1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "AMDGPUBaseInfo.h"
10 #include "AMDGPUTargetTransformInfo.h"
12 #include "SIDefines.h"
13 #include "AMDGPUAsmUtils.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/ADT/Triple.h"
16 #include "llvm/BinaryFormat/ELF.h"
17 #include "llvm/CodeGen/MachineMemOperand.h"
18 #include "llvm/IR/Attributes.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/GlobalValue.h"
22 #include "llvm/IR/Instruction.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/MC/MCContext.h"
26 #include "llvm/MC/MCInstrDesc.h"
27 #include "llvm/MC/MCInstrInfo.h"
28 #include "llvm/MC/MCRegisterInfo.h"
29 #include "llvm/MC/MCSectionELF.h"
30 #include "llvm/MC/MCSubtargetInfo.h"
31 #include "llvm/MC/SubtargetFeature.h"
32 #include "llvm/Support/Casting.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/MathExtras.h"
41 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
43 #define GET_INSTRINFO_NAMED_OPS
44 #define GET_INSTRMAP_INFO
45 #include "AMDGPUGenInstrInfo.inc"
46 #undef GET_INSTRMAP_INFO
47 #undef GET_INSTRINFO_NAMED_OPS
51 /// \returns Bit mask for given bit \p Shift and bit \p Width.
52 unsigned getBitMask(unsigned Shift
, unsigned Width
) {
53 return ((1 << Width
) - 1) << Shift
;
56 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width.
58 /// \returns Packed \p Dst.
59 unsigned packBits(unsigned Src
, unsigned Dst
, unsigned Shift
, unsigned Width
) {
60 Dst
&= ~(1 << Shift
) & ~getBitMask(Shift
, Width
);
61 Dst
|= (Src
<< Shift
) & getBitMask(Shift
, Width
);
65 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width.
67 /// \returns Unpacked bits.
68 unsigned unpackBits(unsigned Src
, unsigned Shift
, unsigned Width
) {
69 return (Src
& getBitMask(Shift
, Width
)) >> Shift
;
72 /// \returns Vmcnt bit shift (lower bits).
73 unsigned getVmcntBitShiftLo() { return 0; }
75 /// \returns Vmcnt bit width (lower bits).
76 unsigned getVmcntBitWidthLo() { return 4; }
78 /// \returns Expcnt bit shift.
79 unsigned getExpcntBitShift() { return 4; }
81 /// \returns Expcnt bit width.
82 unsigned getExpcntBitWidth() { return 3; }
84 /// \returns Lgkmcnt bit shift.
85 unsigned getLgkmcntBitShift() { return 8; }
87 /// \returns Lgkmcnt bit width.
88 unsigned getLgkmcntBitWidth(unsigned VersionMajor
) {
89 return (VersionMajor
>= 10) ? 6 : 4;
92 /// \returns Vmcnt bit shift (higher bits).
93 unsigned getVmcntBitShiftHi() { return 14; }
95 /// \returns Vmcnt bit width (higher bits).
96 unsigned getVmcntBitWidthHi() { return 2; }
98 } // end namespace anonymous
104 #define GET_MIMGBaseOpcodesTable_IMPL
105 #define GET_MIMGDimInfoTable_IMPL
106 #define GET_MIMGInfoTable_IMPL
107 #define GET_MIMGLZMappingTable_IMPL
108 #define GET_MIMGMIPMappingTable_IMPL
109 #include "AMDGPUGenSearchableTables.inc"
111 int getMIMGOpcode(unsigned BaseOpcode
, unsigned MIMGEncoding
,
112 unsigned VDataDwords
, unsigned VAddrDwords
) {
113 const MIMGInfo
*Info
= getMIMGOpcodeHelper(BaseOpcode
, MIMGEncoding
,
114 VDataDwords
, VAddrDwords
);
115 return Info
? Info
->Opcode
: -1;
118 const MIMGBaseOpcodeInfo
*getMIMGBaseOpcode(unsigned Opc
) {
119 const MIMGInfo
*Info
= getMIMGInfo(Opc
);
120 return Info
? getMIMGBaseOpcodeInfo(Info
->BaseOpcode
) : nullptr;
123 int getMaskedMIMGOp(unsigned Opc
, unsigned NewChannels
) {
124 const MIMGInfo
*OrigInfo
= getMIMGInfo(Opc
);
125 const MIMGInfo
*NewInfo
=
126 getMIMGOpcodeHelper(OrigInfo
->BaseOpcode
, OrigInfo
->MIMGEncoding
,
127 NewChannels
, OrigInfo
->VAddrDwords
);
128 return NewInfo
? NewInfo
->Opcode
: -1;
140 #define GET_MUBUFInfoTable_DECL
141 #define GET_MUBUFInfoTable_IMPL
142 #include "AMDGPUGenSearchableTables.inc"
144 int getMUBUFBaseOpcode(unsigned Opc
) {
145 const MUBUFInfo
*Info
= getMUBUFInfoFromOpcode(Opc
);
146 return Info
? Info
->BaseOpcode
: -1;
149 int getMUBUFOpcode(unsigned BaseOpc
, unsigned Elements
) {
150 const MUBUFInfo
*Info
= getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc
, Elements
);
151 return Info
? Info
->Opcode
: -1;
154 int getMUBUFElements(unsigned Opc
) {
155 const MUBUFInfo
*Info
= getMUBUFOpcodeHelper(Opc
);
156 return Info
? Info
->elements
: 0;
159 bool getMUBUFHasVAddr(unsigned Opc
) {
160 const MUBUFInfo
*Info
= getMUBUFOpcodeHelper(Opc
);
161 return Info
? Info
->has_vaddr
: false;
164 bool getMUBUFHasSrsrc(unsigned Opc
) {
165 const MUBUFInfo
*Info
= getMUBUFOpcodeHelper(Opc
);
166 return Info
? Info
->has_srsrc
: false;
169 bool getMUBUFHasSoffset(unsigned Opc
) {
170 const MUBUFInfo
*Info
= getMUBUFOpcodeHelper(Opc
);
171 return Info
? Info
->has_soffset
: false;
174 // Wrapper for Tablegen'd function. enum Subtarget is not defined in any
175 // header files, so we need to wrap it in a function that takes unsigned
177 int getMCOpcode(uint16_t Opcode
, unsigned Gen
) {
178 return getMCOpcodeGen(Opcode
, static_cast<Subtarget
>(Gen
));
183 void streamIsaVersion(const MCSubtargetInfo
*STI
, raw_ostream
