[x86] fix assert with horizontal math + broadcast of vector (PR43402)
[llvm-core.git] / lib / Transforms / Scalar / LoopUnswitch.cpp
blob9938dd89c1975d23a138658dd6444d7ab17324f4
1 //===- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms loops that contain branches on loop-invariant conditions
10 // to multiple loops. For example, it turns the left into the right code:
12 // for (...) if (lic)
13 // A for (...)
14 // if (lic) A; B; C
15 // B else
16 // C for (...)
17 // A; C
19 // This can increase the size of the code exponentially (doubling it every time
20 // a loop is unswitched) so we only unswitch if the resultant code will be
21 // smaller than a threshold.
23 // This pass expects LICM to be run before it to hoist invariant conditions out
24 // of the loop, to make the unswitching opportunity obvious.
26 //===----------------------------------------------------------------------===//
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/AssumptionCache.h"
33 #include "llvm/Analysis/CodeMetrics.h"
34 #include "llvm/Analysis/InstructionSimplify.h"
35 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
36 #include "llvm/Analysis/LoopInfo.h"
37 #include "llvm/Analysis/LoopIterator.h"
38 #include "llvm/Analysis/LoopPass.h"
39 #include "llvm/Analysis/MemorySSA.h"
40 #include "llvm/Analysis/MemorySSAUpdater.h"
41 #include "llvm/Analysis/ScalarEvolution.h"
42 #include "llvm/Analysis/TargetTransformInfo.h"
43 #include "llvm/IR/Attributes.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/CallSite.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DerivedTypes.h"
49 #include "llvm/IR/Dominators.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/IRBuilder.h"
52 #include "llvm/IR/InstrTypes.h"
53 #include "llvm/IR/Instruction.h"
54 #include "llvm/IR/Instructions.h"
55 #include "llvm/IR/IntrinsicInst.h"
56 #include "llvm/IR/Intrinsics.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/ValueHandle.h"
62 #include "llvm/Pass.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Transforms/Scalar.h"
68 #include "llvm/Transforms/Scalar/LoopPassManager.h"
69 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
70 #include "llvm/Transforms/Utils/Cloning.h"
71 #include "llvm/Transforms/Utils/Local.h"
72 #include "llvm/Transforms/Utils/LoopUtils.h"
73 #include "llvm/Transforms/Utils/ValueMapper.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <map>
77 #include <set>
78 #include <tuple>
79 #include <utility>
80 #include <vector>
82 using namespace llvm;
84 #define DEBUG_TYPE "loop-unswitch"
86 STATISTIC(NumBranches, "Number of branches unswitched");
87 STATISTIC(NumSwitches, "Number of switches unswitched");
88 STATISTIC(NumGuards, "Number of guards unswitched");
89 STATISTIC(NumSelects , "Number of selects unswitched");
90 STATISTIC(NumTrivial , "Number of unswitches that are trivial");
91 STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
92 STATISTIC(TotalInsts, "Total number of instructions analyzed");
94 // The specific value of 100 here was chosen based only on intuition and a
95 // few specific examples.
96 static cl::opt<unsigned>
97 Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
98 cl::init(100), cl::Hidden);
100 namespace {
102 class LUAnalysisCache {
103 using UnswitchedValsMap =
104 DenseMap<const SwitchInst *, SmallPtrSet<const Value *, 8>>;
105 using UnswitchedValsIt = UnswitchedValsMap::iterator;
107 struct LoopProperties {
108 unsigned CanBeUnswitchedCount;
109 unsigned WasUnswitchedCount;
110 unsigned SizeEstimation;
111 UnswitchedValsMap UnswitchedVals;
114 // Here we use std::map instead of DenseMap, since we need to keep valid
115 // LoopProperties pointer for current loop for better performance.
116 using LoopPropsMap = std::map<const Loop *, LoopProperties>;
117 using LoopPropsMapIt = LoopPropsMap::iterator;
119 LoopPropsMap LoopsProperties;
120 UnswitchedValsMap *CurLoopInstructions = nullptr;
121 LoopProperties *CurrentLoopProperties = nullptr;
123 // A loop unswitching with an estimated cost above this threshold
124 // is not performed. MaxSize is turned into unswitching quota for
125 // the current loop, and reduced correspondingly, though note that
126 // the quota is returned by releaseMemory() when the loop has been
127 // processed, so that MaxSize will return to its previous
128 // value. So in most cases MaxSize will equal the Threshold flag
129 // when a new loop is processed. An exception to that is that
130 // MaxSize will have a smaller value while processing nested loops
131 // that were introduced due to loop unswitching of an outer loop.
133 // FIXME: The way that MaxSize works is subtle and depends on the
134 // pass manager processing loops and calling releaseMemory() in a
135 // specific order. It would be good to find a more straightforward
136 // way of doing what MaxSize does.
137 unsigned MaxSize;
139 public:
140 LUAnalysisCache() : MaxSize(Threshold) {}
142 // Analyze loop. Check its size, calculate is it possible to unswitch
143 // it. Returns true if we can unswitch this loop.
144 bool countLoop(const Loop *L, const TargetTransformInfo &TTI,
145 AssumptionCache *AC);
147 // Clean all data related to given loop.
148 void forgetLoop(const Loop *L);
150 // Mark case value as unswitched.
151 // Since SI instruction can be partly unswitched, in order to avoid
152 // extra unswitching in cloned loops keep track all unswitched values.
153 void setUnswitched(const SwitchInst *SI, const Value *V);
155 // Check was this case value unswitched before or not.
156 bool isUnswitched(const SwitchInst *SI, const Value *V);
158 // Returns true if another unswitching could be done within the cost
159 // threshold.
160 bool CostAllowsUnswitching();
162 // Clone all loop-unswitch related loop properties.
163 // Redistribute unswitching quotas.
164 // Note, that new loop data is stored inside the VMap.
165 void cloneData(const Loop *NewLoop, const Loop *OldLoop,
166 const ValueToValueMapTy &VMap);
169 class LoopUnswitch : public LoopPass {
170 LoopInfo *LI; // Loop information
171 LPPassManager *LPM;
172 AssumptionCache *AC;
174 // Used to check if second loop needs processing after
175 // RewriteLoopBodyWithConditionConstant rewrites first loop.
176 std::vector<Loop*> LoopProcessWorklist;
178 LUAnalysisCache BranchesInfo;
180 bool OptimizeForSize;
181 bool redoLoop = false;
183 Loop *currentLoop = nullptr;
184 DominatorTree *DT = nullptr;
185 MemorySSA *MSSA = nullptr;
186 std::unique_ptr<MemorySSAUpdater> MSSAU;
187 BasicBlock *loopHeader = nullptr;
188 BasicBlock *loopPreheader = nullptr;
190 bool SanitizeMemory;
191 SimpleLoopSafetyInfo SafetyInfo;
193 // LoopBlocks contains all of the basic blocks of the loop, including the
194 // preheader of the loop, the body of the loop, and the exit blocks of the
195 // loop, in that order.
196 std::vector<BasicBlock*> LoopBlocks;
197 // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
198 std::vector<BasicBlock*> NewBlocks;
200 bool hasBranchDivergence;
202 public:
203 static char ID; // Pass ID, replacement for typeid
205 explicit LoopUnswitch(bool Os = false, bool hasBranchDivergence = false)
206 : LoopPass(ID), OptimizeForSize(Os),
207 hasBranchDivergence(hasBranchDivergence) {
208 initializeLoopUnswitchPass(*PassRegistry::getPassRegistry());
211 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
212 bool processCurrentLoop();
213 bool isUnreachableDueToPreviousUnswitching(BasicBlock *);
215 /// This transformation requires natural loop information & requires that
216 /// loop preheaders be inserted into the CFG.
