1 //===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass performs loop invariant code motion, attempting to remove as much
10 // code from the body of a loop as possible. It does this by either hoisting
11 // code into the preheader block, or by sinking code to the exit blocks if it is
12 // safe. This pass also promotes must-aliased memory locations in the loop to
13 // live in registers, thus hoisting and sinking "invariant" loads and stores.
15 // This pass uses alias analysis for two purposes:
17 // 1. Moving loop invariant loads and calls out of loops. If we can determine
18 // that a load or call inside of a loop never aliases anything stored to,
19 // we can hoist it or sink it like any other instruction.
20 // 2. Scalar Promotion of Memory - If there is a store instruction inside of
21 // the loop, we try to move the store to happen AFTER the loop instead of
22 // inside of the loop. This can only happen if a few conditions are true:
23 // A. The pointer stored through is loop invariant
24 // B. There are no stores or loads in the loop which _may_ alias the
25 // pointer. There are no calls in the loop which mod/ref the pointer.
26 // If these conditions are true, we can promote the loads and stores in the
27 // loop of the pointer to use a temporary alloca'd variable. We then use
28 // the SSAUpdater to construct the appropriate SSA form for the value.
30 //===----------------------------------------------------------------------===//
32 #include "llvm/Transforms/Scalar/LICM.h"
33 #include "llvm/ADT/SetOperations.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/Analysis/AliasSetTracker.h"
37 #include "llvm/Analysis/BasicAliasAnalysis.h"
38 #include "llvm/Analysis/CaptureTracking.h"
39 #include "llvm/Analysis/ConstantFolding.h"
40 #include "llvm/Analysis/GlobalsModRef.h"
41 #include "llvm/Analysis/GuardUtils.h"
42 #include "llvm/Analysis/Loads.h"
43 #include "llvm/Analysis/LoopInfo.h"
44 #include "llvm/Analysis/LoopIterator.h"
45 #include "llvm/Analysis/LoopPass.h"
46 #include "llvm/Analysis/MemoryBuiltins.h"
47 #include "llvm/Analysis/MemorySSA.h"
48 #include "llvm/Analysis/MemorySSAUpdater.h"
49 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
50 #include "llvm/Analysis/ScalarEvolution.h"
51 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
52 #include "llvm/Analysis/TargetLibraryInfo.h"
53 #include "llvm/Analysis/ValueTracking.h"
54 #include "llvm/IR/CFG.h"
55 #include "llvm/IR/Constants.h"
56 #include "llvm/IR/DataLayout.h"
57 #include "llvm/IR/DebugInfoMetadata.h"
58 #include "llvm/IR/DerivedTypes.h"
59 #include "llvm/IR/Dominators.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/IntrinsicInst.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/Metadata.h"
64 #include "llvm/IR/PatternMatch.h"
65 #include "llvm/IR/PredIteratorCache.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Transforms/Scalar.h"
70 #include "llvm/Transforms/Scalar/LoopPassManager.h"
71 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
72 #include "llvm/Transforms/Utils/Local.h"
73 #include "llvm/Transforms/Utils/LoopUtils.h"
74 #include "llvm/Transforms/Utils/SSAUpdater.h"
79 #define DEBUG_TYPE "licm"
81 STATISTIC(NumCreatedBlocks
, "Number of blocks created");
82 STATISTIC(NumClonedBranches
, "Number of branches cloned");
83 STATISTIC(NumSunk
, "Number of instructions sunk out of loop");
84 STATISTIC(NumHoisted
, "Number of instructions hoisted out of loop");
85 STATISTIC(NumMovedLoads
, "Number of load insts hoisted or sunk");
86 STATISTIC(NumMovedCalls
, "Number of call insts hoisted or sunk");
87 STATISTIC(NumPromoted
, "Number of memory locations promoted to registers");
89 /// Memory promotion is enabled by default.
91 DisablePromotion("disable-licm-promotion", cl::Hidden
, cl::init(false),
92 cl::desc("Disable memory promotion in LICM pass"));
94 static cl::opt
<bool> ControlFlowHoisting(
95 "licm-control-flow-hoisting", cl::Hidden
, cl::init(false),
96 cl::desc("Enable control flow (and PHI) hoisting in LICM"));
98 static cl::opt
<uint32_t> MaxNumUsesTraversed(
99 "licm-max-num-uses-traversed", cl::Hidden
, cl::init(8),
100 cl::desc("Max num uses visited for identifying load "
101 "invariance in loop using invariant start (default = 8)"));
103 // Default value of zero implies we use the regular alias set tracker mechanism
104 // instead of the cross product using AA to identify aliasing of the memory
105 // location we are interested in.
107 LICMN2Theshold("licm-n2-threshold", cl::Hidden
, cl::init(0),
108 cl::desc("How many instruction to cross product using AA"));
110 // Experimental option to allow imprecision in LICM in pathological cases, in
111 // exchange for faster compile. This is to be removed if MemorySSA starts to
112 // address the same issue. This flag applies only when LICM uses MemorySSA
113 // instead on AliasSetTracker. LICM calls MemorySSAWalker's
114 // getClobberingMemoryAccess, up to the value of the Cap, getting perfect
115 // accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess,
116 // which may not be precise, since optimizeUses is capped. The result is
117 // correct, but we may not get as "far up" as possible to get which access is
118 // clobbering the one queried.
119 cl::opt
<unsigned> llvm::SetLicmMssaOptCap(
120 "licm-mssa-optimization-cap", cl::init(100), cl::Hidden
,
121 cl::desc("Enable imprecision in LICM in pathological cases, in exchange "
122 "for faster compile. Caps the MemorySSA clobbering calls."));
124 // Experimentally, memory promotion carries less importance than sinking and
125 // hoisting. Limit when we do promotion when using MemorySSA, in order to save
127 cl::opt
<unsigned> llvm::SetLicmMssaNoAccForPromotionCap(
128 "licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden
,
129 cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no "
130 "effect. When MSSA in LICM is enabled, then this is the maximum "
131 "number of accesses allowed to be present in a loop in order to "
132 "enable memory promotion."));
134 static bool inSubLoop(BasicBlock
*BB
, Loop
*CurLoop
, LoopInfo
*LI
);
135 static bool isNotUsedOrFreeInLoop(const Instruction
&I
, const Loop
*CurLoop
,
136 const LoopSafetyInfo
*SafetyInfo
,
137 TargetTransformInfo
*TTI
, bool &FreeInLoop
);
138 static void hoist(Instruction
&I
, const DominatorTree
*DT
, const Loop
*CurLoop
,
139 BasicBlock
*Dest
, ICFLoopSafetyInfo
*SafetyInfo
,
140 MemorySSAUpdater
*MSSAU
, OptimizationRemarkEmitter
*ORE
);
141 static bool sink(Instruction
&I
, LoopInfo
*LI
, DominatorTree
*DT
,
142 const Loop
*CurLoop
, ICFLoopSafetyInfo
*SafetyInfo
,
143 MemorySSAUpdater
*MSSAU
, OptimizationRemarkEmitter
*ORE
);
144 static bool isSafeToExecuteUnconditionally(Instruction
&Inst
,
145 const DominatorTree
*DT
,
147 const LoopSafetyInfo
*SafetyInfo
,
148 OptimizationRemarkEmitter
*ORE
,
149 const Instruction
*CtxI
= nullptr);
150 static bool pointerInvalidatedByLoop(MemoryLocation MemLoc
,
151 AliasSetTracker
*CurAST
, Loop
*CurLoop
,
153 static bool pointerInvalidatedByLoopWithMSSA(MemorySSA
*MSSA
, MemoryUse
*MU
,
155 SinkAndHoistLICMFlags
&Flags
);
156 static Instruction
*CloneInstructionInExitBlock(
157 Instruction
&I
, BasicBlock
&ExitBlock
, PHINode
&PN
, const LoopInfo
*LI
,
158 const LoopSafetyInfo
*SafetyInfo
, MemorySSAUpdater
*MSSAU
);
160 static void eraseInstruction(Instruction
&I
, ICFLoopSafetyInfo
&SafetyInfo
,
161 AliasSetTracker
*AST
, MemorySSAUpdater
*MSSAU
);
163 static void moveInstructionBefore(Instruction
&I
, Instruction
&Dest
,
164 ICFLoopSafetyInfo
&SafetyInfo
,
165 MemorySSAUpdater
*MSSAU
);
168 struct LoopInvariantCodeMotion
{
169 using ASTrackerMapTy
= DenseMap
<Loop
*, std::unique_ptr
<AliasSetTracker
>>;
170 bool runOnLoop(Loop
*L
, AliasAnalysis
*AA
, LoopInfo
*LI
, DominatorTree
*DT
,
171 TargetLibraryInfo
*TLI
, TargetTransformInfo
*TTI
,
172 ScalarEvolution
*SE
, MemorySSA
*MSSA
,
173 OptimizationRemarkEmitter
*ORE
, bool DeleteAST
);
175 ASTrackerMapTy
&getLoopToAliasSetMap() { return LoopToAliasSetMap
; }
176 LoopInvariantCodeMotion(unsigned LicmMssaOptCap
,
177 unsigned LicmMssaNoAccForPromotionCap
)
178 : LicmMssaOptCap(LicmMssaOptCap
),
179 LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap
) {}
182 ASTrackerMapTy LoopToAliasSetMap
;
183 unsigned LicmMssaOptCap
;
184 unsigned LicmMssaNoAccForPromotionCap
;
186 std::unique_ptr
<AliasSetTracker
>
187 collectAliasInfoForLoop(Loop
*L
, LoopInfo
*LI
, AliasAnalysis
*AA
);
188 std::unique_ptr
<AliasSetTracker
>
189 collectAliasInfoForLoopWithMSSA(Loop
*L
, AliasAnalysis
*AA
,
190 MemorySSAUpdater
*MSSAU
);
193 struct LegacyLICMPass
: public LoopPass
{
194 static char ID
; // Pass identification, replacement for typeid
196 unsigned LicmMssaOptCap
= SetLicmMssaOptCap
,
197 unsigned LicmMssaNoAccForPromotionCap
= SetLicmMssaNoAccForPromotionCap
)
198 : LoopPass(ID
), LICM(LicmMssaOptCap
, LicmMssaNoAccForPromotionCap
) {
199 initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry());
202 bool runOnLoop(Loop
*L
, LPPassManager
&LPM
) override
{
204 // If we have run LICM on a previous loop but now we are skipping
205 // (because we've hit the opt-bisect limit), we need to clear the
206 // loop alias information.
207 LICM
.getLoopToAliasSetMap().clear();
211 auto *SE
= getAnalysisIfAvailable
<ScalarEvolutionWrapperPass
>();
212 MemorySSA
*MSSA
= EnableMSSALoopDependency
213 ? (&getAnalysis
<MemorySSAWrapperPass
>().getMSSA())
215 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
216 // pass. Function analyses need to be preserved across loop transformations
217 // but ORE cannot be preserved (see comment before the pass definition).
218 OptimizationRemarkEmitter
ORE(L
->getHeader()->getParent());
219 return LICM
.runOnLoop(L
,
220 &getAnalysis
<AAResultsWrapperPass
>().getAAResults(),
221 &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo(),
222 &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree(),
223 &getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI(
224 *L
->getHeader()->getParent()),
225 &getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(
226 *L
->getHeader()->getParent()),
227 SE
? &SE
->getSE() : nullptr, MSSA
, &ORE
, false);
230 /// This transformation requires natural loop information & requires that
231 /// loop preheaders be inserted into the CFG...
233 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
234 AU
.addPreserved
<DominatorTreeWrapperPass
>();
235 AU
.addPreserved
<LoopInfoWrapperPass
>();
236 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
237 if (EnableMSSALoopDependency
) {
238 AU
.addRequired
<MemorySSAWrapperPass
>();
239 AU
.addPreserved
<MemorySSAWrapperPass
>();
241 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
242 getLoopAnalysisUsage(AU
);
245 using llvm::Pass::doFinalization
;
247 bool doFinalization() override
{
248 auto &AliasSetMap
= LICM
.getLoopToAliasSetMap();
249 // All loops in the AliasSetMap should be cleaned up already. The only case
250 // where we fail to do so is if an outer loop gets deleted before LICM
252 assert(all_of(AliasSetMap
,
253 [](LoopInvariantCodeMotion::ASTrackerMapTy::value_type
&KV
) {
254 return !KV
.first
->getParentLoop();
256 "Didn't free loop alias sets");
262 LoopInvariantCodeMotion LICM
;
264 /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
265 void cloneBasicBlockAnalysis(BasicBlock
*From
, BasicBlock
*To
,
268 /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
270 void deleteAnalysisValue(Value
*V
, Loop
*L
) override
;
272 /// Simple Analysis hook. Delete loop L from alias set map.
273 void deleteAnalysisLoop(Loop
*L
) override
;
277 PreservedAnalyses
LICMPass::run(Loop
&L
, LoopAnalysisManager
&AM
,
278 LoopStandardAnalysisResults
&AR
, LPMUpdater
&) {
280 AM
.getResult
<FunctionAnalysisManagerLoopProxy
>(L
, AR
).getManager();
281 Function
*F
= L
.getHeader()->getParent();
283 auto *ORE
= FAM
.getCachedResult
<OptimizationRemarkEmitterAnalysis
>(*F
);
284 // FIXME: This should probably be optional rather than required.
