[x86] fix assert with horizontal math + broadcast of vector (PR43402)
[llvm-core.git] / lib / Transforms / Scalar / LICM.cpp
blob52ff7cbcaef2a0a5e4d9b61e24962c7b484e8ea3
1 //===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs loop invariant code motion, attempting to remove as much
10 // code from the body of a loop as possible. It does this by either hoisting
11 // code into the preheader block, or by sinking code to the exit blocks if it is
12 // safe. This pass also promotes must-aliased memory locations in the loop to
13 // live in registers, thus hoisting and sinking "invariant" loads and stores.
15 // This pass uses alias analysis for two purposes:
17 // 1. Moving loop invariant loads and calls out of loops. If we can determine
18 // that a load or call inside of a loop never aliases anything stored to,
19 // we can hoist it or sink it like any other instruction.
20 // 2. Scalar Promotion of Memory - If there is a store instruction inside of
21 // the loop, we try to move the store to happen AFTER the loop instead of
22 // inside of the loop. This can only happen if a few conditions are true:
23 // A. The pointer stored through is loop invariant
24 // B. There are no stores or loads in the loop which _may_ alias the
25 // pointer. There are no calls in the loop which mod/ref the pointer.
26 // If these conditions are true, we can promote the loads and stores in the
27 // loop of the pointer to use a temporary alloca'd variable. We then use
28 // the SSAUpdater to construct the appropriate SSA form for the value.
30 //===----------------------------------------------------------------------===//
32 #include "llvm/Transforms/Scalar/LICM.h"
33 #include "llvm/ADT/SetOperations.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/Analysis/AliasSetTracker.h"
37 #include "llvm/Analysis/BasicAliasAnalysis.h"
38 #include "llvm/Analysis/CaptureTracking.h"
39 #include "llvm/Analysis/ConstantFolding.h"
40 #include "llvm/Analysis/GlobalsModRef.h"
41 #include "llvm/Analysis/GuardUtils.h"
42 #include "llvm/Analysis/Loads.h"
43 #include "llvm/Analysis/LoopInfo.h"
44 #include "llvm/Analysis/LoopIterator.h"
45 #include "llvm/Analysis/LoopPass.h"
46 #include "llvm/Analysis/MemoryBuiltins.h"
47 #include "llvm/Analysis/MemorySSA.h"
48 #include "llvm/Analysis/MemorySSAUpdater.h"
49 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
50 #include "llvm/Analysis/ScalarEvolution.h"
51 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
52 #include "llvm/Analysis/TargetLibraryInfo.h"
53 #include "llvm/Analysis/ValueTracking.h"
54 #include "llvm/IR/CFG.h"
55 #include "llvm/IR/Constants.h"
56 #include "llvm/IR/DataLayout.h"
57 #include "llvm/IR/DebugInfoMetadata.h"
58 #include "llvm/IR/DerivedTypes.h"
59 #include "llvm/IR/Dominators.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/IntrinsicInst.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/Metadata.h"
64 #include "llvm/IR/PatternMatch.h"
65 #include "llvm/IR/PredIteratorCache.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Transforms/Scalar.h"
70 #include "llvm/Transforms/Scalar/LoopPassManager.h"
71 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
72 #include "llvm/Transforms/Utils/Local.h"
73 #include "llvm/Transforms/Utils/LoopUtils.h"
74 #include "llvm/Transforms/Utils/SSAUpdater.h"
75 #include <algorithm>
76 #include <utility>
77 using namespace llvm;
79 #define DEBUG_TYPE "licm"
81 STATISTIC(NumCreatedBlocks, "Number of blocks created");
82 STATISTIC(NumClonedBranches, "Number of branches cloned");
83 STATISTIC(NumSunk, "Number of instructions sunk out of loop");
84 STATISTIC(NumHoisted, "Number of instructions hoisted out of loop");
85 STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
86 STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
87 STATISTIC(NumPromoted, "Number of memory locations promoted to registers");
89 /// Memory promotion is enabled by default.
90 static cl::opt<bool>
91 DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false),
92 cl::desc("Disable memory promotion in LICM pass"));
94 static cl::opt<bool> ControlFlowHoisting(
95 "licm-control-flow-hoisting", cl::Hidden, cl::init(false),
96 cl::desc("Enable control flow (and PHI) hoisting in LICM"));
98 static cl::opt<uint32_t> MaxNumUsesTraversed(
99 "licm-max-num-uses-traversed", cl::Hidden, cl::init(8),
100 cl::desc("Max num uses visited for identifying load "
101 "invariance in loop using invariant start (default = 8)"));
103 // Default value of zero implies we use the regular alias set tracker mechanism
104 // instead of the cross product using AA to identify aliasing of the memory
105 // location we are interested in.
106 static cl::opt<int>
107 LICMN2Theshold("licm-n2-threshold", cl::Hidden, cl::init(0),
108 cl::desc("How many instruction to cross product using AA"));
110 // Experimental option to allow imprecision in LICM in pathological cases, in
111 // exchange for faster compile. This is to be removed if MemorySSA starts to
112 // address the same issue. This flag applies only when LICM uses MemorySSA
113 // instead on AliasSetTracker. LICM calls MemorySSAWalker's
114 // getClobberingMemoryAccess, up to the value of the Cap, getting perfect
115 // accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess,
116 // which may not be precise, since optimizeUses is capped. The result is
117 // correct, but we may not get as "far up" as possible to get which access is
118 // clobbering the one queried.
119 cl::opt<unsigned> llvm::SetLicmMssaOptCap(
120 "licm-mssa-optimization-cap", cl::init(100), cl::Hidden,
121 cl::desc("Enable imprecision in LICM in pathological cases, in exchange "
122 "for faster compile. Caps the MemorySSA clobbering calls."));
124 // Experimentally, memory promotion carries less importance than sinking and
125 // hoisting. Limit when we do promotion when using MemorySSA, in order to save
126 // compile time.
127 cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap(
128 "licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden,
129 cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no "
130 "effect. When MSSA in LICM is enabled, then this is the maximum "
131 "number of accesses allowed to be present in a loop in order to "
132 "enable memory promotion."));
134 static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI);
135 static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
136 const LoopSafetyInfo *SafetyInfo,
137 TargetTransformInfo *TTI, bool &FreeInLoop);
138 static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
139 BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
140 MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE);
141 static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
142 const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo,
143 MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE);
144 static bool isSafeToExecuteUnconditionally(Instruction &Inst,
145 const DominatorTree *DT,
146 const Loop *CurLoop,
147 const LoopSafetyInfo *SafetyInfo,
148 OptimizationRemarkEmitter *ORE,
149 const Instruction *CtxI = nullptr);
150 static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
151 AliasSetTracker *CurAST, Loop *CurLoop,
152 AliasAnalysis *AA);
153 static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
154 Loop *CurLoop,
155 SinkAndHoistLICMFlags &Flags);
156 static Instruction *CloneInstructionInExitBlock(
157 Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
158 const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU);
160 static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
161 AliasSetTracker *AST, MemorySSAUpdater *MSSAU);
163 static void moveInstructionBefore(Instruction &I, Instruction &Dest,
164 ICFLoopSafetyInfo &SafetyInfo,
165 MemorySSAUpdater *MSSAU);
167 namespace {
168 struct LoopInvariantCodeMotion {
169 using ASTrackerMapTy = DenseMap<Loop *, std::unique_ptr<AliasSetTracker>>;
170 bool runOnLoop(Loop *L, AliasAnalysis *AA, LoopInfo *LI, DominatorTree *DT,
171 TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
172 ScalarEvolution *SE, MemorySSA *MSSA,
173 OptimizationRemarkEmitter *ORE, bool DeleteAST);
175 ASTrackerMapTy &getLoopToAliasSetMap() { return LoopToAliasSetMap; }
176 LoopInvariantCodeMotion(unsigned LicmMssaOptCap,
177 unsigned LicmMssaNoAccForPromotionCap)
178 : LicmMssaOptCap(LicmMssaOptCap),
179 LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap) {}
181 private:
182 ASTrackerMapTy LoopToAliasSetMap;
183 unsigned LicmMssaOptCap;
184 unsigned LicmMssaNoAccForPromotionCap;
186 std::unique_ptr<AliasSetTracker>
187 collectAliasInfoForLoop(Loop *L, LoopInfo *LI, AliasAnalysis *AA);
188 std::unique_ptr<AliasSetTracker>
189 collectAliasInfoForLoopWithMSSA(Loop *L, AliasAnalysis *AA,
190 MemorySSAUpdater *MSSAU);
193 struct LegacyLICMPass : public LoopPass {
194 static char ID; // Pass identification, replacement for typeid
195 LegacyLICMPass(
196 unsigned LicmMssaOptCap = SetLicmMssaOptCap,
197 unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap)
198 : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap) {
199 initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry());
202 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
203 if (skipLoop(L)) {
204 // If we have run LICM on a previous loop but now we are skipping
205 // (because we've hit the opt-bisect limit), we need to clear the
206 // loop alias information.
207 LICM.getLoopToAliasSetMap().clear();
208 return false;
211 auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
212 MemorySSA *MSSA = EnableMSSALoopDependency
213 ? (&getAnalysis<MemorySSAWrapperPass>().getMSSA())
214 : nullptr;
215 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
216 // pass. Function analyses need to be preserved across loop transformations
217 // but ORE cannot be preserved (see comment before the pass definition).
218 OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
219 return LICM.runOnLoop(L,
220 &getAnalysis<AAResultsWrapperPass>().getAAResults(),
221 &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
222 &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
223 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
224 *L->getHeader()->getParent()),
225 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
226 *L->getHeader()->getParent()),
227 SE ? &SE->getSE() : nullptr, MSSA, &ORE, false);
230 /// This transformation requires natural loop information & requires that
231 /// loop preheaders be inserted into the CFG...
233 void getAnalysisUsage(AnalysisUsage &AU) const override {
234 AU.addPreserved<DominatorTreeWrapperPass>();
235 AU.addPreserved<LoopInfoWrapperPass>();
236 AU.addRequired<TargetLibraryInfoWrapperPass>();
237 if (EnableMSSALoopDependency) {
238 AU.addRequired<MemorySSAWrapperPass>();
239 AU.addPreserved<MemorySSAWrapperPass>();
241 AU.addRequired<TargetTransformInfoWrapperPass>();
242 getLoopAnalysisUsage(AU);
245 using llvm::Pass::doFinalization;
247 bool doFinalization() override {
248 auto &AliasSetMap = LICM.getLoopToAliasSetMap();
249 // All loops in the AliasSetMap should be cleaned up already. The only case
250 // where we fail to do so is if an outer loop gets deleted before LICM
251 // visits it.
252 assert(all_of(AliasSetMap,
253 [](LoopInvariantCodeMotion::ASTrackerMapTy::value_type &KV) {
254 return !KV.first->getParentLoop();
255 }) &&
256 "Didn't free loop alias sets");
257 AliasSetMap.clear();
258 return false;
261 private:
262 LoopInvariantCodeMotion LICM;
264 /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
265 void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To,
266 Loop *L) override;
268 /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
269 /// set.
270 void deleteAnalysisValue(Value *V, Loop *L) override;
272 /// Simple Analysis hook. Delete loop L from alias set map.
273 void deleteAnalysisLoop(Loop *L) override;
275 } // namespace
277 PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM,
278 LoopStandardAnalysisResults &AR, LPMUpdater &) {
279 const auto &FAM =
280 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
281 Function *F = L.getHeader()->getParent();
283 auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F);
284 // FIXME: This should probably be optional rather than required.
