[x86] fix assert with horizontal math + broadcast of vector (PR43402)
[llvm-core.git] / lib / Target / WebAssembly / WebAssemblyFixIrreducibleControlFlow.cpp
blobc18d6040375bf3ee19e925a295298a457b5fe7ab
1 //=- WebAssemblyFixIrreducibleControlFlow.cpp - Fix irreducible control flow -//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements a pass that removes irreducible control flow.
11 /// Irreducible control flow means multiple-entry loops, which this pass
12 /// transforms to have a single entry.
13 ///
14 /// Note that LLVM has a generic pass that lowers irreducible control flow, but
15 /// it linearizes control flow, turning diamonds into two triangles, which is
16 /// both unnecessary and undesirable for WebAssembly.
17 ///
18 /// The big picture: We recursively process each "region", defined as a group
19 /// of blocks with a single entry and no branches back to that entry. A region
20 /// may be the entire function body, or the inner part of a loop, i.e., the
21 /// loop's body without branches back to the loop entry. In each region we fix
22 /// up multi-entry loops by adding a new block that can dispatch to each of the
23 /// loop entries, based on the value of a label "helper" variable, and we
24 /// replace direct branches to the entries with assignments to the label
25 /// variable and a branch to the dispatch block. Then the dispatch block is the
26 /// single entry in the loop containing the previous multiple entries. After
27 /// ensuring all the loops in a region are reducible, we recurse into them. The
28 /// total time complexity of this pass is:
29 ///
30 /// O(NumBlocks * NumNestedLoops * NumIrreducibleLoops +
31 /// NumLoops * NumLoops)
32 ///
33 /// This pass is similar to what the Relooper [1] does. Both identify looping
34 /// code that requires multiple entries, and resolve it in a similar way (in
35 /// Relooper terminology, we implement a Multiple shape in a Loop shape). Note
36 /// also that like the Relooper, we implement a "minimal" intervention: we only
37 /// use the "label" helper for the blocks we absolutely must and no others. We
38 /// also prioritize code size and do not duplicate code in order to resolve
39 /// irreducibility. The graph algorithms for finding loops and entries and so
40 /// forth are also similar to the Relooper. The main differences between this
41 /// pass and the Relooper are:
42 ///
43 /// * We just care about irreducibility, so we just look at loops.
44 /// * The Relooper emits structured control flow (with ifs etc.), while we
45 /// emit a CFG.
46 ///
47 /// [1] Alon Zakai. 2011. Emscripten: an LLVM-to-JavaScript compiler. In
48 /// Proceedings of the ACM international conference companion on Object oriented
49 /// programming systems languages and applications companion (SPLASH '11). ACM,
50 /// New York, NY, USA, 301-312. DOI=10.1145/2048147.2048224
51 /// http://doi.acm.org/10.1145/2048147.2048224
52 ///
53 //===----------------------------------------------------------------------===//
55 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
56 #include "WebAssembly.h"
57 #include "WebAssemblySubtarget.h"
58 #include "llvm/CodeGen/MachineInstrBuilder.h"
59 using namespace llvm;
61 #define DEBUG_TYPE "wasm-fix-irreducible-control-flow"
63 namespace {
65 using BlockVector = SmallVector<MachineBasicBlock *, 4>;
66 using BlockSet = SmallPtrSet<MachineBasicBlock *, 4>;
68 // Calculates reachability in a region. Ignores branches to blocks outside of
69 // the region, and ignores branches to the region entry (for the case where
70 // the region is the inner part of a loop).
71 class ReachabilityGraph {
72 public:
73 ReachabilityGraph(MachineBasicBlock *Entry, const BlockSet &Blocks)
74 : Entry(Entry), Blocks(Blocks) {
75 #ifndef NDEBUG
76 // The region must have a single entry.
