[x86] fix assert with horizontal math + broadcast of vector (PR43402)
[llvm-core.git] / lib / Target / SystemZ / SystemZLongBranch.cpp
blob64577788d705bd371cc9375a000a1bdef73968f3
1 //===-- SystemZLongBranch.cpp - Branch lengthening for SystemZ ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass makes sure that all branches are in range. There are several ways
10 // in which this could be done. One aggressive approach is to assume that all
11 // branches are in range and successively replace those that turn out not
12 // to be in range with a longer form (branch relaxation). A simple
13 // implementation is to continually walk through the function relaxing
14 // branches until no more changes are needed and a fixed point is reached.
15 // However, in the pathological worst case, this implementation is
16 // quadratic in the number of blocks; relaxing branch N can make branch N-1
17 // go out of range, which in turn can make branch N-2 go out of range,
18 // and so on.
20 // An alternative approach is to assume that all branches must be
21 // converted to their long forms, then reinstate the short forms of
22 // branches that, even under this pessimistic assumption, turn out to be
23 // in range (branch shortening). This too can be implemented as a function
24 // walk that is repeated until a fixed point is reached. In general,
25 // the result of shortening is not as good as that of relaxation, and
26 // shortening is also quadratic in the worst case; shortening branch N
27 // can bring branch N-1 in range of the short form, which in turn can do
28 // the same for branch N-2, and so on. The main advantage of shortening
29 // is that each walk through the function produces valid code, so it is
30 // possible to stop at any point after the first walk. The quadraticness
31 // could therefore be handled with a maximum pass count, although the
32 // question then becomes: what maximum count should be used?
34 // On SystemZ, long branches are only needed for functions bigger than 64k,
35 // which are relatively rare to begin with, and the long branch sequences
36 // are actually relatively cheap. It therefore doesn't seem worth spending
37 // much compilation time on the problem. Instead, the approach we take is:
39 // (1) Work out the address that each block would have if no branches
40 // need relaxing. Exit the pass early if all branches are in range
41 // according to this assumption.
43 // (2) Work out the address that each block would have if all branches
44 // need relaxing.
46 // (3) Walk through the block calculating the final address of each instruction
47 // and relaxing those that need to be relaxed. For backward branches,
48 // this check uses the final address of the target block, as calculated
49 // earlier in the walk. For forward branches, this check uses the
50 // address of the target block that was calculated in (2). Both checks
51 // give a conservatively-correct range.
53 //===----------------------------------------------------------------------===//
55 #include "SystemZ.h"
56 #include "SystemZInstrInfo.h"
57 #include "SystemZTargetMachine.h"
58 #include "llvm/ADT/SmallVector.h"
59 #include "llvm/ADT/Statistic.h"
60 #include "llvm/ADT/StringRef.h"
61 #include "llvm/CodeGen/MachineBasicBlock.h"
62 #include "llvm/CodeGen/MachineFunction.h"
63 #include "llvm/CodeGen/MachineFunctionPass.h"
64 #include "llvm/CodeGen/MachineInstr.h"
65 #include "llvm/CodeGen/MachineInstrBuilder.h"
66 #include "llvm/IR/DebugLoc.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include <cassert>
69 #include <cstdint>
71 using namespace llvm;
73 #define DEBUG_TYPE "systemz-long-branch"
75 STATISTIC(LongBranches, "Number of long branches.");
77 namespace {
79 // Represents positional information about a basic block.
80 struct MBBInfo {
81 // The address that we currently assume the block has.
82 uint64_t Address = 0;
84 // The size of the block in bytes, excluding terminators.
85 // This value never changes.
86 uint64_t Size = 0;
88 // The minimum alignment of the block.
89 // This value never changes.
90 llvm::Align Alignment;
92 // The number of terminators in this block. This value never changes.
93 unsigned NumTerminators = 0;
95 MBBInfo() = default;
98 // Represents the state of a block terminator.
99 struct TerminatorInfo {
100 // If this terminator is a relaxable branch, this points to the branch
101 // instruction, otherwise it is null.
102 MachineInstr *Branch = nullptr;
104 // The address that we currently assume the terminator has.
105 uint64_t Address = 0;
107 // The current size of the terminator in bytes.
108 uint64_t Size = 0;
110 // If Branch is nonnull, this is the number of the target block,
111 // otherwise it is unused.
112 unsigned TargetBlock = 0;
114 // If Branch is nonnull, this is the length of the longest relaxed form,
115 // otherwise it is zero.
116 unsigned ExtraRelaxSize = 0;
118 TerminatorInfo() = default;
121 // Used to keep track of the current position while iterating over the blocks.