285 if (!ORE)
286 report_fatal_error("LICM: OptimizationRemarkEmitterAnalysis not "
287 "cached at a higher level");
289 LoopInvariantCodeMotion LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
290 if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, &AR.TLI, &AR.TTI, &AR.SE,
291 AR.MSSA, ORE, true))
292 return PreservedAnalyses::all();
294 auto PA = getLoopPassPreservedAnalyses();
296 PA.preserve<DominatorTreeAnalysis>();
297 PA.preserve<LoopAnalysis>();
298 if (AR.MSSA)
299 PA.preserve<MemorySSAAnalysis>();
301 return PA;
304 char LegacyLICMPass::ID = 0;
305 INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion",
306 false, false)
307 INITIALIZE_PASS_DEPENDENCY(LoopPass)
308 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
309 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
310 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
311 INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false,
312 false)
314 Pass *llvm::createLICMPass() { return new LegacyLICMPass(); }
315 Pass *llvm::createLICMPass(unsigned LicmMssaOptCap,
316 unsigned LicmMssaNoAccForPromotionCap) {
317 return new LegacyLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
320 /// Hoist expressions out of the specified loop. Note, alias info for inner
321 /// loop is not preserved so it is not a good idea to run LICM multiple
322 /// times on one loop.
323 /// We should delete AST for inner loops in the new pass manager to avoid
324 /// memory leak.
326 bool LoopInvariantCodeMotion::runOnLoop(
327 Loop *L, AliasAnalysis *AA, LoopInfo *LI, DominatorTree *DT,
328 TargetLibraryInfo *TLI, TargetTransformInfo *TTI, ScalarEvolution *SE,
329 MemorySSA *MSSA, OptimizationRemarkEmitter *ORE, bool DeleteAST) {
330 bool Changed = false;
332 assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form.");
334 // If this loop has metadata indicating that LICM is not to be performed then
335 // just exit.
336 if (hasDisableLICMTransformsHint(L)) {
337 return false;
340 std::unique_ptr<AliasSetTracker> CurAST;
341 std::unique_ptr<MemorySSAUpdater> MSSAU;
342 bool NoOfMemAccTooLarge = false;
343 unsigned LicmMssaOptCounter = 0;
345 if (!MSSA) {
346 LLVM_DEBUG(dbgs() << "LICM: Using Alias Set Tracker.\n");
347 CurAST = collectAliasInfoForLoop(L, LI, AA);
348 } else {
349 LLVM_DEBUG(dbgs() << "LICM: Using MemorySSA.\n");
350 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
352 unsigned AccessCapCount = 0;
353 for (auto *BB : L->getBlocks()) {
354 if (auto *Accesses = MSSA->getBlockAccesses(BB)) {
355 for (const auto &MA : *Accesses) {
356 (void)MA;
357 AccessCapCount++;
358 if (AccessCapCount > LicmMssaNoAccForPromotionCap) {
359 NoOfMemAccTooLarge = true;
360 break;
364 if (NoOfMemAccTooLarge)
365 break;
369 // Get the preheader block to move instructions into...
370 BasicBlock *Preheader = L->getLoopPreheader();
372 // Compute loop safety information.
373 ICFLoopSafetyInfo SafetyInfo(DT);
374 SafetyInfo.computeLoopSafetyInfo(L);
376 // We want to visit all of the instructions in this loop... that are not parts
377 // of our subloops (they have already had their invariants hoisted out of
378 // their loop, into this loop, so there is no need to process the BODIES of
379 // the subloops).
381 // Traverse the body of the loop in depth first order on the dominator tree so
382 // that we are guaranteed to see definitions before we see uses. This allows
383 // us to sink instructions in one pass, without iteration. After sinking
384 // instructions, we perform another pass to hoist them out of the loop.
385 SinkAndHoistLICMFlags Flags = {NoOfMemAccTooLarge, LicmMssaOptCounter,
386 LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
387 /*IsSink=*/true};
388 if (L->hasDedicatedExits())
389 Changed |= sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, TTI, L,
390 CurAST.get(), MSSAU.get(), &SafetyInfo, Flags, ORE);
391 Flags.IsSink = false;
392 if (Preheader)
393 Changed |= hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, L,
394 CurAST.get(), MSSAU.get(), &SafetyInfo, Flags, ORE);
396 // Now that all loop invariants have been removed from the loop, promote any
397 // memory references to scalars that we can.
398 // Don't sink stores from loops without dedicated block exits. Exits
399 // containing indirect branches are not transformed by loop simplify,
400 // make sure we catch that. An additional load may be generated in the
401 // preheader for SSA updater, so also avoid sinking when no preheader
402 // is available.
403 if (!DisablePromotion && Preheader && L->hasDedicatedExits() &&
404 !NoOfMemAccTooLarge) {
405 // Figure out the loop exits and their insertion points
406 SmallVector<BasicBlock *, 8> ExitBlocks;
407 L->getUniqueExitBlocks(ExitBlocks);
409 // We can't insert into a catchswitch.
410 bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) {
411 return isa<CatchSwitchInst>(Exit->getTerminator());
414 if (!HasCatchSwitch) {
415 SmallVector<Instruction *, 8> InsertPts;
416 SmallVector<MemoryAccess *, 8> MSSAInsertPts;
417 InsertPts.reserve(ExitBlocks.size());
418 if (MSSAU)
419 MSSAInsertPts.reserve(ExitBlocks.size());
420 for (BasicBlock *ExitBlock : ExitBlocks) {
421 InsertPts.push_back(&*ExitBlock->getFirstInsertionPt());
422 if (MSSAU)
423 MSSAInsertPts.push_back(nullptr);
426 PredIteratorCache PIC;
428 bool Promoted = false;
430 // Build an AST using MSSA.
431 if (!CurAST.get())
432 CurAST = collectAliasInfoForLoopWithMSSA(L, AA, MSSAU.get());
434 // Loop over all of the alias sets in the tracker object.
435 for (AliasSet &AS : *CurAST) {
436 // We can promote this alias set if it has a store, if it is a "Must"
437 // alias set, if the pointer is loop invariant, and if we are not
438 // eliminating any volatile loads or stores.
439 if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
440 !L->isLoopInvariant(AS.begin()->getValue()))
441 continue;
443 assert(
444 !AS.empty() &&
445 "Must alias set should have at least one pointer element in it!");
447 SmallSetVector<Value *, 8> PointerMustAliases;
448 for (const auto &ASI : AS)
449 PointerMustAliases.insert(ASI.getValue());
451 Promoted |= promoteLoopAccessesToScalars(
452 PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC, LI,
453 DT, TLI, L, CurAST.get(), MSSAU.get(), &SafetyInfo, ORE);
456 // Once we have promoted values across the loop body we have to
457 // recursively reform LCSSA as any nested loop may now have values defined
458 // within the loop used in the outer loop.
459 // FIXME: This is really heavy handed. It would be a bit better to use an
460 // SSAUpdater strategy during promotion that was LCSSA aware and reformed
461 // it as it went.
462 if (Promoted)
463 formLCSSARecursively(*L, *DT, LI, SE);
465 Changed |= Promoted;
469 // Check that neither this loop nor its parent have had LCSSA broken. LICM is
470 // specifically moving instructions across the loop boundary and so it is
471 // especially in need of sanity checking here.
472 assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!");
473 assert((!L->getParentLoop() || L->getParentLoop()->isLCSSAForm(*DT)) &&
474 "Parent loop not left in LCSSA form after LICM!");
476 // If this loop is nested inside of another one, save the alias information
477 // for when we process the outer loop.
478 if (!MSSAU.get() && CurAST.get() && L->getParentLoop() && !DeleteAST)
479 LoopToAliasSetMap[L] = std::move(CurAST);
481 if (MSSAU.get() && VerifyMemorySSA)
482 MSSAU->getMemorySSA()->verifyMemorySSA();
484 if (Changed && SE)
485 SE->forgetLoopDispositions(L);
486 return Changed;
489 /// Walk the specified region of the CFG (defined by all blocks dominated by
490 /// the specified block, and that are in the current loop) in reverse depth
491 /// first order w.r.t the DominatorTree. This allows us to visit uses before
492 /// definitions, allowing us to sink a loop body in one pass without iteration.
494 bool llvm::sinkRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI,
495 DominatorTree *DT, TargetLibraryInfo *TLI,
496 TargetTransformInfo *TTI, Loop *CurLoop,
497 AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
498 ICFLoopSafetyInfo *SafetyInfo,
499 SinkAndHoistLICMFlags &Flags,
500 OptimizationRemarkEmitter *ORE) {
502 // Verify inputs.
503 assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
504 CurLoop != nullptr && SafetyInfo != nullptr &&
505 "Unexpected input to sinkRegion.");
506 assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&
507 "Either AliasSetTracker or MemorySSA should be initialized.");
509 // We want to visit children before parents. We will enque all the parents
510 // before their children in the worklist and process the worklist in reverse
511 // order.
512 SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop);
514 bool Changed = false;
515 for (DomTreeNode *DTN : reverse(Worklist)) {
516 BasicBlock *BB = DTN->getBlock();
517 // Only need to process the contents of this block if it is not part of a
518 // subloop (which would already have been processed).
519 if (inSubLoop(BB, CurLoop, LI))
520 continue;
522 for (BasicBlock::iterator II = BB->end(); II != BB->begin();) {
523 Instruction &I = *--II;
525 // If the instruction is dead, we would try to sink it because it isn't
526 // used in the loop, instead, just delete it.
527 if (isInstructionTriviallyDead(&I, TLI)) {
528 LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n');
529 salvageDebugInfo(I);
530 ++II;
531 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
532 Changed = true;
533 continue;
536 // Check to see if we can sink this instruction to the exit blocks
537 // of the loop. We can do this if the all users of the instruction are
538 // outside of the loop. In this case, it doesn't even matter if the
539 // operands of the instruction are loop invariant.
541 bool FreeInLoop = false;
542 if (isNotUsedOrFreeInLoop(I, CurLoop, SafetyInfo, TTI, FreeInLoop) &&
543 canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags,
544 ORE) &&
545 !I.mayHaveSideEffects()) {
546 if (sink(I, LI, DT, CurLoop, SafetyInfo, MSSAU, ORE)) {
547 if (!FreeInLoop) {
548 ++II;
549 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
551 Changed = true;
556 if (MSSAU && VerifyMemorySSA)
557 MSSAU->getMemorySSA()->verifyMemorySSA();
558 return Changed;
561 namespace {
562 // This is a helper class for hoistRegion to make it able to hoist control flow
563 // in order to be able to hoist phis. The way this works is that we initially
564 // start hoisting to the loop preheader, and when we see a loop invariant branch
565 // we make note of this. When we then come to hoist an instruction that's
566 // conditional on such a branch we duplicate the branch and the relevant control
567 // flow, then hoist the instruction into the block corresponding to its original
568 // block in the duplicated control flow.
569 class ControlFlowHoister {
570 private:
571 // Information about the loop we are hoisting from
572 LoopInfo *LI;
573 DominatorTree *DT;
574 Loop *CurLoop;
575 MemorySSAUpdater *MSSAU;
577 // A map of blocks in the loop to the block their instructions will be hoisted
578 // to.
579 DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap;
581 // The branches that we can hoist, mapped to the block that marks a
582 // convergence point of their control flow.
583 DenseMap<BranchInst *, BasicBlock *> HoistableBranches;
585 public:
586 ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop,
587 MemorySSAUpdater *MSSAU)
588 : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {}
590 void registerPossiblyHoistableBranch(BranchInst *BI) {
591 // We can only hoist conditional branches with loop invariant operands.
592 if (!ControlFlowHoisting || !BI->isConditional() ||
593 !CurLoop->hasLoopInvariantOperands(BI))
594 return;
596 // The branch destinations need to be in the loop, and we don't gain
597 // anything by duplicating conditional branches with duplicate successors,
598 // as it's essentially the same as an unconditional branch.
599 BasicBlock *TrueDest = BI->getSuccessor(0);
600 BasicBlock *FalseDest = BI->getSuccessor(1);
601 if (!CurLoop->contains(TrueDest) || !CurLoop->contains(FalseDest) ||
602 TrueDest == FalseDest)
603 return;
605 // We can hoist BI if one branch destination is the successor of the other,
606 // or both have common successor which we check by seeing if the
607 // intersection of their successors is non-empty.
