[x86] fix assert with horizontal math + broadcast of vector (PR43402)
[llvm-core.git] / lib / Target / Hexagon / MCTargetDesc / HexagonMCInstrInfo.cpp
blob0750bfe74f7602c1e7b3fe04f088f3630a3632da
1 //===- HexagonMCInstrInfo.cpp - Hexagon sub-class of MCInst ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This class extends MCInstrInfo to allow Hexagon specific MCInstr queries
11 //===----------------------------------------------------------------------===//
13 #include "MCTargetDesc/HexagonMCInstrInfo.h"
14 #include "MCTargetDesc/HexagonBaseInfo.h"
15 #include "MCTargetDesc/HexagonMCChecker.h"
16 #include "MCTargetDesc/HexagonMCExpr.h"
17 #include "MCTargetDesc/HexagonMCShuffler.h"
18 #include "MCTargetDesc/HexagonMCTargetDesc.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/MC/MCContext.h"
21 #include "llvm/MC/MCExpr.h"
22 #include "llvm/MC/MCInst.h"
23 #include "llvm/MC/MCInstrInfo.h"
24 #include "llvm/MC/MCInstrItineraries.h"
25 #include "llvm/MC/MCSubtargetInfo.h"
26 #include "llvm/Support/Casting.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include <cassert>
29 #include <cstdint>
30 #include <limits>
32 using namespace llvm;
34 bool HexagonMCInstrInfo::PredicateInfo::isPredicated() const {
35 return Register != Hexagon::NoRegister;
38 Hexagon::PacketIterator::PacketIterator(MCInstrInfo const &MCII,
39 MCInst const &Inst)
40 : MCII(MCII), BundleCurrent(Inst.begin() +
41 HexagonMCInstrInfo::bundleInstructionsOffset),
42 BundleEnd(Inst.end()), DuplexCurrent(Inst.end()), DuplexEnd(Inst.end()) {}
44 Hexagon::PacketIterator::PacketIterator(MCInstrInfo const &MCII,
45 MCInst const &Inst, std::nullptr_t)
46 : MCII(MCII), BundleCurrent(Inst.end()), BundleEnd(Inst.end()),
47 DuplexCurrent(Inst.end()), DuplexEnd(Inst.end()) {}
49 Hexagon::PacketIterator &Hexagon::PacketIterator::operator++() {
50 if (DuplexCurrent != DuplexEnd) {
51 ++DuplexCurrent;
52 if (DuplexCurrent == DuplexEnd) {
53 DuplexCurrent = BundleEnd;
54 DuplexEnd = BundleEnd;
55 ++BundleCurrent;
57 return *this;
59 ++BundleCurrent;
60 if (BundleCurrent != BundleEnd) {
61 MCInst const &Inst = *BundleCurrent->getInst();
62 if (HexagonMCInstrInfo::isDuplex(MCII, Inst)) {
63 DuplexCurrent = Inst.begin();
64 DuplexEnd = Inst.end();
67 return *this;
70 MCInst const &Hexagon::PacketIterator::operator*() const {
71 if (DuplexCurrent != DuplexEnd)
72 return *DuplexCurrent->getInst();
73 return *BundleCurrent->getInst();
76 bool Hexagon::PacketIterator::operator==(PacketIterator const &Other) const {
77 return BundleCurrent == Other.BundleCurrent && BundleEnd == Other.BundleEnd &&
78 DuplexCurrent == Other.DuplexCurrent && DuplexEnd == Other.DuplexEnd;
81 void HexagonMCInstrInfo::addConstant(MCInst &MI, uint64_t Value,
82 MCContext &Context) {
83 MI.addOperand(MCOperand::createExpr(MCConstantExpr::create(Value, Context)));
86 void HexagonMCInstrInfo::addConstExtender(MCContext &Context,
87 MCInstrInfo const &MCII, MCInst &MCB,
88 MCInst const &MCI) {
89 assert(HexagonMCInstrInfo::isBundle(MCB));
90 MCOperand const &exOp =
91 MCI.getOperand(HexagonMCInstrInfo::getExtendableOp(MCII, MCI));
93 // Create the extender.
94 MCInst *XMCI =
95 new (Context) MCInst(HexagonMCInstrInfo::deriveExtender(MCII, MCI, exOp));
96 XMCI->setLoc(MCI.getLoc());
98 MCB.addOperand(MCOperand::createInst(XMCI));
101 iterator_range<Hexagon::PacketIterator>
102 HexagonMCInstrInfo::bundleInstructions(MCInstrInfo const &MCII,
103 MCInst const &MCI) {
104 assert(isBundle(MCI));
105 return make_range(Hexagon::PacketIterator(MCII, MCI),
106 Hexagon::PacketIterator(MCII, MCI, nullptr));
109 iterator_range<MCInst::const_iterator>
110 HexagonMCInstrInfo::bundleInstructions(MCInst const &MCI) {
111 assert(isBundle(MCI));
112 return make_range(MCI.begin() + bundleInstructionsOffset, MCI.end());
115 size_t HexagonMCInstrInfo::bundleSize(MCInst const &MCI) {
116 if (HexagonMCInstrInfo::isBundle(MCI))
117 return (MCI.size() - bundleInstructionsOffset);
118 else
119 return (1);
122 bool HexagonMCInstrInfo::canonicalizePacket(MCInstrInfo const &MCII,
123 MCSubtargetInfo const &STI,
124 MCContext &Context, MCInst &MCB,
125 HexagonMCChecker *Check) {
126 // Check the bundle for errors.
