[x86] fix assert with horizontal math + broadcast of vector (PR43402)
[llvm-core.git] / lib / Target / SystemZ / SystemZInstrInfo.cpp
blobc87c36382e9d17bdc56547e5bd68eb5f1a8dad70
1 //===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the SystemZ implementation of the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #include "SystemZInstrInfo.h"
14 #include "MCTargetDesc/SystemZMCTargetDesc.h"
15 #include "SystemZ.h"
16 #include "SystemZInstrBuilder.h"
17 #include "SystemZSubtarget.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/CodeGen/LiveInterval.h"
20 #include "llvm/CodeGen/LiveIntervals.h"
21 #include "llvm/CodeGen/LiveVariables.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/SlotIndexes.h"
30 #include "llvm/CodeGen/TargetInstrInfo.h"
31 #include "llvm/CodeGen/TargetSubtargetInfo.h"
32 #include "llvm/MC/MCInstrDesc.h"
33 #include "llvm/MC/MCRegisterInfo.h"
34 #include "llvm/Support/BranchProbability.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include <cassert>
39 #include <cstdint>
40 #include <iterator>
42 using namespace llvm;
44 #define GET_INSTRINFO_CTOR_DTOR
45 #define GET_INSTRMAP_INFO
46 #include "SystemZGenInstrInfo.inc"
48 #define DEBUG_TYPE "systemz-II"
50 // Return a mask with Count low bits set.
51 static uint64_t allOnes(unsigned int Count) {
52 return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
55 // Pin the vtable to this file.
56 void SystemZInstrInfo::anchor() {}
58 SystemZInstrInfo::SystemZInstrInfo(SystemZSubtarget &sti)
59 : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP),
60 RI(), STI(sti) {
63 // MI is a 128-bit load or store. Split it into two 64-bit loads or stores,
64 // each having the opcode given by NewOpcode.
65 void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI,
66 unsigned NewOpcode) const {
67 MachineBasicBlock *MBB = MI->getParent();
68 MachineFunction &MF = *MBB->getParent();
70 // Get two load or store instructions. Use the original instruction for one
71 // of them (arbitrarily the second here) and create a clone for the other.
72 MachineInstr *EarlierMI = MF.CloneMachineInstr(&*MI);
73 MBB->insert(MI, EarlierMI);
75 // Set up the two 64-bit registers and remember super reg and its flags.
76 MachineOperand &HighRegOp = EarlierMI->getOperand(0);
77 MachineOperand &LowRegOp = MI->getOperand(0);
78 Register Reg128 = LowRegOp.getReg();
79 unsigned Reg128Killed = getKillRegState(LowRegOp.isKill());
80 unsigned Reg128Undef = getUndefRegState(LowRegOp.isUndef());
81 HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64));
82 LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64));
84 if (MI->mayStore()) {
85 // Add implicit uses of the super register in case one of the subregs is
86 // undefined. We could track liveness and skip storing an undefined
87 // subreg, but this is hopefully rare (discovered with llvm-stress).
88 // If Reg128 was killed, set kill flag on MI.
89 unsigned Reg128UndefImpl = (Reg128Undef | RegState::Implicit);
90 MachineInstrBuilder(MF, EarlierMI).addReg(Reg128, Reg128UndefImpl);
91 MachineInstrBuilder(MF, MI).addReg(Reg128, (Reg128UndefImpl | Reg128Killed));
94 // The address in the first (high) instruction is already correct.
95 // Adjust the offset in the second (low) instruction.
96 MachineOperand &HighOffsetOp = EarlierMI->getOperand(2);
97 MachineOperand &LowOffsetOp = MI->getOperand(2);
98 LowOffsetOp.setImm(LowOffsetOp.getImm() + 8);
100 // Clear the kill flags on the registers in the first instruction.
101 if (EarlierMI->getOperand(0).isReg() && EarlierMI->getOperand(0).isUse())
102 EarlierMI->getOperand(0).setIsKill(false);
103 EarlierMI->getOperand(1).setIsKill(false);
104 EarlierMI->getOperand(3).setIsKill(false);
106 // Set the opcodes.
107 unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm());
108 unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm());
109 assert(HighOpcode && LowOpcode && "Both offsets should be in range");
111 EarlierMI->setDesc(get(HighOpcode));
112 MI->setDesc(get(LowOpcode));
115 // Split ADJDYNALLOC instruction MI.
116 void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const {
117 MachineBasicBlock *MBB = MI->getParent();
118 MachineFunction &MF = *MBB->getParent();
119 MachineFrameInfo &MFFrame = MF.getFrameInfo();
120 MachineOperand &OffsetMO = MI->getOperand(2);
122 uint64_t Offset = (MFFrame.getMaxCallFrameSize() +
123 SystemZMC::CallFrameSize +
124 OffsetMO.getImm());
125 unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset);
126 assert(NewOpcode && "No support for huge argument lists yet");
127 MI->setDesc(get(NewOpcode));
128 OffsetMO.setImm(Offset);
131 // MI is an RI-style pseudo instruction. Replace it with LowOpcode
132 // if the first operand is a low GR32 and HighOpcode if the first operand
133 // is a high GR32. ConvertHigh is true if LowOpcode takes a signed operand
134 // and HighOpcode takes an unsigned 32-bit operand. In those cases,
135 // MI has the same kind of operand as LowOpcode, so needs to be converted
136 // if HighOpcode is used.
137 void SystemZInstrInfo::expandRIPseudo(MachineInstr &MI, unsigned LowOpcode,
138 unsigned HighOpcode,
139 bool ConvertHigh) const {
140 Register Reg = MI.getOperand(0).getReg();
141 bool IsHigh = SystemZ::isHighReg(Reg);
142 MI.setDesc(get(IsHigh ? HighOpcode : LowOpcode));
143 if (IsHigh && ConvertHigh)
144 MI.getOperand(1).setImm(uint32_t(MI.getOperand(1).getImm()));
147 // MI is a three-operand RIE-style pseudo instruction. Replace it with
148 // LowOpcodeK if the registers are both low GR32s, otherwise use a move
149 // followed by HighOpcode or LowOpcode, depending on whether the target
150 // is a high or low GR32.
151 void SystemZInstrInfo::expandRIEPseudo(MachineInstr &MI, unsigned LowOpcode,
152 unsigned LowOpcodeK,
153 unsigned HighOpcode) const {
154 Register DestReg = MI.getOperand(0).getReg();
155 Register SrcReg = MI.getOperand(1).getReg();
156 bool DestIsHigh = SystemZ::isHighReg(DestReg);
157 bool SrcIsHigh = SystemZ::isHighReg(SrcReg);
158 if (!DestIsHigh && !SrcIsHigh)
159 MI.setDesc(get(LowOpcodeK));
160 else {
161 if (DestReg != SrcReg) {
162 emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), DestReg, SrcReg,
163 SystemZ::LR, 32, MI.getOperand(1).isKill(),
164 MI.getOperand(1).isUndef());
165 MI.getOperand(1).setReg(DestReg);
167 MI.setDesc(get(DestIsHigh ? HighOpcode : LowOpcode));
168 MI.tieOperands(0, 1);
172 // MI is an RXY-style pseudo instruction. Replace it with LowOpcode
173 // if the first operand is a low GR32 and HighOpcode if the first operand
174 // is a high GR32.
175 void SystemZInstrInfo::expandRXYPseudo(MachineInstr &MI, unsigned LowOpcode,
176 unsigned HighOpcode) const {
177 Register Reg = MI.getOperand(0).getReg();
178 unsigned Opcode = getOpcodeForOffset(
179 SystemZ::isHighReg(Reg) ? HighOpcode : LowOpcode,
180 MI.getOperand(2).getImm());
181 MI.setDesc(get(Opcode));
184 // MI is a load-on-condition pseudo instruction with a single register
185 // (source or destination) operand. Replace it with LowOpcode if the
186 // register is a low GR32 and HighOpcode if the register is a high GR32.
187 void SystemZInstrInfo::expandLOCPseudo(MachineInstr &MI, unsigned LowOpcode,
188 unsigned HighOpcode) const {
189 Register Reg = MI.getOperand(0).getReg();
190 unsigned Opcode = SystemZ::isHighReg(Reg) ? HighOpcode : LowOpcode;
191 MI.setDesc(get(Opcode));
194 // MI is an RR-style pseudo instruction that zero-extends the low Size bits
195 // of one GRX32 into another. Replace it with LowOpcode if both operands
196 // are low registers, otherwise use RISB[LH]G.