218 void getAnalysisUsage(AnalysisUsage &AU) const override {
219 AU.addRequired<AssumptionCacheTracker>();
220 AU.addRequired<TargetTransformInfoWrapperPass>();
221 if (EnableMSSALoopDependency) {
222 AU.addRequired<MemorySSAWrapperPass>();
223 AU.addPreserved<MemorySSAWrapperPass>();
225 if (hasBranchDivergence)
226 AU.addRequired<LegacyDivergenceAnalysis>();
227 getLoopAnalysisUsage(AU);
230 private:
231 void releaseMemory() override {
232 BranchesInfo.forgetLoop(currentLoop);
235 void initLoopData() {
236 loopHeader = currentLoop->getHeader();
237 loopPreheader = currentLoop->getLoopPreheader();
240 /// Split all of the edges from inside the loop to their exit blocks.
241 /// Update the appropriate Phi nodes as we do so.
242 void SplitExitEdges(Loop *L,
243 const SmallVectorImpl<BasicBlock *> &ExitBlocks);
245 bool TryTrivialLoopUnswitch(bool &Changed);
247 bool UnswitchIfProfitable(Value *LoopCond, Constant *Val,
248 Instruction *TI = nullptr);
249 void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
250 BasicBlock *ExitBlock, Instruction *TI);
251 void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L,
252 Instruction *TI);
254 void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
255 Constant *Val, bool isEqual);
257 void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
258 BasicBlock *TrueDest,
259 BasicBlock *FalseDest,
260 BranchInst *OldBranch, Instruction *TI);
262 void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);
264 /// Given that the Invariant is not equal to Val. Simplify instructions
265 /// in the loop.
266 Value *SimplifyInstructionWithNotEqual(Instruction *Inst, Value *Invariant,
267 Constant *Val);
270 } // end anonymous namespace
272 // Analyze loop. Check its size, calculate is it possible to unswitch
273 // it. Returns true if we can unswitch this loop.
274 bool LUAnalysisCache::countLoop(const Loop *L, const TargetTransformInfo &TTI,
275 AssumptionCache *AC) {
276 LoopPropsMapIt PropsIt;
277 bool Inserted;
278 std::tie(PropsIt, Inserted) =
279 LoopsProperties.insert(std::make_pair(L, LoopProperties()));
281 LoopProperties &Props = PropsIt->second;
283 if (Inserted) {
284 // New loop.
286 // Limit the number of instructions to avoid causing significant code
287 // expansion, and the number of basic blocks, to avoid loops with
288 // large numbers of branches which cause loop unswitching to go crazy.
289 // This is a very ad-hoc heuristic.
291 SmallPtrSet<const Value *, 32> EphValues;
292 CodeMetrics::collectEphemeralValues(L, AC, EphValues);
294 // FIXME: This is overly conservative because it does not take into
295 // consideration code simplification opportunities and code that can
296 // be shared by the resultant unswitched loops.
297 CodeMetrics Metrics;
298 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E;
299 ++I)
300 Metrics.analyzeBasicBlock(*I, TTI, EphValues);
302 Props.SizeEstimation = Metrics.NumInsts;
303 Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation);
304 Props.WasUnswitchedCount = 0;
305 MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount;
307 if (Metrics.notDuplicatable) {
308 LLVM_DEBUG(dbgs() << "NOT unswitching loop %" << L->getHeader()->getName()
309 << ", contents cannot be "
310 << "duplicated!\n");
311 return false;
315 // Be careful. This links are good only before new loop addition.
316 CurrentLoopProperties = &Props;
317 CurLoopInstructions = &Props.UnswitchedVals;
319 return true;
322 // Clean all data related to given loop.
323 void LUAnalysisCache::forgetLoop(const Loop *L) {
324 LoopPropsMapIt LIt = LoopsProperties.find(L);
326 if (LIt != LoopsProperties.end()) {
327 LoopProperties &Props = LIt->second;
328 MaxSize += (Props.CanBeUnswitchedCount + Props.WasUnswitchedCount) *
329 Props.SizeEstimation;
330 LoopsProperties.erase(LIt);
333 CurrentLoopProperties = nullptr;
334 CurLoopInstructions = nullptr;
337 // Mark case value as unswitched.
338 // Since SI instruction can be partly unswitched, in order to avoid
339 // extra unswitching in cloned loops keep track all unswitched values.
340 void LUAnalysisCache::setUnswitched(const SwitchInst *SI, const Value *V) {
341 (*CurLoopInstructions)[SI].insert(V);
344 // Check was this case value unswitched before or not.
345 bool LUAnalysisCache::isUnswitched(const SwitchInst *SI, const Value *V) {
346 return (*CurLoopInstructions)[SI].count(V);
349 bool LUAnalysisCache::CostAllowsUnswitching() {
350 return CurrentLoopProperties->CanBeUnswitchedCount > 0;
353 // Clone all loop-unswitch related loop properties.
354 // Redistribute unswitching quotas.
355 // Note, that new loop data is stored inside the VMap.
356 void LUAnalysisCache::cloneData(const Loop *NewLoop, const Loop *OldLoop,
357 const ValueToValueMapTy &VMap) {
358 LoopProperties &NewLoopProps = LoopsProperties[NewLoop];
359 LoopProperties &OldLoopProps = *CurrentLoopProperties;
360 UnswitchedValsMap &Insts = OldLoopProps.UnswitchedVals;
362 // Reallocate "can-be-unswitched quota"
364 --OldLoopProps.CanBeUnswitchedCount;
365 ++OldLoopProps.WasUnswitchedCount;
366 NewLoopProps.WasUnswitchedCount = 0;
367 unsigned Quota = OldLoopProps.CanBeUnswitchedCount;
368 NewLoopProps.CanBeUnswitchedCount = Quota / 2;
369 OldLoopProps.CanBeUnswitchedCount = Quota - Quota / 2;
371 NewLoopProps.SizeEstimation = OldLoopProps.SizeEstimation;
373 // Clone unswitched values info:
374 // for new loop switches we clone info about values that was
375 // already unswitched and has redundant successors.
376 for (UnswitchedValsIt I = Insts.begin(); I != Insts.end(); ++I) {
377 const SwitchInst *OldInst = I->first;
378 Value *NewI = VMap.lookup(OldInst);
379 const SwitchInst *NewInst = cast_or_null<SwitchInst>(NewI);
380 assert(NewInst && "All instructions that are in SrcBB must be in VMap.");
382 NewLoopProps.UnswitchedVals[NewInst] = OldLoopProps.UnswitchedVals[OldInst];
386 char LoopUnswitch::ID = 0;
388 INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops",
389 false, false)
390 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
391 INITIALIZE_PASS_DEPENDENCY(LoopPass)
392 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
393 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
394 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
395 INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops",
396 false, false)
398 Pass *llvm::createLoopUnswitchPass(bool Os, bool hasBranchDivergence) {
399 return new LoopUnswitch(Os, hasBranchDivergence);
402 /// Operator chain lattice.
403 enum OperatorChain {
404 OC_OpChainNone, ///< There is no operator.
405 OC_OpChainOr, ///< There are only ORs.
406 OC_OpChainAnd, ///< There are only ANDs.
407 OC_OpChainMixed ///< There are ANDs and ORs.
410 /// Cond is a condition that occurs in L. If it is invariant in the loop, or has
411 /// an invariant piece, return the invariant. Otherwise, return null.
413 /// NOTE: FindLIVLoopCondition will not return a partial LIV by walking up a
414 /// mixed operator chain, as we can not reliably find a value which will simplify
415 /// the operator chain. If the chain is AND-only or OR-only, we can use 0 or ~0
416 /// to simplify the chain.
418 /// NOTE: In case a partial LIV and a mixed operator chain, we may be able to
419 /// simplify the condition itself to a loop variant condition, but at the
420 /// cost of creating an entirely new loop.
421 static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed,
422 OperatorChain &ParentChain,
423 DenseMap<Value *, Value *> &Cache,
424 MemorySSAUpdater *MSSAU) {
425 auto CacheIt = Cache.find(Cond);
426 if (CacheIt != Cache.end())
427 return CacheIt->second;
429 // We started analyze new instruction, increment scanned instructions counter.
430 ++TotalInsts;
432 // We can never unswitch on vector conditions.
433 if (Cond->getType()->isVectorTy())
434 return nullptr;
436 // Constants should be folded, not unswitched on!