127 bool CheckOk = Check ? Check->check(false) : true;
128 if (!CheckOk)
129 return false;
130 // Examine the packet and convert pairs of instructions to compound
131 // instructions when possible.
132 if (!HexagonDisableCompound)
133 HexagonMCInstrInfo::tryCompound(MCII, STI, Context, MCB);
134 HexagonMCShuffle(Context, false, MCII, STI, MCB);
135 // Examine the packet and convert pairs of instructions to duplex
136 // instructions when possible.
137 MCInst InstBundlePreDuplex = MCInst(MCB);
138 if (STI.getFeatureBits() [Hexagon::FeatureDuplex]) {
139 SmallVector<DuplexCandidate, 8> possibleDuplexes;
140 possibleDuplexes =
141 HexagonMCInstrInfo::getDuplexPossibilties(MCII, STI, MCB);
142 HexagonMCShuffle(Context, MCII, STI, MCB, possibleDuplexes);
144 // Examines packet and pad the packet, if needed, when an
145 // end-loop is in the bundle.
146 HexagonMCInstrInfo::padEndloop(MCB, Context);
147 // If compounding and duplexing didn't reduce the size below
148 // 4 or less we have a packet that is too big.
149 if (HexagonMCInstrInfo::bundleSize(MCB) > HEXAGON_PACKET_SIZE)
150 return false;
151 // Check the bundle for errors.
152 CheckOk = Check ? Check->check(true) : true;
153 if (!CheckOk)
154 return false;
155 HexagonMCShuffle(Context, true, MCII, STI, MCB);
156 return true;
159 MCInst HexagonMCInstrInfo::deriveExtender(MCInstrInfo const &MCII,
160 MCInst const &Inst,
161 MCOperand const &MO) {
162 assert(HexagonMCInstrInfo::isExtendable(MCII, Inst) ||
163 HexagonMCInstrInfo::isExtended(MCII, Inst));
165 MCInst XMI;
166 XMI.setOpcode(Hexagon::A4_ext);
167 if (MO.isImm())
168 XMI.addOperand(MCOperand::createImm(MO.getImm() & (~0x3f)));
169 else if (MO.isExpr())
170 XMI.addOperand(MCOperand::createExpr(MO.getExpr()));
171 else
172 llvm_unreachable("invalid extendable operand");
173 return XMI;
176 MCInst *HexagonMCInstrInfo::deriveDuplex(MCContext &Context, unsigned iClass,
177 MCInst const &inst0,
178 MCInst const &inst1) {
179 assert((iClass <= 0xf) && "iClass must have range of 0 to 0xf");
180 MCInst *duplexInst = new (Context) MCInst;
181 duplexInst->setOpcode(Hexagon::DuplexIClass0 + iClass);
183 MCInst *SubInst0 = new (Context) MCInst(deriveSubInst(inst0));
184 MCInst *SubInst1 = new (Context) MCInst(deriveSubInst(inst1));
185 duplexInst->addOperand(MCOperand::createInst(SubInst0));
186 duplexInst->addOperand(MCOperand::createInst(SubInst1));
187 return duplexInst;
190 MCInst const *HexagonMCInstrInfo::extenderForIndex(MCInst const &MCB,
191 size_t Index) {
192 assert(Index <= bundleSize(MCB));
193 if (Index == 0)
194 return nullptr;
195 MCInst const *Inst =
196 MCB.getOperand(Index + bundleInstructionsOffset - 1).getInst();
197 if (isImmext(*Inst))
198 return Inst;
199 return nullptr;
202 void HexagonMCInstrInfo::extendIfNeeded(MCContext &Context,
203 MCInstrInfo const &MCII, MCInst &MCB,
204 MCInst const &MCI) {
205 if (isConstExtended(MCII, MCI))
206 addConstExtender(Context, MCII, MCB, MCI);
209 unsigned HexagonMCInstrInfo::getMemAccessSize(MCInstrInfo const &MCII,
210 MCInst const &MCI) {
211 uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
212 unsigned S = (F >> HexagonII::MemAccessSizePos) & HexagonII::MemAccesSizeMask;
213 return HexagonII::getMemAccessSizeInBytes(HexagonII::MemAccessSize(S));
216 unsigned HexagonMCInstrInfo::getAddrMode(MCInstrInfo const &MCII,
217 MCInst const &MCI) {
218 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
219 return static_cast<unsigned>((F >> HexagonII::AddrModePos) &
220 HexagonII::AddrModeMask);
223 MCInstrDesc const &HexagonMCInstrInfo::getDesc(MCInstrInfo const &MCII,
224 MCInst const &MCI) {
225 return MCII.get(MCI.getOpcode());
228 unsigned HexagonMCInstrInfo::getDuplexRegisterNumbering(unsigned Reg) {