286 report_fatal_error("LICM: OptimizationRemarkEmitterAnalysis not "
287 "cached at a higher level");
289 LoopInvariantCodeMotion
LICM(LicmMssaOptCap
, LicmMssaNoAccForPromotionCap
);
290 if (!LICM
.runOnLoop(&L
, &AR
.AA
, &AR
.LI
, &AR
.DT
, &AR
.TLI
, &AR
.TTI
, &AR
.SE
,
292 return PreservedAnalyses::all();
294 auto PA
= getLoopPassPreservedAnalyses();
296 PA
.preserve
<DominatorTreeAnalysis
>();
297 PA
.preserve
<LoopAnalysis
>();
299 PA
.preserve
<MemorySSAAnalysis
>();
304 char LegacyLICMPass::ID
= 0;
305 INITIALIZE_PASS_BEGIN(LegacyLICMPass
, "licm", "Loop Invariant Code Motion",
307 INITIALIZE_PASS_DEPENDENCY(LoopPass
)
308 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
309 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass
)
310 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass
)
311 INITIALIZE_PASS_END(LegacyLICMPass
, "licm", "Loop Invariant Code Motion", false,
314 Pass
*llvm::createLICMPass() { return new LegacyLICMPass(); }
315 Pass
*llvm::createLICMPass(unsigned LicmMssaOptCap
,
316 unsigned LicmMssaNoAccForPromotionCap
) {
317 return new LegacyLICMPass(LicmMssaOptCap
, LicmMssaNoAccForPromotionCap
);
320 /// Hoist expressions out of the specified loop. Note, alias info for inner
321 /// loop is not preserved so it is not a good idea to run LICM multiple
322 /// times on one loop.
323 /// We should delete AST for inner loops in the new pass manager to avoid
326 bool LoopInvariantCodeMotion::runOnLoop(
327 Loop
*L
, AliasAnalysis
*AA
, LoopInfo
*LI
, DominatorTree
*DT
,
328 TargetLibraryInfo
*TLI
, TargetTransformInfo
*TTI
, ScalarEvolution
*SE
,
329 MemorySSA
*MSSA
, OptimizationRemarkEmitter
*ORE
, bool DeleteAST
) {
330 bool Changed
= false;
332 assert(L
->isLCSSAForm(*DT
) && "Loop is not in LCSSA form.");
334 // If this loop has metadata indicating that LICM is not to be performed then
336 if (hasDisableLICMTransformsHint(L
)) {
340 std::unique_ptr
<AliasSetTracker
> CurAST
;
341 std::unique_ptr
<MemorySSAUpdater
> MSSAU
;
342 bool NoOfMemAccTooLarge
= false;
343 unsigned LicmMssaOptCounter
= 0;
346 LLVM_DEBUG(dbgs() << "LICM: Using Alias Set Tracker.\n");
347 CurAST
= collectAliasInfoForLoop(L
, LI
, AA
);
349 LLVM_DEBUG(dbgs() << "LICM: Using MemorySSA.\n");
350 MSSAU
= std::make_unique
<MemorySSAUpdater
>(MSSA
);
352 unsigned AccessCapCount
= 0;
353 for (auto *BB
: L
->getBlocks()) {
354 if (auto *Accesses
= MSSA
->getBlockAccesses(BB
)) {
355 for (const auto &MA
: *Accesses
) {
358 if (AccessCapCount
> LicmMssaNoAccForPromotionCap
) {
359 NoOfMemAccTooLarge
= true;
364 if (NoOfMemAccTooLarge
)
369 // Get the preheader block to move instructions into...
370 BasicBlock
*Preheader
= L
->getLoopPreheader();
372 // Compute loop safety information.
373 ICFLoopSafetyInfo
SafetyInfo(DT
);
374 SafetyInfo
.computeLoopSafetyInfo(L
);
376 // We want to visit all of the instructions in this loop... that are not parts
377 // of our subloops (they have already had their invariants hoisted out of
378 // their loop, into this loop, so there is no need to process the BODIES of
381 // Traverse the body of the loop in depth first order on the dominator tree so
382 // that we are guaranteed to see definitions before we see uses. This allows
383 // us to sink instructions in one pass, without iteration. After sinking
384 // instructions, we perform another pass to hoist them out of the loop.
385 SinkAndHoistLICMFlags Flags
= {NoOfMemAccTooLarge
, LicmMssaOptCounter
,
386 LicmMssaOptCap
, LicmMssaNoAccForPromotionCap
,
388 if (L
->hasDedicatedExits())
389 Changed
|= sinkRegion(DT
->getNode(L
->getHeader()), AA
, LI
, DT
, TLI
, TTI
, L
,
390 CurAST
.get(), MSSAU
.get(), &SafetyInfo
, Flags
, ORE
);
391 Flags
.IsSink
= false;
393 Changed
|= hoistRegion(DT
->getNode(L
->getHeader()), AA
, LI
, DT
, TLI
, L
,
394 CurAST
.get(), MSSAU
.get(), &SafetyInfo
, Flags
, ORE
);
396 // Now that all loop invariants have been removed from the loop, promote any
397 // memory references to scalars that we can.
398 // Don't sink stores from loops without dedicated block exits. Exits
399 // containing indirect branches are not transformed by loop simplify,
400 // make sure we catch that. An additional load may be generated in the
401 // preheader for SSA updater, so also avoid sinking when no preheader
403 if (!DisablePromotion
&& Preheader
&& L
->hasDedicatedExits() &&
404 !NoOfMemAccTooLarge
) {
405 // Figure out the loop exits and their insertion points
406 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
407 L
->getUniqueExitBlocks(ExitBlocks
);
409 // We can't insert into a catchswitch.
410 bool HasCatchSwitch
= llvm::any_of(ExitBlocks
, [](BasicBlock
*Exit
) {
411 return isa
<CatchSwitchInst
>(Exit
->getTerminator());
414 if (!HasCatchSwitch
) {
415 SmallVector
<Instruction
*, 8> InsertPts
;
416 SmallVector
<MemoryAccess
*, 8> MSSAInsertPts
;
417 InsertPts
.reserve(ExitBlocks
.size());
419 MSSAInsertPts
.reserve(ExitBlocks
.size());
420 for (BasicBlock
*ExitBlock
: ExitBlocks
) {
421 InsertPts
.push_back(&*ExitBlock
->getFirstInsertionPt());
423 MSSAInsertPts
.push_back(nullptr);
426 PredIteratorCache PIC
;
428 bool Promoted
= false;
430 // Build an AST using MSSA.
432 CurAST
= collectAliasInfoForLoopWithMSSA(L
, AA
, MSSAU
.get());
434 // Loop over all of the alias sets in the tracker object.
435 for (AliasSet
&AS
: *CurAST
) {
436 // We can promote this alias set if it has a store, if it is a "Must"
437 // alias set, if the pointer is loop invariant, and if we are not
438 // eliminating any volatile loads or stores.
439 if (AS
.isForwardingAliasSet() || !AS
.isMod() || !AS
.isMustAlias() ||
440 !L
->isLoopInvariant(AS
.begin()->getValue()))
445 "Must alias set should have at least one pointer element in it!");
447 SmallSetVector
<Value
*, 8> PointerMustAliases
;
448 for (const auto &ASI
: AS
)
449 PointerMustAliases
.insert(ASI
.getValue());
451 Promoted
|= promoteLoopAccessesToScalars(
452 PointerMustAliases
, ExitBlocks
, InsertPts
, MSSAInsertPts
, PIC
, LI
,
453 DT
, TLI
, L
, CurAST
.get(), MSSAU
.get(), &SafetyInfo
, ORE
);
456 // Once we have promoted values across the loop body we have to
457 // recursively reform LCSSA as any nested loop may now have values defined
458 // within the loop used in the outer loop.
459 // FIXME: This is really heavy handed. It would be a bit better to use an
460 // SSAUpdater strategy during promotion that was LCSSA aware and reformed
463 formLCSSARecursively(*L
, *DT
, LI
, SE
);
469 // Check that neither this loop nor its parent have had LCSSA broken. LICM is
470 // specifically moving instructions across the loop boundary and so it is
471 // especially in need of sanity checking here.
472 assert(L
->isLCSSAForm(*DT
) && "Loop not left in LCSSA form after LICM!");
473 assert((!L
->getParentLoop() || L
->getParentLoop()->isLCSSAForm(*DT
)) &&
474 "Parent loop not left in LCSSA form after LICM!");
476 // If this loop is nested inside of another one, save the alias information
477 // for when we process the outer loop.
478 if (!MSSAU
.get() && CurAST
.get() && L
->getParentLoop() && !DeleteAST
)
479 LoopToAliasSetMap
[L
] = std::move(CurAST
);
481 if (MSSAU
.get() && VerifyMemorySSA
)
482 MSSAU
->getMemorySSA()->verifyMemorySSA();
485 SE
->forgetLoopDispositions(L
);
489 /// Walk the specified region of the CFG (defined by all blocks dominated by
490 /// the specified block, and that are in the current loop) in reverse depth
491 /// first order w.r.t the DominatorTree. This allows us to visit uses before
492 /// definitions, allowing us to sink a loop body in one pass without iteration.
494 bool llvm::sinkRegion(DomTreeNode
*N
, AliasAnalysis
*AA
, LoopInfo
*LI
,
495 DominatorTree
*DT
, TargetLibraryInfo
*TLI
,
496 TargetTransformInfo
*TTI
, Loop
*CurLoop
,
497 AliasSetTracker
*CurAST
, MemorySSAUpdater
*MSSAU
,
498 ICFLoopSafetyInfo
*SafetyInfo
,
499 SinkAndHoistLICMFlags
&Flags
,
500 OptimizationRemarkEmitter
*ORE
) {
503 assert(N
!= nullptr && AA
!= nullptr && LI
!= nullptr && DT
!= nullptr &&
504 CurLoop
!= nullptr && SafetyInfo
!= nullptr &&
505 "Unexpected input to sinkRegion.");
506 assert(((CurAST
!= nullptr) ^ (MSSAU
!= nullptr)) &&
507 "Either AliasSetTracker or MemorySSA should be initialized.");
509 // We want to visit children before parents. We will enque all the parents
510 // before their children in the worklist and process the worklist in reverse
512 SmallVector
<DomTreeNode
*, 16> Worklist
= collectChildrenInLoop(N
, CurLoop
);
514 bool Changed
= false;
515 for (DomTreeNode
*DTN
: reverse(Worklist
)) {
516 BasicBlock
*BB
= DTN
->getBlock();
517 // Only need to process the contents of this block if it is not part of a
518 // subloop (which would already have been processed).
519 if (inSubLoop(BB
, CurLoop
, LI
))
522 for (BasicBlock::iterator II
= BB
->end(); II
!= BB
->begin();) {
523 Instruction
&I
= *--II
;
525 // If the instruction is dead, we would try to sink it because it isn't
526 // used in the loop, instead, just delete it.
527 if (isInstructionTriviallyDead(&I
, TLI
)) {
528 LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I
<< '\n');
531 eraseInstruction(I
, *SafetyInfo
, CurAST
, MSSAU
);
536 // Check to see if we can sink this instruction to the exit blocks
537 // of the loop. We can do this if the all users of the instruction are
538 // outside of the loop. In this case, it doesn't even matter if the
539 // operands of the instruction are loop invariant.
541 bool FreeInLoop
= false;
542 if (isNotUsedOrFreeInLoop(I
, CurLoop
, SafetyInfo
, TTI
, FreeInLoop
) &&
543 canSinkOrHoistInst(I
, AA
, DT
, CurLoop
, CurAST
, MSSAU
, true, &Flags
,
545 !I
.mayHaveSideEffects()) {
546 if (sink(I
, LI
, DT
, CurLoop
, SafetyInfo
, MSSAU
, ORE
)) {
549 eraseInstruction(I
, *SafetyInfo
, CurAST
, MSSAU
);
556 if (MSSAU
&& VerifyMemorySSA
)
557 MSSAU
->getMemorySSA()->verifyMemorySSA();
562 // This is a helper class for hoistRegion to make it able to hoist control flow
563 // in order to be able to hoist phis. The way this works is that we initially
564 // start hoisting to the loop preheader, and when we see a loop invariant branch
565 // we make note of this. When we then come to hoist an instruction that's
566 // conditional on such a branch we duplicate the branch and the relevant control
567 // flow, then hoist the instruction into the block corresponding to its original
568 // block in the duplicated control flow.
569 class ControlFlowHoister
{
571 // Information about the loop we are hoisting from
575 MemorySSAUpdater
*MSSAU
;
577 // A map of blocks in the loop to the block their instructions will be hoisted
579 DenseMap
<BasicBlock
*, BasicBlock
*> HoistDestinationMap
;
581 // The branches that we can hoist, mapped to the block that marks a
582 // convergence point of their control flow.