122 struct BlockPosition {
123 // The address that we assume this position has.
124 uint64_t Address = 0;
126 // The number of low bits in Address that are known to be the same
127 // as the runtime address.
128 unsigned KnownBits;
130 BlockPosition(unsigned InitialLogAlignment)
131 : KnownBits(InitialLogAlignment) {}
134 class SystemZLongBranch : public MachineFunctionPass {
135 public:
136 static char ID;
138 SystemZLongBranch(const SystemZTargetMachine &tm)
139 : MachineFunctionPass(ID) {}
141 StringRef getPassName() const override { return "SystemZ Long Branch"; }
143 bool runOnMachineFunction(MachineFunction &F) override;
145 MachineFunctionProperties getRequiredProperties() const override {
146 return MachineFunctionProperties().set(
147 MachineFunctionProperties::Property::NoVRegs);
150 private:
151 void skipNonTerminators(BlockPosition &Position, MBBInfo &Block);
152 void skipTerminator(BlockPosition &Position, TerminatorInfo &Terminator,
153 bool AssumeRelaxed);
154 TerminatorInfo describeTerminator(MachineInstr &MI);
155 uint64_t initMBBInfo();
156 bool mustRelaxBranch(const TerminatorInfo &Terminator, uint64_t Address);
157 bool mustRelaxABranch();
158 void setWorstCaseAddresses();
159 void splitBranchOnCount(MachineInstr *MI, unsigned AddOpcode);
160 void splitCompareBranch(MachineInstr *MI, unsigned CompareOpcode);
161 void relaxBranch(TerminatorInfo &Terminator);
162 void relaxBranches();
164 const SystemZInstrInfo *TII = nullptr;
165 MachineFunction *MF;
166 SmallVector<MBBInfo, 16> MBBs;
167 SmallVector<TerminatorInfo, 16> Terminators;
170 char SystemZLongBranch::ID = 0;
172 const uint64_t MaxBackwardRange = 0x10000;
173 const uint64_t MaxForwardRange = 0xfffe;
175 } // end anonymous namespace
177 // Position describes the state immediately before Block. Update Block
178 // accordingly and move Position to the end of the block's non-terminator
179 // instructions.
180 void SystemZLongBranch::skipNonTerminators(BlockPosition &Position,
181 MBBInfo &Block) {
182 if (Log2(Block.Alignment) > Position.KnownBits) {
183 // When calculating the address of Block, we need to conservatively
184 // assume that Block had the worst possible misalignment.
185 Position.Address +=
186 (Block.Alignment.value() - (uint64_t(1) << Position.KnownBits));
187 Position.KnownBits = Log2(Block.Alignment);
190 // Align the addresses.
191 Position.Address = alignTo(Position.Address, Block.Alignment);
193 // Record the block's position.
194 Block.Address = Position.Address;
196 // Move past the non-terminators in the block.
197 Position.Address += Block.Size;
200 // Position describes the state immediately before Terminator.
201 // Update Terminator accordingly and move Position past it.
202 // Assume that Terminator will be relaxed if AssumeRelaxed.
203 void SystemZLongBranch::skipTerminator(BlockPosition &Position,
204 TerminatorInfo &Terminator,
205 bool AssumeRelaxed) {
206 Terminator.Address = Position.Address;
207 Position.Address += Terminator.Size;
208 if (AssumeRelaxed)
209 Position.Address += Terminator.ExtraRelaxSize;
212 // Return a description of terminator instruction MI.
213 TerminatorInfo SystemZLongBranch::describeTerminator(MachineInstr &MI) {
214 TerminatorInfo Terminator;
215 Terminator.Size = TII->getInstSizeInBytes(MI);
216 if (MI.isConditionalBranch() || MI.isUnconditionalBranch()) {
217 switch (MI.getOpcode()) {
218 case SystemZ::J:
219 // Relaxes to JG, which is 2 bytes longer.
220 Terminator.ExtraRelaxSize = 2;
221 break;
222 case SystemZ::BRC:
223 // Relaxes to BRCL, which is 2 bytes longer.
224 Terminator.ExtraRelaxSize = 2;
225 break;
226 case SystemZ::BRCT:
227 case SystemZ::BRCTG:
228 // Relaxes to A(G)HI and BRCL, which is 6 bytes longer.
229 Terminator.ExtraRelaxSize = 6;
230 break;
231 case SystemZ::BRCTH:
232 // Never needs to be relaxed.
233 Terminator.ExtraRelaxSize = 0;
234 break;
235 case SystemZ::CRJ:
236 case SystemZ::CLRJ:
237 // Relaxes to a C(L)R/BRCL sequence, which is 2 bytes longer.
