[x86] fix assert with horizontal math + broadcast of vector (PR43402)
[llvm-core.git] / lib / Target / X86 / X86FixupBWInsts.cpp
blob9f7c4afde760ab5e6351f264d23fe6d6b1170203
1 //===-- X86FixupBWInsts.cpp - Fixup Byte or Word instructions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file defines the pass that looks through the machine instructions
10 /// late in the compilation, and finds byte or word instructions that
11 /// can be profitably replaced with 32 bit instructions that give equivalent
12 /// results for the bits of the results that are used. There are two possible
13 /// reasons to do this.
14 ///
15 /// One reason is to avoid false-dependences on the upper portions
16 /// of the registers. Only instructions that have a destination register
17 /// which is not in any of the source registers can be affected by this.
18 /// Any instruction where one of the source registers is also the destination
19 /// register is unaffected, because it has a true dependence on the source
20 /// register already. So, this consideration primarily affects load
21 /// instructions and register-to-register moves. It would
22 /// seem like cmov(s) would also be affected, but because of the way cmov is
23 /// really implemented by most machines as reading both the destination and
24 /// and source registers, and then "merging" the two based on a condition,
25 /// it really already should be considered as having a true dependence on the
26 /// destination register as well.
27 ///
28 /// The other reason to do this is for potential code size savings. Word
29 /// operations need an extra override byte compared to their 32 bit
30 /// versions. So this can convert many word operations to their larger
31 /// size, saving a byte in encoding. This could introduce partial register
32 /// dependences where none existed however. As an example take:
33 /// orw ax, $0x1000
34 /// addw ax, $3
35 /// now if this were to get transformed into
36 /// orw ax, $1000
37 /// addl eax, $3
38 /// because the addl encodes shorter than the addw, this would introduce
39 /// a use of a register that was only partially written earlier. On older
40 /// Intel processors this can be quite a performance penalty, so this should
41 /// probably only be done when it can be proven that a new partial dependence
42 /// wouldn't be created, or when your know a newer processor is being
43 /// targeted, or when optimizing for minimum code size.
44 ///
45 //===----------------------------------------------------------------------===//
47 #include "X86.h"
48 #include "X86InstrInfo.h"
49 #include "X86Subtarget.h"
50 #include "llvm/ADT/Statistic.h"
51 #include "llvm/CodeGen/LivePhysRegs.h"
52 #include "llvm/CodeGen/MachineFunctionPass.h"
53 #include "llvm/CodeGen/MachineInstrBuilder.h"
54 #include "llvm/CodeGen/MachineLoopInfo.h"
55 #include "llvm/CodeGen/MachineRegisterInfo.h"
56 #include "llvm/CodeGen/Passes.h"
57 #include "llvm/CodeGen/TargetInstrInfo.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/raw_ostream.h"
60 using namespace llvm;
62 #define FIXUPBW_DESC "X86 Byte/Word Instruction Fixup"
63 #define FIXUPBW_NAME "x86-fixup-bw-insts"
65 #define DEBUG_TYPE FIXUPBW_NAME
67 // Option to allow this optimization pass to have fine-grained control.
68 static cl::opt<bool>
69 FixupBWInsts("fixup-byte-word-insts",
70 cl::desc("Change byte and word instructions to larger sizes"),
71 cl::init(true), cl::Hidden);
73 namespace {
74 class FixupBWInstPass : public MachineFunctionPass {
75 /// Loop over all of the instructions in the basic block replacing applicable
76 /// byte or word instructions with better alternatives.
77 void processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
79 /// This sets the \p SuperDestReg to the 32 bit super reg of the original
80 /// destination register of the MachineInstr passed in. It returns true if
81 /// that super register is dead just prior to \p OrigMI, and false if not.
82 bool getSuperRegDestIfDead(MachineInstr *OrigMI,
83 Register &SuperDestReg) const;
85 /// Change the MachineInstr \p MI into the equivalent extending load to 32 bit
86 /// register if it is safe to do so. Return the replacement instruction if
87 /// OK, otherwise return nullptr.
88 MachineInstr *tryReplaceLoad(unsigned New32BitOpcode, MachineInstr *MI) const;
90 /// Change the MachineInstr \p MI into the equivalent 32-bit copy if it is
91 /// safe to do so. Return the replacement instruction if OK, otherwise return
92 /// nullptr.
93 MachineInstr *tryReplaceCopy(MachineInstr *MI) const;
95 /// Change the MachineInstr \p MI into the equivalent extend to 32 bit
96 /// register if it is safe to do so. Return the replacement instruction if
97 /// OK, otherwise return nullptr.
98 MachineInstr *tryReplaceExtend(unsigned New32BitOpcode,
99 MachineInstr *MI) const;
101 // Change the MachineInstr \p MI into an eqivalent 32 bit instruction if
102 // possible. Return the replacement instruction if OK, return nullptr
103 // otherwise.