583 DenseMap
<BranchInst
*, BasicBlock
*> HoistableBranches
;
586 ControlFlowHoister(LoopInfo
*LI
, DominatorTree
*DT
, Loop
*CurLoop
,
587 MemorySSAUpdater
*MSSAU
)
588 : LI(LI
), DT(DT
), CurLoop(CurLoop
), MSSAU(MSSAU
) {}
590 void registerPossiblyHoistableBranch(BranchInst
*BI
) {
591 // We can only hoist conditional branches with loop invariant operands.
592 if (!ControlFlowHoisting
|| !BI
->isConditional() ||
593 !CurLoop
->hasLoopInvariantOperands(BI
))
596 // The branch destinations need to be in the loop, and we don't gain
597 // anything by duplicating conditional branches with duplicate successors,
598 // as it's essentially the same as an unconditional branch.
599 BasicBlock
*TrueDest
= BI
->getSuccessor(0);
600 BasicBlock
*FalseDest
= BI
->getSuccessor(1);
601 if (!CurLoop
->contains(TrueDest
) || !CurLoop
->contains(FalseDest
) ||
602 TrueDest
== FalseDest
)
605 // We can hoist BI if one branch destination is the successor of the other,
606 // or both have common successor which we check by seeing if the
607 // intersection of their successors is non-empty.
608 // TODO: This could be expanded to allowing branches where both ends
609 // eventually converge to a single block.
610 SmallPtrSet
<BasicBlock
*, 4> TrueDestSucc
, FalseDestSucc
;
611 TrueDestSucc
.insert(succ_begin(TrueDest
), succ_end(TrueDest
));
612 FalseDestSucc
.insert(succ_begin(FalseDest
), succ_end(FalseDest
));
613 BasicBlock
*CommonSucc
= nullptr;
614 if (TrueDestSucc
.count(FalseDest
)) {
615 CommonSucc
= FalseDest
;
616 } else if (FalseDestSucc
.count(TrueDest
)) {
617 CommonSucc
= TrueDest
;
619 set_intersect(TrueDestSucc
, FalseDestSucc
);
620 // If there's one common successor use that.
621 if (TrueDestSucc
.size() == 1)
622 CommonSucc
= *TrueDestSucc
.begin();
623 // If there's more than one pick whichever appears first in the block list
624 // (we can't use the value returned by TrueDestSucc.begin() as it's
625 // unpredicatable which element gets returned).
626 else if (!TrueDestSucc
.empty()) {
627 Function
*F
= TrueDest
->getParent();
628 auto IsSucc
= [&](BasicBlock
&BB
) { return TrueDestSucc
.count(&BB
); };
629 auto It
= std::find_if(F
->begin(), F
->end(), IsSucc
);
630 assert(It
!= F
->end() && "Could not find successor in function");
634 // The common successor has to be dominated by the branch, as otherwise
635 // there will be some other path to the successor that will not be
636 // controlled by this branch so any phi we hoist would be controlled by the
637 // wrong condition. This also takes care of avoiding hoisting of loop back
639 // TODO: In some cases this could be relaxed if the successor is dominated
640 // by another block that's been hoisted and we can guarantee that the
641 // control flow has been replicated exactly.
642 if (CommonSucc
&& DT
->dominates(BI
, CommonSucc
))
643 HoistableBranches
[BI
] = CommonSucc
;
646 bool canHoistPHI(PHINode
*PN
) {
647 // The phi must have loop invariant operands.
648 if (!ControlFlowHoisting
|| !CurLoop
->hasLoopInvariantOperands(PN
))
650 // We can hoist phis if the block they are in is the target of hoistable
651 // branches which cover all of the predecessors of the block.
652 SmallPtrSet
<BasicBlock
*, 8> PredecessorBlocks
;
653 BasicBlock
*BB
= PN
->getParent();
654 for (BasicBlock
*PredBB
: predecessors(BB
))
655 PredecessorBlocks
.insert(PredBB
);
656 // If we have less predecessor blocks than predecessors then the phi will
657 // have more than one incoming value for the same block which we can't
659 // TODO: This could be handled be erasing some of the duplicate incoming
661 if (PredecessorBlocks
.size() != pred_size(BB
))
663 for (auto &Pair
: HoistableBranches
) {
664 if (Pair
.second
== BB
) {
665 // Which blocks are predecessors via this branch depends on if the
666 // branch is triangle-like or diamond-like.
667 if (Pair
.first
->getSuccessor(0) == BB
) {
668 PredecessorBlocks
.erase(Pair
.first
->getParent());
669 PredecessorBlocks
.erase(Pair
.first
->getSuccessor(1));
670 } else if (Pair
.first
->getSuccessor(1) == BB
) {
671 PredecessorBlocks
.erase(Pair
.first
->getParent());
672 PredecessorBlocks
.erase(Pair
.first
->getSuccessor(0));
674 PredecessorBlocks
.erase(Pair
.first
->getSuccessor(0));
675 PredecessorBlocks
.erase(Pair
.first
->getSuccessor(1));
679 // PredecessorBlocks will now be empty if for every predecessor of BB we
680 // found a hoistable branch source.
681 return PredecessorBlocks
.empty();
684 BasicBlock
*getOrCreateHoistedBlock(BasicBlock
*BB
) {
685 if (!ControlFlowHoisting
)
686 return CurLoop
->getLoopPreheader();
687 // If BB has already been hoisted, return that
688 if (HoistDestinationMap
.count(BB
))
689 return HoistDestinationMap
[BB
];
691 // Check if this block is conditional based on a pending branch
692 auto HasBBAsSuccessor
=
693 [&](DenseMap
<BranchInst
*, BasicBlock
*>::value_type
&Pair
) {
694 return BB
!= Pair
.second
&& (Pair
.first
->getSuccessor(0) == BB
||
695 Pair
.first
->getSuccessor(1) == BB
);
697 auto It
= std::find_if(HoistableBranches
.begin(), HoistableBranches
.end(),
700 // If not involved in a pending branch, hoist to preheader
701 BasicBlock
*InitialPreheader
= CurLoop
->getLoopPreheader();
702 if (It
== HoistableBranches
.end()) {
703 LLVM_DEBUG(dbgs() << "LICM using " << InitialPreheader
->getName()
704 << " as hoist destination for " << BB
->getName()
706 HoistDestinationMap
[BB
] = InitialPreheader
;
707 return InitialPreheader
;
709 BranchInst
*BI
= It
->first
;
710 assert(std::find_if(++It
, HoistableBranches
.end(), HasBBAsSuccessor
) ==
711 HoistableBranches
.end() &&
712 "BB is expected to be the target of at most one branch");
714 LLVMContext
&C
= BB
->getContext();
715 BasicBlock
*TrueDest
= BI
->getSuccessor(0);
716 BasicBlock
*FalseDest
= BI
->getSuccessor(1);
717 BasicBlock
*CommonSucc
= HoistableBranches
[BI
];
718 BasicBlock
*HoistTarget
= getOrCreateHoistedBlock(BI
->getParent());
720 // Create hoisted versions of blocks that currently don't have them
721 auto CreateHoistedBlock
= [&](BasicBlock
*Orig
) {
722 if (HoistDestinationMap
.count(Orig
))
723 return HoistDestinationMap
[Orig
];
725 BasicBlock::Create(C
, Orig
->getName() + ".licm", Orig
->getParent());
726 HoistDestinationMap
[Orig
] = New
;
727 DT
->addNewBlock(New
, HoistTarget
);
728 if (CurLoop
->getParentLoop())
729 CurLoop
->getParentLoop()->addBasicBlockToLoop(New
, *LI
);
731 LLVM_DEBUG(dbgs() << "LICM created " << New
->getName()
732 << " as hoist destination for " << Orig
->getName()
736 BasicBlock
*HoistTrueDest
= CreateHoistedBlock(TrueDest
);
737 BasicBlock
*HoistFalseDest
= CreateHoistedBlock(FalseDest
);
738 BasicBlock
*HoistCommonSucc
= CreateHoistedBlock(CommonSucc
);
740 // Link up these blocks with branches.
741 if (!HoistCommonSucc
->getTerminator()) {
742 // The new common successor we've generated will branch to whatever that
743 // hoist target branched to.
744 BasicBlock
*TargetSucc
= HoistTarget
->getSingleSuccessor();
745 assert(TargetSucc
&& "Expected hoist target to have a single successor");
746 HoistCommonSucc
->moveBefore(TargetSucc
);
747 BranchInst::Create(TargetSucc
, HoistCommonSucc
);
749 if (!HoistTrueDest
->getTerminator()) {
750 HoistTrueDest
->moveBefore(HoistCommonSucc
);
751 BranchInst::Create(HoistCommonSucc
, HoistTrueDest
);
753 if (!HoistFalseDest
->getTerminator()) {
754 HoistFalseDest
->moveBefore(HoistCommonSucc
);
755 BranchInst::Create(HoistCommonSucc
, HoistFalseDest
);
758 // If BI is being cloned to what was originally the preheader then
759 // HoistCommonSucc will now be the new preheader.
760 if (HoistTarget
== InitialPreheader
) {
761 // Phis in the loop header now need to use the new preheader.
762 InitialPreheader
->replaceSuccessorsPhiUsesWith(HoistCommonSucc
);
764 MSSAU
->wireOldPredecessorsToNewImmediatePredecessor(
765 HoistTarget
->getSingleSuccessor(), HoistCommonSucc
, {HoistTarget
});
766 // The new preheader dominates the loop header.
767 DomTreeNode
*PreheaderNode
= DT
->getNode(HoistCommonSucc
);
768 DomTreeNode
*HeaderNode
= DT
->getNode(CurLoop
->getHeader());
769 DT
->changeImmediateDominator(HeaderNode
, PreheaderNode
);
770 // The preheader hoist destination is now the new preheader, with the
771 // exception of the hoist destination of this branch.
772 for (auto &Pair
: HoistDestinationMap
)
773 if (Pair
.second
== InitialPreheader
&& Pair
.first
!= BI
->getParent())
774 Pair
.second
= HoistCommonSucc
;
777 // Now finally clone BI.
779 HoistTarget
->getTerminator(),
780 BranchInst::Create(HoistTrueDest
, HoistFalseDest
, BI
->getCondition()));
783 assert(CurLoop
->getLoopPreheader() &&
784 "Hoisting blocks should not have destroyed preheader");
785 return HoistDestinationMap
[BB
];
790 /// Walk the specified region of the CFG (defined by all blocks dominated by
791 /// the specified block, and that are in the current loop) in depth first
792 /// order w.r.t the DominatorTree. This allows us to visit definitions before
793 /// uses, allowing us to hoist a loop body in one pass without iteration.
795 bool llvm::hoistRegion(DomTreeNode
*N
, AliasAnalysis
*AA
, LoopInfo
*LI
,
796 DominatorTree
*DT
, TargetLibraryInfo
*TLI
, Loop
*CurLoop
,
797 AliasSetTracker
*CurAST
, MemorySSAUpdater
*MSSAU
,
798 ICFLoopSafetyInfo
*SafetyInfo
,
799 SinkAndHoistLICMFlags
&Flags
,
800 OptimizationRemarkEmitter
*ORE
) {
802 assert(N
!= nullptr && AA
!= nullptr && LI
!= nullptr && DT
!= nullptr &&
803 CurLoop
!= nullptr && SafetyInfo
!= nullptr &&
804 "Unexpected input to hoistRegion.");
805 assert(((CurAST
!= nullptr) ^ (MSSAU
!= nullptr)) &&
806 "Either AliasSetTracker or MemorySSA should be initialized.");
808 ControlFlowHoister
CFH(LI
, DT
, CurLoop
, MSSAU
);
810 // Keep track of instructions that have been hoisted, as they may need to be
811 // re-hoisted if they end up not dominating all of their uses.
812 SmallVector
<Instruction
*, 16> HoistedInstructions
;
814 // For PHI hoisting to work we need to hoist blocks before their successors.
815 // We can do this by iterating through the blocks in the loop in reverse
817 LoopBlocksRPO
Worklist(CurLoop
);
818 Worklist
.perform(LI
);
819 bool Changed
= false;
820 for (BasicBlock
*BB
: Worklist
) {
821 // Only need to process the contents of this block if it is not part of a
822 // subloop (which would already have been processed).
823 if (inSubLoop(BB
, CurLoop
, LI
))
826 for (BasicBlock::iterator II
= BB
->begin(), E
= BB
->end(); II
!= E
;) {
827 Instruction
&I
= *II
++;
828 // Try constant folding this instruction. If all the operands are
829 // constants, it is technically hoistable, but it would be better to
831 if (Constant
*C
= ConstantFoldInstruction(
832 &I
, I
.getModule()->getDataLayout(), TLI
)) {
833 LLVM_DEBUG(dbgs() << "LICM folding inst: " << I
<< " --> " << *C
836 CurAST
->copyValue(&I
, C
);
837 // FIXME MSSA: Such replacements may make accesses unoptimized (D51960).
838 I
.replaceAllUsesWith(C
);
839 if (isInstructionTriviallyDead(&I
, TLI
))
840 eraseInstruction(I
, *SafetyInfo
, CurAST
, MSSAU
);
845 // Try hoisting the instruction out to the preheader. We can only do
846 // this if all of the operands of the instruction are loop invariant and
847 // if it is safe to hoist the instruction.
