[x86] fix assert with horizontal math + broadcast of vector (PR43402)
[llvm-core.git] / lib / Target / PowerPC / PPCInstrInfo.cpp
blobf217bfbe90832d2823ebeb32bff2795221b38ba2
1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PowerPC implementation of the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #include "PPCInstrInfo.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCHazardRecognizers.h"
17 #include "PPCInstrBuilder.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/LiveIntervals.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunctionPass.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/PseudoSourceValue.h"
29 #include "llvm/CodeGen/ScheduleDAG.h"
30 #include "llvm/CodeGen/SlotIndexes.h"
31 #include "llvm/CodeGen/StackMaps.h"
32 #include "llvm/MC/MCAsmInfo.h"
33 #include "llvm/MC/MCInst.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/TargetRegistry.h"
38 #include "llvm/Support/raw_ostream.h"
40 using namespace llvm;
42 #define DEBUG_TYPE "ppc-instr-info"
44 #define GET_INSTRMAP_INFO
45 #define GET_INSTRINFO_CTOR_DTOR
46 #include "PPCGenInstrInfo.inc"
48 STATISTIC(NumStoreSPILLVSRRCAsVec,
49 "Number of spillvsrrc spilled to stack as vec");
50 STATISTIC(NumStoreSPILLVSRRCAsGpr,
51 "Number of spillvsrrc spilled to stack as gpr");
52 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc");
53 STATISTIC(CmpIselsConverted,
54 "Number of ISELs that depend on comparison of constants converted");
55 STATISTIC(MissedConvertibleImmediateInstrs,
56 "Number of compare-immediate instructions fed by constants");
57 STATISTIC(NumRcRotatesConvertedToRcAnd,
58 "Number of record-form rotates converted to record-form andi");
60 static cl::
61 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
62 cl::desc("Disable analysis for CTR loops"));
64 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
65 cl::desc("Disable compare instruction optimization"), cl::Hidden);
67 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
68 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
69 cl::Hidden);
71 static cl::opt<bool>
72 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
73 cl::desc("Use the old (incorrect) instruction latency calculation"));
75 // Index into the OpcodesForSpill array.
76 enum SpillOpcodeKey {
77 SOK_Int4Spill,
78 SOK_Int8Spill,
79 SOK_Float8Spill,
80 SOK_Float4Spill,
81 SOK_CRSpill,
82 SOK_CRBitSpill,
83 SOK_VRVectorSpill,
84 SOK_VSXVectorSpill,
85 SOK_VectorFloat8Spill,
86 SOK_VectorFloat4Spill,
87 SOK_VRSaveSpill,
88 SOK_QuadFloat8Spill,
89 SOK_QuadFloat4Spill,
90 SOK_QuadBitSpill,
91 SOK_SpillToVSR,
92 SOK_SPESpill,
93 SOK_LastOpcodeSpill // This must be last on the enum.
96 // Pin the vtable to this file.
97 void PPCInstrInfo::anchor() {}
99 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
100 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP,
101 /* CatchRetOpcode */ -1,
102 STI.isPPC64() ? PPC::BLR8 : PPC::BLR),
103 Subtarget(STI), RI(STI.getTargetMachine()) {}
105 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
106 /// this target when scheduling the DAG.
107 ScheduleHazardRecognizer *
108 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
109 const ScheduleDAG *DAG) const {
110 unsigned Directive =
111 static_cast<const PPCSubtarget *>(STI)->getDarwinDirective();
112 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
113 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
114 const InstrItineraryData *II =
115 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
116 return new ScoreboardHazardRecognizer(II, DAG);
119 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
122 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
123 /// to use for this target when scheduling the DAG.
124 ScheduleHazardRecognizer *
125 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
126 const ScheduleDAG *DAG) const {
127 unsigned Directive =
128 DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective();
130 // FIXME: Leaving this as-is until we have POWER9 scheduling info
131 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
132 return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
134 // Most subtargets use a PPC970 recognizer.
135 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
136 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
137 assert(DAG->TII && "No InstrInfo?");
139 return new PPCHazardRecognizer970(*DAG);
142 return new ScoreboardHazardRecognizer(II, DAG);
145 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
146 const MachineInstr &MI,
147 unsigned *PredCost) const {
148 if (!ItinData || UseOldLatencyCalc)
149 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
151 // The default implementation of getInstrLatency calls getStageLatency, but
152 // getStageLatency does not do the right thing for us. While we have
153 // itinerary, most cores are fully pipelined, and so the itineraries only
154 // express the first part of the pipeline, not every stage. Instead, we need
155 // to use the listed output operand cycle number (using operand 0 here, which
156 // is an output).
158 unsigned Latency = 1;
159 unsigned DefClass = MI.getDesc().getSchedClass();
160 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
161 const MachineOperand &MO = MI.getOperand(i);
162 if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
163 continue;
165 int Cycle = ItinData->getOperandCycle(DefClass, i);
166 if (Cycle < 0)
167 continue;
169 Latency = std::max(Latency, (unsigned) Cycle);
172 return Latency;
175 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
176 const MachineInstr &DefMI, unsigned DefIdx,
177 const MachineInstr &UseMI,
178 unsigned UseIdx) const {
179 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
180 UseMI, UseIdx);
182 if (!DefMI.getParent())
183 return Latency;
185 const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
186 Register Reg = DefMO.getReg();
188 bool IsRegCR;
189 if (Register::isVirtualRegister(Reg)) {
190 const MachineRegisterInfo *MRI =
191 &DefMI.getParent()->getParent()->getRegInfo();
192 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
193 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
194 } else {
195 IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
196 PPC::CRBITRCRegClass.contains(Reg);
199 if (UseMI.isBranch() && IsRegCR) {
200 if (Latency < 0)
201 Latency = getInstrLatency(ItinData, DefMI);
203 // On some cores, there is an additional delay between writing to a condition
204 // register, and using it from a branch.
205 unsigned Directive = Subtarget.getDarwinDirective();
206 switch (Directive) {
207 default: break;
208 case PPC::DIR_7400:
209 case PPC::DIR_750:
210 case PPC::DIR_970:
211 case PPC::DIR_E5500:
212 case PPC::DIR_PWR4:
213 case PPC::DIR_PWR5:
214 case PPC::DIR_PWR5X:
215 case PPC::DIR_PWR6:
216 case PPC::DIR_PWR6X:
217 case PPC::DIR_PWR7:
218 case PPC::DIR_PWR8:
219 // FIXME: Is this needed for POWER9?
220 Latency += 2;
221 break;
225 return Latency;
228 // This function does not list all associative and commutative operations, but
229 // only those worth feeding through the machine combiner in an attempt to
230 // reduce the critical path. Mostly, this means floating-point operations,
231 // because they have high latencies (compared to other operations, such and
232 // and/or, which are also associative and commutative, but have low latencies).
233 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
234 switch (Inst.getOpcode()) {
235 // FP Add:
236 case PPC::FADD:
237 case PPC::FADDS:
238 // FP Multiply:
239 case PPC::FMUL:
240 case PPC::FMULS:
241 // Altivec Add:
242 case PPC::VADDFP:
243 // VSX Add:
244 case PPC::XSADDDP:
245 case PPC::XVADDDP:
246 case PPC::XVADDSP:
247 case PPC::XSADDSP:
248 // VSX Multiply:
249 case PPC::XSMULDP:
250 case PPC::XVMULDP:
251 case PPC::XVMULSP:
252 case PPC::XSMULSP:
253 // QPX Add:
254 case PPC::QVFADD:
255 case PPC::QVFADDS:
256 case PPC::QVFADDSs:
257 // QPX Multiply:
258 case PPC::QVFMUL:
259 case PPC::QVFMULS:
260 case PPC::QVFMULSs:
261 return true;
262 default:
263 return false;
267 bool PPCInstrInfo::getMachineCombinerPatterns(
268 MachineInstr &Root,
269 SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
270 // Using the machine combiner in this way is potentially expensive, so
271 // restrict to when aggressive optimizations are desired.
272 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
273 return false;
275 // FP reassociation is only legal when we don't need strict IEEE semantics.
276 if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath)
277 return false;
279 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns);
282 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
283 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
284 unsigned &SrcReg, unsigned &DstReg,
285 unsigned &SubIdx) const {
286 switch (MI.getOpcode()) {
287 default: return false;
288 case PPC::EXTSW:
289 case PPC::EXTSW_32:
290 case PPC::EXTSW_32_64:
291 SrcReg = MI.getOperand(1).getReg();
292 DstReg = MI.getOperand(0).getReg();
293 SubIdx = PPC::sub_32;
294 return true;
298 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
299 int &FrameIndex) const {
300 unsigned Opcode = MI.getOpcode();
301 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
302 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
304 if (End != std::find(OpcodesForSpill, End, Opcode)) {
305 // Check for the operands added by addFrameReference (the immediate is the
306 // offset which defaults to 0).
307 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
308 MI.getOperand(2).isFI()) {
309 FrameIndex = MI.getOperand(2).getIndex();
310 return MI.getOperand(0).getReg();
313 return 0;
316 // For opcodes with the ReMaterializable flag set, this function is called to
317 // verify the instruction is really rematable.
318 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
319 AliasAnalysis *AA) const {
320 switch (MI.getOpcode()) {
321 default:
322 // This function should only be called for opcodes with the ReMaterializable
323 // flag set.
324 llvm_unreachable("Unknown rematerializable operation!");
325 break;
326 case PPC::LI:
327 case PPC::LI8:
328 case PPC::LIS:
329 case PPC::LIS8:
330 case PPC::QVGPCI:
331 case PPC::ADDIStocHA8:
332 case PPC::ADDItocL:
333 case PPC::LOAD_STACK_GUARD:
334 case PPC::XXLXORz:
335 case PPC::XXLXORspz:
336 case PPC::XXLXORdpz:
337 case PPC::XXLEQVOnes:
338 case PPC::V_SET0B:
339 case PPC::V_SET0H:
340 case PPC::V_SET0:
341 case PPC::V_SETALLONESB:
342 case PPC::V_SETALLONESH:
343 case PPC::V_SETALLONES:
344 case PPC::CRSET:
345 case PPC::CRUNSET:
346 return true;
348 return false;
351 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
352 int &FrameIndex) const {
353 unsigned Opcode = MI.getOpcode();
354 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
355 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
357 if (End != std::find(OpcodesForSpill, End, Opcode)) {
358 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
359 MI.getOperand(2).isFI()) {
360 FrameIndex = MI.getOperand(2).getIndex();
361 return MI.getOperand(0).getReg();
364 return 0;
367 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
368 unsigned OpIdx1,
369 unsigned OpIdx2) const {
370 MachineFunction &MF = *MI.getParent()->getParent();
372 // Normal instructions can be commuted the obvious way.
373 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo)
374 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
375 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
376 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
377 // changing the relative order of the mask operands might change what happens
378 // to the high-bits of the mask (and, thus, the result).
380 // Cannot commute if it has a non-zero rotate count.
381 if (MI.getOperand(3).getImm() != 0)
382 return nullptr;
384 // If we have a zero rotate count, we have:
385 // M = mask(MB,ME)
386 // Op0 = (Op1 & ~M) | (Op2 & M)
387 // Change this to:
388 // M = mask((ME+1)&31, (MB-1)&31)
389 // Op0 = (Op2 & ~M) | (Op1 & M)
391 // Swap op1/op2
392 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
393 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo.");
394 Register Reg0 = MI.getOperand(0).getReg();
395 Register Reg1 = MI.getOperand(1).getReg();
396 Register Reg2 = MI.getOperand(2).getReg();
397 unsigned SubReg1 = MI.getOperand(1).getSubReg();
398 unsigned SubReg2 = MI.getOperand(2).getSubReg();
399 bool Reg1IsKill = MI.getOperand(1).isKill();
400 bool Reg2IsKill = MI.getOperand(2).isKill();
401 bool ChangeReg0 = false;
402 // If machine instrs are no longer in two-address forms, update
403 // destination register as well.
404 if (Reg0 == Reg1) {
405 // Must be two address instruction!
406 assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
407 "Expecting a two-address instruction!");
408 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
409 Reg2IsKill = false;
410 ChangeReg0 = true;
413 // Masks.
414 unsigned MB = MI.getOperand(4).getImm();
415 unsigned ME = MI.getOperand(5).getImm();
417 // We can't commute a trivial mask (there is no way to represent an all-zero
418 // mask).
419 if (MB == 0 && ME == 31)
420 return nullptr;
422 if (NewMI) {
423 // Create a new instruction.
424 Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
425 bool Reg0IsDead = MI.getOperand(0).isDead();
426 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
427 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
428 .addReg(Reg2, getKillRegState(Reg2IsKill))
429 .addReg(Reg1, getKillRegState(Reg1IsKill))
430 .addImm((ME + 1) & 31)
431 .addImm((MB - 1) & 31);
434 if (ChangeReg0) {
435 MI.getOperand(0).setReg(Reg2);
436 MI.getOperand(0).setSubReg(SubReg2);
438 MI.getOperand(2).setReg(Reg1);
439 MI.getOperand(1).setReg(Reg2);
440 MI.getOperand(2).setSubReg(SubReg1);
441 MI.getOperand(1).setSubReg(SubReg2);
442 MI.getOperand(2).setIsKill(Reg1IsKill);
443 MI.getOperand(1).setIsKill(Reg2IsKill);
445 // Swap the mask around.
446 MI.getOperand(4).setImm((ME + 1) & 31);
447 MI.getOperand(5).setImm((MB - 1) & 31);
448 return &MI;
451 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
452 unsigned &SrcOpIdx2) const {
453 // For VSX A-Type FMA instructions, it is the first two operands that can be
454 // commuted, however, because the non-encoded tied input operand is listed
455 // first, the operands to swap are actually the second and third.
457 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
458 if (AltOpc == -1)
459 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
461 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
462 // and SrcOpIdx2.
463 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
466 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
467 MachineBasicBlock::iterator MI) const {
468 // This function is used for scheduling, and the nop wanted here is the type
469 // that terminates dispatch groups on the POWER cores.
470 unsigned Directive = Subtarget.getDarwinDirective();
471 unsigned Opcode;
472 switch (Directive) {
473 default: Opcode = PPC::NOP; break;
474 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
475 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
476 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
477 // FIXME: Update when POWER9 scheduling model is ready.
478 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
481 DebugLoc DL;
482 BuildMI(MBB, MI, DL, get(Opcode));
485 /// Return the noop instruction to use for a noop.
486 void PPCInstrInfo::getNoop(MCInst &NopInst) const {
487 NopInst.setOpcode(PPC::NOP);
490 // Branch analysis.
491 // Note: If the condition register is set to CTR or CTR8 then this is a
492 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
493 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
494 MachineBasicBlock *&TBB,
495 MachineBasicBlock *&FBB,
496 SmallVectorImpl<MachineOperand> &Cond,
497 bool AllowModify) const {
498 bool isPPC64 = Subtarget.isPPC64();
500 // If the block has no terminators, it just falls into the block after it.
501 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
502 if (I == MBB.end())
503 return false;
505 if (!isUnpredicatedTerminator(*I))
506 return false;
508 if (AllowModify) {
509 // If the BB ends with an unconditional branch to the fallthrough BB,
510 // we eliminate the branch instruction.
511 if (I->getOpcode() == PPC::B &&
512 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
513 I->eraseFromParent();
515 // We update iterator after deleting the last branch.
516 I = MBB.getLastNonDebugInstr();
517 if (I == MBB.end() || !isUnpredicatedTerminator(*I))
518 return false;
522 // Get the last instruction in the block.
523 MachineInstr &LastInst = *I;
525 // If there is only one terminator instruction, process it.
526 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
527 if (LastInst.getOpcode() == PPC::B) {
528 if (!LastInst.getOperand(0).isMBB())
529 return true;
530 TBB = LastInst.getOperand(0).getMBB();
531 return false;
532 } else if (LastInst.getOpcode() == PPC::BCC) {
533 if (!LastInst.getOperand(2).isMBB())
534 return true;
535 // Block ends with fall-through condbranch.
536 TBB = LastInst.getOperand(2).getMBB();
537 Cond.push_back(LastInst.getOperand(0));
538 Cond.push_back(LastInst.getOperand(1));
539 return false;
540 } else if (LastInst.getOpcode() == PPC::BC) {
541 if (!LastInst.getOperand(1).isMBB())
542 return true;
543 // Block ends with fall-through condbranch.
544 TBB = LastInst.getOperand(1).getMBB();
545 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
546 Cond.push_back(LastInst.getOperand(0));
547 return false;
548 } else if (LastInst.getOpcode() == PPC::BCn) {
549 if (!LastInst.getOperand(1).isMBB())
550 return true;
551 // Block ends with fall-through condbranch.
552 TBB = LastInst.getOperand(1).getMBB();
553 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
554 Cond.push_back(LastInst.getOperand(0));
555 return false;
556 } else if (LastInst.getOpcode() == PPC::BDNZ8 ||
557 LastInst.getOpcode() == PPC::BDNZ) {
558 if (!LastInst.getOperand(0).isMBB())
559 return true;
560 if (DisableCTRLoopAnal)
561 return true;
562 TBB = LastInst.getOperand(0).getMBB();
563 Cond.push_back(MachineOperand::CreateImm(1));
564 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
565 true));
566 return false;
567 } else if (LastInst.getOpcode() == PPC::BDZ8 ||
568 LastInst.getOpcode() == PPC::BDZ) {
569 if (!LastInst.getOperand(0).isMBB())
570 return true;
571 if (DisableCTRLoopAnal)
572 return true;
573 TBB = LastInst.getOperand(0).getMBB();
574 Cond.push_back(MachineOperand::CreateImm(0));
575 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
576 true));
577 return false;
580 // Otherwise, don't know what this is.
581 return true;
584 // Get the instruction before it if it's a terminator.
585 MachineInstr &SecondLastInst = *I;
587 // If there are three terminators, we don't know what sort of block this is.
588 if (I != MBB.begin() && isUnpredicatedTerminator(*--I))
589 return true;
591 // If the block ends with PPC::B and PPC:BCC, handle it.
