[x86] fix assert with horizontal math + broadcast of vector (PR43402)
[llvm-core.git] / lib / Target / AMDGPU / AMDGPUTargetMachine.cpp
blob03815208ae47e859230d142ae0ccd19ab9bb208b
1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// The AMDGPU target machine contains all of the hardware specific
11 /// information needed to emit code for R600 and SI GPUs.
13 //===----------------------------------------------------------------------===//
15 #include "AMDGPUTargetMachine.h"
16 #include "AMDGPU.h"
17 #include "AMDGPUAliasAnalysis.h"
18 #include "AMDGPUCallLowering.h"
19 #include "AMDGPUInstructionSelector.h"
20 #include "AMDGPULegalizerInfo.h"
21 #include "AMDGPUMacroFusion.h"
22 #include "AMDGPUTargetObjectFile.h"
23 #include "AMDGPUTargetTransformInfo.h"
24 #include "GCNIterativeScheduler.h"
25 #include "GCNSchedStrategy.h"
26 #include "R600MachineScheduler.h"
27 #include "SIMachineFunctionInfo.h"
28 #include "SIMachineScheduler.h"
29 #include "TargetInfo/AMDGPUTargetInfo.h"
30 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
31 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
32 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
33 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
34 #include "llvm/CodeGen/MIRParser/MIParser.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/TargetPassConfig.h"
37 #include "llvm/IR/Attributes.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/LegacyPassManager.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Compiler.h"
43 #include "llvm/Support/TargetRegistry.h"
44 #include "llvm/Target/TargetLoweringObjectFile.h"
45 #include "llvm/Transforms/IPO.h"
46 #include "llvm/Transforms/IPO/AlwaysInliner.h"
47 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
48 #include "llvm/Transforms/Scalar.h"
49 #include "llvm/Transforms/Scalar/GVN.h"
50 #include "llvm/Transforms/Utils.h"
51 #include "llvm/Transforms/Vectorize.h"
52 #include <memory>
54 using namespace llvm;
56 static cl::opt<bool> EnableR600StructurizeCFG(
57 "r600-ir-structurize",
58 cl::desc("Use StructurizeCFG IR pass"),
59 cl::init(true));
61 static cl::opt<bool> EnableSROA(
62 "amdgpu-sroa",
63 cl::desc("Run SROA after promote alloca pass"),
64 cl::ReallyHidden,
65 cl::init(true));
67 static cl::opt<bool>
68 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden,
69 cl::desc("Run early if-conversion"),
70 cl::init(false));
72 static cl::opt<bool>
73 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden,
74 cl::desc("Run pre-RA exec mask optimizations"),
75 cl::init(true));
77 static cl::opt<bool> EnableR600IfConvert(
78 "r600-if-convert",
79 cl::desc("Use if conversion pass"),
80 cl::ReallyHidden,
81 cl::init(true));
83 // Option to disable vectorizer for tests.
84 static cl::opt<bool> EnableLoadStoreVectorizer(
85 "amdgpu-load-store-vectorizer",
86 cl::desc("Enable load store vectorizer"),
87 cl::init(true),
88 cl::Hidden);
90 // Option to control global loads scalarization
91 static cl::opt<bool> ScalarizeGlobal(
92 "amdgpu-scalarize-global-loads",
93 cl::desc("Enable global load scalarization"),
94 cl::init(true),
95 cl::Hidden);
97 // Option to run internalize pass.
98 static cl::opt<bool> InternalizeSymbols(
99 "amdgpu-internalize-symbols",
100 cl::desc("Enable elimination of non-kernel functions and unused globals"),
101 cl::init(false),
102 cl::Hidden);
104 // Option to inline all early.
105 static cl::opt<bool> EarlyInlineAll(
106 "amdgpu-early-inline-all",
107 cl::desc("Inline all functions early"),
108 cl::init(false),
109 cl::Hidden);
111 static cl::opt<bool> EnableSDWAPeephole(
112 "amdgpu-sdwa-peephole",
113 cl::desc("Enable SDWA peepholer"),
114 cl::init(true));
116 static cl::opt<bool> EnableDPPCombine(
117 "amdgpu-dpp-combine",
118 cl::desc("Enable DPP combiner"),
119 cl::init(true));
121 // Enable address space based alias analysis
122 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden,
123 cl::desc("Enable AMDGPU Alias Analysis"),
124 cl::init(true));
126 // Option to run late CFG structurizer
127 static cl::opt<bool, true> LateCFGStructurize(
128 "amdgpu-late-structurize",
129 cl::desc("Enable late CFG structurization"),
130 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG),
131 cl::Hidden);
133 static cl::opt<bool, true> EnableAMDGPUFunctionCallsOpt(
134 "amdgpu-function-calls",
135 cl::desc("Enable AMDGPU function call support"),
136 cl::location(AMDGPUTargetMachine::EnableFunctionCalls),
137 cl::init(true),
138 cl::Hidden);
140 // Enable lib calls simplifications
141 static cl::opt<bool> EnableLibCallSimplify(
142 "amdgpu-simplify-libcall",
143 cl::desc("Enable amdgpu library simplifications"),
144 cl::init(true),
145 cl::Hidden);
147 static cl::opt<bool> EnableLowerKernelArguments(
148 "amdgpu-ir-lower-kernel-arguments",
149 cl::desc("Lower kernel argument loads in IR pass"),
150 cl::init(true),
151 cl::Hidden);
153 static cl::opt<bool> EnableRegReassign(
154 "amdgpu-reassign-regs",
155 cl::desc("Enable register reassign optimizations on gfx10+"),
156 cl::init(true),
157 cl::Hidden);
159 // Enable atomic optimization
160 static cl::opt<bool> EnableAtomicOptimizations(
161 "amdgpu-atomic-optimizations",
162 cl::desc("Enable atomic optimizations"),
163 cl::init(false),
164 cl::Hidden);
166 // Enable Mode register optimization
167 static cl::opt<bool> EnableSIModeRegisterPass(
168 "amdgpu-mode-register",
169 cl::desc("Enable mode register pass"),
170 cl::init(true),
171 cl::Hidden);
173 // Option is used in lit tests to prevent deadcoding of patterns inspected.