&Stream
) {
184 auto TargetTriple
= STI
->getTargetTriple();
185 auto Version
= getIsaVersion(STI
->getCPU());
187 Stream
<< TargetTriple
.getArchName() << '-'
188 << TargetTriple
.getVendorName() << '-'
189 << TargetTriple
.getOSName() << '-'
190 << TargetTriple
.getEnvironmentName() << '-'
198 if (hasSRAMECC(*STI
))
199 Stream
<< "+sram-ecc";
204 bool hasCodeObjectV3(const MCSubtargetInfo
*STI
) {
205 return STI
->getTargetTriple().getOS() == Triple::AMDHSA
&&
206 STI
->getFeatureBits().test(FeatureCodeObjectV3
);
209 unsigned getWavefrontSize(const MCSubtargetInfo
*STI
) {
210 if (STI
->getFeatureBits().test(FeatureWavefrontSize16
))
212 if (STI
->getFeatureBits().test(FeatureWavefrontSize32
))
218 unsigned getLocalMemorySize(const MCSubtargetInfo
*STI
) {
219 if (STI
->getFeatureBits().test(FeatureLocalMemorySize32768
))
221 if (STI
->getFeatureBits().test(FeatureLocalMemorySize65536
))
227 unsigned getEUsPerCU(const MCSubtargetInfo
*STI
) {
231 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo
*STI
,
232 unsigned FlatWorkGroupSize
) {
233 assert(FlatWorkGroupSize
!= 0);
234 if (STI
->getTargetTriple().getArch() != Triple::amdgcn
)
236 unsigned N
= getWavesPerWorkGroup(STI
, FlatWorkGroupSize
);
240 return std::min(N
, 16u);
243 unsigned getMaxWavesPerCU(const MCSubtargetInfo
*STI
) {
244 return getMaxWavesPerEU(STI
) * getEUsPerCU(STI
);
247 unsigned getMaxWavesPerCU(const MCSubtargetInfo
*STI
,
248 unsigned FlatWorkGroupSize
) {
249 return getWavesPerWorkGroup(STI
, FlatWorkGroupSize
);
252 unsigned getMinWavesPerEU(const MCSubtargetInfo
*STI
) {
256 unsigned getMaxWavesPerEU(const MCSubtargetInfo
*STI
) {
257 // FIXME: Need to take scratch memory into account.
263 unsigned getMaxWavesPerEU(const MCSubtargetInfo
*STI
,
264 unsigned FlatWorkGroupSize
) {
265 return alignTo(getMaxWavesPerCU(STI
, FlatWorkGroupSize
),
266 getEUsPerCU(STI
)) / getEUsPerCU(STI
);
269 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo
*STI
) {
273 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo
*STI
) {
277 unsigned getWavesPerWorkGroup(const MCSubtargetInfo
*STI
,
278 unsigned FlatWorkGroupSize
) {
279 return alignTo(FlatWorkGroupSize
, getWavefrontSize(STI
)) /
280 getWavefrontSize(STI
);
283 unsigned getSGPRAllocGranule(const MCSubtargetInfo
*STI
) {
284 IsaVersion Version
= getIsaVersion(STI
->getCPU());
285 if (Version
.Major
>= 10)
286 return getAddressableNumSGPRs(STI
);
287 if (Version
.Major
>= 8)
292 unsigned getSGPREncodingGranule(const MCSubtargetInfo
*STI
) {
296 unsigned getTotalNumSGPRs(const MCSubtargetInfo
*STI
) {
297 IsaVersion Version
= getIsaVersion(STI
->getCPU());
298 if (Version
.Major
>= 8)
303 unsigned getAddressableNumSGPRs(const MCSubtargetInfo
*STI
) {
304 if (STI
->getFeatureBits().test(FeatureSGPRInitBug
))
305 return FIXED_NUM_SGPRS_FOR_INIT_BUG
;
307 IsaVersion Version
= getIsaVersion(STI
->getCPU());
308 if (Version
.Major
>= 10)
310 if (Version
.Major
>= 8)
315 unsigned getMinNumSGPRs(const MCSubtargetInfo
*STI
, unsigned WavesPerEU
) {
316 assert(WavesPerEU
!= 0);
318 IsaVersion Version
= getIsaVersion(STI
->getCPU());
319 if (Version
.Major
>= 10)
322 if (WavesPerEU
>= getMaxWavesPerEU(STI
))
325 unsigned MinNumSGPRs
= getTotalNumSGPRs(STI
) / (WavesPerEU
+ 1);
326 if (STI
->getFeatureBits().test(FeatureTrapHandler
))
327 MinNumSGPRs
-= std::min(MinNumSGPRs
, (unsigned)TRAP_NUM_SGPRS
);
328 MinNumSGPRs
= alignDown(MinNumSGPRs
, getSGPRAllocGranule(STI
)) + 1;
329 return std::min(MinNumSGPRs
, getAddressableNumSGPRs(STI
));
332 unsigned getMaxNumSGPRs(const MCSubtargetInfo
*STI
, unsigned WavesPerEU
,
334 assert(WavesPerEU
!= 0);
336 unsigned AddressableNumSGPRs
= getAddressableNumSGPRs(STI
);
337 IsaVersion Version
= getIsaVersion(STI
->getCPU());
338 if (Version
.Major
>= 10)
339 return Addressable
? AddressableNumSGPRs
: 108;
340 if (Version
.Major
>= 8 && !Addressable
)
341 AddressableNumSGPRs
= 112;
342 unsigned MaxNumSGPRs
= getTotalNumSGPRs(STI
) / WavesPerEU
;
343 if (STI
->getFeatureBits().test(FeatureTrapHandler
))
344 MaxNumSGPRs
-= std::min(MaxNumSGPRs
, (unsigned)TRAP_NUM_SGPRS
);
345 MaxNumSGPRs
= alignDown(MaxNumSGPRs
, getSGPRAllocGranule(STI
));
346 return std::min(MaxNumSGPRs
, AddressableNumSGPRs
);
349 unsigned getNumExtraSGPRs(const MCSubtargetInfo
*STI
, bool VCCUsed
,
350 bool FlatScrUsed
, bool XNACKUsed
) {
351 unsigned ExtraSGPRs
= 0;
355 IsaVersion Version
= getIsaVersion(STI
->getCPU());
356 if (Version
.Major
>= 10)
359 if (Version
.Major
< 8) {
373 unsigned getNumExtraSGPRs(const MCSubtargetInfo
*STI
, bool VCCUsed
,
375 return getNumExtraSGPRs(STI
, VCCUsed
, FlatScrUsed
,
376 STI
->getFeatureBits().test(AMDGPU::FeatureXNACK
));
379 unsigned getNumSGPRBlocks(const MCSubtargetInfo
*STI
, unsigned NumSGPRs
) {
380 NumSGPRs
= alignTo(std::max(1u, NumSGPRs
), getSGPREncodingGranule(STI
));
381 // SGPRBlocks is actual number of SGPR blocks minus 1.