437 if (isa<Constant>(Cond)) return nullptr;
439 // TODO: Handle: br (VARIANT|INVARIANT).
441 // Hoist simple values out.
442 if (L->makeLoopInvariant(Cond, Changed, nullptr, MSSAU)) {
443 Cache[Cond] = Cond;
444 return Cond;
447 // Walk up the operator chain to find partial invariant conditions.
448 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
449 if (BO->getOpcode() == Instruction::And ||
450 BO->getOpcode() == Instruction::Or) {
451 // Given the previous operator, compute the current operator chain status.
452 OperatorChain NewChain;
453 switch (ParentChain) {
454 case OC_OpChainNone:
455 NewChain = BO->getOpcode() == Instruction::And ? OC_OpChainAnd :
456 OC_OpChainOr;
457 break;
458 case OC_OpChainOr:
459 NewChain = BO->getOpcode() == Instruction::Or ? OC_OpChainOr :
460 OC_OpChainMixed;
461 break;
462 case OC_OpChainAnd:
463 NewChain = BO->getOpcode() == Instruction::And ? OC_OpChainAnd :
464 OC_OpChainMixed;
465 break;
466 case OC_OpChainMixed:
467 NewChain = OC_OpChainMixed;
468 break;
471 // If we reach a Mixed state, we do not want to keep walking up as we can not
472 // reliably find a value that will simplify the chain. With this check, we
473 // will return null on the first sight of mixed chain and the caller will
474 // either backtrack to find partial LIV in other operand or return null.
475 if (NewChain != OC_OpChainMixed) {
476 // Update the current operator chain type before we search up the chain.
477 ParentChain = NewChain;
478 // If either the left or right side is invariant, we can unswitch on this,
479 // which will cause the branch to go away in one loop and the condition to
480 // simplify in the other one.
481 if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed,
482 ParentChain, Cache, MSSAU)) {
483 Cache[Cond] = LHS;
484 return LHS;
486 // We did not manage to find a partial LIV in operand(0). Backtrack and try
487 // operand(1).
488 ParentChain = NewChain;
489 if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed,
490 ParentChain, Cache, MSSAU)) {
491 Cache[Cond] = RHS;
492 return RHS;
497 Cache[Cond] = nullptr;
498 return nullptr;
501 /// Cond is a condition that occurs in L. If it is invariant in the loop, or has
502 /// an invariant piece, return the invariant along with the operator chain type.
503 /// Otherwise, return null.
504 static std::pair<Value *, OperatorChain>
505 FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed,
506 MemorySSAUpdater *MSSAU) {
507 DenseMap<Value *, Value *> Cache;
508 OperatorChain OpChain = OC_OpChainNone;
509 Value *FCond = FindLIVLoopCondition(Cond, L, Changed, OpChain, Cache, MSSAU);
511 // In case we do find a LIV, it can not be obtained by walking up a mixed
512 // operator chain.
513 assert((!FCond || OpChain != OC_OpChainMixed) &&
514 "Do not expect a partial LIV with mixed operator chain");
515 return {FCond, OpChain};
518 bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
519 if (skipLoop(L))
520 return false;
522 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
523 *L->getHeader()->getParent());
524 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
525 LPM = &LPM_Ref;
526 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
527 if (EnableMSSALoopDependency) {
528 MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
529 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
530 assert(DT && "Cannot update MemorySSA without a valid DomTree.");
532 currentLoop = L;
533 Function *F = currentLoop->getHeader()->getParent();
535 SanitizeMemory = F->hasFnAttribute(Attribute::SanitizeMemory);
536 if (SanitizeMemory)
537 SafetyInfo.computeLoopSafetyInfo(L);
539 if (MSSA && VerifyMemorySSA)
540 MSSA->verifyMemorySSA();
542 bool Changed = false;
543 do {
544 assert(currentLoop->isLCSSAForm(*DT));
545 if (MSSA && VerifyMemorySSA)
546 MSSA->verifyMemorySSA();
547 redoLoop = false;
548 Changed |= processCurrentLoop();
549 } while(redoLoop);
551 if (MSSA && VerifyMemorySSA)
552 MSSA->verifyMemorySSA();
554 return Changed;
557 // Return true if the BasicBlock BB is unreachable from the loop header.
558 // Return false, otherwise.
559 bool LoopUnswitch::isUnreachableDueToPreviousUnswitching(BasicBlock *BB) {
560 auto *Node = DT->getNode(BB)->getIDom();
561 BasicBlock *DomBB = Node->getBlock();
562 while (currentLoop->contains(DomBB)) {
563 BranchInst *BInst = dyn_cast<BranchInst>(DomBB->getTerminator());
565 Node = DT->getNode(DomBB)->getIDom();
566 DomBB = Node->getBlock();
568 if (!BInst || !BInst->isConditional())
569 continue;
571 Value *Cond = BInst->getCondition();
572 if (!isa<ConstantInt>(Cond))
573 continue;
575 BasicBlock *UnreachableSucc =
576 Cond == ConstantInt::getTrue(Cond->getContext())
577 ? BInst->getSuccessor(1)
578 : BInst->getSuccessor(0);
580 if (DT->dominates(UnreachableSucc, BB))
581 return true;
583 return false;
586 /// FIXME: Remove this workaround when freeze related patches are done.
587 /// LoopUnswitch and Equality propagation in GVN have discrepancy about
588 /// whether branch on undef/poison has undefine behavior. Here it is to
589 /// rule out some common cases that we found such discrepancy already
590 /// causing problems. Detail could be found in PR31652. Note if the
591 /// func returns true, it is unsafe. But if it is false, it doesn't mean
592 /// it is necessarily safe.
593 static bool EqualityPropUnSafe(Value &LoopCond) {
594 ICmpInst *CI = dyn_cast<ICmpInst>(&LoopCond);
595 if (!CI || !CI->isEquality())
596 return false;
598 Value *LHS = CI->getOperand(0);
599 Value *RHS = CI->getOperand(1);
600 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS))
601 return true;
603 auto hasUndefInPHI = [](PHINode &PN) {
604 for (Value *Opd : PN.incoming_values()) {
605 if (isa<UndefValue>(Opd))
606 return true;
608 return false;
610 PHINode *LPHI = dyn_cast<PHINode>(LHS);
611 PHINode *RPHI = dyn_cast<PHINode>(RHS);
612 if ((LPHI && hasUndefInPHI(*LPHI)) || (RPHI && hasUndefInPHI(*RPHI)))
613 return true;
615 auto hasUndefInSelect = [](SelectInst &SI) {
616 if (isa<UndefValue>(SI.getTrueValue()) ||
617 isa<UndefValue>(SI.getFalseValue()))
618 return true;
619 return false;
621 SelectInst *LSI = dyn_cast<SelectInst>(LHS);
622 SelectInst *RSI = dyn_cast<SelectInst>(RHS);
623 if ((LSI && hasUndefInSelect(*LSI)) || (RSI && hasUndefInSelect(*RSI)))
624 return true;
625 return false;
628 /// Do actual work and unswitch loop if possible and profitable.
629 bool LoopUnswitch::processCurrentLoop() {
630 bool Changed = false;
632 initLoopData();
634 // If LoopSimplify was unable to form a preheader, don't do any unswitching.
635 if (!loopPreheader)
636 return false;
638 // Loops with indirectbr cannot be cloned.
639 if (!currentLoop->isSafeToClone())
640 return false;
642 // Without dedicated exits, splitting the exit edge may fail.
643 if (!currentLoop->hasDedicatedExits())
644 return false;
646 LLVMContext &Context = loopHeader->getContext();
648 // Analyze loop cost, and stop unswitching if loop content can not be duplicated.
649 if (!BranchesInfo.countLoop(
650 currentLoop, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
651 *currentLoop->getHeader()->getParent()),
652 AC))
653 return false;
655 // Try trivial unswitch first before loop over other basic blocks in the loop.
656 if (TryTrivialLoopUnswitch(Changed)) {
657 return true;
660 // Do not do non-trivial unswitch while optimizing for size.
