[x86] fix assert with horizontal math + broadcast of vector (PR43402)
[llvm-core.git] / lib / Target / X86 / Disassembler / X86Disassembler.cpp
blob9a635bbe5f85cc8b7d4fbad98d5b76da963f4e17
1 //===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is part of the X86 Disassembler.
10 // It contains code to translate the data produced by the decoder into
11 // MCInsts.
14 // The X86 disassembler is a table-driven disassembler for the 16-, 32-, and
15 // 64-bit X86 instruction sets. The main decode sequence for an assembly
16 // instruction in this disassembler is:
18 // 1. Read the prefix bytes and determine the attributes of the instruction.
19 // These attributes, recorded in enum attributeBits
20 // (X86DisassemblerDecoderCommon.h), form a bitmask. The table CONTEXTS_SYM
21 // provides a mapping from bitmasks to contexts, which are represented by
22 // enum InstructionContext (ibid.).
24 // 2. Read the opcode, and determine what kind of opcode it is. The
25 // disassembler distinguishes four kinds of opcodes, which are enumerated in
26 // OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte
27 // (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a
28 // (0x0f 0x3a 0xnn). Mandatory prefixes are treated as part of the context.
30 // 3. Depending on the opcode type, look in one of four ClassDecision structures
31 // (X86DisassemblerDecoderCommon.h). Use the opcode class to determine which
32 // OpcodeDecision (ibid.) to look the opcode in. Look up the opcode, to get
33 // a ModRMDecision (ibid.).
35 // 4. Some instructions, such as escape opcodes or extended opcodes, or even
36 // instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the
37 // ModR/M byte to complete decode. The ModRMDecision's type is an entry from
38 // ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the
39 // ModR/M byte is required and how to interpret it.
41 // 5. After resolving the ModRMDecision, the disassembler has a unique ID
42 // of type InstrUID (X86DisassemblerDecoderCommon.h). Looking this ID up in
43 // INSTRUCTIONS_SYM yields the name of the instruction and the encodings and
44 // meanings of its operands.
46 // 6. For each operand, its encoding is an entry from OperandEncoding
47 // (X86DisassemblerDecoderCommon.h) and its type is an entry from
48 // OperandType (ibid.). The encoding indicates how to read it from the
49 // instruction; the type indicates how to interpret the value once it has
50 // been read. For example, a register operand could be stored in the R/M
51 // field of the ModR/M byte, the REG field of the ModR/M byte, or added to
52 // the main opcode. This is orthogonal from its meaning (an GPR or an XMM
53 // register, for instance). Given this information, the operands can be
54 // extracted and interpreted.
56 // 7. As the last step, the disassembler translates the instruction information
57 // and operands into a format understandable by the client - in this case, an
58 // MCInst for use by the MC infrastructure.
60 // The disassembler is broken broadly into two parts: the table emitter that
61 // emits the instruction decode tables discussed above during compilation, and
62 // the disassembler itself. The table emitter is documented in more detail in
63 // utils/TableGen/X86DisassemblerEmitter.h.
65 // X86Disassembler.cpp contains the code responsible for step 7, and for
66 // invoking the decoder to execute steps 1-6.
67 // X86DisassemblerDecoderCommon.h contains the definitions needed by both the
68 // table emitter and the disassembler.
69 // X86DisassemblerDecoder.h contains the public interface of the decoder,
70 // factored out into C for possible use by other projects.
71 // X86DisassemblerDecoder.c contains the source code of the decoder, which is
72 // responsible for steps 1-6.
