const char NonLiteralStr[4] = "???";
165 for (auto P : Printfs) {
166 auto CI = cast<CallInst>(P);
167 unsigned NumOps = CI->getNumArgOperands();
169 SmallString<16> OpConvSpecifiers;
170 Value *Op = CI->getArgOperand(0);
172 if (auto LI = dyn_cast<LoadInst>(Op)) {
173 Op = LI->getPointerOperand();
174 for (auto Use : Op->users()) {
175 if (auto SI = dyn_cast<StoreInst>(Use)) {
176 Op = SI->getValueOperand();
177 break;
182 if (auto I = dyn_cast<Instruction>(Op)) {
183 Value *Op_simplified = simplify(I, &GetTLI(*I->getFunction()));
184 if (Op_simplified)
185 Op = Op_simplified;
188 ConstantExpr *ConstExpr = dyn_cast<ConstantExpr>(Op);
190 if (ConstExpr) {
191 GlobalVariable *GVar = dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));
193 StringRef Str("unknown");
194 if (GVar && GVar->hasInitializer()) {
195 auto Init = GVar->getInitializer();
196 if (auto CA = dyn_cast<ConstantDataArray>(Init)) {
197 if (CA->isString())
198 Str = CA->getAsCString();
199 } else if (isa<ConstantAggregateZero>(Init)) {
200 Str = "";
203 // we need this call to ascertain
204 // that we are printing a string
205 // or a pointer. It takes out the
206 // specifiers and fills up the first
207 // arg
208 getConversionSpecifiers(OpConvSpecifiers, Str, NumOps - 1);
210 // Add metadata for the string
211 std::string AStreamHolder;
212 raw_string_ostream Sizes(AStreamHolder);
213 int Sum = DWORD_ALIGN;
214 Sizes << CI->getNumArgOperands() - 1;
215 Sizes << ':';
216 for (unsigned ArgCount = 1; ArgCount < CI->getNumArgOperands() &&
217 ArgCount <= OpConvSpecifiers.size();
218 ArgCount++) {
219 Value *Arg = CI->getArgOperand(ArgCount);
220 Type *ArgType = Arg->getType();
221 unsigned ArgSize = TD->getTypeAllocSizeInBits(ArgType);
222 ArgSize = ArgSize / 8;
224 // ArgSize by design should be a multiple of DWORD_ALIGN,
225 // expand the arguments that do not follow this rule.
227 if (ArgSize % DWORD_ALIGN != 0) {
228 llvm::Type *ResType = llvm::Type::getInt32Ty(Ctx);
229 VectorType *LLVMVecType = llvm::dyn_cast<llvm::VectorType>(ArgType);
230 int NumElem = LLVMVecType ? LLVMVecType->getNumElements() : 1;
231 if (LLVMVecType && NumElem > 1)
232 ResType = llvm::VectorType::get(ResType, NumElem);
233 Builder.SetInsertPoint(CI);
234 Builder.SetCurrentDebugLocation(CI->getDebugLoc());
235 if (OpConvSpecifiers[ArgCount - 1] == 'x' ||
236 OpConvSpecifiers[ArgCount - 1] == 'X' ||
237 OpConvSpecifiers[ArgCount - 1] == 'u' ||
238 OpConvSpecifiers[ArgCount - 1] == 'o')
239 Arg = Builder.CreateZExt(Arg, ResType);
240 else
241 Arg = Builder.CreateSExt(Arg, ResType);
242 ArgType = Arg->getType();
243 ArgSize = TD->getTypeAllocSizeInBits(ArgType);
244 ArgSize = ArgSize / 8;
245 CI->setOperand(ArgCount, Arg);
247 if (OpConvSpecifiers[ArgCount - 1] == 'f') {
248 ConstantFP *FpCons = dyn_cast<ConstantFP>(Arg);
249 if (FpCons)
250 ArgSize = 4;
251 else {
252 FPExtInst *FpExt = dyn_cast<FPExtInst>(Arg);
253 if (FpExt && FpExt->getType()->isDoubleTy() &&
254 FpExt->getOperand(0)->getType()->isFloatTy())
255 ArgSize = 4;
258 if (shouldPrintAsStr(OpConvSpecifiers[ArgCount - 1], ArgType)) {
259 if (ConstantExpr *ConstExpr = dyn_cast<ConstantExpr>(Arg)) {