229 using namespace Hexagon;
231 switch (Reg) {
232 default:
233 llvm_unreachable("unknown duplex register");
234 // Rs Rss
235 case R0:
236 case D0:
237 return 0;
238 case R1:
239 case D1:
240 return 1;
241 case R2:
242 case D2:
243 return 2;
244 case R3:
245 case D3:
246 return 3;
247 case R4:
248 case D8:
249 return 4;
250 case R5:
251 case D9:
252 return 5;
253 case R6:
254 case D10:
255 return 6;
256 case R7:
257 case D11:
258 return 7;
259 case R16:
260 return 8;
261 case R17:
262 return 9;
263 case R18:
264 return 10;
265 case R19:
266 return 11;
267 case R20:
268 return 12;
269 case R21:
270 return 13;
271 case R22:
272 return 14;
273 case R23:
274 return 15;
278 MCExpr const &HexagonMCInstrInfo::getExpr(MCExpr const &Expr) {
279 const auto &HExpr = cast<HexagonMCExpr>(Expr);
280 assert(HExpr.getExpr());
281 return *HExpr.getExpr();
284 unsigned short HexagonMCInstrInfo::getExtendableOp(MCInstrInfo const &MCII,
285 MCInst const &MCI) {
286 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
287 return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask);
290 MCOperand const &
291 HexagonMCInstrInfo::getExtendableOperand(MCInstrInfo const &MCII,
292 MCInst const &MCI) {
293 unsigned O = HexagonMCInstrInfo::getExtendableOp(MCII, MCI);
294 MCOperand const &MO = MCI.getOperand(O);
296 assert((HexagonMCInstrInfo::isExtendable(MCII, MCI) ||
297 HexagonMCInstrInfo::isExtended(MCII, MCI)) &&
298 (MO.isImm() || MO.isExpr()));
299 return (MO);
302 unsigned HexagonMCInstrInfo::getExtentAlignment(MCInstrInfo const &MCII,
303 MCInst const &MCI) {
304 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
305 return ((F >> HexagonII::ExtentAlignPos) & HexagonII::ExtentAlignMask);
308 unsigned HexagonMCInstrInfo::getExtentBits(MCInstrInfo const &MCII,
309 MCInst const &MCI) {
310 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
311 return ((F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask);
314 bool HexagonMCInstrInfo::isExtentSigned(MCInstrInfo const &MCII,
315 MCInst const &MCI) {
316 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
317 return (F >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask;
320 /// Return the maximum value of an extendable operand.
321 int HexagonMCInstrInfo::getMaxValue(MCInstrInfo const &MCII,
322 MCInst const &MCI) {
323 assert(HexagonMCInstrInfo::isExtendable(MCII, MCI) ||
324 HexagonMCInstrInfo::isExtended(MCII, MCI));
326 if (HexagonMCInstrInfo::isExtentSigned(MCII, MCI)) // if value is signed
327 return (1 << (HexagonMCInstrInfo::getExtentBits(MCII, MCI) - 1)) - 1;
328 return (1 << HexagonMCInstrInfo::getExtentBits(MCII, MCI)) - 1;
331 /// Return the minimum value of an extendable operand.
332 int HexagonMCInstrInfo::getMinValue(MCInstrInfo const &MCII,
333 MCInst const &MCI) {
334 assert(HexagonMCInstrInfo::isExtendable(MCII, MCI) ||
335 HexagonMCInstrInfo::isExtended(MCII, MCI));
337 if (HexagonMCInstrInfo::isExtentSigned(MCII, MCI)) // if value is signed
338 return -(1 << (HexagonMCInstrInfo::getExtentBits(MCII, MCI) - 1));
339 return 0;
342 StringRef HexagonMCInstrInfo::getName(MCInstrInfo const &MCII,
343 MCInst const &MCI) {
344 return MCII.getName(MCI.getOpcode());
347 unsigned short HexagonMCInstrInfo::getNewValueOp(MCInstrInfo const &MCII,
348 MCInst const &MCI) {
349 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
350 return ((F >> HexagonII::NewValueOpPos) & HexagonII::NewValueOpMask);
353 MCOperand const &HexagonMCInstrInfo::getNewValueOperand(MCInstrInfo const &MCII,
354 MCInst const &MCI) {
355 if (HexagonMCInstrInfo::hasTmpDst(MCII, MCI)) {
356 // VTMP doesn't actually exist in the encodings for these 184
357 // 3 instructions so go ahead and create it here.