608 // TODO: This could be expanded to allowing branches where both ends
609 // eventually converge to a single block.
610 SmallPtrSet<BasicBlock *, 4> TrueDestSucc, FalseDestSucc;
611 TrueDestSucc.insert(succ_begin(TrueDest), succ_end(TrueDest));
612 FalseDestSucc.insert(succ_begin(FalseDest), succ_end(FalseDest));
613 BasicBlock *CommonSucc = nullptr;
614 if (TrueDestSucc.count(FalseDest)) {
615 CommonSucc = FalseDest;
616 } else if (FalseDestSucc.count(TrueDest)) {
617 CommonSucc = TrueDest;
618 } else {
619 set_intersect(TrueDestSucc, FalseDestSucc);
620 // If there's one common successor use that.
621 if (TrueDestSucc.size() == 1)
622 CommonSucc = *TrueDestSucc.begin();
623 // If there's more than one pick whichever appears first in the block list
624 // (we can't use the value returned by TrueDestSucc.begin() as it's
625 // unpredicatable which element gets returned).
626 else if (!TrueDestSucc.empty()) {
627 Function *F = TrueDest->getParent();
628 auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(&BB); };
629 auto It = std::find_if(F->begin(), F->end(), IsSucc);
630 assert(It != F->end() && "Could not find successor in function");
631 CommonSucc = &*It;
634 // The common successor has to be dominated by the branch, as otherwise
635 // there will be some other path to the successor that will not be
636 // controlled by this branch so any phi we hoist would be controlled by the
637 // wrong condition. This also takes care of avoiding hoisting of loop back
638 // edges.
639 // TODO: In some cases this could be relaxed if the successor is dominated
640 // by another block that's been hoisted and we can guarantee that the
641 // control flow has been replicated exactly.
642 if (CommonSucc && DT->dominates(BI, CommonSucc))
643 HoistableBranches[BI] = CommonSucc;
646 bool canHoistPHI(PHINode *PN) {
647 // The phi must have loop invariant operands.
648 if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(PN))
649 return false;
650 // We can hoist phis if the block they are in is the target of hoistable
651 // branches which cover all of the predecessors of the block.
652 SmallPtrSet<BasicBlock *, 8> PredecessorBlocks;
653 BasicBlock *BB = PN->getParent();
654 for (BasicBlock *PredBB : predecessors(BB))
655 PredecessorBlocks.insert(PredBB);
656 // If we have less predecessor blocks than predecessors then the phi will
657 // have more than one incoming value for the same block which we can't
658 // handle.
659 // TODO: This could be handled be erasing some of the duplicate incoming
660 // values.
661 if (PredecessorBlocks.size() != pred_size(BB))
662 return false;
663 for (auto &Pair : HoistableBranches) {
664 if (Pair.second == BB) {
665 // Which blocks are predecessors via this branch depends on if the
666 // branch is triangle-like or diamond-like.
667 if (Pair.first->getSuccessor(0) == BB) {
668 PredecessorBlocks.erase(Pair.first->getParent());
669 PredecessorBlocks.erase(Pair.first->getSuccessor(1));
670 } else if (Pair.first->getSuccessor(1) == BB) {
671 PredecessorBlocks.erase(Pair.first->getParent());
672 PredecessorBlocks.erase(Pair.first->getSuccessor(0));
673 } else {
674 PredecessorBlocks.erase(Pair.first->getSuccessor(0));
675 PredecessorBlocks.erase(Pair.first->getSuccessor(1));
679 // PredecessorBlocks will now be empty if for every predecessor of BB we
680 // found a hoistable branch source.
681 return PredecessorBlocks.empty();
684 BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) {
685 if (!ControlFlowHoisting)
686 return CurLoop->getLoopPreheader();
687 // If BB has already been hoisted, return that
688 if (HoistDestinationMap.count(BB))
689 return HoistDestinationMap[BB];
691 // Check if this block is conditional based on a pending branch
692 auto HasBBAsSuccessor =
693 [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) {
694 return BB != Pair.second && (Pair.first->getSuccessor(0) == BB ||
695 Pair.first->getSuccessor(1) == BB);
697 auto It = std::find_if(HoistableBranches.begin(), HoistableBranches.end(),
698 HasBBAsSuccessor);
700 // If not involved in a pending branch, hoist to preheader
701 BasicBlock *InitialPreheader = CurLoop->getLoopPreheader();
702 if (It == HoistableBranches.end()) {
703 LLVM_DEBUG(dbgs() << "LICM using " << InitialPreheader->getName()
704 << " as hoist destination for " << BB->getName()
705 << "\n");
706 HoistDestinationMap[BB] = InitialPreheader;
707 return InitialPreheader;
709 BranchInst *BI = It->first;
710 assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) ==
711 HoistableBranches.end() &&
712 "BB is expected to be the target of at most one branch");
714 LLVMContext &C = BB->getContext();
715 BasicBlock *TrueDest = BI->getSuccessor(0);
716 BasicBlock *FalseDest = BI->getSuccessor(1);
717 BasicBlock *CommonSucc = HoistableBranches[BI];
718 BasicBlock *HoistTarget = getOrCreateHoistedBlock(BI->getParent());
720 // Create hoisted versions of blocks that currently don't have them
721 auto CreateHoistedBlock = [&](BasicBlock *Orig) {
722 if (HoistDestinationMap.count(Orig))
723 return HoistDestinationMap[Orig];
724 BasicBlock *New =
725 BasicBlock::Create(C, Orig->getName() + ".licm", Orig->getParent());
726 HoistDestinationMap[Orig] = New;
727 DT->addNewBlock(New, HoistTarget);
728 if (CurLoop->getParentLoop())
729 CurLoop->getParentLoop()->addBasicBlockToLoop(New, *LI);
730 ++NumCreatedBlocks;
731 LLVM_DEBUG(dbgs() << "LICM created " << New->getName()
732 << " as hoist destination for " << Orig->getName()
733 << "\n");
734 return New;
736 BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest);
737 BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest);
738 BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc);
740 // Link up these blocks with branches.
741 if (!HoistCommonSucc->getTerminator()) {
742 // The new common successor we've generated will branch to whatever that
743 // hoist target branched to.
744 BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor();
745 assert(TargetSucc && "Expected hoist target to have a single successor");
746 HoistCommonSucc->moveBefore(TargetSucc);
747 BranchInst::Create(TargetSucc, HoistCommonSucc);
749 if (!HoistTrueDest->getTerminator()) {
750 HoistTrueDest->moveBefore(HoistCommonSucc);
751 BranchInst::Create(HoistCommonSucc, HoistTrueDest);
753 if (!HoistFalseDest->getTerminator()) {
754 HoistFalseDest->moveBefore(HoistCommonSucc);
755 BranchInst::Create(HoistCommonSucc, HoistFalseDest);
758 // If BI is being cloned to what was originally the preheader then
759 // HoistCommonSucc will now be the new preheader.
760 if (HoistTarget == InitialPreheader) {
761 // Phis in the loop header now need to use the new preheader.
762 InitialPreheader->replaceSuccessorsPhiUsesWith(HoistCommonSucc);
763 if (MSSAU)
764 MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
765 HoistTarget->getSingleSuccessor(), HoistCommonSucc, {HoistTarget});
766 // The new preheader dominates the loop header.
767 DomTreeNode *PreheaderNode = DT->getNode(HoistCommonSucc);
768 DomTreeNode *HeaderNode = DT->getNode(CurLoop->getHeader());
769 DT->changeImmediateDominator(HeaderNode, PreheaderNode);
770 // The preheader hoist destination is now the new preheader, with the
771 // exception of the hoist destination of this branch.
772 for (auto &Pair : HoistDestinationMap)
773 if (Pair.second == InitialPreheader && Pair.first != BI->getParent())
774 Pair.second = HoistCommonSucc;
777 // Now finally clone BI.
778 ReplaceInstWithInst(
779 HoistTarget->getTerminator(),
780 BranchInst::Create(HoistTrueDest, HoistFalseDest, BI->getCondition()));
781 ++NumClonedBranches;
783 assert(CurLoop->getLoopPreheader() &&
784 "Hoisting blocks should not have destroyed preheader");
785 return HoistDestinationMap[BB];
788 } // namespace
790 /// Walk the specified region of the CFG (defined by all blocks dominated by
791 /// the specified block, and that are in the current loop) in depth first
792 /// order w.r.t the DominatorTree. This allows us to visit definitions before
793 /// uses, allowing us to hoist a loop body in one pass without iteration.
795 bool llvm::hoistRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI,
796 DominatorTree *DT, TargetLibraryInfo *TLI, Loop *CurLoop,
797 AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
798 ICFLoopSafetyInfo *SafetyInfo,
799 SinkAndHoistLICMFlags &Flags,
800 OptimizationRemarkEmitter *ORE) {
801 // Verify inputs.
802 assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
803 CurLoop != nullptr && SafetyInfo != nullptr &&
804 "Unexpected input to hoistRegion.");
805 assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&
806 "Either AliasSetTracker or MemorySSA should be initialized.");
808 ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU);
810 // Keep track of instructions that have been hoisted, as they may need to be
811 // re-hoisted if they end up not dominating all of their uses.
812 SmallVector<Instruction *, 16> HoistedInstructions;
814 // For PHI hoisting to work we need to hoist blocks before their successors.
815 // We can do this by iterating through the blocks in the loop in reverse
816 // post-order.
817 LoopBlocksRPO Worklist(CurLoop);
818 Worklist.perform(LI);
819 bool Changed = false;
820 for (BasicBlock *BB : Worklist) {
821 // Only need to process the contents of this block if it is not part of a
822 // subloop (which would already have been processed).
823 if (inSubLoop(BB, CurLoop, LI))
824 continue;
826 for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;) {
827 Instruction &I = *II++;
828 // Try constant folding this instruction. If all the operands are
829 // constants, it is technically hoistable, but it would be better to
830 // just fold it.
831 if (Constant *C = ConstantFoldInstruction(
832 &I, I.getModule()->getDataLayout(), TLI)) {
833 LLVM_DEBUG(dbgs() << "LICM folding inst: " << I << " --> " << *C
834 << '\n');
835 if (CurAST)
836 CurAST->copyValue(&I, C);
837 // FIXME MSSA: Such replacements may make accesses unoptimized (D51960).
838 I.replaceAllUsesWith(C);
839 if (isInstructionTriviallyDead(&I, TLI))
840 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
841 Changed = true;
842 continue;
845 // Try hoisting the instruction out to the preheader. We can only do
846 // this if all of the operands of the instruction are loop invariant and
847 // if it is safe to hoist the instruction.
848 // TODO: It may be safe to hoist if we are hoisting to a conditional block
849 // and we have accurately duplicated the control flow from the loop header
850 // to that block.
851 if (CurLoop->hasLoopInvariantOperands(&I) &&
852 canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags,
853 ORE) &&
854 isSafeToExecuteUnconditionally(
855 I, DT, CurLoop, SafetyInfo, ORE,
856 CurLoop->getLoopPreheader()->getTerminator())) {
857 hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
858 MSSAU, ORE);
859 HoistedInstructions.push_back(&I);
860 Changed = true;
861 continue;
864 // Attempt to remove floating point division out of the loop by
865 // converting it to a reciprocal multiplication.