382 return NumSGPRs
/ getSGPREncodingGranule(STI
) - 1;
385 unsigned getVGPRAllocGranule(const MCSubtargetInfo
*STI
,
386 Optional
<bool> EnableWavefrontSize32
) {
387 bool IsWave32
= EnableWavefrontSize32
?
388 *EnableWavefrontSize32
:
389 STI
->getFeatureBits().test(FeatureWavefrontSize32
);
390 return IsWave32
? 8 : 4;
393 unsigned getVGPREncodingGranule(const MCSubtargetInfo
*STI
,
394 Optional
<bool> EnableWavefrontSize32
) {
395 return getVGPRAllocGranule(STI
, EnableWavefrontSize32
);
398 unsigned getTotalNumVGPRs(const MCSubtargetInfo
*STI
) {
401 return STI
->getFeatureBits().test(FeatureWavefrontSize32
) ? 1024 : 512;
404 unsigned getAddressableNumVGPRs(const MCSubtargetInfo
*STI
) {
408 unsigned getMinNumVGPRs(const MCSubtargetInfo
*STI
, unsigned WavesPerEU
) {
409 assert(WavesPerEU
!= 0);
411 if (WavesPerEU
>= getMaxWavesPerEU(STI
))
413 unsigned MinNumVGPRs
=
414 alignDown(getTotalNumVGPRs(STI
) / (WavesPerEU
+ 1),
415 getVGPRAllocGranule(STI
)) + 1;
416 return std::min(MinNumVGPRs
, getAddressableNumVGPRs(STI
));
419 unsigned getMaxNumVGPRs(const MCSubtargetInfo
*STI
, unsigned WavesPerEU
) {
420 assert(WavesPerEU
!= 0);
422 unsigned MaxNumVGPRs
= alignDown(getTotalNumVGPRs(STI
) / WavesPerEU
,
423 getVGPRAllocGranule(STI
));
424 unsigned AddressableNumVGPRs
= getAddressableNumVGPRs(STI
);
425 return std::min(MaxNumVGPRs
, AddressableNumVGPRs
);
428 unsigned getNumVGPRBlocks(const MCSubtargetInfo
*STI
, unsigned NumVGPRs
,
429 Optional
<bool> EnableWavefrontSize32
) {
430 NumVGPRs
= alignTo(std::max(1u, NumVGPRs
),
431 getVGPREncodingGranule(STI
, EnableWavefrontSize32
));
432 // VGPRBlocks is actual number of VGPR blocks minus 1.
433 return NumVGPRs
/ getVGPREncodingGranule(STI
, EnableWavefrontSize32
) - 1;
436 } // end namespace IsaInfo
438 void initDefaultAMDKernelCodeT(amd_kernel_code_t
&Header
,
439 const MCSubtargetInfo
*STI
) {
440 IsaVersion Version
= getIsaVersion(STI
->getCPU());
442 memset(&Header
, 0, sizeof(Header
));
444 Header
.amd_kernel_code_version_major
= 1;
445 Header
.amd_kernel_code_version_minor
= 2;
446 Header
.amd_machine_kind
= 1; // AMD_MACHINE_KIND_AMDGPU
447 Header
.amd_machine_version_major
= Version
.Major
;
448 Header
.amd_machine_version_minor
= Version
.Minor
;
449 Header
.amd_machine_version_stepping
= Version
.Stepping
;
450 Header
.kernel_code_entry_byte_offset
= sizeof(Header
);
451 Header
.wavefront_size
= 6;
453 // If the code object does not support indirect functions, then the value must
455 Header
.call_convention
= -1;
457 // These alignment values are specified in powers of two, so alignment =
458 // 2^n. The minimum alignment is 2^4 = 16.
459 Header
.kernarg_segment_alignment
= 4;
460 Header
.group_segment_alignment
= 4;
461 Header
.private_segment_alignment
= 4;
463 if (Version
.Major
>= 10) {
464 if (STI
->getFeatureBits().test(FeatureWavefrontSize32
)) {
465 Header
.wavefront_size
= 5;
466 Header
.code_properties
|= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32
;
468 Header
.compute_pgm_resource_registers
|=
469 S_00B848_WGP_MODE(STI
->getFeatureBits().test(FeatureCuMode
) ? 0 : 1) |
470 S_00B848_MEM_ORDERED(1);
474 amdhsa::kernel_descriptor_t
getDefaultAmdhsaKernelDescriptor(
475 const MCSubtargetInfo
*STI
) {
476 IsaVersion Version
= getIsaVersion(STI
->getCPU());
478 amdhsa::kernel_descriptor_t KD
;
479 memset(&KD
, 0, sizeof(KD
));
481 AMDHSA_BITS_SET(KD
.compute_pgm_rsrc1
,
482 amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64
,
483 amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE
);
484 AMDHSA_BITS_SET(KD
.compute_pgm_rsrc1
,
485 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP
, 1);
486 AMDHSA_BITS_SET(KD
.compute_pgm_rsrc1
,
487 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE
, 1);
488 AMDHSA_BITS_SET(KD
.compute_pgm_rsrc2
,
489 amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X
, 1);
490 if (Version
.Major
>= 10) {
491 AMDHSA_BITS_SET(KD
.kernel_code_properties
,
492 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32
,
493 STI
->getFeatureBits().test(FeatureWavefrontSize32
) ? 1 : 0);
494 AMDHSA_BITS_SET(KD
.compute_pgm_rsrc1
,
495 amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE
,
496 STI
->getFeatureBits().test(FeatureCuMode
) ? 0 : 1);
497 AMDHSA_BITS_SET(KD