74 //===----------------------------------------------------------------------===//
76 #include "MCTargetDesc/X86BaseInfo.h"
77 #include "MCTargetDesc/X86MCTargetDesc.h"
78 #include "TargetInfo/X86TargetInfo.h"
79 #include "X86DisassemblerDecoder.h"
80 #include "llvm/MC/MCContext.h"
81 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
82 #include "llvm/MC/MCExpr.h"
83 #include "llvm/MC/MCInst.h"
84 #include "llvm/MC/MCInstrInfo.h"
85 #include "llvm/MC/MCSubtargetInfo.h"
86 #include "llvm/Support/Debug.h"
87 #include "llvm/Support/TargetRegistry.h"
88 #include "llvm/Support/raw_ostream.h"
90 using namespace llvm;
91 using namespace llvm::X86Disassembler;
93 #define DEBUG_TYPE "x86-disassembler"
95 void llvm::X86Disassembler::Debug(const char *file, unsigned line,
96 const char *s) {
97 dbgs() << file << ":" << line << ": " << s;
100 StringRef llvm::X86Disassembler::GetInstrName(unsigned Opcode,
101 const void *mii) {
102 const MCInstrInfo *MII = static_cast<const MCInstrInfo *>(mii);
103 return MII->getName(Opcode);
106 #define debug(s) LLVM_DEBUG(Debug(__FILE__, __LINE__, s));
108 namespace llvm {
110 // Fill-ins to make the compiler happy. These constants are never actually
111 // assigned; they are just filler to make an automatically-generated switch
112 // statement work.
113 namespace X86 {
114 enum {
115 BX_SI = 500,
116 BX_DI = 501,
117 BP_SI = 502,
118 BP_DI = 503,
119 sib = 504,
120 sib64 = 505
126 static bool translateInstruction(MCInst &target,
127 InternalInstruction &source,
128 const MCDisassembler *Dis);
130 namespace {
132 /// Generic disassembler for all X86 platforms. All each platform class should
133 /// have to do is subclass the constructor, and provide a different
134 /// disassemblerMode value.
135 class X86GenericDisassembler : public MCDisassembler {
136 std::unique_ptr<const MCInstrInfo> MII;
137 public:
138 X86GenericDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx,
139 std::unique_ptr<const MCInstrInfo> MII);
140 public:
141 DecodeStatus getInstruction(MCInst &instr, uint64_t &size,
142 ArrayRef<uint8_t> Bytes, uint64_t Address,
143 raw_ostream &vStream,
144 raw_ostream &cStream) const override;
146 private:
147 DisassemblerMode fMode;
152 X86GenericDisassembler::X86GenericDisassembler(
153 const MCSubtargetInfo &STI,
154 MCContext &Ctx,
155 std::unique_ptr<const MCInstrInfo> MII)
156 : MCDisassembler(STI, Ctx), MII(std::move(MII)) {
157 const FeatureBitset &FB = STI.getFeatureBits();
158 if (FB[X86::Mode16Bit]) {
159 fMode = MODE_16BIT;
160 return;
161 } else if (FB[X86::Mode32Bit]) {
162 fMode = MODE_32BIT;
163 return;
164 } else if (FB[X86::Mode64Bit]) {
165 fMode = MODE_64BIT;
166 return;
169 llvm_unreachable("Invalid CPU mode");
172 namespace {
173 struct Region {
174 ArrayRef<uint8_t> Bytes;
175 uint64_t Base;
176 Region(ArrayRef<uint8_t> Bytes, uint64_t Base) : Bytes(Bytes), Base(Base) {}
178 } // end anonymous namespace
180 /// A callback function that wraps the readByte method from Region.
182 /// @param Arg - The generic callback parameter. In this case, this should
183 /// be a pointer to a Region.
184 /// @param Byte - A pointer to the byte to be read.
185 /// @param Address - The address to be read.
186 static int regionReader(const void *Arg, uint8_t *Byte, uint64_t Address) {
187 auto *R = static_cast<const Region *>(Arg);
188 ArrayRef<uint8_t> Bytes = R->Bytes;
189 unsigned Index = Address - R->Base;
190 if (Bytes.size() <= Index)
191 return -1;
192 *Byte = Bytes[Index];
193 return 0;
196 /// logger - a callback function that wraps the operator<< method from
197 /// raw_ostream.
199 /// @param arg - The generic callback parameter. This should be a pointe
200 /// to a raw_ostream.
201 /// @param log - A string to be logged. logger() adds a newline.