592 if (SecondLastInst.getOpcode() == PPC::BCC &&
593 LastInst.getOpcode() == PPC::B) {
594 if (!SecondLastInst.getOperand(2).isMBB() ||
595 !LastInst.getOperand(0).isMBB())
596 return true;
597 TBB = SecondLastInst.getOperand(2).getMBB();
598 Cond.push_back(SecondLastInst.getOperand(0));
599 Cond.push_back(SecondLastInst.getOperand(1));
600 FBB = LastInst.getOperand(0).getMBB();
601 return false;
602 } else if (SecondLastInst.getOpcode() == PPC::BC &&
603 LastInst.getOpcode() == PPC::B) {
604 if (!SecondLastInst.getOperand(1).isMBB() ||
605 !LastInst.getOperand(0).isMBB())
606 return true;
607 TBB = SecondLastInst.getOperand(1).getMBB();
608 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
609 Cond.push_back(SecondLastInst.getOperand(0));
610 FBB = LastInst.getOperand(0).getMBB();
611 return false;
612 } else if (SecondLastInst.getOpcode() == PPC::BCn &&
613 LastInst.getOpcode() == PPC::B) {
614 if (!SecondLastInst.getOperand(1).isMBB() ||
615 !LastInst.getOperand(0).isMBB())
616 return true;
617 TBB = SecondLastInst.getOperand(1).getMBB();
618 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
619 Cond.push_back(SecondLastInst.getOperand(0));
620 FBB = LastInst.getOperand(0).getMBB();
621 return false;
622 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 ||
623 SecondLastInst.getOpcode() == PPC::BDNZ) &&
624 LastInst.getOpcode() == PPC::B) {
625 if (!SecondLastInst.getOperand(0).isMBB() ||
626 !LastInst.getOperand(0).isMBB())
627 return true;
628 if (DisableCTRLoopAnal)
629 return true;
630 TBB = SecondLastInst.getOperand(0).getMBB();
631 Cond.push_back(MachineOperand::CreateImm(1));
632 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
633 true));
634 FBB = LastInst.getOperand(0).getMBB();
635 return false;
636 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 ||
637 SecondLastInst.getOpcode() == PPC::BDZ) &&
638 LastInst.getOpcode() == PPC::B) {
639 if (!SecondLastInst.getOperand(0).isMBB() ||
640 !LastInst.getOperand(0).isMBB())
641 return true;
642 if (DisableCTRLoopAnal)
643 return true;
644 TBB = SecondLastInst.getOperand(0).getMBB();
645 Cond.push_back(MachineOperand::CreateImm(0));
646 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
647 true));
648 FBB = LastInst.getOperand(0).getMBB();
649 return false;
652 // If the block ends with two PPC:Bs, handle it. The second one is not
653 // executed, so remove it.
654 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) {
655 if (!SecondLastInst.getOperand(0).isMBB())
656 return true;
657 TBB = SecondLastInst.getOperand(0).getMBB();
658 I = LastInst;
659 if (AllowModify)
660 I->eraseFromParent();
661 return false;
664 // Otherwise, can't handle this.
665 return true;
668 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB,
669 int *BytesRemoved) const {
670 assert(!BytesRemoved && "code size not handled");
672 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
673 if (I == MBB.end())
674 return 0;
676 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
677 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
678 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
679 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ)
680 return 0;
682 // Remove the branch.
683 I->eraseFromParent();
685 I = MBB.end();
687 if (I == MBB.begin()) return 1;
688 --I;
689 if (I->getOpcode() != PPC::BCC &&
690 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
691 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
692 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ)
693 return 1;
695 // Remove the branch.
696 I->eraseFromParent();
697 return 2;
700 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB,
701 MachineBasicBlock *TBB,
702 MachineBasicBlock *FBB,
703 ArrayRef<MachineOperand> Cond,
704 const DebugLoc &DL,
705 int *BytesAdded) const {
706 // Shouldn't be a fall through.
707 assert(TBB && "insertBranch must not be told to insert a fallthrough");
708 assert((Cond.size() == 2 || Cond.size() == 0) &&
709 "PPC branch conditions have two components!");
710 assert(!BytesAdded && "code size not handled");
712 bool isPPC64 = Subtarget.isPPC64();
714 // One-way branch.
715 if (!FBB) {
716 if (Cond.empty()) // Unconditional branch
717 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
718 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
719 BuildMI(&MBB, DL, get(Cond[0].getImm() ?
720 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
721 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB);
722 else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
723 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
724 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
725 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
726 else // Conditional branch
727 BuildMI(&MBB, DL, get(PPC::BCC))
728 .addImm(Cond[0].getImm())
729 .add(Cond[1])
730 .addMBB(TBB);
731 return 1;
734 // Two-way Conditional Branch.
735 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
736 BuildMI(&MBB, DL, get(Cond[0].getImm() ?
737 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
738 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB);
739 else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
740 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
741 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
742 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
743 else
744 BuildMI(&MBB, DL, get(PPC::BCC))
745 .addImm(Cond[0].getImm())
746 .add(Cond[1])
747 .addMBB(TBB);
748 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
749 return 2;
752 // Select analysis.
753 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
754 ArrayRef<MachineOperand> Cond,
755 unsigned TrueReg, unsigned FalseReg,
756 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
757 if (Cond.size() != 2)
758 return false;
760 // If this is really a bdnz-like condition, then it cannot be turned into a
761 // select.
762 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
763 return false;
765 // Check register classes.
766 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
767 const TargetRegisterClass *RC =
768 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
769 if (!RC)
770 return false;
772 // isel is for regular integer GPRs only.
773 if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
774 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
775 !PPC::G8RCRegClass.hasSubClassEq(RC) &&
776 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
777 return false;
779 // FIXME: These numbers are for the A2, how well they work for other cores is
780 // an open question. On the A2, the isel instruction has a 2-cycle latency
781 // but single-cycle throughput. These numbers are used in combination with
782 // the MispredictPenalty setting from the active SchedMachineModel.
783 CondCycles = 1;
784 TrueCycles = 1;
785 FalseCycles = 1;
787 return true;
790 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
791 MachineBasicBlock::iterator MI,
792 const DebugLoc &dl, unsigned DestReg,
793 ArrayRef<MachineOperand> Cond, unsigned TrueReg,
794 unsigned FalseReg) const {
795 assert(Cond.size() == 2 &&
796 "PPC branch conditions have two components!");
798 // Get the register classes.
799 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
800 const TargetRegisterClass *RC =
801 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
802 assert(RC && "TrueReg and FalseReg must have overlapping register classes");
804 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
805 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
806 assert((Is64Bit ||
807 PPC::GPRCRegClass.hasSubClassEq(RC) ||
808 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
809 "isel is for regular integer GPRs only");
811 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
812 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
814 unsigned SubIdx = 0;
815 bool SwapOps = false;
816 switch (SelectPred) {
817 case PPC::PRED_EQ:
818 case PPC::PRED_EQ_MINUS:
819 case PPC::PRED_EQ_PLUS:
820 SubIdx = PPC::sub_eq; SwapOps = false; break;
821 case PPC::PRED_NE:
822 case PPC::PRED_NE_MINUS:
823 case PPC::PRED_NE_PLUS:
824 SubIdx = PPC::sub_eq; SwapOps = true; break;
825 case PPC::PRED_LT:
826 case PPC::PRED_LT_MINUS:
827 case PPC::PRED_LT_PLUS:
828 SubIdx = PPC::sub_lt; SwapOps = false; break;
829 case PPC::PRED_GE:
830 case PPC::PRED_GE_MINUS:
831 case PPC::PRED_GE_PLUS:
832 SubIdx = PPC::sub_lt; SwapOps = true; break;
833 case PPC::PRED_GT:
834 case PPC::PRED_GT_MINUS:
835 case PPC::PRED_GT_PLUS:
836 SubIdx = PPC::sub_gt; SwapOps = false; break;
837 case PPC::PRED_LE:
838 case PPC::PRED_LE_MINUS:
839 case PPC::PRED_LE_PLUS:
840 SubIdx = PPC::sub_gt; SwapOps = true; break;
841 case PPC::PRED_UN:
842 case PPC::PRED_UN_MINUS:
843 case PPC::PRED_UN_PLUS:
844 SubIdx = PPC::sub_un; SwapOps = false; break;
845 case PPC::PRED_NU:
846 case PPC::PRED_NU_MINUS:
847 case PPC::PRED_NU_PLUS:
848 SubIdx = PPC::sub_un; SwapOps = true; break;
849 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break;
850 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
853 unsigned FirstReg = SwapOps ? FalseReg : TrueReg,
854 SecondReg = SwapOps ? TrueReg : FalseReg;
856 // The first input register of isel cannot be r0. If it is a member
857 // of a register class that can be r0, then copy it first (the
858 // register allocator should eliminate the copy).
859 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
860 MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
861 const TargetRegisterClass *FirstRC =
862 MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
863 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
864 unsigned OldFirstReg = FirstReg;
865 FirstReg = MRI.createVirtualRegister(FirstRC);
866 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
867 .addReg(OldFirstReg);
870 BuildMI(MBB, MI, dl, get(OpCode), DestReg)
871 .addReg(FirstReg).addReg(SecondReg)
872 .addReg(Cond[1].getReg(), 0, SubIdx);
875 static unsigned getCRBitValue(unsigned CRBit) {
876 unsigned Ret = 4;
877 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
878 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
879 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
880 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
881 Ret = 3;
882 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
883 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
884 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
885 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
886 Ret = 2;
887 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
888 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
889 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
890 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
891 Ret = 1;
892 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
893 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
894 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
895 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
896 Ret = 0;
898 assert(Ret != 4 && "Invalid CR bit register");
899 return Ret;
902 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
903 MachineBasicBlock::iterator I,
904 const DebugLoc &DL, unsigned DestReg,
905 unsigned SrcReg, bool KillSrc) const {
906 // We can end up with self copies and similar things as a result of VSX copy
907 // legalization. Promote them here.
908 const TargetRegisterInfo *TRI = &getRegisterInfo();
909 if (PPC::F8RCRegClass.contains(DestReg) &&
910 PPC::VSRCRegClass.contains(SrcReg)) {
911 unsigned SuperReg =
912 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
914 if (VSXSelfCopyCrash && SrcReg == SuperReg)
915 llvm_unreachable("nop VSX copy");
917 DestReg = SuperReg;
918 } else if (PPC::F8RCRegClass.contains(SrcReg) &&
919 PPC::VSRCRegClass.contains(DestReg)) {
920 unsigned SuperReg =
921 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
923 if (VSXSelfCopyCrash && DestReg == SuperReg)
924 llvm_unreachable("nop VSX copy");
926 SrcReg = SuperReg;
929 // Different class register copy
930 if (PPC::CRBITRCRegClass.contains(SrcReg) &&
931 PPC::GPRCRegClass.contains(DestReg)) {
932 unsigned CRReg = getCRFromCRBit(SrcReg);
933 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
934 getKillRegState(KillSrc);
935 // Rotate the CR bit in the CR fields to be the least significant bit and
936 // then mask with 0x1 (MB = ME = 31).
937 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
938 .addReg(DestReg, RegState::Kill)
939 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
940 .addImm(31)
941 .addImm(31);
942 return;
943 } else if (PPC::CRRCRegClass.contains(SrcReg) &&
944 PPC::G8RCRegClass.contains(DestReg)) {
945 BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg);
946 getKillRegState(KillSrc);
947 return;
948 } else if (PPC::CRRCRegClass.contains(SrcReg) &&
949 PPC::GPRCRegClass.contains(DestReg)) {
950 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg);
951 getKillRegState(KillSrc);
952 return;
953 } else if (PPC::G8RCRegClass.contains(SrcReg) &&
954 PPC::VSFRCRegClass.contains(DestReg)) {
955 assert(Subtarget.hasDirectMove() &&
956 "Subtarget doesn't support directmove, don't know how to copy.");
957 BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg);
958 NumGPRtoVSRSpill++;
959 getKillRegState(KillSrc);
960 return;
961 } else if (PPC::VSFRCRegClass.contains(SrcReg) &&
962 PPC::G8RCRegClass.contains(DestReg)) {
963 assert(Subtarget.hasDirectMove() &&
964 "Subtarget doesn't support directmove, don't know how to copy.");
965 BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg);
966 getKillRegState(KillSrc);
967 return;
968 } else if (PPC::SPERCRegClass.contains(SrcReg) &&
969 PPC::GPRCRegClass.contains(DestReg)) {
970 BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg);
971 getKillRegState(KillSrc);
972 return;
973 } else if (PPC::GPRCRegClass.contains(SrcReg) &&
974 PPC::SPERCRegClass.contains(DestReg)) {
975 BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg);
976 getKillRegState(KillSrc);
977 return;
980 unsigned Opc;
981 if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
982 Opc = PPC::OR;
983 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
984 Opc = PPC::OR8;
985 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
986 Opc = PPC::FMR;
987 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
988 Opc = PPC::MCRF;
989 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
990 Opc = PPC::VOR;
991 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
992 // There are two different ways this can be done:
993 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
994 // issue in VSU pipeline 0.
995 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
996 // can go to either pipeline.
997 // We'll always use xxlor here, because in practically all cases where
998 // copies are generated, they are close enough to some use that the
999 // lower-latency form is preferable.