174 static cl::opt<bool>
175 EnableDCEInRA("amdgpu-dce-in-ra",
176 cl::init(true), cl::Hidden,
177 cl::desc("Enable machine DCE inside regalloc"));
179 static cl::opt<bool> EnableScalarIRPasses(
180 "amdgpu-scalar-ir-passes",
181 cl::desc("Enable scalar IR passes"),
182 cl::init(true),
183 cl::Hidden);
185 extern "C" void LLVMInitializeAMDGPUTarget() {
186 // Register the target
187 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget());
188 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget());
190 PassRegistry *PR = PassRegistry::getPassRegistry();
191 initializeR600ClauseMergePassPass(*PR);
192 initializeR600ControlFlowFinalizerPass(*PR);
193 initializeR600PacketizerPass(*PR);
194 initializeR600ExpandSpecialInstrsPassPass(*PR);
195 initializeR600VectorRegMergerPass(*PR);
196 initializeGlobalISel(*PR);
197 initializeAMDGPUDAGToDAGISelPass(*PR);
198 initializeGCNDPPCombinePass(*PR);
199 initializeSILowerI1CopiesPass(*PR);
200 initializeSILowerSGPRSpillsPass(*PR);
201 initializeSIFixSGPRCopiesPass(*PR);
202 initializeSIFixVGPRCopiesPass(*PR);
203 initializeSIFixupVectorISelPass(*PR);
204 initializeSIFoldOperandsPass(*PR);
205 initializeSIPeepholeSDWAPass(*PR);
206 initializeSIShrinkInstructionsPass(*PR);
207 initializeSIOptimizeExecMaskingPreRAPass(*PR);
208 initializeSILoadStoreOptimizerPass(*PR);
209 initializeAMDGPUFixFunctionBitcastsPass(*PR);
210 initializeAMDGPUAlwaysInlinePass(*PR);
211 initializeAMDGPUAnnotateKernelFeaturesPass(*PR);
212 initializeAMDGPUAnnotateUniformValuesPass(*PR);
213 initializeAMDGPUArgumentUsageInfoPass(*PR);
214 initializeAMDGPUAtomicOptimizerPass(*PR);
215 initializeAMDGPULowerKernelArgumentsPass(*PR);
216 initializeAMDGPULowerKernelAttributesPass(*PR);
217 initializeAMDGPULowerIntrinsicsPass(*PR);
218 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR);
219 initializeAMDGPUPromoteAllocaPass(*PR);
220 initializeAMDGPUCodeGenPreparePass(*PR);
221 initializeAMDGPUPropagateAttributesEarlyPass(*PR);
222 initializeAMDGPUPropagateAttributesLatePass(*PR);
223 initializeAMDGPURewriteOutArgumentsPass(*PR);
224 initializeAMDGPUUnifyMetadataPass(*PR);
225 initializeSIAnnotateControlFlowPass(*PR);
226 initializeSIInsertWaitcntsPass(*PR);
227 initializeSIModeRegisterPass(*PR);
228 initializeSIWholeQuadModePass(*PR);
229 initializeSILowerControlFlowPass(*PR);
230 initializeSIInsertSkipsPass(*PR);
231 initializeSIMemoryLegalizerPass(*PR);
232 initializeSIOptimizeExecMaskingPass(*PR);
233 initializeSIPreAllocateWWMRegsPass(*PR);
234 initializeSIFormMemoryClausesPass(*PR);
235 initializeAMDGPUUnifyDivergentExitNodesPass(*PR);
236 initializeAMDGPUAAWrapperPassPass(*PR);
237 initializeAMDGPUExternalAAWrapperPass(*PR);
238 initializeAMDGPUUseNativeCallsPass(*PR);
239 initializeAMDGPUSimplifyLibCallsPass(*PR);
240 initializeAMDGPUInlinerPass(*PR);
241 initializeAMDGPUPrintfRuntimeBindingPass(*PR);
242 initializeGCNRegBankReassignPass(*PR);
243 initializeGCNNSAReassignPass(*PR);
246 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
247 return std::make_unique<AMDGPUTargetObjectFile>();
250 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) {
251 return new ScheduleDAGMILive(C, std::make_unique<R600SchedStrategy>());
254 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) {
255 return new SIScheduleDAGMI(C);
258 static ScheduleDAGInstrs *
259 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) {
260 ScheduleDAGMILive *DAG =
261 new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C));
262 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
263 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
264 DAG->addMutation(createAMDGPUMacroFusionDAGMutation());
265 return DAG;
268 static ScheduleDAGInstrs *
269 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) {
270 auto DAG = new GCNIterativeScheduler(C,
271 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY);