202 static void logger(void* arg, const char* log) {
203 if (!arg)
204 return;
206 raw_ostream &vStream = *(static_cast<raw_ostream*>(arg));
207 vStream << log << "\n";
211 // Public interface for the disassembler
214 MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction(
215 MCInst &Instr, uint64_t &Size, ArrayRef<uint8_t> Bytes, uint64_t Address,
216 raw_ostream &VStream, raw_ostream &CStream) const {
217 CommentStream = &CStream;
219 InternalInstruction InternalInstr;
221 dlog_t LoggerFn = logger;
222 if (&VStream == &nulls())
223 LoggerFn = nullptr; // Disable logging completely if it's going to nulls().
225 Region R(Bytes, Address);
227 int Ret = decodeInstruction(&InternalInstr, regionReader, (const void *)&R,
228 LoggerFn, (void *)&VStream,
229 (const void *)MII.get(), Address, fMode);
231 if (Ret) {
232 Size = InternalInstr.readerCursor - Address;
233 return Fail;
234 } else {
235 Size = InternalInstr.length;
236 bool Ret = translateInstruction(Instr, InternalInstr, this);
237 if (!Ret) {
238 unsigned Flags = X86::IP_NO_PREFIX;
239 if (InternalInstr.hasAdSize)
240 Flags |= X86::IP_HAS_AD_SIZE;
241 if (!InternalInstr.mandatoryPrefix) {
242 if (InternalInstr.hasOpSize)
243 Flags |= X86::IP_HAS_OP_SIZE;
244 if (InternalInstr.repeatPrefix == 0xf2)
245 Flags |= X86::IP_HAS_REPEAT_NE;
246 else if (InternalInstr.repeatPrefix == 0xf3 &&
247 // It should not be 'pause' f3 90
248 InternalInstr.opcode != 0x90)
249 Flags |= X86::IP_HAS_REPEAT;
250 if (InternalInstr.hasLockPrefix)
251 Flags |= X86::IP_HAS_LOCK;
253 Instr.setFlags(Flags);
255 return (!Ret) ? Success : Fail;
260 // Private code that translates from struct InternalInstructions to MCInsts.
263 /// translateRegister - Translates an internal register to the appropriate LLVM
264 /// register, and appends it as an operand to an MCInst.
266 /// @param mcInst - The MCInst to append to.
267 /// @param reg - The Reg to append.
268 static void translateRegister(MCInst &mcInst, Reg reg) {
269 #define ENTRY(x) X86::x,
270 static constexpr MCPhysReg llvmRegnums[] = {ALL_REGS};
271 #undef ENTRY
273 MCPhysReg llvmRegnum = llvmRegnums[reg];
274 mcInst.addOperand(MCOperand::createReg(llvmRegnum));
277 /// tryAddingSymbolicOperand - trys to add a symbolic operand in place of the
278 /// immediate Value in the MCInst.
280 /// @param Value - The immediate Value, has had any PC adjustment made by
281 /// the caller.
282 /// @param isBranch - If the instruction is a branch instruction
283 /// @param Address - The starting address of the instruction
284 /// @param Offset - The byte offset to this immediate in the instruction
285 /// @param Width - The byte width of this immediate in the instruction
287 /// If the getOpInfo() function was set when setupForSymbolicDisassembly() was
288 /// called then that function is called to get any symbolic information for the
289 /// immediate in the instruction using the Address, Offset and Width. If that
290 /// returns non-zero then the symbolic information it returns is used to create
291 /// an MCExpr and that is added as an operand to the MCInst. If getOpInfo()
292 /// returns zero and isBranch is true then a symbol look up for immediate Value
293 /// is done and if a symbol is found an MCExpr is created with that, else
294 /// an MCExpr with the immediate Value is created. This function returns true
295 /// if it adds an operand to the MCInst and false otherwise.