197 void SystemZInstrInfo::expandZExtPseudo(MachineInstr &MI, unsigned LowOpcode,
198 unsigned Size) const {
199 MachineInstrBuilder MIB =
200 emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(),
201 MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), LowOpcode,
202 Size, MI.getOperand(1).isKill(), MI.getOperand(1).isUndef());
204 // Keep the remaining operands as-is.
205 for (unsigned I = 2; I < MI.getNumOperands(); ++I)
206 MIB.add(MI.getOperand(I));
208 MI.eraseFromParent();
211 void SystemZInstrInfo::expandLoadStackGuard(MachineInstr *MI) const {
212 MachineBasicBlock *MBB = MI->getParent();
213 MachineFunction &MF = *MBB->getParent();
214 const Register Reg64 = MI->getOperand(0).getReg();
215 const Register Reg32 = RI.getSubReg(Reg64, SystemZ::subreg_l32);
217 // EAR can only load the low subregister so us a shift for %a0 to produce
218 // the GR containing %a0 and %a1.
220 // ear <reg>, %a0
221 BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32)
222 .addReg(SystemZ::A0)
223 .addReg(Reg64, RegState::ImplicitDefine);
225 // sllg <reg>, <reg>, 32
226 BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::SLLG), Reg64)
227 .addReg(Reg64)
228 .addReg(0)
229 .addImm(32);
231 // ear <reg>, %a1
232 BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32)
233 .addReg(SystemZ::A1);
235 // lg <reg>, 40(<reg>)
236 MI->setDesc(get(SystemZ::LG));
237 MachineInstrBuilder(MF, MI).addReg(Reg64).addImm(40).addReg(0);
240 // Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR
241 // DestReg before MBBI in MBB. Use LowLowOpcode when both DestReg and SrcReg
242 // are low registers, otherwise use RISB[LH]G. Size is the number of bits
243 // taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR).
244 // KillSrc is true if this move is the last use of SrcReg.
245 MachineInstrBuilder
246 SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB,
247 MachineBasicBlock::iterator MBBI,
248 const DebugLoc &DL, unsigned DestReg,
249 unsigned SrcReg, unsigned LowLowOpcode,
250 unsigned Size, bool KillSrc,
251 bool UndefSrc) const {
252 unsigned Opcode;
253 bool DestIsHigh = SystemZ::isHighReg(DestReg);
254 bool SrcIsHigh = SystemZ::isHighReg(SrcReg);
255 if (DestIsHigh && SrcIsHigh)
256 Opcode = SystemZ::RISBHH;
257 else if (DestIsHigh && !SrcIsHigh)
258 Opcode = SystemZ::RISBHL;
259 else if (!DestIsHigh && SrcIsHigh)
260 Opcode = SystemZ::RISBLH;
261 else {
262 return BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg)
263 .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc));
265 unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0);
266 return BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
267 .addReg(DestReg, RegState::Undef)
268 .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc))
269 .addImm(32 - Size).addImm(128 + 31).addImm(Rotate);
272 MachineInstr *SystemZInstrInfo::commuteInstructionImpl(MachineInstr &MI,
273 bool NewMI,
274 unsigned OpIdx1,
275 unsigned OpIdx2) const {
276 auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
277 if (NewMI)
278 return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
279 return MI;
282 switch (MI.getOpcode()) {
283 case SystemZ::SELRMux:
284 case SystemZ::SELFHR:
285 case SystemZ::SELR:
286 case SystemZ::SELGR:
287 case SystemZ::LOCRMux:
288 case SystemZ::LOCFHR:
289 case SystemZ::LOCR:
290 case SystemZ::LOCGR: {
291 auto &WorkingMI = cloneIfNew(MI);
292 // Invert condition.
293 unsigned CCValid = WorkingMI.getOperand(3).getImm();
294 unsigned CCMask = WorkingMI.getOperand(4).getImm();
295 WorkingMI.getOperand(4).setImm(CCMask ^ CCValid);
296 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
297 OpIdx1, OpIdx2);
299 default:
300 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
304 // If MI is a simple load or store for a frame object, return the register
305 // it loads or stores and set FrameIndex to the index of the frame object.
306 // Return 0 otherwise.
308 // Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
309 static int isSimpleMove(const MachineInstr &MI, int &FrameIndex,
310 unsigned Flag) {
311 const MCInstrDesc &MCID = MI.getDesc();
312 if ((MCID.TSFlags & Flag) && MI.getOperand(1).isFI() &&
313 MI.getOperand(2).getImm() == 0 && MI.getOperand(3).getReg() == 0) {
314 FrameIndex = MI.getOperand(1).getIndex();
315 return MI.getOperand(0).getReg();
317 return 0;
320 unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
321 int &FrameIndex) const {
322 return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad);
325 unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
326 int &FrameIndex) const {
327 return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore);
330 bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr &MI,
331 int &DestFrameIndex,
332 int &SrcFrameIndex) const {
333 // Check for MVC 0(Length,FI1),0(FI2)
334 const MachineFrameInfo &MFI = MI.getParent()->getParent()->getFrameInfo();
335 if (MI.getOpcode() != SystemZ::MVC || !MI.getOperand(0).isFI() ||
336 MI.getOperand(1).getImm() != 0 || !MI.getOperand(3).isFI() ||
337 MI.getOperand(4).getImm() != 0)
338 return false;
340 // Check that Length covers the full slots.
341 int64_t Length = MI.getOperand(2).getImm();
342 unsigned FI1 = MI.getOperand(0).getIndex();
343 unsigned FI2 = MI.getOperand(3).getIndex();
344 if (MFI.getObjectSize(FI1) != Length ||
345 MFI.getObjectSize(FI2) != Length)
346 return false;
348 DestFrameIndex = FI1;
349 SrcFrameIndex = FI2;
350 return true;
353 bool SystemZInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
354 MachineBasicBlock *&TBB,
355 MachineBasicBlock *&FBB,
356 SmallVectorImpl<MachineOperand> &Cond,
357 bool AllowModify) const {
358 // Most of the code and comments here are boilerplate.
360 // Start from the bottom of the block and work up, examining the
361 // terminator instructions.
362 MachineBasicBlock::iterator I = MBB.end();
363 while (I != MBB.begin()) {
364 --I;
365 if (I->isDebugInstr())
366 continue;
368 // Working from the bottom, when we see a non-terminator instruction, we're
369 // done.
370 if (!isUnpredicatedTerminator(*I))
371 break;
373 // A terminator that isn't a branch can't easily be handled by this
374 // analysis.
375 if (!I->isBranch())
376 return true;
378 // Can't handle indirect branches.
379 SystemZII::Branch Branch(getBranchInfo(*I));
380 if (!Branch.hasMBBTarget())
381 return true;
383 // Punt on compound branches.
384 if (Branch.Type != SystemZII::BranchNormal)
385 return true;
387 if (Branch.CCMask == SystemZ::CCMASK_ANY) {
388 // Handle unconditional branches.
389 if (!AllowModify) {
390 TBB = Branch.getMBBTarget();
391 continue;
394 // If the block has any instructions after a JMP, delete them.
395 while (std::next(I) != MBB.end())
396 std::next(I)->eraseFromParent();
398 Cond.clear();
399 FBB = nullptr;
401 // Delete the JMP if it's equivalent to a fall-through.
402 if (MBB.isLayoutSuccessor(Branch.getMBBTarget())) {
403 TBB = nullptr;
404 I->eraseFromParent();
405 I = MBB.end();
406 continue;
409 // TBB is used to indicate the unconditinal destination.
410 TBB = Branch.getMBBTarget();
411 continue;
414 // Working from the bottom, handle the first conditional branch.
415 if (Cond.empty()) {
416 // FIXME: add X86-style branch swap
417 FBB = TBB;
418 TBB = Branch.getMBBTarget();
419 Cond.push_back(MachineOperand::CreateImm(Branch.CCValid));
420 Cond.push_back(MachineOperand::CreateImm(Branch.CCMask));
421 continue;
424 // Handle subsequent conditional branches.
425 assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch");
427 // Only handle the case where all conditional branches branch to the same
428 // destination.