272 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
273 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
274 return DAG;
277 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) {
278 return new GCNIterativeScheduler(C,
279 GCNIterativeScheduler::SCHEDULE_MINREGFORCED);
282 static ScheduleDAGInstrs *
283 createIterativeILPMachineScheduler(MachineSchedContext *C) {
284 auto DAG = new GCNIterativeScheduler(C,
285 GCNIterativeScheduler::SCHEDULE_ILP);
286 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
287 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
288 DAG->addMutation(createAMDGPUMacroFusionDAGMutation());
289 return DAG;
292 static MachineSchedRegistry
293 R600SchedRegistry("r600", "Run R600's custom scheduler",
294 createR600MachineScheduler);
296 static MachineSchedRegistry
297 SISchedRegistry("si", "Run SI's custom scheduler",
298 createSIMachineScheduler);
300 static MachineSchedRegistry
301 GCNMaxOccupancySchedRegistry("gcn-max-occupancy",
302 "Run GCN scheduler to maximize occupancy",
303 createGCNMaxOccupancyMachineScheduler);
305 static MachineSchedRegistry
306 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental",
307 "Run GCN scheduler to maximize occupancy (experimental)",
308 createIterativeGCNMaxOccupancyMachineScheduler);
310 static MachineSchedRegistry
311 GCNMinRegSchedRegistry("gcn-minreg",
312 "Run GCN iterative scheduler for minimal register usage (experimental)",
313 createMinRegScheduler);
315 static MachineSchedRegistry
316 GCNILPSchedRegistry("gcn-ilp",
317 "Run GCN iterative scheduler for ILP scheduling (experimental)",
318 createIterativeILPMachineScheduler);
320 static StringRef computeDataLayout(const Triple &TT) {
321 if (TT.getArch() == Triple::r600) {
322 // 32-bit pointers.
323 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128"
324 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5";
327 // 32-bit private, local, and region pointers. 64-bit global, constant and
328 // flat, non-integral buffer fat pointers.
329 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32"
330 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128"
331 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5"
332 "-ni:7";
335 LLVM_READNONE
336 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) {
337 if (!GPU.empty())
338 return GPU;
340 // Need to default to a target with flat support for HSA.
341 if (TT.getArch() == Triple::amdgcn)
342 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic";
344 return "r600";
347 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) {
348 // The AMDGPU toolchain only supports generating shared objects, so we
349 // must always use PIC.
350 return Reloc::PIC_;
353 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT,
354 StringRef CPU, StringRef FS,
355 TargetOptions Options,
356 Optional<Reloc::Model> RM,
357 Optional<CodeModel::Model> CM,
358 CodeGenOpt::Level OptLevel)
359 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU),
360 FS, Options, getEffectiveRelocModel(RM),
361 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel),
362 TLOF(createTLOF(getTargetTriple())) {
363 initAsmInfo();
366 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false;
367 bool AMDGPUTargetMachine::EnableFunctionCalls = false;
369 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default;
371 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const {
372 Attribute GPUAttr = F.getFnAttribute("target-cpu");
373 return GPUAttr.hasAttribute(Attribute::None) ?
374 getTargetCPU() : GPUAttr.getValueAsString();
377 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const {
378 Attribute FSAttr = F.getFnAttribute("target-features");
380 return FSAttr.hasAttribute(Attribute::None) ?
381 getTargetFeatureString() :
382 FSAttr.getValueAsString();
385 /// Predicate for Internalize pass.