77 for (auto *MBB : Blocks) {
78 if (MBB != Entry) {
79 for (auto *Pred : MBB->predecessors()) {
80 assert(inRegion(Pred));
84 #endif
85 calculate();
88 bool canReach(MachineBasicBlock *From, MachineBasicBlock *To) const {
89 assert(inRegion(From) && inRegion(To));
90 auto I = Reachable.find(From);
91 if (I == Reachable.end())
92 return false;
93 return I->second.count(To);
96 // "Loopers" are blocks that are in a loop. We detect these by finding blocks
97 // that can reach themselves.
98 const BlockSet &getLoopers() const { return Loopers; }
100 // Get all blocks that are loop entries.
101 const BlockSet &getLoopEntries() const { return LoopEntries; }
103 // Get all blocks that enter a particular loop from outside.
104 const BlockSet &getLoopEnterers(MachineBasicBlock *LoopEntry) const {
105 assert(inRegion(LoopEntry));
106 auto I = LoopEnterers.find(LoopEntry);
107 assert(I != LoopEnterers.end());
108 return I->second;
111 private:
112 MachineBasicBlock *Entry;
113 const BlockSet &Blocks;
115 BlockSet Loopers, LoopEntries;
116 DenseMap<MachineBasicBlock *, BlockSet> LoopEnterers;
118 bool inRegion(MachineBasicBlock *MBB) const { return Blocks.count(MBB); }
120 // Maps a block to all the other blocks it can reach.
121 DenseMap<MachineBasicBlock *, BlockSet> Reachable;
123 void calculate() {
124 // Reachability computation work list. Contains pairs of recent additions
125 // (A, B) where we just added a link A => B.
126 using BlockPair = std::pair<MachineBasicBlock *, MachineBasicBlock *>;
127 SmallVector<BlockPair, 4> WorkList;
129 // Add all relevant direct branches.
130 for (auto *MBB : Blocks) {
131 for (auto *Succ : MBB->successors()) {
132 if (Succ != Entry && inRegion(Succ)) {
133 Reachable[MBB].insert(Succ);
134 WorkList.emplace_back(MBB, Succ);
139 while (!WorkList.empty()) {
140 MachineBasicBlock *MBB, *Succ;
141 std::tie(MBB, Succ) = WorkList.pop_back_val();
142 assert(inRegion(MBB) && Succ != Entry && inRegion(Succ));
143 if (MBB != Entry) {
144 // We recently added MBB => Succ, and that means we may have enabled
145 // Pred => MBB => Succ.
146 for (auto *Pred : MBB->predecessors()) {
147 if (Reachable[Pred].insert(Succ).second) {
148 WorkList.emplace_back(Pred, Succ);
154 // Blocks that can return to themselves are in a loop.
155 for (auto *MBB : Blocks) {
156 if (canReach(MBB, MBB)) {
157 Loopers.insert(MBB);
160 assert(!Loopers.count(Entry));
162 // Find the loop entries - loopers reachable from blocks not in that loop -
163 // and those outside blocks that reach them, the "loop enterers".
164 for (auto *Looper : Loopers) {
165 for (auto *Pred : Looper->predecessors()) {
166 // Pred can reach Looper. If Looper can reach Pred, it is in the loop;
167 // otherwise, it is a block that enters into the loop.
168 if (!canReach(Looper, Pred)) {
169 LoopEntries.insert(Looper);
170 LoopEnterers[Looper].insert(Pred);
177 // Finds the blocks in a single-entry loop, given the loop entry and the
178 // list of blocks that enter the loop.
179 class LoopBlocks {
180 public:
181 LoopBlocks(MachineBasicBlock *Entry, const BlockSet &Enterers)
182 : Entry(Entry), Enterers(Enterers) {
183 calculate();
186 BlockSet &getBlocks() { return Blocks; }
188 private:
189 MachineBasicBlock *Entry;
190 const BlockSet &Enterers;
192 BlockSet Blocks;
194 void calculate() {
195 // Going backwards from the loop entry, if we ignore the blocks entering
196 // from outside, we will traverse all the blocks in the loop.