260 GlobalVariable *GV =
261 dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));
262 if (GV && GV->hasInitializer()) {
263 Constant *Init = GV->getInitializer();
264 ConstantDataArray *CA = dyn_cast<ConstantDataArray>(Init);
265 if (Init->isZeroValue() || CA->isString()) {
266 size_t SizeStr = Init->isZeroValue()
268 : (strlen(CA->getAsCString().data()) + 1);
269 size_t Rem = SizeStr % DWORD_ALIGN;
270 size_t NSizeStr = 0;
271 LLVM_DEBUG(dbgs() << "Printf string original size = " << SizeStr
272 << '\n');
273 if (Rem) {
274 NSizeStr = SizeStr + (DWORD_ALIGN - Rem);
275 } else {
276 NSizeStr = SizeStr;
278 ArgSize = NSizeStr;
280 } else {
281 ArgSize = sizeof(NonLiteralStr);
283 } else {
284 ArgSize = sizeof(NonLiteralStr);
287 LLVM_DEBUG(dbgs() << "Printf ArgSize (in buffer) = " << ArgSize
288 << " for type: " << *ArgType << '\n');
289 Sizes << ArgSize << ':';
290 Sum += ArgSize;
292 LLVM_DEBUG(dbgs() << "Printf format string in source = " << Str.str()
293 << '\n');
294 for (size_t I = 0; I < Str.size(); ++I) {
295 // Rest of the C escape sequences (e.g. \') are handled correctly
296 // by the MDParser
297 switch (Str[I]) {
298 case '\a':
299 Sizes << "\\a";
300 break;
301 case '\b':
302 Sizes << "\\b";
303 break;
304 case '\f':
305 Sizes << "\\f";
306 break;
307 case '\n':
308 Sizes << "\\n";
309 break;
310 case '\r':
311 Sizes << "\\r";
312 break;
313 case '\v':
314 Sizes << "\\v";
315 break;
316 case ':':
317 // ':' cannot be scanned by Flex, as it is defined as a delimiter
318 // Replace it with it's octal representation \72
319 Sizes << "\\72";
320 break;
321 default:
322 Sizes << Str[I];
323 break;
327 // Insert the printf_alloc call
328 Builder.SetInsertPoint(CI);
329 Builder.SetCurrentDebugLocation(CI->getDebugLoc());
331 AttributeList Attr = AttributeList::get(Ctx, AttributeList::FunctionIndex,
332 Attribute::NoUnwind);
334 Type *SizetTy = Type::getInt32Ty(Ctx);
336 Type *Tys_alloc[1] = {SizetTy};
337 Type *I8Ptr = PointerType::get(Type::getInt8Ty(Ctx), 1);
338 FunctionType *FTy_alloc = FunctionType::get(I8Ptr, Tys_alloc, false);
339 FunctionCallee PrintfAllocFn =
340 M.getOrInsertFunction(StringRef("__printf_alloc"), FTy_alloc, Attr);
342 LLVM_DEBUG(dbgs() << "Printf metadata = " << Sizes.str() << '\n');
343 std::string fmtstr = itostr(++UniqID) + ":" + Sizes.str().c_str();
344 MDString *fmtStrArray = MDString::get(Ctx, fmtstr);
346 // Instead of creating global variables, the
347 // printf format strings are extracted
348 // and passed as metadata. This avoids
349 // polluting llvm's symbol tables in this module.
350 // Metadata is going to be extracted
351 // by the backend passes and inserted
352 // into the OpenCL binary as appropriate.
353 StringRef amd("llvm.printf.fmts");
354 NamedMDNode *metaD = M.getOrInsertNamedMetadata(amd);
355 MDNode *myMD = MDNode::get(Ctx, fmtStrArray);
356 metaD->addOperand(myMD);
357 Value *sumC = ConstantInt::get(SizetTy, Sum, false);
358 SmallVector<Value *, 1> alloc_args;
359 alloc_args.push_back(sumC);
360 CallInst *pcall =
361 CallInst::Create(PrintfAllocFn, alloc_args, "printf_alloc_fn", CI);
364 // Insert code to split basicblock with a
365 // piece of hammock code.