386 static bool mustPreserveGV(const GlobalValue &GV) {
387 if (const Function *F = dyn_cast<Function>(&GV))
388 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv());
390 return !GV.use_empty();
393 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) {
394 Builder.DivergentTarget = true;
396 bool EnableOpt = getOptLevel() > CodeGenOpt::None;
397 bool Internalize = InternalizeSymbols;
398 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls;
399 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt;
400 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt;
402 if (EnableFunctionCalls) {
403 delete Builder.Inliner;
404 Builder.Inliner = createAMDGPUFunctionInliningPass();
407 Builder.addExtension(
408 PassManagerBuilder::EP_ModuleOptimizerEarly,
409 [Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &,
410 legacy::PassManagerBase &PM) {
411 if (AMDGPUAA) {
412 PM.add(createAMDGPUAAWrapperPass());
413 PM.add(createAMDGPUExternalAAWrapperPass());
415 PM.add(createAMDGPUUnifyMetadataPass());
416 PM.add(createAMDGPUPrintfRuntimeBinding());
417 PM.add(createAMDGPUPropagateAttributesLatePass(this));
418 if (Internalize) {
419 PM.add(createInternalizePass(mustPreserveGV));
420 PM.add(createGlobalDCEPass());
422 if (EarlyInline)
423 PM.add(createAMDGPUAlwaysInlinePass(false));
426 const auto &Opt = Options;
427 Builder.addExtension(
428 PassManagerBuilder::EP_EarlyAsPossible,
429 [AMDGPUAA, LibCallSimplify, &Opt, this](const PassManagerBuilder &,
430 legacy::PassManagerBase &PM) {
431 if (AMDGPUAA) {
432 PM.add(createAMDGPUAAWrapperPass());
433 PM.add(createAMDGPUExternalAAWrapperPass());
435 PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this));
436 PM.add(llvm::createAMDGPUUseNativeCallsPass());
437 if (LibCallSimplify)
438 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(Opt, this));
441 Builder.addExtension(
442 PassManagerBuilder::EP_CGSCCOptimizerLate,
443 [](const PassManagerBuilder &, legacy::PassManagerBase &PM) {
444 // Add infer address spaces pass to the opt pipeline after inlining
445 // but before SROA to increase SROA opportunities.
446 PM.add(createInferAddressSpacesPass());
448 // This should run after inlining to have any chance of doing anything,
449 // and before other cleanup optimizations.
450 PM.add(createAMDGPULowerKernelAttributesPass());
454 //===----------------------------------------------------------------------===//
455 // R600 Target Machine (R600 -> Cayman)
456 //===----------------------------------------------------------------------===//
458 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT,
459 StringRef CPU, StringRef FS,
460 TargetOptions Options,
461 Optional<Reloc::Model> RM,
462 Optional<CodeModel::Model> CM,
463 CodeGenOpt::Level OL, bool JIT)
464 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {
465 setRequiresStructuredCFG(true);
467 // Override the default since calls aren't supported for r600.
468 if (EnableFunctionCalls &&
469 EnableAMDGPUFunctionCallsOpt.getNumOccurrences() == 0)
470 EnableFunctionCalls = false;
473 const R600Subtarget *R600TargetMachine::getSubtargetImpl(
474 const Function &F) const {
475 StringRef GPU = getGPUName(F);
476 StringRef FS = getFeatureString(F);
478 SmallString<128> SubtargetKey(GPU);
479 SubtargetKey.append(FS);
481 auto &I = SubtargetMap[SubtargetKey];
482 if (!I) {
483 // This needs to be done before we create a new subtarget since any
484 // creation will depend on the TM and the code generation flags on the
485 // function that reside in TargetOptions.
486 resetTargetOptions(F);
487 I = std::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this);
490 return I.get();
493 TargetTransformInfo
494 R600TargetMachine::getTargetTransformInfo(const Function &F) {
495 return TargetTransformInfo(R600TTIImpl(this, F));
498 //===----------------------------------------------------------------------===//
499 // GCN Target Machine (SI+)
500 //===----------------------------------------------------------------------===//
502 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT,
503 StringRef CPU, StringRef FS,
504 TargetOptions Options,
505 Optional<Reloc::Model> RM,
506 Optional<CodeModel::Model> CM,
507 CodeGenOpt::Level OL, bool JIT)
508 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {}
510 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const {
511 StringRef GPU = getGPUName(F);
512 StringRef FS = getFeatureString(F);
514 SmallString<128> SubtargetKey(GPU);
515 SubtargetKey.append(FS);
517 auto &I = SubtargetMap[SubtargetKey];
518 if (!I) {
519 // This needs to be done before we create a new subtarget since any
520 // creation will depend on the TM and the code generation flags on the
521 // function that reside in TargetOptions.
522 resetTargetOptions(F);
523 I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this);
526 I->setScalarizeGlobalBehavior(ScalarizeGlobal);
528 return I.get();
531 TargetTransformInfo
532 GCNTargetMachine::getTargetTransformInfo(const Function &F) {
533 return TargetTransformInfo(GCNTTIImpl(this, F));
536 //===----------------------------------------------------------------------===//
537 // AMDGPU Pass Setup
538 //===----------------------------------------------------------------------===//
540 namespace {
542 class AMDGPUPassConfig : public TargetPassConfig {
543 public:
544 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
545 : TargetPassConfig(TM, PM) {
546 // Exceptions and StackMaps are not supported, so these passes will never do
547 // anything.