296 static bool tryAddingSymbolicOperand(int64_t Value, bool isBranch,
297 uint64_t Address, uint64_t Offset,
298 uint64_t Width, MCInst &MI,
299 const MCDisassembler *Dis) {
300 return Dis->tryAddingSymbolicOperand(MI, Value, Address, isBranch,
301 Offset, Width);
304 /// tryAddingPcLoadReferenceComment - trys to add a comment as to what is being
305 /// referenced by a load instruction with the base register that is the rip.
306 /// These can often be addresses in a literal pool. The Address of the
307 /// instruction and its immediate Value are used to determine the address
308 /// being referenced in the literal pool entry. The SymbolLookUp call back will
309 /// return a pointer to a literal 'C' string if the referenced address is an
310 /// address into a section with 'C' string literals.
311 static void tryAddingPcLoadReferenceComment(uint64_t Address, uint64_t Value,
312 const void *Decoder) {
313 const MCDisassembler *Dis = static_cast<const MCDisassembler*>(Decoder);
314 Dis->tryAddingPcLoadReferenceComment(Value, Address);
317 static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = {
318 0, // SEG_OVERRIDE_NONE
319 X86::CS,
320 X86::SS,
321 X86::DS,
322 X86::ES,
323 X86::FS,
324 X86::GS
327 /// translateSrcIndex - Appends a source index operand to an MCInst.
329 /// @param mcInst - The MCInst to append to.
330 /// @param insn - The internal instruction.
331 static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn) {
332 unsigned baseRegNo;
334 if (insn.mode == MODE_64BIT)
335 baseRegNo = insn.hasAdSize ? X86::ESI : X86::RSI;
336 else if (insn.mode == MODE_32BIT)
337 baseRegNo = insn.hasAdSize ? X86::SI : X86::ESI;
338 else {
339 assert(insn.mode == MODE_16BIT);
340 baseRegNo = insn.hasAdSize ? X86::ESI : X86::SI;
342 MCOperand baseReg = MCOperand::createReg(baseRegNo);
343 mcInst.addOperand(baseReg);
345 MCOperand segmentReg;
346 segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
347 mcInst.addOperand(segmentReg);
348 return false;
351 /// translateDstIndex - Appends a destination index operand to an MCInst.
353 /// @param mcInst - The MCInst to append to.
354 /// @param insn - The internal instruction.
356 static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn) {
357 unsigned baseRegNo;
359 if (insn.mode == MODE_64BIT)
360 baseRegNo = insn.hasAdSize ? X86::EDI : X86::RDI;
361 else if (insn.mode == MODE_32BIT)
362 baseRegNo = insn.hasAdSize ? X86::DI : X86::EDI;
363 else {
364 assert(insn.mode == MODE_16BIT);
365 baseRegNo = insn.hasAdSize ? X86::EDI : X86::DI;
367 MCOperand baseReg = MCOperand::createReg(baseRegNo);
368 mcInst.addOperand(baseReg);
369 return false;
372 /// translateImmediate - Appends an immediate operand to an MCInst.
374 /// @param mcInst - The MCInst to append to.
375 /// @param immediate - The immediate value to append.
376 /// @param operand - The operand, as stored in the descriptor table.
377 /// @param insn - The internal instruction.
378 static void translateImmediate(MCInst &mcInst, uint64_t immediate,
379 const OperandSpecifier &operand,
380 InternalInstruction &insn,
381 const MCDisassembler *Dis) {
382 // Sign-extend the immediate if necessary.
384 OperandType type = (OperandType)operand.type;
386 bool isBranch = false;
387 uint64_t pcrel = 0;
388 if (type == TYPE_REL) {
389 isBranch = true;
390 pcrel = insn.startLocation +
391 insn.immediateOffset + insn.immediateSize;
392 switch (operand.encoding) {
393 default:
394 break;
395 case ENCODING_Iv:
396 switch (insn.displacementSize) {
397 default:
398 break;
399 case 1:
400 if(immediate & 0x80)
401 immediate |= ~(0xffull);
402 break;
403 case 2:
404 if(immediate & 0x8000)
405 immediate |= ~(0xffffull);
406 break;
407 case 4:
408 if(immediate & 0x80000000)
409 immediate |= ~(0xffffffffull);
410 break;
411 case 8:
412 break;
414 break;
415 case ENCODING_IB:
416 if(immediate & 0x80)
417 immediate |= ~(0xffull);
418 break;
419 case ENCODING_IW:
420 if(immediate & 0x8000)
421 immediate |= ~(0xffffull);
422 break;
423 case ENCODING_ID:
424 if(immediate & 0x80000000)
425 immediate |= ~(0xffffffffull);
426 break;
429 // By default sign-extend all X86 immediates based on their encoding.