661 // FIXME: Use Function::hasOptSize().
662 if (OptimizeForSize ||
663 loopHeader->getParent()->hasFnAttribute(Attribute::OptimizeForSize))
664 return false;
666 // Run through the instructions in the loop, keeping track of three things:
668 // - That we do not unswitch loops containing convergent operations, as we
669 // might be making them control dependent on the unswitch value when they
670 // were not before.
671 // FIXME: This could be refined to only bail if the convergent operation is
672 // not already control-dependent on the unswitch value.
674 // - That basic blocks in the loop contain invokes whose predecessor edges we
675 // cannot split.
677 // - The set of guard intrinsics encountered (these are non terminator
678 // instructions that are also profitable to be unswitched).
680 SmallVector<IntrinsicInst *, 4> Guards;
682 for (const auto BB : currentLoop->blocks()) {
683 for (auto &I : *BB) {
684 auto CS = CallSite(&I);
685 if (!CS) continue;
686 if (CS.hasFnAttr(Attribute::Convergent))
687 return false;
688 if (auto *II = dyn_cast<InvokeInst>(&I))
689 if (!II->getUnwindDest()->canSplitPredecessors())
690 return false;
691 if (auto *II = dyn_cast<IntrinsicInst>(&I))
692 if (II->getIntrinsicID() == Intrinsic::experimental_guard)
693 Guards.push_back(II);
697 for (IntrinsicInst *Guard : Guards) {
698 Value *LoopCond = FindLIVLoopCondition(Guard->getOperand(0), currentLoop,
699 Changed, MSSAU.get())
700 .first;
701 if (LoopCond &&
702 UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context))) {
703 // NB! Unswitching (if successful) could have erased some of the
704 // instructions in Guards leaving dangling pointers there. This is fine
705 // because we're returning now, and won't look at Guards again.
706 ++NumGuards;
707 return true;
711 // Loop over all of the basic blocks in the loop. If we find an interior
712 // block that is branching on a loop-invariant condition, we can unswitch this
713 // loop.
714 for (Loop::block_iterator I = currentLoop->block_begin(),
715 E = currentLoop->block_end(); I != E; ++I) {
716 Instruction *TI = (*I)->getTerminator();
718 // Unswitching on a potentially uninitialized predicate is not
719 // MSan-friendly. Limit this to the cases when the original predicate is
720 // guaranteed to execute, to avoid creating a use-of-uninitialized-value
721 // in the code that did not have one.
722 // This is a workaround for the discrepancy between LLVM IR and MSan
723 // semantics. See PR28054 for more details.
724 if (SanitizeMemory &&
725 !SafetyInfo.isGuaranteedToExecute(*TI, DT, currentLoop))
726 continue;
728 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
729 // Some branches may be rendered unreachable because of previous
730 // unswitching.
731 // Unswitch only those branches that are reachable.
732 if (isUnreachableDueToPreviousUnswitching(*I))
733 continue;
735 // If this isn't branching on an invariant condition, we can't unswitch
736 // it.
737 if (BI->isConditional()) {
738 // See if this, or some part of it, is loop invariant. If so, we can
739 // unswitch on it if we desire.
740 Value *LoopCond = FindLIVLoopCondition(BI->getCondition(), currentLoop,
741 Changed, MSSAU.get())
742 .first;
743 if (LoopCond && !EqualityPropUnSafe(*LoopCond) &&
744 UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context), TI)) {
745 ++NumBranches;
746 return true;
749 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
750 Value *SC = SI->getCondition();
751 Value *LoopCond;
752 OperatorChain OpChain;
753 std::tie(LoopCond, OpChain) =
754 FindLIVLoopCondition(SC, currentLoop, Changed, MSSAU.get());
756 unsigned NumCases = SI->getNumCases();
757 if (LoopCond && NumCases) {
758 // Find a value to unswitch on:
759 // FIXME: this should chose the most expensive case!
760 // FIXME: scan for a case with a non-critical edge?
761 Constant *UnswitchVal = nullptr;
762 // Find a case value such that at least one case value is unswitched
763 // out.
764 if (OpChain == OC_OpChainAnd) {
765 // If the chain only has ANDs and the switch has a case value of 0.
766 // Dropping in a 0 to the chain will unswitch out the 0-casevalue.
767 auto *AllZero = cast<ConstantInt>(Constant::getNullValue(SC->getType()));
768 if (BranchesInfo.isUnswitched(SI, AllZero))
769 continue;
770 // We are unswitching 0 out.
771 UnswitchVal = AllZero;
772 } else if (OpChain == OC_OpChainOr) {
773 // If the chain only has ORs and the switch has a case value of ~0.
774 // Dropping in a ~0 to the chain will unswitch out the ~0-casevalue.
775 auto *AllOne = cast<ConstantInt>(Constant::getAllOnesValue(SC->getType()));
776 if (BranchesInfo.isUnswitched(SI, AllOne))
777 continue;
778 // We are unswitching ~0 out.
779 UnswitchVal = AllOne;
780 } else {
781 assert(OpChain == OC_OpChainNone &&
782 "Expect to unswitch on trivial chain");
783 // Do not process same value again and again.
784 // At this point we have some cases already unswitched and
785 // some not yet unswitched. Let's find the first not yet unswitched one.
786 for (auto Case : SI->cases()) {
787 Constant *UnswitchValCandidate = Case.getCaseValue();
788 if (!BranchesInfo.isUnswitched(SI, UnswitchValCandidate)) {
789 UnswitchVal = UnswitchValCandidate;
790 break;
795 if (!UnswitchVal)
796 continue;
798 if (UnswitchIfProfitable(LoopCond, UnswitchVal)) {
799 ++NumSwitches;
800 // In case of a full LIV, UnswitchVal is the value we unswitched out.
801 // In case of a partial LIV, we only unswitch when its an AND-chain
802 // or OR-chain. In both cases switch input value simplifies to
803 // UnswitchVal.
804 BranchesInfo.setUnswitched(SI, UnswitchVal);
805 return true;
810 // Scan the instructions to check for unswitchable values.
811 for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
812 BBI != E; ++BBI)
813 if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
814 Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), currentLoop,
815 Changed, MSSAU.get())
816 .first;
817 if (LoopCond && UnswitchIfProfitable(LoopCond,
818 ConstantInt::getTrue(Context))) {
819 ++NumSelects;
820 return true;
824 return Changed;
827 /// Check to see if all paths from BB exit the loop with no side effects
828 /// (including infinite loops).
830 /// If true, we return true and set ExitBB to the block we
831 /// exit through.
833 static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
834 BasicBlock *&ExitBB,
835 std::set<BasicBlock*> &Visited) {
836 if (!Visited.insert(BB).second) {
837 // Already visited. Without more analysis, this could indicate an infinite
838 // loop.
839 return false;
841 if (!L->contains(BB)) {
842 // Otherwise, this is a loop exit, this is fine so long as this is the
843 // first exit.
844 if (ExitBB) return false;
845 ExitBB = BB;
846 return true;
849 // Otherwise, this is an unvisited intra-loop node. Check all successors.
850 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
851 // Check to see if the successor is a trivial loop exit.
852 if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
853 return false;
856 // Okay, everything after this looks good, check to make sure that this block
857 // doesn't include any side effects.
858 for (Instruction &I : *BB)
859 if (I.mayHaveSideEffects())
860 return false;
862 return true;
865 /// Return true if the specified block unconditionally leads to an exit from
866 /// the specified loop, and has no side-effects in the process. If so, return
867 /// the block that is exited to, otherwise return null.
868 static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
869 std::set<BasicBlock*> Visited;
870 Visited.insert(L->getHeader()); // Branches to header make infinite loops.
871 BasicBlock *ExitBB = nullptr;
872 if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
873 return ExitBB;
874 return nullptr;
877 /// We have found that we can unswitch currentLoop when LoopCond == Val to
878 /// simplify the loop. If we decide that this is profitable,
879 /// unswitch the loop, reprocess the pieces, then return true.
880 bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val,
881 Instruction *TI) {
882 // Check to see if it would be profitable to unswitch current loop.
