[ARM] MVE sext and widen/narrow tests from larger types. NFC
[llvm-core.git] / docs / StackMaps.rst
blob2ceb408097a718dee820ca6574d5d3fcb28bcfb5
1 ===================================
2 Stack maps and patch points in LLVM
3 ===================================
5 .. contents::
6    :local:
7    :depth: 2
9 Definitions
10 ===========
12 In this document we refer to the "runtime" collectively as all
13 components that serve as the LLVM client, including the LLVM IR
14 generator, object code consumer, and code patcher.
16 A stack map records the location of ``live values`` at a particular
17 instruction address. These ``live values`` do not refer to all the
18 LLVM values live across the stack map. Instead, they are only the
19 values that the runtime requires to be live at this point. For
20 example, they may be the values the runtime will need to resume
21 program execution at that point independent of the compiled function
22 containing the stack map.
24 LLVM emits stack map data into the object code within a designated
25 :ref:`stackmap-section`. This stack map data contains a record for
26 each stack map. The record stores the stack map's instruction address
27 and contains a entry for each mapped value. Each entry encodes a
28 value's location as a register, stack offset, or constant.
30 A patch point is an instruction address at which space is reserved for
31 patching a new instruction sequence at run time. Patch points look
32 much like calls to LLVM. They take arguments that follow a calling
33 convention and may return a value. They also imply stack map
34 generation, which allows the runtime to locate the patchpoint and
35 find the location of ``live values`` at that point.
37 Motivation
38 ==========
40 This functionality is currently experimental but is potentially useful
41 in a variety of settings, the most obvious being a runtime (JIT)
42 compiler. Example applications of the patchpoint intrinsics are
43 implementing an inline call cache for polymorphic method dispatch or
44 optimizing the retrieval of properties in dynamically typed languages
45 such as JavaScript.
47 The intrinsics documented here are currently used by the JavaScript
48 compiler within the open source WebKit project, see the `FTL JIT
49 <https://trac.webkit.org/wiki/FTLJIT>`_, but they are designed to be
50 used whenever stack maps or code patching are needed. Because the
51 intrinsics have experimental status, compatibility across LLVM
52 releases is not guaranteed.
54 The stack map functionality described in this document is separate
55 from the functionality described in
56 :ref:`stack-map`. `GCFunctionMetadata` provides the location of
57 pointers into a collected heap captured by the `GCRoot` intrinsic,
58 which can also be considered a "stack map". Unlike the stack maps
59 defined above, the `GCFunctionMetadata` stack map interface does not
60 provide a way to associate live register values of arbitrary type with
61 an instruction address, nor does it specify a format for the resulting
62 stack map. The stack maps described here could potentially provide
63 richer information to a garbage collecting runtime, but that usage
64 will not be discussed in this document.
66 Intrinsics
67 ==========
69 The following two kinds of intrinsics can be used to implement stack
70 maps and patch points: ``llvm.experimental.stackmap`` and
71 ``llvm.experimental.patchpoint``. Both kinds of intrinsics generate a
72 stack map record, and they both allow some form of code patching. They
73 can be used independently (i.e. ``llvm.experimental.patchpoint``
74 implicitly generates a stack map without the need for an additional
75 call to ``llvm.experimental.stackmap``). The choice of which to use
76 depends on whether it is necessary to reserve space for code patching
77 and whether any of the intrinsic arguments should be lowered according
78 to calling conventions. ``llvm.experimental.stackmap`` does not
79 reserve any space, nor does it expect any call arguments. If the
80 runtime patches code at the stack map's address, it will destructively
81 overwrite the program text. This is unlike
82 ``llvm.experimental.patchpoint``, which reserves space for in-place
83 patching without overwriting surrounding code. The
84 ``llvm.experimental.patchpoint`` intrinsic also lowers a specified
85 number of arguments according to its calling convention. This allows
86 patched code to make in-place function calls without marshaling.
88 Each instance of one of these intrinsics generates a stack map record
89 in the :ref:`stackmap-section`. The record includes an ID, allowing
90 the runtime to uniquely identify the stack map, and the offset within
91 the code from the beginning of the enclosing function.