358 static MCOperand MCO = MCOperand::createReg(Hexagon::VTMP);
359 return (MCO);
360 } else {
361 unsigned O = HexagonMCInstrInfo::getNewValueOp(MCII, MCI);
362 MCOperand const &MCO = MCI.getOperand(O);
364 assert((HexagonMCInstrInfo::isNewValue(MCII, MCI) ||
365 HexagonMCInstrInfo::hasNewValue(MCII, MCI)) &&
366 MCO.isReg());
367 return (MCO);
371 /// Return the new value or the newly produced value.
372 unsigned short HexagonMCInstrInfo::getNewValueOp2(MCInstrInfo const &MCII,
373 MCInst const &MCI) {
374 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
375 return ((F >> HexagonII::NewValueOpPos2) & HexagonII::NewValueOpMask2);
378 MCOperand const &
379 HexagonMCInstrInfo::getNewValueOperand2(MCInstrInfo const &MCII,
380 MCInst const &MCI) {
381 unsigned O = HexagonMCInstrInfo::getNewValueOp2(MCII, MCI);
382 MCOperand const &MCO = MCI.getOperand(O);
384 assert((HexagonMCInstrInfo::isNewValue(MCII, MCI) ||
385 HexagonMCInstrInfo::hasNewValue2(MCII, MCI)) &&
386 MCO.isReg());
387 return (MCO);
390 /// Return the Hexagon ISA class for the insn.
391 unsigned HexagonMCInstrInfo::getType(MCInstrInfo const &MCII,
392 MCInst const &MCI) {
393 const uint64_t F = MCII.get(MCI.getOpcode()).TSFlags;
394 return ((F >> HexagonII::TypePos) & HexagonII::TypeMask);
397 /// Return the slots this instruction can execute out of
398 unsigned HexagonMCInstrInfo::getUnits(MCInstrInfo const &MCII,
399 MCSubtargetInfo const &STI,
400 MCInst const &MCI) {
401 const InstrItinerary *II = STI.getSchedModel().InstrItineraries;
402 int SchedClass = HexagonMCInstrInfo::getDesc(MCII, MCI).getSchedClass();
403 return ((II[SchedClass].FirstStage + HexagonStages)->getUnits());
406 /// Return the slots this instruction consumes in addition to
407 /// the slot(s) it can execute out of
409 unsigned HexagonMCInstrInfo::getOtherReservedSlots(MCInstrInfo const &MCII,
410 MCSubtargetInfo const &STI,
411 MCInst const &MCI) {
412 const InstrItinerary *II = STI.getSchedModel().InstrItineraries;
413 int SchedClass = HexagonMCInstrInfo::getDesc(MCII, MCI).getSchedClass();
414 unsigned Slots = 0;
416 // FirstStage are slots that this instruction can execute in.
417 // FirstStage+1 are slots that are also consumed by this instruction.
418 // For example: vmemu can only execute in slot 0 but also consumes slot 1.
419 for (unsigned Stage = II[SchedClass].FirstStage + 1;
420 Stage < II[SchedClass].LastStage; ++Stage) {
421 unsigned Units = (Stage + HexagonStages)->getUnits();
422 if (Units > HexagonGetLastSlot())
423 break;
424 // fyi: getUnits() will return 0x1, 0x2, 0x4 or 0x8
425 Slots |= Units;
428 // if 0 is returned, then no additional slots are consumed by this inst.
429 return Slots;
432 bool HexagonMCInstrInfo::hasDuplex(MCInstrInfo const &MCII, MCInst const &MCI) {
433 if (!HexagonMCInstrInfo::isBundle(MCI))
434 return false;
436 for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCI)) {
437 if (HexagonMCInstrInfo::isDuplex(MCII, *I.getInst()))
438 return true;
441 return false;
444 bool HexagonMCInstrInfo::hasExtenderForIndex(MCInst const &MCB, size_t Index) {
445 return extenderForIndex(MCB, Index) != nullptr;
448 bool HexagonMCInstrInfo::hasImmExt(MCInst const &MCI) {
449 if (!HexagonMCInstrInfo::isBundle(MCI))
450 return false;
452 for (const auto &I : HexagonMCInstrInfo::bundleInstructions(MCI)) {
453 if (isImmext(*I.getInst()))
454 return true;
457 return false;
460 /// Return whether the insn produces a value.
461 bool HexagonMCInstrInfo::hasNewValue(MCInstrInfo const &MCII,
462 MCInst const &MCI) {
463 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
464 return ((F >> HexagonII::hasNewValuePos) & HexagonII::hasNewValueMask);
467 /// Return whether the insn produces a second value.