866 if (I.getOpcode() == Instruction::FDiv &&
867 CurLoop->isLoopInvariant(I.getOperand(1)) &&
868 I.hasAllowReciprocal()) {
869 auto Divisor = I.getOperand(1);
870 auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0);
871 auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor);
872 ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags());
873 SafetyInfo->insertInstructionTo(ReciprocalDivisor, I.getParent());
874 ReciprocalDivisor->insertBefore(&I);
876 auto Product =
877 BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor);
878 Product->setFastMathFlags(I.getFastMathFlags());
879 SafetyInfo->insertInstructionTo(Product, I.getParent());
880 Product->insertAfter(&I);
881 I.replaceAllUsesWith(Product);
882 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
884 hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB),
885 SafetyInfo, MSSAU, ORE);
886 HoistedInstructions.push_back(ReciprocalDivisor);
887 Changed = true;
888 continue;
891 auto IsInvariantStart = [&](Instruction &I) {
892 using namespace PatternMatch;
893 return I.use_empty() &&
894 match(&I, m_Intrinsic<Intrinsic::invariant_start>());
896 auto MustExecuteWithoutWritesBefore = [&](Instruction &I) {
897 return SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) &&
898 SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop);
900 if ((IsInvariantStart(I) || isGuard(&I)) &&
901 CurLoop->hasLoopInvariantOperands(&I) &&
902 MustExecuteWithoutWritesBefore(I)) {
903 hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
904 MSSAU, ORE);
905 HoistedInstructions.push_back(&I);
906 Changed = true;
907 continue;
910 if (PHINode *PN = dyn_cast<PHINode>(&I)) {
911 if (CFH.canHoistPHI(PN)) {
912 // Redirect incoming blocks first to ensure that we create hoisted
913 // versions of those blocks before we hoist the phi.
914 for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i)
915 PN->setIncomingBlock(
916 i, CFH.getOrCreateHoistedBlock(PN->getIncomingBlock(i)));
917 hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
918 MSSAU, ORE);
919 assert(DT->dominates(PN, BB) && "Conditional PHIs not expected");
920 Changed = true;
921 continue;
925 // Remember possibly hoistable branches so we can actually hoist them
926 // later if needed.
927 if (BranchInst *BI = dyn_cast<BranchInst>(&I))
928 CFH.registerPossiblyHoistableBranch(BI);
932 // If we hoisted instructions to a conditional block they may not dominate
933 // their uses that weren't hoisted (such as phis where some operands are not
934 // loop invariant). If so make them unconditional by moving them to their
935 // immediate dominator. We iterate through the instructions in reverse order
936 // which ensures that when we rehoist an instruction we rehoist its operands,
937 // and also keep track of where in the block we are rehoisting to to make sure
938 // that we rehoist instructions before the instructions that use them.
939 Instruction *HoistPoint = nullptr;
940 if (ControlFlowHoisting) {
941 for (Instruction *I : reverse(HoistedInstructions)) {
942 if (!llvm::all_of(I->uses(),
943 [&](Use &U) { return DT->dominates(I, U); })) {
944 BasicBlock *Dominator =
945 DT->getNode(I->getParent())->getIDom()->getBlock();
946 if (!HoistPoint || !DT->dominates(HoistPoint->getParent(), Dominator)) {
947 if (HoistPoint)
948 assert(DT->dominates(Dominator, HoistPoint->getParent()) &&
949 "New hoist point expected to dominate old hoist point");
950 HoistPoint = Dominator->getTerminator();
952 LLVM_DEBUG(dbgs() << "LICM rehoisting to "
953 << HoistPoint->getParent()->getName()
954 << ": " << *I << "\n");
955 moveInstructionBefore(*I, *HoistPoint, *SafetyInfo, MSSAU);
956 HoistPoint = I;
957 Changed = true;
961 if (MSSAU && VerifyMemorySSA)
962 MSSAU->getMemorySSA()->verifyMemorySSA();
964 // Now that we've finished hoisting make sure that LI and DT are still
965 // valid.
966 #ifndef NDEBUG
967 if (Changed) {
968 assert(DT->verify(DominatorTree::VerificationLevel::Fast) &&
969 "Dominator tree verification failed");
970 LI->verify(*DT);
972 #endif
974 return Changed;
977 // Return true if LI is invariant within scope of the loop. LI is invariant if
978 // CurLoop is dominated by an invariant.start representing the same memory
979 // location and size as the memory location LI loads from, and also the
980 // invariant.start has no uses.
981 static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT,
982 Loop *CurLoop) {
983 Value *Addr = LI->getOperand(0);
984 const DataLayout &DL = LI->getModule()->getDataLayout();
985 const uint32_t LocSizeInBits = DL.getTypeSizeInBits(LI->getType());
987 // if the type is i8 addrspace(x)*, we know this is the type of
988 // llvm.invariant.start operand
989 auto *PtrInt8Ty = PointerType::get(Type::getInt8Ty(LI->getContext()),
990 LI->getPointerAddressSpace());
991 unsigned BitcastsVisited = 0;
992 // Look through bitcasts until we reach the i8* type (this is invariant.start
993 // operand type).
994 while (Addr->getType() != PtrInt8Ty) {
995 auto *BC = dyn_cast<BitCastInst>(Addr);
996 // Avoid traversing high number of bitcast uses.
997 if (++BitcastsVisited > MaxNumUsesTraversed || !BC)
998 return false;
999 Addr = BC->getOperand(0);
1002 unsigned UsesVisited = 0;
1003 // Traverse all uses of the load operand value, to see if invariant.start is
1004 // one of the uses, and whether it dominates the load instruction.
1005 for (auto *U : Addr->users()) {
1006 // Avoid traversing for Load operand with high number of users.
1007 if (++UsesVisited > MaxNumUsesTraversed)
1008 return false;
1009 IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
1010 // If there are escaping uses of invariant.start instruction, the load maybe
1011 // non-invariant.
1012 if (!II || II->getIntrinsicID() != Intrinsic::invariant_start ||
1013 !II->use_empty())
1014 continue;
1015 unsigned InvariantSizeInBits =
1016 cast<ConstantInt>(II->getArgOperand(0))->getSExtValue() * 8;
1017 // Confirm the invariant.start location size contains the load operand size
1018 // in bits. Also, the invariant.start should dominate the load, and we
1019 // should not hoist the load out of a loop that contains this dominating
1020 // invariant.start.
1021 if (LocSizeInBits <= InvariantSizeInBits &&
1022 DT->properlyDominates(II->getParent(), CurLoop->getHeader()))
1023 return true;
1026 return false;
1029 namespace {
1030 /// Return true if-and-only-if we know how to (mechanically) both hoist and
1031 /// sink a given instruction out of a loop. Does not address legality
1032 /// concerns such as aliasing or speculation safety.
1033 bool isHoistableAndSinkableInst(Instruction &I) {
1034 // Only these instructions are hoistable/sinkable.
1035 return (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
1036 isa<FenceInst>(I) || isa<CastInst>(I) ||
1037 isa<UnaryOperator>(I) || isa<BinaryOperator>(I) ||
1038 isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
1039 isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
1040 isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) ||
1041 isa<InsertValueInst>(I));
1043 /// Return true if all of the alias sets within this AST are known not to
1044 /// contain a Mod, or if MSSA knows thare are no MemoryDefs in the loop.
1045 bool isReadOnly(AliasSetTracker *CurAST, const MemorySSAUpdater *MSSAU,
1046 const Loop *L) {
1047 if (CurAST) {
1048 for (AliasSet &AS : *CurAST) {
1049 if (!AS.isForwardingAliasSet() && AS.isMod()) {
1050 return false;
1053 return true;
1054 } else { /*MSSAU*/
1055 for (auto *BB : L->getBlocks())
1056 if (MSSAU->getMemorySSA()->getBlockDefs(BB))
1057 return false;
1058 return true;
1062 /// Return true if I is the only Instruction with a MemoryAccess in L.
1063 bool isOnlyMemoryAccess(const Instruction *I, const Loop *L,
1064 const MemorySSAUpdater *MSSAU) {
1065 for (auto *BB : L->getBlocks())
1066 if (auto *Accs = MSSAU->getMemorySSA()->getBlockAccesses(BB)) {
1067 int NotAPhi = 0;
1068 for (const auto &Acc : *Accs) {
1069 if (isa<MemoryPhi>(&Acc))
1070 continue;
1071 const auto *MUD = cast<MemoryUseOrDef>(&Acc);
1072 if (MUD->getMemoryInst() != I || NotAPhi++ == 1)
1073 return false;
1076 return true;
1080 bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT,
1081 Loop *CurLoop, AliasSetTracker *CurAST,
1082 MemorySSAUpdater *MSSAU,
1083 bool TargetExecutesOncePerLoop,
1084 SinkAndHoistLICMFlags *Flags,
1085 OptimizationRemarkEmitter *ORE) {
1086 // If we don't understand the instruction, bail early.
1087 if (!isHoistableAndSinkableInst(I))
1088 return false;
1090 MemorySSA *MSSA = MSSAU ? MSSAU->getMemorySSA() : nullptr;
1091 if (MSSA)
1092 assert(Flags != nullptr && "Flags cannot be null.");
1094 // Loads have extra constraints we have to verify before we can hoist them.
1095 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
1096 if (!LI->isUnordered())
1097 return false; // Don't sink/hoist volatile or ordered atomic loads!
1099 // Loads from constant memory are always safe to move, even if they end up
1100 // in the same alias set as something that ends up being modified.
1101 if (AA->pointsToConstantMemory(LI->getOperand(0)))
1102 return true;
1103 if (LI->hasMetadata(LLVMContext::MD_invariant_load))
1104 return true;
1106 if (LI->isAtomic() && !TargetExecutesOncePerLoop)
1107 return false; // Don't risk duplicating unordered loads
1109 // This checks for an invariant.start dominating the load.
1110 if (isLoadInvariantInLoop(LI, DT, CurLoop))
1111 return true;
1113 bool Invalidated;
1114 if (CurAST)
1115 Invalidated = pointerInvalidatedByLoop(MemoryLocation::get(LI), CurAST,
1116 CurLoop, AA);
1117 else
1118 Invalidated = pointerInvalidatedByLoopWithMSSA(
1119 MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(LI)), CurLoop, *Flags);
1120 // Check loop-invariant address because this may also be a sinkable load
1121 // whose address is not necessarily loop-invariant.
1122 if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand()))
1123 ORE->emit([&]() {
1124 return OptimizationRemarkMissed(
1125 DEBUG_TYPE, "LoadWithLoopInvariantAddressInvalidated", LI)
1126 << "failed to move load with loop-invariant address "
1127 "because the loop may invalidate its value";
1130 return !Invalidated;
1131 } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
1132 // Don't sink or hoist dbg info; it's legal, but not useful.
1133 if (isa<DbgInfoIntrinsic>(I))
1134 return false;
1136 // Don't sink calls which can throw.
1137 if (CI->mayThrow())
1138 return false;
1140 using namespace PatternMatch;
1141 if (match(CI, m_Intrinsic<Intrinsic::assume>()))
1142 // Assumes don't actually alias anything or throw
1143 return true;
1145 // Handle simple cases by querying alias analysis.
1146 FunctionModRefBehavior Behavior = AA->getModRefBehavior(CI);
1147 if (Behavior == FMRB_DoesNotAccessMemory)
1148 return true;
1149 if (AliasAnalysis::onlyReadsMemory(Behavior)) {
1150 // A readonly argmemonly function only reads from memory pointed to by
1151 // it's arguments with arbitrary offsets. If we can prove there are no
1152 // writes to this memory in the loop, we can hoist or sink.
1153 if (AliasAnalysis::onlyAccessesArgPointees(Behavior)) {
1154 // TODO: expand to writeable arguments
1155 for (Value *Op : CI->arg_operands())
1156 if (Op->getType()->isPointerTy()) {
1157 bool Invalidated;
1158 if (CurAST)
1159 Invalidated = pointerInvalidatedByLoop(
1160 MemoryLocation(Op, LocationSize::unknown(), AAMDNodes()),
1161 CurAST, CurLoop, AA);
1162 else
1163 Invalidated = pointerInvalidatedByLoopWithMSSA(
1164 MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(CI)), CurLoop,
1165 *Flags);
1166 if (Invalidated)
1167 return false;
1169 return true;
1172 // If this call only reads from memory and there are no writes to memory
1173 // in the loop, we can hoist or sink the call as appropriate.