.compute_pgm_rsrc1
,
498 amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED
, 1);
503 bool isGroupSegment(const GlobalValue
*GV
) {
504 return GV
->getType()->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS
;
507 bool isGlobalSegment(const GlobalValue
*GV
) {
508 return GV
->getType()->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS
;
511 bool isReadOnlySegment(const GlobalValue
*GV
) {
512 return GV
->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS
||
513 GV
->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT
;
516 bool shouldEmitConstantsToTextSection(const Triple
&TT
) {
517 return TT
.getOS() == Triple::AMDPAL
;
520 int getIntegerAttribute(const Function
&F
, StringRef Name
, int Default
) {
521 Attribute A
= F
.getFnAttribute(Name
);
522 int Result
= Default
;
524 if (A
.isStringAttribute()) {
525 StringRef Str
= A
.getValueAsString();
526 if (Str
.getAsInteger(0, Result
)) {
527 LLVMContext
&Ctx
= F
.getContext();
528 Ctx
.emitError("can't parse integer attribute " + Name
);
535 std::pair
<int, int> getIntegerPairAttribute(const Function
&F
,
537 std::pair
<int, int> Default
,
538 bool OnlyFirstRequired
) {
539 Attribute A
= F
.getFnAttribute(Name
);
540 if (!A
.isStringAttribute())
543 LLVMContext
&Ctx
= F
.getContext();
544 std::pair
<int, int> Ints
= Default
;
545 std::pair
<StringRef
, StringRef
> Strs
= A
.getValueAsString().split(',');
546 if (Strs
.first
.trim().getAsInteger(0, Ints
.first
)) {
547 Ctx
.emitError("can't parse first integer attribute " + Name
);
550 if (Strs
.second
.trim().getAsInteger(0, Ints
.second
)) {
551 if (!OnlyFirstRequired
|| !Strs
.second
.trim().empty()) {
552 Ctx
.emitError("can't parse second integer attribute " + Name
);
560 unsigned getVmcntBitMask(const IsaVersion
&Version
) {
561 unsigned VmcntLo
= (1 << getVmcntBitWidthLo()) - 1;
562 if (Version
.Major
< 9)
565 unsigned VmcntHi
= ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo();
566 return VmcntLo
| VmcntHi
;
569 unsigned getExpcntBitMask(const IsaVersion
&Version
) {
570 return (1 << getExpcntBitWidth()) - 1;
573 unsigned getLgkmcntBitMask(const IsaVersion
&Version
) {
574 return (1 << getLgkmcntBitWidth(Version
.Major
)) - 1;
577 unsigned getWaitcntBitMask(const IsaVersion
&Version
) {
578 unsigned VmcntLo
= getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo());
579 unsigned Expcnt
= getBitMask(getExpcntBitShift(), getExpcntBitWidth());
580 unsigned Lgkmcnt
= getBitMask(getLgkmcntBitShift(),
581 getLgkmcntBitWidth(Version
.Major
));
582 unsigned Waitcnt
= VmcntLo
| Expcnt
| Lgkmcnt
;
583 if (Version
.Major
< 9)
586 unsigned VmcntHi
= getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi());
587 return Waitcnt
| VmcntHi
;
590 unsigned decodeVmcnt(const IsaVersion
&Version
, unsigned Waitcnt
) {
592 unpackBits(Waitcnt
, getVmcntBitShiftLo(), getVmcntBitWidthLo());
593 if (Version
.Major
< 9)
597 unpackBits(Waitcnt
, getVmcntBitShiftHi(), getVmcntBitWidthHi());
598 VmcntHi
<<= getVmcntBitWidthLo();
599 return VmcntLo
| VmcntHi
;
602 unsigned decodeExpcnt(const IsaVersion
&Version
, unsigned Waitcnt
) {
603 return unpackBits(Waitcnt
, getExpcntBitShift(), getExpcntBitWidth());
606 unsigned decodeLgkmcnt(const IsaVersion
&Version
, unsigned Waitcnt
) {
607 return unpackBits(Waitcnt
, getLgkmcntBitShift(),
608 getLgkmcntBitWidth(Version
.Major
));
611 void decodeWaitcnt(const IsaVersion
&Version
, unsigned Waitcnt
,
612 unsigned &Vmcnt
, unsigned &Expcnt
, unsigned &Lgkmcnt
) {
613 Vmcnt
= decodeVmcnt(Version
, Waitcnt
);
614 Expcnt
= decodeExpcnt(Version
, Waitcnt
);
615 Lgkmcnt
= decodeLgkmcnt(Version
, Waitcnt
);
618 Waitcnt
decodeWaitcnt(const IsaVersion
&Version
, unsigned Encoded
) {
620 Decoded
.VmCnt
= decodeVmcnt(Version
, Encoded
);
621 Decoded
.ExpCnt
= decodeExpcnt(Version
, Encoded
);
622 Decoded
.LgkmCnt
= decodeLgkmcnt(Version
, Encoded
);
626 unsigned encodeVmcnt(const IsaVersion
&Version
, unsigned Waitcnt
,
629 packBits(Vmcnt
, Waitcnt
, getVmcntBitShiftLo(), getVmcntBitWidthLo());
630 if (Version
.Major
< 9)
633 Vmcnt
>>= getVmcntBitWidthLo();
634 return packBits(Vmcnt
, Waitcnt
, getVmcntBitShiftHi(), getVmcntBitWidthHi());
637 unsigned encodeExpcnt(const IsaVersion
&Version
, unsigned Waitcnt
,
639 return packBits(Expcnt
, Waitcnt