197 BlockVector WorkList;
198 BlockSet AddedToWorkList;
199 Blocks.insert(Entry);
200 for (auto *Pred : Entry->predecessors()) {
201 if (!Enterers.count(Pred)) {
202 WorkList.push_back(Pred);
203 AddedToWorkList.insert(Pred);
207 while (!WorkList.empty()) {
208 auto *MBB = WorkList.pop_back_val();
209 assert(!Enterers.count(MBB));
210 if (Blocks.insert(MBB).second) {
211 for (auto *Pred : MBB->predecessors()) {
212 if (!AddedToWorkList.count(Pred)) {
213 WorkList.push_back(Pred);
214 AddedToWorkList.insert(Pred);
222 class WebAssemblyFixIrreducibleControlFlow final : public MachineFunctionPass {
223 StringRef getPassName() const override {
224 return "WebAssembly Fix Irreducible Control Flow";
227 bool runOnMachineFunction(MachineFunction &MF) override;
229 bool processRegion(MachineBasicBlock *Entry, BlockSet &Blocks,
230 MachineFunction &MF);
232 void makeSingleEntryLoop(BlockSet &Entries, BlockSet &Blocks,
233 MachineFunction &MF, const ReachabilityGraph &Graph);
235 public:
236 static char ID; // Pass identification, replacement for typeid
237 WebAssemblyFixIrreducibleControlFlow() : MachineFunctionPass(ID) {}
240 bool WebAssemblyFixIrreducibleControlFlow::processRegion(
241 MachineBasicBlock *Entry, BlockSet &Blocks, MachineFunction &MF) {
242 bool Changed = false;
244 // Remove irreducibility before processing child loops, which may take
245 // multiple iterations.
246 while (true) {
247 ReachabilityGraph Graph(Entry, Blocks);
249 bool FoundIrreducibility = false;
251 for (auto *LoopEntry : Graph.getLoopEntries()) {
252 // Find mutual entries - all entries which can reach this one, and
253 // are reached by it (that always includes LoopEntry itself). All mutual
254 // entries must be in the same loop, so if we have more than one, then we
255 // have irreducible control flow.
257 // Note that irreducibility may involve inner loops, e.g. imagine A
258 // starts one loop, and it has B inside it which starts an inner loop.
259 // If we add a branch from all the way on the outside to B, then in a
260 // sense B is no longer an "inner" loop, semantically speaking. We will
261 // fix that irreducibility by adding a block that dispatches to either
262 // either A or B, so B will no longer be an inner loop in our output.
263 // (A fancier approach might try to keep it as such.)
265 // Note that we still need to recurse into inner loops later, to handle
266 // the case where the irreducibility is entirely nested - we would not
267 // be able to identify that at this point, since the enclosing loop is
268 // a group of blocks all of whom can reach each other. (We'll see the
269 // irreducibility after removing branches to the top of that enclosing
270 // loop.)
271 BlockSet MutualLoopEntries;
272 MutualLoopEntries.insert(LoopEntry);
273 for (auto *OtherLoopEntry : Graph.getLoopEntries()) {
274 if (OtherLoopEntry != LoopEntry &&
275 Graph.canReach(LoopEntry, OtherLoopEntry) &&
276 Graph.canReach(OtherLoopEntry, LoopEntry)) {
277 MutualLoopEntries.insert(OtherLoopEntry);
281 if (MutualLoopEntries.size() > 1) {
282 makeSingleEntryLoop(MutualLoopEntries, Blocks, MF, Graph);
283 FoundIrreducibility = true;
284 Changed = true;
285 break;
288 // Only go on to actually process the inner loops when we are done
289 // removing irreducible control flow and changing the graph. Modifying
290 // the graph as we go is possible, and that might let us avoid looking at
291 // the already-fixed loops again if we are careful, but all that is
292 // complex and bug-prone. Since irreducible loops are rare, just starting
293 // another iteration is best.
294 if (FoundIrreducibility) {
295 continue;
298 for (auto *LoopEntry : Graph.getLoopEntries()) {
299 LoopBlocks InnerBlocks(LoopEntry, Graph.getLoopEnterers(LoopEntry));
300 // Each of these calls to processRegion may change the graph, but are
301 // guaranteed not to interfere with each other. The only changes we make
302 // to the graph are to add blocks on the way to a loop entry. As the
303 // loops are disjoint, that means we may only alter branches that exit
304 // another loop, which are ignored when recursing into that other loop
305 // anyhow.