93 '``llvm.experimental.stackmap``' Intrinsic
94 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
96 Syntax:
97 """""""
101       declare void
102         @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, ...)
104 Overview:
105 """""""""
107 The '``llvm.experimental.stackmap``' intrinsic records the location of
108 specified values in the stack map without generating any code.
110 Operands:
111 """""""""
113 The first operand is an ID to be encoded within the stack map. The
114 second operand is the number of shadow bytes following the
115 intrinsic. The variable number of operands that follow are the ``live
116 values`` for which locations will be recorded in the stack map.
118 To use this intrinsic as a bare-bones stack map, with no code patching
119 support, the number of shadow bytes can be set to zero.
121 Semantics:
122 """"""""""
124 The stack map intrinsic generates no code in place, unless nops are
125 needed to cover its shadow (see below). However, its offset from
126 function entry is stored in the stack map. This is the relative
127 instruction address immediately following the instructions that
128 precede the stack map.
130 The stack map ID allows a runtime to locate the desired stack map
131 record. LLVM passes this ID through directly to the stack map
132 record without checking uniqueness.
134 LLVM guarantees a shadow of instructions following the stack map's
135 instruction offset during which neither the end of the basic block nor
136 another call to ``llvm.experimental.stackmap`` or
137 ``llvm.experimental.patchpoint`` may occur. This allows the runtime to
138 patch the code at this point in response to an event triggered from
139 outside the code. The code for instructions following the stack map
140 may be emitted in the stack map's shadow, and these instructions may
141 be overwritten by destructive patching. Without shadow bytes, this
142 destructive patching could overwrite program text or data outside the
143 current function. We disallow overlapping stack map shadows so that
144 the runtime does not need to consider this corner case.
146 For example, a stack map with 8 byte shadow:
148 .. code-block:: llvm
150   call void @runtime()
151   call void (i64, i32, ...)* @llvm.experimental.stackmap(i64 77, i32 8,
152                                                          i64* %ptr)
153   %val = load i64* %ptr
154   %add = add i64 %val, 3
155   ret i64 %add
157 May require one byte of nop-padding:
159 .. code-block:: none
161   0x00 callq _runtime
162   0x05 nop                <--- stack map address
163   0x06 movq (%rdi), %rax
164   0x07 addq $3, %rax
165   0x0a popq %rdx
166   0x0b ret                <---- end of 8-byte shadow
168 Now, if the runtime needs to invalidate the compiled code, it may
169 patch 8 bytes of code at the stack map's address at follows:
171 .. code-block:: none
173   0x00 callq _runtime
174   0x05 movl  $0xffff, %rax <--- patched code at stack map address
175   0x0a callq *%rax         <---- end of 8-byte shadow
177 This way, after the normal call to the runtime returns, the code will
178 execute a patched call to a special entry point that can rebuild a
179 stack frame from the values located by the stack map.
181 '``llvm.experimental.patchpoint.*``' Intrinsic
182 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
184 Syntax:
185 """""""
189       declare void
190         @llvm.experimental.patchpoint.void(i64 <id>, i32 <numBytes>,
191                                            i8* <target>, i32 <numArgs>, ...)
192       declare i64
193         @llvm.experimental.patchpoint.i64(i64 <id>, i32 <numBytes>,
194                                           i8* <target>, i32 <numArgs>, ...)
196 Overview:
197 """""""""
199 The '``llvm.experimental.patchpoint.*``' intrinsics creates a function
200 call to the specified ``<target>`` and records the location of specified
201 values in the stack map.
203 Operands:
204 """""""""
206 The first operand is an ID, the second operand is the number of bytes
207 reserved for the patchable region, the third operand is the target
208 address of a function (optionally null), and the fourth operand
209 specifies how many of the following variable operands are considered
210 function call arguments. The remaining variable number of operands are
211 the ``live values`` for which locations will be recorded in the stack
212 map.