883 if (!BranchesInfo.CostAllowsUnswitching()) {
884 LLVM_DEBUG(dbgs() << "NOT unswitching loop %"
885 << currentLoop->getHeader()->getName()
886 << " at non-trivial condition '" << *Val
887 << "' == " << *LoopCond << "\n"
888 << ". Cost too high.\n");
889 return false;
891 if (hasBranchDivergence &&
892 getAnalysis<LegacyDivergenceAnalysis>().isDivergent(LoopCond)) {
893 LLVM_DEBUG(dbgs() << "NOT unswitching loop %"
894 << currentLoop->getHeader()->getName()
895 << " at non-trivial condition '" << *Val
896 << "' == " << *LoopCond << "\n"
897 << ". Condition is divergent.\n");
898 return false;
901 UnswitchNontrivialCondition(LoopCond, Val, currentLoop, TI);
902 return true;
905 /// Recursively clone the specified loop and all of its children,
906 /// mapping the blocks with the specified map.
907 static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
908 LoopInfo *LI, LPPassManager *LPM) {
909 Loop &New = *LI->AllocateLoop();
910 if (PL)
911 PL->addChildLoop(&New);
912 else
913 LI->addTopLevelLoop(&New);
914 LPM->addLoop(New);
916 // Add all of the blocks in L to the new loop.
917 for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
918 I != E; ++I)
919 if (LI->getLoopFor(*I) == L)
920 New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
922 // Add all of the subloops to the new loop.
923 for (Loop *I : *L)
924 CloneLoop(I, &New, VM, LI, LPM);
926 return &New;
929 /// Emit a conditional branch on two values if LIC == Val, branch to TrueDst,
930 /// otherwise branch to FalseDest. Insert the code immediately before OldBranch
931 /// and remove (but not erase!) it from the function.
932 void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
933 BasicBlock *TrueDest,
934 BasicBlock *FalseDest,
935 BranchInst *OldBranch,
936 Instruction *TI) {
937 assert(OldBranch->isUnconditional() && "Preheader is not split correctly");
938 assert(TrueDest != FalseDest && "Branch targets should be different");
939 // Insert a conditional branch on LIC to the two preheaders. The original
940 // code is the true version and the new code is the false version.
941 Value *BranchVal = LIC;
942 bool Swapped = false;
943 if (!isa<ConstantInt>(Val) ||
944 Val->getType() != Type::getInt1Ty(LIC->getContext()))
945 BranchVal = new ICmpInst(OldBranch, ICmpInst::ICMP_EQ, LIC, Val);
946 else if (Val != ConstantInt::getTrue(Val->getContext())) {
947 // We want to enter the new loop when the condition is true.
948 std::swap(TrueDest, FalseDest);
949 Swapped = true;
952 // Old branch will be removed, so save its parent and successor to update the
953 // DomTree.
954 auto *OldBranchSucc = OldBranch->getSuccessor(0);
955 auto *OldBranchParent = OldBranch->getParent();
957 // Insert the new branch.
958 BranchInst *BI =
959 IRBuilder<>(OldBranch).CreateCondBr(BranchVal, TrueDest, FalseDest, TI);
960 if (Swapped)
961 BI->swapProfMetadata();
963 // Remove the old branch so there is only one branch at the end. This is
964 // needed to perform DomTree's internal DFS walk on the function's CFG.
965 OldBranch->removeFromParent();
967 // Inform the DT about the new branch.
968 if (DT) {
969 // First, add both successors.
970 SmallVector<DominatorTree::UpdateType, 3> Updates;
971 if (TrueDest != OldBranchSucc)
972 Updates.push_back({DominatorTree::Insert, OldBranchParent, TrueDest});
973 if (FalseDest != OldBranchSucc)
974 Updates.push_back({DominatorTree::Insert, OldBranchParent, FalseDest});
975 // If both of the new successors are different from the old one, inform the
976 // DT that the edge was deleted.
977 if (OldBranchSucc != TrueDest && OldBranchSucc != FalseDest) {
978 Updates.push_back({DominatorTree::Delete, OldBranchParent, OldBranchSucc});
980 DT->applyUpdates(Updates);
982 if (MSSAU)
983 MSSAU->applyUpdates(Updates, *DT);
986 // If either edge is critical, split it. This helps preserve LoopSimplify
987 // form for enclosing loops.
988 auto Options =
989 CriticalEdgeSplittingOptions(DT, LI, MSSAU.get()).setPreserveLCSSA();
990 SplitCriticalEdge(BI, 0, Options);
991 SplitCriticalEdge(BI, 1, Options);
994 /// Given a loop that has a trivial unswitchable condition in it (a cond branch
995 /// from its header block to its latch block, where the path through the loop
996 /// that doesn't execute its body has no side-effects), unswitch it. This
997 /// doesn't involve any code duplication, just moving the conditional branch
998 /// outside of the loop and updating loop info.
999 void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
1000 BasicBlock *ExitBlock,
1001 Instruction *TI) {
1002 LLVM_DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
1003 << loopHeader->getName() << " [" << L->getBlocks().size()
1004 << " blocks] in Function "
1005 << L->getHeader()->getParent()->getName()
1006 << " on cond: " << *Val << " == " << *Cond << "\n");
1007 // We are going to make essential changes to CFG. This may invalidate cached
1008 // information for L or one of its parent loops in SCEV.
1009 if (auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>())
1010 SEWP->getSE().forgetTopmostLoop(L);
1012 // First step, split the preheader, so that we know that there is a safe place
1013 // to insert the conditional branch. We will change loopPreheader to have a
1014 // conditional branch on Cond.
1015 BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, DT, LI, MSSAU.get());
1017 // Now that we have a place to insert the conditional branch, create a place
1018 // to branch to: this is the exit block out of the loop that we should
1019 // short-circuit to.
1021 // Split this block now, so that the loop maintains its exit block, and so
1022 // that the jump from the preheader can execute the contents of the exit block
1023 // without actually branching to it (the exit block should be dominated by the
1024 // loop header, not the preheader).
1025 assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
1026 BasicBlock *NewExit =
1027 SplitBlock(ExitBlock, &ExitBlock->front(), DT, LI, MSSAU.get());
1029 // Okay, now we have a position to branch from and a position to branch to,
1030 // insert the new conditional branch.
1031 auto *OldBranch = dyn_cast<BranchInst>(loopPreheader->getTerminator());
1032 assert(OldBranch && "Failed to split the preheader");
1033 EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH, OldBranch, TI);
1034 LPM->deleteSimpleAnalysisValue(OldBranch, L);
1036 // EmitPreheaderBranchOnCondition removed the OldBranch from the function.
1037 // Delete it, as it is no longer needed.
1038 delete OldBranch;
1040 // We need to reprocess this loop, it could be unswitched again.
1041 redoLoop = true;
1043 // Now that we know that the loop is never entered when this condition is a
1044 // particular value, rewrite the loop with this info. We know that this will
1045 // at least eliminate the old branch.
1046 RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
1048 ++NumTrivial;
1051 /// Check if the first non-constant condition starting from the loop header is
1052 /// a trivial unswitch condition: that is, a condition controls whether or not
1053 /// the loop does anything at all. If it is a trivial condition, unswitching
1054 /// produces no code duplications (equivalently, it produces a simpler loop and
1055 /// a new empty loop, which gets deleted). Therefore always unswitch trivial
1056 /// condition.
1057 bool LoopUnswitch::TryTrivialLoopUnswitch(bool &Changed) {
1058 BasicBlock *CurrentBB = currentLoop->getHeader();
1059 Instruction *CurrentTerm = CurrentBB->getTerminator();
1060 LLVMContext &Context = CurrentBB->getContext();
1062 // If loop header has only one reachable successor (currently via an
1063 // unconditional branch or constant foldable conditional branch, but
1064 // should also consider adding constant foldable switch instruction in
1065 // future), we should keep looking for trivial condition candidates in
1066 // the successor as well. An alternative is to constant fold conditions
1067 // and merge successors into loop header (then we only need to check header's
1068 // terminator). The reason for not doing this in LoopUnswitch pass is that
1069 // it could potentially break LoopPassManager's invariants. Folding dead
1070 // branches could either eliminate the current loop or make other loops
1071 // unreachable. LCSSA form might also not be preserved after deleting
1072 // branches. The following code keeps traversing loop header's successors
1073 // until it finds the trivial condition candidate (condition that is not a
1074 // constant). Since unswitching generates branches with constant conditions,
1075 // this scenario could be very common in practice.