238 Terminator.ExtraRelaxSize = 2;
239 break;
240 case SystemZ::CGRJ:
241 case SystemZ::CLGRJ:
242 // Relaxes to a C(L)GR/BRCL sequence, which is 4 bytes longer.
243 Terminator.ExtraRelaxSize = 4;
244 break;
245 case SystemZ::CIJ:
246 case SystemZ::CGIJ:
247 // Relaxes to a C(G)HI/BRCL sequence, which is 4 bytes longer.
248 Terminator.ExtraRelaxSize = 4;
249 break;
250 case SystemZ::CLIJ:
251 case SystemZ::CLGIJ:
252 // Relaxes to a CL(G)FI/BRCL sequence, which is 6 bytes longer.
253 Terminator.ExtraRelaxSize = 6;
254 break;
255 default:
256 llvm_unreachable("Unrecognized branch instruction");
258 Terminator.Branch = &MI;
259 Terminator.TargetBlock =
260 TII->getBranchInfo(MI).getMBBTarget()->getNumber();
262 return Terminator;
265 // Fill MBBs and Terminators, setting the addresses on the assumption
266 // that no branches need relaxation. Return the size of the function under
267 // this assumption.
268 uint64_t SystemZLongBranch::initMBBInfo() {
269 MF->RenumberBlocks();
270 unsigned NumBlocks = MF->size();
272 MBBs.clear();
273 MBBs.resize(NumBlocks);
275 Terminators.clear();
276 Terminators.reserve(NumBlocks);
278 BlockPosition Position(Log2(MF->getAlignment()));
279 for (unsigned I = 0; I < NumBlocks; ++I) {
280 MachineBasicBlock *MBB = MF->getBlockNumbered(I);
281 MBBInfo &Block = MBBs[I];
283 // Record the alignment, for quick access.
284 Block.Alignment = MBB->getAlignment();
286 // Calculate the size of the fixed part of the block.
287 MachineBasicBlock::iterator MI = MBB->begin();
288 MachineBasicBlock::iterator End = MBB->end();
289 while (MI != End && !MI->isTerminator()) {
290 Block.Size += TII->getInstSizeInBytes(*MI);
291 ++MI;
293 skipNonTerminators(Position, Block);
295 // Add the terminators.
296 while (MI != End) {
297 if (!MI->isDebugInstr()) {
298 assert(MI->isTerminator() && "Terminator followed by non-terminator");
299 Terminators.push_back(describeTerminator(*MI));
300 skipTerminator(Position, Terminators.back(), false);
301 ++Block.NumTerminators;
303 ++MI;
307 return Position.Address;
310 // Return true if, under current assumptions, Terminator would need to be
311 // relaxed if it were placed at address Address.
312 bool SystemZLongBranch::mustRelaxBranch(const TerminatorInfo &Terminator,
313 uint64_t Address) {
314 if (!Terminator.Branch || Terminator.ExtraRelaxSize == 0)
315 return false;
317 const MBBInfo &Target = MBBs[Terminator.TargetBlock];
318 if (Address >= Target.Address) {
319 if (Address - Target.Address <= MaxBackwardRange)
320 return false;
321 } else {
322 if (Target.Address - Address <= MaxForwardRange)
323 return false;
326 return true;
329 // Return true if, under current assumptions, any terminator needs
330 // to be relaxed.
331 bool SystemZLongBranch::mustRelaxABranch() {
332 for (auto &Terminator : Terminators)
333 if (mustRelaxBranch(Terminator, Terminator.Address))
334 return true;
335 return false;
338 // Set the address of each block on the assumption that all branches
339 // must be long.
340 void SystemZLongBranch::setWorstCaseAddresses() {
341 SmallVector<TerminatorInfo, 16>::iterator TI = Terminators.begin();
342 BlockPosition Position(Log2(MF->getAlignment()));
343 for (auto &Block : MBBs) {
344 skipNonTerminators(Position, Block);
345 for (unsigned BTI = 0, BTE = Block.NumTerminators; BTI != BTE; ++BTI) {
346 skipTerminator(Position, *TI, true);
347 ++TI;
352 // Split BRANCH ON COUNT MI into the addition given by AddOpcode followed
353 // by a BRCL on the result.
354 void SystemZLongBranch::splitBranchOnCount(MachineInstr *MI,
355 unsigned AddOpcode) {
356 MachineBasicBlock *MBB = MI->getParent();
357 DebugLoc DL = MI->getDebugLoc();
358 BuildMI(*MBB, MI, DL, TII->get(AddOpcode))
359 .add(MI->getOperand(0))
360 .add(MI->getOperand(1))
361 .addImm(-1);
362 MachineInstr *BRCL = BuildMI(*MBB, MI, DL, TII->get(SystemZ::BRCL))
363 .addImm(SystemZ::CCMASK_ICMP)
364 .addImm(SystemZ::CCMASK_CMP_NE)
365 .add(MI->getOperand(2));
366 // The implicit use of CC is a killing use.