848 // TODO: It may be safe to hoist if we are hoisting to a conditional block
849 // and we have accurately duplicated the control flow from the loop header
851 if (CurLoop
->hasLoopInvariantOperands(&I
) &&
852 canSinkOrHoistInst(I
, AA
, DT
, CurLoop
, CurAST
, MSSAU
, true, &Flags
,
854 isSafeToExecuteUnconditionally(
855 I
, DT
, CurLoop
, SafetyInfo
, ORE
,
856 CurLoop
->getLoopPreheader()->getTerminator())) {
857 hoist(I
, DT
, CurLoop
, CFH
.getOrCreateHoistedBlock(BB
), SafetyInfo
,
859 HoistedInstructions
.push_back(&I
);
864 // Attempt to remove floating point division out of the loop by
865 // converting it to a reciprocal multiplication.
866 if (I
.getOpcode() == Instruction::FDiv
&&
867 CurLoop
->isLoopInvariant(I
.getOperand(1)) &&
868 I
.hasAllowReciprocal()) {
869 auto Divisor
= I
.getOperand(1);
870 auto One
= llvm::ConstantFP::get(Divisor
->getType(), 1.0);
871 auto ReciprocalDivisor
= BinaryOperator::CreateFDiv(One
, Divisor
);
872 ReciprocalDivisor
->setFastMathFlags(I
.getFastMathFlags());
873 SafetyInfo
->insertInstructionTo(ReciprocalDivisor
, I
.getParent());
874 ReciprocalDivisor
->insertBefore(&I
);
877 BinaryOperator::CreateFMul(I
.getOperand(0), ReciprocalDivisor
);
878 Product
->setFastMathFlags(I
.getFastMathFlags());
879 SafetyInfo
->insertInstructionTo(Product
, I
.getParent());
880 Product
->insertAfter(&I
);
881 I
.replaceAllUsesWith(Product
);
882 eraseInstruction(I
, *SafetyInfo
, CurAST
, MSSAU
);
884 hoist(*ReciprocalDivisor
, DT
, CurLoop
, CFH
.getOrCreateHoistedBlock(BB
),
885 SafetyInfo
, MSSAU
, ORE
);
886 HoistedInstructions
.push_back(ReciprocalDivisor
);
891 auto IsInvariantStart
= [&](Instruction
&I
) {
892 using namespace PatternMatch
;
893 return I
.use_empty() &&
894 match(&I
, m_Intrinsic
<Intrinsic::invariant_start
>());
896 auto MustExecuteWithoutWritesBefore
= [&](Instruction
&I
) {
897 return SafetyInfo
->isGuaranteedToExecute(I
, DT
, CurLoop
) &&
898 SafetyInfo
->doesNotWriteMemoryBefore(I
, CurLoop
);
900 if ((IsInvariantStart(I
) || isGuard(&I
)) &&
901 CurLoop
->hasLoopInvariantOperands(&I
) &&
902 MustExecuteWithoutWritesBefore(I
)) {
903 hoist(I
, DT
, CurLoop
, CFH
.getOrCreateHoistedBlock(BB
), SafetyInfo
,
905 HoistedInstructions
.push_back(&I
);
910 if (PHINode
*PN
= dyn_cast
<PHINode
>(&I
)) {
911 if (CFH
.canHoistPHI(PN
)) {
912 // Redirect incoming blocks first to ensure that we create hoisted
913 // versions of those blocks before we hoist the phi.
914 for (unsigned int i
= 0; i
< PN
->getNumIncomingValues(); ++i
)
915 PN
->setIncomingBlock(
916 i
, CFH
.getOrCreateHoistedBlock(PN
->getIncomingBlock(i
)));
917 hoist(*PN
, DT
, CurLoop
, CFH
.getOrCreateHoistedBlock(BB
), SafetyInfo
,
919 assert(DT
->dominates(PN
, BB
) && "Conditional PHIs not expected");
925 // Remember possibly hoistable branches so we can actually hoist them
927 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(&I
))
928 CFH
.registerPossiblyHoistableBranch(BI
);
932 // If we hoisted instructions to a conditional block they may not dominate
933 // their uses that weren't hoisted (such as phis where some operands are not
934 // loop invariant). If so make them unconditional by moving them to their
935 // immediate dominator. We iterate through the instructions in reverse order
936 // which ensures that when we rehoist an instruction we rehoist its operands,
937 // and also keep track of where in the block we are rehoisting to to make sure
938 // that we rehoist instructions before the instructions that use them.
939 Instruction
*HoistPoint
= nullptr;
940 if (ControlFlowHoisting
) {
941 for (Instruction
*I
: reverse(HoistedInstructions
)) {
942 if (!llvm::all_of(I
->uses(),
943 [&](Use
&U
) { return DT
->dominates(I
, U
); })) {
944 BasicBlock
*Dominator
=
945 DT
->getNode(I
->getParent())->getIDom()->getBlock();
946 if (!HoistPoint
|| !DT
->dominates(HoistPoint
->getParent(), Dominator
)) {
948 assert(DT
->dominates(Dominator
, HoistPoint
->getParent()) &&
949 "New hoist point expected to dominate old hoist point");
950 HoistPoint
= Dominator
->getTerminator();
952 LLVM_DEBUG(dbgs() << "LICM rehoisting to "
953 << HoistPoint
->getParent()->getName()
954 << ": " << *I
<< "\n");
955 moveInstructionBefore(*I
, *HoistPoint
, *SafetyInfo
, MSSAU
);
961 if (MSSAU
&& VerifyMemorySSA
)
962 MSSAU
->getMemorySSA()->verifyMemorySSA();
964 // Now that we've finished hoisting make sure that LI and DT are still
968 assert(DT
->verify(DominatorTree::VerificationLevel::Fast
) &&
969 "Dominator tree verification failed");
977 // Return true if LI is invariant within scope of the loop. LI is invariant if
978 // CurLoop is dominated by an invariant.start representing the same memory
979 // location and size as the memory location LI loads from, and also the
980 // invariant.start has no uses.
981 static bool isLoadInvariantInLoop(LoadInst
*LI
, DominatorTree
*DT
,
983 Value
*Addr
= LI
->getOperand(0);
984 const DataLayout
&DL
= LI
->getModule()->getDataLayout();
985 const uint32_t LocSizeInBits
= DL
.getTypeSizeInBits(LI
->getType());
987 // if the type is i8 addrspace(x)*, we know this is the type of
988 // llvm.invariant.start operand
989 auto *PtrInt8Ty
= PointerType::get(Type::getInt8Ty(LI
->getContext()),
990 LI
->getPointerAddressSpace());
991 unsigned BitcastsVisited
= 0;
992 // Look through bitcasts until we reach the i8* type (this is invariant.start
994 while (Addr
->getType() != PtrInt8Ty
) {
995 auto *BC
= dyn_cast
<BitCastInst
>(Addr
);
996 // Avoid traversing high number of bitcast uses.
997 if (++BitcastsVisited
> MaxNumUsesTraversed
|| !BC
)
999 Addr
= BC
->getOperand(0);
1002 unsigned UsesVisited
= 0;
1003 // Traverse all uses of the load operand value, to see if invariant.start is
1004 // one of the uses, and whether it dominates the load instruction.
1005 for (auto *U
: Addr
->users()) {
1006 // Avoid traversing for Load operand with high number of users.
1007 if (++UsesVisited
> MaxNumUsesTraversed
)
1009 IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(U
);
1010 // If there are escaping uses of invariant.start instruction, the load maybe
1012 if (!II
|| II
->getIntrinsicID() != Intrinsic::invariant_start
||
1015 unsigned InvariantSizeInBits
=
1016 cast
<ConstantInt
>(II
->getArgOperand(0))->getSExtValue() * 8;
1017 // Confirm the invariant.start location size contains the load operand size
1018 // in bits. Also, the invariant.start should dominate the load, and we
1019 // should not hoist the load out of a loop that contains this dominating
1021 if (LocSizeInBits
<= InvariantSizeInBits
&&
1022 DT
->properlyDominates(II
->getParent(), CurLoop
->getHeader()))
1030 /// Return true if-and-only-if we know how to (mechanically) both hoist and
1031 /// sink a given instruction out of a loop. Does not address legality
1032 /// concerns such as aliasing or speculation safety.
1033 bool isHoistableAndSinkableInst(Instruction
&I
) {
1034 // Only these instructions are hoistable/sinkable.
1035 return (isa
<LoadInst
>(I
) || isa
<StoreInst
>(I
) || isa
<CallInst
>(I
) ||
1036 isa
<FenceInst
>(I
) || isa
<CastInst
>(I
) ||
1037 isa
<UnaryOperator
>(I
) || isa
<BinaryOperator
>(I
) ||
1038 isa
<SelectInst
>(I
) || isa
<GetElementPtrInst
>(I
) || isa
<CmpInst
>(I
) ||
1039 isa
<InsertElementInst
>(I
) || isa
<ExtractElementInst
>(I
) ||
1040 isa
<ShuffleVectorInst
>(I
) || isa
<ExtractValueInst
>(I
) ||
1041 isa
<InsertValueInst
>(I
));
1043 /// Return true if all of the alias sets within this AST are known not to
1044 /// contain a Mod, or if MSSA knows thare are no MemoryDefs in the loop.
1045 bool isReadOnly(AliasSetTracker
*CurAST
, const MemorySSAUpdater
*MSSAU
,
1048 for (AliasSet
&AS
: *CurAST
) {
1049 if (!AS
.isForwardingAliasSet() && AS
.isMod()) {
1055 for (auto *BB
: L
->getBlocks())
1056 if (MSSAU
->getMemorySSA()->getBlockDefs(BB
))
1062 /// Return true if I is the only Instruction with a MemoryAccess in L.
1063 bool isOnlyMemoryAccess(const Instruction
*I
, const Loop
*L
,
1064 const MemorySSAUpdater
*MSSAU
) {
1065 for (auto *BB
: L
->getBlocks())
1066 if (auto *Accs
= MSSAU
->getMemorySSA()->getBlockAccesses(BB
)) {
1068 for (const auto &Acc
: *Accs
) {
1069 if (isa
<MemoryPhi
>(&Acc
))
1071 const auto *MUD
= cast
<MemoryUseOrDef
>(&Acc
);
1072 if (MUD
->getMemoryInst() != I
|| NotAPhi
++ == 1)
1080 bool llvm::canSinkOrHoistInst(Instruction
&I
, AAResults
*AA
, DominatorTree
*DT
,
1081 Loop
*CurLoop
, AliasSetTracker
*CurAST
,
1082 MemorySSAUpdater
*MSSAU
,
1083 bool TargetExecutesOncePerLoop
,
1084 SinkAndHoistLICMFlags
*Flags
,
1085 OptimizationRemarkEmitter
*ORE
) {
1086 // If we don't understand the instruction, bail early.
1087 if (!isHoistableAndSinkableInst(I
))
1090 MemorySSA
*MSSA
= MSSAU
? MSSAU
->getMemorySSA() : nullptr;
1092 assert(Flags
!= nullptr && "Flags cannot be null.");
1094 // Loads have extra constraints we have to verify before we can hoist them.
1095 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(&I
)) {
1096 if (!LI
->isUnordered())
1097 return false; // Don't sink/hoist volatile or ordered atomic loads!
1099 // Loads from constant memory are always safe to move, even if they end up
1100 // in the same alias set as something that ends up being modified.
1101 if (AA
->pointsToConstantMemory(LI
->getOperand(0)))
1103 if (LI
->hasMetadata(LLVMContext::MD_invariant_load
))
1106 if (LI
->isAtomic() && !TargetExecutesOncePerLoop
)
1107 return false; // Don't risk duplicating unordered loads
1109 // This checks for an invariant.start dominating the load.
1110 if (isLoadInvariantInLoop(LI
, DT
, CurLoop
))
1115 Invalidated
= pointerInvalidatedByLoop(MemoryLocation::get(LI
), CurAST
,
1118 Invalidated
= pointerInvalidatedByLoopWithMSSA(
1119 MSSA
, cast
<MemoryUse
>(MSSA
->getMemoryAccess(LI
)), CurLoop
, *Flags
);
1120 // Check loop-invariant address because this may also be a sinkable load
1121 // whose address is not necessarily loop-invariant.
1122 if (ORE
&& Invalidated
&& CurLoop
->isLoopInvariant(LI
->getPointerOperand()))
1124 return OptimizationRemarkMissed(
1125 DEBUG_TYPE
, "LoadWithLoopInvariantAddressInvalidated", LI
)
1126 << "failed to move load with loop-invariant address "
1127 "because the loop may invalidate its value";
1130 return !Invalidated
;
1131 } else if (CallInst
*CI
= dyn_cast
<CallInst
>(&I
)) {
1132 // Don't sink or hoist dbg info; it's legal, but not useful.
1133 if (isa
<DbgInfoIntrinsic
>(I
))
1136 // Don't sink calls which can throw.
1140 using namespace PatternMatch
;
1141 if (match(CI
, m_Intrinsic
<Intrinsic::assume
>()))
1142 // Assumes don't actually alias anything or throw
1145 // Handle simple cases by querying alias analysis.