548 disablePass(&StackMapLivenessID);
549 disablePass(&FuncletLayoutID);
552 AMDGPUTargetMachine &getAMDGPUTargetMachine() const {
553 return getTM<AMDGPUTargetMachine>();
556 ScheduleDAGInstrs *
557 createMachineScheduler(MachineSchedContext *C) const override {
558 ScheduleDAGMILive *DAG = createGenericSchedLive(C);
559 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
560 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
561 return DAG;
564 void addEarlyCSEOrGVNPass();
565 void addStraightLineScalarOptimizationPasses();
566 void addIRPasses() override;
567 void addCodeGenPrepare() override;
568 bool addPreISel() override;
569 bool addInstSelector() override;
570 bool addGCPasses() override;
572 std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
575 std::unique_ptr<CSEConfigBase> AMDGPUPassConfig::getCSEConfig() const {
576 return getStandardCSEConfigForOpt(TM->getOptLevel());
579 class R600PassConfig final : public AMDGPUPassConfig {
580 public:
581 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
582 : AMDGPUPassConfig(TM, PM) {}
584 ScheduleDAGInstrs *createMachineScheduler(
585 MachineSchedContext *C) const override {
586 return createR600MachineScheduler(C);
589 bool addPreISel() override;
590 bool addInstSelector() override;
591 void addPreRegAlloc() override;
592 void addPreSched2() override;
593 void addPreEmitPass() override;
596 class GCNPassConfig final : public AMDGPUPassConfig {
597 public:
598 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
599 : AMDGPUPassConfig(TM, PM) {
600 // It is necessary to know the register usage of the entire call graph. We
601 // allow calls without EnableAMDGPUFunctionCalls if they are marked
602 // noinline, so this is always required.
603 setRequiresCodeGenSCCOrder(true);
606 GCNTargetMachine &getGCNTargetMachine() const {
607 return getTM<GCNTargetMachine>();
610 ScheduleDAGInstrs *
611 createMachineScheduler(MachineSchedContext *C) const override;
613 bool addPreISel() override;
614 void addMachineSSAOptimization() override;
615 bool addILPOpts() override;
616 bool addInstSelector() override;
617 bool addIRTranslator() override;
618 bool addLegalizeMachineIR() override;
619 bool addRegBankSelect() override;
620 bool addGlobalInstructionSelect() override;
621 void addFastRegAlloc() override;
622 void addOptimizedRegAlloc() override;
623 void addPreRegAlloc() override;
624 bool addPreRewrite() override;
625 void addPostRegAlloc() override;
626 void addPreSched2() override;
627 void addPreEmitPass() override;
630 } // end anonymous namespace
632 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() {
633 if (getOptLevel() == CodeGenOpt::Aggressive)
634 addPass(createGVNPass());
635 else
636 addPass(createEarlyCSEPass());
639 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() {
640 addPass(createLICMPass());
641 addPass(createSeparateConstOffsetFromGEPPass());
642 addPass(createSpeculativeExecutionPass());
643 // ReassociateGEPs exposes more opportunites for SLSR. See
644 // the example in reassociate-geps-and-slsr.ll.
645 addPass(createStraightLineStrengthReducePass());
646 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or
647 // EarlyCSE can reuse.
648 addEarlyCSEOrGVNPass();
649 // Run NaryReassociate after EarlyCSE/GVN to be more effective.
650 addPass(createNaryReassociatePass());
651 // NaryReassociate on GEPs creates redundant common expressions, so run
652 // EarlyCSE after it.
653 addPass(createEarlyCSEPass());
656 void AMDGPUPassConfig::addIRPasses() {
657 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine();
659 // There is no reason to run these.
660 disablePass(&StackMapLivenessID);
661 disablePass(&FuncletLayoutID);
662 disablePass(&PatchableFunctionID);
664 addPass(createAMDGPUPrintfRuntimeBinding());
666 // This must occur before inlining, as the inliner will not look through
667 // bitcast calls.
668 addPass(createAMDGPUFixFunctionBitcastsPass());
670 // A call to propagate attributes pass in the backend in case opt was not run.
671 addPass(createAMDGPUPropagateAttributesEarlyPass(&TM));
673 addPass(createAtomicExpandPass());
676 addPass(createAMDGPULowerIntrinsicsPass());
678 // Function calls are not supported, so make sure we inline everything.
679 addPass(createAMDGPUAlwaysInlinePass());
680 addPass(createAlwaysInlinerLegacyPass());
681 // We need to add the barrier noop pass, otherwise adding the function
682 // inlining pass will cause all of the PassConfigs passes to be run
683 // one function at a time, which means if we have a nodule with two
684 // functions, then we will generate code for the first function
685 // without ever running any passes on the second.
686 addPass(createBarrierNoopPass());
688 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments.
689 if (TM.getTargetTriple().getArch() == Triple::r600)
690 addPass(createR600OpenCLImageTypeLoweringPass());
692 // Replace OpenCL enqueued block function pointers with global variables.
693 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass());
695 if (TM.getOptLevel() > CodeGenOpt::None) {
696 addPass(createInferAddressSpacesPass());
697 addPass(createAMDGPUPromoteAlloca());
699 if (EnableSROA)
700 addPass(createSROAPass());
702 if (EnableScalarIRPasses)
703 addStraightLineScalarOptimizationPasses();
705 if (EnableAMDGPUAliasAnalysis) {
706 addPass(createAMDGPUAAWrapperPass());
707 addPass(createExternalAAWrapperPass([](Pass &P, Function &,
708 AAResults &AAR) {
709 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>())
710 AAR.addAAResult(WrapperPass->getResult());
711 }));
715 if (TM.getTargetTriple().getArch() == Triple::amdgcn) {
716 // TODO: May want to move later or split into an early and late one.