1000 Opc = PPC::XXLOR;
1001 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
1002 PPC::VSSRCRegClass.contains(DestReg, SrcReg))
1003 Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf;
1004 else if (PPC::QFRCRegClass.contains(DestReg, SrcReg))
1005 Opc = PPC::QVFMR;
1006 else if (PPC::QSRCRegClass.contains(DestReg, SrcReg))
1007 Opc = PPC::QVFMRs;
1008 else if (PPC::QBRCRegClass.contains(DestReg, SrcReg))
1009 Opc = PPC::QVFMRb;
1010 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
1011 Opc = PPC::CROR;
1012 else if (PPC::SPERCRegClass.contains(DestReg, SrcReg))
1013 Opc = PPC::EVOR;
1014 else
1015 llvm_unreachable("Impossible reg-to-reg copy");
1017 const MCInstrDesc &MCID = get(Opc);
1018 if (MCID.getNumOperands() == 3)
1019 BuildMI(MBB, I, DL, MCID, DestReg)
1020 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
1021 else
1022 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
1025 unsigned PPCInstrInfo::getStoreOpcodeForSpill(unsigned Reg,
1026 const TargetRegisterClass *RC)
1027 const {
1028 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
1029 int OpcodeIndex = 0;
1031 if (RC != nullptr) {
1032 if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1033 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1034 OpcodeIndex = SOK_Int4Spill;
1035 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1036 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1037 OpcodeIndex = SOK_Int8Spill;
1038 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1039 OpcodeIndex = SOK_Float8Spill;
1040 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1041 OpcodeIndex = SOK_Float4Spill;
1042 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1043 OpcodeIndex = SOK_SPESpill;
1044 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1045 OpcodeIndex = SOK_CRSpill;
1046 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1047 OpcodeIndex = SOK_CRBitSpill;
1048 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1049 OpcodeIndex = SOK_VRVectorSpill;
1050 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1051 OpcodeIndex = SOK_VSXVectorSpill;
1052 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1053 OpcodeIndex = SOK_VectorFloat8Spill;
1054 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1055 OpcodeIndex = SOK_VectorFloat4Spill;
1056 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1057 OpcodeIndex = SOK_VRSaveSpill;
1058 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1059 OpcodeIndex = SOK_QuadFloat8Spill;
1060 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1061 OpcodeIndex = SOK_QuadFloat4Spill;
1062 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1063 OpcodeIndex = SOK_QuadBitSpill;
1064 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1065 OpcodeIndex = SOK_SpillToVSR;
1066 } else {
1067 llvm_unreachable("Unknown regclass!");
1069 } else {
1070 if (PPC::GPRCRegClass.contains(Reg) ||
1071 PPC::GPRC_NOR0RegClass.contains(Reg)) {
1072 OpcodeIndex = SOK_Int4Spill;
1073 } else if (PPC::G8RCRegClass.contains(Reg) ||
1074 PPC::G8RC_NOX0RegClass.contains(Reg)) {
1075 OpcodeIndex = SOK_Int8Spill;
1076 } else if (PPC::F8RCRegClass.contains(Reg)) {
1077 OpcodeIndex = SOK_Float8Spill;
1078 } else if (PPC::F4RCRegClass.contains(Reg)) {
1079 OpcodeIndex = SOK_Float4Spill;
1080 } else if (PPC::SPERCRegClass.contains(Reg)) {
1081 OpcodeIndex = SOK_SPESpill;
1082 } else if (PPC::CRRCRegClass.contains(Reg)) {
1083 OpcodeIndex = SOK_CRSpill;
1084 } else if (PPC::CRBITRCRegClass.contains(Reg)) {
1085 OpcodeIndex = SOK_CRBitSpill;
1086 } else if (PPC::VRRCRegClass.contains(Reg)) {
1087 OpcodeIndex = SOK_VRVectorSpill;
1088 } else if (PPC::VSRCRegClass.contains(Reg)) {
1089 OpcodeIndex = SOK_VSXVectorSpill;
1090 } else if (PPC::VSFRCRegClass.contains(Reg)) {
1091 OpcodeIndex = SOK_VectorFloat8Spill;
1092 } else if (PPC::VSSRCRegClass.contains(Reg)) {
1093 OpcodeIndex = SOK_VectorFloat4Spill;
1094 } else if (PPC::VRSAVERCRegClass.contains(Reg)) {
1095 OpcodeIndex = SOK_VRSaveSpill;
1096 } else if (PPC::QFRCRegClass.contains(Reg)) {
1097 OpcodeIndex = SOK_QuadFloat8Spill;
1098 } else if (PPC::QSRCRegClass.contains(Reg)) {
1099 OpcodeIndex = SOK_QuadFloat4Spill;
1100 } else if (PPC::QBRCRegClass.contains(Reg)) {
1101 OpcodeIndex = SOK_QuadBitSpill;
1102 } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) {
1103 OpcodeIndex = SOK_SpillToVSR;
1104 } else {
1105 llvm_unreachable("Unknown regclass!");
1108 return OpcodesForSpill[OpcodeIndex];
1111 unsigned
1112 PPCInstrInfo::getLoadOpcodeForSpill(unsigned Reg,
1113 const TargetRegisterClass *RC) const {
1114 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
1115 int OpcodeIndex = 0;
1117 if (RC != nullptr) {
1118 if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1119 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1120 OpcodeIndex = SOK_Int4Spill;
1121 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1122 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1123 OpcodeIndex = SOK_Int8Spill;
1124 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1125 OpcodeIndex = SOK_Float8Spill;
1126 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1127 OpcodeIndex = SOK_Float4Spill;
1128 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1129 OpcodeIndex = SOK_SPESpill;
1130 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1131 OpcodeIndex = SOK_CRSpill;
1132 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1133 OpcodeIndex = SOK_CRBitSpill;
1134 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1135 OpcodeIndex = SOK_VRVectorSpill;
1136 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1137 OpcodeIndex = SOK_VSXVectorSpill;
1138 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1139 OpcodeIndex = SOK_VectorFloat8Spill;
1140 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1141 OpcodeIndex = SOK_VectorFloat4Spill;
1142 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1143 OpcodeIndex = SOK_VRSaveSpill;
1144 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1145 OpcodeIndex = SOK_QuadFloat8Spill;
1146 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1147 OpcodeIndex = SOK_QuadFloat4Spill;
1148 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1149 OpcodeIndex = SOK_QuadBitSpill;
1150 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1151 OpcodeIndex = SOK_SpillToVSR;
1152 } else {
1153 llvm_unreachable("Unknown regclass!");
1155 } else {
1156 if (PPC::GPRCRegClass.contains(Reg) ||
1157 PPC::GPRC_NOR0RegClass.contains(Reg)) {
1158 OpcodeIndex = SOK_Int4Spill;
1159 } else if (PPC::G8RCRegClass.contains(Reg) ||
1160 PPC::G8RC_NOX0RegClass.contains(Reg)) {
1161 OpcodeIndex = SOK_Int8Spill;
1162 } else if (PPC::F8RCRegClass.contains(Reg)) {
1163 OpcodeIndex = SOK_Float8Spill;
1164 } else if (PPC::F4RCRegClass.contains(Reg)) {
1165 OpcodeIndex = SOK_Float4Spill;
1166 } else if (PPC::SPERCRegClass.contains(Reg)) {
1167 OpcodeIndex = SOK_SPESpill;
1168 } else if (PPC::CRRCRegClass.contains(Reg)) {
1169 OpcodeIndex = SOK_CRSpill;
1170 } else if (PPC::CRBITRCRegClass.contains(Reg)) {
1171 OpcodeIndex = SOK_CRBitSpill;
1172 } else if (PPC::VRRCRegClass.contains(Reg)) {
1173 OpcodeIndex = SOK_VRVectorSpill;
1174 } else if (PPC::VSRCRegClass.contains(Reg)) {
1175 OpcodeIndex = SOK_VSXVectorSpill;
1176 } else if (PPC::VSFRCRegClass.contains(Reg)) {
1177 OpcodeIndex = SOK_VectorFloat8Spill;
1178 } else if (PPC::VSSRCRegClass.contains(Reg)) {
1179 OpcodeIndex = SOK_VectorFloat4Spill;
1180 } else if (PPC::VRSAVERCRegClass.contains(Reg)) {
1181 OpcodeIndex = SOK_VRSaveSpill;
1182 } else if (PPC::QFRCRegClass.contains(Reg)) {
1183 OpcodeIndex = SOK_QuadFloat8Spill;
1184 } else if (PPC::QSRCRegClass.contains(Reg)) {
1185 OpcodeIndex = SOK_QuadFloat4Spill;
1186 } else if (PPC::QBRCRegClass.contains(Reg)) {
1187 OpcodeIndex = SOK_QuadBitSpill;
1188 } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) {
1189 OpcodeIndex = SOK_SpillToVSR;
1190 } else {
1191 llvm_unreachable("Unknown regclass!");
1194 return OpcodesForSpill[OpcodeIndex];
1197 void PPCInstrInfo::StoreRegToStackSlot(
1198 MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx,
1199 const TargetRegisterClass *RC,
1200 SmallVectorImpl<MachineInstr *> &NewMIs) const {
1201 unsigned Opcode = getStoreOpcodeForSpill(PPC::NoRegister, RC);
1202 DebugLoc DL;
1204 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1205 FuncInfo->setHasSpills();
1207 NewMIs.push_back(addFrameReference(
1208 BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)),
1209 FrameIdx));
1211 if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1212 PPC::CRBITRCRegClass.hasSubClassEq(RC))
1213 FuncInfo->setSpillsCR();
1215 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC))
1216 FuncInfo->setSpillsVRSAVE();
1218 if (isXFormMemOp(Opcode))
1219 FuncInfo->setHasNonRISpills();
1222 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1223 MachineBasicBlock::iterator MI,
1224 unsigned SrcReg, bool isKill,
1225 int FrameIdx,
1226 const TargetRegisterClass *RC,
1227 const TargetRegisterInfo *TRI) const {
1228 MachineFunction &MF = *MBB.getParent();
1229 SmallVector<MachineInstr *, 4> NewMIs;
1231 // We need to avoid a situation in which the value from a VRRC register is
1232 // spilled using an Altivec instruction and reloaded into a VSRC register
1233 // using a VSX instruction. The issue with this is that the VSX
1234 // load/store instructions swap the doublewords in the vector and the Altivec
1235 // ones don't. The register classes on the spill/reload may be different if
1236 // the register is defined using an Altivec instruction and is then used by a
1237 // VSX instruction.
1238 RC = updatedRC(RC);
1240 StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs);
1242 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1243 MBB.insert(MI, NewMIs[i]);
1245 const MachineFrameInfo &MFI = MF.getFrameInfo();
1246 MachineMemOperand *MMO = MF.getMachineMemOperand(
1247 MachinePointerInfo::getFixedStack(MF, FrameIdx),
1248 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
1249 MFI.getObjectAlignment(FrameIdx));
1250 NewMIs.back()->addMemOperand(MF, MMO);
1253 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
1254 unsigned DestReg, int FrameIdx,
1255 const TargetRegisterClass *RC,
1256 SmallVectorImpl<MachineInstr *> &NewMIs)
1257 const {
1258 unsigned Opcode = getLoadOpcodeForSpill(PPC::NoRegister, RC);
1259 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg),
1260 FrameIdx));
1261 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1263 if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1264 PPC::CRBITRCRegClass.hasSubClassEq(RC))
1265 FuncInfo->setSpillsCR();
1267 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC))
1268 FuncInfo->setSpillsVRSAVE();
1270 if (isXFormMemOp(Opcode))
1271 FuncInfo->setHasNonRISpills();
1274 void
1275 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1276 MachineBasicBlock::iterator MI,
1277 unsigned DestReg, int FrameIdx,
1278 const TargetRegisterClass *RC,
1279 const TargetRegisterInfo *TRI) const {
1280 MachineFunction &MF = *MBB.getParent();
1281 SmallVector<MachineInstr*, 4> NewMIs;
1282 DebugLoc DL;
1283 if (MI != MBB.end()) DL = MI->getDebugLoc();
1285 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1286 FuncInfo->setHasSpills();
1288 // We need to avoid a situation in which the value from a VRRC register is
1289 // spilled using an Altivec instruction and reloaded into a VSRC register
1290 // using a VSX instruction. The issue with this is that the VSX
1291 // load/store instructions swap the doublewords in the vector and the Altivec
1292 // ones don't. The register classes on the spill/reload may be different if
1293 // the register is defined using an Altivec instruction and is then used by a
1294 // VSX instruction.
1295 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
1296 RC = &PPC::VSRCRegClass;
1298 LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs);
1300 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1301 MBB.insert(MI, NewMIs[i]);
1303 const MachineFrameInfo &MFI = MF.getFrameInfo();
1304 MachineMemOperand *MMO = MF.getMachineMemOperand(
1305 MachinePointerInfo::getFixedStack(MF, FrameIdx),
1306 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
1307 MFI.getObjectAlignment(FrameIdx));
1308 NewMIs.back()->addMemOperand(MF, MMO);
1311 bool PPCInstrInfo::
1312 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1313 assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
1314 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
1315 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
1316 else
1317 // Leave the CR# the same, but invert the condition.
1318 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
1319 return false;
1322 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1323 unsigned Reg, MachineRegisterInfo *MRI) const {
1324 // For some instructions, it is legal to fold ZERO into the RA register field.
1325 // A zero immediate should always be loaded with a single li.
1326 unsigned DefOpc = DefMI.getOpcode();
1327 if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
1328 return false;
1329 if (!DefMI.getOperand(1).isImm())
1330 return false;
1331 if (DefMI.getOperand(1).getImm() != 0)
1332 return false;
1334 // Note that we cannot here invert the arguments of an isel in order to fold
1335 // a ZERO into what is presented as the second argument. All we have here
1336 // is the condition bit, and that might come from a CR-logical bit operation.
1338 const MCInstrDesc &UseMCID = UseMI.getDesc();
1340 // Only fold into real machine instructions.
1341 if (UseMCID.isPseudo())
1342 return false;
1344 unsigned UseIdx;
1345 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
1346 if (UseMI.getOperand(UseIdx).isReg() &&
1347 UseMI.getOperand(UseIdx).getReg() == Reg)
1348 break;
1350 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
1351 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
1353 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
1355 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
1356 // register (which might also be specified as a pointer class kind).
1357 if (UseInfo->isLookupPtrRegClass()) {
1358 if (UseInfo->RegClass /* Kind */ != 1)
1359 return false;
1360 } else {
1361 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
1362 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
1363 return false;
1366 // Make sure this is not tied to an output register (or otherwise
1367 // constrained). This is true for ST?UX registers, for example, which
1368 // are tied to their output registers.
1369 if (UseInfo->Constraints != 0)
1370 return false;
1372 unsigned ZeroReg;
1373 if (UseInfo->isLookupPtrRegClass()) {
1374 bool isPPC64 = Subtarget.isPPC64();
1375 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
1376 } else {
1377 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
1378 PPC::ZERO8 : PPC::ZERO;
1381 bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
1382 UseMI.getOperand(UseIdx).setReg(ZeroReg);
1384 if (DeleteDef)
1385 DefMI.eraseFromParent();
1387 return true;
1390 static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
1391 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1392 I != IE; ++I)
1393 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
1394 return true;
1395 return false;
1398 // We should make sure that, if we're going to predicate both sides of a
1399 // condition (a diamond), that both sides don't define the counter register. We
1400 // can predicate counter-decrement-based branches, but while that predicates
1401 // the branching, it does not predicate the counter decrement. If we tried to
1402 // merge the triangle into one predicated block, we'd decrement the counter
1403 // twice.
1404 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
1405 unsigned NumT, unsigned ExtraT,
1406 MachineBasicBlock &FMBB,
1407 unsigned NumF, unsigned ExtraF,
1408 BranchProbability Probability) const {
1409 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
1413 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
1414 // The predicated branches are identified by their type, not really by the
1415 // explicit presence of a predicate. Furthermore, some of them can be
1416 // predicated more than once. Because if conversion won't try to predicate
1417 // any instruction which already claims to be predicated (by returning true
1418 // here), always return false. In doing so, we let isPredicable() be the
1419 // final word on whether not the instruction can be (further) predicated.
1421 return false;
1424 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
1425 if (!MI.isTerminator())
1426 return false;
1428 // Conditional branch is a special case.
1429 if (MI.isBranch() && !MI.isBarrier())
1430 return true;
1432 return !isPredicated(MI);
1435 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
1436 ArrayRef<MachineOperand> Pred) const {
1437 unsigned OpC = MI.getOpcode();
1438 if (OpC == PPC::BLR || OpC == PPC::BLR8) {
1439 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1440 bool isPPC64 = Subtarget.isPPC64();
1441 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
1442 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
1443 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1444 MI.setDesc(get(PPC::BCLR));
1445 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1446 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1447 MI.setDesc(get(PPC::BCLRn));
1448 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1449 } else {
1450 MI.setDesc(get(PPC::BCCLR));
1451 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1452 .addImm(Pred[0].getImm())
1453 .add(Pred[1]);
1456 return true;
1457 } else if (OpC == PPC::B) {
1458 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1459 bool isPPC64 = Subtarget.isPPC64();
1460 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
1461 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
1462 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1463 MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1464 MI.RemoveOperand(0);
1466 MI.setDesc(get(PPC::BC));
1467 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1468 .add(Pred[1])
1469 .addMBB(MBB);
1470 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1471 MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1472 MI.RemoveOperand(0);
1474 MI.setDesc(get(PPC::BCn));
1475 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1476 .add(Pred[1])
1477 .addMBB(MBB);
1478 } else {
1479 MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1480 MI.RemoveOperand(0);
1482 MI.setDesc(get(PPC::BCC));
1483 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1484 .addImm(Pred[0].getImm())
1485 .add(Pred[1])
1486 .addMBB(MBB);
1489 return true;
1490 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL ||
1491 OpC == PPC::BCTRL8) {
1492 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
1493 llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
1495 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
1496 bool isPPC64 = Subtarget.isPPC64();
1498 if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1499 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
1500 : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
1501 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1502 return true;
1503 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1504 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
1505 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
1506 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1507 return true;
1510 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
1511 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
1512 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1513 .addImm(Pred[0].getImm())
1514 .add(Pred[1]);
1515 return true;
1518 return false;
1521 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1522 ArrayRef<MachineOperand> Pred2) const {
1523 assert(Pred1.size() == 2 && "Invalid PPC first predicate");
1524 assert(Pred2.size() == 2 && "Invalid PPC second predicate");
1526 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
1527 return false;
1528 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
1529 return false;
1531 // P1 can only subsume P2 if they test the same condition register.
1532 if (Pred1[1].getReg() != Pred2[1].getReg())
1533 return false;
1535 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
1536 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
1538 if (P1 == P2)
1539 return true;
1541 // Does P1 subsume P2, e.g. GE subsumes GT.
1542 if (P1 == PPC::PRED_LE &&
1543 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
1544 return true;
1545 if (P1 == PPC::PRED_GE &&
1546 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
1547 return true;
1549 return false;
1552 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI,
1553 std::vector<MachineOperand> &Pred) const {
1554 // Note: At the present time, the contents of Pred from this function is
1555 // unused by IfConversion. This implementation follows ARM by pushing the
1556 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
1557 // predicate, instructions defining CTR or CTR8 are also included as
1558 // predicate-defining instructions.
1560 const TargetRegisterClass *RCs[] =
1561 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
1562 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
1564 bool Found = false;
1565 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1566 const MachineOperand &MO = MI.getOperand(i);
1567 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
1568 const TargetRegisterClass *RC = RCs[c];
1569 if (MO.isReg()) {
1570 if (MO.isDef() && RC->contains(MO.getReg())) {
1571 Pred.push_back(MO);
1572 Found = true;
1574 } else if (MO.isRegMask()) {
1575 for (TargetRegisterClass::iterator I = RC->begin(),
1576 IE = RC->end(); I != IE; ++I)
1577 if (MO.clobbersPhysReg(*I)) {
1578 Pred.push_back(MO);
1579 Found = true;
1585 return Found;
1588 bool PPCInstrInfo::isPredicable(const MachineInstr &MI) const {
1589 unsigned OpC = MI.getOpcode();
1590 switch (OpC) {
1591 default:
1592 return false;
1593 case PPC::B:
1594 case PPC::BLR:
1595 case PPC::BLR8:
1596 case PPC::BCTR:
1597 case PPC::BCTR8:
1598 case PPC::BCTRL:
1599 case PPC::BCTRL8:
1600 return true;
1604 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
1605 unsigned &SrcReg2, int &Mask,
1606 int &Value) const {
1607 unsigned Opc = MI.getOpcode();
1609 switch (Opc) {
1610 default: return false;
1611 case PPC::CMPWI:
1612 case PPC::CMPLWI:
1613 case PPC::CMPDI:
1614 case PPC::CMPLDI:
1615 SrcReg = MI.getOperand(1).getReg();
1616 SrcReg2 = 0;
1617 Value = MI.getOperand(2).getImm();
1618 Mask = 0xFFFF;
1619 return true;
1620 case PPC::CMPW:
1621 case PPC::CMPLW:
1622 case PPC::CMPD:
1623 case PPC::CMPLD:
1624 case PPC::FCMPUS:
1625 case PPC::FCMPUD:
1626 SrcReg = MI.getOperand(1).getReg();
1627 SrcReg2 = MI.getOperand(2).getReg();
1628 Value = 0;
1629 Mask = 0;
1630 return true;
1634 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
1635 unsigned SrcReg2, int Mask, int Value,
1636 const MachineRegisterInfo *MRI) const {
1637 if (DisableCmpOpt)
1638 return false;
1640 int OpC = CmpInstr.getOpcode();
1641 Register CRReg = CmpInstr.getOperand(0).getReg();
1643 // FP record forms set CR1 based on the exception status bits, not a
1644 // comparison with zero.
1645 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
1646 return false;
1648 const TargetRegisterInfo *TRI = &getRegisterInfo();
1649 // The record forms set the condition register based on a signed comparison
1650 // with zero (so says the ISA manual). This is not as straightforward as it
1651 // seems, however, because this is always a 64-bit comparison on PPC64, even
1652 // for instructions that are 32-bit in nature (like slw for example).
1653 // So, on PPC32, for unsigned comparisons, we can use the record forms only
1654 // for equality checks (as those don't depend on the sign). On PPC64,
1655 // we are restricted to equality for unsigned 64-bit comparisons and for
1656 // signed 32-bit comparisons the applicability is more restricted.
1657 bool isPPC64 = Subtarget.isPPC64();
1658 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW;
1659 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
1660 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
1662 // Look through copies unless that gets us to a physical register.
1663 unsigned ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI);
1664 if (Register::isVirtualRegister(ActualSrc))
1665 SrcReg = ActualSrc;
1667 // Get the unique definition of SrcReg.
