1 //===-- X86InstrControl.td - Control Flow Instructions -----*- tablegen -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file describes the X86 jump, return, call, and related instructions.
11 //===----------------------------------------------------------------------===//
13 //===----------------------------------------------------------------------===//
14 // Control Flow Instructions.
17 // Return instructions.
19 // The X86retflag return instructions are variadic because we may add ST0 and
20 // ST1 arguments when returning values on the x87 stack.
21 let isTerminator = 1, isReturn = 1, isBarrier = 1,
22 hasCtrlDep = 1, FPForm = SpecialFP, SchedRW = [WriteJumpLd] in {
23 def RETL : I <0xC3, RawFrm, (outs), (ins variable_ops),
24 "ret{l}", []>, OpSize32, Requires<[Not64BitMode]>;
25 def RETQ : I <0xC3, RawFrm, (outs), (ins variable_ops),
26 "ret{q}", []>, OpSize32, Requires<[In64BitMode]>;
27 def RETW : I <0xC3, RawFrm, (outs), (ins),
28 "ret{w}", []>, OpSize16;
29 def RETIL : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt, variable_ops),
30 "ret{l}\t$amt", []>, OpSize32, Requires<[Not64BitMode]>;
31 def RETIQ : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt, variable_ops),
32 "ret{q}\t$amt", []>, OpSize32, Requires<[In64BitMode]>;
33 def RETIW : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt),
34 "ret{w}\t$amt", []>, OpSize16;
35 def LRETL : I <0xCB, RawFrm, (outs), (ins),
36 "{l}ret{l|f}", []>, OpSize32;
37 def LRETQ : RI <0xCB, RawFrm, (outs), (ins),
38 "{l}ret{|f}q", []>, Requires<[In64BitMode]>;
39 def LRETW : I <0xCB, RawFrm, (outs), (ins),
40 "{l}ret{w|f}", []>, OpSize16;
41 def LRETIL : Ii16<0xCA, RawFrm, (outs), (ins i16imm:$amt),
42 "{l}ret{l|f}\t$amt", []>, OpSize32;
43 def LRETIQ : RIi16<0xCA, RawFrm, (outs), (ins i16imm:$amt),
44 "{l}ret{|f}q\t$amt", []>, Requires<[In64BitMode]>;
45 def LRETIW : Ii16<0xCA, RawFrm, (outs), (ins i16imm:$amt),
46 "{l}ret{w|f}\t$amt", []>, OpSize16;
48 // The machine return from interrupt instruction, but sometimes we need to
49 // perform a post-epilogue stack adjustment. Codegen emits the pseudo form
50 // which expands to include an SP adjustment if necessary.
51 def IRET16 : I <0xcf, RawFrm, (outs), (ins), "iret{w}", []>,
53 def IRET32 : I <0xcf, RawFrm, (outs), (ins), "iret{l|d}", []>, OpSize32;
54 def IRET64 : RI <0xcf, RawFrm, (outs), (ins), "iretq", []>, Requires<[In64BitMode]>;
55 let isCodeGenOnly = 1 in
56 def IRET : PseudoI<(outs), (ins i32imm:$adj), [(X86iret timm:$adj)]>;
57 def RET : PseudoI<(outs), (ins i32imm:$adj, variable_ops), [(X86retflag timm:$adj)]>;
60 // Unconditional branches.
61 let isBarrier = 1, isBranch = 1, isTerminator = 1, SchedRW = [WriteJump] in {
62 def JMP_1 : Ii8PCRel<0xEB, RawFrm, (outs), (ins brtarget8:$dst),
63 "jmp\t$dst", [(br bb:$dst)]>;
64 let hasSideEffects = 0, isCodeGenOnly = 1, ForceDisassemble = 1 in {
65 def JMP_2 : Ii16PCRel<0xE9, RawFrm, (outs), (ins brtarget16:$dst),
66 "jmp\t$dst", []>, OpSize16;
67 def JMP_4 : Ii32PCRel<0xE9, RawFrm, (outs), (ins brtarget32:$dst),
68 "jmp\t$dst", []>, OpSize32;
72 // Conditional Branches.