366 // basicblock splits after buffer overflow check
368 ConstantPointerNull *zeroIntPtr =
369 ConstantPointerNull::get(PointerType::get(Type::getInt8Ty(Ctx), 1));
370 ICmpInst *cmp =
371 dyn_cast<ICmpInst>(Builder.CreateICmpNE(pcall, zeroIntPtr, ""));
372 if (!CI->use_empty()) {
373 Value *result =
374 Builder.CreateSExt(Builder.CreateNot(cmp), I32Ty, "printf_res");
375 CI->replaceAllUsesWith(result);
377 SplitBlock(CI->getParent(), cmp);
378 Instruction *Brnch =
379 SplitBlockAndInsertIfThen(cmp, cmp->getNextNode(), false);
381 Builder.SetInsertPoint(Brnch);
383 // store unique printf id in the buffer
385 SmallVector<Value *, 1> ZeroIdxList;
386 ConstantInt *zeroInt =
387 ConstantInt::get(Ctx, APInt(32, StringRef("0"), 10));
388 ZeroIdxList.push_back(zeroInt);
390 GetElementPtrInst *BufferIdx =
391 dyn_cast<GetElementPtrInst>(GetElementPtrInst::Create(
392 nullptr, pcall, ZeroIdxList, "PrintBuffID", Brnch));
394 Type *idPointer = PointerType::get(I32Ty, AMDGPUAS::GLOBAL_ADDRESS);
395 Value *id_gep_cast =
396 new BitCastInst(BufferIdx, idPointer, "PrintBuffIdCast", Brnch);
398 StoreInst *stbuff =
399 new StoreInst(ConstantInt::get(I32Ty, UniqID), id_gep_cast);
400 stbuff->insertBefore(Brnch); // to Remove unused variable warning
402 SmallVector<Value *, 2> FourthIdxList;
403 ConstantInt *fourInt =
404 ConstantInt::get(Ctx, APInt(32, StringRef("4"), 10));
406 FourthIdxList.push_back(fourInt); // 1st 4 bytes hold the printf_id
407 // the following GEP is the buffer pointer
408 BufferIdx = cast<GetElementPtrInst>(GetElementPtrInst::Create(
409 nullptr, pcall, FourthIdxList, "PrintBuffGep", Brnch));
411 Type *Int32Ty = Type::getInt32Ty(Ctx);
412 Type *Int64Ty = Type::getInt64Ty(Ctx);
413 for (unsigned ArgCount = 1; ArgCount < CI->getNumArgOperands() &&
414 ArgCount <= OpConvSpecifiers.size();
415 ArgCount++) {
416 Value *Arg = CI->getArgOperand(ArgCount);
417 Type *ArgType = Arg->getType();
418 SmallVector<Value *, 32> WhatToStore;
419 if (ArgType->isFPOrFPVectorTy() &&
420 (ArgType->getTypeID() != Type::VectorTyID)) {
421 Type *IType = (ArgType->isFloatTy()) ? Int32Ty : Int64Ty;
422 if (OpConvSpecifiers[ArgCount - 1] == 'f') {
423 ConstantFP *fpCons = dyn_cast<ConstantFP>(Arg);
424 if (fpCons) {
425 APFloat Val(fpCons->getValueAPF());
426 bool Lost = false;
427 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
428 &Lost);
429 Arg = ConstantFP::get(Ctx, Val);
430 IType = Int32Ty;
431 } else {
432 FPExtInst *FpExt = dyn_cast<FPExtInst>(Arg);
433 if (FpExt && FpExt->getType()->isDoubleTy() &&
434 FpExt->getOperand(0)->getType()->isFloatTy()) {
435 Arg = FpExt->getOperand(0);
436 IType = Int32Ty;
440 Arg = new BitCastInst(Arg, IType, "PrintArgFP", Brnch);
441 WhatToStore.push_back(Arg);
442 } else if (ArgType->getTypeID() == Type::PointerTyID) {
443 if (shouldPrintAsStr(OpConvSpecifiers[ArgCount - 1], ArgType)) {
444 const char *S = NonLiteralStr;
445 if (ConstantExpr *ConstExpr = dyn_cast<ConstantExpr>(Arg)) {
446 GlobalVariable *GV =
447 dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));
448 if (GV && GV->hasInitializer()) {
449 Constant *Init = GV->getInitializer();
450 ConstantDataArray *CA = dyn_cast<ConstantDataArray>(Init);
451 if (Init->isZeroValue() || CA->isString()) {
452 S = Init->isZeroValue() ? "" : CA->getAsCString().data();
456 size_t SizeStr = strlen(S) + 1;
457 size_t Rem = SizeStr % DWORD_ALIGN;
458 size_t NSizeStr = 0;
459 if (Rem) {
460 NSizeStr = SizeStr + (DWORD_ALIGN - Rem);
461 } else {
462 NSizeStr = SizeStr;
464 if (S[0]) {
465 char *MyNewStr = new char[NSizeStr]();
466 strcpy(MyNewStr, S);
467 int NumInts = NSizeStr / 4;
468 int CharC = 0;
469 while (NumInts) {
470 int ANum = *(int *)(MyNewStr + CharC);
471 CharC += 4;
472 NumInts--;
473 Value *ANumV = ConstantInt::get(Int32Ty, ANum, false);