429 if (TBB != Branch.getMBBTarget())
430 return true;
432 // If the conditions are the same, we can leave them alone.
433 unsigned OldCCValid = Cond[0].getImm();
434 unsigned OldCCMask = Cond[1].getImm();
435 if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask)
436 continue;
438 // FIXME: Try combining conditions like X86 does. Should be easy on Z!
439 return false;
442 return false;
445 unsigned SystemZInstrInfo::removeBranch(MachineBasicBlock &MBB,
446 int *BytesRemoved) const {
447 assert(!BytesRemoved && "code size not handled");
449 // Most of the code and comments here are boilerplate.
450 MachineBasicBlock::iterator I = MBB.end();
451 unsigned Count = 0;
453 while (I != MBB.begin()) {
454 --I;
455 if (I->isDebugInstr())
456 continue;
457 if (!I->isBranch())
458 break;
459 if (!getBranchInfo(*I).hasMBBTarget())
460 break;
461 // Remove the branch.
462 I->eraseFromParent();
463 I = MBB.end();
464 ++Count;
467 return Count;
470 bool SystemZInstrInfo::
471 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
472 assert(Cond.size() == 2 && "Invalid condition");
473 Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm());
474 return false;
477 unsigned SystemZInstrInfo::insertBranch(MachineBasicBlock &MBB,
478 MachineBasicBlock *TBB,
479 MachineBasicBlock *FBB,
480 ArrayRef<MachineOperand> Cond,
481 const DebugLoc &DL,
482 int *BytesAdded) const {
483 // In this function we output 32-bit branches, which should always
484 // have enough range. They can be shortened and relaxed by later code
485 // in the pipeline, if desired.
487 // Shouldn't be a fall through.
488 assert(TBB && "insertBranch must not be told to insert a fallthrough");
489 assert((Cond.size() == 2 || Cond.size() == 0) &&
490 "SystemZ branch conditions have one component!");
491 assert(!BytesAdded && "code size not handled");
493 if (Cond.empty()) {
494 // Unconditional branch?
495 assert(!FBB && "Unconditional branch with multiple successors!");
496 BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB);
497 return 1;
500 // Conditional branch.
501 unsigned Count = 0;
502 unsigned CCValid = Cond[0].getImm();
503 unsigned CCMask = Cond[1].getImm();
504 BuildMI(&MBB, DL, get(SystemZ::BRC))
505 .addImm(CCValid).addImm(CCMask).addMBB(TBB);
506 ++Count;
508 if (FBB) {
509 // Two-way Conditional branch. Insert the second branch.
510 BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB);
511 ++Count;
513 return Count;
516 bool SystemZInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
517 unsigned &SrcReg2, int &Mask,
518 int &Value) const {
519 assert(MI.isCompare() && "Caller should have checked for a comparison");
521 if (MI.getNumExplicitOperands() == 2 && MI.getOperand(0).isReg() &&
522 MI.getOperand(1).isImm()) {
523 SrcReg = MI.getOperand(0).getReg();
524 SrcReg2 = 0;
525 Value = MI.getOperand(1).getImm();
526 Mask = ~0;
527 return true;
530 return false;
533 bool SystemZInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
534 ArrayRef<MachineOperand> Pred,
535 unsigned TrueReg, unsigned FalseReg,
536 int &CondCycles, int &TrueCycles,
537 int &FalseCycles) const {
538 // Not all subtargets have LOCR instructions.
539 if (!STI.hasLoadStoreOnCond())
540 return false;
541 if (Pred.size() != 2)
542 return false;
544 // Check register classes.
545 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
546 const TargetRegisterClass *RC =
547 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
548 if (!RC)
549 return false;
551 // We have LOCR instructions for 32 and 64 bit general purpose registers.
552 if ((STI.hasLoadStoreOnCond2() &&
553 SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) ||
554 SystemZ::GR32BitRegClass.hasSubClassEq(RC) ||
555 SystemZ::GR64BitRegClass.hasSubClassEq(RC)) {
556 CondCycles = 2;
557 TrueCycles = 2;
558 FalseCycles = 2;
559 return true;
562 // Can't do anything else.
563 return false;
566 void SystemZInstrInfo::insertSelect(MachineBasicBlock &MBB,
567 MachineBasicBlock::iterator I,
568 const DebugLoc &DL, unsigned DstReg,
569 ArrayRef<MachineOperand> Pred,
570 unsigned TrueReg,
571 unsigned FalseReg) const {
572 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
573 const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
575 assert(Pred.size() == 2 && "Invalid condition");
576 unsigned CCValid = Pred[0].getImm();
577 unsigned CCMask = Pred[1].getImm();
579 unsigned Opc;
580 if (SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) {
581 if (STI.hasMiscellaneousExtensions3())
582 Opc = SystemZ::SELRMux;
583 else if (STI.hasLoadStoreOnCond2())
584 Opc = SystemZ::LOCRMux;
585 else {
586 Opc = SystemZ::LOCR;
587 MRI.constrainRegClass(DstReg, &SystemZ::GR32BitRegClass);
588 Register TReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
589 Register FReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
590 BuildMI(MBB, I, DL, get(TargetOpcode::COPY), TReg).addReg(TrueReg);
591 BuildMI(MBB, I, DL, get(TargetOpcode::COPY), FReg).addReg(FalseReg);
592 TrueReg = TReg;
593 FalseReg = FReg;
595 } else if (SystemZ::GR64BitRegClass.hasSubClassEq(RC)) {
596 if (STI.hasMiscellaneousExtensions3())
597 Opc = SystemZ::SELGR;
598 else
599 Opc = SystemZ::LOCGR;
600 } else
601 llvm_unreachable("Invalid register class");
603 BuildMI(MBB, I, DL, get(Opc), DstReg)
604 .addReg(FalseReg).addReg(TrueReg)
605 .addImm(CCValid).addImm(CCMask);
608 bool SystemZInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
609 unsigned Reg,
610 MachineRegisterInfo *MRI) const {
611 unsigned DefOpc = DefMI.getOpcode();
612 if (DefOpc != SystemZ::LHIMux && DefOpc != SystemZ::LHI &&
613 DefOpc != SystemZ::LGHI)
614 return false;
615 if (DefMI.getOperand(0).getReg() != Reg)
616 return false;
617 int32_t ImmVal = (int32_t)DefMI.getOperand(1).getImm();
619 unsigned UseOpc = UseMI.getOpcode();
620 unsigned NewUseOpc;
621 unsigned UseIdx;
622 int CommuteIdx = -1;
623 bool TieOps = false;
624 switch (UseOpc) {
625 case SystemZ::SELRMux:
626 TieOps = true;
627 LLVM_FALLTHROUGH;
628 case SystemZ::LOCRMux:
629 if (!STI.hasLoadStoreOnCond2())
630 return false;
631 NewUseOpc = SystemZ::LOCHIMux;
632 if (UseMI.getOperand(2).getReg() == Reg)
633 UseIdx = 2;
634 else if (UseMI.getOperand(1).getReg() == Reg)
635 UseIdx = 2, CommuteIdx = 1;
636 else
637 return false;
638 break;
639 case SystemZ::SELGR:
640 TieOps = true;
641 LLVM_FALLTHROUGH;
642 case SystemZ::LOCGR:
643 if (!STI.hasLoadStoreOnCond2())
644 return false;
645 NewUseOpc = SystemZ::LOCGHI;
646 if (UseMI.getOperand(2).getReg() == Reg)
647 UseIdx = 2;
648 else if (UseMI.getOperand(1).getReg() == Reg)
649 UseIdx = 2, CommuteIdx = 1;
650 else
651 return false;
652 break;
653 default:
654 return false;
657 if (CommuteIdx != -1)
658 if (!commuteInstruction(UseMI, false, CommuteIdx, UseIdx))
659 return false;
661 bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
662 UseMI.setDesc(get(NewUseOpc));
663 if (TieOps)
664 UseMI.tieOperands(0, 1);
665 UseMI.getOperand(UseIdx).ChangeToImmediate(ImmVal);
666 if (DeleteDef)
667 DefMI.eraseFromParent();
669 return true;
672 bool SystemZInstrInfo::isPredicable(const MachineInstr &MI) const {
673 unsigned Opcode = MI.getOpcode();
674 if (Opcode == SystemZ::Return ||
675 Opcode == SystemZ::Trap ||
676 Opcode == SystemZ::CallJG ||
677 Opcode == SystemZ::CallBR)
678 return true;
679 return false;
682 bool SystemZInstrInfo::
683 isProfitableToIfCvt(MachineBasicBlock &MBB,
684 unsigned NumCycles, unsigned ExtraPredCycles,
685 BranchProbability Probability) const {
686 // Avoid using conditional returns at the end of a loop (since then
687 // we'd need to emit an unconditional branch to the beginning anyway,
688 // making the loop body longer). This doesn't apply for low-probability
689 // loops (eg. compare-and-swap retry), so just decide based on branch
690 // probability instead of looping structure.