1146 FunctionModRefBehavior Behavior
= AA
->getModRefBehavior(CI
);
1147 if (Behavior
== FMRB_DoesNotAccessMemory
)
1149 if (AliasAnalysis::onlyReadsMemory(Behavior
)) {
1150 // A readonly argmemonly function only reads from memory pointed to by
1151 // it's arguments with arbitrary offsets. If we can prove there are no
1152 // writes to this memory in the loop, we can hoist or sink.
1153 if (AliasAnalysis::onlyAccessesArgPointees(Behavior
)) {
1154 // TODO: expand to writeable arguments
1155 for (Value
*Op
: CI
->arg_operands())
1156 if (Op
->getType()->isPointerTy()) {
1159 Invalidated
= pointerInvalidatedByLoop(
1160 MemoryLocation(Op
, LocationSize::unknown(), AAMDNodes()),
1161 CurAST
, CurLoop
, AA
);
1163 Invalidated
= pointerInvalidatedByLoopWithMSSA(
1164 MSSA
, cast
<MemoryUse
>(MSSA
->getMemoryAccess(CI
)), CurLoop
,
1172 // If this call only reads from memory and there are no writes to memory
1173 // in the loop, we can hoist or sink the call as appropriate.
1174 if (isReadOnly(CurAST
, MSSAU
, CurLoop
))
1178 // FIXME: This should use mod/ref information to see if we can hoist or
1182 } else if (auto *FI
= dyn_cast
<FenceInst
>(&I
)) {
1183 // Fences alias (most) everything to provide ordering. For the moment,
1184 // just give up if there are any other memory operations in the loop.
1186 auto Begin
= CurAST
->begin();
1187 assert(Begin
!= CurAST
->end() && "must contain FI");
1188 if (std::next(Begin
) != CurAST
->end())
1189 // constant memory for instance, TODO: handle better
1191 auto *UniqueI
= Begin
->getUniqueInstruction();
1193 // other memory op, give up
1195 (void)FI
; // suppress unused variable warning
1196 assert(UniqueI
== FI
&& "AS must contain FI");
1199 return isOnlyMemoryAccess(FI
, CurLoop
, MSSAU
);
1200 } else if (auto *SI
= dyn_cast
<StoreInst
>(&I
)) {
1201 if (!SI
->isUnordered())
1202 return false; // Don't sink/hoist volatile or ordered atomic store!
1204 // We can only hoist a store that we can prove writes a value which is not
1205 // read or overwritten within the loop. For those cases, we fallback to
1206 // load store promotion instead. TODO: We can extend this to cases where
1207 // there is exactly one write to the location and that write dominates an
1208 // arbitrary number of reads in the loop.
1210 auto &AS
= CurAST
->getAliasSetFor(MemoryLocation::get(SI
));
1212 if (AS
.isRef() || !AS
.isMustAlias())
1213 // Quick exit test, handled by the full path below as well.
1215 auto *UniqueI
= AS
.getUniqueInstruction();
1217 // other memory op, give up
1219 assert(UniqueI
== SI
&& "AS must contain SI");
1222 if (isOnlyMemoryAccess(SI
, CurLoop
, MSSAU
))
1224 // If there are more accesses than the Promotion cap, give up, we're not
1225 // walking a list that long.
1226 if (Flags
->NoOfMemAccTooLarge
)
1228 // Check store only if there's still "quota" to check clobber.
1229 if (Flags
->LicmMssaOptCounter
>= Flags
->LicmMssaOptCap
)
1231 // If there are interfering Uses (i.e. their defining access is in the
1232 // loop), or ordered loads (stored as Defs!), don't move this store.
1233 // Could do better here, but this is conservatively correct.
1234 // TODO: Cache set of Uses on the first walk in runOnLoop, update when
1235 // moving accesses. Can also extend to dominating uses.
1236 auto *SIMD
= MSSA
->getMemoryAccess(SI
);
1237 for (auto *BB
: CurLoop
->getBlocks())
1238 if (auto *Accesses
= MSSA
->getBlockAccesses(BB
)) {
1239 for (const auto &MA
: *Accesses
)
1240 if (const auto *MU
= dyn_cast
<MemoryUse
>(&MA
)) {
1241 auto *MD
= MU
->getDefiningAccess();
1242 if (!MSSA
->isLiveOnEntryDef(MD
) &&
1243 CurLoop
->contains(MD
->getBlock()))
1245 // Disable hoisting past potentially interfering loads. Optimized
1246 // Uses may point to an access outside the loop, as getClobbering
1247 // checks the previous iteration when walking the backedge.
1248 // FIXME: More precise: no Uses that alias SI.
1249 if (!Flags
->IsSink
&& !MSSA
->dominates(SIMD
, MU
))
1251 } else if (const auto *MD
= dyn_cast
<MemoryDef
>(&MA
))
1252 if (auto *LI
= dyn_cast
<LoadInst
>(MD
->getMemoryInst())) {
1253 (void)LI
; // Silence warning.
1254 assert(!LI
->isUnordered() && "Expected unordered load");
1259 auto *Source
= MSSA
->getSkipSelfWalker()->getClobberingMemoryAccess(SI
);
1260 Flags
->LicmMssaOptCounter
++;
1261 // If there are no clobbering Defs in the loop, store is safe to hoist.
1262 return MSSA
->isLiveOnEntryDef(Source
) ||
1263 !CurLoop
->contains(Source
->getBlock());
1267 assert(!I
.mayReadOrWriteMemory() && "unhandled aliasing");
1269 // We've established mechanical ability and aliasing, it's up to the caller
1270 // to check fault safety
1274 /// Returns true if a PHINode is a trivially replaceable with an
1276 /// This is true when all incoming values are that instruction.
1277 /// This pattern occurs most often with LCSSA PHI nodes.
1279 static bool isTriviallyReplaceablePHI(const PHINode
&PN
, const Instruction
&I
) {
1280 for (const Value
*IncValue
: PN
.incoming_values())
1287 /// Return true if the instruction is free in the loop.
1288 static bool isFreeInLoop(const Instruction
&I
, const Loop
*CurLoop
,
1289 const TargetTransformInfo
*TTI
) {
1291 if (const GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(&I
)) {
1292 if (TTI
->getUserCost(GEP
) != TargetTransformInfo::TCC_Free
)
1294 // For a GEP, we cannot simply use getUserCost because currently it
1295 // optimistically assume that a GEP will fold into addressing mode
1296 // regardless of its users.
1297 const BasicBlock
*BB
= GEP
->getParent();
1298 for (const User
*U
: GEP
->users()) {
1299 const Instruction
*UI
= cast
<Instruction
>(U
);
1300 if (CurLoop
->contains(UI
) &&
1301 (BB
!= UI
->getParent() ||
1302 (!isa
<StoreInst
>(UI
) && !isa
<LoadInst
>(UI
))))
1307 return TTI
->getUserCost(&I
) == TargetTransformInfo::TCC_Free
;
1310 /// Return true if the only users of this instruction are outside of
1311 /// the loop. If this is true, we can sink the instruction to the exit
1312 /// blocks of the loop.
1314 /// We also return true if the instruction could be folded away in lowering.
1315 /// (e.g., a GEP can be folded into a load as an addressing mode in the loop).
1316 static bool isNotUsedOrFreeInLoop(const Instruction
&I
, const Loop
*CurLoop
,
1317 const LoopSafetyInfo
*SafetyInfo
,
1318 TargetTransformInfo
*TTI
, bool &FreeInLoop
) {
1319 const auto &BlockColors
= SafetyInfo
->getBlockColors();
1320 bool IsFree
= isFreeInLoop(I
, CurLoop
, TTI
);
1321 for (const User
*U
: I
.users()) {
1322 const Instruction
*UI
= cast
<Instruction
>(U
);
1323 if (const PHINode
*PN
= dyn_cast
<PHINode
>(UI
)) {
1324 const BasicBlock
*BB
= PN
->getParent();
1325 // We cannot sink uses in catchswitches.
1326 if (isa
<CatchSwitchInst
>(BB
->getTerminator()))
1329 // We need to sink a callsite to a unique funclet. Avoid sinking if the
1330 // phi use is too muddled.
1331 if (isa
<CallInst
>(I
))
1332 if (!BlockColors
.empty() &&
1333 BlockColors
.find(const_cast<BasicBlock
*>(BB
))->second
.size() != 1)
1337 if (CurLoop
->contains(UI
)) {
1348 static Instruction
*CloneInstructionInExitBlock(
1349 Instruction
&I
, BasicBlock
&ExitBlock
, PHINode
&PN
, const LoopInfo
*LI
,
1350 const LoopSafetyInfo
*SafetyInfo
, MemorySSAUpdater
*MSSAU
) {
1352 if (auto *CI
= dyn_cast
<CallInst
>(&I
)) {
1353 const auto &BlockColors
= SafetyInfo
->getBlockColors();
1355 // Sinking call-sites need to be handled differently from other
1356 // instructions. The cloned call-site needs a funclet bundle operand
1357 // appropriate for its location in the CFG.
1358 SmallVector
<OperandBundleDef
, 1> OpBundles
;
1359 for (unsigned BundleIdx
= 0, BundleEnd
= CI
->getNumOperandBundles();
1360 BundleIdx
!= BundleEnd
; ++BundleIdx
) {
1361 OperandBundleUse Bundle
= CI
->getOperandBundleAt(BundleIdx
);
1362 if (Bundle
.getTagID() == LLVMContext::OB_funclet
)
1365 OpBundles
.emplace_back(Bundle
);
1368 if (!BlockColors
.empty()) {
1369 const ColorVector
&CV
= BlockColors
.find(&ExitBlock
)->second
;
1370 assert(CV
.size() == 1 && "non-unique color for exit block!");
1371 BasicBlock
*BBColor
= CV
.front();
1372 Instruction
*EHPad
= BBColor
->getFirstNonPHI();
1373 if (EHPad
->isEHPad())
1374 OpBundles
.emplace_back("funclet", EHPad
);
1377 New
= CallInst::Create(CI
, OpBundles
);
1382 ExitBlock
.getInstList().insert(ExitBlock
.getFirstInsertionPt(), New
);
1383 if (!I
.getName().empty())
1384 New
->setName(I
.getName() + ".le");
1386 MemoryAccess
*OldMemAcc
;
1387 if (MSSAU
&& (OldMemAcc
= MSSAU
->getMemorySSA()->getMemoryAccess(&I
))) {
1388 // Create a new MemoryAccess and let MemorySSA set its defining access.
1389 MemoryAccess
*NewMemAcc
= MSSAU
->createMemoryAccessInBB(
1390 New
, nullptr, New
->getParent(), MemorySSA::Beginning
);
1392 if (auto *MemDef
= dyn_cast
<MemoryDef
>(NewMemAcc
))
1393 MSSAU
->insertDef(MemDef
, /*RenameUses=*/true);
1395 auto *MemUse
= cast
<MemoryUse
>(NewMemAcc
);
1396 MSSAU
->insertUse(MemUse
, /*RenameUses=*/true);
1401 // Build LCSSA PHI nodes for any in-loop operands. Note that this is
1402 // particularly cheap because we can rip off the PHI node that we're
1403 // replacing for the number and blocks of the predecessors.
1404 // OPT: If this shows up in a profile, we can instead finish sinking all
1405 // invariant instructions, and then walk their operands to re-establish
1406 // LCSSA. That will eliminate creating PHI nodes just to nuke them when
1407 // sinking bottom-up.
1408 for (User::op_iterator OI
= New
->op_begin(), OE
= New
->op_end(); OI
!= OE
;
1410 if (Instruction
*OInst
= dyn_cast
<Instruction
>(*OI
))
1411 if (Loop
*OLoop
= LI
->getLoopFor(OInst
->getParent()))
1412 if (!OLoop
->contains(&PN
)) {
1414 PHINode::Create(OInst
->getType(), PN
.getNumIncomingValues(),
1415 OInst
->getName() + ".lcssa", &ExitBlock
.front());
1416 for (unsigned i
= 0, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
)
1417 OpPN
->addIncoming(OInst
, PN
.getIncomingBlock(i
));
1423 static void eraseInstruction(Instruction
&I
, ICFLoopSafetyInfo
&SafetyInfo
,
1424 AliasSetTracker
*AST
, MemorySSAUpdater
*MSSAU
) {
1426 AST
->deleteValue(&I
);
1428 MSSAU
->removeMemoryAccess(&I
);
1429 SafetyInfo
.removeInstruction(&I
);
1430 I
.eraseFromParent();
1433 static void moveInstructionBefore(Instruction
&I
, Instruction
&Dest
,
1434 ICFLoopSafetyInfo
&SafetyInfo
,
1435 MemorySSAUpdater
*MSSAU
) {
1436 SafetyInfo
.removeInstruction(&I
);
1437 SafetyInfo
.insertInstructionTo(&I
, Dest
.getParent());
1438 I
.moveBefore(&Dest
);
1440 if (MemoryUseOrDef
*OldMemAcc
= cast_or_null
<MemoryUseOrDef
>(
1441 MSSAU
->getMemorySSA()->getMemoryAccess(&I
)))
1442 MSSAU
->moveToPlace(OldMemAcc
, Dest
.getParent(), MemorySSA::End
);
1445 static Instruction
*sinkThroughTriviallyReplaceablePHI(
1446 PHINode
*TPN
, Instruction
*I
, LoopInfo
*LI
,
1447 SmallDenseMap
<BasicBlock
*, Instruction
*, 32> &SunkCopies
,
1448 const LoopSafetyInfo
*SafetyInfo
, const Loop
*CurLoop
,
1449 MemorySSAUpdater
*MSSAU
) {
1450 assert(isTriviallyReplaceablePHI(*TPN
, *I
) &&
1451 "Expect only trivially replaceable PHI");
1452 BasicBlock
*ExitBlock
= TPN
->getParent();
1454 auto It
= SunkCopies
.find(ExitBlock
);
1455 if (It
!= SunkCopies
.end())
1458 New
= SunkCopies
[ExitBlock
] = CloneInstructionInExitBlock(
1459 *I
, *ExitBlock
, *TPN
, LI
, SafetyInfo
, MSSAU
);
1463 static bool canSplitPredecessors(PHINode
*PN
, LoopSafetyInfo
*SafetyInfo
) {
1464 BasicBlock
*BB
= PN
->getParent();
1465 if (!BB
->canSplitPredecessors())
1467 // It's not impossible to split EHPad blocks, but if BlockColors already exist
1468 // it require updating BlockColors for all offspring blocks accordingly. By
1469 // skipping such corner case, we can make updating BlockColors after splitting
1470 // predecessor fairly simple.