1076 SmallPtrSet<BasicBlock*, 8> Visited;
1078 while (true) {
1079 // If we exit loop or reach a previous visited block, then
1080 // we can not reach any trivial condition candidates (unfoldable
1081 // branch instructions or switch instructions) and no unswitch
1082 // can happen. Exit and return false.
1083 if (!currentLoop->contains(CurrentBB) || !Visited.insert(CurrentBB).second)
1084 return false;
1086 // Check if this loop will execute any side-effecting instructions (e.g.
1087 // stores, calls, volatile loads) in the part of the loop that the code
1088 // *would* execute. Check the header first.
1089 for (Instruction &I : *CurrentBB)
1090 if (I.mayHaveSideEffects())
1091 return false;
1093 if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
1094 if (BI->isUnconditional()) {
1095 CurrentBB = BI->getSuccessor(0);
1096 } else if (BI->getCondition() == ConstantInt::getTrue(Context)) {
1097 CurrentBB = BI->getSuccessor(0);
1098 } else if (BI->getCondition() == ConstantInt::getFalse(Context)) {
1099 CurrentBB = BI->getSuccessor(1);
1100 } else {
1101 // Found a trivial condition candidate: non-foldable conditional branch.
1102 break;
1104 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
1105 // At this point, any constant-foldable instructions should have probably
1106 // been folded.
1107 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
1108 if (!Cond)
1109 break;
1110 // Find the target block we are definitely going to.
1111 CurrentBB = SI->findCaseValue(Cond)->getCaseSuccessor();
1112 } else {
1113 // We do not understand these terminator instructions.
1114 break;
1117 CurrentTerm = CurrentBB->getTerminator();
1120 // CondVal is the condition that controls the trivial condition.
1121 // LoopExitBB is the BasicBlock that loop exits when meets trivial condition.
1122 Constant *CondVal = nullptr;
1123 BasicBlock *LoopExitBB = nullptr;
1125 if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
1126 // If this isn't branching on an invariant condition, we can't unswitch it.
1127 if (!BI->isConditional())
1128 return false;
1130 Value *LoopCond = FindLIVLoopCondition(BI->getCondition(), currentLoop,
1131 Changed, MSSAU.get())
1132 .first;
1134 // Unswitch only if the trivial condition itself is an LIV (not
1135 // partial LIV which could occur in and/or)
1136 if (!LoopCond || LoopCond != BI->getCondition())
1137 return false;
1139 // Check to see if a successor of the branch is guaranteed to
1140 // exit through a unique exit block without having any
1141 // side-effects. If so, determine the value of Cond that causes
1142 // it to do this.
1143 if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
1144 BI->getSuccessor(0)))) {
1145 CondVal = ConstantInt::getTrue(Context);
1146 } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
1147 BI->getSuccessor(1)))) {
1148 CondVal = ConstantInt::getFalse(Context);
1151 // If we didn't find a single unique LoopExit block, or if the loop exit
1152 // block contains phi nodes, this isn't trivial.
1153 if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
1154 return false; // Can't handle this.
1156 if (EqualityPropUnSafe(*LoopCond))
1157 return false;
1159 UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB,
1160 CurrentTerm);
1161 ++NumBranches;
1162 return true;
1163 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
1164 // If this isn't switching on an invariant condition, we can't unswitch it.
1165 Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), currentLoop,
1166 Changed, MSSAU.get())
1167 .first;
1169 // Unswitch only if the trivial condition itself is an LIV (not
1170 // partial LIV which could occur in and/or)
1171 if (!LoopCond || LoopCond != SI->getCondition())
1172 return false;
1174 // Check to see if a successor of the switch is guaranteed to go to the
1175 // latch block or exit through a one exit block without having any
1176 // side-effects. If so, determine the value of Cond that causes it to do
1177 // this.
1178 // Note that we can't trivially unswitch on the default case or
1179 // on already unswitched cases.
1180 for (auto Case : SI->cases()) {
1181 BasicBlock *LoopExitCandidate;
1182 if ((LoopExitCandidate =
1183 isTrivialLoopExitBlock(currentLoop, Case.getCaseSuccessor()))) {
1184 // Okay, we found a trivial case, remember the value that is trivial.
1185 ConstantInt *CaseVal = Case.getCaseValue();
1187 // Check that it was not unswitched before, since already unswitched
1188 // trivial vals are looks trivial too.
1189 if (BranchesInfo.isUnswitched(SI, CaseVal))
1190 continue;
1191 LoopExitBB = LoopExitCandidate;
1192 CondVal = CaseVal;
1193 break;
1197 // If we didn't find a single unique LoopExit block, or if the loop exit
1198 // block contains phi nodes, this isn't trivial.
1199 if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
1200 return false; // Can't handle this.
1202 UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB,
1203 nullptr);
1205 // We are only unswitching full LIV.
1206 BranchesInfo.setUnswitched(SI, CondVal);
1207 ++NumSwitches;
1208 return true;
1210 return false;
1213 /// Split all of the edges from inside the loop to their exit blocks.
1214 /// Update the appropriate Phi nodes as we do so.
1215 void LoopUnswitch::SplitExitEdges(Loop *L,
1216 const SmallVectorImpl<BasicBlock *> &ExitBlocks){
1218 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
1219 BasicBlock *ExitBlock = ExitBlocks[i];
1220 SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock),
1221 pred_end(ExitBlock));
1223 // Although SplitBlockPredecessors doesn't preserve loop-simplify in
1224 // general, if we call it on all predecessors of all exits then it does.
1225 SplitBlockPredecessors(ExitBlock, Preds, ".us-lcssa", DT, LI, MSSAU.get(),
1226 /*PreserveLCSSA*/ true);
1230 /// We determined that the loop is profitable to unswitch when LIC equal Val.
1231 /// Split it into loop versions and test the condition outside of either loop.
1232 /// Return the loops created as Out1/Out2.
1233 void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
1234 Loop *L, Instruction *TI) {
1235 Function *F = loopHeader->getParent();
1236 LLVM_DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
1237 << loopHeader->getName() << " [" << L->getBlocks().size()
1238 << " blocks] in Function " << F->getName() << " when '"
1239 << *Val << "' == " << *LIC << "\n");
1241 // We are going to make essential changes to CFG. This may invalidate cached
1242 // information for L or one of its parent loops in SCEV.
1243 if (auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>())
1244 SEWP->getSE().forgetTopmostLoop(L);
1246 LoopBlocks.clear();
1247 NewBlocks.clear();
1249 if (MSSAU && VerifyMemorySSA)
1250 MSSA->verifyMemorySSA();
1252 // First step, split the preheader and exit blocks, and add these blocks to
1253 // the LoopBlocks list.
1254 BasicBlock *NewPreheader =
1255 SplitEdge(loopPreheader, loopHeader, DT, LI, MSSAU.get());
1256 LoopBlocks.push_back(NewPreheader);
1258 // We want the loop to come after the preheader, but before the exit blocks.
1259 LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
1261 SmallVector<BasicBlock*, 8> ExitBlocks;
1262 L->getUniqueExitBlocks(ExitBlocks);
1264 // Split all of the edges from inside the loop to their exit blocks. Update
1265 // the appropriate Phi nodes as we do so.
1266 SplitExitEdges(L, ExitBlocks);
1268 // The exit blocks may have been changed due to edge splitting, recompute.
1269 ExitBlocks.clear();
1270 L->getUniqueExitBlocks(ExitBlocks);
1272 // Add exit blocks to the loop blocks.