104 MachineInstr *tryReplaceInstr(MachineInstr *MI, MachineBasicBlock &MBB) const;
106 public:
107 static char ID;
109 StringRef getPassName() const override { return FIXUPBW_DESC; }
111 FixupBWInstPass() : MachineFunctionPass(ID) { }
113 void getAnalysisUsage(AnalysisUsage &AU) const override {
114 AU.addRequired<MachineLoopInfo>(); // Machine loop info is used to
115 // guide some heuristics.
116 MachineFunctionPass::getAnalysisUsage(AU);
119 /// Loop over all of the basic blocks, replacing byte and word instructions by
120 /// equivalent 32 bit instructions where performance or code size can be
121 /// improved.
122 bool runOnMachineFunction(MachineFunction &MF) override;
124 MachineFunctionProperties getRequiredProperties() const override {
125 return MachineFunctionProperties().set(
126 MachineFunctionProperties::Property::NoVRegs);
129 private:
130 MachineFunction *MF;
132 /// Machine instruction info used throughout the class.
133 const X86InstrInfo *TII;
135 /// Local member for function's OptForSize attribute.
136 bool OptForSize;
138 /// Machine loop info used for guiding some heruistics.
139 MachineLoopInfo *MLI;
141 /// Register Liveness information after the current instruction.
142 LivePhysRegs LiveRegs;
144 char FixupBWInstPass::ID = 0;
147 INITIALIZE_PASS(FixupBWInstPass, FIXUPBW_NAME, FIXUPBW_DESC, false, false)
149 FunctionPass *llvm::createX86FixupBWInsts() { return new FixupBWInstPass(); }
151 bool FixupBWInstPass::runOnMachineFunction(MachineFunction &MF) {
152 if (!FixupBWInsts || skipFunction(MF.getFunction()))
153 return false;
155 this->MF = &MF;
156 TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
157 OptForSize = MF.getFunction().hasOptSize();
158 MLI = &getAnalysis<MachineLoopInfo>();
159 LiveRegs.init(TII->getRegisterInfo());
161 LLVM_DEBUG(dbgs() << "Start X86FixupBWInsts\n";);
163 // Process all basic blocks.
164 for (auto &MBB : MF)
165 processBasicBlock(MF, MBB);
167 LLVM_DEBUG(dbgs() << "End X86FixupBWInsts\n";);
169 return true;
172 /// Check if after \p OrigMI the only portion of super register
173 /// of the destination register of \p OrigMI that is alive is that
174 /// destination register.
176 /// If so, return that super register in \p SuperDestReg.
177 bool FixupBWInstPass::getSuperRegDestIfDead(MachineInstr *OrigMI,
178 Register &SuperDestReg) const {
179 auto *TRI = &TII->getRegisterInfo();
181 Register OrigDestReg = OrigMI->getOperand(0).getReg();
182 SuperDestReg = getX86SubSuperRegister(OrigDestReg, 32);
184 const auto SubRegIdx = TRI->getSubRegIndex(SuperDestReg, OrigDestReg);
186 // Make sure that the sub-register that this instruction has as its
187 // destination is the lowest order sub-register of the super-register.
188 // If it isn't, then the register isn't really dead even if the
189 // super-register is considered dead.
190 if (SubRegIdx == X86::sub_8bit_hi)
191 return false;
193 // If neither the destination-super register nor any applicable subregisters
194 // are live after this instruction, then the super register is safe to use.
195 if (!LiveRegs.contains(SuperDestReg)) {
196 // If the original destination register was not the low 8-bit subregister
197 // then the super register check is sufficient.
198 if (SubRegIdx != X86::sub_8bit)
199 return true;
200 // If the original destination register was the low 8-bit subregister and
201 // we also need to check the 16-bit subregister and the high 8-bit
202 // subregister.
203 if (!LiveRegs.contains(getX86SubSuperRegister(OrigDestReg, 16)) &&
204 !LiveRegs.contains(getX86SubSuperRegister(SuperDestReg, 8,
205 /*High=*/true)))
206 return true;
207 // Otherwise, we have a little more checking to do.
210 // If we get here, the super-register destination (or some part of it) is
211 // marked as live after the original instruction.
213 // The X86 backend does not have subregister liveness tracking enabled,
214 // so liveness information might be overly conservative. Specifically, the
215 // super register might be marked as live because it is implicitly defined
216 // by the instruction we are examining.
218 // However, for some specific instructions (this pass only cares about MOVs)
219 // we can produce more precise results by analysing that MOV's operands.
221 // Indeed, if super-register is not live before the mov it means that it
222 // was originally <read-undef> and so we are free to modify these
223 // undef upper bits. That may happen in case where the use is in another MBB
224 // and the vreg/physreg corresponding to the move has higher width than
225 // necessary (e.g. due to register coalescing with a "truncate" copy).