468 bool HexagonMCInstrInfo::hasNewValue2(MCInstrInfo const &MCII,
469 MCInst const &MCI) {
470 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
471 return ((F >> HexagonII::hasNewValuePos2) & HexagonII::hasNewValueMask2);
474 MCInst const &HexagonMCInstrInfo::instruction(MCInst const &MCB, size_t Index) {
475 assert(isBundle(MCB));
476 assert(Index < HEXAGON_PACKET_SIZE);
477 return *MCB.getOperand(bundleInstructionsOffset + Index).getInst();
480 /// Return where the instruction is an accumulator.
481 bool HexagonMCInstrInfo::isAccumulator(MCInstrInfo const &MCII,
482 MCInst const &MCI) {
483 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
484 return ((F >> HexagonII::AccumulatorPos) & HexagonII::AccumulatorMask);
487 bool HexagonMCInstrInfo::isBundle(MCInst const &MCI) {
488 auto Result = Hexagon::BUNDLE == MCI.getOpcode();
489 assert(!Result || (MCI.size() > 0 && MCI.getOperand(0).isImm()));
490 return Result;
493 bool HexagonMCInstrInfo::isConstExtended(MCInstrInfo const &MCII,
494 MCInst const &MCI) {
495 if (HexagonMCInstrInfo::isExtended(MCII, MCI))
496 return true;
497 if (!HexagonMCInstrInfo::isExtendable(MCII, MCI))
498 return false;
499 MCOperand const &MO = HexagonMCInstrInfo::getExtendableOperand(MCII, MCI);
500 if (isa<HexagonMCExpr>(MO.getExpr()) &&
501 HexagonMCInstrInfo::mustExtend(*MO.getExpr()))
502 return true;
503 // Branch insns are handled as necessary by relaxation.
504 if ((HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeJ) ||
505 (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCJ &&
506 HexagonMCInstrInfo::getDesc(MCII, MCI).isBranch()) ||
507 (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeNCJ &&
508 HexagonMCInstrInfo::getDesc(MCII, MCI).isBranch()))
509 return false;
510 // Otherwise loop instructions and other CR insts are handled by relaxation
511 else if ((HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCR) &&
512 (MCI.getOpcode() != Hexagon::C4_addipc))
513 return false;
515 assert(!MO.isImm());
516 if (isa<HexagonMCExpr>(MO.getExpr()) &&
517 HexagonMCInstrInfo::mustNotExtend(*MO.getExpr()))
518 return false;
519 int64_t Value;
520 if (!MO.getExpr()->evaluateAsAbsolute(Value))
521 return true;
522 int MinValue = HexagonMCInstrInfo::getMinValue(MCII, MCI);
523 int MaxValue = HexagonMCInstrInfo::getMaxValue(MCII, MCI);
524 return (MinValue > Value || Value > MaxValue);
527 bool HexagonMCInstrInfo::isCanon(MCInstrInfo const &MCII, MCInst const &MCI) {
528 return !HexagonMCInstrInfo::getDesc(MCII, MCI).isPseudo() &&
529 !HexagonMCInstrInfo::isPrefix(MCII, MCI);
532 bool HexagonMCInstrInfo::isCofMax1(MCInstrInfo const &MCII, MCInst const &MCI) {
533 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
534 return ((F >> HexagonII::CofMax1Pos) & HexagonII::CofMax1Mask);
537 bool HexagonMCInstrInfo::isCofRelax1(MCInstrInfo const &MCII,
538 MCInst const &MCI) {
539 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
540 return ((F >> HexagonII::CofRelax1Pos) & HexagonII::CofRelax1Mask);
543 bool HexagonMCInstrInfo::isCofRelax2(MCInstrInfo const &MCII,
544 MCInst const &MCI) {
545 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
546 return ((F >> HexagonII::CofRelax2Pos) & HexagonII::CofRelax2Mask);
549 bool HexagonMCInstrInfo::isCompound(MCInstrInfo const &MCII,
550 MCInst const &MCI) {
551 return (getType(MCII, MCI) == HexagonII::TypeCJ);
554 bool HexagonMCInstrInfo::isCVINew(MCInstrInfo const &MCII, MCInst const &MCI) {
555 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
556 return ((F >> HexagonII::CVINewPos) & HexagonII::CVINewMask);
559 bool HexagonMCInstrInfo::isDblRegForSubInst(unsigned Reg) {
560 return ((Reg >= Hexagon::D0 && Reg <= Hexagon::D3) ||
561 (Reg >= Hexagon::D8 && Reg <= Hexagon::D11));
564 bool HexagonMCInstrInfo::isDuplex(MCInstrInfo const &MCII, MCInst const &MCI) {
565 return HexagonII::TypeDUPLEX == HexagonMCInstrInfo::getType(MCII, MCI);
568 bool HexagonMCInstrInfo::isExtendable(MCInstrInfo const &MCII,
569 MCInst const &MCI) {
570 uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