, getExpcntBitShift(), getExpcntBitWidth());
642 unsigned encodeLgkmcnt(const IsaVersion
&Version
, unsigned Waitcnt
,
644 return packBits(Lgkmcnt
, Waitcnt
, getLgkmcntBitShift(),
645 getLgkmcntBitWidth(Version
.Major
));
648 unsigned encodeWaitcnt(const IsaVersion
&Version
,
649 unsigned Vmcnt
, unsigned Expcnt
, unsigned Lgkmcnt
) {
650 unsigned Waitcnt
= getWaitcntBitMask(Version
);
651 Waitcnt
= encodeVmcnt(Version
, Waitcnt
, Vmcnt
);
652 Waitcnt
= encodeExpcnt(Version
, Waitcnt
, Expcnt
);
653 Waitcnt
= encodeLgkmcnt(Version
, Waitcnt
, Lgkmcnt
);
657 unsigned encodeWaitcnt(const IsaVersion
&Version
, const Waitcnt
&Decoded
) {
658 return encodeWaitcnt(Version
, Decoded
.VmCnt
, Decoded
.ExpCnt
, Decoded
.LgkmCnt
);
661 //===----------------------------------------------------------------------===//
663 //===----------------------------------------------------------------------===//
667 int64_t getHwregId(const StringRef Name
) {
668 for (int Id
= ID_SYMBOLIC_FIRST_
; Id
< ID_SYMBOLIC_LAST_
; ++Id
) {
669 if (IdSymbolic
[Id
] && Name
== IdSymbolic
[Id
])
675 static unsigned getLastSymbolicHwreg(const MCSubtargetInfo
&STI
) {
676 if (isSI(STI
) || isCI(STI
) || isVI(STI
))
677 return ID_SYMBOLIC_FIRST_GFX9_
;
678 else if (isGFX9(STI
))
679 return ID_SYMBOLIC_FIRST_GFX10_
;
681 return ID_SYMBOLIC_LAST_
;
684 bool isValidHwreg(int64_t Id
, const MCSubtargetInfo
&STI
) {
685 return ID_SYMBOLIC_FIRST_
<= Id
&& Id
< getLastSymbolicHwreg(STI
) &&
689 bool isValidHwreg(int64_t Id
) {
690 return 0 <= Id
&& isUInt
<ID_WIDTH_
>(Id
);
693 bool isValidHwregOffset(int64_t Offset
) {
694 return 0 <= Offset
&& isUInt
<OFFSET_WIDTH_
>(Offset
);
697 bool isValidHwregWidth(int64_t Width
) {
698 return 0 <= (Width
- 1) && isUInt
<WIDTH_M1_WIDTH_
>(Width
- 1);
701 uint64_t encodeHwreg(uint64_t Id
, uint64_t Offset
, uint64_t Width
) {
702 return (Id
<< ID_SHIFT_
) |
703 (Offset
<< OFFSET_SHIFT_
) |
704 ((Width
- 1) << WIDTH_M1_SHIFT_
);
707 StringRef
getHwreg(unsigned Id
, const MCSubtargetInfo
&STI
) {
708 return isValidHwreg(Id
, STI
) ? IdSymbolic
[Id
] : "";
711 void decodeHwreg(unsigned Val
, unsigned &Id
, unsigned &Offset
, unsigned &Width
) {
712 Id
= (Val
& ID_MASK_
) >> ID_SHIFT_
;
713 Offset
= (Val
& OFFSET_MASK_
) >> OFFSET_SHIFT_
;
714 Width
= ((Val
& WIDTH_M1_MASK_
) >> WIDTH_M1_SHIFT_
) + 1;
719 //===----------------------------------------------------------------------===//
721 //===----------------------------------------------------------------------===//
725 int64_t getMsgId(const StringRef Name
) {
726 for (int i
= ID_GAPS_FIRST_
; i
< ID_GAPS_LAST_
; ++i
) {
727 if (IdSymbolic
[i
] && Name
== IdSymbolic
[i
])
733 static bool isValidMsgId(int64_t MsgId
) {
734 return (ID_GAPS_FIRST_
<= MsgId
&& MsgId
< ID_GAPS_LAST_
) && IdSymbolic
[MsgId
];
737 bool isValidMsgId(int64_t MsgId
, const MCSubtargetInfo
&STI
, bool Strict
) {
739 if (MsgId
== ID_GS_ALLOC_REQ
|| MsgId
== ID_GET_DOORBELL
)
740 return isGFX9(STI
) || isGFX10(STI
);
742 return isValidMsgId(MsgId
);
744 return 0 <= MsgId
&& isUInt
<ID_WIDTH_
>(MsgId
);
748 StringRef
getMsgName(int64_t MsgId
) {
749 return isValidMsgId(MsgId
)? IdSymbolic
[MsgId
] : "";
752 int64_t getMsgOpId(int64_t MsgId
, const StringRef Name
) {
753 const char* const *S
= (MsgId
== ID_SYSMSG
) ? OpSysSymbolic
: OpGsSymbolic
;
754 const int F
= (MsgId
== ID_SYSMSG
) ? OP_SYS_FIRST_
: OP_GS_FIRST_
;
755 const int L
= (MsgId
== ID_SYSMSG
) ? OP_SYS_LAST_
: OP_GS_LAST_
;
756 for (int i
= F
; i
< L
; ++i
) {
764 bool isValidMsgOp(int64_t MsgId
, int64_t OpId
, bool Strict
) {
767 return 0 <= OpId
&& isUInt
<OP_WIDTH_
>(OpId
);
772 return (OP_GS_FIRST_
<= OpId
&& OpId
< OP_GS_LAST_
) && OpId
!= OP_GS_NOP
;
774 return OP_GS_FIRST_
<= OpId
&& OpId
< OP_GS_LAST_
;
776 return OP_SYS_FIRST_
<= OpId
&& OpId
< OP_SYS_LAST_
;
778 return OpId
== OP_NONE_
;
782 StringRef
getMsgOpName(int64_t MsgId
, int64_t OpId
) {
783 assert(msgRequiresOp(MsgId
));
784 return (MsgId
== ID_SYSMSG
)? OpSysSymbolic
[OpId
] : OpGsSymbolic
[OpId
];
787 bool isValidMsgStream(int64_t MsgId
, int64_t OpId
, int64_t StreamId
, bool Strict
) {
790 return 0 <= StreamId
&& isUInt
<STREAM_ID_WIDTH_
>(StreamId
);
795 return STREAM_ID_FIRST_
<= StreamId
&& StreamId
< STREAM_ID_LAST_
;
797 return (OpId
== OP_GS_NOP
)?