1174 if (isReadOnly(CurAST, MSSAU, CurLoop))
1175 return true;
1178 // FIXME: This should use mod/ref information to see if we can hoist or
1179 // sink the call.
1181 return false;
1182 } else if (auto *FI = dyn_cast<FenceInst>(&I)) {
1183 // Fences alias (most) everything to provide ordering. For the moment,
1184 // just give up if there are any other memory operations in the loop.
1185 if (CurAST) {
1186 auto Begin = CurAST->begin();
1187 assert(Begin != CurAST->end() && "must contain FI");
1188 if (std::next(Begin) != CurAST->end())
1189 // constant memory for instance, TODO: handle better
1190 return false;
1191 auto *UniqueI = Begin->getUniqueInstruction();
1192 if (!UniqueI)
1193 // other memory op, give up
1194 return false;
1195 (void)FI; // suppress unused variable warning
1196 assert(UniqueI == FI && "AS must contain FI");
1197 return true;
1198 } else // MSSAU
1199 return isOnlyMemoryAccess(FI, CurLoop, MSSAU);
1200 } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
1201 if (!SI->isUnordered())
1202 return false; // Don't sink/hoist volatile or ordered atomic store!
1204 // We can only hoist a store that we can prove writes a value which is not
1205 // read or overwritten within the loop. For those cases, we fallback to
1206 // load store promotion instead. TODO: We can extend this to cases where
1207 // there is exactly one write to the location and that write dominates an
1208 // arbitrary number of reads in the loop.
1209 if (CurAST) {
1210 auto &AS = CurAST->getAliasSetFor(MemoryLocation::get(SI));
1212 if (AS.isRef() || !AS.isMustAlias())
1213 // Quick exit test, handled by the full path below as well.
1214 return false;
1215 auto *UniqueI = AS.getUniqueInstruction();
1216 if (!UniqueI)
1217 // other memory op, give up
1218 return false;
1219 assert(UniqueI == SI && "AS must contain SI");
1220 return true;
1221 } else { // MSSAU
1222 if (isOnlyMemoryAccess(SI, CurLoop, MSSAU))
1223 return true;
1224 // If there are more accesses than the Promotion cap, give up, we're not
1225 // walking a list that long.
1226 if (Flags->NoOfMemAccTooLarge)
1227 return false;
1228 // Check store only if there's still "quota" to check clobber.
1229 if (Flags->LicmMssaOptCounter >= Flags->LicmMssaOptCap)
1230 return false;
1231 // If there are interfering Uses (i.e. their defining access is in the
1232 // loop), or ordered loads (stored as Defs!), don't move this store.
1233 // Could do better here, but this is conservatively correct.
1234 // TODO: Cache set of Uses on the first walk in runOnLoop, update when
1235 // moving accesses. Can also extend to dominating uses.
1236 auto *SIMD = MSSA->getMemoryAccess(SI);
1237 for (auto *BB : CurLoop->getBlocks())
1238 if (auto *Accesses = MSSA->getBlockAccesses(BB)) {
1239 for (const auto &MA : *Accesses)
1240 if (const auto *MU = dyn_cast<MemoryUse>(&MA)) {
1241 auto *MD = MU->getDefiningAccess();
1242 if (!MSSA->isLiveOnEntryDef(MD) &&
1243 CurLoop->contains(MD->getBlock()))
1244 return false;
1245 // Disable hoisting past potentially interfering loads. Optimized
1246 // Uses may point to an access outside the loop, as getClobbering
1247 // checks the previous iteration when walking the backedge.
1248 // FIXME: More precise: no Uses that alias SI.
1249 if (!Flags->IsSink && !MSSA->dominates(SIMD, MU))
1250 return false;
1251 } else if (const auto *MD = dyn_cast<MemoryDef>(&MA))
1252 if (auto *LI = dyn_cast<LoadInst>(MD->getMemoryInst())) {
1253 (void)LI; // Silence warning.
1254 assert(!LI->isUnordered() && "Expected unordered load");
1255 return false;
1259 auto *Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(SI);
1260 Flags->LicmMssaOptCounter++;
1261 // If there are no clobbering Defs in the loop, store is safe to hoist.
1262 return MSSA->isLiveOnEntryDef(Source) ||
1263 !CurLoop->contains(Source->getBlock());
1267 assert(!I.mayReadOrWriteMemory() && "unhandled aliasing");
1269 // We've established mechanical ability and aliasing, it's up to the caller
1270 // to check fault safety
1271 return true;
1274 /// Returns true if a PHINode is a trivially replaceable with an
1275 /// Instruction.
1276 /// This is true when all incoming values are that instruction.
1277 /// This pattern occurs most often with LCSSA PHI nodes.
1279 static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) {
1280 for (const Value *IncValue : PN.incoming_values())
1281 if (IncValue != &I)
1282 return false;
1284 return true;
1287 /// Return true if the instruction is free in the loop.
1288 static bool isFreeInLoop(const Instruction &I, const Loop *CurLoop,
1289 const TargetTransformInfo *TTI) {
1291 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1292 if (TTI->getUserCost(GEP) != TargetTransformInfo::TCC_Free)
1293 return false;
1294 // For a GEP, we cannot simply use getUserCost because currently it
1295 // optimistically assume that a GEP will fold into addressing mode
1296 // regardless of its users.
1297 const BasicBlock *BB = GEP->getParent();
1298 for (const User *U : GEP->users()) {
1299 const Instruction *UI = cast<Instruction>(U);
1300 if (CurLoop->contains(UI) &&
1301 (BB != UI->getParent() ||
1302 (!isa<StoreInst>(UI) && !isa<LoadInst>(UI))))
1303 return false;
1305 return true;
1306 } else
1307 return TTI->getUserCost(&I) == TargetTransformInfo::TCC_Free;
1310 /// Return true if the only users of this instruction are outside of
1311 /// the loop. If this is true, we can sink the instruction to the exit
1312 /// blocks of the loop.
1314 /// We also return true if the instruction could be folded away in lowering.
1315 /// (e.g., a GEP can be folded into a load as an addressing mode in the loop).
1316 static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
1317 const LoopSafetyInfo *SafetyInfo,
1318 TargetTransformInfo *TTI, bool &FreeInLoop) {
1319 const auto &BlockColors = SafetyInfo->getBlockColors();
1320 bool IsFree = isFreeInLoop(I, CurLoop, TTI);
1321 for (const User *U : I.users()) {
1322 const Instruction *UI = cast<Instruction>(U);
1323 if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1324 const BasicBlock *BB = PN->getParent();
1325 // We cannot sink uses in catchswitches.
1326 if (isa<CatchSwitchInst>(BB->getTerminator()))
1327 return false;
1329 // We need to sink a callsite to a unique funclet. Avoid sinking if the
1330 // phi use is too muddled.
1331 if (isa<CallInst>(I))
1332 if (!BlockColors.empty() &&
1333 BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1)
1334 return false;
1337 if (CurLoop->contains(UI)) {
1338 if (IsFree) {
1339 FreeInLoop = true;
1340 continue;
1342 return false;
1345 return true;
1348 static Instruction *CloneInstructionInExitBlock(
1349 Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
1350 const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU) {
1351 Instruction *New;
1352 if (auto *CI = dyn_cast<CallInst>(&I)) {
1353 const auto &BlockColors = SafetyInfo->getBlockColors();
1355 // Sinking call-sites need to be handled differently from other
1356 // instructions. The cloned call-site needs a funclet bundle operand
1357 // appropriate for its location in the CFG.
1358 SmallVector<OperandBundleDef, 1> OpBundles;
1359 for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles();
1360 BundleIdx != BundleEnd; ++BundleIdx) {
1361 OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx);
1362 if (Bundle.getTagID() == LLVMContext::OB_funclet)
1363 continue;
1365 OpBundles.emplace_back(Bundle);
1368 if (!BlockColors.empty()) {
1369 const ColorVector &CV = BlockColors.find(&ExitBlock)->second;
1370 assert(CV.size() == 1 && "non-unique color for exit block!");
1371 BasicBlock *BBColor = CV.front();
1372 Instruction *EHPad = BBColor->getFirstNonPHI();
1373 if (EHPad->isEHPad())
1374 OpBundles.emplace_back("funclet", EHPad);
1377 New = CallInst::Create(CI, OpBundles);
1378 } else {
1379 New = I.clone();
1382 ExitBlock.getInstList().insert(ExitBlock.getFirstInsertionPt(), New);
1383 if (!I.getName().empty())
1384 New->setName(I.getName() + ".le");
1386 MemoryAccess *OldMemAcc;
1387 if (MSSAU && (OldMemAcc = MSSAU->getMemorySSA()->getMemoryAccess(&I))) {
1388 // Create a new MemoryAccess and let MemorySSA set its defining access.
1389 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1390 New, nullptr, New->getParent(), MemorySSA::Beginning);
1391 if (NewMemAcc) {
1392 if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc))
1393 MSSAU->insertDef(MemDef, /*RenameUses=*/true);
1394 else {
1395 auto *MemUse = cast<MemoryUse>(NewMemAcc);
1396 MSSAU->insertUse(MemUse, /*RenameUses=*/true);
1401 // Build LCSSA PHI nodes for any in-loop operands. Note that this is
1402 // particularly cheap because we can rip off the PHI node that we're
1403 // replacing for the number and blocks of the predecessors.
1404 // OPT: If this shows up in a profile, we can instead finish sinking all
1405 // invariant instructions, and then walk their operands to re-establish
1406 // LCSSA. That will eliminate creating PHI nodes just to nuke them when
1407 // sinking bottom-up.
1408 for (User::op_iterator OI = New->op_begin(), OE = New->op_end(); OI != OE;
1409 ++OI)
1410 if (Instruction *OInst = dyn_cast<Instruction>(*OI))
1411 if (Loop *OLoop = LI->getLoopFor(OInst->getParent()))
1412 if (!OLoop->contains(&PN)) {
1413 PHINode *OpPN =
1414 PHINode::Create(OInst->getType(), PN.getNumIncomingValues(),
1415 OInst->getName() + ".lcssa", &ExitBlock.front());
1416 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1417 OpPN->addIncoming(OInst, PN.getIncomingBlock(i));
1418 *OI = OpPN;
1420 return New;
1423 static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
1424 AliasSetTracker *AST, MemorySSAUpdater *MSSAU) {
1425 if (AST)
1426 AST->deleteValue(&I);
1427 if (MSSAU)
1428 MSSAU->removeMemoryAccess(&I);
1429 SafetyInfo.removeInstruction(&I);
1430 I.eraseFromParent();
1433 static void moveInstructionBefore(Instruction &I, Instruction &Dest,
1434 ICFLoopSafetyInfo &SafetyInfo,
1435 MemorySSAUpdater *MSSAU) {
1436 SafetyInfo.removeInstruction(&I);
1437 SafetyInfo.insertInstructionTo(&I, Dest.getParent());
1438 I.moveBefore(&Dest);
1439 if (MSSAU)
1440 if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>(
1441 MSSAU->getMemorySSA()->getMemoryAccess(&I)))
1442 MSSAU->moveToPlace(OldMemAcc, Dest.getParent(), MemorySSA::End);
1445 static Instruction *sinkThroughTriviallyReplaceablePHI(
1446 PHINode *TPN, Instruction *I, LoopInfo *LI,
1447 SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies,
1448 const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop,
1449 MemorySSAUpdater *MSSAU) {
1450 assert(isTriviallyReplaceablePHI(*TPN, *I) &&
1451 "Expect only trivially replaceable PHI");
1452 BasicBlock *ExitBlock = TPN->getParent();
1453 Instruction *New;
1454 auto It = SunkCopies.find(ExitBlock);
1455 if (It != SunkCopies.end())
1456 New = It->second;
1457 else
1458 New = SunkCopies[ExitBlock] = CloneInstructionInExitBlock(
1459 *I, *ExitBlock, *TPN, LI, SafetyInfo, MSSAU);
1460 return New;
1463 static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) {
1464 BasicBlock *BB = PN->getParent();
1465 if (!BB->canSplitPredecessors())
1466 return false;
1467 // It's not impossible to split EHPad blocks, but if BlockColors already exist
1468 // it require updating BlockColors for all offspring blocks accordingly. By
1469 // skipping such corner case, we can make updating BlockColors after splitting
1470 // predecessor fairly simple.