691 // However, since Compare and Trap instructions cost the same as a regular
692 // Compare instruction, we should allow the if conversion to convert this
693 // into a Conditional Compare regardless of the branch probability.
694 if (MBB.getLastNonDebugInstr()->getOpcode() != SystemZ::Trap &&
695 MBB.succ_empty() && Probability < BranchProbability(1, 8))
696 return false;
697 // For now only convert single instructions.
698 return NumCycles == 1;
701 bool SystemZInstrInfo::
702 isProfitableToIfCvt(MachineBasicBlock &TMBB,
703 unsigned NumCyclesT, unsigned ExtraPredCyclesT,
704 MachineBasicBlock &FMBB,
705 unsigned NumCyclesF, unsigned ExtraPredCyclesF,
706 BranchProbability Probability) const {
707 // For now avoid converting mutually-exclusive cases.
708 return false;
711 bool SystemZInstrInfo::
712 isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
713 BranchProbability Probability) const {
714 // For now only duplicate single instructions.
715 return NumCycles == 1;
718 bool SystemZInstrInfo::PredicateInstruction(
719 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
720 assert(Pred.size() == 2 && "Invalid condition");
721 unsigned CCValid = Pred[0].getImm();
722 unsigned CCMask = Pred[1].getImm();
723 assert(CCMask > 0 && CCMask < 15 && "Invalid predicate");
724 unsigned Opcode = MI.getOpcode();
725 if (Opcode == SystemZ::Trap) {
726 MI.setDesc(get(SystemZ::CondTrap));
727 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
728 .addImm(CCValid).addImm(CCMask)
729 .addReg(SystemZ::CC, RegState::Implicit);
730 return true;
732 if (Opcode == SystemZ::Return) {
733 MI.setDesc(get(SystemZ::CondReturn));
734 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
735 .addImm(CCValid).addImm(CCMask)
736 .addReg(SystemZ::CC, RegState::Implicit);
737 return true;
739 if (Opcode == SystemZ::CallJG) {
740 MachineOperand FirstOp = MI.getOperand(0);
741 const uint32_t *RegMask = MI.getOperand(1).getRegMask();
742 MI.RemoveOperand(1);
743 MI.RemoveOperand(0);
744 MI.setDesc(get(SystemZ::CallBRCL));
745 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
746 .addImm(CCValid)
747 .addImm(CCMask)
748 .add(FirstOp)
749 .addRegMask(RegMask)
750 .addReg(SystemZ::CC, RegState::Implicit);
751 return true;
753 if (Opcode == SystemZ::CallBR) {
754 const uint32_t *RegMask = MI.getOperand(0).getRegMask();
755 MI.RemoveOperand(0);
756 MI.setDesc(get(SystemZ::CallBCR));
757 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
758 .addImm(CCValid).addImm(CCMask)
759 .addRegMask(RegMask)
760 .addReg(SystemZ::CC, RegState::Implicit);
761 return true;
763 return false;
766 void SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
767 MachineBasicBlock::iterator MBBI,
768 const DebugLoc &DL, unsigned DestReg,
769 unsigned SrcReg, bool KillSrc) const {
770 // Split 128-bit GPR moves into two 64-bit moves. Add implicit uses of the
771 // super register in case one of the subregs is undefined.
772 // This handles ADDR128 too.
773 if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) {
774 copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64),
775 RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc);
776 MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI))
777 .addReg(SrcReg, RegState::Implicit);
778 copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64),
779 RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc);
780 MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI))
781 .addReg(SrcReg, (getKillRegState(KillSrc) | RegState::Implicit));
782 return;
785 if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) {
786 emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc,
787 false);
788 return;
791 // Move 128-bit floating-point values between VR128 and FP128.
792 if (SystemZ::VR128BitRegClass.contains(DestReg) &&
793 SystemZ::FP128BitRegClass.contains(SrcReg)) {
794 unsigned SrcRegHi =
795 RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_h64),
796 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
797 unsigned SrcRegLo =
798 RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_l64),
799 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
801 BuildMI(MBB, MBBI, DL, get(SystemZ::VMRHG), DestReg)
802 .addReg(SrcRegHi, getKillRegState(KillSrc))
803 .addReg(SrcRegLo, getKillRegState(KillSrc));
804 return;
806 if (SystemZ::FP128BitRegClass.contains(DestReg) &&
807 SystemZ::VR128BitRegClass.contains(SrcReg)) {
808 unsigned DestRegHi =
809 RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_h64),
810 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
811 unsigned DestRegLo =
812 RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_l64),
813 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
815 if (DestRegHi != SrcReg)
816 copyPhysReg(MBB, MBBI, DL, DestRegHi, SrcReg, false);
817 BuildMI(MBB, MBBI, DL, get(SystemZ::VREPG), DestRegLo)
818 .addReg(SrcReg, getKillRegState(KillSrc)).addImm(1);
819 return;
822 // Move CC value from/to a GR32.
823 if (SrcReg == SystemZ::CC) {
824 auto MIB = BuildMI(MBB, MBBI, DL, get(SystemZ::IPM), DestReg);
825 if (KillSrc) {
826 const MachineFunction *MF = MBB.getParent();
827 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
828 MIB->addRegisterKilled(SrcReg, TRI);
830 return;
832 if (DestReg == SystemZ::CC) {
833 BuildMI(MBB, MBBI, DL, get(SystemZ::TMLH))
834 .addReg(SrcReg, getKillRegState(KillSrc))
835 .addImm(3 << (SystemZ::IPM_CC - 16));
836 return;
839 // Everything else needs only one instruction.
840 unsigned Opcode;
841 if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg))
842 Opcode = SystemZ::LGR;
843 else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg))
844 // For z13 we prefer LDR over LER to avoid partial register dependencies.
845 Opcode = STI.hasVector() ? SystemZ::LDR32 : SystemZ::LER;
846 else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg))
847 Opcode = SystemZ::LDR;
848 else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg))
849 Opcode = SystemZ::LXR;
850 else if (SystemZ::VR32BitRegClass.contains(DestReg, SrcReg))
851 Opcode = SystemZ::VLR32;
852 else if (SystemZ::VR64BitRegClass.contains(DestReg, SrcReg))
853 Opcode = SystemZ::VLR64;
854 else if (SystemZ::VR128BitRegClass.contains(DestReg, SrcReg))
855 Opcode = SystemZ::VLR;
856 else if (SystemZ::AR32BitRegClass.contains(DestReg, SrcReg))
857 Opcode = SystemZ::CPYA;
858 else if (SystemZ::AR32BitRegClass.contains(DestReg) &&
859 SystemZ::GR32BitRegClass.contains(SrcReg))
860 Opcode = SystemZ::SAR;
861 else if (SystemZ::GR32BitRegClass.contains(DestReg) &&
862 SystemZ::AR32BitRegClass.contains(SrcReg))
863 Opcode = SystemZ::EAR;
864 else
865 llvm_unreachable("Impossible reg-to-reg copy");
867 BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
868 .addReg(SrcReg, getKillRegState(KillSrc));
871 void SystemZInstrInfo::storeRegToStackSlot(
872 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned SrcReg,
873 bool isKill, int FrameIdx, const TargetRegisterClass *RC,
874 const TargetRegisterInfo *TRI) const {
875 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
877 // Callers may expect a single instruction, so keep 128-bit moves
878 // together for now and lower them after register allocation.