798 (StreamId
== STREAM_ID_NONE_
) :
799 (STREAM_ID_FIRST_
<= StreamId
&& StreamId
< STREAM_ID_LAST_
);
801 return StreamId
== STREAM_ID_NONE_
;
805 bool msgRequiresOp(int64_t MsgId
) {
806 return MsgId
== ID_GS
|| MsgId
== ID_GS_DONE
|| MsgId
== ID_SYSMSG
;
809 bool msgSupportsStream(int64_t MsgId
, int64_t OpId
) {
810 return (MsgId
== ID_GS
|| MsgId
== ID_GS_DONE
) && OpId
!= OP_GS_NOP
;
813 void decodeMsg(unsigned Val
,
816 uint16_t &StreamId
) {
817 MsgId
= Val
& ID_MASK_
;
818 OpId
= (Val
& OP_MASK_
) >> OP_SHIFT_
;
819 StreamId
= (Val
& STREAM_ID_MASK_
) >> STREAM_ID_SHIFT_
;
822 uint64_t encodeMsg(uint64_t MsgId
,
825 return (MsgId
<< ID_SHIFT_
) |
826 (OpId
<< OP_SHIFT_
) |
827 (StreamId
<< STREAM_ID_SHIFT_
);
830 } // namespace SendMsg
832 //===----------------------------------------------------------------------===//
834 //===----------------------------------------------------------------------===//
836 unsigned getInitialPSInputAddr(const Function
&F
) {
837 return getIntegerAttribute(F
, "InitialPSInputAddr", 0);
840 bool isShader(CallingConv::ID cc
) {
842 case CallingConv::AMDGPU_VS
:
843 case CallingConv::AMDGPU_LS
:
844 case CallingConv::AMDGPU_HS
:
845 case CallingConv::AMDGPU_ES
:
846 case CallingConv::AMDGPU_GS
:
847 case CallingConv::AMDGPU_PS
:
848 case CallingConv::AMDGPU_CS
:
855 bool isCompute(CallingConv::ID cc
) {
856 return !isShader(cc
) || cc
== CallingConv::AMDGPU_CS
;
859 bool isEntryFunctionCC(CallingConv::ID CC
) {
861 case CallingConv::AMDGPU_KERNEL
:
862 case CallingConv::SPIR_KERNEL
:
863 case CallingConv::AMDGPU_VS
:
864 case CallingConv::AMDGPU_GS
:
865 case CallingConv::AMDGPU_PS
:
866 case CallingConv::AMDGPU_CS
:
867 case CallingConv::AMDGPU_ES
:
868 case CallingConv::AMDGPU_HS
:
869 case CallingConv::AMDGPU_LS
:
876 bool hasXNACK(const MCSubtargetInfo
&STI
) {
877 return STI
.getFeatureBits()[AMDGPU::FeatureXNACK
];
880 bool hasSRAMECC(const MCSubtargetInfo
&STI
) {
881 return STI
.getFeatureBits()[AMDGPU::FeatureSRAMECC
];
884 bool hasMIMG_R128(const MCSubtargetInfo
&STI
) {
885 return STI
.getFeatureBits()[AMDGPU::FeatureMIMG_R128
];
888 bool hasPackedD16(const MCSubtargetInfo
&STI
) {
889 return !STI
.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem
];
892 bool isSI(const MCSubtargetInfo
&STI
) {
893 return STI
.getFeatureBits()[AMDGPU::FeatureSouthernIslands
];
896 bool isCI(const MCSubtargetInfo
&STI
) {
897 return STI
.getFeatureBits()[AMDGPU::FeatureSeaIslands
];
900 bool isVI(const MCSubtargetInfo
&STI
) {
901 return STI
.getFeatureBits()[AMDGPU::FeatureVolcanicIslands
];
904 bool isGFX9(const MCSubtargetInfo
&STI
) {
905 return STI
.getFeatureBits()[AMDGPU::FeatureGFX9
];
908 bool isGFX10(const MCSubtargetInfo
&STI
) {
909 return STI
.getFeatureBits()[AMDGPU::FeatureGFX10
];
912 bool isGCN3Encoding(const MCSubtargetInfo
&STI
) {
913 return STI
.getFeatureBits()[AMDGPU::FeatureGCN3Encoding
];
916 bool isSGPR(unsigned Reg
, const MCRegisterInfo
* TRI
) {
917 const MCRegisterClass SGPRClass
= TRI
->getRegClass(AMDGPU::SReg_32RegClassID
);
918 const unsigned FirstSubReg
= TRI
->getSubReg(Reg
, 1);
919 return SGPRClass
.contains(FirstSubReg
!= 0 ? FirstSubReg
: Reg
) ||
923 bool isRegIntersect(unsigned Reg0
, unsigned Reg1
, const MCRegisterInfo
* TRI
) {
924 for (MCRegAliasIterator
R(Reg0
, TRI
, true); R
.isValid(); ++R
) {
925 if (*R
== Reg1
) return true;
930 #define MAP_REG2REG \
931 using namespace AMDGPU; \
933 default: return Reg; \
934 CASE_CI_VI(FLAT_SCR) \
935 CASE_CI_VI(FLAT_SCR_LO) \
936 CASE_CI_VI(FLAT_SCR_HI) \
937 CASE_VI_GFX9_GFX10(TTMP0) \
938 CASE_VI_GFX9_GFX10(TTMP1) \
939 CASE_VI_GFX9_GFX10(TTMP2) \
940 CASE_VI_GFX9_GFX10(TTMP3) \
941 CASE_VI_GFX9_GFX10(TTMP4) \
942 CASE_VI_GFX9_GFX10(TTMP5) \
943 CASE_VI_GFX9_GFX10(TTMP6) \
944 CASE_VI_GFX9_GFX10(TTMP7) \
945 CASE_VI_GFX9_GFX10(TTMP8) \
946 CASE_VI_GFX9_GFX10(TTMP9) \
947 CASE_VI_GFX9_GFX10(TTMP10) \
948 CASE_VI_GFX9_GFX10(TTMP11) \
949 CASE_VI_GFX9_GFX10(TTMP12) \
950 CASE_VI_GFX9_GFX10(TTMP13) \
951 CASE_VI_GFX9_GFX10(TTMP14) \
952 CASE_VI_GFX9_GFX10(TTMP15) \
953 CASE_VI_GFX9_GFX10(TTMP0_TTMP1) \
954 CASE_VI_GFX9_GFX10(TTMP2_TTMP3) \
955 CASE_VI_GFX9_GFX10(TTMP4_TTMP5) \
956 CASE_VI_GFX9_GFX10(TTMP6_TTMP7) \
957 CASE_VI_GFX9_GFX10(TTMP8_TTMP9) \
958 CASE_VI_GFX9_GFX10(TTMP10_TTMP11) \
959 CASE_VI_GFX9_GFX10(TTMP12_TTMP13) \
960 CASE_VI_GFX9_GFX10(TTMP14_TTMP15) \
961 CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3) \
962 CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7) \
963 CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11) \
964 CASE_VI_GFX9_GFX10(TTMP12_TTMP13_TTMP14_TTMP15) \
965 CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \
966 CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \
967 CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
968 CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
971 #define CASE_CI_VI(node) \
972 assert(!isSI(STI)); \