214 Semantics:
215 """"""""""
217 The patch point intrinsic generates a stack map. It also emits a
218 function call to the address specified by ``<target>`` if the address
219 is not a constant null. The function call and its arguments are
220 lowered according to the calling convention specified at the
221 intrinsic's callsite. Variants of the intrinsic with non-void return
222 type also return a value according to calling convention.
224 On PowerPC, note that ``<target>`` must be the ABI function pointer for the
225 intended target of the indirect call. Specifically, when compiling for the
226 ELF V1 ABI, ``<target>`` is the function-descriptor address normally used as
227 the C/C++ function-pointer representation.
229 Requesting zero patch point arguments is valid. In this case, all
230 variable operands are handled just like
231 ``llvm.experimental.stackmap.*``. The difference is that space will
232 still be reserved for patching, a call will be emitted, and a return
233 value is allowed.
235 The location of the arguments are not normally recorded in the stack
236 map because they are already fixed by the calling convention. The
237 remaining ``live values`` will have their location recorded, which
238 could be a register, stack location, or constant. A special calling
239 convention has been introduced for use with stack maps, anyregcc,
240 which forces the arguments to be loaded into registers but allows
241 those register to be dynamically allocated. These argument registers
242 will have their register locations recorded in the stack map in
243 addition to the remaining ``live values``.
245 The patch point also emits nops to cover at least ``<numBytes>`` of
246 instruction encoding space. Hence, the client must ensure that
247 ``<numBytes>`` is enough to encode a call to the target address on the
248 supported targets. If the call target is constant null, then there is
249 no minimum requirement. A zero-byte null target patchpoint is
250 valid.
252 The runtime may patch the code emitted for the patch point, including
253 the call sequence and nops. However, the runtime may not assume
254 anything about the code LLVM emits within the reserved space. Partial
255 patching is not allowed. The runtime must patch all reserved bytes,
256 padding with nops if necessary.
258 This example shows a patch point reserving 15 bytes, with one argument
259 in $rdi, and a return value in $rax per native calling convention:
261 .. code-block:: llvm
263   %target = inttoptr i64 -281474976710654 to i8*
264   %val = call i64 (i64, i32, ...)*
265            @llvm.experimental.patchpoint.i64(i64 78, i32 15,
266                                              i8* %target, i32 1, i64* %ptr)
267   %add = add i64 %val, 3
268   ret i64 %add
270 May generate:
272 .. code-block:: none
274   0x00 movabsq $0xffff000000000002, %r11 <--- patch point address
275   0x0a callq   *%r11
276   0x0d nop
277   0x0e nop                               <--- end of reserved 15-bytes
278   0x0f addq    $0x3, %rax
279   0x10 movl    %rax, 8(%rsp)
281 Note that no stack map locations will be recorded. If the patched code
282 sequence does not need arguments fixed to specific calling convention
283 registers, then the ``anyregcc`` convention may be used:
285 .. code-block:: none
287   %val = call anyregcc @llvm.experimental.patchpoint(i64 78, i32 15,
288                                                      i8* %target, i32 1,
289                                                      i64* %ptr)
291 The stack map now indicates the location of the %ptr argument and
292 return value:
294 .. code-block:: none
296   Stack Map: ID=78, Loc0=%r9 Loc1=%r8
298 The patch code sequence may now use the argument that happened to be
299 allocated in %r8 and return a value allocated in %r9:
301 .. code-block:: none
303   0x00 movslq 4(%r8) %r9              <--- patched code at patch point address
304   0x03 nop
305   ...