1471 if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad())
1472 return false;
1473 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1474 BasicBlock *BBPred = *PI;
1475 if (isa<IndirectBrInst>(BBPred->getTerminator()))
1476 return false;
1478 return true;
1481 static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT,
1482 LoopInfo *LI, const Loop *CurLoop,
1483 LoopSafetyInfo *SafetyInfo,
1484 MemorySSAUpdater *MSSAU) {
1485 #ifndef NDEBUG
1486 SmallVector<BasicBlock *, 32> ExitBlocks;
1487 CurLoop->getUniqueExitBlocks(ExitBlocks);
1488 SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
1489 ExitBlocks.end());
1490 #endif
1491 BasicBlock *ExitBB = PN->getParent();
1492 assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block.");
1494 // Split predecessors of the loop exit to make instructions in the loop are
1495 // exposed to exit blocks through trivially replaceable PHIs while keeping the
1496 // loop in the canonical form where each predecessor of each exit block should
1497 // be contained within the loop. For example, this will convert the loop below
1498 // from
1500 // LB1:
1501 // %v1 =
1502 // br %LE, %LB2
1503 // LB2:
1504 // %v2 =
1505 // br %LE, %LB1
1506 // LE:
1507 // %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable
1509 // to
1511 // LB1:
1512 // %v1 =
1513 // br %LE.split, %LB2
1514 // LB2:
1515 // %v2 =
1516 // br %LE.split2, %LB1
1517 // LE.split:
1518 // %p1 = phi [%v1, %LB1] <-- trivially replaceable
1519 // br %LE
1520 // LE.split2:
1521 // %p2 = phi [%v2, %LB2] <-- trivially replaceable
1522 // br %LE
1523 // LE:
1524 // %p = phi [%p1, %LE.split], [%p2, %LE.split2]
1526 const auto &BlockColors = SafetyInfo->getBlockColors();
1527 SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB));
1528 while (!PredBBs.empty()) {
1529 BasicBlock *PredBB = *PredBBs.begin();
1530 assert(CurLoop->contains(PredBB) &&
1531 "Expect all predecessors are in the loop");
1532 if (PN->getBasicBlockIndex(PredBB) >= 0) {
1533 BasicBlock *NewPred = SplitBlockPredecessors(
1534 ExitBB, PredBB, ".split.loop.exit", DT, LI, MSSAU, true);
1535 // Since we do not allow splitting EH-block with BlockColors in
1536 // canSplitPredecessors(), we can simply assign predecessor's color to
1537 // the new block.
1538 if (!BlockColors.empty())
1539 // Grab a reference to the ColorVector to be inserted before getting the
1540 // reference to the vector we are copying because inserting the new
1541 // element in BlockColors might cause the map to be reallocated.
1542 SafetyInfo->copyColors(NewPred, PredBB);
1544 PredBBs.remove(PredBB);
1548 /// When an instruction is found to only be used outside of the loop, this
1549 /// function moves it to the exit blocks and patches up SSA form as needed.
1550 /// This method is guaranteed to remove the original instruction from its
1551 /// position, and may either delete it or move it to outside of the loop.
1553 static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
1554 const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo,
1555 MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE) {
1556 LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
1557 ORE->emit([&]() {
1558 return OptimizationRemark(DEBUG_TYPE, "InstSunk", &I)
1559 << "sinking " << ore::NV("Inst", &I);
1561 bool Changed = false;
1562 if (isa<LoadInst>(I))
1563 ++NumMovedLoads;
1564 else if (isa<CallInst>(I))
1565 ++NumMovedCalls;
1566 ++NumSunk;
1568 // Iterate over users to be ready for actual sinking. Replace users via
1569 // unreachable blocks with undef and make all user PHIs trivially replaceable.
1570 SmallPtrSet<Instruction *, 8> VisitedUsers;
1571 for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) {
1572 auto *User = cast<Instruction>(*UI);
1573 Use &U = UI.getUse();
1574 ++UI;
1576 if (VisitedUsers.count(User) || CurLoop->contains(User))
1577 continue;
1579 if (!DT->isReachableFromEntry(User->getParent())) {
1580 U = UndefValue::get(I.getType());
1581 Changed = true;
1582 continue;
1585 // The user must be a PHI node.
1586 PHINode *PN = cast<PHINode>(User);
1588 // Surprisingly, instructions can be used outside of loops without any
1589 // exits. This can only happen in PHI nodes if the incoming block is
1590 // unreachable.
1591 BasicBlock *BB = PN->getIncomingBlock(U);
1592 if (!DT->isReachableFromEntry(BB)) {
1593 U = UndefValue::get(I.getType());
1594 Changed = true;
1595 continue;
1598 VisitedUsers.insert(PN);
1599 if (isTriviallyReplaceablePHI(*PN, I))
1600 continue;
1602 if (!canSplitPredecessors(PN, SafetyInfo))
1603 return Changed;
1605 // Split predecessors of the PHI so that we can make users trivially
1606 // replaceable.
1607 splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, MSSAU);
1609 // Should rebuild the iterators, as they may be invalidated by
1610 // splitPredecessorsOfLoopExit().
1611 UI = I.user_begin();
1612 UE = I.user_end();
1615 if (VisitedUsers.empty())
1616 return Changed;
1618 #ifndef NDEBUG
1619 SmallVector<BasicBlock *, 32> ExitBlocks;
1620 CurLoop->getUniqueExitBlocks(ExitBlocks);
1621 SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
1622 ExitBlocks.end());
1623 #endif
1625 // Clones of this instruction. Don't create more than one per exit block!
1626 SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies;
1628 // If this instruction is only used outside of the loop, then all users are
1629 // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of
1630 // the instruction.
1631 SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end());
1632 for (auto *UI : Users) {
1633 auto *User = cast<Instruction>(UI);
1635 if (CurLoop->contains(User))
1636 continue;
1638 PHINode *PN = cast<PHINode>(User);
1639 assert(ExitBlockSet.count(PN->getParent()) &&
1640 "The LCSSA PHI is not in an exit block!");
1641 // The PHI must be trivially replaceable.
1642 Instruction *New = sinkThroughTriviallyReplaceablePHI(
1643 PN, &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU);
1644 PN->replaceAllUsesWith(New);
1645 eraseInstruction(*PN, *SafetyInfo, nullptr, nullptr);
1646 Changed = true;
1648 return Changed;
1651 /// When an instruction is found to only use loop invariant operands that
1652 /// is safe to hoist, this instruction is called to do the dirty work.
1654 static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
1655 BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
1656 MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE) {
1657 LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getName() << ": " << I
1658 << "\n");
1659 ORE->emit([&]() {
1660 return OptimizationRemark(DEBUG_TYPE, "Hoisted", &I) << "hoisting "
1661 << ore::NV("Inst", &I);
1664 // Metadata can be dependent on conditions we are hoisting above.
1665 // Conservatively strip all metadata on the instruction unless we were
1666 // guaranteed to execute I if we entered the loop, in which case the metadata
1667 // is valid in the loop preheader.
1668 if (I.hasMetadataOtherThanDebugLoc() &&
1669 // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning
1670 // time in isGuaranteedToExecute if we don't actually have anything to
1671 // drop. It is a compile time optimization, not required for correctness.
1672 !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop))
1673 I.dropUnknownNonDebugMetadata();
1675 if (isa<PHINode>(I))
1676 // Move the new node to the end of the phi list in the destination block.
1677 moveInstructionBefore(I, *Dest->getFirstNonPHI(), *SafetyInfo, MSSAU);
1678 else
1679 // Move the new node to the destination block, before its terminator.
1680 moveInstructionBefore(I, *Dest->getTerminator(), *SafetyInfo, MSSAU);
1682 // Apply line 0 debug locations when we are moving instructions to different
1683 // basic blocks because we want to avoid jumpy line tables.
1684 if (const DebugLoc &DL = I.getDebugLoc())
1685 I.setDebugLoc(DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt()));
1687 if (isa<LoadInst>(I))
1688 ++NumMovedLoads;
1689 else if (isa<CallInst>(I))
1690 ++NumMovedCalls;
1691 ++NumHoisted;
1694 /// Only sink or hoist an instruction if it is not a trapping instruction,
1695 /// or if the instruction is known not to trap when moved to the preheader.
1696 /// or if it is a trapping instruction and is guaranteed to execute.
1697 static bool isSafeToExecuteUnconditionally(Instruction &Inst,
1698 const DominatorTree *DT,
1699 const Loop *CurLoop,
1700 const LoopSafetyInfo *SafetyInfo,
1701 OptimizationRemarkEmitter *ORE,
1702 const Instruction *CtxI) {
1703 if (isSafeToSpeculativelyExecute(&Inst, CtxI, DT))
1704 return true;
1706 bool GuaranteedToExecute =
1707 SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop);
1709 if (!GuaranteedToExecute) {
1710 auto *LI = dyn_cast<LoadInst>(&Inst);
1711 if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand()))
1712 ORE->emit([&]() {
1713 return OptimizationRemarkMissed(
1714 DEBUG_TYPE, "LoadWithLoopInvariantAddressCondExecuted", LI)
1715 << "failed to hoist load with loop-invariant address "
1716 "because load is conditionally executed";
1720 return GuaranteedToExecute;
1723 namespace {
1724 class LoopPromoter : public LoadAndStorePromoter {
1725 Value *SomePtr; // Designated pointer to store to.
1726 const SmallSetVector<Value *, 8> &PointerMustAliases;
1727 SmallVectorImpl<BasicBlock *> &LoopExitBlocks;
1728 SmallVectorImpl<Instruction *> &LoopInsertPts;
1729 SmallVectorImpl<MemoryAccess *> &MSSAInsertPts;
1730 PredIteratorCache &PredCache;
1731 AliasSetTracker &AST;
1732 MemorySSAUpdater *MSSAU;
1733 LoopInfo &LI;
1734 DebugLoc DL;
1735 int Alignment;
1736 bool UnorderedAtomic;
1737 AAMDNodes AATags;
1738 ICFLoopSafetyInfo &SafetyInfo;
1740 Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const {
1741 if (Instruction *I = dyn_cast<Instruction>(V))
1742 if (Loop *L = LI.getLoopFor(I->getParent()))
1743 if (!L->contains(BB)) {
1744 // We need to create an LCSSA PHI node for the incoming value and
1745 // store that.
1746 PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB),
1747 I->getName() + ".lcssa", &BB->front());
1748 for (BasicBlock *Pred : PredCache.get(BB))
1749 PN->addIncoming(I, Pred);
1750 return PN;
1752 return V;
1755 public:
1756 LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S,
1757 const SmallSetVector<Value *, 8> &PMA,
1758 SmallVectorImpl<BasicBlock *> &LEB,
1759 SmallVectorImpl<Instruction *> &LIP,
1760 SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC,
1761 AliasSetTracker &ast, MemorySSAUpdater *MSSAU, LoopInfo &li,
1762 DebugLoc dl, int alignment, bool UnorderedAtomic,
1763 const AAMDNodes &AATags, ICFLoopSafetyInfo &SafetyInfo)
1764 : LoadAndStorePromoter(Insts, S), SomePtr(SP), PointerMustAliases(PMA),
1765 LoopExitBlocks(LEB), LoopInsertPts(LIP), MSSAInsertPts(MSSAIP),
1766 PredCache(PIC), AST(ast), MSSAU(MSSAU), LI(li), DL(std::move(dl)),
1767 Alignment(alignment), UnorderedAtomic(UnorderedAtomic), AATags(AATags),
1768 SafetyInfo(SafetyInfo) {}
1770 bool isInstInList(Instruction *I,
1771 const SmallVectorImpl<Instruction *> &) const override {
1772 Value *Ptr;
1773 if (LoadInst *LI = dyn_cast<LoadInst>(I))
1774 Ptr = LI->getOperand(0);
1775 else
1776 Ptr = cast<StoreInst>(I)->getPointerOperand();
1777 return PointerMustAliases.count(Ptr);
1780 void doExtraRewritesBeforeFinalDeletion() override {
1781 // Insert stores after in the loop exit blocks. Each exit block gets a
1782 // store of the live-out values that feed them. Since we've already told
1783 // the SSA updater about the defs in the loop and the preheader
1784 // definition, it is all set and we can start using it.