430 else if (type == TYPE_IMM) {
431 switch (operand.encoding) {
432 default:
433 break;
434 case ENCODING_IB:
435 if(immediate & 0x80)
436 immediate |= ~(0xffull);
437 break;
438 case ENCODING_IW:
439 if(immediate & 0x8000)
440 immediate |= ~(0xffffull);
441 break;
442 case ENCODING_ID:
443 if(immediate & 0x80000000)
444 immediate |= ~(0xffffffffull);
445 break;
446 case ENCODING_IO:
447 break;
451 switch (type) {
452 case TYPE_XMM:
453 mcInst.addOperand(MCOperand::createReg(X86::XMM0 + (immediate >> 4)));
454 return;
455 case TYPE_YMM:
456 mcInst.addOperand(MCOperand::createReg(X86::YMM0 + (immediate >> 4)));
457 return;
458 case TYPE_ZMM:
459 mcInst.addOperand(MCOperand::createReg(X86::ZMM0 + (immediate >> 4)));
460 return;
461 default:
462 // operand is 64 bits wide. Do nothing.
463 break;
466 if(!tryAddingSymbolicOperand(immediate + pcrel, isBranch, insn.startLocation,
467 insn.immediateOffset, insn.immediateSize,
468 mcInst, Dis))
469 mcInst.addOperand(MCOperand::createImm(immediate));
471 if (type == TYPE_MOFFS) {
472 MCOperand segmentReg;
473 segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
474 mcInst.addOperand(segmentReg);
478 /// translateRMRegister - Translates a register stored in the R/M field of the
479 /// ModR/M byte to its LLVM equivalent and appends it to an MCInst.
480 /// @param mcInst - The MCInst to append to.
481 /// @param insn - The internal instruction to extract the R/M field
482 /// from.
483 /// @return - 0 on success; -1 otherwise
484 static bool translateRMRegister(MCInst &mcInst,
485 InternalInstruction &insn) {
486 if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
487 debug("A R/M register operand may not have a SIB byte");
488 return true;
491 switch (insn.eaBase) {
492 default:
493 debug("Unexpected EA base register");
494 return true;
495 case EA_BASE_NONE:
496 debug("EA_BASE_NONE for ModR/M base");
497 return true;
498 #define ENTRY(x) case EA_BASE_##x:
499 ALL_EA_BASES
500 #undef ENTRY
501 debug("A R/M register operand may not have a base; "
502 "the operand must be a register.");
503 return true;
504 #define ENTRY(x) \
505 case EA_REG_##x: \
506 mcInst.addOperand(MCOperand::createReg(X86::x)); break;
507 ALL_REGS
508 #undef ENTRY
511 return false;
514 /// translateRMMemory - Translates a memory operand stored in the Mod and R/M
515 /// fields of an internal instruction (and possibly its SIB byte) to a memory
516 /// operand in LLVM's format, and appends it to an MCInst.
518 /// @param mcInst - The MCInst to append to.
519 /// @param insn - The instruction to extract Mod, R/M, and SIB fields
520 /// from.