73 let isBranch = 1, isTerminator = 1, Uses = [EFLAGS], SchedRW = [WriteJump],
74 isCodeGenOnly = 1, ForceDisassemble = 1 in {
75 def JCC_1 : Ii8PCRel <0x70, AddCCFrm, (outs),
76 (ins brtarget8:$dst, ccode:$cond),
78 [(X86brcond bb:$dst, imm:$cond, EFLAGS)]>;
79 let hasSideEffects = 0 in {
80 def JCC_2 : Ii16PCRel<0x80, AddCCFrm, (outs),
81 (ins brtarget16:$dst, ccode:$cond),
84 def JCC_4 : Ii32PCRel<0x80, AddCCFrm, (outs),
85 (ins brtarget32:$dst, ccode:$cond),
91 def : InstAlias<"jo\t$dst", (JCC_1 brtarget8:$dst, 0), 0>;
92 def : InstAlias<"jno\t$dst", (JCC_1 brtarget8:$dst, 1), 0>;
93 def : InstAlias<"jb\t$dst", (JCC_1 brtarget8:$dst, 2), 0>;
94 def : InstAlias<"jae\t$dst", (JCC_1 brtarget8:$dst, 3), 0>;
95 def : InstAlias<"je\t$dst", (JCC_1 brtarget8:$dst, 4), 0>;
96 def : InstAlias<"jne\t$dst", (JCC_1 brtarget8:$dst, 5), 0>;
97 def : InstAlias<"jbe\t$dst", (JCC_1 brtarget8:$dst, 6), 0>;
98 def : InstAlias<"ja\t$dst", (JCC_1 brtarget8:$dst, 7), 0>;
99 def : InstAlias<"js\t$dst", (JCC_1 brtarget8:$dst, 8), 0>;
100 def : InstAlias<"jns\t$dst", (JCC_1 brtarget8:$dst, 9), 0>;
101 def : InstAlias<"jp\t$dst", (JCC_1 brtarget8:$dst, 10), 0>;
102 def : InstAlias<"jnp\t$dst", (JCC_1 brtarget8:$dst, 11), 0>;
103 def : InstAlias<"jl\t$dst", (JCC_1 brtarget8:$dst, 12), 0>;
104 def : InstAlias<"jge\t$dst", (JCC_1 brtarget8:$dst, 13), 0>;
105 def : InstAlias<"jle\t$dst", (JCC_1 brtarget8:$dst, 14), 0>;
106 def : InstAlias<"jg\t$dst", (JCC_1 brtarget8:$dst, 15), 0>;
108 // jcx/jecx/jrcx instructions.
109 let isBranch = 1, isTerminator = 1, hasSideEffects = 0, SchedRW = [WriteJump] in {
110 // These are the 32-bit versions of this instruction for the asmparser. In
111 // 32-bit mode, the address size prefix is jcxz and the unprefixed version is
114 def JCXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
115 "jcxz\t$dst", []>, AdSize16, Requires<[Not64BitMode]>;
117 def JECXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
118 "jecxz\t$dst", []>, AdSize32;
121 def JRCXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
122 "jrcxz\t$dst", []>, AdSize64, Requires<[In64BitMode]>;
126 let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
127 def JMP16r : I<0xFF, MRM4r, (outs), (ins GR16:$dst), "jmp{w}\t{*}$dst",
128 [(brind GR16:$dst)]>, Requires<[Not64BitMode]>,
129 OpSize16, Sched<[WriteJump]>;
130 def JMP16m : I<0xFF, MRM4m, (outs), (ins i16mem:$dst), "jmp{w}\t{*}$dst",
131 [(brind (loadi16 addr:$dst))]>, Requires<[Not64BitMode]>,
132 OpSize16, Sched<[WriteJumpLd]>;
134 def JMP32r : I<0xFF, MRM4r, (outs), (ins GR32:$dst), "jmp{l}\t{*}$dst",
135 [(brind GR32:$dst)]>, Requires<[Not64BitMode]>,
136 OpSize32, Sched<[WriteJump]>;
137 def JMP32m : I<0xFF, MRM4m, (outs), (ins i32mem:$dst), "jmp{l}\t{*}$dst",
138 [(brind (loadi32 addr:$dst))]>, Requires<[Not64BitMode]>,
139 OpSize32, Sched<[WriteJumpLd]>;
141 def JMP64r : I<0xFF, MRM4r, (outs), (ins GR64:$dst), "jmp{q}\t{*}$dst",
142 [(brind GR64:$dst)]>, Requires<[In64BitMode]>,
144 def JMP64m : I<0xFF, MRM4m, (outs), (ins i64mem:$dst), "jmp{q}\t{*}$dst",
145 [(brind (loadi64 addr:$dst))]>, Requires<[In64BitMode]>,
146 Sched<[WriteJumpLd]>;
148 // Win64 wants indirect jumps leaving the function to have a REX_W prefix.