717 addPass(createAMDGPUCodeGenPreparePass());
720 TargetPassConfig::addIRPasses();
722 // EarlyCSE is not always strong enough to clean up what LSR produces. For
723 // example, GVN can combine
725 // %0 = add %a, %b
726 // %1 = add %b, %a
728 // and
730 // %0 = shl nsw %a, 2
731 // %1 = shl %a, 2
733 // but EarlyCSE can do neither of them.
734 if (getOptLevel() != CodeGenOpt::None && EnableScalarIRPasses)
735 addEarlyCSEOrGVNPass();
738 void AMDGPUPassConfig::addCodeGenPrepare() {
739 if (TM->getTargetTriple().getArch() == Triple::amdgcn)
740 addPass(createAMDGPUAnnotateKernelFeaturesPass());
742 if (TM->getTargetTriple().getArch() == Triple::amdgcn &&
743 EnableLowerKernelArguments)
744 addPass(createAMDGPULowerKernelArgumentsPass());
746 addPass(&AMDGPUPerfHintAnalysisID);
748 TargetPassConfig::addCodeGenPrepare();
750 if (EnableLoadStoreVectorizer)
751 addPass(createLoadStoreVectorizerPass());
754 bool AMDGPUPassConfig::addPreISel() {
755 addPass(createLowerSwitchPass());
756 addPass(createFlattenCFGPass());
757 return false;
760 bool AMDGPUPassConfig::addInstSelector() {
761 // Defer the verifier until FinalizeISel.
762 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()), false);
763 return false;
766 bool AMDGPUPassConfig::addGCPasses() {
767 // Do nothing. GC is not supported.
768 return false;
771 //===----------------------------------------------------------------------===//
772 // R600 Pass Setup
773 //===----------------------------------------------------------------------===//
775 bool R600PassConfig::addPreISel() {
776 AMDGPUPassConfig::addPreISel();
778 if (EnableR600StructurizeCFG)
779 addPass(createStructurizeCFGPass());
780 return false;
783 bool R600PassConfig::addInstSelector() {
784 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel()));
785 return false;
788 void R600PassConfig::addPreRegAlloc() {
789 addPass(createR600VectorRegMerger());
792 void R600PassConfig::addPreSched2() {
793 addPass(createR600EmitClauseMarkers(), false);
794 if (EnableR600IfConvert)
795 addPass(&IfConverterID, false);
796 addPass(createR600ClauseMergePass(), false);
799 void R600PassConfig::addPreEmitPass() {
800 addPass(createAMDGPUCFGStructurizerPass(), false);
801 addPass(createR600ExpandSpecialInstrsPass(), false);
802 addPass(&FinalizeMachineBundlesID, false);
803 addPass(createR600Packetizer(), false);
804 addPass(createR600ControlFlowFinalizer(), false);
807 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) {
808 return new R600PassConfig(*this, PM);
811 //===----------------------------------------------------------------------===//
812 // GCN Pass Setup
813 //===----------------------------------------------------------------------===//
815 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler(
816 MachineSchedContext *C) const {
817 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>();
818 if (ST.enableSIScheduler())
819 return createSIMachineScheduler(C);
820 return createGCNMaxOccupancyMachineScheduler(C);
823 bool GCNPassConfig::addPreISel() {
824 AMDGPUPassConfig::addPreISel();
826 if (EnableAtomicOptimizations) {
827 addPass(createAMDGPUAtomicOptimizerPass());
830 // FIXME: We need to run a pass to propagate the attributes when calls are
831 // supported.
833 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit
834 // regions formed by them.
835 addPass(&AMDGPUUnifyDivergentExitNodesID);
836 if (!LateCFGStructurize) {
837 addPass(createStructurizeCFGPass(true)); // true -> SkipUniformRegions
839 addPass(createSinkingPass());
840 addPass(createAMDGPUAnnotateUniformValues());
841 if (!LateCFGStructurize) {
842 addPass(createSIAnnotateControlFlowPass());
844 addPass(createLCSSAPass());
846 return false;
849 void GCNPassConfig::addMachineSSAOptimization() {
850 TargetPassConfig::addMachineSSAOptimization();
852 // We want to fold operands after PeepholeOptimizer has run (or as part of
853 // it), because it will eliminate extra copies making it easier to fold the
854 // real source operand. We want to eliminate dead instructions after, so that
855 // we see fewer uses of the copies. We then need to clean up the dead
856 // instructions leftover after the operands are folded as well.
858 // XXX - Can we get away without running DeadMachineInstructionElim again?