521 /// @return - 0 on success; nonzero otherwise
522 static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn,
523 const MCDisassembler *Dis) {
524 // Addresses in an MCInst are represented as five operands:
525 // 1. basereg (register) The R/M base, or (if there is a SIB) the
526 // SIB base
527 // 2. scaleamount (immediate) 1, or (if there is a SIB) the specified
528 // scale amount
529 // 3. indexreg (register) x86_registerNONE, or (if there is a SIB)
530 // the index (which is multiplied by the
531 // scale amount)
532 // 4. displacement (immediate) 0, or the displacement if there is one
533 // 5. segmentreg (register) x86_registerNONE for now, but could be set
534 // if we have segment overrides
536 MCOperand baseReg;
537 MCOperand scaleAmount;
538 MCOperand indexReg;
539 MCOperand displacement;
540 MCOperand segmentReg;
541 uint64_t pcrel = 0;
543 if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
544 if (insn.sibBase != SIB_BASE_NONE) {
545 switch (insn.sibBase) {
546 default:
547 debug("Unexpected sibBase");
548 return true;
549 #define ENTRY(x) \
550 case SIB_BASE_##x: \
551 baseReg = MCOperand::createReg(X86::x); break;
552 ALL_SIB_BASES
553 #undef ENTRY
555 } else {
556 baseReg = MCOperand::createReg(X86::NoRegister);
559 if (insn.sibIndex != SIB_INDEX_NONE) {
560 switch (insn.sibIndex) {
561 default:
562 debug("Unexpected sibIndex");
563 return true;
564 #define ENTRY(x) \
565 case SIB_INDEX_##x: \
566 indexReg = MCOperand::createReg(X86::x); break;
567 EA_BASES_32BIT
568 EA_BASES_64BIT
569 REGS_XMM
570 REGS_YMM
571 REGS_ZMM
572 #undef ENTRY
574 } else {
575 // Use EIZ/RIZ for a few ambiguous cases where the SIB byte is present,
576 // but no index is used and modrm alone should have been enough.
577 // -No base register in 32-bit mode. In 64-bit mode this is used to
578 // avoid rip-relative addressing.
579 // -Any base register used other than ESP/RSP/R12D/R12. Using these as a
580 // base always requires a SIB byte.
581 // -A scale other than 1 is used.
582 if (insn.sibScale != 1 ||
583 (insn.sibBase == SIB_BASE_NONE && insn.mode != MODE_64BIT) ||
584 (insn.sibBase != SIB_BASE_NONE &&
585 insn.sibBase != SIB_BASE_ESP && insn.sibBase != SIB_BASE_RSP &&
586 insn.sibBase != SIB_BASE_R12D && insn.sibBase != SIB_BASE_R12)) {
587 indexReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIZ :
588 X86::RIZ);
589 } else
590 indexReg = MCOperand::createReg(X86::NoRegister);
593 scaleAmount = MCOperand::createImm(insn.sibScale);
594 } else {
595 switch (insn.eaBase) {
596 case EA_BASE_NONE:
597 if (insn.eaDisplacement == EA_DISP_NONE) {
598 debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base");
599 return true;
601 if (insn.mode == MODE_64BIT){
602 pcrel = insn.startLocation +
603 insn.displacementOffset + insn.displacementSize;
604 tryAddingPcLoadReferenceComment(insn.startLocation +
605 insn.displacementOffset,
606 insn.displacement + pcrel, Dis);
607 // Section 2.2.1.6
608 baseReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIP :
609 X86::RIP);
611 else
612 baseReg = MCOperand::createReg(X86::NoRegister);
614 indexReg = MCOperand::createReg(X86::NoRegister);
615 break;
616 case EA_BASE_BX_SI:
617 baseReg = MCOperand::createReg(X86::BX);
618 indexReg = MCOperand::createReg(X86::SI);
619 break;
620 case EA_BASE_BX_DI:
621 baseReg = MCOperand::createReg(X86::BX);
622 indexReg = MCOperand::createReg(X86::DI);
623 break;
624 case EA_BASE_BP_SI:
625 baseReg = MCOperand::createReg(X86::BP);
626 indexReg = MCOperand::createReg(X86::SI);
627 break;
628 case EA_BASE_BP_DI:
629 baseReg = MCOperand::createReg(X86::BP);
630 indexReg = MCOperand::createReg(X86::DI);
631 break;
632 default:
633 indexReg = MCOperand::createReg(X86::NoRegister);
634 switch (insn.eaBase) {
635 default:
636 debug("Unexpected eaBase");
637 return true;
638 // Here, we will use the fill-ins defined above. However,
639 // BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and
640 // sib and sib64 were handled in the top-level if, so they're only
641 // placeholders to keep the compiler happy.