149 // These are switched from TAILJMPr/m64_REX in MCInstLower.
150 let isCodeGenOnly = 1, hasREX_WPrefix = 1 in {
151 def JMP64r_REX : I<0xFF, MRM4r, (outs), (ins GR64:$dst),
152 "rex64 jmp{q}\t{*}$dst", []>, Sched<[WriteJump]>;
154 def JMP64m_REX : I<0xFF, MRM4m, (outs), (ins i64mem:$dst),
155 "rex64 jmp{q}\t{*}$dst", []>, Sched<[WriteJumpLd]>;
159 // Non-tracking jumps for IBT, use with caution.
160 let isCodeGenOnly = 1 in {
161 def JMP16r_NT : I<0xFF, MRM4r, (outs), (ins GR16 : $dst), "jmp{w}\t{*}$dst",
162 [(X86NoTrackBrind GR16 : $dst)]>, Requires<[Not64BitMode]>,
163 OpSize16, Sched<[WriteJump]>, NOTRACK;
165 def JMP16m_NT : I<0xFF, MRM4m, (outs), (ins i16mem : $dst), "jmp{w}\t{*}$dst",
166 [(X86NoTrackBrind (loadi16 addr : $dst))]>,
167 Requires<[Not64BitMode]>, OpSize16, Sched<[WriteJumpLd]>,
170 def JMP32r_NT : I<0xFF, MRM4r, (outs), (ins GR32 : $dst), "jmp{l}\t{*}$dst",
171 [(X86NoTrackBrind GR32 : $dst)]>, Requires<[Not64BitMode]>,
172 OpSize32, Sched<[WriteJump]>, NOTRACK;
173 def JMP32m_NT : I<0xFF, MRM4m, (outs), (ins i32mem : $dst), "jmp{l}\t{*}$dst",
174 [(X86NoTrackBrind (loadi32 addr : $dst))]>,
175 Requires<[Not64BitMode]>, OpSize32, Sched<[WriteJumpLd]>,
178 def JMP64r_NT : I<0xFF, MRM4r, (outs), (ins GR64 : $dst), "jmp{q}\t{*}$dst",
179 [(X86NoTrackBrind GR64 : $dst)]>, Requires<[In64BitMode]>,
180 Sched<[WriteJump]>, NOTRACK;
181 def JMP64m_NT : I<0xFF, MRM4m, (outs), (ins i64mem : $dst), "jmp{q}\t{*}$dst",
182 [(X86NoTrackBrind(loadi64 addr : $dst))]>,
183 Requires<[In64BitMode]>, Sched<[WriteJumpLd]>, NOTRACK;
186 let Predicates = [Not64BitMode], AsmVariantName = "att" in {
187 def FARJMP16i : Iseg16<0xEA, RawFrmImm16, (outs),
188 (ins i16imm:$off, i16imm:$seg),
189 "ljmp{w}\t$seg, $off", []>,
190 OpSize16, Sched<[WriteJump]>;
191 def FARJMP32i : Iseg32<0xEA, RawFrmImm16, (outs),
192 (ins i32imm:$off, i16imm:$seg),
193 "ljmp{l}\t$seg, $off", []>,
194 OpSize32, Sched<[WriteJump]>;
196 def FARJMP64 : RI<0xFF, MRM5m, (outs), (ins opaquemem:$dst),
197 "ljmp{q}\t{*}$dst", []>, Sched<[WriteJump]>, Requires<[In64BitMode]>;
199 let AsmVariantName = "att" in
200 def FARJMP16m : I<0xFF, MRM5m, (outs), (ins opaquemem:$dst),
201 "ljmp{w}\t{*}$dst", []>, OpSize16, Sched<[WriteJumpLd]>;
202 def FARJMP32m : I<0xFF, MRM5m, (outs), (ins opaquemem:$dst),
203 "{l}jmp{l}\t{*}$dst", []>, OpSize32, Sched<[WriteJumpLd]>;
207 let SchedRW = [WriteJump] in {
208 def LOOP : Ii8PCRel<0xE2, RawFrm, (outs), (ins brtarget8:$dst), "loop\t$dst", []>;
209 def LOOPE : Ii8PCRel<0xE1, RawFrm, (outs), (ins brtarget8:$dst), "loope\t$dst", []>;
210 def LOOPNE : Ii8PCRel<0xE0, RawFrm, (outs), (ins brtarget8:$dst), "loopne\t$dst", []>;
213 //===----------------------------------------------------------------------===//
214 // Call Instructions...