879 unsigned LoadOpcode, StoreOpcode;
880 getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
881 addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode))
882 .addReg(SrcReg, getKillRegState(isKill)),
883 FrameIdx);
886 void SystemZInstrInfo::loadRegFromStackSlot(
887 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg,
888 int FrameIdx, const TargetRegisterClass *RC,
889 const TargetRegisterInfo *TRI) const {
890 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
892 // Callers may expect a single instruction, so keep 128-bit moves
893 // together for now and lower them after register allocation.
894 unsigned LoadOpcode, StoreOpcode;
895 getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
896 addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg),
897 FrameIdx);
900 // Return true if MI is a simple load or store with a 12-bit displacement
901 // and no index. Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
902 static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) {
903 const MCInstrDesc &MCID = MI->getDesc();
904 return ((MCID.TSFlags & Flag) &&
905 isUInt<12>(MI->getOperand(2).getImm()) &&
906 MI->getOperand(3).getReg() == 0);
909 namespace {
911 struct LogicOp {
912 LogicOp() = default;
913 LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize)
914 : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {}
916 explicit operator bool() const { return RegSize; }
918 unsigned RegSize = 0;
919 unsigned ImmLSB = 0;
920 unsigned ImmSize = 0;
923 } // end anonymous namespace
925 static LogicOp interpretAndImmediate(unsigned Opcode) {
926 switch (Opcode) {
927 case SystemZ::NILMux: return LogicOp(32, 0, 16);
928 case SystemZ::NIHMux: return LogicOp(32, 16, 16);
929 case SystemZ::NILL64: return LogicOp(64, 0, 16);
930 case SystemZ::NILH64: return LogicOp(64, 16, 16);
931 case SystemZ::NIHL64: return LogicOp(64, 32, 16);
932 case SystemZ::NIHH64: return LogicOp(64, 48, 16);
933 case SystemZ::NIFMux: return LogicOp(32, 0, 32);
934 case SystemZ::NILF64: return LogicOp(64, 0, 32);
935 case SystemZ::NIHF64: return LogicOp(64, 32, 32);
936 default: return LogicOp();
940 static void transferDeadCC(MachineInstr *OldMI, MachineInstr *NewMI) {
941 if (OldMI->registerDefIsDead(SystemZ::CC)) {
942 MachineOperand *CCDef = NewMI->findRegisterDefOperand(SystemZ::CC);
943 if (CCDef != nullptr)
944 CCDef->setIsDead(true);
948 MachineInstr *SystemZInstrInfo::convertToThreeAddress(
949 MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const {
950 MachineBasicBlock *MBB = MI.getParent();
952 // Try to convert an AND into an RISBG-type instruction.
953 // TODO: It might be beneficial to select RISBG and shorten to AND instead.
954 if (LogicOp And = interpretAndImmediate(MI.getOpcode())) {
955 uint64_t Imm = MI.getOperand(2).getImm() << And.ImmLSB;
956 // AND IMMEDIATE leaves the other bits of the register unchanged.
957 Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB);
958 unsigned Start, End;
959 if (isRxSBGMask(Imm, And.RegSize, Start, End)) {
960 unsigned NewOpcode;
961 if (And.RegSize == 64) {
962 NewOpcode = SystemZ::RISBG;
963 // Prefer RISBGN if available, since it does not clobber CC.
964 if (STI.hasMiscellaneousExtensions())
965 NewOpcode = SystemZ::RISBGN;
966 } else {
967 NewOpcode = SystemZ::RISBMux;
968 Start &= 31;
969 End &= 31;
971 MachineOperand &Dest = MI.getOperand(0);
972 MachineOperand &Src = MI.getOperand(1);
973 MachineInstrBuilder MIB =
974 BuildMI(*MBB, MI, MI.getDebugLoc(), get(NewOpcode))
975 .add(Dest)
976 .addReg(0)
977 .addReg(Src.getReg(), getKillRegState(Src.isKill()),
978 Src.getSubReg())
979 .addImm(Start)
980 .addImm(End + 128)
981 .addImm(0);
982 if (LV) {
983 unsigned NumOps = MI.getNumOperands();
984 for (unsigned I = 1; I < NumOps; ++I) {
985 MachineOperand &Op = MI.getOperand(I);
986 if (Op.isReg() && Op.isKill())
987 LV->replaceKillInstruction(Op.getReg(), MI, *MIB);
990 transferDeadCC(&MI, MIB);
991 return MIB;
994 return nullptr;
997 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
998 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
999 MachineBasicBlock::iterator InsertPt, int FrameIndex,
1000 LiveIntervals *LIS, VirtRegMap *VRM) const {
1001 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1002 const MachineFrameInfo &MFI = MF.getFrameInfo();
1003 unsigned Size = MFI.getObjectSize(FrameIndex);
1004 unsigned Opcode = MI.getOpcode();
1006 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1007 if (LIS != nullptr && (Opcode == SystemZ::LA || Opcode == SystemZ::LAY) &&
1008 isInt<8>(MI.getOperand(2).getImm()) && !MI.getOperand(3).getReg()) {
1010 // Check CC liveness, since new instruction introduces a dead
1011 // def of CC.
1012 MCRegUnitIterator CCUnit(SystemZ::CC, TRI);
1013 LiveRange &CCLiveRange = LIS->getRegUnit(*CCUnit);
1014 ++CCUnit;
1015 assert(!CCUnit.isValid() && "CC only has one reg unit.");
1016 SlotIndex MISlot =
1017 LIS->getSlotIndexes()->getInstructionIndex(MI).getRegSlot();
1018 if (!CCLiveRange.liveAt(MISlot)) {
1019 // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST
1020 MachineInstr *BuiltMI = BuildMI(*InsertPt->getParent(), InsertPt,
1021 MI.getDebugLoc(), get(SystemZ::AGSI))
1022 .addFrameIndex(FrameIndex)
1023 .addImm(0)
1024 .addImm(MI.getOperand(2).getImm());
1025 BuiltMI->findRegisterDefOperand(SystemZ::CC)->setIsDead(true);
1026 CCLiveRange.createDeadDef(MISlot, LIS->getVNInfoAllocator());
1027 return BuiltMI;
1030 return nullptr;
1033 // All other cases require a single operand.
1034 if (Ops.size() != 1)
1035 return nullptr;
1037 unsigned OpNum = Ops[0];
1038 assert(Size * 8 ==
1039 TRI->getRegSizeInBits(*MF.getRegInfo()
1040 .getRegClass(MI.getOperand(OpNum).getReg())) &&
1041 "Invalid size combination");
1043 if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) && OpNum == 0 &&
1044 isInt<8>(MI.getOperand(2).getImm())) {
1045 // A(G)HI %reg, CONST -> A(G)SI %mem, CONST
1046 Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI);
1047 MachineInstr *BuiltMI =
1048 BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1049 .addFrameIndex(FrameIndex)
1050 .addImm(0)
1051 .addImm(MI.getOperand(2).getImm());
1052 transferDeadCC(&MI, BuiltMI);
1053 return BuiltMI;
1056 if ((Opcode == SystemZ::ALFI && OpNum == 0 &&
1057 isInt<8>((int32_t)MI.getOperand(2).getImm())) ||
1058 (Opcode == SystemZ::ALGFI && OpNum == 0 &&
1059 isInt<8>((int64_t)MI.getOperand(2).getImm()))) {
1060 // AL(G)FI %reg, CONST -> AL(G)SI %mem, CONST
1061 Opcode = (Opcode == SystemZ::ALFI ? SystemZ::ALSI : SystemZ::ALGSI);
1062 MachineInstr *BuiltMI =
1063 BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1064 .addFrameIndex(FrameIndex)
1065 .addImm(0)
1066 .addImm((int8_t)MI.getOperand(2).getImm());
1067 transferDeadCC(&MI, BuiltMI);
1068 return BuiltMI;
1071 if ((Opcode == SystemZ::SLFI && OpNum == 0 &&
1072 isInt<8>((int32_t)-MI.getOperand(2).getImm())) ||
1073 (Opcode == SystemZ::SLGFI && OpNum == 0 &&
1074 isInt<8>((int64_t)-MI.getOperand(2).getImm()))) {
1075 // SL(G)FI %reg, CONST -> AL(G)SI %mem, -CONST
1076 Opcode = (Opcode == SystemZ::SLFI ? SystemZ::ALSI : SystemZ::ALGSI);
1077 MachineInstr *BuiltMI =
1078 BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1079 .addFrameIndex(FrameIndex)
1080 .addImm(0)
1081 .addImm((int8_t)-MI.getOperand(2).getImm());
1082 transferDeadCC(&MI, BuiltMI);
1083 return BuiltMI;
1086 if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) {
1087 bool Op0IsGPR = (Opcode == SystemZ::LGDR);
1088 bool Op1IsGPR = (Opcode == SystemZ::LDGR);
1089 // If we're spilling the destination of an LDGR or LGDR, store the
1090 // source register instead.