1273 LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
1275 // Next step, clone all of the basic blocks that make up the loop (including
1276 // the loop preheader and exit blocks), keeping track of the mapping between
1277 // the instructions and blocks.
1278 NewBlocks.reserve(LoopBlocks.size());
1279 ValueToValueMapTy VMap;
1280 for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
1281 BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F);
1283 NewBlocks.push_back(NewBB);
1284 VMap[LoopBlocks[i]] = NewBB; // Keep the BB mapping.
1285 LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L);
1288 // Splice the newly inserted blocks into the function right before the
1289 // original preheader.
1290 F->getBasicBlockList().splice(NewPreheader->getIterator(),
1291 F->getBasicBlockList(),
1292 NewBlocks[0]->getIterator(), F->end());
1294 // Now we create the new Loop object for the versioned loop.
1295 Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM);
1297 // Recalculate unswitching quota, inherit simplified switches info for NewBB,
1298 // Probably clone more loop-unswitch related loop properties.
1299 BranchesInfo.cloneData(NewLoop, L, VMap);
1301 Loop *ParentLoop = L->getParentLoop();
1302 if (ParentLoop) {
1303 // Make sure to add the cloned preheader and exit blocks to the parent loop
1304 // as well.
1305 ParentLoop->addBasicBlockToLoop(NewBlocks[0], *LI);
1308 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
1309 BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]);
1310 // The new exit block should be in the same loop as the old one.
1311 if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
1312 ExitBBLoop->addBasicBlockToLoop(NewExit, *LI);
1314 assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
1315 "Exit block should have been split to have one successor!");
1316 BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
1318 // If the successor of the exit block had PHI nodes, add an entry for
1319 // NewExit.
1320 for (PHINode &PN : ExitSucc->phis()) {
1321 Value *V = PN.getIncomingValueForBlock(ExitBlocks[i]);
1322 ValueToValueMapTy::iterator It = VMap.find(V);
1323 if (It != VMap.end()) V = It->second;
1324 PN.addIncoming(V, NewExit);
1327 if (LandingPadInst *LPad = NewExit->getLandingPadInst()) {
1328 PHINode *PN = PHINode::Create(LPad->getType(), 0, "",
1329 &*ExitSucc->getFirstInsertionPt());
1331 for (pred_iterator I = pred_begin(ExitSucc), E = pred_end(ExitSucc);
1332 I != E; ++I) {
1333 BasicBlock *BB = *I;
1334 LandingPadInst *LPI = BB->getLandingPadInst();
1335 LPI->replaceAllUsesWith(PN);
1336 PN->addIncoming(LPI, BB);
1341 // Rewrite the code to refer to itself.
1342 for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) {
1343 for (Instruction &I : *NewBlocks[i]) {
1344 RemapInstruction(&I, VMap,
1345 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1346 if (auto *II = dyn_cast<IntrinsicInst>(&I))
1347 if (II->getIntrinsicID() == Intrinsic::assume)
1348 AC->registerAssumption(II);
1352 // Rewrite the original preheader to select between versions of the loop.
1353 BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator());
1354 assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
1355 "Preheader splitting did not work correctly!");
1357 if (MSSAU) {
1358 // Update MemorySSA after cloning, and before splitting to unreachables,
1359 // since that invalidates the 1:1 mapping of clones in VMap.
1360 LoopBlocksRPO LBRPO(L);
1361 LBRPO.perform(LI);
1362 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, VMap);
1365 // Emit the new branch that selects between the two versions of this loop.
1366 EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR,
1367 TI);
1368 LPM->deleteSimpleAnalysisValue(OldBR, L);
1369 if (MSSAU) {
1370 // Update MemoryPhis in Exit blocks.
1371 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMap, *DT);
1372 if (VerifyMemorySSA)
1373 MSSA->verifyMemorySSA();
1376 // The OldBr was replaced by a new one and removed (but not erased) by
1377 // EmitPreheaderBranchOnCondition. It is no longer needed, so delete it.
1378 delete OldBR;
1380 LoopProcessWorklist.push_back(NewLoop);
1381 redoLoop = true;
1383 // Keep a WeakTrackingVH holding onto LIC. If the first call to
1384 // RewriteLoopBody
1385 // deletes the instruction (for example by simplifying a PHI that feeds into
1386 // the condition that we're unswitching on), we don't rewrite the second
1387 // iteration.
1388 WeakTrackingVH LICHandle(LIC);
1390 // Now we rewrite the original code to know that the condition is true and the
1391 // new code to know that the condition is false.
1392 RewriteLoopBodyWithConditionConstant(L, LIC, Val, false);
1394 // It's possible that simplifying one loop could cause the other to be
1395 // changed to another value or a constant. If its a constant, don't simplify
1396 // it.
1397 if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop &&
1398 LICHandle && !isa<Constant>(LICHandle))
1399 RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true);
1401 if (MSSA && VerifyMemorySSA)
1402 MSSA->verifyMemorySSA();
1405 /// Remove all instances of I from the worklist vector specified.
1406 static void RemoveFromWorklist(Instruction *I,
1407 std::vector<Instruction*> &Worklist) {
1409 Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), I),
1410 Worklist.end());
1413 /// When we find that I really equals V, remove I from the
1414 /// program, replacing all uses with V and update the worklist.
1415 static void ReplaceUsesOfWith(Instruction *I, Value *V,
1416 std::vector<Instruction *> &Worklist, Loop *L,
1417 LPPassManager *LPM, MemorySSAUpdater *MSSAU) {
1418 LLVM_DEBUG(dbgs() << "Replace with '" << *V << "': " << *I << "\n");
1420 // Add uses to the worklist, which may be dead now.
1421 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1422 if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
1423 Worklist.push_back(Use);
1425 // Add users to the worklist which may be simplified now.
1426 for (User *U : I->users())
1427 Worklist.push_back(cast<Instruction>(U));
1428 LPM->deleteSimpleAnalysisValue(I, L);
1429 RemoveFromWorklist(I, Worklist);
1430 I->replaceAllUsesWith(V);
1431 if (!I->mayHaveSideEffects()) {
1432 if (MSSAU)
1433 MSSAU->removeMemoryAccess(I);
1434 I->eraseFromParent();
1436 ++NumSimplify;
1439 /// We know either that the value LIC has the value specified by Val in the
1440 /// specified loop, or we know it does NOT have that value.
1441 /// Rewrite any uses of LIC or of properties correlated to it.
1442 void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
1443 Constant *Val,
1444 bool IsEqual) {
1445 assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
1447 // FIXME: Support correlated properties, like:
1448 // for (...)
1449 // if (li1 < li2)
1450 // ...
1451 // if (li1 > li2)
1452 // ...
1454 // FOLD boolean conditions (X|LIC), (X&LIC). Fold conditional branches,
1455 // selects, switches.
1456 std::vector<Instruction*> Worklist;
1457 LLVMContext &Context = Val->getContext();
1459 // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
1460 // in the loop with the appropriate one directly.
1461 if (IsEqual || (isa<ConstantInt>(Val) &&
1462 Val->getType()->isIntegerTy(1))) {
1463 Value *Replacement;
1464 if (IsEqual)
1465 Replacement = Val;
1466 else
1467 Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()),
1468 !cast<ConstantInt>(Val)->getZExtValue());
1470 for (User *U : LIC->users()) {
1471 Instruction *UI = dyn_cast<Instruction>(U);
1472 if (!UI || !L->contains(UI))
1473 continue;
1474 Worklist.push_back(UI);
1477 for (Instruction *UI : Worklist)
1478 UI->replaceUsesOfWith(LIC, Replacement);
1480 SimplifyCode(Worklist, L);
1481 return;
1484 // Otherwise, we don't know the precise value of LIC, but we do know that it
1485 // is certainly NOT "Val". As such, simplify any uses in the loop that we
1486 // can. This case occurs when we unswitch switch statements.
1487 for (User *U : LIC->users()) {
1488 Instruction *UI = dyn_cast<Instruction>(U);
1489 if (!UI || !L->contains(UI))
1490 continue;
1492 // At this point, we know LIC is definitely not Val. Try to use some simple
1493 // logic to simplify the user w.r.t. to the context.