1668 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
1669 if (!MI) return false;
1671 bool equalityOnly = false;
1672 bool noSub = false;
1673 if (isPPC64) {
1674 if (is32BitSignedCompare) {
1675 // We can perform this optimization only if MI is sign-extending.
1676 if (isSignExtended(*MI))
1677 noSub = true;
1678 else
1679 return false;
1680 } else if (is32BitUnsignedCompare) {
1681 // We can perform this optimization, equality only, if MI is
1682 // zero-extending.
1683 if (isZeroExtended(*MI)) {
1684 noSub = true;
1685 equalityOnly = true;
1686 } else
1687 return false;
1688 } else
1689 equalityOnly = is64BitUnsignedCompare;
1690 } else
1691 equalityOnly = is32BitUnsignedCompare;
1693 if (equalityOnly) {
1694 // We need to check the uses of the condition register in order to reject
1695 // non-equality comparisons.
1696 for (MachineRegisterInfo::use_instr_iterator
1697 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1698 I != IE; ++I) {
1699 MachineInstr *UseMI = &*I;
1700 if (UseMI->getOpcode() == PPC::BCC) {
1701 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1702 unsigned PredCond = PPC::getPredicateCondition(Pred);
1703 // We ignore hint bits when checking for non-equality comparisons.
1704 if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE)
1705 return false;
1706 } else if (UseMI->getOpcode() == PPC::ISEL ||
1707 UseMI->getOpcode() == PPC::ISEL8) {
1708 unsigned SubIdx = UseMI->getOperand(3).getSubReg();
1709 if (SubIdx != PPC::sub_eq)
1710 return false;
1711 } else
1712 return false;
1716 MachineBasicBlock::iterator I = CmpInstr;
1718 // Scan forward to find the first use of the compare.
1719 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
1720 ++I) {
1721 bool FoundUse = false;
1722 for (MachineRegisterInfo::use_instr_iterator
1723 J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end();
1724 J != JE; ++J)
1725 if (&*J == &*I) {
1726 FoundUse = true;
1727 break;
1730 if (FoundUse)
1731 break;
1734 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
1735 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
1737 // There are two possible candidates which can be changed to set CR[01].
1738 // One is MI, the other is a SUB instruction.
1739 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
1740 MachineInstr *Sub = nullptr;
1741 if (SrcReg2 != 0)
1742 // MI is not a candidate for CMPrr.
1743 MI = nullptr;
1744 // FIXME: Conservatively refuse to convert an instruction which isn't in the
1745 // same BB as the comparison. This is to allow the check below to avoid calls
1746 // (and other explicit clobbers); instead we should really check for these
1747 // more explicitly (in at least a few predecessors).
1748 else if (MI->getParent() != CmpInstr.getParent())
1749 return false;
1750 else if (Value != 0) {
1751 // The record-form instructions set CR bit based on signed comparison
1752 // against 0. We try to convert a compare against 1 or -1 into a compare
1753 // against 0 to exploit record-form instructions. For example, we change
1754 // the condition "greater than -1" into "greater than or equal to 0"
1755 // and "less than 1" into "less than or equal to 0".
1757 // Since we optimize comparison based on a specific branch condition,
1758 // we don't optimize if condition code is used by more than once.
1759 if (equalityOnly || !MRI->hasOneUse(CRReg))
1760 return false;
1762 MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg);
1763 if (UseMI->getOpcode() != PPC::BCC)
1764 return false;
1766 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1767 unsigned PredCond = PPC::getPredicateCondition(Pred);
1768 unsigned PredHint = PPC::getPredicateHint(Pred);
1769 int16_t Immed = (int16_t)Value;
1771 // When modifying the condition in the predicate, we propagate hint bits
1772 // from the original predicate to the new one.
1773 if (Immed == -1 && PredCond == PPC::PRED_GT)
1774 // We convert "greater than -1" into "greater than or equal to 0",
1775 // since we are assuming signed comparison by !equalityOnly
1776 Pred = PPC::getPredicate(PPC::PRED_GE, PredHint);
1777 else if (Immed == -1 && PredCond == PPC::PRED_LE)
1778 // We convert "less than or equal to -1" into "less than 0".
1779 Pred = PPC::getPredicate(PPC::PRED_LT, PredHint);
1780 else if (Immed == 1 && PredCond == PPC::PRED_LT)
1781 // We convert "less than 1" into "less than or equal to 0".
1782 Pred = PPC::getPredicate(PPC::PRED_LE, PredHint);
1783 else if (Immed == 1 && PredCond == PPC::PRED_GE)
1784 // We convert "greater than or equal to 1" into "greater than 0".
1785 Pred = PPC::getPredicate(PPC::PRED_GT, PredHint);
1786 else
1787 return false;
1789 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred));
1792 // Search for Sub.
1793 --I;
1795 // Get ready to iterate backward from CmpInstr.
1796 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();
1798 for (; I != E && !noSub; --I) {
1799 const MachineInstr &Instr = *I;
1800 unsigned IOpC = Instr.getOpcode();
1802 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
1803 Instr.readsRegister(PPC::CR0, TRI)))
1804 // This instruction modifies or uses the record condition register after
1805 // the one we want to change. While we could do this transformation, it
1806 // would likely not be profitable. This transformation removes one
1807 // instruction, and so even forcing RA to generate one move probably
1808 // makes it unprofitable.
1809 return false;
1811 // Check whether CmpInstr can be made redundant by the current instruction.
1812 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
1813 OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
1814 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
1815 ((Instr.getOperand(1).getReg() == SrcReg &&
1816 Instr.getOperand(2).getReg() == SrcReg2) ||
1817 (Instr.getOperand(1).getReg() == SrcReg2 &&
1818 Instr.getOperand(2).getReg() == SrcReg))) {
1819 Sub = &*I;
1820 break;
1823 if (I == B)
1824 // The 'and' is below the comparison instruction.
1825 return false;
1828 // Return false if no candidates exist.
1829 if (!MI && !Sub)
1830 return false;
1832 // The single candidate is called MI.
1833 if (!MI) MI = Sub;
1835 int NewOpC = -1;
1836 int MIOpC = MI->getOpcode();
1837 if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8 ||
1838 MIOpC == PPC::ANDISo || MIOpC == PPC::ANDISo8)
1839 NewOpC = MIOpC;
1840 else {
1841 NewOpC = PPC::getRecordFormOpcode(MIOpC);
1842 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
1843 NewOpC = MIOpC;
1846 // FIXME: On the non-embedded POWER architectures, only some of the record
1847 // forms are fast, and we should use only the fast ones.
1849 // The defining instruction has a record form (or is already a record
1850 // form). It is possible, however, that we'll need to reverse the condition
1851 // code of the users.
1852 if (NewOpC == -1)
1853 return false;
1855 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
1856 // needs to be updated to be based on SUB. Push the condition code
1857 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the
1858 // condition code of these operands will be modified.
1859 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to
1860 // comparison against 0, which may modify predicate.
1861 bool ShouldSwap = false;
1862 if (Sub && Value == 0) {
1863 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
1864 Sub->getOperand(2).getReg() == SrcReg;
1866 // The operands to subf are the opposite of sub, so only in the fixed-point
1867 // case, invert the order.
1868 ShouldSwap = !ShouldSwap;
1871 if (ShouldSwap)
1872 for (MachineRegisterInfo::use_instr_iterator
1873 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1874 I != IE; ++I) {
1875 MachineInstr *UseMI = &*I;
1876 if (UseMI->getOpcode() == PPC::BCC) {
1877 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
1878 unsigned PredCond = PPC::getPredicateCondition(Pred);
1879 assert((!equalityOnly ||
1880 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) &&
1881 "Invalid predicate for equality-only optimization");
1882 (void)PredCond; // To suppress warning in release build.
1883 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
1884 PPC::getSwappedPredicate(Pred)));
1885 } else if (UseMI->getOpcode() == PPC::ISEL ||
1886 UseMI->getOpcode() == PPC::ISEL8) {
1887 unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
1888 assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
1889 "Invalid CR bit for equality-only optimization");
1891 if (NewSubReg == PPC::sub_lt)
1892 NewSubReg = PPC::sub_gt;
1893 else if (NewSubReg == PPC::sub_gt)
1894 NewSubReg = PPC::sub_lt;
1896 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
1897 NewSubReg));
1898 } else // We need to abort on a user we don't understand.
1899 return false;
1901 assert(!(Value != 0 && ShouldSwap) &&
1902 "Non-zero immediate support and ShouldSwap"
1903 "may conflict in updating predicate");
1905 // Create a new virtual register to hold the value of the CR set by the
1906 // record-form instruction. If the instruction was not previously in
1907 // record form, then set the kill flag on the CR.
1908 CmpInstr.eraseFromParent();
1910 MachineBasicBlock::iterator MII = MI;
1911 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
1912 get(TargetOpcode::COPY), CRReg)
1913 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
1915 // Even if CR0 register were dead before, it is alive now since the
1916 // instruction we just built uses it.
1917 MI->clearRegisterDeads(PPC::CR0);
1919 if (MIOpC != NewOpC) {
1920 // We need to be careful here: we're replacing one instruction with
1921 // another, and we need to make sure that we get all of the right
1922 // implicit uses and defs. On the other hand, the caller may be holding
1923 // an iterator to this instruction, and so we can't delete it (this is
1924 // specifically the case if this is the instruction directly after the
1925 // compare).
1927 // Rotates are expensive instructions. If we're emitting a record-form
1928 // rotate that can just be an andi/andis, we should just emit that.
1929 if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) {
1930 Register GPRRes = MI->getOperand(0).getReg();
1931 int64_t SH = MI->getOperand(2).getImm();
1932 int64_t MB = MI->getOperand(3).getImm();
1933 int64_t ME = MI->getOperand(4).getImm();
1934 // We can only do this if both the start and end of the mask are in the
1935 // same halfword.
1936 bool MBInLoHWord = MB >= 16;
1937 bool MEInLoHWord = ME >= 16;
1938 uint64_t Mask = ~0LLU;
1940 if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) {
1941 Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
1942 // The mask value needs to shift right 16 if we're emitting andis.
1943 Mask >>= MBInLoHWord ? 0 : 16;
1944 NewOpC = MIOpC == PPC::RLWINM ?
1945 (MBInLoHWord ? PPC::ANDIo : PPC::ANDISo) :
1946 (MBInLoHWord ? PPC::ANDIo8 :PPC::ANDISo8);
1947 } else if (MRI->use_empty(GPRRes) && (ME == 31) &&
1948 (ME - MB + 1 == SH) && (MB >= 16)) {
1949 // If we are rotating by the exact number of bits as are in the mask
1950 // and the mask is in the least significant bits of the register,
1951 // that's just an andis. (as long as the GPR result has no uses).
1952 Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1);
1953 Mask >>= 16;
1954 NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDISo :PPC::ANDISo8;
1956 // If we've set the mask, we can transform.
1957 if (Mask != ~0LLU) {
1958 MI->RemoveOperand(4);
1959 MI->RemoveOperand(3);
1960 MI->getOperand(2).setImm(Mask);
1961 NumRcRotatesConvertedToRcAnd++;
1963 } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) {
1964 int64_t MB = MI->getOperand(3).getImm();
1965 if (MB >= 48) {
1966 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
1967 NewOpC = PPC::ANDIo8;
1968 MI->RemoveOperand(3);
1969 MI->getOperand(2).setImm(Mask);
1970 NumRcRotatesConvertedToRcAnd++;
1974 const MCInstrDesc &NewDesc = get(NewOpC);
1975 MI->setDesc(NewDesc);
1977 if (NewDesc.ImplicitDefs)
1978 for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
1979 *ImpDefs; ++ImpDefs)
1980 if (!MI->definesRegister(*ImpDefs))
1981 MI->addOperand(*MI->getParent()->getParent(),
1982 MachineOperand::CreateReg(*ImpDefs, true, true));
1983 if (NewDesc.ImplicitUses)
1984 for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
1985 *ImpUses; ++ImpUses)
1986 if (!MI->readsRegister(*ImpUses))
1987 MI->addOperand(*MI->getParent()->getParent(),
1988 MachineOperand::CreateReg(*ImpUses, false, true));
1990 assert(MI->definesRegister(PPC::CR0) &&
1991 "Record-form instruction does not define cr0?");
1993 // Modify the condition code of operands in OperandsToUpdate.
1994 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
1995 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
1996 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
1997 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
1999 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
2000 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
2002 return true;
2005 /// GetInstSize - Return the number of bytes of code the specified
2006 /// instruction may be. This returns the maximum number of bytes.
2008 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
2009 unsigned Opcode = MI.getOpcode();
2011 if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) {
2012 const MachineFunction *MF = MI.getParent()->getParent();
2013 const char *AsmStr = MI.getOperand(0).getSymbolName();
2014 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
2015 } else if (Opcode == TargetOpcode::STACKMAP) {
2016 StackMapOpers Opers(&MI);
2017 return Opers.getNumPatchBytes();
2018 } else if (Opcode == TargetOpcode::PATCHPOINT) {
2019 PatchPointOpers Opers(&MI);
2020 return Opers.getNumPatchBytes();
2021 } else {
2022 return get(Opcode).getSize();
2026 std::pair<unsigned, unsigned>
2027 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
2028 const unsigned Mask = PPCII::MO_ACCESS_MASK;
2029 return std::make_pair(TF & Mask, TF & ~Mask);
2032 ArrayRef<std::pair<unsigned, const char *>>
2033 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
2034 using namespace PPCII;
2035 static const std::pair<unsigned, const char *> TargetFlags[] = {
2036 {MO_LO, "ppc-lo"},
2037 {MO_HA, "ppc-ha"},
2038 {MO_TPREL_LO, "ppc-tprel-lo"},
2039 {MO_TPREL_HA, "ppc-tprel-ha"},
2040 {MO_DTPREL_LO, "ppc-dtprel-lo"},
2041 {MO_TLSLD_LO, "ppc-tlsld-lo"},
2042 {MO_TOC_LO, "ppc-toc-lo"},
2043 {MO_TLS, "ppc-tls"}};
2044 return makeArrayRef(TargetFlags);
2047 ArrayRef<std::pair<unsigned, const char *>>
2048 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
2049 using namespace PPCII;
2050 static const std::pair<unsigned, const char *> TargetFlags[] = {
2051 {MO_PLT, "ppc-plt"},
2052 {MO_PIC_FLAG, "ppc-pic"},
2053 {MO_NLP_FLAG, "ppc-nlp"},
2054 {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}};
2055 return makeArrayRef(TargetFlags);
2058 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
2059 // The VSX versions have the advantage of a full 64-register target whereas
2060 // the FP ones have the advantage of lower latency and higher throughput. So
2061 // what we are after is using the faster instructions in low register pressure
2062 // situations and using the larger register file in high register pressure
2063 // situations.
2064 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const {
2065 unsigned UpperOpcode, LowerOpcode;
2066 switch (MI.getOpcode()) {
2067 case PPC::DFLOADf32:
2068 UpperOpcode = PPC::LXSSP;
2069 LowerOpcode = PPC::LFS;
2070 break;
2071 case PPC::DFLOADf64:
2072 UpperOpcode = PPC::LXSD;
2073 LowerOpcode = PPC::LFD;
2074 break;
2075 case PPC::DFSTOREf32:
2076 UpperOpcode = PPC::STXSSP;
2077 LowerOpcode = PPC::STFS;
2078 break;
2079 case PPC::DFSTOREf64:
2080 UpperOpcode = PPC::STXSD;
2081 LowerOpcode = PPC::STFD;
2082 break;
2083 case PPC::XFLOADf32:
2084 UpperOpcode = PPC::LXSSPX;
2085 LowerOpcode = PPC::LFSX;
2086 break;
2087 case PPC::XFLOADf64:
2088 UpperOpcode = PPC::LXSDX;
2089 LowerOpcode = PPC::LFDX;
2090 break;
2091 case PPC::XFSTOREf32:
2092 UpperOpcode = PPC::STXSSPX;
2093 LowerOpcode = PPC::STFSX;
2094 break;
2095 case PPC::XFSTOREf64:
2096 UpperOpcode = PPC::STXSDX;
2097 LowerOpcode = PPC::STFDX;
2098 break;
2099 case PPC::LIWAX:
2100 UpperOpcode = PPC::LXSIWAX;
2101 LowerOpcode = PPC::LFIWAX;
2102 break;
2103 case PPC::LIWZX:
2104 UpperOpcode = PPC::LXSIWZX;
2105 LowerOpcode = PPC::LFIWZX;
2106 break;
2107 case PPC::STIWX:
2108 UpperOpcode = PPC::STXSIWX;
2109 LowerOpcode = PPC::STFIWX;
2110 break;
2111 default:
2112 llvm_unreachable("Unknown Operation!");
2115 Register TargetReg = MI.getOperand(0).getReg();
2116 unsigned Opcode;
2117 if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) ||
2118 (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31))
2119 Opcode = LowerOpcode;
2120 else
2121 Opcode = UpperOpcode;
2122 MI.setDesc(get(Opcode));
2123 return true;
2126 static bool isAnImmediateOperand(const MachineOperand &MO) {
2127 return MO.isCPI() || MO.isGlobal() || MO.isImm();
2130 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
2131 auto &MBB = *MI.getParent();
2132 auto DL = MI.getDebugLoc();
2134 switch (MI.getOpcode()) {
2135 case TargetOpcode::LOAD_STACK_GUARD: {
2136 assert(Subtarget.isTargetLinux() &&
2137 "Only Linux target is expected to contain LOAD_STACK_GUARD");
2138 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
2139 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
2140 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
2141 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2142 .addImm(Offset)
2143 .addReg(Reg);
2144 return true;
2146 case PPC::DFLOADf32:
2147 case PPC::DFLOADf64:
2148 case PPC::DFSTOREf32:
2149 case PPC::DFSTOREf64: {
2150 assert(Subtarget.hasP9Vector() &&
2151 "Invalid D-Form Pseudo-ops on Pre-P9 target.");
2152 assert(MI.getOperand(2).isReg() &&
2153 isAnImmediateOperand(MI.getOperand(1)) &&
2154 "D-form op must have register and immediate operands");
2155 return expandVSXMemPseudo(MI);
2157 case PPC::XFLOADf32:
2158 case PPC::XFSTOREf32:
2159 case PPC::LIWAX:
2160 case PPC::LIWZX:
2161 case PPC::STIWX: {
2162 assert(Subtarget.hasP8Vector() &&
2163 "Invalid X-Form Pseudo-ops on Pre-P8 target.");
2164 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
2165 "X-form op must have register and register operands");
2166 return expandVSXMemPseudo(MI);
2168 case PPC::XFLOADf64:
2169 case PPC::XFSTOREf64: {
2170 assert(Subtarget.hasVSX() &&
2171 "Invalid X-Form Pseudo-ops on target that has no VSX.");
2172 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
2173 "X-form op must have register and register operands");
2174 return expandVSXMemPseudo(MI);
2176 case PPC::SPILLTOVSR_LD: {
2177 Register TargetReg = MI.getOperand(0).getReg();
2178 if (PPC::VSFRCRegClass.contains(TargetReg)) {
2179 MI.setDesc(get(PPC::DFLOADf64));
2180 return expandPostRAPseudo(MI);
2182 else
2183 MI.setDesc(get(PPC::LD));
2184 return true;
2186 case PPC::SPILLTOVSR_ST: {
2187 Register SrcReg = MI.getOperand(0).getReg();
2188 if (PPC::VSFRCRegClass.contains(SrcReg)) {
2189 NumStoreSPILLVSRRCAsVec++;
2190 MI.setDesc(get(PPC::DFSTOREf64));
2191 return expandPostRAPseudo(MI);
2192 } else {
2193 NumStoreSPILLVSRRCAsGpr++;
2194 MI.setDesc(get(PPC::STD));
2196 return true;
2198 case PPC::SPILLTOVSR_LDX: {
2199 Register TargetReg = MI.getOperand(0).getReg();
2200 if (PPC::VSFRCRegClass.contains(TargetReg))
2201 MI.setDesc(get(PPC::LXSDX));
2202 else
2203 MI.setDesc(get(PPC::LDX));
2204 return true;
2206 case PPC::SPILLTOVSR_STX: {
2207 Register SrcReg = MI.getOperand(0).getReg();
2208 if (PPC::VSFRCRegClass.contains(SrcReg)) {
2209 NumStoreSPILLVSRRCAsVec++;
2210 MI.setDesc(get(PPC::STXSDX));
2211 } else {
2212 NumStoreSPILLVSRRCAsGpr++;
2213 MI.setDesc(get(PPC::STDX));
2215 return true;
2218 case PPC::CFENCE8: {
2219 auto Val = MI.getOperand(0).getReg();
2220 BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val);
2221 BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP))
2222 .addImm(PPC::PRED_NE_MINUS)
2223 .addReg(PPC::CR7)
2224 .addImm(1);
2225 MI.setDesc(get(PPC::ISYNC));
2226 MI.RemoveOperand(0);
2227 return true;
2230 return false;
2233 // Essentially a compile-time implementation of a compare->isel sequence.