1471 if (!SafetyInfo
->getBlockColors().empty() && BB
->getFirstNonPHI()->isEHPad())
1473 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
) {
1474 BasicBlock
*BBPred
= *PI
;
1475 if (isa
<IndirectBrInst
>(BBPred
->getTerminator()))
1481 static void splitPredecessorsOfLoopExit(PHINode
*PN
, DominatorTree
*DT
,
1482 LoopInfo
*LI
, const Loop
*CurLoop
,
1483 LoopSafetyInfo
*SafetyInfo
,
1484 MemorySSAUpdater
*MSSAU
) {
1486 SmallVector
<BasicBlock
*, 32> ExitBlocks
;
1487 CurLoop
->getUniqueExitBlocks(ExitBlocks
);
1488 SmallPtrSet
<BasicBlock
*, 32> ExitBlockSet(ExitBlocks
.begin(),
1491 BasicBlock
*ExitBB
= PN
->getParent();
1492 assert(ExitBlockSet
.count(ExitBB
) && "Expect the PHI is in an exit block.");
1494 // Split predecessors of the loop exit to make instructions in the loop are
1495 // exposed to exit blocks through trivially replaceable PHIs while keeping the
1496 // loop in the canonical form where each predecessor of each exit block should
1497 // be contained within the loop. For example, this will convert the loop below
1507 // %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable
1513 // br %LE.split, %LB2
1516 // br %LE.split2, %LB1
1518 // %p1 = phi [%v1, %LB1] <-- trivially replaceable
1521 // %p2 = phi [%v2, %LB2] <-- trivially replaceable
1524 // %p = phi [%p1, %LE.split], [%p2, %LE.split2]
1526 const auto &BlockColors
= SafetyInfo
->getBlockColors();
1527 SmallSetVector
<BasicBlock
*, 8> PredBBs(pred_begin(ExitBB
), pred_end(ExitBB
));
1528 while (!PredBBs
.empty()) {
1529 BasicBlock
*PredBB
= *PredBBs
.begin();
1530 assert(CurLoop
->contains(PredBB
) &&
1531 "Expect all predecessors are in the loop");
1532 if (PN
->getBasicBlockIndex(PredBB
) >= 0) {
1533 BasicBlock
*NewPred
= SplitBlockPredecessors(
1534 ExitBB
, PredBB
, ".split.loop.exit", DT
, LI
, MSSAU
, true);
1535 // Since we do not allow splitting EH-block with BlockColors in
1536 // canSplitPredecessors(), we can simply assign predecessor's color to
1538 if (!BlockColors
.empty())
1539 // Grab a reference to the ColorVector to be inserted before getting the
1540 // reference to the vector we are copying because inserting the new
1541 // element in BlockColors might cause the map to be reallocated.
1542 SafetyInfo
->copyColors(NewPred
, PredBB
);
1544 PredBBs
.remove(PredBB
);
1548 /// When an instruction is found to only be used outside of the loop, this
1549 /// function moves it to the exit blocks and patches up SSA form as needed.
1550 /// This method is guaranteed to remove the original instruction from its
1551 /// position, and may either delete it or move it to outside of the loop.
1553 static bool sink(Instruction
&I
, LoopInfo
*LI
, DominatorTree
*DT
,
1554 const Loop
*CurLoop
, ICFLoopSafetyInfo
*SafetyInfo
,
1555 MemorySSAUpdater
*MSSAU
, OptimizationRemarkEmitter
*ORE
) {
1556 LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I
<< "\n");
1558 return OptimizationRemark(DEBUG_TYPE
, "InstSunk", &I
)
1559 << "sinking " << ore::NV("Inst", &I
);
1561 bool Changed
= false;
1562 if (isa
<LoadInst
>(I
))
1564 else if (isa
<CallInst
>(I
))
1568 // Iterate over users to be ready for actual sinking. Replace users via
1569 // unreachable blocks with undef and make all user PHIs trivially replaceable.
1570 SmallPtrSet
<Instruction
*, 8> VisitedUsers
;
1571 for (Value::user_iterator UI
= I
.user_begin(), UE
= I
.user_end(); UI
!= UE
;) {
1572 auto *User
= cast
<Instruction
>(*UI
);
1573 Use
&U
= UI
.getUse();
1576 if (VisitedUsers
.count(User
) || CurLoop
->contains(User
))
1579 if (!DT
->isReachableFromEntry(User
->getParent())) {
1580 U
= UndefValue::get(I
.getType());
1585 // The user must be a PHI node.
1586 PHINode
*PN
= cast
<PHINode
>(User
);
1588 // Surprisingly, instructions can be used outside of loops without any
1589 // exits. This can only happen in PHI nodes if the incoming block is
1591 BasicBlock
*BB
= PN
->getIncomingBlock(U
);
1592 if (!DT
->isReachableFromEntry(BB
)) {
1593 U
= UndefValue::get(I
.getType());
1598 VisitedUsers
.insert(PN
);
1599 if (isTriviallyReplaceablePHI(*PN
, I
))
1602 if (!canSplitPredecessors(PN
, SafetyInfo
))
1605 // Split predecessors of the PHI so that we can make users trivially
1607 splitPredecessorsOfLoopExit(PN
, DT
, LI
, CurLoop
, SafetyInfo
, MSSAU
);
1609 // Should rebuild the iterators, as they may be invalidated by
1610 // splitPredecessorsOfLoopExit().
1611 UI
= I
.user_begin();
1615 if (VisitedUsers
.empty())
1619 SmallVector
<BasicBlock
*, 32> ExitBlocks
;
1620 CurLoop
->getUniqueExitBlocks(ExitBlocks
);
1621 SmallPtrSet
<BasicBlock
*, 32> ExitBlockSet(ExitBlocks
.begin(),
1625 // Clones of this instruction. Don't create more than one per exit block!
1626 SmallDenseMap
<BasicBlock
*, Instruction
*, 32> SunkCopies
;
1628 // If this instruction is only used outside of the loop, then all users are
1629 // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of
1631 SmallSetVector
<User
*, 8> Users(I
.user_begin(), I
.user_end());
1632 for (auto *UI
: Users
) {
1633 auto *User
= cast
<Instruction
>(UI
);
1635 if (CurLoop
->contains(User
))
1638 PHINode
*PN
= cast
<PHINode
>(User
);
1639 assert(ExitBlockSet
.count(PN
->getParent()) &&
1640 "The LCSSA PHI is not in an exit block!");
1641 // The PHI must be trivially replaceable.
1642 Instruction
*New
= sinkThroughTriviallyReplaceablePHI(
1643 PN
, &I
, LI
, SunkCopies
, SafetyInfo
, CurLoop
, MSSAU
);
1644 PN
->replaceAllUsesWith(New
);
1645 eraseInstruction(*PN
, *SafetyInfo
, nullptr, nullptr);
1651 /// When an instruction is found to only use loop invariant operands that
1652 /// is safe to hoist, this instruction is called to do the dirty work.
1654 static void hoist(Instruction
&I
, const DominatorTree
*DT
, const Loop
*CurLoop
,
1655 BasicBlock
*Dest
, ICFLoopSafetyInfo
*SafetyInfo
,
1656 MemorySSAUpdater
*MSSAU
, OptimizationRemarkEmitter
*ORE
) {
1657 LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest
->getName() << ": " << I
1660 return OptimizationRemark(DEBUG_TYPE
, "Hoisted", &I
) << "hoisting "
1661 << ore::NV("Inst", &I
);
1664 // Metadata can be dependent on conditions we are hoisting above.
1665 // Conservatively strip all metadata on the instruction unless we were
1666 // guaranteed to execute I if we entered the loop, in which case the metadata
1667 // is valid in the loop preheader.
1668 if (I
.hasMetadataOtherThanDebugLoc() &&
1669 // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning
1670 // time in isGuaranteedToExecute if we don't actually have anything to
1671 // drop. It is a compile time optimization, not required for correctness.
1672 !SafetyInfo
->isGuaranteedToExecute(I
, DT
, CurLoop
))
1673 I
.dropUnknownNonDebugMetadata();
1675 if (isa
<PHINode
>(I
))
1676 // Move the new node to the end of the phi list in the destination block.
1677 moveInstructionBefore(I
, *Dest
->getFirstNonPHI(), *SafetyInfo
, MSSAU
);
1679 // Move the new node to the destination block, before its terminator.
1680 moveInstructionBefore(I
, *Dest
->getTerminator(), *SafetyInfo
, MSSAU
);
1682 // Apply line 0 debug locations when we are moving instructions to different
1683 // basic blocks because we want to avoid jumpy line tables.
1684 if (const DebugLoc
&DL
= I
.getDebugLoc())
1685 I
.setDebugLoc(DebugLoc::get(0, 0, DL
.getScope(), DL
.getInlinedAt()));
1687 if (isa
<LoadInst
>(I
))
1689 else if (isa
<CallInst
>(I
))
1694 /// Only sink or hoist an instruction if it is not a trapping instruction,
1695 /// or if the instruction is known not to trap when moved to the preheader.
1696 /// or if it is a trapping instruction and is guaranteed to execute.
1697 static bool isSafeToExecuteUnconditionally(Instruction
&Inst
,
1698 const DominatorTree
*DT
,
1699 const Loop
*CurLoop
,
1700 const LoopSafetyInfo
*SafetyInfo
,
1701 OptimizationRemarkEmitter
*ORE
,
1702 const Instruction
*CtxI
) {
1703 if (isSafeToSpeculativelyExecute(&Inst
, CtxI
, DT
))
1706 bool GuaranteedToExecute
=
1707 SafetyInfo
->isGuaranteedToExecute(Inst
, DT
, CurLoop
);
1709 if (!GuaranteedToExecute
) {
1710 auto *LI
= dyn_cast
<LoadInst
>(&Inst
);
1711 if (LI
&& CurLoop
->isLoopInvariant(LI
->getPointerOperand()))
1713 return OptimizationRemarkMissed(
1714 DEBUG_TYPE
, "LoadWithLoopInvariantAddressCondExecuted", LI
)
1715 << "failed to hoist load with loop-invariant address "
1716 "because load is conditionally executed";
1720 return GuaranteedToExecute
;
1724 class LoopPromoter
: public LoadAndStorePromoter
{
1725 Value
*SomePtr
; // Designated pointer to store to.