973 case node: return isCI(STI) ? node##_ci : node##_vi;
975 #define CASE_VI_GFX9_GFX10(node) \
976 case node: return (isGFX9(STI) || isGFX10(STI)) ? node##_gfx9_gfx10 : node##_vi;
978 unsigned getMCReg(unsigned Reg
, const MCSubtargetInfo
&STI
) {
979 if (STI
.getTargetTriple().getArch() == Triple::r600
)
985 #undef CASE_VI_GFX9_GFX10
987 #define CASE_CI_VI(node) case node##_ci: case node##_vi: return node;
988 #define CASE_VI_GFX9_GFX10(node) case node##_vi: case node##_gfx9_gfx10: return node;
990 unsigned mc2PseudoReg(unsigned Reg
) {
995 #undef CASE_VI_GFX9_GFX10
998 bool isSISrcOperand(const MCInstrDesc
&Desc
, unsigned OpNo
) {
999 assert(OpNo
< Desc
.NumOperands
);
1000 unsigned OpType
= Desc
.OpInfo
[OpNo
].OperandType
;
1001 return OpType
>= AMDGPU::OPERAND_SRC_FIRST
&&
1002 OpType
<= AMDGPU::OPERAND_SRC_LAST
;
1005 bool isSISrcFPOperand(const MCInstrDesc
&Desc
, unsigned OpNo
) {
1006 assert(OpNo
< Desc
.NumOperands
);
1007 unsigned OpType
= Desc
.OpInfo
[OpNo
].OperandType
;
1009 case AMDGPU::OPERAND_REG_IMM_FP32
:
1010 case AMDGPU::OPERAND_REG_IMM_FP64
:
1011 case AMDGPU::OPERAND_REG_IMM_FP16
:
1012 case AMDGPU::OPERAND_REG_IMM_V2FP16
:
1013 case AMDGPU::OPERAND_REG_IMM_V2INT16
:
1014 case AMDGPU::OPERAND_REG_INLINE_C_FP32
:
1015 case AMDGPU::OPERAND_REG_INLINE_C_FP64
:
1016 case AMDGPU::OPERAND_REG_INLINE_C_FP16
:
1017 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16
:
1018 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16
:
1019 case AMDGPU::OPERAND_REG_INLINE_AC_FP32
:
1020 case AMDGPU::OPERAND_REG_INLINE_AC_FP16
:
1021 case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16
:
1022 case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16
:
1029 bool isSISrcInlinableOperand(const MCInstrDesc
&Desc
, unsigned OpNo
) {
1030 assert(OpNo
< Desc
.NumOperands
);
1031 unsigned OpType
= Desc
.OpInfo
[OpNo
].OperandType
;
1032 return OpType
>= AMDGPU::OPERAND_REG_INLINE_C_FIRST
&&
1033 OpType
<= AMDGPU::OPERAND_REG_INLINE_C_LAST
;
1036 // Avoid using MCRegisterClass::getSize, since that function will go away
1037 // (move from MC* level to Target* level). Return size in bits.
1038 unsigned getRegBitWidth(unsigned RCID
) {
1040 case AMDGPU::SGPR_32RegClassID
:
1041 case AMDGPU::VGPR_32RegClassID
:
1042 case AMDGPU::VRegOrLds_32RegClassID
:
1043 case AMDGPU::AGPR_32RegClassID
:
1044 case AMDGPU::VS_32RegClassID
:
1045 case AMDGPU::AV_32RegClassID
:
1046 case AMDGPU::SReg_32RegClassID
:
1047 case AMDGPU::SReg_32_XM0RegClassID
:
1048 case AMDGPU::SRegOrLds_32RegClassID
:
1050 case AMDGPU::SGPR_64RegClassID
:
1051 case AMDGPU::VS_64RegClassID
:
1052 case AMDGPU::AV_64RegClassID
:
1053 case AMDGPU::SReg_64RegClassID
:
1054 case AMDGPU::VReg_64RegClassID
:
1055 case AMDGPU::AReg_64RegClassID
:
1056 case AMDGPU::SReg_64_XEXECRegClassID
:
1058 case AMDGPU::SGPR_96RegClassID
:
1059 case AMDGPU::SReg_96RegClassID
:
1060 case AMDGPU::VReg_96RegClassID
:
1062 case AMDGPU::SGPR_128RegClassID
:
1063 case AMDGPU::SReg_128RegClassID
:
1064 case AMDGPU::VReg_128RegClassID
:
1065 case AMDGPU::AReg_128RegClassID
:
1067 case AMDGPU::SGPR_160RegClassID
:
1068 case AMDGPU::SReg_160RegClassID
:
1069 case AMDGPU::VReg_160RegClassID
:
1071 case AMDGPU::SReg_256RegClassID
:
1072 case AMDGPU::VReg_256RegClassID
:
1074 case AMDGPU::SReg_512RegClassID
:
1075 case AMDGPU::VReg_512RegClassID
:
1076 case AMDGPU::AReg_512RegClassID
:
1078 case AMDGPU::SReg_1024RegClassID
:
1079 case AMDGPU::VReg_1024RegClassID
:
1080 case AMDGPU::AReg_1024RegClassID
:
1083 llvm_unreachable("Unexpected register class");
1087 unsigned getRegBitWidth(const MCRegisterClass
&RC
) {
1088 return getRegBitWidth(RC
.getID());
1091 unsigned getRegOperandSize(const MCRegisterInfo
*MRI
, const MCInstrDesc
&Desc
,
1093 assert(OpNo
< Desc
.NumOperands
);
1094 unsigned RCID
= Desc
.OpInfo
[OpNo
].RegClass
;
1095 return getRegBitWidth(MRI
->getRegClass(RCID
)) / 8;
1098 bool isInlinableLiteral64(int64_t Literal
, bool HasInv2Pi
) {
1099 if (Literal
>= -16 && Literal
<= 64)
1102 uint64_t Val
= static_cast<uint64_t>(Literal
);
1103 return (Val
== DoubleToBits(0.0)) ||
1104 (Val
== DoubleToBits(1.0)) ||
1105 (Val
== DoubleToBits(-1.0)) ||
1106 (Val
== DoubleToBits(0.5)) ||
1107 (Val
== DoubleToBits(-0.5)) ||
1108 (Val
== DoubleToBits(2.0)) ||
1109 (Val
== DoubleToBits(-2.0)) ||
1110 (Val
== DoubleToBits(4.0)) ||
1111 (Val
== DoubleToBits(-4.0)) ||
1112 (Val
== 0x3fc45f306dc9c882 && HasInv2Pi
);
1115 bool isInlinableLiteral32(int32_t Literal
, bool HasInv2Pi
) {
1116 if (Literal
>= -16 && Literal
<= 64)
1119 // The actual type of the operand does not seem to matter as long
1120 // as the bits match one of the inline immediate values. For example:
1122 // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
1123 // so it is a legal inline immediate.
1125 // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
1126 // floating-point, so it is a legal inline immediate.