2234 // It takes two constants to compare, along with the true/false registers
2235 // and the comparison type (as a subreg to a CR field) and returns one
2236 // of the true/false registers, depending on the comparison results.
2237 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc,
2238 unsigned TrueReg, unsigned FalseReg,
2239 unsigned CRSubReg) {
2240 // Signed comparisons. The immediates are assumed to be sign-extended.
2241 if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) {
2242 switch (CRSubReg) {
2243 default: llvm_unreachable("Unknown integer comparison type.");
2244 case PPC::sub_lt:
2245 return Imm1 < Imm2 ? TrueReg : FalseReg;
2246 case PPC::sub_gt:
2247 return Imm1 > Imm2 ? TrueReg : FalseReg;
2248 case PPC::sub_eq:
2249 return Imm1 == Imm2 ? TrueReg : FalseReg;
2252 // Unsigned comparisons.
2253 else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) {
2254 switch (CRSubReg) {
2255 default: llvm_unreachable("Unknown integer comparison type.");
2256 case PPC::sub_lt:
2257 return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg;
2258 case PPC::sub_gt:
2259 return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg;
2260 case PPC::sub_eq:
2261 return Imm1 == Imm2 ? TrueReg : FalseReg;
2264 return PPC::NoRegister;
2267 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI,
2268 unsigned OpNo,
2269 int64_t Imm) const {
2270 assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG");
2271 // Replace the REG with the Immediate.
2272 Register InUseReg = MI.getOperand(OpNo).getReg();
2273 MI.getOperand(OpNo).ChangeToImmediate(Imm);
2275 if (empty(MI.implicit_operands()))
2276 return;
2278 // We need to make sure that the MI didn't have any implicit use
2279 // of this REG any more.
2280 const TargetRegisterInfo *TRI = &getRegisterInfo();
2281 int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI);
2282 if (UseOpIdx >= 0) {
2283 MachineOperand &MO = MI.getOperand(UseOpIdx);
2284 if (MO.isImplicit())
2285 // The operands must always be in the following order:
2286 // - explicit reg defs,
2287 // - other explicit operands (reg uses, immediates, etc.),
2288 // - implicit reg defs
2289 // - implicit reg uses
2290 // Therefore, removing the implicit operand won't change the explicit
2291 // operands layout.
2292 MI.RemoveOperand(UseOpIdx);
2296 // Replace an instruction with one that materializes a constant (and sets
2297 // CR0 if the original instruction was a record-form instruction).
2298 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI,
2299 const LoadImmediateInfo &LII) const {
2300 // Remove existing operands.
2301 int OperandToKeep = LII.SetCR ? 1 : 0;
2302 for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--)
2303 MI.RemoveOperand(i);
2305 // Replace the instruction.
2306 if (LII.SetCR) {
2307 MI.setDesc(get(LII.Is64Bit ? PPC::ANDIo8 : PPC::ANDIo));
2308 // Set the immediate.
2309 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2310 .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine);
2311 return;
2313 else
2314 MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI));
2316 // Set the immediate.
2317 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2318 .addImm(LII.Imm);
2321 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI,
2322 bool &SeenIntermediateUse) const {
2323 assert(!MI.getParent()->getParent()->getRegInfo().isSSA() &&
2324 "Should be called after register allocation.");
2325 const TargetRegisterInfo *TRI = &getRegisterInfo();
2326 MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI;
2327 It++;
2328 SeenIntermediateUse = false;
2329 for (; It != E; ++It) {
2330 if (It->modifiesRegister(Reg, TRI))
2331 return &*It;
2332 if (It->readsRegister(Reg, TRI))
2333 SeenIntermediateUse = true;
2335 return nullptr;
2338 MachineInstr *PPCInstrInfo::getForwardingDefMI(
2339 MachineInstr &MI,
2340 unsigned &OpNoForForwarding,
2341 bool &SeenIntermediateUse) const {
2342 OpNoForForwarding = ~0U;
2343 MachineInstr *DefMI = nullptr;
2344 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
2345 const TargetRegisterInfo *TRI = &getRegisterInfo();
2346 // If we're in SSA, get the defs through the MRI. Otherwise, only look
2347 // within the basic block to see if the register is defined using an LI/LI8.
2348 if (MRI->isSSA()) {
2349 for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2350 if (!MI.getOperand(i).isReg())
2351 continue;
2352 Register Reg = MI.getOperand(i).getReg();
2353 if (!Register::isVirtualRegister(Reg))
2354 continue;
2355 unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI);
2356 if (Register::isVirtualRegister(TrueReg)) {
2357 DefMI = MRI->getVRegDef(TrueReg);
2358 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) {
2359 OpNoForForwarding = i;
2360 break;
2364 } else {
2365 // Looking back through the definition for each operand could be expensive,
2366 // so exit early if this isn't an instruction that either has an immediate
2367 // form or is already an immediate form that we can handle.
2368 ImmInstrInfo III;
2369 unsigned Opc = MI.getOpcode();
2370 bool ConvertibleImmForm =
2371 Opc == PPC::CMPWI || Opc == PPC::CMPLWI ||
2372 Opc == PPC::CMPDI || Opc == PPC::CMPLDI ||
2373 Opc == PPC::ADDI || Opc == PPC::ADDI8 ||
2374 Opc == PPC::ORI || Opc == PPC::ORI8 ||
2375 Opc == PPC::XORI || Opc == PPC::XORI8 ||
2376 Opc == PPC::RLDICL || Opc == PPC::RLDICLo ||
2377 Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 ||
2378 Opc == PPC::RLWINM || Opc == PPC::RLWINMo ||
2379 Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o;
2380 bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg())
2381 ? isVFRegister(MI.getOperand(0).getReg())
2382 : false;
2383 if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true))
2384 return nullptr;
2386 // Don't convert or %X, %Y, %Y since that's just a register move.
2387 if ((Opc == PPC::OR || Opc == PPC::OR8) &&
2388 MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
2389 return nullptr;
2390 for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2391 MachineOperand &MO = MI.getOperand(i);
2392 SeenIntermediateUse = false;
2393 if (MO.isReg() && MO.isUse() && !MO.isImplicit()) {
2394 Register Reg = MI.getOperand(i).getReg();
2395 // If we see another use of this reg between the def and the MI,
2396 // we want to flat it so the def isn't deleted.
2397 MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse);
2398 if (DefMI) {
2399 // Is this register defined by some form of add-immediate (including
2400 // load-immediate) within this basic block?
2401 switch (DefMI->getOpcode()) {
2402 default:
2403 break;
2404 case PPC::LI:
2405 case PPC::LI8:
2406 case PPC::ADDItocL:
2407 case PPC::ADDI:
2408 case PPC::ADDI8:
2409 OpNoForForwarding = i;
2410 return DefMI;
2416 return OpNoForForwarding == ~0U ? nullptr : DefMI;
2419 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const {
2420 static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = {
2421 // Power 8
2422 {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR,
2423 PPC::SPILL_CRBIT, PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX,
2424 PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb,
2425 PPC::SPILLTOVSR_ST, PPC::EVSTDD},
2426 // Power 9
2427 {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR,
2428 PPC::SPILL_CRBIT, PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32,
2429 PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb,
2430 PPC::SPILLTOVSR_ST}};
2432 return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0];
2435 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const {
2436 static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = {
2437 // Power 8
2438 {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,
2439 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX,
2440 PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb,
2441 PPC::SPILLTOVSR_LD, PPC::EVLDD},
2442 // Power 9
2443 {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,
2444 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, PPC::DFLOADf32,
2445 PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb,
2446 PPC::SPILLTOVSR_LD}};
2448 return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0];
2451 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr &StartMI, MachineInstr &EndMI,
2452 unsigned RegNo) const {
2453 const MachineRegisterInfo &MRI =
2454 StartMI.getParent()->getParent()->getRegInfo();
2455 if (MRI.isSSA())
2456 return;
2458 // Instructions between [StartMI, EndMI] should be in same basic block.
2459 assert((StartMI.getParent() == EndMI.getParent()) &&
2460 "Instructions are not in same basic block");
2462 bool IsKillSet = false;
2464 auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) {
2465 MachineOperand &MO = MI.getOperand(Index);
2466 if (MO.isReg() && MO.isUse() && MO.isKill() &&
2467 getRegisterInfo().regsOverlap(MO.getReg(), RegNo))
2468 MO.setIsKill(false);
2471 // Set killed flag for EndMI.
2472 // No need to do anything if EndMI defines RegNo.
2473 int UseIndex =
2474 EndMI.findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo());
2475 if (UseIndex != -1) {
2476 EndMI.getOperand(UseIndex).setIsKill(true);
2477 IsKillSet = true;
2478 // Clear killed flag for other EndMI operands related to RegNo. In some
2479 // upexpected cases, killed may be set multiple times for same register
2480 // operand in same MI.
2481 for (int i = 0, e = EndMI.getNumOperands(); i != e; ++i)
2482 if (i != UseIndex)
2483 clearOperandKillInfo(EndMI, i);
2486 // Walking the inst in reverse order (EndMI -> StartMI].
2487 MachineBasicBlock::reverse_iterator It = EndMI;
2488 MachineBasicBlock::reverse_iterator E = EndMI.getParent()->rend();
2489 // EndMI has been handled above, skip it here.
2490 It++;
2491 MachineOperand *MO = nullptr;
2492 for (; It != E; ++It) {
2493 // Skip insturctions which could not be a def/use of RegNo.
2494 if (It->isDebugInstr() || It->isPosition())
2495 continue;
2497 // Clear killed flag for all It operands related to RegNo. In some
2498 // upexpected cases, killed may be set multiple times for same register
2499 // operand in same MI.
2500 for (int i = 0, e = It->getNumOperands(); i != e; ++i)
2501 clearOperandKillInfo(*It, i);
2503 // If killed is not set, set killed for its last use or set dead for its def
2504 // if no use found.
2505 if (!IsKillSet) {
2506 if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) {
2507 // Use found, set it killed.
2508 IsKillSet = true;
2509 MO->setIsKill(true);
2510 continue;
2511 } else if ((MO = It->findRegisterDefOperand(RegNo, false, true,
2512 &getRegisterInfo()))) {
2513 // No use found, set dead for its def.
2514 assert(&*It == &StartMI && "No new def between StartMI and EndMI.");
2515 MO->setIsDead(true);
2516 break;
2520 if ((&*It) == &StartMI)
2521 break;
2523 // Ensure RegMo liveness is killed after EndMI.
2524 assert((IsKillSet || (MO && MO->isDead())) &&
2525 "RegNo should be killed or dead");
2528 // If this instruction has an immediate form and one of its operands is a
2529 // result of a load-immediate or an add-immediate, convert it to
2530 // the immediate form if the constant is in range.
2531 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI,
2532 MachineInstr **KilledDef) const {
2533 MachineFunction *MF = MI.getParent()->getParent();
2534 MachineRegisterInfo *MRI = &MF->getRegInfo();
2535 bool PostRA = !MRI->isSSA();
2536 bool SeenIntermediateUse = true;
2537 unsigned ForwardingOperand = ~0U;
2538 MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand,
2539 SeenIntermediateUse);
2540 if (!DefMI)
2541 return false;
2542 assert(ForwardingOperand < MI.getNumOperands() &&
2543 "The forwarding operand needs to be valid at this point");
2544 bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill();
2545 bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled;
2546 Register ForwardingOperandReg = MI.getOperand(ForwardingOperand).getReg();
2547 if (KilledDef && KillFwdDefMI)
2548 *KilledDef = DefMI;
2550 ImmInstrInfo III;
2551 bool IsVFReg = MI.getOperand(0).isReg()
2552 ? isVFRegister(MI.getOperand(0).getReg())
2553 : false;
2554 bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA);
2555 // If this is a reg+reg instruction that has a reg+imm form,
2556 // and one of the operands is produced by an add-immediate,
2557 // try to convert it.
2558 if (HasImmForm &&
2559 transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI,
2560 KillFwdDefMI))
2561 return true;
2563 if ((DefMI->getOpcode() != PPC::LI && DefMI->getOpcode() != PPC::LI8) ||
2564 !DefMI->getOperand(1).isImm())
2565 return false;
2567 int64_t Immediate = DefMI->getOperand(1).getImm();
2568 // Sign-extend to 64-bits.
2569 int64_t SExtImm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ?
2570 (Immediate | 0xFFFFFFFFFFFF0000) : Immediate;
2572 // If this is a reg+reg instruction that has a reg+imm form,
2573 // and one of the operands is produced by LI, convert it now.
2574 if (HasImmForm)
2575 return transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI, SExtImm);
2577 bool ReplaceWithLI = false;
2578 bool Is64BitLI = false;
2579 int64_t NewImm = 0;
2580 bool SetCR = false;
2581 unsigned Opc = MI.getOpcode();
2582 switch (Opc) {
2583 default: return false;
2585 // FIXME: Any branches conditional on such a comparison can be made
2586 // unconditional. At this time, this happens too infrequently to be worth
2587 // the implementation effort, but if that ever changes, we could convert
2588 // such a pattern here.
2589 case PPC::CMPWI:
2590 case PPC::CMPLWI:
2591 case PPC::CMPDI:
2592 case PPC::CMPLDI: {
2593 // Doing this post-RA would require dataflow analysis to reliably find uses
2594 // of the CR register set by the compare.
2595 // No need to fixup killed/dead flag since this transformation is only valid
2596 // before RA.
2597 if (PostRA)
2598 return false;
2599 // If a compare-immediate is fed by an immediate and is itself an input of
2600 // an ISEL (the most common case) into a COPY of the correct register.
2601 bool Changed = false;
2602 Register DefReg = MI.getOperand(0).getReg();
2603 int64_t Comparand = MI.getOperand(2).getImm();
2604 int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 ?
2605 (Comparand | 0xFFFFFFFFFFFF0000) : Comparand;
2607 for (auto &CompareUseMI : MRI->use_instructions(DefReg)) {
2608 unsigned UseOpc = CompareUseMI.getOpcode();
2609 if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8)
2610 continue;
2611 unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg();
2612 Register TrueReg = CompareUseMI.getOperand(1).getReg();
2613 Register FalseReg = CompareUseMI.getOperand(2).getReg();
2614 unsigned RegToCopy = selectReg(SExtImm, SExtComparand, Opc, TrueReg,
2615 FalseReg, CRSubReg);
2616 if (RegToCopy == PPC::NoRegister)
2617 continue;
2618 // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0.
2619 if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) {
2620 CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI));
2621 replaceInstrOperandWithImm(CompareUseMI, 1, 0);
2622 CompareUseMI.RemoveOperand(3);
2623 CompareUseMI.RemoveOperand(2);
2624 continue;
2626 LLVM_DEBUG(
2627 dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n");
2628 LLVM_DEBUG(DefMI->dump(); MI.dump(); CompareUseMI.dump());
2629 LLVM_DEBUG(dbgs() << "Is converted to:\n");
2630 // Convert to copy and remove unneeded operands.
2631 CompareUseMI.setDesc(get(PPC::COPY));
2632 CompareUseMI.RemoveOperand(3);
2633 CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1);
2634 CmpIselsConverted++;
2635 Changed = true;
2636 LLVM_DEBUG(CompareUseMI.dump());
2638 if (Changed)
2639 return true;
2640 // This may end up incremented multiple times since this function is called
2641 // during a fixed-point transformation, but it is only meant to indicate the
2642 // presence of this opportunity.