217 // All calls clobber the non-callee saved registers. ESP is marked as
218 // a use to prevent stack-pointer assignments that appear immediately
219 // before calls from potentially appearing dead. Uses for argument
220 // registers are added manually.
221 let Uses = [ESP, SSP] in {
222 def CALLpcrel32 : Ii32PCRel<0xE8, RawFrm,
223 (outs), (ins i32imm_pcrel:$dst),
224 "call{l}\t$dst", []>, OpSize32,
225 Requires<[Not64BitMode]>, Sched<[WriteJump]>;
226 let hasSideEffects = 0 in
227 def CALLpcrel16 : Ii16PCRel<0xE8, RawFrm,
228 (outs), (ins i16imm_pcrel:$dst),
229 "call{w}\t$dst", []>, OpSize16,
231 def CALL16r : I<0xFF, MRM2r, (outs), (ins GR16:$dst),
232 "call{w}\t{*}$dst", [(X86call GR16:$dst)]>,
233 OpSize16, Requires<[Not64BitMode]>, Sched<[WriteJump]>;
234 def CALL16m : I<0xFF, MRM2m, (outs), (ins i16mem:$dst),
235 "call{w}\t{*}$dst", [(X86call (loadi16 addr:$dst))]>,
236 OpSize16, Requires<[Not64BitMode,FavorMemIndirectCall]>,
237 Sched<[WriteJumpLd]>;
238 def CALL32r : I<0xFF, MRM2r, (outs), (ins GR32:$dst),
239 "call{l}\t{*}$dst", [(X86call GR32:$dst)]>, OpSize32,
240 Requires<[Not64BitMode,NotUseRetpolineIndirectCalls]>,
242 def CALL32m : I<0xFF, MRM2m, (outs), (ins i32mem:$dst),
243 "call{l}\t{*}$dst", [(X86call (loadi32 addr:$dst))]>,
245 Requires<[Not64BitMode,FavorMemIndirectCall,
246 NotUseRetpolineIndirectCalls]>,
247 Sched<[WriteJumpLd]>;
249 // Non-tracking calls for IBT, use with caution.
250 let isCodeGenOnly = 1 in {
251 def CALL16r_NT : I<0xFF, MRM2r, (outs), (ins GR16 : $dst),
252 "call{w}\t{*}$dst",[(X86NoTrackCall GR16 : $dst)]>,
253 OpSize16, Requires<[Not64BitMode]>, Sched<[WriteJump]>, NOTRACK;
254 def CALL16m_NT : I<0xFF, MRM2m, (outs), (ins i16mem : $dst),
255 "call{w}\t{*}$dst",[(X86NoTrackCall(loadi16 addr : $dst))]>,
256 OpSize16, Requires<[Not64BitMode,FavorMemIndirectCall]>,
257 Sched<[WriteJumpLd]>, NOTRACK;
258 def CALL32r_NT : I<0xFF, MRM2r, (outs), (ins GR32 : $dst),
259 "call{l}\t{*}$dst",[(X86NoTrackCall GR32 : $dst)]>,
260 OpSize32, Requires<[Not64BitMode]>, Sched<[WriteJump]>, NOTRACK;
261 def CALL32m_NT : I<0xFF, MRM2m, (outs), (ins i32mem : $dst),
262 "call{l}\t{*}$dst",[(X86NoTrackCall(loadi32 addr : $dst))]>,
263 OpSize32, Requires<[Not64BitMode,FavorMemIndirectCall]>,
264 Sched<[WriteJumpLd]>, NOTRACK;
267 let Predicates = [Not64BitMode], AsmVariantName = "att" in {
268 def FARCALL16i : Iseg16<0x9A, RawFrmImm16, (outs),
269 (ins i16imm:$off, i16imm:$seg),
270 "lcall{w}\t$seg, $off", []>,
271 OpSize16, Sched<[WriteJump]>;
272 def FARCALL32i : Iseg32<0x9A, RawFrmImm16, (outs),
273 (ins i32imm:$off, i16imm:$seg),
274 "lcall{l}\t$seg, $off", []>,
275 OpSize32, Sched<[WriteJump]>;