1726 const SmallSetVector
<Value
*, 8> &PointerMustAliases
;
1727 SmallVectorImpl
<BasicBlock
*> &LoopExitBlocks
;
1728 SmallVectorImpl
<Instruction
*> &LoopInsertPts
;
1729 SmallVectorImpl
<MemoryAccess
*> &MSSAInsertPts
;
1730 PredIteratorCache
&PredCache
;
1731 AliasSetTracker
&AST
;
1732 MemorySSAUpdater
*MSSAU
;
1736 bool UnorderedAtomic
;
1738 ICFLoopSafetyInfo
&SafetyInfo
;
1740 Value
*maybeInsertLCSSAPHI(Value
*V
, BasicBlock
*BB
) const {
1741 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
1742 if (Loop
*L
= LI
.getLoopFor(I
->getParent()))
1743 if (!L
->contains(BB
)) {
1744 // We need to create an LCSSA PHI node for the incoming value and
1746 PHINode
*PN
= PHINode::Create(I
->getType(), PredCache
.size(BB
),
1747 I
->getName() + ".lcssa", &BB
->front());
1748 for (BasicBlock
*Pred
: PredCache
.get(BB
))
1749 PN
->addIncoming(I
, Pred
);
1756 LoopPromoter(Value
*SP
, ArrayRef
<const Instruction
*> Insts
, SSAUpdater
&S
,
1757 const SmallSetVector
<Value
*, 8> &PMA
,
1758 SmallVectorImpl
<BasicBlock
*> &LEB
,
1759 SmallVectorImpl
<Instruction
*> &LIP
,
1760 SmallVectorImpl
<MemoryAccess
*> &MSSAIP
, PredIteratorCache
&PIC
,
1761 AliasSetTracker
&ast
, MemorySSAUpdater
*MSSAU
, LoopInfo
&li
,
1762 DebugLoc dl
, int alignment
, bool UnorderedAtomic
,
1763 const AAMDNodes
&AATags
, ICFLoopSafetyInfo
&SafetyInfo
)
1764 : LoadAndStorePromoter(Insts
, S
), SomePtr(SP
), PointerMustAliases(PMA
),
1765 LoopExitBlocks(LEB
), LoopInsertPts(LIP
), MSSAInsertPts(MSSAIP
),
1766 PredCache(PIC
), AST(ast
), MSSAU(MSSAU
), LI(li
), DL(std::move(dl
)),
1767 Alignment(alignment
), UnorderedAtomic(UnorderedAtomic
), AATags(AATags
),
1768 SafetyInfo(SafetyInfo
) {}
1770 bool isInstInList(Instruction
*I
,
1771 const SmallVectorImpl
<Instruction
*> &) const override
{
1773 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
))
1774 Ptr
= LI
->getOperand(0);
1776 Ptr
= cast
<StoreInst
>(I
)->getPointerOperand();
1777 return PointerMustAliases
.count(Ptr
);
1780 void doExtraRewritesBeforeFinalDeletion() override
{
1781 // Insert stores after in the loop exit blocks. Each exit block gets a
1782 // store of the live-out values that feed them. Since we've already told
1783 // the SSA updater about the defs in the loop and the preheader
1784 // definition, it is all set and we can start using it.
1785 for (unsigned i
= 0, e
= LoopExitBlocks
.size(); i
!= e
; ++i
) {
1786 BasicBlock
*ExitBlock
= LoopExitBlocks
[i
];
1787 Value
*LiveInValue
= SSA
.GetValueInMiddleOfBlock(ExitBlock
);
1788 LiveInValue
= maybeInsertLCSSAPHI(LiveInValue
, ExitBlock
);
1789 Value
*Ptr
= maybeInsertLCSSAPHI(SomePtr
, ExitBlock
);
1790 Instruction
*InsertPos
= LoopInsertPts
[i
];
1791 StoreInst
*NewSI
= new StoreInst(LiveInValue
, Ptr
, InsertPos
);
1792 if (UnorderedAtomic
)
1793 NewSI
->setOrdering(AtomicOrdering::Unordered
);
1794 NewSI
->setAlignment(Alignment
);
1795 NewSI
->setDebugLoc(DL
);
1797 NewSI
->setAAMetadata(AATags
);
1800 MemoryAccess
*MSSAInsertPoint
= MSSAInsertPts
[i
];
1801 MemoryAccess
*NewMemAcc
;
1802 if (!MSSAInsertPoint
) {
1803 NewMemAcc
= MSSAU
->createMemoryAccessInBB(
1804 NewSI
, nullptr, NewSI
->getParent(), MemorySSA::Beginning
);
1807 MSSAU
->createMemoryAccessAfter(NewSI
, nullptr, MSSAInsertPoint
);
1809 MSSAInsertPts
[i
] = NewMemAcc
;
1810 MSSAU
->insertDef(cast
<MemoryDef
>(NewMemAcc
), true);
1811 // FIXME: true for safety, false may still be correct.
1816 void replaceLoadWithValue(LoadInst
*LI
, Value
*V
) const override
{
1817 // Update alias analysis.
1818 AST
.copyValue(LI
, V
);
1820 void instructionDeleted(Instruction
*I
) const override
{
1821 SafetyInfo
.removeInstruction(I
);
1824 MSSAU
->removeMemoryAccess(I
);
1829 /// Return true iff we can prove that a caller of this function can not inspect
1830 /// the contents of the provided object in a well defined program.
1831 bool isKnownNonEscaping(Value
*Object
, const TargetLibraryInfo
*TLI
) {
1832 if (isa
<AllocaInst
>(Object
))
1833 // Since the alloca goes out of scope, we know the caller can't retain a
1834 // reference to it and be well defined. Thus, we don't need to check for
1838 // For all other objects we need to know that the caller can't possibly
1839 // have gotten a reference to the object. There are two components of
1841 // 1) Object can't be escaped by this function. This is what
1842 // PointerMayBeCaptured checks.
1843 // 2) Object can't have been captured at definition site. For this, we
1844 // need to know the return value is noalias. At the moment, we use a
1845 // weaker condition and handle only AllocLikeFunctions (which are
1846 // known to be noalias). TODO
1847 return isAllocLikeFn(Object
, TLI
) &&
1848 !PointerMayBeCaptured(Object
, true, true);
1853 /// Try to promote memory values to scalars by sinking stores out of the
1854 /// loop and moving loads to before the loop. We do this by looping over
1855 /// the stores in the loop, looking for stores to Must pointers which are
1858 bool llvm::promoteLoopAccessesToScalars(
1859 const SmallSetVector
<Value
*, 8> &PointerMustAliases
,
1860 SmallVectorImpl
<BasicBlock
*> &ExitBlocks
,
1861 SmallVectorImpl
<Instruction
*> &InsertPts
,
1862 SmallVectorImpl
<MemoryAccess
*> &MSSAInsertPts
, PredIteratorCache
&PIC
,
1863 LoopInfo
*LI
, DominatorTree
*DT
, const TargetLibraryInfo
*TLI
,
1864 Loop
*CurLoop
, AliasSetTracker
*CurAST
, MemorySSAUpdater
*MSSAU
,
1865 ICFLoopSafetyInfo
*SafetyInfo
, OptimizationRemarkEmitter
*ORE
) {
1867 assert(LI
!= nullptr && DT
!= nullptr && CurLoop
!= nullptr &&
1868 CurAST
!= nullptr && SafetyInfo
!= nullptr &&
1869 "Unexpected Input to promoteLoopAccessesToScalars");
1871 Value
*SomePtr
= *PointerMustAliases
.begin();
1872 BasicBlock
*Preheader
= CurLoop
->getLoopPreheader();
1874 // It is not safe to promote a load/store from the loop if the load/store is
1875 // conditional. For example, turning:
1877 // for () { if (c) *P += 1; }
1881 // tmp = *P; for () { if (c) tmp +=1; } *P = tmp;
1883 // is not safe, because *P may only be valid to access if 'c' is true.
1885 // The safety property divides into two parts:
1886 // p1) The memory may not be dereferenceable on entry to the loop. In this
1887 // case, we can't insert the required load in the preheader.
1888 // p2) The memory model does not allow us to insert a store along any dynamic
1889 // path which did not originally have one.
1891 // If at least one store is guaranteed to execute, both properties are
1892 // satisfied, and promotion is legal.
1894 // This, however, is not a necessary condition. Even if no store/load is
1895 // guaranteed to execute, we can still establish these properties.
1896 // We can establish (p1) by proving that hoisting the load into the preheader
1897 // is safe (i.e. proving dereferenceability on all paths through the loop). We
1898 // can use any access within the alias set to prove dereferenceability,
1899 // since they're all must alias.
1901 // There are two ways establish (p2):
1902 // a) Prove the location is thread-local. In this case the memory model
1903 // requirement does not apply, and stores are safe to insert.
1904 // b) Prove a store dominates every exit block. In this case, if an exit
1905 // blocks is reached, the original dynamic path would have taken us through
1906 // the store, so inserting a store into the exit block is safe. Note that this
1907 // is different from the store being guaranteed to execute. For instance,
1908 // if an exception is thrown on the first iteration of the loop, the original
1909 // store is never executed, but the exit blocks are not executed either.
1911 bool DereferenceableInPH
= false;
1912 bool SafeToInsertStore
= false;
1914 SmallVector
<Instruction
*, 64> LoopUses
;
1916 // We start with an alignment of one and try to find instructions that allow
1917 // us to prove better alignment.
1918 unsigned Alignment
= 1;
1919 // Keep track of which types of access we see
1920 bool SawUnorderedAtomic
= false;
1921 bool SawNotAtomic
= false;
1924 const DataLayout
&MDL
= Preheader
->getModule()->getDataLayout();
1926 bool IsKnownThreadLocalObject
= false;
1927 if (SafetyInfo
->anyBlockMayThrow()) {
1928 // If a loop can throw, we have to insert a store along each unwind edge.
1929 // That said, we can't actually make the unwind edge explicit. Therefore,
1930 // we have to prove that the store is dead along the unwind edge. We do
1931 // this by proving that the caller can't have a reference to the object
1932 // after return and thus can't possibly load from the object.
1933 Value
*Object
= GetUnderlyingObject(SomePtr
, MDL
);
1934 if (!isKnownNonEscaping(Object
, TLI
))
1936 // Subtlety: Alloca's aren't visible to callers, but *are* potentially
1937 // visible to other threads if captured and used during their lifetimes.
1938 IsKnownThreadLocalObject
= !isa
<AllocaInst
>(Object
);
1941 // Check that all of the pointers in the alias set have the same type. We
1942 // cannot (yet) promote a memory location that is loaded and stored in
1943 // different sizes. While we are at it, collect alignment and AA info.
1944 for (Value
*ASIV
: PointerMustAliases
) {
1945 // Check that all of the pointers in the alias set have the same type. We
1946 // cannot (yet) promote a memory location that is loaded and stored in
1948 if (SomePtr
->getType() != ASIV
->getType())
1951 for (User
*U
: ASIV
->users()) {
1952 // Ignore instructions that are outside the loop.
1953 Instruction
*UI
= dyn_cast
<Instruction
>(U
);
1954 if (!UI
|| !CurLoop
->contains(UI
))
1957 // If there is an non-load/store instruction in the loop, we can't promote
1959 if (LoadInst
*Load
= dyn_cast
<LoadInst
>(UI
)) {
1960 if (!Load
->isUnordered())
1963 SawUnorderedAtomic
|= Load
->isAtomic();
1964 SawNotAtomic
|= !Load
->isAtomic();
1966 unsigned InstAlignment
= Load
->getAlignment();
1969 MDL
.getABITypeAlignment(Load
->getType());
1971 // Note that proving a load safe to speculate requires proving
1972 // sufficient alignment at the target location. Proving it guaranteed
1973 // to execute does as well. Thus we can increase our guaranteed
1974 // alignment as well.
1975 if (!DereferenceableInPH
|| (InstAlignment
> Alignment
))
1976 if (isSafeToExecuteUnconditionally(*Load
, DT
, CurLoop
, SafetyInfo
,
1977 ORE
, Preheader
->getTerminator())) {
1978 DereferenceableInPH
= true;
1979 Alignment
= std::max(Alignment
, InstAlignment
);
1981 } else if (const StoreInst
*Store
= dyn_cast
<StoreInst
>(UI
)) {
1982 // Stores *of* the pointer are not interesting, only stores *to* the
1984 if (UI
->getOperand(1) != ASIV
)
1986 if (!Store
->isUnordered())
1989 SawUnorderedAtomic
|= Store
->isAtomic();
1990 SawNotAtomic
|= !Store
->isAtomic();
1992 // If the store is guaranteed to execute, both properties are satisfied.
1993 // We may want to check if a store is guaranteed to execute even if we
1994 // already know that promotion is safe, since it may have higher
1995 // alignment than any other guaranteed stores, in which case we can
1996 // raise the alignment on the promoted store.
1997 unsigned InstAlignment
= Store
->getAlignment();
2000 MDL
.getABITypeAlignment(Store
->getValueOperand()->getType());
2002 if (!DereferenceableInPH
|| !SafeToInsertStore
||
2003 (InstAlignment
> Alignment
)) {
2004 if (SafetyInfo
->isGuaranteedToExecute(*UI
, DT
, CurLoop
)) {
2005 DereferenceableInPH
= true;
2006 SafeToInsertStore
= true;
2007 Alignment
= std::max(Alignment
, InstAlignment
);
2011 // If a store dominates all exit blocks, it is safe to sink.
2012 // As explained above, if an exit block was executed, a dominating
2013 // store must have been executed at least once, so we are not
2014 // introducing stores on paths that did not have them.
2015 // Note that this only looks at explicit exit blocks. If we ever
2016 // start sinking stores into unwind edges (see above), this will break.
2017 if (!SafeToInsertStore
)
2018 SafeToInsertStore
= llvm::all_of(ExitBlocks
, [&](BasicBlock
*Exit
) {
2019 return DT
->dominates(Store
->getParent(), Exit
);
2022 // If the store is not guaranteed to execute, we may still get
2023 // deref info through it.
2024 if (!DereferenceableInPH
) {
2025 DereferenceableInPH
= isDereferenceableAndAlignedPointer(
2026 Store
->getPointerOperand(), Store
->getValueOperand()->getType(),
2027 Store
->getAlignment(), MDL
, Preheader
->getTerminator(), DT
);
2030 return false; // Not a load or store.
2032 // Merge the AA tags.
2033 if (LoopUses
.empty()) {
2034 // On the first load/store, just take its AA tags.