2643 MissedConvertibleImmediateInstrs++;
2644 return false;
2647 // Immediate forms - may simply be convertable to an LI.
2648 case PPC::ADDI:
2649 case PPC::ADDI8: {
2650 // Does the sum fit in a 16-bit signed field?
2651 int64_t Addend = MI.getOperand(2).getImm();
2652 if (isInt<16>(Addend + SExtImm)) {
2653 ReplaceWithLI = true;
2654 Is64BitLI = Opc == PPC::ADDI8;
2655 NewImm = Addend + SExtImm;
2656 break;
2658 return false;
2660 case PPC::RLDICL:
2661 case PPC::RLDICLo:
2662 case PPC::RLDICL_32:
2663 case PPC::RLDICL_32_64: {
2664 // Use APInt's rotate function.
2665 int64_t SH = MI.getOperand(2).getImm();
2666 int64_t MB = MI.getOperand(3).getImm();
2667 APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICLo) ?
2668 64 : 32, SExtImm, true);
2669 InVal = InVal.rotl(SH);
2670 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
2671 InVal &= Mask;
2672 // Can't replace negative values with an LI as that will sign-extend
2673 // and not clear the left bits. If we're setting the CR bit, we will use
2674 // ANDIo which won't sign extend, so that's safe.
2675 if (isUInt<15>(InVal.getSExtValue()) ||
2676 (Opc == PPC::RLDICLo && isUInt<16>(InVal.getSExtValue()))) {
2677 ReplaceWithLI = true;
2678 Is64BitLI = Opc != PPC::RLDICL_32;
2679 NewImm = InVal.getSExtValue();
2680 SetCR = Opc == PPC::RLDICLo;
2681 break;
2683 return false;
2685 case PPC::RLWINM:
2686 case PPC::RLWINM8:
2687 case PPC::RLWINMo:
2688 case PPC::RLWINM8o: {
2689 int64_t SH = MI.getOperand(2).getImm();
2690 int64_t MB = MI.getOperand(3).getImm();
2691 int64_t ME = MI.getOperand(4).getImm();
2692 APInt InVal(32, SExtImm, true);
2693 InVal = InVal.rotl(SH);
2694 // Set the bits ( MB + 32 ) to ( ME + 32 ).
2695 uint64_t Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
2696 InVal &= Mask;
2697 // Can't replace negative values with an LI as that will sign-extend
2698 // and not clear the left bits. If we're setting the CR bit, we will use
2699 // ANDIo which won't sign extend, so that's safe.
2700 bool ValueFits = isUInt<15>(InVal.getSExtValue());
2701 ValueFits |= ((Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o) &&
2702 isUInt<16>(InVal.getSExtValue()));
2703 if (ValueFits) {
2704 ReplaceWithLI = true;
2705 Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o;
2706 NewImm = InVal.getSExtValue();
2707 SetCR = Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o;
2708 break;
2710 return false;
2712 case PPC::ORI:
2713 case PPC::ORI8:
2714 case PPC::XORI:
2715 case PPC::XORI8: {
2716 int64_t LogicalImm = MI.getOperand(2).getImm();
2717 int64_t Result = 0;
2718 if (Opc == PPC::ORI || Opc == PPC::ORI8)
2719 Result = LogicalImm | SExtImm;
2720 else
2721 Result = LogicalImm ^ SExtImm;
2722 if (isInt<16>(Result)) {
2723 ReplaceWithLI = true;
2724 Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8;
2725 NewImm = Result;
2726 break;
2728 return false;
2732 if (ReplaceWithLI) {
2733 // We need to be careful with CR-setting instructions we're replacing.
2734 if (SetCR) {
2735 // We don't know anything about uses when we're out of SSA, so only
2736 // replace if the new immediate will be reproduced.
2737 bool ImmChanged = (SExtImm & NewImm) != NewImm;
2738 if (PostRA && ImmChanged)
2739 return false;
2741 if (!PostRA) {
2742 // If the defining load-immediate has no other uses, we can just replace
2743 // the immediate with the new immediate.
2744 if (MRI->hasOneUse(DefMI->getOperand(0).getReg()))
2745 DefMI->getOperand(1).setImm(NewImm);
2747 // If we're not using the GPR result of the CR-setting instruction, we
2748 // just need to and with zero/non-zero depending on the new immediate.
2749 else if (MRI->use_empty(MI.getOperand(0).getReg())) {
2750 if (NewImm) {
2751 assert(Immediate && "Transformation converted zero to non-zero?");
2752 NewImm = Immediate;
2755 else if (ImmChanged)
2756 return false;
2760 LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
2761 LLVM_DEBUG(MI.dump());
2762 LLVM_DEBUG(dbgs() << "Fed by:\n");
2763 LLVM_DEBUG(DefMI->dump());
2764 LoadImmediateInfo LII;
2765 LII.Imm = NewImm;
2766 LII.Is64Bit = Is64BitLI;
2767 LII.SetCR = SetCR;
2768 // If we're setting the CR, the original load-immediate must be kept (as an
2769 // operand to ANDIo/ANDI8o).
2770 if (KilledDef && SetCR)
2771 *KilledDef = nullptr;
2772 replaceInstrWithLI(MI, LII);
2774 // Fixup killed/dead flag after transformation.
2775 // Pattern:
2776 // ForwardingOperandReg = LI imm1
2777 // y = op2 imm2, ForwardingOperandReg(killed)
2778 if (IsForwardingOperandKilled)
2779 fixupIsDeadOrKill(*DefMI, MI, ForwardingOperandReg);
2781 LLVM_DEBUG(dbgs() << "With:\n");
2782 LLVM_DEBUG(MI.dump());
2783 return true;
2785 return false;
2788 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg,
2789 ImmInstrInfo &III, bool PostRA) const {
2790 // The vast majority of the instructions would need their operand 2 replaced
2791 // with an immediate when switching to the reg+imm form. A marked exception
2792 // are the update form loads/stores for which a constant operand 2 would need
2793 // to turn into a displacement and move operand 1 to the operand 2 position.
2794 III.ImmOpNo = 2;
2795 III.OpNoForForwarding = 2;
2796 III.ImmWidth = 16;
2797 III.ImmMustBeMultipleOf = 1;
2798 III.TruncateImmTo = 0;
2799 III.IsSummingOperands = false;
2800 switch (Opc) {
2801 default: return false;
2802 case PPC::ADD4:
2803 case PPC::ADD8:
2804 III.SignedImm = true;
2805 III.ZeroIsSpecialOrig = 0;
2806 III.ZeroIsSpecialNew = 1;
2807 III.IsCommutative = true;
2808 III.IsSummingOperands = true;
2809 III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8;
2810 break;
2811 case PPC::ADDC:
2812 case PPC::ADDC8:
2813 III.SignedImm = true;
2814 III.ZeroIsSpecialOrig = 0;
2815 III.ZeroIsSpecialNew = 0;
2816 III.IsCommutative = true;
2817 III.IsSummingOperands = true;
2818 III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8;
2819 break;
2820 case PPC::ADDCo:
2821 III.SignedImm = true;
2822 III.ZeroIsSpecialOrig = 0;
2823 III.ZeroIsSpecialNew = 0;
2824 III.IsCommutative = true;
2825 III.IsSummingOperands = true;
2826 III.ImmOpcode = PPC::ADDICo;
2827 break;
2828 case PPC::SUBFC:
2829 case PPC::SUBFC8:
2830 III.SignedImm = true;
2831 III.ZeroIsSpecialOrig = 0;
2832 III.ZeroIsSpecialNew = 0;
2833 III.IsCommutative = false;
2834 III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8;
2835 break;
2836 case PPC::CMPW:
2837 case PPC::CMPD:
2838 III.SignedImm = true;
2839 III.ZeroIsSpecialOrig = 0;
2840 III.ZeroIsSpecialNew = 0;
2841 III.IsCommutative = false;
2842 III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI;
2843 break;
2844 case PPC::CMPLW:
2845 case PPC::CMPLD:
2846 III.SignedImm = false;
2847 III.ZeroIsSpecialOrig = 0;
2848 III.ZeroIsSpecialNew = 0;
2849 III.IsCommutative = false;
2850 III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI;
2851 break;
2852 case PPC::ANDo:
2853 case PPC::AND8o:
2854 case PPC::OR:
2855 case PPC::OR8:
2856 case PPC::XOR:
2857 case PPC::XOR8:
2858 III.SignedImm = false;
2859 III.ZeroIsSpecialOrig = 0;
2860 III.ZeroIsSpecialNew = 0;
2861 III.IsCommutative = true;
2862 switch(Opc) {
2863 default: llvm_unreachable("Unknown opcode");
2864 case PPC::ANDo: III.ImmOpcode = PPC::ANDIo; break;
2865 case PPC::AND8o: III.ImmOpcode = PPC::ANDIo8; break;
2866 case PPC::OR: III.ImmOpcode = PPC::ORI; break;
2867 case PPC::OR8: III.ImmOpcode = PPC::ORI8; break;
2868 case PPC::XOR: III.ImmOpcode = PPC::XORI; break;
2869 case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break;
2871 break;
2872 case PPC::RLWNM:
2873 case PPC::RLWNM8:
2874 case PPC::RLWNMo:
2875 case PPC::RLWNM8o:
2876 case PPC::SLW:
2877 case PPC::SLW8:
2878 case PPC::SLWo:
2879 case PPC::SLW8o:
2880 case PPC::SRW:
2881 case PPC::SRW8:
2882 case PPC::SRWo:
2883 case PPC::SRW8o:
2884 case PPC::SRAW:
2885 case PPC::SRAWo:
2886 III.SignedImm = false;
2887 III.ZeroIsSpecialOrig = 0;
2888 III.ZeroIsSpecialNew = 0;
2889 III.IsCommutative = false;
2890 // This isn't actually true, but the instructions ignore any of the
2891 // upper bits, so any immediate loaded with an LI is acceptable.
2892 // This does not apply to shift right algebraic because a value
2893 // out of range will produce a -1/0.
2894 III.ImmWidth = 16;
2895 if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 ||
2896 Opc == PPC::RLWNMo || Opc == PPC::RLWNM8o)
2897 III.TruncateImmTo = 5;
2898 else
2899 III.TruncateImmTo = 6;
2900 switch(Opc) {
2901 default: llvm_unreachable("Unknown opcode");
2902 case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break;
2903 case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break;
2904 case PPC::RLWNMo: III.ImmOpcode = PPC::RLWINMo; break;
2905 case PPC::RLWNM8o: III.ImmOpcode = PPC::RLWINM8o; break;
2906 case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break;
2907 case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break;
2908 case PPC::SLWo: III.ImmOpcode = PPC::RLWINMo; break;
2909 case PPC::SLW8o: III.ImmOpcode = PPC::RLWINM8o; break;
2910 case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break;
2911 case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break;
2912 case PPC::SRWo: III.ImmOpcode = PPC::RLWINMo; break;
2913 case PPC::SRW8o: III.ImmOpcode = PPC::RLWINM8o; break;
2914 case PPC::SRAW:
2915 III.ImmWidth = 5;
2916 III.TruncateImmTo = 0;
2917 III.ImmOpcode = PPC::SRAWI;
2918 break;
2919 case PPC::SRAWo:
2920 III.ImmWidth = 5;
2921 III.TruncateImmTo = 0;
2922 III.ImmOpcode = PPC::SRAWIo;
2923 break;
2925 break;
2926 case PPC::RLDCL:
2927 case PPC::RLDCLo:
2928 case PPC::RLDCR:
2929 case PPC::RLDCRo:
2930 case PPC::SLD:
2931 case PPC::SLDo:
2932 case PPC::SRD:
2933 case PPC::SRDo:
2934 case PPC::SRAD:
2935 case PPC::SRADo:
2936 III.SignedImm = false;
2937 III.ZeroIsSpecialOrig = 0;
2938 III.ZeroIsSpecialNew = 0;
2939 III.IsCommutative = false;
2940 // This isn't actually true, but the instructions ignore any of the
2941 // upper bits, so any immediate loaded with an LI is acceptable.
2942 // This does not apply to shift right algebraic because a value
2943 // out of range will produce a -1/0.
2944 III.ImmWidth = 16;
2945 if (Opc == PPC::RLDCL || Opc == PPC::RLDCLo ||
2946 Opc == PPC::RLDCR || Opc == PPC::RLDCRo)
2947 III.TruncateImmTo = 6;
2948 else
2949 III.TruncateImmTo = 7;
2950 switch(Opc) {
2951 default: llvm_unreachable("Unknown opcode");
2952 case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break;
2953 case PPC::RLDCLo: III.ImmOpcode = PPC::RLDICLo; break;
2954 case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break;
2955 case PPC::RLDCRo: III.ImmOpcode = PPC::RLDICRo; break;
2956 case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break;
2957 case PPC::SLDo: III.ImmOpcode = PPC::RLDICRo; break;
2958 case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break;
2959 case PPC::SRDo: III.ImmOpcode = PPC::RLDICLo; break;
2960 case PPC::SRAD:
2961 III.ImmWidth = 6;
2962 III.TruncateImmTo = 0;
2963 III.ImmOpcode = PPC::SRADI;
2964 break;
2965 case PPC::SRADo:
2966 III.ImmWidth = 6;
2967 III.TruncateImmTo = 0;
2968 III.ImmOpcode = PPC::SRADIo;
2969 break;
2971 break;
2972 // Loads and stores:
2973 case PPC::LBZX:
2974 case PPC::LBZX8:
2975 case PPC::LHZX:
2976 case PPC::LHZX8:
2977 case PPC::LHAX:
2978 case PPC::LHAX8:
2979 case PPC::LWZX:
2980 case PPC::LWZX8:
2981 case PPC::LWAX:
2982 case PPC::LDX:
2983 case PPC::LFSX:
2984 case PPC::LFDX:
2985 case PPC::STBX:
2986 case PPC::STBX8:
2987 case PPC::STHX:
2988 case PPC::STHX8:
2989 case PPC::STWX:
2990 case PPC::STWX8:
2991 case PPC::STDX:
2992 case PPC::STFSX:
2993 case PPC::STFDX:
2994 III.SignedImm = true;
2995 III.ZeroIsSpecialOrig = 1;
2996 III.ZeroIsSpecialNew = 2;
2997 III.IsCommutative = true;
2998 III.IsSummingOperands = true;
2999 III.ImmOpNo = 1;
3000 III.OpNoForForwarding = 2;
3001 switch(Opc) {
3002 default: llvm_unreachable("Unknown opcode");
3003 case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break;
3004 case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break;
3005 case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break;
3006 case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break;
3007 case PPC::LHAX: III.ImmOpcode = PPC::LHA; break;
3008 case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break;
3009 case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break;
3010 case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break;
3011 case PPC::LWAX:
3012 III.ImmOpcode = PPC::LWA;
3013 III.ImmMustBeMultipleOf = 4;
3014 break;
3015 case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break;
3016 case PPC::LFSX: III.ImmOpcode = PPC::LFS; break;
3017 case PPC::LFDX: III.ImmOpcode = PPC::LFD; break;
3018 case PPC::STBX: III.ImmOpcode = PPC::STB; break;
3019 case PPC::STBX8: III.ImmOpcode = PPC::STB8; break;
3020 case PPC::STHX: III.ImmOpcode = PPC::STH; break;
3021 case PPC::STHX8: III.ImmOpcode = PPC::STH8; break;
3022 case PPC::STWX: III.ImmOpcode = PPC::STW; break;
3023 case PPC::STWX8: III.ImmOpcode = PPC::STW8; break;
3024 case PPC::STDX:
3025 III.ImmOpcode = PPC::STD;
3026 III.ImmMustBeMultipleOf = 4;
3027 break;
3028 case PPC::STFSX: III.ImmOpcode = PPC::STFS; break;
3029 case PPC::STFDX: III.ImmOpcode = PPC::STFD; break;
3031 break;
3032 case PPC::LBZUX:
3033 case PPC::LBZUX8:
3034 case PPC::LHZUX:
3035 case PPC::LHZUX8:
3036 case PPC::LHAUX:
3037 case PPC::LHAUX8:
3038 case PPC::LWZUX:
3039 case PPC::LWZUX8:
3040 case PPC::LDUX:
3041 case PPC::LFSUX:
3042 case PPC::LFDUX:
3043 case PPC::STBUX:
3044 case PPC::STBUX8:
3045 case PPC::STHUX:
3046 case PPC::STHUX8:
3047 case PPC::STWUX:
3048 case PPC::STWUX8:
3049 case PPC::STDUX:
3050 case PPC::STFSUX:
3051 case PPC::STFDUX:
3052 III.SignedImm = true;
3053 III.ZeroIsSpecialOrig = 2;
3054 III.ZeroIsSpecialNew = 3;
3055 III.IsCommutative = false;
3056 III.IsSummingOperands = true;
3057 III.ImmOpNo = 2;
3058 III.OpNoForForwarding = 3;
3059 switch(Opc) {
3060 default: llvm_unreachable("Unknown opcode");
3061 case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break;
3062 case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break;
3063 case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break;
3064 case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break;
3065 case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break;
3066 case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break;
3067 case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break;
3068 case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break;
3069 case PPC::LDUX:
3070 III.ImmOpcode = PPC::LDU;
3071 III.ImmMustBeMultipleOf = 4;
3072 break;
3073 case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break;
3074 case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break;
3075 case PPC::STBUX: III.ImmOpcode = PPC::STBU; break;
3076 case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break;
3077 case PPC::STHUX: III.ImmOpcode = PPC::STHU; break;
3078 case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break;
3079 case PPC::STWUX: III.ImmOpcode = PPC::STWU; break;
3080 case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break;
3081 case PPC::STDUX:
3082 III.ImmOpcode = PPC::STDU;
3083 III.ImmMustBeMultipleOf = 4;
3084 break;
3085 case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break;
3086 case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break;
3088 break;
3089 // Power9 and up only. For some of these, the X-Form version has access to all
3090 // 64 VSR's whereas the D-Form only has access to the VR's. We replace those
3091 // with pseudo-ops pre-ra and for post-ra, we check that the register loaded
3092 // into or stored from is one of the VR registers.