1091 if (OpNum == 0) {
1092 unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD;
1093 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1094 get(StoreOpcode))
1095 .add(MI.getOperand(1))
1096 .addFrameIndex(FrameIndex)
1097 .addImm(0)
1098 .addReg(0);
1100 // If we're spilling the source of an LDGR or LGDR, load the
1101 // destination register instead.
1102 if (OpNum == 1) {
1103 unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD;
1104 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1105 get(LoadOpcode))
1106 .add(MI.getOperand(0))
1107 .addFrameIndex(FrameIndex)
1108 .addImm(0)
1109 .addReg(0);
1113 // Look for cases where the source of a simple store or the destination
1114 // of a simple load is being spilled. Try to use MVC instead.
1116 // Although MVC is in practice a fast choice in these cases, it is still
1117 // logically a bytewise copy. This means that we cannot use it if the
1118 // load or store is volatile. We also wouldn't be able to use MVC if
1119 // the two memories partially overlap, but that case cannot occur here,
1120 // because we know that one of the memories is a full frame index.
1122 // For performance reasons, we also want to avoid using MVC if the addresses
1123 // might be equal. We don't worry about that case here, because spill slot
1124 // coloring happens later, and because we have special code to remove
1125 // MVCs that turn out to be redundant.
1126 if (OpNum == 0 && MI.hasOneMemOperand()) {
1127 MachineMemOperand *MMO = *MI.memoperands_begin();
1128 if (MMO->getSize() == Size && !MMO->isVolatile() && !MMO->isAtomic()) {
1129 // Handle conversion of loads.
1130 if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXLoad)) {
1131 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1132 get(SystemZ::MVC))
1133 .addFrameIndex(FrameIndex)
1134 .addImm(0)
1135 .addImm(Size)
1136 .add(MI.getOperand(1))
1137 .addImm(MI.getOperand(2).getImm())
1138 .addMemOperand(MMO);
1140 // Handle conversion of stores.
1141 if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXStore)) {
1142 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1143 get(SystemZ::MVC))
1144 .add(MI.getOperand(1))
1145 .addImm(MI.getOperand(2).getImm())
1146 .addImm(Size)
1147 .addFrameIndex(FrameIndex)
1148 .addImm(0)
1149 .addMemOperand(MMO);
1154 // If the spilled operand is the final one or the instruction is
1155 // commutable, try to change <INSN>R into <INSN>.
1156 unsigned NumOps = MI.getNumExplicitOperands();
1157 int MemOpcode = SystemZ::getMemOpcode(Opcode);
1159 // See if this is a 3-address instruction that is convertible to 2-address
1160 // and suitable for folding below. Only try this with virtual registers
1161 // and a provided VRM (during regalloc).
1162 bool NeedsCommute = false;
1163 if (SystemZ::getTwoOperandOpcode(Opcode) != -1 && MemOpcode != -1) {
1164 if (VRM == nullptr)
1165 MemOpcode = -1;
1166 else {
1167 assert(NumOps == 3 && "Expected two source registers.");
1168 Register DstReg = MI.getOperand(0).getReg();
1169 Register DstPhys =
1170 (Register::isVirtualRegister(DstReg) ? VRM->getPhys(DstReg) : DstReg);
1171 Register SrcReg = (OpNum == 2 ? MI.getOperand(1).getReg()
1172 : ((OpNum == 1 && MI.isCommutable())
1173 ? MI.getOperand(2).getReg()
1174 : Register()));
1175 if (DstPhys && !SystemZ::GRH32BitRegClass.contains(DstPhys) && SrcReg &&
1176 Register::isVirtualRegister(SrcReg) &&
1177 DstPhys == VRM->getPhys(SrcReg))
1178 NeedsCommute = (OpNum == 1);
1179 else
1180 MemOpcode = -1;
1184 if (MemOpcode >= 0) {
1185 if ((OpNum == NumOps - 1) || NeedsCommute) {
1186 const MCInstrDesc &MemDesc = get(MemOpcode);
1187 uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags);
1188 assert(AccessBytes != 0 && "Size of access should be known");
1189 assert(AccessBytes <= Size && "Access outside the frame index");
1190 uint64_t Offset = Size - AccessBytes;
1191 MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
1192 MI.getDebugLoc(), get(MemOpcode));
1193 MIB.add(MI.getOperand(0));
1194 if (NeedsCommute)
1195 MIB.add(MI.getOperand(2));
1196 else
1197 for (unsigned I = 1; I < OpNum; ++I)
1198 MIB.add(MI.getOperand(I));
1199 MIB.addFrameIndex(FrameIndex).addImm(Offset);
1200 if (MemDesc.TSFlags & SystemZII::HasIndex)
1201 MIB.addReg(0);
1202 transferDeadCC(&MI, MIB);
1203 return MIB;
1207 return nullptr;
1210 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
1211 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1212 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
1213 LiveIntervals *LIS) const {
1214 return nullptr;
1217 bool SystemZInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1218 switch (MI.getOpcode()) {
1219 case SystemZ::L128:
1220 splitMove(MI, SystemZ::LG);
1221 return true;
1223 case SystemZ::ST128:
1224 splitMove(MI, SystemZ::STG);
1225 return true;
1227 case SystemZ::LX:
1228 splitMove(MI, SystemZ::LD);
1229 return true;
1231 case SystemZ::STX:
1232 splitMove(MI, SystemZ::STD);
1233 return true;
1235 case SystemZ::LBMux:
1236 expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH);
1237 return true;
1239 case SystemZ::LHMux:
1240 expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH);
1241 return true;
1243 case SystemZ::LLCRMux:
1244 expandZExtPseudo(MI, SystemZ::LLCR, 8);
1245 return true;
1247 case SystemZ::LLHRMux:
1248 expandZExtPseudo(MI, SystemZ::LLHR, 16);
1249 return true;
1251 case SystemZ::LLCMux:
1252 expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH);
1253 return true;
1255 case SystemZ::LLHMux:
1256 expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH);
1257 return true;
1259 case SystemZ::LMux:
1260 expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH);
1261 return true;
1263 case SystemZ::LOCMux:
1264 expandLOCPseudo(MI, SystemZ::LOC, SystemZ::LOCFH);
1265 return true;
1267 case SystemZ::LOCHIMux:
1268 expandLOCPseudo(MI, SystemZ::LOCHI, SystemZ::LOCHHI);
1269 return true;
1271 case SystemZ::STCMux:
1272 expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH);
1273 return true;
1275 case SystemZ::STHMux:
1276 expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH);
1277 return true;
1279 case SystemZ::STMux:
1280 expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH);
1281 return true;
1283 case SystemZ::STOCMux:
1284 expandLOCPseudo(MI, SystemZ::STOC, SystemZ::STOCFH);
1285 return true;
1287 case SystemZ::LHIMux:
1288 expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true);
1289 return true;
1291 case SystemZ::IIFMux:
1292 expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false);
1293 return true;
1295 case SystemZ::IILMux:
1296 expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false);
1297 return true;
1299 case SystemZ::IIHMux:
1300 expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false);
1301 return true;
1303 case SystemZ::NIFMux:
1304 expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false);
1305 return true;
1307 case SystemZ::NILMux:
1308 expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false);
1309 return true;
1311 case SystemZ::NIHMux:
1312 expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false);
1313 return true;
1315 case SystemZ::OIFMux:
1316 expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false);
1317 return true;
1319 case SystemZ::OILMux:
1320 expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false);
1321 return true;
1323 case SystemZ::OIHMux:
1324 expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false);
1325 return true;
1327 case SystemZ::XIFMux:
1328 expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false);
1329 return true;
1331 case SystemZ::TMLMux:
1332 expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false);
1333 return true;
1335 case SystemZ::TMHMux:
1336 expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false);
1337 return true;
1339 case SystemZ::AHIMux:
1340 expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false);
1341 return true;
1343 case SystemZ::AHIMuxK:
1344 expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH);
1345 return true;
1347 case SystemZ::AFIMux:
1348 expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false);
1349 return true;
1351 case SystemZ::CHIMux:
1352 expandRIPseudo(MI, SystemZ::CHI, SystemZ::CIH, false);
1353 return true;
1355 case SystemZ::CFIMux:
1356 expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false);
1357 return true;
1359 case SystemZ::CLFIMux:
1360 expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false);
1361 return true;
1363 case SystemZ::CMux:
1364 expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF);
1365 return true;
1367 case SystemZ::CLMux:
1368 expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF);
1369 return true;
1371 case SystemZ::RISBMux: {
1372 bool DestIsHigh = SystemZ::isHighReg(MI.getOperand(0).getReg());
1373 bool SrcIsHigh = SystemZ::isHighReg(MI.getOperand(2).getReg());
1374 if (SrcIsHigh == DestIsHigh)
1375 MI.setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL));
1376 else {
1377 MI.setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH));
1378 MI.getOperand(5).setImm(MI.getOperand(5).getImm() ^ 32);
1380 return true;
1383 case SystemZ::ADJDYNALLOC:
1384 splitAdjDynAlloc(MI);
1385 return true;
1387 case TargetOpcode::LOAD_STACK_GUARD:
1388 expandLoadStackGuard(&MI);
1389 return true;
1391 default:
1392 return false;
1396 unsigned SystemZInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
1397 if (MI.isInlineAsm()) {
1398 const MachineFunction *MF = MI.getParent()->getParent();
1399 const char *AsmStr = MI.getOperand(0).getSymbolName();
1400 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
1402 return MI.getDesc().getSize();
1405 SystemZII::Branch
1406 SystemZInstrInfo::getBranchInfo(const MachineInstr &MI) const {
1407 switch (MI.getOpcode()) {
1408 case SystemZ::BR:
1409 case SystemZ::BI:
1410 case SystemZ::J:
1411 case SystemZ::JG:
1412 return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY,
1413 SystemZ::CCMASK_ANY, &MI.getOperand(0));
1415 case SystemZ::BRC:
1416 case SystemZ::BRCL:
1417 return SystemZII::Branch(SystemZII::BranchNormal, MI.getOperand(0).getImm(),
1418 MI.getOperand(1).getImm(), &MI.getOperand(2));
1420 case SystemZ::BRCT:
1421 case SystemZ::BRCTH:
1422 return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP,
1423 SystemZ::CCMASK_CMP_NE, &MI.getOperand(2));
1425 case SystemZ::BRCTG:
1426 return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP,
1427 SystemZ::CCMASK_CMP_NE, &MI.getOperand(2));
1429 case SystemZ::CIJ:
1430 case SystemZ::CRJ:
1431 return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP,
1432 MI.getOperand(2).getImm(), &MI.getOperand(3));
1434 case SystemZ::CLIJ:
1435 case SystemZ::CLRJ:
1436 return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP,
1437 MI.getOperand(2).getImm(), &MI.getOperand(3));
1439 case SystemZ::CGIJ:
1440 case SystemZ::CGRJ:
1441 return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP,
1442 MI.getOperand(2).getImm(), &MI.getOperand(3));
1444 case SystemZ::CLGIJ:
1445 case SystemZ::CLGRJ:
1446 return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP,
1447 MI.getOperand(2).getImm(), &MI.getOperand(3));
1449 case SystemZ::INLINEASM_BR:
1450 // Don't try to analyze asm goto, so pass nullptr as branch target argument.
1451 return SystemZII::Branch(SystemZII::AsmGoto, 0, 0, nullptr);
1453 default:
1454 llvm_unreachable("Unrecognized branch opcode");
1458 void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC,
1459 unsigned &LoadOpcode,
1460 unsigned &StoreOpcode) const {
1461 if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) {
1462 LoadOpcode = SystemZ::L;
1463 StoreOpcode = SystemZ::ST;
1464 } else if (RC == &SystemZ::GRH32BitRegClass) {
1465 LoadOpcode = SystemZ::LFH;
1466 StoreOpcode = SystemZ::STFH;
1467 } else if (RC == &SystemZ::GRX32BitRegClass) {
1468 LoadOpcode = SystemZ::LMux;
1469 StoreOpcode = SystemZ::STMux;
1470 } else if (RC == &SystemZ::GR64BitRegClass ||
1471 RC == &SystemZ::ADDR64BitRegClass) {
1472 LoadOpcode = SystemZ::LG;
1473 StoreOpcode = SystemZ::STG;
1474 } else if (RC == &SystemZ::GR128BitRegClass ||
1475 RC == &SystemZ::ADDR128BitRegClass) {
1476 LoadOpcode = SystemZ::L128;
1477 StoreOpcode = SystemZ::ST128;
1478 } else if (RC == &SystemZ::FP32BitRegClass) {
1479 LoadOpcode = SystemZ::LE;
1480 StoreOpcode = SystemZ::STE;
1481 } else if (RC == &SystemZ::FP64BitRegClass) {
1482 LoadOpcode = SystemZ::LD;
1483 StoreOpcode = SystemZ::STD;
1484 } else if (RC == &SystemZ::FP128BitRegClass) {
1485 LoadOpcode = SystemZ::LX;
1486 StoreOpcode = SystemZ::STX;
1487 } else if (RC == &SystemZ::VR32BitRegClass) {
1488 LoadOpcode = SystemZ::VL32;
1489 StoreOpcode = SystemZ::VST32;
1490 } else if (RC == &SystemZ::VR64BitRegClass) {
1491 LoadOpcode = SystemZ::VL64;
1492 StoreOpcode = SystemZ::VST64;
1493 } else if (RC == &SystemZ::VF128BitRegClass ||
1494 RC == &SystemZ::VR128BitRegClass) {
1495 LoadOpcode = SystemZ::VL;
1496 StoreOpcode = SystemZ::VST;
1497 } else
1498 llvm_unreachable("Unsupported regclass to load or store");
1501 unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode,
1502 int64_t Offset) const {
1503 const MCInstrDesc &MCID = get(Opcode);
1504 int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset);
1505 if (isUInt<12>(Offset) && isUInt<12>(Offset2)) {
1506 // Get the instruction to use for unsigned 12-bit displacements.
1507 int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode);
1508 if (Disp12Opcode >= 0)
1509 return Disp12Opcode;
1511 // All address-related instructions can use unsigned 12-bit
1512 // displacements.
1513 return Opcode;
1515 if (isInt<20>(Offset) && isInt<20>(Offset2)) {
1516 // Get the instruction to use for signed 20-bit displacements.
1517 int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode);
1518 if (Disp20Opcode >= 0)
1519 return Disp20Opcode;
1521 // Check whether Opcode allows signed 20-bit displacements.
1522 if (MCID.TSFlags & SystemZII::Has20BitOffset)
1523 return Opcode;
1525 return 0;
1528 unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const {
1529 switch (Opcode) {
1530 case SystemZ::L: return SystemZ::LT;
1531 case SystemZ::LY: return SystemZ::LT;
1532 case SystemZ::LG: return SystemZ::LTG;
1533 case SystemZ::LGF: return SystemZ::LTGF;
1534 case SystemZ::LR: return SystemZ::LTR;
1535 case SystemZ::LGFR: return SystemZ::LTGFR;
1536 case SystemZ::LGR: return SystemZ::LTGR;
1537 case SystemZ::LER: return SystemZ::LTEBR;
1538 case SystemZ::LDR: return SystemZ::LTDBR;
1539 case SystemZ::LXR: return SystemZ::LTXBR;
1540 case SystemZ::LCDFR: return SystemZ::LCDBR;
1541 case SystemZ::LPDFR: return SystemZ::LPDBR;
1542 case SystemZ::LNDFR: return SystemZ::LNDBR;
1543 case SystemZ::LCDFR_32: return SystemZ::LCEBR;
1544 case SystemZ::LPDFR_32: return SystemZ::LPEBR;
1545 case SystemZ::LNDFR_32: return SystemZ::LNEBR;
1546 // On zEC12 we prefer to use RISBGN. But if there is a chance to
1547 // actually use the condition code, we may turn it back into RISGB.