642 #define ENTRY(x) \
643 case EA_BASE_##x: \
644 baseReg = MCOperand::createReg(X86::x); break;
645 ALL_EA_BASES
646 #undef ENTRY
647 #define ENTRY(x) case EA_REG_##x:
648 ALL_REGS
649 #undef ENTRY
650 debug("A R/M memory operand may not be a register; "
651 "the base field must be a base.");
652 return true;
656 scaleAmount = MCOperand::createImm(1);
659 displacement = MCOperand::createImm(insn.displacement);
661 segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
663 mcInst.addOperand(baseReg);
664 mcInst.addOperand(scaleAmount);
665 mcInst.addOperand(indexReg);
666 if(!tryAddingSymbolicOperand(insn.displacement + pcrel, false,
667 insn.startLocation, insn.displacementOffset,
668 insn.displacementSize, mcInst, Dis))
669 mcInst.addOperand(displacement);
670 mcInst.addOperand(segmentReg);
671 return false;
674 /// translateRM - Translates an operand stored in the R/M (and possibly SIB)
675 /// byte of an instruction to LLVM form, and appends it to an MCInst.
677 /// @param mcInst - The MCInst to append to.
678 /// @param operand - The operand, as stored in the descriptor table.
679 /// @param insn - The instruction to extract Mod, R/M, and SIB fields
680 /// from.
681 /// @return - 0 on success; nonzero otherwise
682 static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand,
683 InternalInstruction &insn, const MCDisassembler *Dis) {
684 switch (operand.type) {
685 default:
686 debug("Unexpected type for a R/M operand");
687 return true;
688 case TYPE_R8:
689 case TYPE_R16:
690 case TYPE_R32:
691 case TYPE_R64:
692 case TYPE_Rv:
693 case TYPE_MM64:
694 case TYPE_XMM:
695 case TYPE_YMM:
696 case TYPE_ZMM:
697 case TYPE_VK_PAIR:
698 case TYPE_VK:
699 case TYPE_DEBUGREG:
700 case TYPE_CONTROLREG:
701 case TYPE_BNDR:
702 return translateRMRegister(mcInst, insn);
703 case TYPE_M:
704 case TYPE_MVSIBX:
705 case TYPE_MVSIBY:
706 case TYPE_MVSIBZ:
707 return translateRMMemory(mcInst, insn, Dis);
711 /// translateFPRegister - Translates a stack position on the FPU stack to its
712 /// LLVM form, and appends it to an MCInst.
714 /// @param mcInst - The MCInst to append to.
715 /// @param stackPos - The stack position to translate.
716 static void translateFPRegister(MCInst &mcInst,
717 uint8_t stackPos) {
718 mcInst.addOperand(MCOperand::createReg(X86::ST0 + stackPos));
721 /// translateMaskRegister - Translates a 3-bit mask register number to
722 /// LLVM form, and appends it to an MCInst.
724 /// @param mcInst - The MCInst to append to.
725 /// @param maskRegNum - Number of mask register from 0 to 7.
726 /// @return - false on success; true otherwise.
727 static bool translateMaskRegister(MCInst &mcInst,
728 uint8_t maskRegNum) {
729 if (maskRegNum >= 8) {
730 debug("Invalid mask register number");
731 return true;
734 mcInst.addOperand(MCOperand::createReg(X86::K0 + maskRegNum));
735 return false;
738 /// translateOperand - Translates an operand stored in an internal instruction
739 /// to LLVM's format and appends it to an MCInst.
741 /// @param mcInst - The MCInst to append to.
742 /// @param operand - The operand, as stored in the descriptor table.