1785 for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
1786 BasicBlock *ExitBlock = LoopExitBlocks[i];
1787 Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
1788 LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock);
1789 Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock);
1790 Instruction *InsertPos = LoopInsertPts[i];
1791 StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos);
1792 if (UnorderedAtomic)
1793 NewSI->setOrdering(AtomicOrdering::Unordered);
1794 NewSI->setAlignment(Alignment);
1795 NewSI->setDebugLoc(DL);
1796 if (AATags)
1797 NewSI->setAAMetadata(AATags);
1799 if (MSSAU) {
1800 MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i];
1801 MemoryAccess *NewMemAcc;
1802 if (!MSSAInsertPoint) {
1803 NewMemAcc = MSSAU->createMemoryAccessInBB(
1804 NewSI, nullptr, NewSI->getParent(), MemorySSA::Beginning);
1805 } else {
1806 NewMemAcc =
1807 MSSAU->createMemoryAccessAfter(NewSI, nullptr, MSSAInsertPoint);
1809 MSSAInsertPts[i] = NewMemAcc;
1810 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1811 // FIXME: true for safety, false may still be correct.
1816 void replaceLoadWithValue(LoadInst *LI, Value *V) const override {
1817 // Update alias analysis.
1818 AST.copyValue(LI, V);
1820 void instructionDeleted(Instruction *I) const override {
1821 SafetyInfo.removeInstruction(I);
1822 AST.deleteValue(I);
1823 if (MSSAU)
1824 MSSAU->removeMemoryAccess(I);
1829 /// Return true iff we can prove that a caller of this function can not inspect
1830 /// the contents of the provided object in a well defined program.
1831 bool isKnownNonEscaping(Value *Object, const TargetLibraryInfo *TLI) {
1832 if (isa<AllocaInst>(Object))
1833 // Since the alloca goes out of scope, we know the caller can't retain a
1834 // reference to it and be well defined. Thus, we don't need to check for
1835 // capture.
1836 return true;
1838 // For all other objects we need to know that the caller can't possibly
1839 // have gotten a reference to the object. There are two components of
1840 // that:
1841 // 1) Object can't be escaped by this function. This is what
1842 // PointerMayBeCaptured checks.
1843 // 2) Object can't have been captured at definition site. For this, we
1844 // need to know the return value is noalias. At the moment, we use a
1845 // weaker condition and handle only AllocLikeFunctions (which are
1846 // known to be noalias). TODO
1847 return isAllocLikeFn(Object, TLI) &&
1848 !PointerMayBeCaptured(Object, true, true);
1851 } // namespace
1853 /// Try to promote memory values to scalars by sinking stores out of the
1854 /// loop and moving loads to before the loop. We do this by looping over
1855 /// the stores in the loop, looking for stores to Must pointers which are
1856 /// loop invariant.
1858 bool llvm::promoteLoopAccessesToScalars(
1859 const SmallSetVector<Value *, 8> &PointerMustAliases,
1860 SmallVectorImpl<BasicBlock *> &ExitBlocks,
1861 SmallVectorImpl<Instruction *> &InsertPts,
1862 SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC,
1863 LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI,
1864 Loop *CurLoop, AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
1865 ICFLoopSafetyInfo *SafetyInfo, OptimizationRemarkEmitter *ORE) {
1866 // Verify inputs.
1867 assert(LI != nullptr && DT != nullptr && CurLoop != nullptr &&
1868 CurAST != nullptr && SafetyInfo != nullptr &&
1869 "Unexpected Input to promoteLoopAccessesToScalars");
1871 Value *SomePtr = *PointerMustAliases.begin();
1872 BasicBlock *Preheader = CurLoop->getLoopPreheader();
1874 // It is not safe to promote a load/store from the loop if the load/store is
1875 // conditional. For example, turning:
1877 // for () { if (c) *P += 1; }
1879 // into:
1881 // tmp = *P; for () { if (c) tmp +=1; } *P = tmp;
1883 // is not safe, because *P may only be valid to access if 'c' is true.
1885 // The safety property divides into two parts:
1886 // p1) The memory may not be dereferenceable on entry to the loop. In this
1887 // case, we can't insert the required load in the preheader.
1888 // p2) The memory model does not allow us to insert a store along any dynamic
1889 // path which did not originally have one.
1891 // If at least one store is guaranteed to execute, both properties are
1892 // satisfied, and promotion is legal.
1894 // This, however, is not a necessary condition. Even if no store/load is
1895 // guaranteed to execute, we can still establish these properties.
1896 // We can establish (p1) by proving that hoisting the load into the preheader
1897 // is safe (i.e. proving dereferenceability on all paths through the loop). We
1898 // can use any access within the alias set to prove dereferenceability,
1899 // since they're all must alias.
1901 // There are two ways establish (p2):
1902 // a) Prove the location is thread-local. In this case the memory model
1903 // requirement does not apply, and stores are safe to insert.
1904 // b) Prove a store dominates every exit block. In this case, if an exit
1905 // blocks is reached, the original dynamic path would have taken us through
1906 // the store, so inserting a store into the exit block is safe. Note that this
1907 // is different from the store being guaranteed to execute. For instance,
1908 // if an exception is thrown on the first iteration of the loop, the original
1909 // store is never executed, but the exit blocks are not executed either.
1911 bool DereferenceableInPH = false;
1912 bool SafeToInsertStore = false;
1914 SmallVector<Instruction *, 64> LoopUses;
1916 // We start with an alignment of one and try to find instructions that allow
1917 // us to prove better alignment.
1918 unsigned Alignment = 1;
1919 // Keep track of which types of access we see
1920 bool SawUnorderedAtomic = false;
1921 bool SawNotAtomic = false;
1922 AAMDNodes AATags;
1924 const DataLayout &MDL = Preheader->getModule()->getDataLayout();
1926 bool IsKnownThreadLocalObject = false;
1927 if (SafetyInfo->anyBlockMayThrow()) {
1928 // If a loop can throw, we have to insert a store along each unwind edge.
1929 // That said, we can't actually make the unwind edge explicit. Therefore,
1930 // we have to prove that the store is dead along the unwind edge. We do
1931 // this by proving that the caller can't have a reference to the object
1932 // after return and thus can't possibly load from the object.
1933 Value *Object = GetUnderlyingObject(SomePtr, MDL);
1934 if (!isKnownNonEscaping(Object, TLI))
1935 return false;
1936 // Subtlety: Alloca's aren't visible to callers, but *are* potentially
1937 // visible to other threads if captured and used during their lifetimes.
1938 IsKnownThreadLocalObject = !isa<AllocaInst>(Object);
1941 // Check that all of the pointers in the alias set have the same type. We
1942 // cannot (yet) promote a memory location that is loaded and stored in
1943 // different sizes. While we are at it, collect alignment and AA info.
1944 for (Value *ASIV : PointerMustAliases) {
1945 // Check that all of the pointers in the alias set have the same type. We
1946 // cannot (yet) promote a memory location that is loaded and stored in
1947 // different sizes.
1948 if (SomePtr->getType() != ASIV->getType())
1949 return false;
1951 for (User *U : ASIV->users()) {
1952 // Ignore instructions that are outside the loop.
1953 Instruction *UI = dyn_cast<Instruction>(U);
1954 if (!UI || !CurLoop->contains(UI))
1955 continue;
1957 // If there is an non-load/store instruction in the loop, we can't promote
1958 // it.
1959 if (LoadInst *Load = dyn_cast<LoadInst>(UI)) {
1960 if (!Load->isUnordered())
1961 return false;
1963 SawUnorderedAtomic |= Load->isAtomic();
1964 SawNotAtomic |= !Load->isAtomic();
1966 unsigned InstAlignment = Load->getAlignment();
1967 if (!InstAlignment)
1968 InstAlignment =
1969 MDL.getABITypeAlignment(Load->getType());
1971 // Note that proving a load safe to speculate requires proving
1972 // sufficient alignment at the target location. Proving it guaranteed
1973 // to execute does as well. Thus we can increase our guaranteed
1974 // alignment as well.
1975 if (!DereferenceableInPH || (InstAlignment > Alignment))
1976 if (isSafeToExecuteUnconditionally(*Load, DT, CurLoop, SafetyInfo,
1977 ORE, Preheader->getTerminator())) {
1978 DereferenceableInPH = true;
1979 Alignment = std::max(Alignment, InstAlignment);
1981 } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) {
1982 // Stores *of* the pointer are not interesting, only stores *to* the
1983 // pointer.
1984 if (UI->getOperand(1) != ASIV)
1985 continue;
1986 if (!Store->isUnordered())
1987 return false;
1989 SawUnorderedAtomic |= Store->isAtomic();
1990 SawNotAtomic |= !Store->isAtomic();
1992 // If the store is guaranteed to execute, both properties are satisfied.
1993 // We may want to check if a store is guaranteed to execute even if we
1994 // already know that promotion is safe, since it may have higher
1995 // alignment than any other guaranteed stores, in which case we can
1996 // raise the alignment on the promoted store.
1997 unsigned InstAlignment = Store->getAlignment();
1998 if (!InstAlignment)
1999 InstAlignment =
2000 MDL.getABITypeAlignment(Store->getValueOperand()->getType());
2002 if (!DereferenceableInPH || !SafeToInsertStore ||
2003 (InstAlignment > Alignment)) {
2004 if (SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop)) {
2005 DereferenceableInPH = true;
2006 SafeToInsertStore = true;
2007 Alignment = std::max(Alignment, InstAlignment);
2011 // If a store dominates all exit blocks, it is safe to sink.
2012 // As explained above, if an exit block was executed, a dominating
2013 // store must have been executed at least once, so we are not
2014 // introducing stores on paths that did not have them.
2015 // Note that this only looks at explicit exit blocks. If we ever
2016 // start sinking stores into unwind edges (see above), this will break.
2017 if (!SafeToInsertStore)
2018 SafeToInsertStore = llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) {
2019 return DT->dominates(Store->getParent(), Exit);
2022 // If the store is not guaranteed to execute, we may still get
2023 // deref info through it.
2024 if (!DereferenceableInPH) {
2025 DereferenceableInPH = isDereferenceableAndAlignedPointer(
2026 Store->getPointerOperand(), Store->getValueOperand()->getType(),
2027 Store->getAlignment(), MDL, Preheader->getTerminator(), DT);
2029 } else
2030 return false; // Not a load or store.
2032 // Merge the AA tags.
2033 if (LoopUses.empty()) {
2034 // On the first load/store, just take its AA tags.
2035 UI->getAAMetadata(AATags);
2036 } else if (AATags) {
2037 UI->getAAMetadata(AATags, /* Merge = */ true);
2040 LoopUses.push_back(UI);
2044 // If we found both an unordered atomic instruction and a non-atomic memory
2045 // access, bail. We can't blindly promote non-atomic to atomic since we
2046 // might not be able to lower the result. We can't downgrade since that
2047 // would violate memory model. Also, align 0 is an error for atomics.
2048 if (SawUnorderedAtomic && SawNotAtomic)
2049 return false;
2051 // If we're inserting an atomic load in the preheader, we must be able to
2052 // lower it. We're only guaranteed to be able to lower naturally aligned
2053 // atomics.
2054 auto *SomePtrElemType = SomePtr->getType()->getPointerElementType();
2055 if (SawUnorderedAtomic &&
2056 Alignment < MDL.getTypeStoreSize(SomePtrElemType))
2057 return false;
2059 // If we couldn't prove we can hoist the load, bail.