1548 // Note that RISBG is not really a "load-and-test" instruction,
1549 // but sets the same condition code values, so is OK to use here.
1550 case SystemZ::RISBGN: return SystemZ::RISBG;
1551 default: return 0;
1555 // Return true if Mask matches the regexp 0*1+0*, given that zero masks
1556 // have already been filtered out. Store the first set bit in LSB and
1557 // the number of set bits in Length if so.
1558 static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) {
1559 unsigned First = findFirstSet(Mask);
1560 uint64_t Top = (Mask >> First) + 1;
1561 if ((Top & -Top) == Top) {
1562 LSB = First;
1563 Length = findFirstSet(Top);
1564 return true;
1566 return false;
1569 bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize,
1570 unsigned &Start, unsigned &End) const {
1571 // Reject trivial all-zero masks.
1572 Mask &= allOnes(BitSize);
1573 if (Mask == 0)
1574 return false;
1576 // Handle the 1+0+ or 0+1+0* cases. Start then specifies the index of
1577 // the msb and End specifies the index of the lsb.
1578 unsigned LSB, Length;
1579 if (isStringOfOnes(Mask, LSB, Length)) {
1580 Start = 63 - (LSB + Length - 1);
1581 End = 63 - LSB;
1582 return true;
1585 // Handle the wrap-around 1+0+1+ cases. Start then specifies the msb
1586 // of the low 1s and End specifies the lsb of the high 1s.
1587 if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) {
1588 assert(LSB > 0 && "Bottom bit must be set");
1589 assert(LSB + Length < BitSize && "Top bit must be set");
1590 Start = 63 - (LSB - 1);
1591 End = 63 - (LSB + Length);
1592 return true;
1595 return false;
1598 unsigned SystemZInstrInfo::getFusedCompare(unsigned Opcode,
1599 SystemZII::FusedCompareType Type,
1600 const MachineInstr *MI) const {
1601 switch (Opcode) {
1602 case SystemZ::CHI:
1603 case SystemZ::CGHI:
1604 if (!(MI && isInt<8>(MI->getOperand(1).getImm())))
1605 return 0;
1606 break;
1607 case SystemZ::CLFI:
1608 case SystemZ::CLGFI:
1609 if (!(MI && isUInt<8>(MI->getOperand(1).getImm())))
1610 return 0;
1611 break;
1612 case SystemZ::CL:
1613 case SystemZ::CLG:
1614 if (!STI.hasMiscellaneousExtensions())
1615 return 0;
1616 if (!(MI && MI->getOperand(3).getReg() == 0))
1617 return 0;
1618 break;
1620 switch (Type) {
1621 case SystemZII::CompareAndBranch:
1622 switch (Opcode) {
1623 case SystemZ::CR:
1624 return SystemZ::CRJ;
1625 case SystemZ::CGR:
1626 return SystemZ::CGRJ;
1627 case SystemZ::CHI:
1628 return SystemZ::CIJ;
1629 case SystemZ::CGHI:
1630 return SystemZ::CGIJ;
1631 case SystemZ::CLR:
1632 return SystemZ::CLRJ;
1633 case SystemZ::CLGR:
1634 return SystemZ::CLGRJ;
1635 case SystemZ::CLFI:
1636 return SystemZ::CLIJ;
1637 case SystemZ::CLGFI:
1638 return SystemZ::CLGIJ;
1639 default:
1640 return 0;
1642 case SystemZII::CompareAndReturn:
1643 switch (Opcode) {
1644 case SystemZ::CR:
1645 return SystemZ::CRBReturn;
1646 case SystemZ::CGR:
1647 return SystemZ::CGRBReturn;
1648 case SystemZ::CHI:
1649 return SystemZ::CIBReturn;
1650 case SystemZ::CGHI:
1651 return SystemZ::CGIBReturn;
1652 case SystemZ::CLR:
1653 return SystemZ::CLRBReturn;
1654 case SystemZ::CLGR:
1655 return SystemZ::CLGRBReturn;
1656 case SystemZ::CLFI:
1657 return SystemZ::CLIBReturn;
1658 case SystemZ::CLGFI:
1659 return SystemZ::CLGIBReturn;
1660 default:
1661 return 0;
1663 case SystemZII::CompareAndSibcall:
1664 switch (Opcode) {
1665 case SystemZ::CR:
1666 return SystemZ::CRBCall;
1667 case SystemZ::CGR:
1668 return SystemZ::CGRBCall;
1669 case SystemZ::CHI:
1670 return SystemZ::CIBCall;
1671 case SystemZ::CGHI:
1672 return SystemZ::CGIBCall;
1673 case SystemZ::CLR:
1674 return SystemZ::CLRBCall;
1675 case SystemZ::CLGR:
1676 return SystemZ::CLGRBCall;
1677 case SystemZ::CLFI:
1678 return SystemZ::CLIBCall;
1679 case SystemZ::CLGFI:
1680 return SystemZ::CLGIBCall;
1681 default:
1682 return 0;
1684 case SystemZII::CompareAndTrap:
1685 switch (Opcode) {
1686 case SystemZ::CR:
1687 return SystemZ::CRT;
1688 case SystemZ::CGR:
1689 return SystemZ::CGRT;
1690 case SystemZ::CHI:
1691 return SystemZ::CIT;
1692 case SystemZ::CGHI:
1693 return SystemZ::CGIT;
1694 case SystemZ::CLR:
1695 return SystemZ::CLRT;
1696 case SystemZ::CLGR:
1697 return SystemZ::CLGRT;
1698 case SystemZ::CLFI:
1699 return SystemZ::CLFIT;
1700 case SystemZ::CLGFI:
1701 return SystemZ::CLGIT;
1702 case SystemZ::CL:
1703 return SystemZ::CLT;
1704 case SystemZ::CLG:
1705 return SystemZ::CLGT;
1706 default:
1707 return 0;
1710 return 0;
1713 unsigned SystemZInstrInfo::getLoadAndTrap(unsigned Opcode) const {
1714 if (!STI.hasLoadAndTrap())
1715 return 0;
1716 switch (Opcode) {
1717 case SystemZ::L:
1718 case SystemZ::LY:
1719 return SystemZ::LAT;
1720 case SystemZ::LG:
1721 return SystemZ::LGAT;
1722 case SystemZ::LFH:
1723 return SystemZ::LFHAT;
1724 case SystemZ::LLGF:
1725 return SystemZ::LLGFAT;
1726 case SystemZ::LLGT:
1727 return SystemZ::LLGTAT;
1729 return 0;
1732 void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB,
1733 MachineBasicBlock::iterator MBBI,
1734 unsigned Reg, uint64_t Value) const {
1735 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
1736 unsigned Opcode;
1737 if (isInt<16>(Value))
1738 Opcode = SystemZ::LGHI;
1739 else if (SystemZ::isImmLL(Value))
1740 Opcode = SystemZ::LLILL;
1741 else if (SystemZ::isImmLH(Value)) {
1742 Opcode = SystemZ::LLILH;
1743 Value >>= 16;
1744 } else {
1745 assert(isInt<32>(Value) && "Huge values not handled yet");
1746 Opcode = SystemZ::LGFI;
1748 BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value);
1751 bool SystemZInstrInfo::
1752 areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
1753 const MachineInstr &MIb,
1754 AliasAnalysis *AA) const {
1756 if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand())
1757 return false;
1759 // If mem-operands show that the same address Value is used by both
1760 // instructions, check for non-overlapping offsets and widths. Not
1761 // sure if a register based analysis would be an improvement...
1763 MachineMemOperand *MMOa = *MIa.memoperands_begin();
1764 MachineMemOperand *MMOb = *MIb.memoperands_begin();
1765 const Value *VALa = MMOa->getValue();
1766 const Value *VALb = MMOb->getValue();
1767 bool SameVal = (VALa && VALb && (VALa == VALb));
1768 if (!SameVal) {
1769 const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1770 const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1771 if (PSVa && PSVb && (PSVa == PSVb))
1772 SameVal = true;
1774 if (SameVal) {
1775 int OffsetA = MMOa->getOffset(), OffsetB = MMOb->getOffset();
1776 int WidthA = MMOa->getSize(), WidthB = MMOb->getSize();
1777 int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB;
1778 int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA;
1779 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
1780 if (LowOffset + LowWidth <= HighOffset)
1781 return true;
1784 return false;