3093 case PPC::LXVX:
3094 case PPC::LXSSPX:
3095 case PPC::LXSDX:
3096 case PPC::STXVX:
3097 case PPC::STXSSPX:
3098 case PPC::STXSDX:
3099 case PPC::XFLOADf32:
3100 case PPC::XFLOADf64:
3101 case PPC::XFSTOREf32:
3102 case PPC::XFSTOREf64:
3103 if (!Subtarget.hasP9Vector())
3104 return false;
3105 III.SignedImm = true;
3106 III.ZeroIsSpecialOrig = 1;
3107 III.ZeroIsSpecialNew = 2;
3108 III.IsCommutative = true;
3109 III.IsSummingOperands = true;
3110 III.ImmOpNo = 1;
3111 III.OpNoForForwarding = 2;
3112 III.ImmMustBeMultipleOf = 4;
3113 switch(Opc) {
3114 default: llvm_unreachable("Unknown opcode");
3115 case PPC::LXVX:
3116 III.ImmOpcode = PPC::LXV;
3117 III.ImmMustBeMultipleOf = 16;
3118 break;
3119 case PPC::LXSSPX:
3120 if (PostRA) {
3121 if (IsVFReg)
3122 III.ImmOpcode = PPC::LXSSP;
3123 else {
3124 III.ImmOpcode = PPC::LFS;
3125 III.ImmMustBeMultipleOf = 1;
3127 break;
3129 LLVM_FALLTHROUGH;
3130 case PPC::XFLOADf32:
3131 III.ImmOpcode = PPC::DFLOADf32;
3132 break;
3133 case PPC::LXSDX:
3134 if (PostRA) {
3135 if (IsVFReg)
3136 III.ImmOpcode = PPC::LXSD;
3137 else {
3138 III.ImmOpcode = PPC::LFD;
3139 III.ImmMustBeMultipleOf = 1;
3141 break;
3143 LLVM_FALLTHROUGH;
3144 case PPC::XFLOADf64:
3145 III.ImmOpcode = PPC::DFLOADf64;
3146 break;
3147 case PPC::STXVX:
3148 III.ImmOpcode = PPC::STXV;
3149 III.ImmMustBeMultipleOf = 16;
3150 break;
3151 case PPC::STXSSPX:
3152 if (PostRA) {
3153 if (IsVFReg)
3154 III.ImmOpcode = PPC::STXSSP;
3155 else {
3156 III.ImmOpcode = PPC::STFS;
3157 III.ImmMustBeMultipleOf = 1;
3159 break;
3161 LLVM_FALLTHROUGH;
3162 case PPC::XFSTOREf32:
3163 III.ImmOpcode = PPC::DFSTOREf32;
3164 break;
3165 case PPC::STXSDX:
3166 if (PostRA) {
3167 if (IsVFReg)
3168 III.ImmOpcode = PPC::STXSD;
3169 else {
3170 III.ImmOpcode = PPC::STFD;
3171 III.ImmMustBeMultipleOf = 1;
3173 break;
3175 LLVM_FALLTHROUGH;
3176 case PPC::XFSTOREf64:
3177 III.ImmOpcode = PPC::DFSTOREf64;
3178 break;
3180 break;
3182 return true;
3185 // Utility function for swaping two arbitrary operands of an instruction.
3186 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) {
3187 assert(Op1 != Op2 && "Cannot swap operand with itself.");
3189 unsigned MaxOp = std::max(Op1, Op2);
3190 unsigned MinOp = std::min(Op1, Op2);
3191 MachineOperand MOp1 = MI.getOperand(MinOp);
3192 MachineOperand MOp2 = MI.getOperand(MaxOp);
3193 MI.RemoveOperand(std::max(Op1, Op2));
3194 MI.RemoveOperand(std::min(Op1, Op2));
3196 // If the operands we are swapping are the two at the end (the common case)
3197 // we can just remove both and add them in the opposite order.
3198 if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) {
3199 MI.addOperand(MOp2);
3200 MI.addOperand(MOp1);
3201 } else {
3202 // Store all operands in a temporary vector, remove them and re-add in the
3203 // right order.
3204 SmallVector<MachineOperand, 2> MOps;
3205 unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops.
3206 for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) {
3207 MOps.push_back(MI.getOperand(i));
3208 MI.RemoveOperand(i);
3210 // MOp2 needs to be added next.
3211 MI.addOperand(MOp2);
3212 // Now add the rest.
3213 for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) {
3214 if (i == MaxOp)
3215 MI.addOperand(MOp1);
3216 else {
3217 MI.addOperand(MOps.back());
3218 MOps.pop_back();
3224 // Check if the 'MI' that has the index OpNoForForwarding
3225 // meets the requirement described in the ImmInstrInfo.
3226 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI,
3227 const ImmInstrInfo &III,
3228 unsigned OpNoForForwarding
3229 ) const {
3230 // As the algorithm of checking for PPC::ZERO/PPC::ZERO8
3231 // would not work pre-RA, we can only do the check post RA.
3232 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3233 if (MRI.isSSA())
3234 return false;
3236 // Cannot do the transform if MI isn't summing the operands.
3237 if (!III.IsSummingOperands)
3238 return false;
3240 // The instruction we are trying to replace must have the ZeroIsSpecialOrig set.
3241 if (!III.ZeroIsSpecialOrig)
3242 return false;
3244 // We cannot do the transform if the operand we are trying to replace
3245 // isn't the same as the operand the instruction allows.
3246 if (OpNoForForwarding != III.OpNoForForwarding)
3247 return false;
3249 // Check if the instruction we are trying to transform really has
3250 // the special zero register as its operand.
3251 if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO &&
3252 MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8)
3253 return false;
3255 // This machine instruction is convertible if it is,
3256 // 1. summing the operands.
3257 // 2. one of the operands is special zero register.
3258 // 3. the operand we are trying to replace is allowed by the MI.
3259 return true;
3262 // Check if the DefMI is the add inst and set the ImmMO and RegMO
3263 // accordingly.
3264 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI,
3265 const ImmInstrInfo &III,
3266 MachineOperand *&ImmMO,
3267 MachineOperand *&RegMO) const {
3268 unsigned Opc = DefMI.getOpcode();
3269 if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8)
3270 return false;
3272 assert(DefMI.getNumOperands() >= 3 &&
3273 "Add inst must have at least three operands");
3274 RegMO = &DefMI.getOperand(1);
3275 ImmMO = &DefMI.getOperand(2);
3277 // This DefMI is elgible for forwarding if it is:
3278 // 1. add inst
3279 // 2. one of the operands is Imm/CPI/Global.
3280 return isAnImmediateOperand(*ImmMO);
3283 bool PPCInstrInfo::isRegElgibleForForwarding(
3284 const MachineOperand &RegMO, const MachineInstr &DefMI,
3285 const MachineInstr &MI, bool KillDefMI,
3286 bool &IsFwdFeederRegKilled) const {
3287 // x = addi y, imm
3288 // ...
3289 // z = lfdx 0, x -> z = lfd imm(y)
3290 // The Reg "y" can be forwarded to the MI(z) only when there is no DEF
3291 // of "y" between the DEF of "x" and "z".
3292 // The query is only valid post RA.
3293 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3294 if (MRI.isSSA())
3295 return false;
3297 Register Reg = RegMO.getReg();
3299 // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg.
3300 MachineBasicBlock::const_reverse_iterator It = MI;
3301 MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend();
3302 It++;
3303 for (; It != E; ++It) {
3304 if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
3305 return false;
3306 else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
3307 IsFwdFeederRegKilled = true;
3308 // Made it to DefMI without encountering a clobber.
3309 if ((&*It) == &DefMI)
3310 break;
3312 assert((&*It) == &DefMI && "DefMI is missing");
3314 // If DefMI also defines the register to be forwarded, we can only forward it
3315 // if DefMI is being erased.
3316 if (DefMI.modifiesRegister(Reg, &getRegisterInfo()))
3317 return KillDefMI;
3319 return true;
3322 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO,
3323 const MachineInstr &DefMI,
3324 const ImmInstrInfo &III,
3325 int64_t &Imm) const {
3326 assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate");
3327 if (DefMI.getOpcode() == PPC::ADDItocL) {
3328 // The operand for ADDItocL is CPI, which isn't imm at compiling time,
3329 // However, we know that, it is 16-bit width, and has the alignment of 4.
3330 // Check if the instruction met the requirement.
3331 if (III.ImmMustBeMultipleOf > 4 ||
3332 III.TruncateImmTo || III.ImmWidth != 16)
3333 return false;
3335 // Going from XForm to DForm loads means that the displacement needs to be
3336 // not just an immediate but also a multiple of 4, or 16 depending on the
3337 // load. A DForm load cannot be represented if it is a multiple of say 2.
3338 // XForm loads do not have this restriction.
3339 if (ImmMO.isGlobal() &&
3340 ImmMO.getGlobal()->getAlignment() < III.ImmMustBeMultipleOf)
3341 return false;
3343 return true;
3346 if (ImmMO.isImm()) {
3347 // It is Imm, we need to check if the Imm fit the range.
3348 int64_t Immediate = ImmMO.getImm();
3349 // Sign-extend to 64-bits.
3350 Imm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ?
3351 (Immediate | 0xFFFFFFFFFFFF0000) : Immediate;
3353 if (Imm % III.ImmMustBeMultipleOf)
3354 return false;
3355 if (III.TruncateImmTo)
3356 Imm &= ((1 << III.TruncateImmTo) - 1);
3357 if (III.SignedImm) {
3358 APInt ActualValue(64, Imm, true);
3359 if (!ActualValue.isSignedIntN(III.ImmWidth))
3360 return false;
3361 } else {
3362 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
3363 if ((uint64_t)Imm > UnsignedMax)
3364 return false;
3367 else
3368 return false;
3370 // This ImmMO is forwarded if it meets the requriement describle
3371 // in ImmInstrInfo
3372 return true;
3375 // If an X-Form instruction is fed by an add-immediate and one of its operands
3376 // is the literal zero, attempt to forward the source of the add-immediate to
3377 // the corresponding D-Form instruction with the displacement coming from
3378 // the immediate being added.
3379 bool PPCInstrInfo::transformToImmFormFedByAdd(
3380 MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding,
3381 MachineInstr &DefMI, bool KillDefMI) const {
3382 // RegMO ImmMO
3383 // | |
3384 // x = addi reg, imm <----- DefMI
3385 // y = op 0 , x <----- MI
3386 // |
3387 // OpNoForForwarding
3388 // Check if the MI meet the requirement described in the III.
3389 if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding))
3390 return false;
3392 // Check if the DefMI meet the requirement
3393 // described in the III. If yes, set the ImmMO and RegMO accordingly.
3394 MachineOperand *ImmMO = nullptr;
3395 MachineOperand *RegMO = nullptr;
3396 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
3397 return false;
3398 assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
3400 // As we get the Imm operand now, we need to check if the ImmMO meet
3401 // the requirement described in the III. If yes set the Imm.
3402 int64_t Imm = 0;
3403 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm))
3404 return false;
3406 bool IsFwdFeederRegKilled = false;
3407 // Check if the RegMO can be forwarded to MI.
3408 if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI,
3409 IsFwdFeederRegKilled))
3410 return false;
3412 // Get killed info in case fixup needed after transformation.
3413 unsigned ForwardKilledOperandReg = ~0U;
3414 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3415 bool PostRA = !MRI.isSSA();
3416 if (PostRA && MI.getOperand(OpNoForForwarding).isKill())
3417 ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg();
3419 // We know that, the MI and DefMI both meet the pattern, and
3420 // the Imm also meet the requirement with the new Imm-form.
3421 // It is safe to do the transformation now.
3422 LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
3423 LLVM_DEBUG(MI.dump());
3424 LLVM_DEBUG(dbgs() << "Fed by:\n");
3425 LLVM_DEBUG(DefMI.dump());
3427 // Update the base reg first.
3428 MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(),
3429 false, false,
3430 RegMO->isKill());
3432 // Then, update the imm.
3433 if (ImmMO->isImm()) {
3434 // If the ImmMO is Imm, change the operand that has ZERO to that Imm
3435 // directly.
3436 replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm);
3438 else {
3439 // Otherwise, it is Constant Pool Index(CPI) or Global,
3440 // which is relocation in fact. We need to replace the special zero
3441 // register with ImmMO.
3442 // Before that, we need to fixup the target flags for imm.
3443 // For some reason, we miss to set the flag for the ImmMO if it is CPI.
3444 if (DefMI.getOpcode() == PPC::ADDItocL)
3445 ImmMO->setTargetFlags(PPCII::MO_TOC_LO);
3447 // MI didn't have the interface such as MI.setOperand(i) though
3448 // it has MI.getOperand(i). To repalce the ZERO MachineOperand with
3449 // ImmMO, we need to remove ZERO operand and all the operands behind it,
3450 // and, add the ImmMO, then, move back all the operands behind ZERO.
3451 SmallVector<MachineOperand, 2> MOps;
3452 for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) {
3453 MOps.push_back(MI.getOperand(i));
3454 MI.RemoveOperand(i);
3457 // Remove the last MO in the list, which is ZERO operand in fact.
3458 MOps.pop_back();
3459 // Add the imm operand.
3460 MI.addOperand(*ImmMO);
3461 // Now add the rest back.
3462 for (auto &MO : MOps)
3463 MI.addOperand(MO);
3466 // Update the opcode.
3467 MI.setDesc(get(III.ImmOpcode));
3469 // Fix up killed/dead flag after transformation.
3470 // Pattern 1:
3471 // x = ADD KilledFwdFeederReg, imm
3472 // n = opn KilledFwdFeederReg(killed), regn
3473 // y = XOP 0, x
3474 // Pattern 2:
3475 // x = ADD reg(killed), imm
3476 // y = XOP 0, x
3477 if (IsFwdFeederRegKilled || RegMO->isKill())
3478 fixupIsDeadOrKill(DefMI, MI, RegMO->getReg());
3479 // Pattern 3:
3480 // ForwardKilledOperandReg = ADD reg, imm
3481 // y = XOP 0, ForwardKilledOperandReg(killed)
3482 if (ForwardKilledOperandReg != ~0U)
3483 fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg);
3485 LLVM_DEBUG(dbgs() << "With:\n");
3486 LLVM_DEBUG(MI.dump());
3488 return true;
3491 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI,
3492 const ImmInstrInfo &III,
3493 unsigned ConstantOpNo,
3494 MachineInstr &DefMI,
3495 int64_t Imm) const {
3496 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3497 bool PostRA = !MRI.isSSA();
3498 // Exit early if we can't convert this.
3499 if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative)
3500 return false;
3501 if (Imm % III.ImmMustBeMultipleOf)
3502 return false;
3503 if (III.TruncateImmTo)
3504 Imm &= ((1 << III.TruncateImmTo) - 1);
3505 if (III.SignedImm) {
3506 APInt ActualValue(64, Imm, true);
3507 if (!ActualValue.isSignedIntN(III.ImmWidth))
3508 return false;
3509 } else {
3510 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
3511 if ((uint64_t)Imm > UnsignedMax)
3512 return false;
3515 // If we're post-RA, the instructions don't agree on whether register zero is
3516 // special, we can transform this as long as the register operand that will
3517 // end up in the location where zero is special isn't R0.
3518 if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
3519 unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig :
3520 III.ZeroIsSpecialNew + 1;
3521 Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg();
3522 Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg();
3523 // If R0 is in the operand where zero is special for the new instruction,
3524 // it is unsafe to transform if the constant operand isn't that operand.
3525 if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) &&
3526 ConstantOpNo != III.ZeroIsSpecialNew)
3527 return false;
3528 if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) &&
3529 ConstantOpNo != PosForOrigZero)
3530 return false;
3533 // Get killed info in case fixup needed after transformation.
3534 unsigned ForwardKilledOperandReg = ~0U;
3535 if (PostRA && MI.getOperand(ConstantOpNo).isKill())
3536 ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg();
3538 unsigned Opc = MI.getOpcode();
3539 bool SpecialShift32 =
3540 Opc == PPC::SLW || Opc == PPC::SLWo || Opc == PPC::SRW || Opc == PPC::SRWo;
3541 bool SpecialShift64 =
3542 Opc == PPC::SLD || Opc == PPC::SLDo || Opc == PPC::SRD || Opc == PPC::SRDo;
3543 bool SetCR = Opc == PPC::SLWo || Opc == PPC::SRWo ||
3544 Opc == PPC::SLDo || Opc == PPC::SRDo;
3545 bool RightShift =
3546 Opc == PPC::SRW || Opc == PPC::SRWo || Opc == PPC::SRD || Opc == PPC::SRDo;
3548 MI.setDesc(get(III.ImmOpcode));
3549 if (ConstantOpNo == III.OpNoForForwarding) {
3550 // Converting shifts to immediate form is a bit tricky since they may do
3551 // one of three things:
3552 // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero
3553 // 2. If the shift amount is zero, the result is unchanged (save for maybe
3554 // setting CR0)
3555 // 3. If the shift amount is in [1, OpSize), it's just a shift
3556 if (SpecialShift32 || SpecialShift64) {
3557 LoadImmediateInfo LII;
3558 LII.Imm = 0;
3559 LII.SetCR = SetCR;
3560 LII.Is64Bit = SpecialShift64;
3561 uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F);
3562 if (Imm & (SpecialShift32 ? 0x20 : 0x40))
3563 replaceInstrWithLI(MI, LII);
3564 // Shifts by zero don't change the value. If we don't need to set CR0,
3565 // just convert this to a COPY. Can't do this post-RA since we've already
3566 // cleaned up the copies.
3567 else if (!SetCR && ShAmt == 0 && !PostRA) {
3568 MI.RemoveOperand(2);
3569 MI.setDesc(get(PPC::COPY));
3570 } else {
3571 // The 32 bit and 64 bit instructions are quite different.
3572 if (SpecialShift32) {
3573 // Left shifts use (N, 0, 31-N), right shifts use (32-N, N, 31).