2060 if (!DereferenceableInPH)
2061 return false;
2063 // We know we can hoist the load, but don't have a guaranteed store.
2064 // Check whether the location is thread-local. If it is, then we can insert
2065 // stores along paths which originally didn't have them without violating the
2066 // memory model.
2067 if (!SafeToInsertStore) {
2068 if (IsKnownThreadLocalObject)
2069 SafeToInsertStore = true;
2070 else {
2071 Value *Object = GetUnderlyingObject(SomePtr, MDL);
2072 SafeToInsertStore =
2073 (isAllocLikeFn(Object, TLI) || isa<AllocaInst>(Object)) &&
2074 !PointerMayBeCaptured(Object, true, true);
2078 // If we've still failed to prove we can sink the store, give up.
2079 if (!SafeToInsertStore)
2080 return false;
2082 // Otherwise, this is safe to promote, lets do it!
2083 LLVM_DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " << *SomePtr
2084 << '\n');
2085 ORE->emit([&]() {
2086 return OptimizationRemark(DEBUG_TYPE, "PromoteLoopAccessesToScalar",
2087 LoopUses[0])
2088 << "Moving accesses to memory location out of the loop";
2090 ++NumPromoted;
2092 // Grab a debug location for the inserted loads/stores; given that the
2093 // inserted loads/stores have little relation to the original loads/stores,
2094 // this code just arbitrarily picks a location from one, since any debug
2095 // location is better than none.
2096 DebugLoc DL = LoopUses[0]->getDebugLoc();
2098 // We use the SSAUpdater interface to insert phi nodes as required.
2099 SmallVector<PHINode *, 16> NewPHIs;
2100 SSAUpdater SSA(&NewPHIs);
2101 LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
2102 InsertPts, MSSAInsertPts, PIC, *CurAST, MSSAU, *LI, DL,
2103 Alignment, SawUnorderedAtomic, AATags, *SafetyInfo);
2105 // Set up the preheader to have a definition of the value. It is the live-out
2106 // value from the preheader that uses in the loop will use.
2107 LoadInst *PreheaderLoad = new LoadInst(
2108 SomePtr->getType()->getPointerElementType(), SomePtr,
2109 SomePtr->getName() + ".promoted", Preheader->getTerminator());
2110 if (SawUnorderedAtomic)
2111 PreheaderLoad->setOrdering(AtomicOrdering::Unordered);
2112 PreheaderLoad->setAlignment(Alignment);
2113 PreheaderLoad->setDebugLoc(DL);
2114 if (AATags)
2115 PreheaderLoad->setAAMetadata(AATags);
2116 SSA.AddAvailableValue(Preheader, PreheaderLoad);
2118 MemoryAccess *PreheaderLoadMemoryAccess;
2119 if (MSSAU) {
2120 PreheaderLoadMemoryAccess = MSSAU->createMemoryAccessInBB(
2121 PreheaderLoad, nullptr, PreheaderLoad->getParent(), MemorySSA::End);
2122 MemoryUse *NewMemUse = cast<MemoryUse>(PreheaderLoadMemoryAccess);
2123 MSSAU->insertUse(NewMemUse, /*RenameUses=*/true);
2126 if (MSSAU && VerifyMemorySSA)
2127 MSSAU->getMemorySSA()->verifyMemorySSA();
2128 // Rewrite all the loads in the loop and remember all the definitions from
2129 // stores in the loop.
2130 Promoter.run(LoopUses);
2132 if (MSSAU && VerifyMemorySSA)
2133 MSSAU->getMemorySSA()->verifyMemorySSA();
2134 // If the SSAUpdater didn't use the load in the preheader, just zap it now.
2135 if (PreheaderLoad->use_empty())
2136 eraseInstruction(*PreheaderLoad, *SafetyInfo, CurAST, MSSAU);
2138 return true;
2141 /// Returns an owning pointer to an alias set which incorporates aliasing info
2142 /// from L and all subloops of L.
2143 /// FIXME: In new pass manager, there is no helper function to handle loop
2144 /// analysis such as cloneBasicBlockAnalysis, so the AST needs to be recomputed
2145 /// from scratch for every loop. Hook up with the helper functions when
2146 /// available in the new pass manager to avoid redundant computation.
2147 std::unique_ptr<AliasSetTracker>
2148 LoopInvariantCodeMotion::collectAliasInfoForLoop(Loop *L, LoopInfo *LI,
2149 AliasAnalysis *AA) {
2150 std::unique_ptr<AliasSetTracker> CurAST;
2151 SmallVector<Loop *, 4> RecomputeLoops;
2152 for (Loop *InnerL : L->getSubLoops()) {
2153 auto MapI = LoopToAliasSetMap.find(InnerL);
2154 // If the AST for this inner loop is missing it may have been merged into
2155 // some other loop's AST and then that loop unrolled, and so we need to
2156 // recompute it.
2157 if (MapI == LoopToAliasSetMap.end()) {
2158 RecomputeLoops.push_back(InnerL);
2159 continue;
2161 std::unique_ptr<AliasSetTracker> InnerAST = std::move(MapI->second);
2163 if (CurAST) {
2164 // What if InnerLoop was modified by other passes ?
2165 // Once we've incorporated the inner loop's AST into ours, we don't need
2166 // the subloop's anymore.
2167 CurAST->add(*InnerAST);
2168 } else {
2169 CurAST = std::move(InnerAST);
2171 LoopToAliasSetMap.erase(MapI);
2173 if (!CurAST)
2174 CurAST = std::make_unique<AliasSetTracker>(*AA);
2176 // Add everything from the sub loops that are no longer directly available.
2177 for (Loop *InnerL : RecomputeLoops)
2178 for (BasicBlock *BB : InnerL->blocks())
2179 CurAST->add(*BB);
2181 // And merge in this loop (without anything from inner loops).
2182 for (BasicBlock *BB : L->blocks())
2183 if (LI->getLoopFor(BB) == L)
2184 CurAST->add(*BB);
2186 return CurAST;
2189 std::unique_ptr<AliasSetTracker>
2190 LoopInvariantCodeMotion::collectAliasInfoForLoopWithMSSA(
2191 Loop *L, AliasAnalysis *AA, MemorySSAUpdater *MSSAU) {
2192 auto *MSSA = MSSAU->getMemorySSA();
2193 auto CurAST = std::make_unique<AliasSetTracker>(*AA, MSSA, L);
2194 CurAST->addAllInstructionsInLoopUsingMSSA();
2195 return CurAST;
2198 /// Simple analysis hook. Clone alias set info.
2200 void LegacyLICMPass::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To,
2201 Loop *L) {
2202 auto ASTIt = LICM.getLoopToAliasSetMap().find(L);
2203 if (ASTIt == LICM.getLoopToAliasSetMap().end())
2204 return;
2206 ASTIt->second->copyValue(From, To);
2209 /// Simple Analysis hook. Delete value V from alias set
2211 void LegacyLICMPass::deleteAnalysisValue(Value *V, Loop *L) {
2212 auto ASTIt = LICM.getLoopToAliasSetMap().find(L);
2213 if (ASTIt == LICM.getLoopToAliasSetMap().end())
2214 return;
2216 ASTIt->second->deleteValue(V);
2219 /// Simple Analysis hook. Delete value L from alias set map.
2221 void LegacyLICMPass::deleteAnalysisLoop(Loop *L) {
2222 if (!LICM.getLoopToAliasSetMap().count(L))
2223 return;
2225 LICM.getLoopToAliasSetMap().erase(L);
2228 static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
2229 AliasSetTracker *CurAST, Loop *CurLoop,
2230 AliasAnalysis *AA) {
2231 // First check to see if any of the basic blocks in CurLoop invalidate *V.
2232 bool isInvalidatedAccordingToAST = CurAST->getAliasSetFor(MemLoc).isMod();
2234 if (!isInvalidatedAccordingToAST || !LICMN2Theshold)
2235 return isInvalidatedAccordingToAST;
2237 // Check with a diagnostic analysis if we can refine the information above.
2238 // This is to identify the limitations of using the AST.
2239 // The alias set mechanism used by LICM has a major weakness in that it
2240 // combines all things which may alias into a single set *before* asking
2241 // modref questions. As a result, a single readonly call within a loop will
2242 // collapse all loads and stores into a single alias set and report
2243 // invalidation if the loop contains any store. For example, readonly calls
2244 // with deopt states have this form and create a general alias set with all
2245 // loads and stores. In order to get any LICM in loops containing possible
2246 // deopt states we need a more precise invalidation of checking the mod ref
2247 // info of each instruction within the loop and LI. This has a complexity of
2248 // O(N^2), so currently, it is used only as a diagnostic tool since the
2249 // default value of LICMN2Threshold is zero.
2251 // Don't look at nested loops.
2252 if (CurLoop->begin() != CurLoop->end())
2253 return true;
2255 int N = 0;
2256 for (BasicBlock *BB : CurLoop->getBlocks())
2257 for (Instruction &I : *BB) {
2258 if (N >= LICMN2Theshold) {
2259 LLVM_DEBUG(dbgs() << "Alasing N2 threshold exhausted for "
2260 << *(MemLoc.Ptr) << "\n");
2261 return true;
2263 N++;
2264 auto Res = AA->getModRefInfo(&I, MemLoc);
2265 if (isModSet(Res)) {
2266 LLVM_DEBUG(dbgs() << "Aliasing failed on " << I << " for "
2267 << *(MemLoc.Ptr) << "\n");
2268 return true;
2271 LLVM_DEBUG(dbgs() << "Aliasing okay for " << *(MemLoc.Ptr) << "\n");
2272 return false;
2275 static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
2276 Loop *CurLoop,
2277 SinkAndHoistLICMFlags &Flags) {
2278 // For hoisting, use the walker to determine safety
2279 if (!Flags.IsSink) {
2280 MemoryAccess *Source;
2281 // See declaration of SetLicmMssaOptCap for usage details.
2282 if (Flags.LicmMssaOptCounter >= Flags.LicmMssaOptCap)
2283 Source = MU->getDefiningAccess();
2284 else {
2285 Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(MU);
2286 Flags.LicmMssaOptCounter++;
2288 return !MSSA->isLiveOnEntryDef(Source) &&
2289 CurLoop->contains(Source->getBlock());
2292 // For sinking, we'd need to check all Defs below this use. The getClobbering
2293 // call will look on the backedge of the loop, but will check aliasing with
2294 // the instructions on the previous iteration.
2295 // For example:
2296 // for (i ... )
2297 // load a[i] ( Use (LoE)
2298 // store a[i] ( 1 = Def (2), with 2 = Phi for the loop.
2299 // i++;
2300 // The load sees no clobbering inside the loop, as the backedge alias check
2301 // does phi translation, and will check aliasing against store a[i-1].
2302 // However sinking the load outside the loop, below the store is incorrect.
2304 // For now, only sink if there are no Defs in the loop, and the existing ones
2305 // precede the use and are in the same block.
2306 // FIXME: Increase precision: Safe to sink if Use post dominates the Def;
2307 // needs PostDominatorTreeAnalysis.
2308 // FIXME: More precise: no Defs that alias this Use.
2309 if (Flags.NoOfMemAccTooLarge)
2310 return true;
2311 for (auto *BB : CurLoop->getBlocks())
2312 if (auto *Accesses = MSSA->getBlockDefs(BB))
2313 for (const auto &MA : *Accesses)
2314 if (const auto *MD = dyn_cast<MemoryDef>(&MA))
2315 if (MU->getBlock() != MD->getBlock() ||
2316 !MSSA->locallyDominates(MD, MU))
2317 return true;
2318 return false;
2321 /// Little predicate that returns true if the specified basic block is in
2322 /// a subloop of the current one, not the current one itself.
2324 static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) {
2325 assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
2326 return LI->getLoopFor(BB) != CurLoop;