226 // So, we would like to handle patterns like this:
228 // %bb.2: derived from LLVM BB %if.then
229 // Live Ins: %rdi
230 // Predecessors according to CFG: %bb.0
231 // %ax<def> = MOV16rm killed %rdi, 1, %noreg, 0, %noreg, implicit-def %eax
232 // ; No implicit %eax
233 // Successors according to CFG: %bb.3(?%)
235 // %bb.3: derived from LLVM BB %if.end
236 // Live Ins: %eax Only %ax is actually live
237 // Predecessors according to CFG: %bb.2 %bb.1
238 // %ax = KILL %ax, implicit killed %eax
239 // RET 0, %ax
240 unsigned Opc = OrigMI->getOpcode(); (void)Opc;
241 // These are the opcodes currently known to work with the code below, if
242 // something // else will be added we need to ensure that new opcode has the
243 // same properties.
244 if (Opc != X86::MOV8rm && Opc != X86::MOV16rm && Opc != X86::MOV8rr &&
245 Opc != X86::MOV16rr)
246 return false;
248 bool IsDefined = false;
249 for (auto &MO: OrigMI->implicit_operands()) {
250 if (!MO.isReg())
251 continue;
253 assert((MO.isDef() || MO.isUse()) && "Expected Def or Use only!");
255 if (MO.isDef() && TRI->isSuperRegisterEq(OrigDestReg, MO.getReg()))
256 IsDefined = true;
258 // If MO is a use of any part of the destination register but is not equal
259 // to OrigDestReg or one of its subregisters, we cannot use SuperDestReg.
260 // For example, if OrigDestReg is %al then an implicit use of %ah, %ax,
261 // %eax, or %rax will prevent us from using the %eax register.
262 if (MO.isUse() && !TRI->isSubRegisterEq(OrigDestReg, MO.getReg()) &&
263 TRI->regsOverlap(SuperDestReg, MO.getReg()))
264 return false;
266 // Reg is not Imp-def'ed -> it's live both before/after the instruction.
267 if (!IsDefined)
268 return false;
270 // Otherwise, the Reg is not live before the MI and the MOV can't
271 // make it really live, so it's in fact dead even after the MI.
272 return true;
275 MachineInstr *FixupBWInstPass::tryReplaceLoad(unsigned New32BitOpcode,
276 MachineInstr *MI) const {
277 Register NewDestReg;
279 // We are going to try to rewrite this load to a larger zero-extending
280 // load. This is safe if all portions of the 32 bit super-register
281 // of the original destination register, except for the original destination
282 // register are dead. getSuperRegDestIfDead checks that.
283 if (!getSuperRegDestIfDead(MI, NewDestReg))
284 return nullptr;
286 // Safe to change the instruction.
287 MachineInstrBuilder MIB =
288 BuildMI(*MF, MI->getDebugLoc(), TII->get(New32BitOpcode), NewDestReg);
290 unsigned NumArgs = MI->getNumOperands();
291 for (unsigned i = 1; i < NumArgs; ++i)
292 MIB.add(MI->getOperand(i));
294 MIB.setMemRefs(MI->memoperands());
296 return MIB;
299 MachineInstr *FixupBWInstPass::tryReplaceCopy(MachineInstr *MI) const {
300 assert(MI->getNumExplicitOperands() == 2);
301 auto &OldDest = MI->getOperand(0);
302 auto &OldSrc = MI->getOperand(1);
304 Register NewDestReg;
305 if (!getSuperRegDestIfDead(MI, NewDestReg))
306 return nullptr;
308 Register NewSrcReg = getX86SubSuperRegister(OldSrc.getReg(), 32);
310 // This is only correct if we access the same subregister index: otherwise,
311 // we could try to replace "movb %ah, %al" with "movl %eax, %eax".
312 auto *TRI = &TII->getRegisterInfo();
313 if (TRI->getSubRegIndex(NewSrcReg, OldSrc.getReg()) !=
314 TRI->getSubRegIndex(NewDestReg, OldDest.getReg()))
315 return nullptr;
317 // Safe to change the instruction.
318 // Don't set src flags, as we don't know if we're also killing the superreg.
319 // However, the superregister might not be defined; make it explicit that
320 // we don't care about the higher bits by reading it as Undef, and adding
321 // an imp-use on the original subregister.
322 MachineInstrBuilder MIB =
323 BuildMI(*MF, MI->getDebugLoc(), TII->get(X86::MOV32rr), NewDestReg)
324 .addReg(NewSrcReg, RegState::Undef)
325 .addReg(OldSrc.getReg(), RegState::Implicit);
327 // Drop imp-defs/uses that would be redundant with the new def/use.