3574 uint64_t SH = RightShift ? 32 - ShAmt : ShAmt;
3575 uint64_t MB = RightShift ? ShAmt : 0;
3576 uint64_t ME = RightShift ? 31 : 31 - ShAmt;
3577 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
3578 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB)
3579 .addImm(ME);
3580 } else {
3581 // Left shifts use (N, 63-N), right shifts use (64-N, N).
3582 uint64_t SH = RightShift ? 64 - ShAmt : ShAmt;
3583 uint64_t ME = RightShift ? ShAmt : 63 - ShAmt;
3584 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
3585 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME);
3588 } else
3589 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
3591 // Convert commutative instructions (switch the operands and convert the
3592 // desired one to an immediate.
3593 else if (III.IsCommutative) {
3594 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
3595 swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding);
3596 } else
3597 llvm_unreachable("Should have exited early!");
3599 // For instructions for which the constant register replaces a different
3600 // operand than where the immediate goes, we need to swap them.
3601 if (III.OpNoForForwarding != III.ImmOpNo)
3602 swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo);
3604 // If the special R0/X0 register index are different for original instruction
3605 // and new instruction, we need to fix up the register class in new
3606 // instruction.
3607 if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
3608 if (III.ZeroIsSpecialNew) {
3609 // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no
3610 // need to fix up register class.
3611 Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg();
3612 if (Register::isVirtualRegister(RegToModify)) {
3613 const TargetRegisterClass *NewRC =
3614 MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ?
3615 &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass;
3616 MRI.setRegClass(RegToModify, NewRC);
3621 // Fix up killed/dead flag after transformation.
3622 // Pattern:
3623 // ForwardKilledOperandReg = LI imm
3624 // y = XOP reg, ForwardKilledOperandReg(killed)
3625 if (ForwardKilledOperandReg != ~0U)
3626 fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg);
3627 return true;
3630 const TargetRegisterClass *
3631 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const {
3632 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
3633 return &PPC::VSRCRegClass;
3634 return RC;
3637 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) {
3638 return PPC::getRecordFormOpcode(Opcode);
3641 // This function returns true if the machine instruction
3642 // always outputs a value by sign-extending a 32 bit value,
3643 // i.e. 0 to 31-th bits are same as 32-th bit.
3644 static bool isSignExtendingOp(const MachineInstr &MI) {
3645 int Opcode = MI.getOpcode();
3646 if (Opcode == PPC::LI || Opcode == PPC::LI8 ||
3647 Opcode == PPC::LIS || Opcode == PPC::LIS8 ||
3648 Opcode == PPC::SRAW || Opcode == PPC::SRAWo ||
3649 Opcode == PPC::SRAWI || Opcode == PPC::SRAWIo ||
3650 Opcode == PPC::LWA || Opcode == PPC::LWAX ||
3651 Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 ||
3652 Opcode == PPC::LHA || Opcode == PPC::LHAX ||
3653 Opcode == PPC::LHA8 || Opcode == PPC::LHAX8 ||
3654 Opcode == PPC::LBZ || Opcode == PPC::LBZX ||
3655 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 ||
3656 Opcode == PPC::LBZU || Opcode == PPC::LBZUX ||
3657 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
3658 Opcode == PPC::LHZ || Opcode == PPC::LHZX ||
3659 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 ||
3660 Opcode == PPC::LHZU || Opcode == PPC::LHZUX ||
3661 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 ||
3662 Opcode == PPC::EXTSB || Opcode == PPC::EXTSBo ||
3663 Opcode == PPC::EXTSH || Opcode == PPC::EXTSHo ||
3664 Opcode == PPC::EXTSB8 || Opcode == PPC::EXTSH8 ||
3665 Opcode == PPC::EXTSW || Opcode == PPC::EXTSWo ||
3666 Opcode == PPC::SETB || Opcode == PPC::SETB8 ||
3667 Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 ||
3668 Opcode == PPC::EXTSB8_32_64)
3669 return true;
3671 if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33)
3672 return true;
3674 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo ||
3675 Opcode == PPC::RLWNM || Opcode == PPC::RLWNMo) &&
3676 MI.getOperand(3).getImm() > 0 &&
3677 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
3678 return true;
3680 return false;
3683 // This function returns true if the machine instruction
3684 // always outputs zeros in higher 32 bits.
3685 static bool isZeroExtendingOp(const MachineInstr &MI) {
3686 int Opcode = MI.getOpcode();
3687 // The 16-bit immediate is sign-extended in li/lis.
3688 // If the most significant bit is zero, all higher bits are zero.
3689 if (Opcode == PPC::LI || Opcode == PPC::LI8 ||
3690 Opcode == PPC::LIS || Opcode == PPC::LIS8) {
3691 int64_t Imm = MI.getOperand(1).getImm();
3692 if (((uint64_t)Imm & ~0x7FFFuLL) == 0)
3693 return true;
3696 // We have some variations of rotate-and-mask instructions
3697 // that clear higher 32-bits.
3698 if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICLo ||
3699 Opcode == PPC::RLDCL || Opcode == PPC::RLDCLo ||
3700 Opcode == PPC::RLDICL_32_64) &&
3701 MI.getOperand(3).getImm() >= 32)
3702 return true;
3704 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDICo) &&
3705 MI.getOperand(3).getImm() >= 32 &&
3706 MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm())
3707 return true;
3709 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo ||
3710 Opcode == PPC::RLWNM || Opcode == PPC::RLWNMo ||
3711 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
3712 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
3713 return true;
3715 // There are other instructions that clear higher 32-bits.
3716 if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZWo ||
3717 Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZWo ||
3718 Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 ||
3719 Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZDo ||
3720 Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZDo ||
3721 Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW ||
3722 Opcode == PPC::SLW || Opcode == PPC::SLWo ||
3723 Opcode == PPC::SRW || Opcode == PPC::SRWo ||
3724 Opcode == PPC::SLW8 || Opcode == PPC::SRW8 ||
3725 Opcode == PPC::SLWI || Opcode == PPC::SLWIo ||
3726 Opcode == PPC::SRWI || Opcode == PPC::SRWIo ||
3727 Opcode == PPC::LWZ || Opcode == PPC::LWZX ||
3728 Opcode == PPC::LWZU || Opcode == PPC::LWZUX ||
3729 Opcode == PPC::LWBRX || Opcode == PPC::LHBRX ||
3730 Opcode == PPC::LHZ || Opcode == PPC::LHZX ||
3731 Opcode == PPC::LHZU || Opcode == PPC::LHZUX ||
3732 Opcode == PPC::LBZ || Opcode == PPC::LBZX ||
3733 Opcode == PPC::LBZU || Opcode == PPC::LBZUX ||
3734 Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 ||
3735 Opcode == PPC::LWZU8 || Opcode == PPC::LWZUX8 ||
3736 Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 ||
3737 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 ||
3738 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 ||
3739 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 ||
3740 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
3741 Opcode == PPC::ANDIo || Opcode == PPC::ANDISo ||
3742 Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWIo ||
3743 Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWIo ||
3744 Opcode == PPC::MFVSRWZ)
3745 return true;
3747 return false;
3750 // This function returns true if the input MachineInstr is a TOC save
3751 // instruction.
3752 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const {
3753 if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg())
3754 return false;
3755 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
3756 unsigned StackOffset = MI.getOperand(1).getImm();
3757 Register StackReg = MI.getOperand(2).getReg();
3758 if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset)
3759 return true;
3761 return false;
3764 // We limit the max depth to track incoming values of PHIs or binary ops
3765 // (e.g. AND) to avoid excessive cost.
3766 const unsigned MAX_DEPTH = 1;
3768 bool
3769 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
3770 const unsigned Depth) const {
3771 const MachineFunction *MF = MI.getParent()->getParent();
3772 const MachineRegisterInfo *MRI = &MF->getRegInfo();
3774 // If we know this instruction returns sign- or zero-extended result,
3775 // return true.
3776 if (SignExt ? isSignExtendingOp(MI):
3777 isZeroExtendingOp(MI))
3778 return true;
3780 switch (MI.getOpcode()) {
3781 case PPC::COPY: {
3782 Register SrcReg = MI.getOperand(1).getReg();
3784 // In both ELFv1 and v2 ABI, method parameters and the return value
3785 // are sign- or zero-extended.
3786 if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) {
3787 const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
3788 // We check the ZExt/SExt flags for a method parameter.
3789 if (MI.getParent()->getBasicBlock() ==
3790 &MF->getFunction().getEntryBlock()) {
3791 Register VReg = MI.getOperand(0).getReg();
3792 if (MF->getRegInfo().isLiveIn(VReg))
3793 return SignExt ? FuncInfo->isLiveInSExt(VReg) :
3794 FuncInfo->isLiveInZExt(VReg);
3797 // For a method return value, we check the ZExt/SExt flags in attribute.
3798 // We assume the following code sequence for method call.
3799 // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1
3800 // BL8_NOP @func,...
3801 // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1
3802 // %5 = COPY %x3; G8RC:%5
3803 if (SrcReg == PPC::X3) {
3804 const MachineBasicBlock *MBB = MI.getParent();
3805 MachineBasicBlock::const_instr_iterator II =
3806 MachineBasicBlock::const_instr_iterator(&MI);
3807 if (II != MBB->instr_begin() &&
3808 (--II)->getOpcode() == PPC::ADJCALLSTACKUP) {
3809 const MachineInstr &CallMI = *(--II);
3810 if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) {
3811 const Function *CalleeFn =
3812 dyn_cast<Function>(CallMI.getOperand(0).getGlobal());
3813 if (!CalleeFn)
3814 return false;
3815 const IntegerType *IntTy =
3816 dyn_cast<IntegerType>(CalleeFn->getReturnType());
3817 const AttributeSet &Attrs =
3818 CalleeFn->getAttributes().getRetAttributes();
3819 if (IntTy && IntTy->getBitWidth() <= 32)
3820 return Attrs.hasAttribute(SignExt ? Attribute::SExt :
3821 Attribute::ZExt);
3827 // If this is a copy from another register, we recursively check source.
3828 if (!Register::isVirtualRegister(SrcReg))
3829 return false;
3830 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
3831 if (SrcMI != NULL)
3832 return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
3834 return false;
3837 case PPC::ANDIo:
3838 case PPC::ANDISo:
3839 case PPC::ORI:
3840 case PPC::ORIS:
3841 case PPC::XORI:
3842 case PPC::XORIS:
3843 case PPC::ANDIo8:
3844 case PPC::ANDISo8:
3845 case PPC::ORI8:
3846 case PPC::ORIS8:
3847 case PPC::XORI8:
3848 case PPC::XORIS8: {
3849 // logical operation with 16-bit immediate does not change the upper bits.
3850 // So, we track the operand register as we do for register copy.
3851 Register SrcReg = MI.getOperand(1).getReg();
3852 if (!Register::isVirtualRegister(SrcReg))
3853 return false;
3854 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
3855 if (SrcMI != NULL)
3856 return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
3858 return false;
3861 // If all incoming values are sign-/zero-extended,
3862 // the output of OR, ISEL or PHI is also sign-/zero-extended.
3863 case PPC::OR:
3864 case PPC::OR8:
3865 case PPC::ISEL:
3866 case PPC::PHI: {
3867 if (Depth >= MAX_DEPTH)
3868 return false;
3870 // The input registers for PHI are operand 1, 3, ...
3871 // The input registers for others are operand 1 and 2.
3872 unsigned E = 3, D = 1;
3873 if (MI.getOpcode() == PPC::PHI) {
3874 E = MI.getNumOperands();
3875 D = 2;
3878 for (unsigned I = 1; I != E; I += D) {
3879 if (MI.getOperand(I).isReg()) {
3880 Register SrcReg = MI.getOperand(I).getReg();
3881 if (!Register::isVirtualRegister(SrcReg))
3882 return false;
3883 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
3884 if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1))
3885 return false;
3887 else
3888 return false;
3890 return true;
3893 // If at least one of the incoming values of an AND is zero extended
3894 // then the output is also zero-extended. If both of the incoming values
3895 // are sign-extended then the output is also sign extended.
3896 case PPC::AND:
3897 case PPC::AND8: {
3898 if (Depth >= MAX_DEPTH)
3899 return false;
3901 assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg());
3903 Register SrcReg1 = MI.getOperand(1).getReg();
3904 Register SrcReg2 = MI.getOperand(2).getReg();
3906 if (!Register::isVirtualRegister(SrcReg1) ||
3907 !Register::isVirtualRegister(SrcReg2))
3908 return false;
3910 const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1);
3911 const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2);
3912 if (!MISrc1 || !MISrc2)
3913 return false;
3915 if(SignExt)
3916 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) &&
3917 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
3918 else
3919 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) ||
3920 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
3923 default:
3924 break;
3926 return false;
3929 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const {
3930 return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ));
3933 namespace {
3934 class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo {
3935 MachineInstr *Loop, *EndLoop, *LoopCount;
3936 MachineFunction *MF;
3937 const TargetInstrInfo *TII;
3938 int64_t TripCount;
3940 public:
3941 PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop,
3942 MachineInstr *LoopCount)
3943 : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount),
3944 MF(Loop->getParent()->getParent()),
3945 TII(MF->getSubtarget().getInstrInfo()) {
3946 // Inspect the Loop instruction up-front, as it may be deleted when we call
3947 // createTripCountGreaterCondition.
3948 if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI)
3949 TripCount = LoopCount->getOperand(1).getImm();
3950 else
3951 TripCount = -1;
3954 bool shouldIgnoreForPipelining(const MachineInstr *MI) const override {
3955 // Only ignore the terminator.
3956 return MI == EndLoop;
3959 Optional<bool>
3960 createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB,
3961 SmallVectorImpl<MachineOperand> &Cond) override {
3962 if (TripCount == -1) {
3963 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
3964 // so we don't need to generate any thing here.
3965 Cond.push_back(MachineOperand::CreateImm(0));
3966 Cond.push_back(MachineOperand::CreateReg(
3967 MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR,
3968 true));
3969 return {};
3972 return TripCount > TC;
3975 void setPreheader(MachineBasicBlock *NewPreheader) override {
3976 // Do nothing. We want the LOOP setup instruction to stay in the *old*
3977 // preheader, so we can use BDZ in the prologs to adapt the loop trip count.
3980 void adjustTripCount(int TripCountAdjust) override {
3981 // If the loop trip count is a compile-time value, then just change the
3982 // value.
3983 if (LoopCount->getOpcode() == PPC::LI8 ||
3984 LoopCount->getOpcode() == PPC::LI) {
3985 int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust;
3986 LoopCount->getOperand(1).setImm(TripCount);
3987 return;
3990 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
3991 // so we don't need to generate any thing here.
3994 void disposed() override {
3995 Loop->eraseFromParent();
3996 // Ensure the loop setup instruction is deleted too.
3997 LoopCount->eraseFromParent();
4000 } // namespace
4002 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
4003 PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
4004 // We really "analyze" only hardware loops right now.
4005 MachineBasicBlock::iterator I = LoopBB->getFirstTerminator();
4006 MachineBasicBlock *Preheader = *LoopBB->pred_begin();
4007 if (Preheader == LoopBB)
4008 Preheader = *std::next(LoopBB->pred_begin());
4009 MachineFunction *MF = Preheader->getParent();
4011 if (I != LoopBB->end() && isBDNZ(I->getOpcode())) {
4012 SmallPtrSet<MachineBasicBlock *, 8> Visited;
4013 if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) {
4014 Register LoopCountReg = LoopInst->getOperand(0).getReg();
4015 MachineRegisterInfo &MRI = MF->getRegInfo();
4016 MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg);
4017 return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount);
4020 return nullptr;
4023 MachineInstr *PPCInstrInfo::findLoopInstr(
4024 MachineBasicBlock &PreHeader,
4025 SmallPtrSet<MachineBasicBlock *, 8> &Visited) const {
4027 unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop);
4029 // The loop set-up instruction should be in preheader
4030 for (auto &I : PreHeader.instrs())
4031 if (I.getOpcode() == LOOPi)
4032 return &I;
4033 return nullptr;
4036 // Return true if get the base operand, byte offset of an instruction and the
4037 // memory width. Width is the size of memory that is being loaded/stored.
4038 bool PPCInstrInfo::getMemOperandWithOffsetWidth(
4039 const MachineInstr &LdSt,
4040 const MachineOperand *&BaseReg,
4041 int64_t &Offset,
4042 unsigned &Width,
4043 const TargetRegisterInfo *TRI) const {
4044 assert(LdSt.mayLoadOrStore() && "Expected a memory operation.");
4046 // Handle only loads/stores with base register followed by immediate offset.
4047 if (LdSt.getNumExplicitOperands() != 3)
4048 return false;
4049 if (!LdSt.getOperand(1).isImm() || !LdSt.getOperand(2).isReg())
4050 return false;
4052 if (!LdSt.hasOneMemOperand())
4053 return false;
4055 Width = (*LdSt.memoperands_begin())->getSize();
4056 Offset = LdSt.getOperand(1).getImm();
4057 BaseReg = &LdSt.getOperand(2);
4058 return true;
4061 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint(
4062 const MachineInstr &MIa, const MachineInstr &MIb,
4063 AliasAnalysis * /*AA*/) const {
4064 assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
4065 assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");
4067 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
4068 MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
4069 return false;
4071 // Retrieve the base register, offset from the base register and width. Width
4072 // is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If
4073 // base registers are identical, and the offset of a lower memory access +
4074 // the width doesn't overlap the offset of a higher memory access,
4075 // then the memory accesses are different.
4076 const TargetRegisterInfo *TRI = &getRegisterInfo();
4077 const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr;
4078 int64_t OffsetA = 0, OffsetB = 0;
4079 unsigned int WidthA = 0, WidthB = 0;
4080 if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) &&
4081 getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) {
4082 if (BaseOpA->isIdenticalTo(*BaseOpB)) {
4083 int LowOffset = std::min(OffsetA, OffsetB);
4084 int HighOffset = std::max(OffsetA, OffsetB);
4085 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
4086 if (LowOffset + LowWidth <= HighOffset)
4087 return true;
4090 return false;