2035 UI
->getAAMetadata(AATags
);
2036 } else if (AATags
) {
2037 UI
->getAAMetadata(AATags
, /* Merge = */ true);
2040 LoopUses
.push_back(UI
);
2044 // If we found both an unordered atomic instruction and a non-atomic memory
2045 // access, bail. We can't blindly promote non-atomic to atomic since we
2046 // might not be able to lower the result. We can't downgrade since that
2047 // would violate memory model. Also, align 0 is an error for atomics.
2048 if (SawUnorderedAtomic
&& SawNotAtomic
)
2051 // If we're inserting an atomic load in the preheader, we must be able to
2052 // lower it. We're only guaranteed to be able to lower naturally aligned
2054 auto *SomePtrElemType
= SomePtr
->getType()->getPointerElementType();
2055 if (SawUnorderedAtomic
&&
2056 Alignment
< MDL
.getTypeStoreSize(SomePtrElemType
))
2059 // If we couldn't prove we can hoist the load, bail.
2060 if (!DereferenceableInPH
)
2063 // We know we can hoist the load, but don't have a guaranteed store.
2064 // Check whether the location is thread-local. If it is, then we can insert
2065 // stores along paths which originally didn't have them without violating the
2067 if (!SafeToInsertStore
) {
2068 if (IsKnownThreadLocalObject
)
2069 SafeToInsertStore
= true;
2071 Value
*Object
= GetUnderlyingObject(SomePtr
, MDL
);
2073 (isAllocLikeFn(Object
, TLI
) || isa
<AllocaInst
>(Object
)) &&
2074 !PointerMayBeCaptured(Object
, true, true);
2078 // If we've still failed to prove we can sink the store, give up.
2079 if (!SafeToInsertStore
)
2082 // Otherwise, this is safe to promote, lets do it!
2083 LLVM_DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " << *SomePtr
2086 return OptimizationRemark(DEBUG_TYPE
, "PromoteLoopAccessesToScalar",
2088 << "Moving accesses to memory location out of the loop";
2092 // Grab a debug location for the inserted loads/stores; given that the
2093 // inserted loads/stores have little relation to the original loads/stores,
2094 // this code just arbitrarily picks a location from one, since any debug
2095 // location is better than none.
2096 DebugLoc DL
= LoopUses
[0]->getDebugLoc();
2098 // We use the SSAUpdater interface to insert phi nodes as required.
2099 SmallVector
<PHINode
*, 16> NewPHIs
;
2100 SSAUpdater
SSA(&NewPHIs
);
2101 LoopPromoter
Promoter(SomePtr
, LoopUses
, SSA
, PointerMustAliases
, ExitBlocks
,
2102 InsertPts
, MSSAInsertPts
, PIC
, *CurAST
, MSSAU
, *LI
, DL
,
2103 Alignment
, SawUnorderedAtomic
, AATags
, *SafetyInfo
);
2105 // Set up the preheader to have a definition of the value. It is the live-out
2106 // value from the preheader that uses in the loop will use.
2107 LoadInst
*PreheaderLoad
= new LoadInst(
2108 SomePtr
->getType()->getPointerElementType(), SomePtr
,
2109 SomePtr
->getName() + ".promoted", Preheader
->getTerminator());
2110 if (SawUnorderedAtomic
)
2111 PreheaderLoad
->setOrdering(AtomicOrdering::Unordered
);
2112 PreheaderLoad
->setAlignment(Alignment
);
2113 PreheaderLoad
->setDebugLoc(DL
);
2115 PreheaderLoad
->setAAMetadata(AATags
);
2116 SSA
.AddAvailableValue(Preheader
, PreheaderLoad
);
2118 MemoryAccess
*PreheaderLoadMemoryAccess
;
2120 PreheaderLoadMemoryAccess
= MSSAU
->createMemoryAccessInBB(
2121 PreheaderLoad
, nullptr, PreheaderLoad
->getParent(), MemorySSA::End
);
2122 MemoryUse
*NewMemUse
= cast
<MemoryUse
>(PreheaderLoadMemoryAccess
);
2123 MSSAU
->insertUse(NewMemUse
, /*RenameUses=*/true);
2126 if (MSSAU
&& VerifyMemorySSA
)
2127 MSSAU
->getMemorySSA()->verifyMemorySSA();
2128 // Rewrite all the loads in the loop and remember all the definitions from
2129 // stores in the loop.
2130 Promoter
.run(LoopUses
);
2132 if (MSSAU
&& VerifyMemorySSA
)
2133 MSSAU
->getMemorySSA()->verifyMemorySSA();
2134 // If the SSAUpdater didn't use the load in the preheader, just zap it now.
2135 if (PreheaderLoad
->use_empty())
2136 eraseInstruction(*PreheaderLoad
, *SafetyInfo
, CurAST
, MSSAU
);
2141 /// Returns an owning pointer to an alias set which incorporates aliasing info
2142 /// from L and all subloops of L.
2143 /// FIXME: In new pass manager, there is no helper function to handle loop
2144 /// analysis such as cloneBasicBlockAnalysis, so the AST needs to be recomputed
2145 /// from scratch for every loop. Hook up with the helper functions when
2146 /// available in the new pass manager to avoid redundant computation.
2147 std::unique_ptr
<AliasSetTracker
>
2148 LoopInvariantCodeMotion::collectAliasInfoForLoop(Loop
*L
, LoopInfo
*LI
,
2149 AliasAnalysis
*AA
) {
2150 std::unique_ptr
<AliasSetTracker
> CurAST
;
2151 SmallVector
<Loop
*, 4> RecomputeLoops
;
2152 for (Loop
*InnerL
: L
->getSubLoops()) {
2153 auto MapI
= LoopToAliasSetMap
.find(InnerL
);
2154 // If the AST for this inner loop is missing it may have been merged into
2155 // some other loop's AST and then that loop unrolled, and so we need to
2157 if (MapI
== LoopToAliasSetMap
.end()) {
2158 RecomputeLoops
.push_back(InnerL
);
2161 std::unique_ptr
<AliasSetTracker
> InnerAST
= std::move(MapI
->second
);
2164 // What if InnerLoop was modified by other passes ?
2165 // Once we've incorporated the inner loop's AST into ours, we don't need
2166 // the subloop's anymore.
2167 CurAST
->add(*InnerAST
);
2169 CurAST
= std::move(InnerAST
);
2171 LoopToAliasSetMap
.erase(MapI
);
2174 CurAST
= std::make_unique
<AliasSetTracker
>(*AA
);
2176 // Add everything from the sub loops that are no longer directly available.
2177 for (Loop
*InnerL
: RecomputeLoops
)
2178 for (BasicBlock
*BB
: InnerL
->blocks())
2181 // And merge in this loop (without anything from inner loops).
2182 for (BasicBlock
*BB
: L
->blocks())
2183 if (LI
->getLoopFor(BB
) == L
)
2189 std::unique_ptr
<AliasSetTracker
>
2190 LoopInvariantCodeMotion::collectAliasInfoForLoopWithMSSA(
2191 Loop
*L
, AliasAnalysis
*AA
, MemorySSAUpdater
*MSSAU
) {
2192 auto *MSSA
= MSSAU
->getMemorySSA();
2193 auto CurAST
= std::make_unique
<AliasSetTracker
>(*AA
, MSSA
, L
);
2194 CurAST
->addAllInstructionsInLoopUsingMSSA();
2198 /// Simple analysis hook. Clone alias set info.
2200 void LegacyLICMPass::cloneBasicBlockAnalysis(BasicBlock
*From
, BasicBlock
*To
,
2202 auto ASTIt
= LICM
.getLoopToAliasSetMap().find(L
);
2203 if (ASTIt
== LICM
.getLoopToAliasSetMap().end())
2206 ASTIt
->second
->copyValue(From
, To
);
2209 /// Simple Analysis hook. Delete value V from alias set
2211 void LegacyLICMPass::deleteAnalysisValue(Value
*V
, Loop
*L
) {
2212 auto ASTIt
= LICM
.getLoopToAliasSetMap().find(L
);
2213 if (ASTIt
== LICM
.getLoopToAliasSetMap().end())
2216 ASTIt
->second
->deleteValue(V
);
2219 /// Simple Analysis hook. Delete value L from alias set map.
2221 void LegacyLICMPass::deleteAnalysisLoop(Loop
*L
) {
2222 if (!LICM
.getLoopToAliasSetMap().count(L
))
2225 LICM
.getLoopToAliasSetMap().erase(L
);
2228 static bool pointerInvalidatedByLoop(MemoryLocation MemLoc
,
2229 AliasSetTracker
*CurAST
, Loop
*CurLoop
,
2230 AliasAnalysis
*AA
) {
2231 // First check to see if any of the basic blocks in CurLoop invalidate *V.
2232 bool isInvalidatedAccordingToAST
= CurAST
->getAliasSetFor(MemLoc
).isMod();
2234 if (!isInvalidatedAccordingToAST
|| !LICMN2Theshold
)
2235 return isInvalidatedAccordingToAST
;
2237 // Check with a diagnostic analysis if we can refine the information above.
2238 // This is to identify the limitations of using the AST.
2239 // The alias set mechanism used by LICM has a major weakness in that it
2240 // combines all things which may alias into a single set *before* asking
2241 // modref questions. As a result, a single readonly call within a loop will
2242 // collapse all loads and stores into a single alias set and report
2243 // invalidation if the loop contains any store. For example, readonly calls
2244 // with deopt states have this form and create a general alias set with all
2245 // loads and stores. In order to get any LICM in loops containing possible
2246 // deopt states we need a more precise invalidation of checking the mod ref
2247 // info of each instruction within the loop and LI. This has a complexity of
2248 // O(N^2), so currently, it is used only as a diagnostic tool since the
2249 // default value of LICMN2Threshold is zero.
2251 // Don't look at nested loops.
2252 if (CurLoop
->begin() != CurLoop
->end())
2256 for (BasicBlock
*BB
: CurLoop
->getBlocks())
2257 for (Instruction
&I
: *BB
) {
2258 if (N
>= LICMN2Theshold
) {
2259 LLVM_DEBUG(dbgs() << "Alasing N2 threshold exhausted for "
2260 << *(MemLoc
.Ptr
) << "\n");
2264 auto Res
= AA
->getModRefInfo(&I
, MemLoc
);
2265 if (isModSet(Res
)) {
2266 LLVM_DEBUG(dbgs() << "Aliasing failed on " << I
<< " for "
2267 << *(MemLoc
.Ptr
) << "\n");
2271 LLVM_DEBUG(dbgs() << "Aliasing okay for " << *(MemLoc
.Ptr
) << "\n");
2275 static bool pointerInvalidatedByLoopWithMSSA(MemorySSA
*MSSA
, MemoryUse
*MU
,
2277 SinkAndHoistLICMFlags
&Flags
) {
2278 // For hoisting, use the walker to determine safety
2279 if (!Flags
.IsSink
) {
2280 MemoryAccess
*Source
;
2281 // See declaration of SetLicmMssaOptCap for usage details.
2282 if (Flags
.LicmMssaOptCounter
>= Flags
.LicmMssaOptCap
)
2283 Source
= MU
->getDefiningAccess();
2285 Source
= MSSA
->getSkipSelfWalker()->getClobberingMemoryAccess(MU
);
2286 Flags
.LicmMssaOptCounter
++;
2288 return !MSSA
->isLiveOnEntryDef(Source
) &&
2289 CurLoop
->contains(Source
->getBlock());
2292 // For sinking, we'd need to check all Defs below this use. The getClobbering
2293 // call will look on the backedge of the loop, but will check aliasing with
2294 // the instructions on the previous iteration.
2297 // load a[i] ( Use (LoE)
2298 // store a[i] ( 1 = Def (2), with 2 = Phi for the loop.
2300 // The load sees no clobbering inside the loop, as the backedge alias check
2301 // does phi translation, and will check aliasing against store a[i-1].
2302 // However sinking the load outside the loop, below the store is incorrect.
2304 // For now, only sink if there are no Defs in the loop, and the existing ones
2305 // precede the use and are in the same block.
2306 // FIXME: Increase precision: Safe to sink if Use post dominates the Def;
2307 // needs PostDominatorTreeAnalysis.
2308 // FIXME: More precise: no Defs that alias this Use.
2309 if (Flags
.NoOfMemAccTooLarge
)
2311 for (auto *BB
: CurLoop
->getBlocks())
2312 if (auto *Accesses
= MSSA
->getBlockDefs(BB
))
2313 for (const auto &MA
: *Accesses
)
2314 if (const auto *MD
= dyn_cast
<MemoryDef
>(&MA
))
2315 if (MU
->getBlock() != MD
->getBlock() ||
2316 !MSSA
->locallyDominates(MD
, MU
))
2321 /// Little predicate that returns true if the specified basic block is in
2322 /// a subloop of the current one, not the current one itself.
2324 static bool inSubLoop(BasicBlock
*BB
, Loop
*CurLoop
, LoopInfo
*LI
) {
2325 assert(CurLoop
->contains(BB
) && "Only valid if BB is IN the loop");
2326 return LI
->getLoopFor(BB
) != CurLoop
;