571 return (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask;
574 bool HexagonMCInstrInfo::isExtended(MCInstrInfo const &MCII,
575 MCInst const &MCI) {
576 uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
577 return (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
580 bool HexagonMCInstrInfo::isFloat(MCInstrInfo const &MCII, MCInst const &MCI) {
581 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
582 return ((F >> HexagonII::FPPos) & HexagonII::FPMask);
585 bool HexagonMCInstrInfo::isHVX(MCInstrInfo const &MCII, MCInst const &MCI) {
586 const uint64_t V = getType(MCII, MCI);
587 return HexagonII::TypeCVI_FIRST <= V && V <= HexagonII::TypeCVI_LAST;
590 bool HexagonMCInstrInfo::isImmext(MCInst const &MCI) {
591 return MCI.getOpcode() == Hexagon::A4_ext;
594 bool HexagonMCInstrInfo::isInnerLoop(MCInst const &MCI) {
595 assert(isBundle(MCI));
596 int64_t Flags = MCI.getOperand(0).getImm();
597 return (Flags & innerLoopMask) != 0;
600 bool HexagonMCInstrInfo::isIntReg(unsigned Reg) {
601 return (Reg >= Hexagon::R0 && Reg <= Hexagon::R31);
604 bool HexagonMCInstrInfo::isIntRegForSubInst(unsigned Reg) {
605 return ((Reg >= Hexagon::R0 && Reg <= Hexagon::R7) ||
606 (Reg >= Hexagon::R16 && Reg <= Hexagon::R23));
609 /// Return whether the insn expects newly produced value.
610 bool HexagonMCInstrInfo::isNewValue(MCInstrInfo const &MCII,
611 MCInst const &MCI) {
612 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
613 return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask);
616 /// Return whether the operand is extendable.
617 bool HexagonMCInstrInfo::isOpExtendable(MCInstrInfo const &MCII,
618 MCInst const &MCI, unsigned short O) {
619 return (O == HexagonMCInstrInfo::getExtendableOp(MCII, MCI));
622 bool HexagonMCInstrInfo::isOuterLoop(MCInst const &MCI) {
623 assert(isBundle(MCI));
624 int64_t Flags = MCI.getOperand(0).getImm();
625 return (Flags & outerLoopMask) != 0;
628 bool HexagonMCInstrInfo::isPredicated(MCInstrInfo const &MCII,
629 MCInst const &MCI) {
630 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
631 return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
634 bool HexagonMCInstrInfo::isPrefix(MCInstrInfo const &MCII, MCInst const &MCI) {
635 return HexagonII::TypeEXTENDER == HexagonMCInstrInfo::getType(MCII, MCI);
638 bool HexagonMCInstrInfo::isPredicateLate(MCInstrInfo const &MCII,
639 MCInst const &MCI) {
640 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
641 return (F >> HexagonII::PredicateLatePos & HexagonII::PredicateLateMask);
644 /// Return whether the insn is newly predicated.
645 bool HexagonMCInstrInfo::isPredicatedNew(MCInstrInfo const &MCII,
646 MCInst const &MCI) {
647 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
648 return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
651 bool HexagonMCInstrInfo::isPredicatedTrue(MCInstrInfo const &MCII,
652 MCInst const &MCI) {
653 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
654 return (
655 !((F >> HexagonII::PredicatedFalsePos) & HexagonII::PredicatedFalseMask));
658 bool HexagonMCInstrInfo::isPredReg(unsigned Reg) {
659 return (Reg >= Hexagon::P0 && Reg <= Hexagon::P3_0);
662 /// Return whether the insn can be packaged only with A and X-type insns.
663 bool HexagonMCInstrInfo::isSoloAX(MCInstrInfo const &MCII, MCInst const &MCI) {
664 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
665 return ((F >> HexagonII::SoloAXPos) & HexagonII::SoloAXMask);
668 /// Return whether the insn can be packaged only with an A-type insn in slot #1.
669 bool HexagonMCInstrInfo::isRestrictSlot1AOK(MCInstrInfo const &MCII,
670 MCInst const &MCI) {
671 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
672 return ((F >> HexagonII::RestrictSlot1AOKPos) &
673 HexagonII::RestrictSlot1AOKMask);
676 bool HexagonMCInstrInfo::isRestrictNoSlot1Store(MCInstrInfo const &MCII,
677 MCInst const &MCI) {
678 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
679 return ((F >> HexagonII::RestrictNoSlot1StorePos) &
680 HexagonII::RestrictNoSlot1StoreMask);
683 /// Return whether the insn is solo, i.e., cannot be in a packet.