306   0x0e nop                            <--- end of reserved 15-bytes
307   0x0f addq    $0x3, %r9
308   0x10 movl    %r9, 8(%rsp)
310 .. _stackmap-format:
312 Stack Map Format
313 ================
315 The existence of a stack map or patch point intrinsic within an LLVM
316 Module forces code emission to create a :ref:`stackmap-section`. The
317 format of this section follows:
319 .. code-block:: none
321   Header {
322     uint8  : Stack Map Version (current version is 3)
323     uint8  : Reserved (expected to be 0)
324     uint16 : Reserved (expected to be 0)
325   }
326   uint32 : NumFunctions
327   uint32 : NumConstants
328   uint32 : NumRecords
329   StkSizeRecord[NumFunctions] {
330     uint64 : Function Address
331     uint64 : Stack Size
332     uint64 : Record Count
333   }
334   Constants[NumConstants] {
335     uint64 : LargeConstant
336   }
337   StkMapRecord[NumRecords] {
338     uint64 : PatchPoint ID
339     uint32 : Instruction Offset
340     uint16 : Reserved (record flags)
341     uint16 : NumLocations
342     Location[NumLocations] {
343       uint8  : Register | Direct | Indirect | Constant | ConstantIndex
344       uint8  : Reserved (expected to be 0)
345       uint16 : Location Size
346       uint16 : Dwarf RegNum
347       uint16 : Reserved (expected to be 0)
348       int32  : Offset or SmallConstant
349     }
350     uint32 : Padding (only if required to align to 8 byte)
351     uint16 : Padding
352     uint16 : NumLiveOuts
353     LiveOuts[NumLiveOuts]
354       uint16 : Dwarf RegNum
355       uint8  : Reserved
356       uint8  : Size in Bytes
357     }
358     uint32 : Padding (only if required to align to 8 byte)
359   }
361 The first byte of each location encodes a type that indicates how to
362 interpret the ``RegNum`` and ``Offset`` fields as follows:
364 ======== ========== =================== ===========================
365 Encoding Type       Value               Description
366 -------- ---------- ------------------- ---------------------------
367 0x1      Register   Reg                 Value in a register
368 0x2      Direct     Reg + Offset        Frame index value
369 0x3      Indirect   [Reg + Offset]      Spilled value
370 0x4      Constant   Offset              Small constant
371 0x5      ConstIndex Constants[Offset]   Large constant
372 ======== ========== =================== ===========================
374 In the common case, a value is available in a register, and the
375 ``Offset`` field will be zero. Values spilled to the stack are encoded
376 as ``Indirect`` locations. The runtime must load those values from a
377 stack address, typically in the form ``[BP + Offset]``. If an
378 ``alloca`` value is passed directly to a stack map intrinsic, then
379 LLVM may fold the frame index into the stack map as an optimization to
380 avoid allocating a register or stack slot. These frame indices will be
381 encoded as ``Direct`` locations in the form ``BP + Offset``. LLVM may
382 also optimize constants by emitting them directly in the stack map,
383 either in the ``Offset`` of a ``Constant`` location or in the constant
384 pool, referred to by ``ConstantIndex`` locations.
386 At each callsite, a "liveout" register list is also recorded. These
387 are the registers that are live across the stackmap and therefore must
388 be saved by the runtime. This is an important optimization when the
389 patchpoint intrinsic is used with a calling convention that by default
390 preserves most registers as callee-save.
392 Each entry in the liveout register list contains a DWARF register
393 number and size in bytes. The stackmap format deliberately omits
394 specific subregister information. Instead the runtime must interpret
395 this information conservatively. For example, if the stackmap reports
396 one byte at ``%rax``, then the value may be in either ``%al`` or
397 ``%ah``. It doesn't matter in practice, because the runtime will
398 simply save ``%rax``. However, if the stackmap reports 16 bytes at
399 ``%ymm0``, then the runtime can safely optimize by saving only
400 ``%xmm0``.
402 The stack map format is a contract between an LLVM SVN revision and
403 the runtime. It is currently experimental and may change in the short
404 term, but minimizing the need to update the runtime is
405 important. Consequently, the stack map design is motivated by
406 simplicity and extensibility. Compactness of the representation is
407 secondary because the runtime is expected to parse the data
408 immediately after compiling a module and encode the information in its
409 own format. Since the runtime controls the allocation of sections, it
410 can reuse the same stack map space for multiple modules.
412 Stackmap support is currently only implemented for 64-bit
413 platforms. However, a 32-bit implementation should be able to use the
414 same format with an insignificant amount of wasted space.