859 addPass(&SIFoldOperandsID);
860 if (EnableDPPCombine)
861 addPass(&GCNDPPCombineID);
862 addPass(&DeadMachineInstructionElimID);
863 addPass(&SILoadStoreOptimizerID);
864 if (EnableSDWAPeephole) {
865 addPass(&SIPeepholeSDWAID);
866 addPass(&EarlyMachineLICMID);
867 addPass(&MachineCSEID);
868 addPass(&SIFoldOperandsID);
869 addPass(&DeadMachineInstructionElimID);
871 addPass(createSIShrinkInstructionsPass());
874 bool GCNPassConfig::addILPOpts() {
875 if (EnableEarlyIfConversion)
876 addPass(&EarlyIfConverterID);
878 TargetPassConfig::addILPOpts();
879 return false;
882 bool GCNPassConfig::addInstSelector() {
883 AMDGPUPassConfig::addInstSelector();
884 addPass(&SIFixSGPRCopiesID);
885 addPass(createSILowerI1CopiesPass());
886 addPass(createSIFixupVectorISelPass());
887 addPass(createSIAddIMGInitPass());
888 // FIXME: Remove this once the phi on CF_END is cleaned up by either removing
889 // LCSSA or other ways.
890 addPass(&UnreachableMachineBlockElimID);
891 return false;
894 bool GCNPassConfig::addIRTranslator() {
895 addPass(new IRTranslator());
896 return false;
899 bool GCNPassConfig::addLegalizeMachineIR() {
900 addPass(new Legalizer());
901 return false;
904 bool GCNPassConfig::addRegBankSelect() {
905 addPass(new RegBankSelect());
906 return false;
909 bool GCNPassConfig::addGlobalInstructionSelect() {
910 addPass(new InstructionSelect());
911 return false;
914 void GCNPassConfig::addPreRegAlloc() {
915 if (LateCFGStructurize) {
916 addPass(createAMDGPUMachineCFGStructurizerPass());
918 addPass(createSIWholeQuadModePass());
921 void GCNPassConfig::addFastRegAlloc() {
922 // FIXME: We have to disable the verifier here because of PHIElimination +
923 // TwoAddressInstructions disabling it.
925 // This must be run immediately after phi elimination and before
926 // TwoAddressInstructions, otherwise the processing of the tied operand of
927 // SI_ELSE will introduce a copy of the tied operand source after the else.
928 insertPass(&PHIEliminationID, &SILowerControlFlowID, false);
930 // This must be run just after RegisterCoalescing.
931 insertPass(&RegisterCoalescerID, &SIPreAllocateWWMRegsID, false);
933 TargetPassConfig::addFastRegAlloc();
936 void GCNPassConfig::addOptimizedRegAlloc() {
937 if (OptExecMaskPreRA) {
938 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID);
939 insertPass(&SIOptimizeExecMaskingPreRAID, &SIFormMemoryClausesID);
940 } else {
941 insertPass(&MachineSchedulerID, &SIFormMemoryClausesID);
944 // This must be run immediately after phi elimination and before
945 // TwoAddressInstructions, otherwise the processing of the tied operand of
946 // SI_ELSE will introduce a copy of the tied operand source after the else.
947 insertPass(&PHIEliminationID, &SILowerControlFlowID, false);
949 // This must be run just after RegisterCoalescing.
950 insertPass(&RegisterCoalescerID, &SIPreAllocateWWMRegsID, false);
952 if (EnableDCEInRA)
953 insertPass(&RenameIndependentSubregsID, &DeadMachineInstructionElimID);
955 TargetPassConfig::addOptimizedRegAlloc();
958 bool GCNPassConfig::addPreRewrite() {
959 if (EnableRegReassign) {
960 addPass(&GCNNSAReassignID);
961 addPass(&GCNRegBankReassignID);
963 return true;
966 void GCNPassConfig::addPostRegAlloc() {
967 addPass(&SIFixVGPRCopiesID);
968 if (getOptLevel() > CodeGenOpt::None)
969 addPass(&SIOptimizeExecMaskingID);
970 TargetPassConfig::addPostRegAlloc();
972 // Equivalent of PEI for SGPRs.
973 addPass(&SILowerSGPRSpillsID);
976 void GCNPassConfig::addPreSched2() {
979 void GCNPassConfig::addPreEmitPass() {
980 addPass(createSIMemoryLegalizerPass());
981 addPass(createSIInsertWaitcntsPass());
982 addPass(createSIShrinkInstructionsPass());
983 addPass(createSIModeRegisterPass());
985 // The hazard recognizer that runs as part of the post-ra scheduler does not
986 // guarantee to be able handle all hazards correctly. This is because if there
987 // are multiple scheduling regions in a basic block, the regions are scheduled
988 // bottom up, so when we begin to schedule a region we don't know what
989 // instructions were emitted directly before it.
991 // Here we add a stand-alone hazard recognizer pass which can handle all
992 // cases.
994 // FIXME: This stand-alone pass will emit indiv. S_NOP 0, as needed. It would
995 // be better for it to emit S_NOP <N> when possible.