278 def FARCALL16m : I<0xFF, MRM3m, (outs), (ins opaquemem:$dst),
279 "lcall{w}\t{*}$dst", []>, OpSize16, Sched<[WriteJumpLd]>;
280 def FARCALL32m : I<0xFF, MRM3m, (outs), (ins opaquemem:$dst),
281 "{l}call{l}\t{*}$dst", []>, OpSize32, Sched<[WriteJumpLd]>;
286 let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1,
287 isCodeGenOnly = 1, Uses = [ESP, SSP] in {
288 def TCRETURNdi : PseudoI<(outs), (ins i32imm_pcrel:$dst, i32imm:$offset),
289 []>, Sched<[WriteJump]>, NotMemoryFoldable;
290 def TCRETURNri : PseudoI<(outs), (ins ptr_rc_tailcall:$dst, i32imm:$offset),
291 []>, Sched<[WriteJump]>, NotMemoryFoldable;
293 def TCRETURNmi : PseudoI<(outs), (ins i32mem_TC:$dst, i32imm:$offset),
294 []>, Sched<[WriteJumpLd]>;
296 def TAILJMPd : PseudoI<(outs), (ins i32imm_pcrel:$dst),
297 []>, Sched<[WriteJump]>;
299 def TAILJMPr : PseudoI<(outs), (ins ptr_rc_tailcall:$dst),
300 []>, Sched<[WriteJump]>;
302 def TAILJMPm : PseudoI<(outs), (ins i32mem_TC:$dst),
303 []>, Sched<[WriteJumpLd]>;
306 // Conditional tail calls are similar to the above, but they are branches
307 // rather than barriers, and they use EFLAGS.
308 let isCall = 1, isTerminator = 1, isReturn = 1, isBranch = 1,
309 isCodeGenOnly = 1, SchedRW = [WriteJump] in
310 let Uses = [ESP, EFLAGS, SSP] in {
311 def TCRETURNdicc : PseudoI<(outs),
312 (ins i32imm_pcrel:$dst, i32imm:$offset, i32imm:$cond), []>;
314 // This gets substituted to a conditional jump instruction in MC lowering.
315 def TAILJMPd_CC : PseudoI<(outs), (ins i32imm_pcrel:$dst, i32imm:$cond), []>;
319 //===----------------------------------------------------------------------===//
320 // Call Instructions...
323 // RSP is marked as a use to prevent stack-pointer assignments that appear
324 // immediately before calls from potentially appearing dead. Uses for argument
325 // registers are added manually.
326 let isCall = 1, Uses = [RSP, SSP], SchedRW = [WriteJump] in {
327 // NOTE: this pattern doesn't match "X86call imm", because we do not know
328 // that the offset between an arbitrary immediate and the call will fit in
329 // the 32-bit pcrel field that we have.
330 def CALL64pcrel32 : Ii32PCRel<0xE8, RawFrm,
331 (outs), (ins i64i32imm_pcrel:$dst),
332 "call{q}\t$dst", []>, OpSize32,
333 Requires<[In64BitMode]>;
334 def CALL64r : I<0xFF, MRM2r, (outs), (ins GR64:$dst),
335 "call{q}\t{*}$dst", [(X86call GR64:$dst)]>,
336 Requires<[In64BitMode,NotUseRetpolineIndirectCalls]>;
337 def CALL64m : I<0xFF, MRM2m, (outs), (ins i64mem:$dst),
338 "call{q}\t{*}$dst", [(X86call (loadi64 addr:$dst))]>,
339 Requires<[In64BitMode,FavorMemIndirectCall,
340 NotUseRetpolineIndirectCalls]>;
342 // Non-tracking calls for IBT, use with caution.