416 .. _stackmap-section:
418 Stack Map Section
419 ^^^^^^^^^^^^^^^^^
421 A JIT compiler can easily access this section by providing its own
422 memory manager via the LLVM C API
423 ``LLVMCreateSimpleMCJITMemoryManager()``. When creating the memory
424 manager, the JIT provides a callback:
425 ``LLVMMemoryManagerAllocateDataSectionCallback()``. When LLVM creates
426 this section, it invokes the callback and passes the section name. The
427 JIT can record the in-memory address of the section at this time and
428 later parse it to recover the stack map data.
430 For MachO (e.g. on Darwin), the stack map section name is
431 "__llvm_stackmaps". The segment name is "__LLVM_STACKMAPS".
433 For ELF (e.g. on Linux), the stack map section name is
434 ".llvm_stackmaps".  The segment name is "__LLVM_STACKMAPS".
436 Stack Map Usage
437 ===============
439 The stack map support described in this document can be used to
440 precisely determine the location of values at a specific position in
441 the code. LLVM does not maintain any mapping between those values and
442 any higher-level entity. The runtime must be able to interpret the
443 stack map record given only the ID, offset, and the order of the
444 locations, records, and functions, which LLVM preserves.
446 Note that this is quite different from the goal of debug information,
447 which is a best-effort attempt to track the location of named
448 variables at every instruction.
450 An important motivation for this design is to allow a runtime to
451 commandeer a stack frame when execution reaches an instruction address
452 associated with a stack map. The runtime must be able to rebuild a
453 stack frame and resume program execution using the information
454 provided by the stack map. For example, execution may resume in an
455 interpreter or a recompiled version of the same function.
457 This usage restricts LLVM optimization. Clearly, LLVM must not move
458 stores across a stack map. However, loads must also be handled
459 conservatively. If the load may trigger an exception, hoisting it
460 above a stack map could be invalid. For example, the runtime may
461 determine that a load is safe to execute without a type check given
462 the current state of the type system. If the type system changes while
463 some activation of the load's function exists on the stack, the load
464 becomes unsafe. The runtime can prevent subsequent execution of that
465 load by immediately patching any stack map location that lies between
466 the current call site and the load (typically, the runtime would
467 simply patch all stack map locations to invalidate the function). If
468 the compiler had hoisted the load above the stack map, then the
469 program could crash before the runtime could take back control.
471 To enforce these semantics, stackmap and patchpoint intrinsics are
472 considered to potentially read and write all memory. This may limit
473 optimization more than some clients desire. This limitation may be
474 avoided by marking the call site as "readonly". In the future we may
475 also allow meta-data to be added to the intrinsic call to express
476 aliasing, thereby allowing optimizations to hoist certain loads above
477 stack maps.
479 Direct Stack Map Entries
480 ^^^^^^^^^^^^^^^^^^^^^^^^
482 As shown in :ref:`stackmap-section`, a Direct stack map location
483 records the address of frame index. This address is itself the value
484 that the runtime requested. This differs from Indirect locations,
485 which refer to a stack locations from which the requested values must
486 be loaded. Direct locations can communicate the address if an alloca,
487 while Indirect locations handle register spills.
489 For example:
491 .. code-block:: none
493   entry:
494     %a = alloca i64...
495     llvm.experimental.stackmap(i64 <ID>, i32 <shadowBytes>, i64* %a)
497 The runtime can determine this alloca's relative location on the
498 stack immediately after compilation, or at any time thereafter. This
499 differs from Register and Indirect locations, because the runtime can
500 only read the values in those locations when execution reaches the
501 instruction address of the stack map.
503 This functionality requires LLVM to treat entry-block allocas
504 specially when they are directly consumed by an intrinsics. (This is
505 the same requirement imposed by the llvm.gcroot intrinsic.) LLVM
506 transformations must not substitute the alloca with any intervening
507 value. This can be verified by the runtime simply by checking that the
508 stack map's location is a Direct location type.
511 Supported Architectures
512 =======================
514 Support for StackMap generation and the related intrinsics requires 
515 some code for each backend.  Today, only a subset of LLVM's backends 
516 are supported.  The currently supported architectures are X86_64, 
517 PowerPC, and Aarch64.