684 bool HexagonMCInstrInfo::isSolo(MCInstrInfo const &MCII, MCInst const &MCI) {
685 const uint64_t F = MCII.get(MCI.getOpcode()).TSFlags;
686 return ((F >> HexagonII::SoloPos) & HexagonII::SoloMask);
689 bool HexagonMCInstrInfo::isMemReorderDisabled(MCInst const &MCI) {
690 assert(isBundle(MCI));
691 auto Flags = MCI.getOperand(0).getImm();
692 return (Flags & memReorderDisabledMask) != 0;
695 bool HexagonMCInstrInfo::isSubInstruction(MCInst const &MCI) {
696 switch (MCI.getOpcode()) {
697 default:
698 return false;
699 case Hexagon::SA1_addi:
700 case Hexagon::SA1_addrx:
701 case Hexagon::SA1_addsp:
702 case Hexagon::SA1_and1:
703 case Hexagon::SA1_clrf:
704 case Hexagon::SA1_clrfnew:
705 case Hexagon::SA1_clrt:
706 case Hexagon::SA1_clrtnew:
707 case Hexagon::SA1_cmpeqi:
708 case Hexagon::SA1_combine0i:
709 case Hexagon::SA1_combine1i:
710 case Hexagon::SA1_combine2i:
711 case Hexagon::SA1_combine3i:
712 case Hexagon::SA1_combinerz:
713 case Hexagon::SA1_combinezr:
714 case Hexagon::SA1_dec:
715 case Hexagon::SA1_inc:
716 case Hexagon::SA1_seti:
717 case Hexagon::SA1_setin1:
718 case Hexagon::SA1_sxtb:
719 case Hexagon::SA1_sxth:
720 case Hexagon::SA1_tfr:
721 case Hexagon::SA1_zxtb:
722 case Hexagon::SA1_zxth:
723 case Hexagon::SL1_loadri_io:
724 case Hexagon::SL1_loadrub_io:
725 case Hexagon::SL2_deallocframe:
726 case Hexagon::SL2_jumpr31:
727 case Hexagon::SL2_jumpr31_f:
728 case Hexagon::SL2_jumpr31_fnew:
729 case Hexagon::SL2_jumpr31_t:
730 case Hexagon::SL2_jumpr31_tnew:
731 case Hexagon::SL2_loadrb_io:
732 case Hexagon::SL2_loadrd_sp:
733 case Hexagon::SL2_loadrh_io:
734 case Hexagon::SL2_loadri_sp:
735 case Hexagon::SL2_loadruh_io:
736 case Hexagon::SL2_return:
737 case Hexagon::SL2_return_f:
738 case Hexagon::SL2_return_fnew:
739 case Hexagon::SL2_return_t:
740 case Hexagon::SL2_return_tnew:
741 case Hexagon::SS1_storeb_io:
742 case Hexagon::SS1_storew_io:
743 case Hexagon::SS2_allocframe:
744 case Hexagon::SS2_storebi0:
745 case Hexagon::SS2_storebi1:
746 case Hexagon::SS2_stored_sp:
747 case Hexagon::SS2_storeh_io:
748 case Hexagon::SS2_storew_sp:
749 case Hexagon::SS2_storewi0:
750 case Hexagon::SS2_storewi1:
751 return true;
755 bool HexagonMCInstrInfo::isVector(MCInstrInfo const &MCII, MCInst const &MCI) {
756 if ((getType(MCII, MCI) <= HexagonII::TypeCVI_LAST) &&
757 (getType(MCII, MCI) >= HexagonII::TypeCVI_FIRST))
758 return true;
759 return false;
762 int64_t HexagonMCInstrInfo::minConstant(MCInst const &MCI, size_t Index) {
763 auto Sentinal = static_cast<int64_t>(std::numeric_limits<uint32_t>::max())
764 << 8;
765 if (MCI.size() <= Index)
766 return Sentinal;
767 MCOperand const &MCO = MCI.getOperand(Index);
768 if (!MCO.isExpr())
769 return Sentinal;
770 int64_t Value;
771 if (!MCO.getExpr()->evaluateAsAbsolute(Value))
772 return Sentinal;
773 return Value;
776 void HexagonMCInstrInfo::setMustExtend(MCExpr const &Expr, bool Val) {
777 HexagonMCExpr &HExpr = const_cast<HexagonMCExpr &>(cast<HexagonMCExpr>(Expr));
778 HExpr.setMustExtend(Val);
781 bool HexagonMCInstrInfo::mustExtend(MCExpr const &Expr) {
782 HexagonMCExpr const &HExpr = cast<HexagonMCExpr>(Expr);
783 return HExpr.mustExtend();
785 void HexagonMCInstrInfo::setMustNotExtend(MCExpr const &Expr, bool Val) {
786 HexagonMCExpr &HExpr = const_cast<HexagonMCExpr &>(cast<HexagonMCExpr>(Expr));
787 HExpr.setMustNotExtend(Val);
789 bool HexagonMCInstrInfo::mustNotExtend(MCExpr const &Expr) {
790 HexagonMCExpr const &HExpr = cast<HexagonMCExpr>(Expr);
791 return HExpr.mustNotExtend();