328 for (auto &Op : MI->implicit_operands())
329 if (Op.getReg() != (Op.isDef() ? NewDestReg : NewSrcReg))
330 MIB.add(Op);
332 return MIB;
335 MachineInstr *FixupBWInstPass::tryReplaceExtend(unsigned New32BitOpcode,
336 MachineInstr *MI) const {
337 Register NewDestReg;
338 if (!getSuperRegDestIfDead(MI, NewDestReg))
339 return nullptr;
341 // Don't interfere with formation of CBW instructions which should be a
342 // shorter encoding than even the MOVSX32rr8. It's also immunte to partial
343 // merge issues on Intel CPUs.
344 if (MI->getOpcode() == X86::MOVSX16rr8 &&
345 MI->getOperand(0).getReg() == X86::AX &&
346 MI->getOperand(1).getReg() == X86::AL)
347 return nullptr;
349 // Safe to change the instruction.
350 MachineInstrBuilder MIB =
351 BuildMI(*MF, MI->getDebugLoc(), TII->get(New32BitOpcode), NewDestReg);
353 unsigned NumArgs = MI->getNumOperands();
354 for (unsigned i = 1; i < NumArgs; ++i)
355 MIB.add(MI->getOperand(i));
357 MIB.setMemRefs(MI->memoperands());
359 return MIB;
362 MachineInstr *FixupBWInstPass::tryReplaceInstr(MachineInstr *MI,
363 MachineBasicBlock &MBB) const {
364 // See if this is an instruction of the type we are currently looking for.
365 switch (MI->getOpcode()) {
367 case X86::MOV8rm:
368 // Only replace 8 bit loads with the zero extending versions if
369 // in an inner most loop and not optimizing for size. This takes
370 // an extra byte to encode, and provides limited performance upside.
371 if (MachineLoop *ML = MLI->getLoopFor(&MBB))
372 if (ML->begin() == ML->end() && !OptForSize)
373 return tryReplaceLoad(X86::MOVZX32rm8, MI);
374 break;
376 case X86::MOV16rm:
377 // Always try to replace 16 bit load with 32 bit zero extending.
378 // Code size is the same, and there is sometimes a perf advantage
379 // from eliminating a false dependence on the upper portion of
380 // the register.
381 return tryReplaceLoad(X86::MOVZX32rm16, MI);
383 case X86::MOV8rr:
384 case X86::MOV16rr:
385 // Always try to replace 8/16 bit copies with a 32 bit copy.
386 // Code size is either less (16) or equal (8), and there is sometimes a
387 // perf advantage from eliminating a false dependence on the upper portion
388 // of the register.
389 return tryReplaceCopy(MI);
391 case X86::MOVSX16rr8:
392 return tryReplaceExtend(X86::MOVSX32rr8, MI);
393 case X86::MOVSX16rm8:
394 return tryReplaceExtend(X86::MOVSX32rm8, MI);
395 case X86::MOVZX16rr8:
396 return tryReplaceExtend(X86::MOVZX32rr8, MI);
397 case X86::MOVZX16rm8:
398 return tryReplaceExtend(X86::MOVZX32rm8, MI);
400 default:
401 // nothing to do here.
402 break;
405 return nullptr;
408 void FixupBWInstPass::processBasicBlock(MachineFunction &MF,
409 MachineBasicBlock &MBB) {
411 // This algorithm doesn't delete the instructions it is replacing
412 // right away. By leaving the existing instructions in place, the
413 // register liveness information doesn't change, and this makes the
414 // analysis that goes on be better than if the replaced instructions
415 // were immediately removed.
417 // This algorithm always creates a replacement instruction
418 // and notes that and the original in a data structure, until the
419 // whole BB has been analyzed. This keeps the replacement instructions
420 // from making it seem as if the larger register might be live.
421 SmallVector<std::pair<MachineInstr *, MachineInstr *>, 8> MIReplacements;
423 // Start computing liveness for this block. We iterate from the end to be able
424 // to update this for each instruction.
425 LiveRegs.clear();
426 // We run after PEI, so we need to AddPristinesAndCSRs.
427 LiveRegs.addLiveOuts(MBB);
429 for (auto I = MBB.rbegin(); I != MBB.rend(); ++I) {
430 MachineInstr *MI = &*I;
432 if (MachineInstr *NewMI = tryReplaceInstr(MI, MBB))
433 MIReplacements.push_back(std::make_pair(MI, NewMI));
435 // We're done with this instruction, update liveness for the next one.
436 LiveRegs.stepBackward(*MI);
439 while (!MIReplacements.empty()) {
440 MachineInstr *MI = MIReplacements.back().first;
441 MachineInstr *NewMI = MIReplacements.back().second;
442 MIReplacements.pop_back();
443 MBB.insert(MI, NewMI);
444 MBB.erase(MI);