367 BRCL->addRegisterKilled(SystemZ::CC, &TII->getRegisterInfo());
368 MI->eraseFromParent();
371 // Split MI into the comparison given by CompareOpcode followed
372 // a BRCL on the result.
373 void SystemZLongBranch::splitCompareBranch(MachineInstr *MI,
374 unsigned CompareOpcode) {
375 MachineBasicBlock *MBB = MI->getParent();
376 DebugLoc DL = MI->getDebugLoc();
377 BuildMI(*MBB, MI, DL, TII->get(CompareOpcode))
378 .add(MI->getOperand(0))
379 .add(MI->getOperand(1));
380 MachineInstr *BRCL = BuildMI(*MBB, MI, DL, TII->get(SystemZ::BRCL))
381 .addImm(SystemZ::CCMASK_ICMP)
382 .add(MI->getOperand(2))
383 .add(MI->getOperand(3));
384 // The implicit use of CC is a killing use.
385 BRCL->addRegisterKilled(SystemZ::CC, &TII->getRegisterInfo());
386 MI->eraseFromParent();
389 // Relax the branch described by Terminator.
390 void SystemZLongBranch::relaxBranch(TerminatorInfo &Terminator) {
391 MachineInstr *Branch = Terminator.Branch;
392 switch (Branch->getOpcode()) {
393 case SystemZ::J:
394 Branch->setDesc(TII->get(SystemZ::JG));
395 break;
396 case SystemZ::BRC:
397 Branch->setDesc(TII->get(SystemZ::BRCL));
398 break;
399 case SystemZ::BRCT:
400 splitBranchOnCount(Branch, SystemZ::AHI);
401 break;
402 case SystemZ::BRCTG:
403 splitBranchOnCount(Branch, SystemZ::AGHI);
404 break;
405 case SystemZ::CRJ:
406 splitCompareBranch(Branch, SystemZ::CR);
407 break;
408 case SystemZ::CGRJ:
409 splitCompareBranch(Branch, SystemZ::CGR);
410 break;
411 case SystemZ::CIJ:
412 splitCompareBranch(Branch, SystemZ::CHI);
413 break;
414 case SystemZ::CGIJ:
415 splitCompareBranch(Branch, SystemZ::CGHI);
416 break;
417 case SystemZ::CLRJ:
418 splitCompareBranch(Branch, SystemZ::CLR);
419 break;
420 case SystemZ::CLGRJ:
421 splitCompareBranch(Branch, SystemZ::CLGR);
422 break;
423 case SystemZ::CLIJ:
424 splitCompareBranch(Branch, SystemZ::CLFI);
425 break;
426 case SystemZ::CLGIJ:
427 splitCompareBranch(Branch, SystemZ::CLGFI);
428 break;
429 default:
430 llvm_unreachable("Unrecognized branch");
433 Terminator.Size += Terminator.ExtraRelaxSize;
434 Terminator.ExtraRelaxSize = 0;
435 Terminator.Branch = nullptr;
437 ++LongBranches;
440 // Run a shortening pass and relax any branches that need to be relaxed.
441 void SystemZLongBranch::relaxBranches() {
442 SmallVector<TerminatorInfo, 16>::iterator TI = Terminators.begin();
443 BlockPosition Position(Log2(MF->getAlignment()));
444 for (auto &Block : MBBs) {
445 skipNonTerminators(Position, Block);
446 for (unsigned BTI = 0, BTE = Block.NumTerminators; BTI != BTE; ++BTI) {
447 assert(Position.Address <= TI->Address &&
448 "Addresses shouldn't go forwards");
449 if (mustRelaxBranch(*TI, Position.Address))
450 relaxBranch(*TI);
451 skipTerminator(Position, *TI, false);
452 ++TI;
457 bool SystemZLongBranch::runOnMachineFunction(MachineFunction &F) {
458 TII = static_cast<const SystemZInstrInfo *>(F.getSubtarget().getInstrInfo());
459 MF = &F;
460 uint64_t Size = initMBBInfo();
461 if (Size <= MaxForwardRange || !mustRelaxABranch())
462 return false;
464 setWorstCaseAddresses();
465 relaxBranches();
466 return true;
469 FunctionPass *llvm::createSystemZLongBranchPass(SystemZTargetMachine &TM) {
470 return new SystemZLongBranch(TM);