343 let isCodeGenOnly = 1 in {
344 def CALL64r_NT : I<0xFF, MRM2r, (outs), (ins GR64 : $dst),
345 "call{q}\t{*}$dst",[(X86NoTrackCall GR64 : $dst)]>,
346 Requires<[In64BitMode]>, NOTRACK;
347 def CALL64m_NT : I<0xFF, MRM2m, (outs), (ins i64mem : $dst),
349 [(X86NoTrackCall(loadi64 addr : $dst))]>,
350 Requires<[In64BitMode,FavorMemIndirectCall]>, NOTRACK;
353 def FARCALL64 : RI<0xFF, MRM3m, (outs), (ins opaquemem:$dst),
354 "lcall{q}\t{*}$dst", []>;
357 let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1,
358 isCodeGenOnly = 1, Uses = [RSP, SSP] in {
359 def TCRETURNdi64 : PseudoI<(outs),
360 (ins i64i32imm_pcrel:$dst, i32imm:$offset),
361 []>, Sched<[WriteJump]>;
362 def TCRETURNri64 : PseudoI<(outs),
363 (ins ptr_rc_tailcall:$dst, i32imm:$offset),
364 []>, Sched<[WriteJump]>, NotMemoryFoldable;
366 def TCRETURNmi64 : PseudoI<(outs),
367 (ins i64mem_TC:$dst, i32imm:$offset),
368 []>, Sched<[WriteJumpLd]>, NotMemoryFoldable;
370 def TAILJMPd64 : PseudoI<(outs), (ins i64i32imm_pcrel:$dst),
371 []>, Sched<[WriteJump]>;
373 def TAILJMPr64 : PseudoI<(outs), (ins ptr_rc_tailcall:$dst),
374 []>, Sched<[WriteJump]>;
377 def TAILJMPm64 : PseudoI<(outs), (ins i64mem_TC:$dst),
378 []>, Sched<[WriteJumpLd]>;
380 // Win64 wants indirect jumps leaving the function to have a REX_W prefix.
381 let hasREX_WPrefix = 1 in {
382 def TAILJMPr64_REX : PseudoI<(outs), (ins ptr_rc_tailcall:$dst),
383 []>, Sched<[WriteJump]>;
386 def TAILJMPm64_REX : PseudoI<(outs), (ins i64mem_TC:$dst),
387 []>, Sched<[WriteJumpLd]>;
391 let isPseudo = 1, isCall = 1, isCodeGenOnly = 1,
393 usesCustomInserter = 1,
394 SchedRW = [WriteJump] in {
395 def RETPOLINE_CALL32 :
396 PseudoI<(outs), (ins GR32:$dst), [(X86call GR32:$dst)]>,
397 Requires<[Not64BitMode,UseRetpolineIndirectCalls]>;
399 def RETPOLINE_CALL64 :
400 PseudoI<(outs), (ins GR64:$dst), [(X86call GR64:$dst)]>,
401 Requires<[In64BitMode,UseRetpolineIndirectCalls]>;
403 // Retpoline variant of indirect tail calls.
404 let isTerminator = 1, isReturn = 1, isBarrier = 1 in {
405 def RETPOLINE_TCRETURN64 :
406 PseudoI<(outs), (ins GR64:$dst, i32imm:$offset), []>;
407 def RETPOLINE_TCRETURN32 :
408 PseudoI<(outs), (ins GR32:$dst, i32imm:$offset), []>;
412 // Conditional tail calls are similar to the above, but they are branches
413 // rather than barriers, and they use EFLAGS.
414 let isCall = 1, isTerminator = 1, isReturn = 1, isBranch = 1,
415 isCodeGenOnly = 1, SchedRW = [WriteJump] in
416 let Uses = [RSP, EFLAGS, SSP] in {
417 def TCRETURNdi64cc : PseudoI<(outs),
418 (ins i64i32imm_pcrel:$dst, i32imm:$offset,
421 // This gets substituted to a conditional jump instruction in MC lowering.
422 def TAILJMPd64_CC : PseudoI<(outs),
423 (ins i64i32imm_pcrel:$dst, i32imm:$cond), []>;