793 void HexagonMCInstrInfo::setS27_2_reloc(MCExpr const &Expr, bool Val) {
794 HexagonMCExpr &HExpr =
795 const_cast<HexagonMCExpr &>(*cast<HexagonMCExpr>(&Expr));
796 HExpr.setS27_2_reloc(Val);
798 bool HexagonMCInstrInfo::s27_2_reloc(MCExpr const &Expr) {
799 HexagonMCExpr const *HExpr = dyn_cast<HexagonMCExpr>(&Expr);
800 if (!HExpr)
801 return false;
802 return HExpr->s27_2_reloc();
805 void HexagonMCInstrInfo::padEndloop(MCInst &MCB, MCContext &Context) {
806 MCInst Nop;
807 Nop.setOpcode(Hexagon::A2_nop);
808 assert(isBundle(MCB));
809 while ((HexagonMCInstrInfo::isInnerLoop(MCB) &&
810 (HexagonMCInstrInfo::bundleSize(MCB) < HEXAGON_PACKET_INNER_SIZE)) ||
811 ((HexagonMCInstrInfo::isOuterLoop(MCB) &&
812 (HexagonMCInstrInfo::bundleSize(MCB) < HEXAGON_PACKET_OUTER_SIZE))))
813 MCB.addOperand(MCOperand::createInst(new (Context) MCInst(Nop)));
816 HexagonMCInstrInfo::PredicateInfo
817 HexagonMCInstrInfo::predicateInfo(MCInstrInfo const &MCII, MCInst const &MCI) {
818 if (!isPredicated(MCII, MCI))
819 return {0, 0, false};
820 MCInstrDesc const &Desc = getDesc(MCII, MCI);
821 for (auto I = Desc.getNumDefs(), N = Desc.getNumOperands(); I != N; ++I)
822 if (Desc.OpInfo[I].RegClass == Hexagon::PredRegsRegClassID)
823 return {MCI.getOperand(I).getReg(), I, isPredicatedTrue(MCII, MCI)};
824 return {0, 0, false};
827 bool HexagonMCInstrInfo::prefersSlot3(MCInstrInfo const &MCII,
828 MCInst const &MCI) {
829 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
830 return (F >> HexagonII::PrefersSlot3Pos) & HexagonII::PrefersSlot3Mask;
833 /// return true if instruction has hasTmpDst attribute.
834 bool HexagonMCInstrInfo::hasTmpDst(MCInstrInfo const &MCII, MCInst const &MCI) {
835 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
836 return (F >> HexagonII::HasTmpDstPos) & HexagonII::HasTmpDstMask;
839 void HexagonMCInstrInfo::replaceDuplex(MCContext &Context, MCInst &MCB,
840 DuplexCandidate Candidate) {
841 assert(Candidate.packetIndexI < MCB.size());
842 assert(Candidate.packetIndexJ < MCB.size());
843 assert(isBundle(MCB));
844 MCInst *Duplex =
845 deriveDuplex(Context, Candidate.iClass,
846 *MCB.getOperand(Candidate.packetIndexJ).getInst(),
847 *MCB.getOperand(Candidate.packetIndexI).getInst());
848 assert(Duplex != nullptr);
849 MCB.getOperand(Candidate.packetIndexI).setInst(Duplex);
850 MCB.erase(MCB.begin() + Candidate.packetIndexJ);
853 void HexagonMCInstrInfo::setInnerLoop(MCInst &MCI) {
854 assert(isBundle(MCI));
855 MCOperand &Operand = MCI.getOperand(0);
856 Operand.setImm(Operand.getImm() | innerLoopMask);
859 void HexagonMCInstrInfo::setMemReorderDisabled(MCInst &MCI) {
860 assert(isBundle(MCI));
861 MCOperand &Operand = MCI.getOperand(0);
862 Operand.setImm(Operand.getImm() | memReorderDisabledMask);
863 assert(isMemReorderDisabled(MCI));
866 void HexagonMCInstrInfo::setOuterLoop(MCInst &MCI) {
867 assert(isBundle(MCI));
868 MCOperand &Operand = MCI.getOperand(0);
869 Operand.setImm(Operand.getImm() | outerLoopMask);
872 unsigned HexagonMCInstrInfo::SubregisterBit(unsigned Consumer,
873 unsigned Producer,
874 unsigned Producer2) {
875 // If we're a single vector consumer of a double producer, set subreg bit
876 // based on if we're accessing the lower or upper register component
877 if (Producer >= Hexagon::W0 && Producer <= Hexagon::W15)
878 if (Consumer >= Hexagon::V0 && Consumer <= Hexagon::V31)
879 return (Consumer - Hexagon::V0) & 0x1;
880 if (Producer2 != Hexagon::NoRegister)
881 return Consumer == Producer;
882 return 0;