743 /// @param insn - The internal instruction.
744 /// @return - false on success; true otherwise.
745 static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand,
746 InternalInstruction &insn,
747 const MCDisassembler *Dis) {
748 switch (operand.encoding) {
749 default:
750 debug("Unhandled operand encoding during translation");
751 return true;
752 case ENCODING_REG:
753 translateRegister(mcInst, insn.reg);
754 return false;
755 case ENCODING_WRITEMASK:
756 return translateMaskRegister(mcInst, insn.writemask);
757 CASE_ENCODING_RM:
758 CASE_ENCODING_VSIB:
759 return translateRM(mcInst, operand, insn, Dis);
760 case ENCODING_IB:
761 case ENCODING_IW:
762 case ENCODING_ID:
763 case ENCODING_IO:
764 case ENCODING_Iv:
765 case ENCODING_Ia:
766 translateImmediate(mcInst,
767 insn.immediates[insn.numImmediatesTranslated++],
768 operand,
769 insn,
770 Dis);
771 return false;
772 case ENCODING_IRC:
773 mcInst.addOperand(MCOperand::createImm(insn.RC));
774 return false;
775 case ENCODING_SI:
776 return translateSrcIndex(mcInst, insn);
777 case ENCODING_DI:
778 return translateDstIndex(mcInst, insn);
779 case ENCODING_RB:
780 case ENCODING_RW:
781 case ENCODING_RD:
782 case ENCODING_RO:
783 case ENCODING_Rv:
784 translateRegister(mcInst, insn.opcodeRegister);
785 return false;
786 case ENCODING_CC:
787 mcInst.addOperand(MCOperand::createImm(insn.immediates[1]));
788 return false;
789 case ENCODING_FP:
790 translateFPRegister(mcInst, insn.modRM & 7);
791 return false;
792 case ENCODING_VVVV:
793 translateRegister(mcInst, insn.vvvv);
794 return false;
795 case ENCODING_DUP:
796 return translateOperand(mcInst, insn.operands[operand.type - TYPE_DUP0],
797 insn, Dis);
801 /// translateInstruction - Translates an internal instruction and all its
802 /// operands to an MCInst.
804 /// @param mcInst - The MCInst to populate with the instruction's data.
805 /// @param insn - The internal instruction.
806 /// @return - false on success; true otherwise.
807 static bool translateInstruction(MCInst &mcInst,
808 InternalInstruction &insn,
809 const MCDisassembler *Dis) {
810 if (!insn.spec) {
811 debug("Instruction has no specification");
812 return true;
815 mcInst.clear();
816 mcInst.setOpcode(insn.instructionID);
817 // If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3
818 // prefix bytes should be disassembled as xrelease and xacquire then set the
819 // opcode to those instead of the rep and repne opcodes.
820 if (insn.xAcquireRelease) {
821 if(mcInst.getOpcode() == X86::REP_PREFIX)
822 mcInst.setOpcode(X86::XRELEASE_PREFIX);
823 else if(mcInst.getOpcode() == X86::REPNE_PREFIX)
824 mcInst.setOpcode(X86::XACQUIRE_PREFIX);
827 insn.numImmediatesTranslated = 0;
829 for (const auto &Op : insn.operands) {
830 if (Op.encoding != ENCODING_NONE) {
831 if (translateOperand(mcInst, Op, insn, Dis)) {
832 return true;
837 return false;
840 static MCDisassembler *createX86Disassembler(const Target &T,
841 const MCSubtargetInfo &STI,
842 MCContext &Ctx) {
843 std::unique_ptr<const MCInstrInfo> MII(T.createMCInstrInfo());
844 return new X86GenericDisassembler(STI, Ctx, std::move(MII));
847 extern "C" void LLVMInitializeX86Disassembler() {
848 // Register the disassembler.
849 TargetRegistry::RegisterMCDisassembler(getTheX86_32Target(),
850 createX86Disassembler);
851 TargetRegistry::RegisterMCDisassembler(getTheX86_64Target(),
852 createX86Disassembler);