306 if (processRegion(LoopEntry, InnerBlocks.getBlocks(), MF)) {
307 Changed = true;
311 return Changed;
315 // Given a set of entries to a single loop, create a single entry for that
316 // loop by creating a dispatch block for them, routing control flow using
317 // a helper variable. Also updates Blocks with any new blocks created, so
318 // that we properly track all the blocks in the region. But this does not update
319 // ReachabilityGraph; this will be updated in the caller of this function as
320 // needed.
321 void WebAssemblyFixIrreducibleControlFlow::makeSingleEntryLoop(
322 BlockSet &Entries, BlockSet &Blocks, MachineFunction &MF,
323 const ReachabilityGraph &Graph) {
324 assert(Entries.size() >= 2);
326 // Sort the entries to ensure a deterministic build.
327 BlockVector SortedEntries(Entries.begin(), Entries.end());
328 llvm::sort(SortedEntries,
329 [&](const MachineBasicBlock *A, const MachineBasicBlock *B) {
330 auto ANum = A->getNumber();
331 auto BNum = B->getNumber();
332 return ANum < BNum;
335 #ifndef NDEBUG
336 for (auto Block : SortedEntries)
337 assert(Block->getNumber() != -1);
338 if (SortedEntries.size() > 1) {
339 for (auto I = SortedEntries.begin(), E = SortedEntries.end() - 1; I != E;
340 ++I) {
341 auto ANum = (*I)->getNumber();
342 auto BNum = (*(std::next(I)))->getNumber();
343 assert(ANum != BNum);
346 #endif
348 // Create a dispatch block which will contain a jump table to the entries.
349 MachineBasicBlock *Dispatch = MF.CreateMachineBasicBlock();
350 MF.insert(MF.end(), Dispatch);
351 Blocks.insert(Dispatch);
353 // Add the jump table.
354 const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
355 MachineInstrBuilder MIB =
356 BuildMI(Dispatch, DebugLoc(), TII.get(WebAssembly::BR_TABLE_I32));
358 // Add the register which will be used to tell the jump table which block to
359 // jump to.
360 MachineRegisterInfo &MRI = MF.getRegInfo();
361 Register Reg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
362 MIB.addReg(Reg);
364 // Compute the indices in the superheader, one for each bad block, and
365 // add them as successors.
366 DenseMap<MachineBasicBlock *, unsigned> Indices;
367 for (auto *Entry : SortedEntries) {
368 auto Pair = Indices.insert(std::make_pair(Entry, 0));
369 assert(Pair.second);
371 unsigned Index = MIB.getInstr()->getNumExplicitOperands() - 1;
372 Pair.first->second = Index;
374 MIB.addMBB(Entry);
375 Dispatch->addSuccessor(Entry);
378 // Rewrite the problematic successors for every block that wants to reach
379 // the bad blocks. For simplicity, we just introduce a new block for every
380 // edge we need to rewrite. (Fancier things are possible.)
382 BlockVector AllPreds;
383 for (auto *Entry : SortedEntries) {
384 for (auto *Pred : Entry->predecessors()) {
385 if (Pred != Dispatch) {
386 AllPreds.push_back(Pred);
391 // This set stores predecessors within this loop.
392 DenseSet<MachineBasicBlock *> InLoop;
393 for (auto *Pred : AllPreds) {
394 for (auto *Entry : Pred->successors()) {
395 if (!Entries.count(Entry))
396 continue;
397 if (Graph.canReach(Entry, Pred)) {
398 InLoop.insert(Pred);
399 break;
404 // Record if each entry has a layout predecessor. This map stores
405 // <<Predecessor is within the loop?, loop entry>, layout predecessor>
406 std::map<std::pair<bool, MachineBasicBlock *>, MachineBasicBlock *>
407 EntryToLayoutPred;
408 for (auto *Pred : AllPreds)
409 for (auto *Entry : Pred->successors())
410 if (Entries.count(Entry) && Pred->isLayoutSuccessor(Entry))
411 EntryToLayoutPred[std::make_pair(InLoop.count(Pred), Entry)] = Pred;
413 // We need to create at most two routing blocks per entry: one for
414 // predecessors outside the loop and one for predecessors inside the loop.