1128 uint32_t Val
= static_cast<uint32_t>(Literal
);
1129 return (Val
== FloatToBits(0.0f
)) ||
1130 (Val
== FloatToBits(1.0f
)) ||
1131 (Val
== FloatToBits(-1.0f
)) ||
1132 (Val
== FloatToBits(0.5f
)) ||
1133 (Val
== FloatToBits(-0.5f
)) ||
1134 (Val
== FloatToBits(2.0f
)) ||
1135 (Val
== FloatToBits(-2.0f
)) ||
1136 (Val
== FloatToBits(4.0f
)) ||
1137 (Val
== FloatToBits(-4.0f
)) ||
1138 (Val
== 0x3e22f983 && HasInv2Pi
);
1141 bool isInlinableLiteral16(int16_t Literal
, bool HasInv2Pi
) {
1145 if (Literal
>= -16 && Literal
<= 64)
1148 uint16_t Val
= static_cast<uint16_t>(Literal
);
1149 return Val
== 0x3C00 || // 1.0
1150 Val
== 0xBC00 || // -1.0
1151 Val
== 0x3800 || // 0.5
1152 Val
== 0xB800 || // -0.5
1153 Val
== 0x4000 || // 2.0
1154 Val
== 0xC000 || // -2.0
1155 Val
== 0x4400 || // 4.0
1156 Val
== 0xC400 || // -4.0
1157 Val
== 0x3118; // 1/2pi
1160 bool isInlinableLiteralV216(int32_t Literal
, bool HasInv2Pi
) {
1163 if (isInt
<16>(Literal
) || isUInt
<16>(Literal
)) {
1164 int16_t Trunc
= static_cast<int16_t>(Literal
);
1165 return AMDGPU::isInlinableLiteral16(Trunc
, HasInv2Pi
);
1167 if (!(Literal
& 0xffff))
1168 return AMDGPU::isInlinableLiteral16(Literal
>> 16, HasInv2Pi
);
1170 int16_t Lo16
= static_cast<int16_t>(Literal
);
1171 int16_t Hi16
= static_cast<int16_t>(Literal
>> 16);
1172 return Lo16
== Hi16
&& isInlinableLiteral16(Lo16
, HasInv2Pi
);
1175 bool isArgPassedInSGPR(const Argument
*A
) {
1176 const Function
*F
= A
->getParent();
1178 // Arguments to compute shaders are never a source of divergence.
1179 CallingConv::ID CC
= F
->getCallingConv();
1181 case CallingConv::AMDGPU_KERNEL
:
1182 case CallingConv::SPIR_KERNEL
:
1184 case CallingConv::AMDGPU_VS
:
1185 case CallingConv::AMDGPU_LS
:
1186 case CallingConv::AMDGPU_HS
:
1187 case CallingConv::AMDGPU_ES
:
1188 case CallingConv::AMDGPU_GS
:
1189 case CallingConv::AMDGPU_PS
:
1190 case CallingConv::AMDGPU_CS
:
1191 // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
1192 // Everything else is in VGPRs.
1193 return F
->getAttributes().hasParamAttribute(A
->getArgNo(), Attribute::InReg
) ||
1194 F
->getAttributes().hasParamAttribute(A
->getArgNo(), Attribute::ByVal
);
1196 // TODO: Should calls support inreg for SGPR inputs?
1201 static bool hasSMEMByteOffset(const MCSubtargetInfo
&ST
) {
1202 return isGCN3Encoding(ST
) || isGFX10(ST
);
1205 int64_t getSMRDEncodedOffset(const MCSubtargetInfo
&ST
, int64_t ByteOffset
) {
1206 if (hasSMEMByteOffset(ST
))
1208 return ByteOffset
>> 2;
1211 bool isLegalSMRDImmOffset(const MCSubtargetInfo
&ST
, int64_t ByteOffset
) {
1212 int64_t EncodedOffset
= getSMRDEncodedOffset(ST
, ByteOffset
);
1213 return (hasSMEMByteOffset(ST
)) ?
1214 isUInt
<20>(EncodedOffset
) : isUInt
<8>(EncodedOffset
);
1217 // Given Imm, split it into the values to put into the SOffset and ImmOffset
1218 // fields in an MUBUF instruction. Return false if it is not possible (due to a
1219 // hardware bug needing a workaround).
1221 // The required alignment ensures that individual address components remain
1222 // aligned if they are aligned to begin with. It also ensures that additional
1223 // offsets within the given alignment can be added to the resulting ImmOffset.
1224 bool splitMUBUFOffset(uint32_t Imm
, uint32_t &SOffset
, uint32_t &ImmOffset
,
1225 const GCNSubtarget
*Subtarget
, uint32_t Align
) {
1226 const uint32_t MaxImm
= alignDown(4095, Align
);
1227 uint32_t Overflow
= 0;
1230 if (Imm
<= MaxImm
+ 64) {
1231 // Use an SOffset inline constant for 4..64
1232 Overflow
= Imm
- MaxImm
;
1235 // Try to keep the same value in SOffset for adjacent loads, so that
1236 // the corresponding register contents can be re-used.
1238 // Load values with all low-bits (except for alignment bits) set into
1239 // SOffset, so that a larger range of values can be covered using
1242 // Atomic operations fail to work correctly when individual address
1243 // components are unaligned, even if their sum is aligned.
1244 uint32_t High
= (Imm
+ Align
) & ~4095;
1245 uint32_t Low
= (Imm
+ Align
) & 4095;
1247 Overflow
= High
- Align
;
1251 // There is a hardware bug in SI and CI which prevents address clamping in
1252 // MUBUF instructions from working correctly with SOffsets. The immediate
1253 // offset is unaffected.
1255 Subtarget
->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS
)
1263 SIModeRegisterDefaults::SIModeRegisterDefaults(const Function
&F
) {
1264 *this = getDefaultForCallingConv(F
.getCallingConv());
1266 StringRef IEEEAttr
= F
.getFnAttribute("amdgpu-ieee").getValueAsString();
1267 if (!IEEEAttr
.empty())
1268 IEEE
= IEEEAttr
== "true";
1270 StringRef DX10ClampAttr
1271 = F
.getFnAttribute("amdgpu-dx10-clamp").getValueAsString();
1272 if (!DX10ClampAttr
.empty())
1273 DX10Clamp
= DX10ClampAttr
== "true";
1278 struct SourceOfDivergence
{
1281 const SourceOfDivergence
*lookupSourceOfDivergence(unsigned Intr
);
1283 #define GET_SourcesOfDivergence_IMPL
1284 #include "AMDGPUGenSearchableTables.inc"
1286 } // end anonymous namespace
1288 bool isIntrinsicSourceOfDivergence(unsigned IntrID
) {
1289 return lookupSourceOfDivergence(IntrID
);
1292 } // namespace AMDGPU