1494 if (Value *Replacement = SimplifyInstructionWithNotEqual(UI, LIC, Val)) {
1495 if (LI->replacementPreservesLCSSAForm(UI, Replacement)) {
1496 // This in-loop instruction has been simplified w.r.t. its context,
1497 // i.e. LIC != Val, make sure we propagate its replacement value to
1498 // all its users.
1500 // We can not yet delete UI, the LIC user, yet, because that would invalidate
1501 // the LIC->users() iterator !. However, we can make this instruction
1502 // dead by replacing all its users and push it onto the worklist so that
1503 // it can be properly deleted and its operands simplified.
1504 UI->replaceAllUsesWith(Replacement);
1508 // This is a LIC user, push it into the worklist so that SimplifyCode can
1509 // attempt to simplify it.
1510 Worklist.push_back(UI);
1512 // If we know that LIC is not Val, use this info to simplify code.
1513 SwitchInst *SI = dyn_cast<SwitchInst>(UI);
1514 if (!SI || !isa<ConstantInt>(Val)) continue;
1516 // NOTE: if a case value for the switch is unswitched out, we record it
1517 // after the unswitch finishes. We can not record it here as the switch
1518 // is not a direct user of the partial LIV.
1519 SwitchInst::CaseHandle DeadCase =
1520 *SI->findCaseValue(cast<ConstantInt>(Val));
1521 // Default case is live for multiple values.
1522 if (DeadCase == *SI->case_default())
1523 continue;
1525 // Found a dead case value. Don't remove PHI nodes in the
1526 // successor if they become single-entry, those PHI nodes may
1527 // be in the Users list.
1529 BasicBlock *Switch = SI->getParent();
1530 BasicBlock *SISucc = DeadCase.getCaseSuccessor();
1531 BasicBlock *Latch = L->getLoopLatch();
1533 if (!SI->findCaseDest(SISucc)) continue; // Edge is critical.
1534 // If the DeadCase successor dominates the loop latch, then the
1535 // transformation isn't safe since it will delete the sole predecessor edge
1536 // to the latch.
1537 if (Latch && DT->dominates(SISucc, Latch))
1538 continue;
1540 // FIXME: This is a hack. We need to keep the successor around
1541 // and hooked up so as to preserve the loop structure, because
1542 // trying to update it is complicated. So instead we preserve the
1543 // loop structure and put the block on a dead code path.
1544 SplitEdge(Switch, SISucc, DT, LI, MSSAU.get());
1545 // Compute the successors instead of relying on the return value
1546 // of SplitEdge, since it may have split the switch successor
1547 // after PHI nodes.
1548 BasicBlock *NewSISucc = DeadCase.getCaseSuccessor();
1549 BasicBlock *OldSISucc = *succ_begin(NewSISucc);
1550 // Create an "unreachable" destination.
1551 BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
1552 Switch->getParent(),
1553 OldSISucc);
1554 new UnreachableInst(Context, Abort);
1555 // Force the new case destination to branch to the "unreachable"
1556 // block while maintaining a (dead) CFG edge to the old block.
1557 NewSISucc->getTerminator()->eraseFromParent();
1558 BranchInst::Create(Abort, OldSISucc,
1559 ConstantInt::getTrue(Context), NewSISucc);
1560 // Release the PHI operands for this edge.
1561 for (PHINode &PN : NewSISucc->phis())
1562 PN.setIncomingValueForBlock(Switch, UndefValue::get(PN.getType()));
1563 // Tell the domtree about the new block. We don't fully update the
1564 // domtree here -- instead we force it to do a full recomputation
1565 // after the pass is complete -- but we do need to inform it of
1566 // new blocks.
1567 DT->addNewBlock(Abort, NewSISucc);
1570 SimplifyCode(Worklist, L);
1573 /// Now that we have simplified some instructions in the loop, walk over it and
1574 /// constant prop, dce, and fold control flow where possible. Note that this is
1575 /// effectively a very simple loop-structure-aware optimizer. During processing
1576 /// of this loop, L could very well be deleted, so it must not be used.
1578 /// FIXME: When the loop optimizer is more mature, separate this out to a new
1579 /// pass.
1581 void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
1582 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
1583 while (!Worklist.empty()) {
1584 Instruction *I = Worklist.back();
1585 Worklist.pop_back();
1587 // Simple DCE.
1588 if (isInstructionTriviallyDead(I)) {
1589 LLVM_DEBUG(dbgs() << "Remove dead instruction '" << *I << "\n");
1591 // Add uses to the worklist, which may be dead now.
1592 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1593 if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
1594 Worklist.push_back(Use);
1595 LPM->deleteSimpleAnalysisValue(I, L);
1596 RemoveFromWorklist(I, Worklist);
1597 if (MSSAU)
1598 MSSAU->removeMemoryAccess(I);
1599 I->eraseFromParent();
1600 ++NumSimplify;
1601 continue;
1604 // See if instruction simplification can hack this up. This is common for
1605 // things like "select false, X, Y" after unswitching made the condition be
1606 // 'false'. TODO: update the domtree properly so we can pass it here.
1607 if (Value *V = SimplifyInstruction(I, DL))
1608 if (LI->replacementPreservesLCSSAForm(I, V)) {
1609 ReplaceUsesOfWith(I, V, Worklist, L, LPM, MSSAU.get());
1610 continue;
1613 // Special case hacks that appear commonly in unswitched code.
1614 if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1615 if (BI->isUnconditional()) {
1616 // If BI's parent is the only pred of the successor, fold the two blocks
1617 // together.
1618 BasicBlock *Pred = BI->getParent();
1619 BasicBlock *Succ = BI->getSuccessor(0);
1620 BasicBlock *SinglePred = Succ->getSinglePredecessor();
1621 if (!SinglePred) continue; // Nothing to do.
1622 assert(SinglePred == Pred && "CFG broken");
1624 LLVM_DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- "
1625 << Succ->getName() << "\n");
1627 // Resolve any single entry PHI nodes in Succ.
1628 while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
1629 ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM,
1630 MSSAU.get());
1632 // If Succ has any successors with PHI nodes, update them to have
1633 // entries coming from Pred instead of Succ.
1634 Succ->replaceAllUsesWith(Pred);
1636 // Move all of the successor contents from Succ to Pred.
1637 Pred->getInstList().splice(BI->getIterator(), Succ->getInstList(),
1638 Succ->begin(), Succ->end());
1639 if (MSSAU)
1640 MSSAU->moveAllAfterMergeBlocks(Succ, Pred, BI);
1641 LPM->deleteSimpleAnalysisValue(BI, L);
1642 RemoveFromWorklist(BI, Worklist);
1643 BI->eraseFromParent();
1645 // Remove Succ from the loop tree.
1646 LI->removeBlock(Succ);
1647 LPM->deleteSimpleAnalysisValue(Succ, L);
1648 Succ->eraseFromParent();
1649 ++NumSimplify;
1650 continue;
1653 continue;
1658 /// Simple simplifications we can do given the information that Cond is
1659 /// definitely not equal to Val.
1660 Value *LoopUnswitch::SimplifyInstructionWithNotEqual(Instruction *Inst,
1661 Value *Invariant,
1662 Constant *Val) {
1663 // icmp eq cond, val -> false
1664 ICmpInst *CI = dyn_cast<ICmpInst>(Inst);
1665 if (CI && CI->isEquality()) {
1666 Value *Op0 = CI->getOperand(0);
1667 Value *Op1 = CI->getOperand(1);
1668 if ((Op0 == Invariant && Op1 == Val) || (Op0 == Val && Op1 == Invariant)) {
1669 LLVMContext &Ctx = Inst->getContext();
1670 if (CI->getPredicate() == CmpInst::ICMP_EQ)
1671 return ConstantInt::getFalse(Ctx);
1672 else
1673 return ConstantInt::getTrue(Ctx);
1677 // FIXME: there may be other opportunities, e.g. comparison with floating
1678 // point, or Invariant - Val != 0, etc.
1679 return nullptr;