415 // This map stores
416 // <<Predecessor is within the loop?, loop entry>, routing block>
417 std::map<std::pair<bool, MachineBasicBlock *>, MachineBasicBlock *> Map;
418 for (auto *Pred : AllPreds) {
419 bool PredInLoop = InLoop.count(Pred);
420 for (auto *Entry : Pred->successors()) {
421 if (!Entries.count(Entry) ||
422 Map.count(std::make_pair(InLoop.count(Pred), Entry)))
423 continue;
424 // If there exists a layout predecessor of this entry and this predecessor
425 // is not that, we rather create a routing block after that layout
426 // predecessor to save a branch.
427 if (EntryToLayoutPred.count(std::make_pair(PredInLoop, Entry)) &&
428 EntryToLayoutPred[std::make_pair(PredInLoop, Entry)] != Pred)
429 continue;
431 // This is a successor we need to rewrite.
432 MachineBasicBlock *Routing = MF.CreateMachineBasicBlock();
433 MF.insert(Pred->isLayoutSuccessor(Entry)
434 ? MachineFunction::iterator(Entry)
435 : MF.end(),
436 Routing);
437 Blocks.insert(Routing);
439 // Set the jump table's register of the index of the block we wish to
440 // jump to, and jump to the jump table.
441 BuildMI(Routing, DebugLoc(), TII.get(WebAssembly::CONST_I32), Reg)
442 .addImm(Indices[Entry]);
443 BuildMI(Routing, DebugLoc(), TII.get(WebAssembly::BR)).addMBB(Dispatch);
444 Routing->addSuccessor(Dispatch);
445 Map[std::make_pair(PredInLoop, Entry)] = Routing;
449 for (auto *Pred : AllPreds) {
450 bool PredInLoop = InLoop.count(Pred);
451 // Remap the terminator operands and the successor list.
452 for (MachineInstr &Term : Pred->terminators())
453 for (auto &Op : Term.explicit_uses())
454 if (Op.isMBB() && Indices.count(Op.getMBB()))
455 Op.setMBB(Map[std::make_pair(PredInLoop, Op.getMBB())]);
457 for (auto *Succ : Pred->successors()) {
458 if (!Entries.count(Succ))
459 continue;
460 auto *Routing = Map[std::make_pair(PredInLoop, Succ)];
461 Pred->replaceSuccessor(Succ, Routing);
465 // Create a fake default label, because br_table requires one.
466 MIB.addMBB(MIB.getInstr()
467 ->getOperand(MIB.getInstr()->getNumExplicitOperands() - 1)
468 .getMBB());
471 } // end anonymous namespace
473 char WebAssemblyFixIrreducibleControlFlow::ID = 0;
474 INITIALIZE_PASS(WebAssemblyFixIrreducibleControlFlow, DEBUG_TYPE,
475 "Removes irreducible control flow", false, false)
477 FunctionPass *llvm::createWebAssemblyFixIrreducibleControlFlow() {
478 return new WebAssemblyFixIrreducibleControlFlow();
481 bool WebAssemblyFixIrreducibleControlFlow::runOnMachineFunction(
482 MachineFunction &MF) {
483 LLVM_DEBUG(dbgs() << "********** Fixing Irreducible Control Flow **********\n"
484 "********** Function: "
485 << MF.getName() << '\n');
487 // Start the recursive process on the entire function body.
488 BlockSet AllBlocks;
489 for (auto &MBB : MF) {
490 AllBlocks.insert(&MBB);
493 if (LLVM_UNLIKELY(processRegion(&*MF.begin(), AllBlocks, MF))) {
494 // We rewrote part of the function; recompute relevant things.
495 MF.getRegInfo().invalidateLiveness();
496 MF.RenumberBlocks();
497 return true;
500 return false;