996 addPass(&PostRAHazardRecognizerID);
998 addPass(&SIInsertSkipsPassID);
999 addPass(&BranchRelaxationPassID);
1002 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) {
1003 return new GCNPassConfig(*this, PM);
1006 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const {
1007 return new yaml::SIMachineFunctionInfo();
1010 yaml::MachineFunctionInfo *
1011 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const {
1012 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1013 return new yaml::SIMachineFunctionInfo(*MFI,
1014 *MF.getSubtarget().getRegisterInfo());
1017 bool GCNTargetMachine::parseMachineFunctionInfo(
1018 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS,
1019 SMDiagnostic &Error, SMRange &SourceRange) const {
1020 const yaml::SIMachineFunctionInfo &YamlMFI =
1021 reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_);
1022 MachineFunction &MF = PFS.MF;
1023 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1025 MFI->initializeBaseYamlFields(YamlMFI);
1027 auto parseRegister = [&](const yaml::StringValue &RegName, unsigned &RegVal) {
1028 if (parseNamedRegisterReference(PFS, RegVal, RegName.Value, Error)) {
1029 SourceRange = RegName.SourceRange;
1030 return true;
1033 return false;
1036 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) {
1037 // Create a diagnostic for a the register string literal.
1038 const MemoryBuffer &Buffer =
1039 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID());
1040 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
1041 RegName.Value.size(), SourceMgr::DK_Error,
1042 "incorrect register class for field", RegName.Value,
1043 None, None);
1044 SourceRange = RegName.SourceRange;
1045 return true;
1048 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) ||
1049 parseRegister(YamlMFI.ScratchWaveOffsetReg, MFI->ScratchWaveOffsetReg) ||
1050 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) ||
1051 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg))
1052 return true;
1054 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG &&
1055 !AMDGPU::SReg_128RegClass.contains(MFI->ScratchRSrcReg)) {
1056 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg);
1059 if (MFI->ScratchWaveOffsetReg != AMDGPU::SCRATCH_WAVE_OFFSET_REG &&
1060 !AMDGPU::SGPR_32RegClass.contains(MFI->ScratchWaveOffsetReg)) {
1061 return diagnoseRegisterClass(YamlMFI.ScratchWaveOffsetReg);
1064 if (MFI->FrameOffsetReg != AMDGPU::FP_REG &&
1065 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) {
1066 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg);
1069 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG &&
1070 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) {
1071 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg);
1074 auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A,
1075 const TargetRegisterClass &RC,
1076 ArgDescriptor &Arg, unsigned UserSGPRs,
1077 unsigned SystemSGPRs) {
1078 // Skip parsing if it's not present.
1079 if (!A)
1080 return false;
1082 if (A->IsRegister) {
1083 unsigned Reg;
1084 if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) {
1085 SourceRange = A->RegisterName.SourceRange;
1086 return true;
1088 if (!RC.contains(Reg))
1089 return diagnoseRegisterClass(A->RegisterName);
1090 Arg = ArgDescriptor::createRegister(Reg);
1091 } else
1092 Arg = ArgDescriptor::createStack(A->StackOffset);
1093 // Check and apply the optional mask.
1094 if (A->Mask)
1095 Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue());
1097 MFI->NumUserSGPRs += UserSGPRs;
1098 MFI->NumSystemSGPRs += SystemSGPRs;
1099 return false;
1102 if (YamlMFI.ArgInfo &&
1103 (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer,
1104 AMDGPU::SReg_128RegClass,
1105 MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) ||
1106 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr,
1107 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr,
1108 2, 0) ||
1109 parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass,
1110 MFI->ArgInfo.QueuePtr, 2, 0) ||
1111 parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr,
1112 AMDGPU::SReg_64RegClass,
1113 MFI->ArgInfo.KernargSegmentPtr, 2, 0) ||
1114 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID,
1115 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID,
1116 2, 0) ||
1117 parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit,
1118 AMDGPU::SReg_64RegClass,
1119 MFI->ArgInfo.FlatScratchInit, 2, 0) ||
1120 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize,
1121 AMDGPU::SGPR_32RegClass,
1122 MFI->ArgInfo.PrivateSegmentSize, 0, 0) ||
1123 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX,
1124 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX,
1125 0, 1) ||
1126 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY,
1127 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY,
1128 0, 1) ||
1129 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ,
1130 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ,
1131 0, 1) ||
1132 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo,
1133 AMDGPU::SGPR_32RegClass,
1134 MFI->ArgInfo.WorkGroupInfo, 0, 1) ||
1135 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset,
1136 AMDGPU::SGPR_32RegClass,
1137 MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) ||
1138 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr,
1139 AMDGPU::SReg_64RegClass,
1140 MFI->ArgInfo.ImplicitArgPtr, 0, 0) ||
1141 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr,
1142 AMDGPU::SReg_64RegClass,
1143 MFI->ArgInfo.ImplicitBufferPtr, 2, 0) ||
1144 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX,
1145 AMDGPU::VGPR_32RegClass,
1146 MFI->ArgInfo.WorkItemIDX, 0, 0) ||
1147 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY,
1148 AMDGPU::VGPR_32RegClass,
1149 MFI->ArgInfo.WorkItemIDY, 0, 0) ||
1150 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ,
1151 AMDGPU::VGPR_32RegClass,
1152 MFI->ArgInfo.WorkItemIDZ, 0, 0)))
1153 return true;
1155 MFI->Mode.IEEE = YamlMFI.Mode.IEEE;
1156 MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp;
1158 return false;