474 WhatToStore.push_back(ANumV);
476 delete[] MyNewStr;
477 } else {
478 // Empty string, give a hint to RT it is no NULL
479 Value *ANumV = ConstantInt::get(Int32Ty, 0xFFFFFF00, false);
480 WhatToStore.push_back(ANumV);
482 } else {
483 uint64_t Size = TD->getTypeAllocSizeInBits(ArgType);
484 assert((Size == 32 || Size == 64) && "unsupported size");
485 Type *DstType = (Size == 32) ? Int32Ty : Int64Ty;
486 Arg = new PtrToIntInst(Arg, DstType, "PrintArgPtr", Brnch);
487 WhatToStore.push_back(Arg);
489 } else if (ArgType->getTypeID() == Type::VectorTyID) {
490 Type *IType = NULL;
491 uint32_t EleCount = cast<VectorType>(ArgType)->getNumElements();
492 uint32_t EleSize = ArgType->getScalarSizeInBits();
493 uint32_t TotalSize = EleCount * EleSize;
494 if (EleCount == 3) {
495 IntegerType *Int32Ty = Type::getInt32Ty(ArgType->getContext());
496 Constant *Indices[4] = {
497 ConstantInt::get(Int32Ty, 0), ConstantInt::get(Int32Ty, 1),
498 ConstantInt::get(Int32Ty, 2), ConstantInt::get(Int32Ty, 2)};
499 Constant *Mask = ConstantVector::get(Indices);
500 ShuffleVectorInst *Shuffle = new ShuffleVectorInst(Arg, Arg, Mask);
501 Shuffle->insertBefore(Brnch);
502 Arg = Shuffle;
503 ArgType = Arg->getType();
504 TotalSize += EleSize;
506 switch (EleSize) {
507 default:
508 EleCount = TotalSize / 64;
509 IType = dyn_cast<Type>(Type::getInt64Ty(ArgType->getContext()));
510 break;
511 case 8:
512 if (EleCount >= 8) {
513 EleCount = TotalSize / 64;
514 IType = dyn_cast<Type>(Type::getInt64Ty(ArgType->getContext()));
515 } else if (EleCount >= 3) {
516 EleCount = 1;
517 IType = dyn_cast<Type>(Type::getInt32Ty(ArgType->getContext()));
518 } else {
519 EleCount = 1;
520 IType = dyn_cast<Type>(Type::getInt16Ty(ArgType->getContext()));
522 break;
523 case 16:
524 if (EleCount >= 3) {
525 EleCount = TotalSize / 64;
526 IType = dyn_cast<Type>(Type::getInt64Ty(ArgType->getContext()));
527 } else {
528 EleCount = 1;
529 IType = dyn_cast<Type>(Type::getInt32Ty(ArgType->getContext()));
531 break;
533 if (EleCount > 1) {
534 IType = dyn_cast<Type>(VectorType::get(IType, EleCount));
536 Arg = new BitCastInst(Arg, IType, "PrintArgVect", Brnch);
537 WhatToStore.push_back(Arg);
538 } else {
539 WhatToStore.push_back(Arg);
541 for (unsigned I = 0, E = WhatToStore.size(); I != E; ++I) {
542 Value *TheBtCast = WhatToStore[I];
543 unsigned ArgSize =
544 TD->getTypeAllocSizeInBits(TheBtCast->getType()) / 8;
545 SmallVector<Value *, 1> BuffOffset;
546 BuffOffset.push_back(ConstantInt::get(I32Ty, ArgSize));
548 Type *ArgPointer = PointerType::get(TheBtCast->getType(), 1);
549 Value *CastedGEP =
550 new BitCastInst(BufferIdx, ArgPointer, "PrintBuffPtrCast", Brnch);
551 StoreInst *StBuff = new StoreInst(TheBtCast, CastedGEP, Brnch);
552 LLVM_DEBUG(dbgs() << "inserting store to printf buffer:\n"
553 << *StBuff << '\n');
554 (void)StBuff;
555 if (I + 1 == E && ArgCount + 1 == CI->getNumArgOperands())
556 break;
557 BufferIdx = dyn_cast<GetElementPtrInst>(GetElementPtrInst::Create(
558 nullptr, BufferIdx, BuffOffset, "PrintBuffNextPtr", Brnch));
559 LLVM_DEBUG(dbgs() << "inserting gep to the printf buffer:\n"
560 << *BufferIdx << '\n');
566 // erase the printf calls
567 for (auto P : Printfs) {
568 auto CI = cast<CallInst>(P);
569 CI->eraseFromParent();
572 Printfs.clear();
573 return true;
576 bool AMDGPUPrintfRuntimeBinding::runOnModule(Module &M) {
577 Triple TT(M.getTargetTriple());
578 if (TT.getArch() == Triple::r600)
579 return false;
581 visit(M);
583 if (Printfs.empty())
584 return false;
586 TD = &M.getDataLayout();
587 auto DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
588 DT = DTWP ? &DTWP->getDomTree() : nullptr;
589 auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
590 return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
593 return lowerPrintfForGpu(M, GetTLI);