[PowerPC] Zero-extend the compare operand for ATOMIC_CMP_SWAP
[llvm-core.git] / lib / Target / PowerPC / PPCISelLowering.h
blobb3215a84829eaf4f3c8d5167c65e68d93a6dc1f2
1 //===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that PPC uses to lower LLVM code into a
11 // selection DAG.
13 //===----------------------------------------------------------------------===//
15 #ifndef LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
16 #define LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
18 #include "PPC.h"
19 #include "PPCInstrInfo.h"
20 #include "llvm/CodeGen/CallingConvLower.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineMemOperand.h"
23 #include "llvm/CodeGen/MachineValueType.h"
24 #include "llvm/CodeGen/SelectionDAG.h"
25 #include "llvm/CodeGen/SelectionDAGNodes.h"
26 #include "llvm/CodeGen/TargetLowering.h"
27 #include "llvm/CodeGen/ValueTypes.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/CallingConv.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/InlineAsm.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/IR/Type.h"
34 #include <utility>
36 namespace llvm {
38 namespace PPCISD {
40 // When adding a NEW PPCISD node please add it to the correct position in
41 // the enum. The order of elements in this enum matters!
42 // Values that are added after this entry:
43 // STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE
44 // are considerd memory opcodes and are treated differently than entries
45 // that come before it. For example, ADD or MUL should be placed before
46 // the ISD::FIRST_TARGET_MEMORY_OPCODE while a LOAD or STORE should come
47 // after it.
48 enum NodeType : unsigned {
49 // Start the numbering where the builtin ops and target ops leave off.
50 FIRST_NUMBER = ISD::BUILTIN_OP_END,
52 /// FSEL - Traditional three-operand fsel node.
53 ///
54 FSEL,
56 /// FCFID - The FCFID instruction, taking an f64 operand and producing
57 /// and f64 value containing the FP representation of the integer that
58 /// was temporarily in the f64 operand.
59 FCFID,
61 /// Newer FCFID[US] integer-to-floating-point conversion instructions for
62 /// unsigned integers and single-precision outputs.
63 FCFIDU, FCFIDS, FCFIDUS,
65 /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
66 /// operand, producing an f64 value containing the integer representation
67 /// of that FP value.
68 FCTIDZ, FCTIWZ,
70 /// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for
71 /// unsigned integers with round toward zero.
72 FCTIDUZ, FCTIWUZ,
74 /// VEXTS, ByteWidth - takes an input in VSFRC and produces an output in
75 /// VSFRC that is sign-extended from ByteWidth to a 64-byte integer.
76 VEXTS,
78 /// SExtVElems, takes an input vector of a smaller type and sign
79 /// extends to an output vector of a larger type.
80 SExtVElems,
82 /// Reciprocal estimate instructions (unary FP ops).
83 FRE, FRSQRTE,
85 // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
86 // three v4f32 operands and producing a v4f32 result.
87 VMADDFP, VNMSUBFP,
89 /// VPERM - The PPC VPERM Instruction.
90 ///
91 VPERM,
93 /// XXSPLT - The PPC VSX splat instructions
94 ///
95 XXSPLT,
97 /// VECINSERT - The PPC vector insert instruction
98 ///
99 VECINSERT,
101 /// XXREVERSE - The PPC VSX reverse instruction
103 XXREVERSE,
105 /// VECSHL - The PPC vector shift left instruction
107 VECSHL,
109 /// XXPERMDI - The PPC XXPERMDI instruction
111 XXPERMDI,
113 /// The CMPB instruction (takes two operands of i32 or i64).
114 CMPB,
116 /// Hi/Lo - These represent the high and low 16-bit parts of a global
117 /// address respectively. These nodes have two operands, the first of
118 /// which must be a TargetGlobalAddress, and the second of which must be a
119 /// Constant. Selected naively, these turn into 'lis G+C' and 'li G+C',
120 /// though these are usually folded into other nodes.
121 Hi, Lo,
123 /// The following two target-specific nodes are used for calls through
124 /// function pointers in the 64-bit SVR4 ABI.
126 /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
127 /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
128 /// compute an allocation on the stack.
129 DYNALLOC,
131 /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
132 /// compute an offset from native SP to the address of the most recent
133 /// dynamic alloca.
134 DYNAREAOFFSET,
136 /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
137 /// at function entry, used for PIC code.
138 GlobalBaseReg,
140 /// These nodes represent PPC shifts.
142 /// For scalar types, only the last `n + 1` bits of the shift amounts
143 /// are used, where n is log2(sizeof(element) * 8). See sld/slw, etc.
144 /// for exact behaviors.
146 /// For vector types, only the last n bits are used. See vsld.
147 SRL, SRA, SHL,
149 /// The combination of sra[wd]i and addze used to implemented signed
150 /// integer division by a power of 2. The first operand is the dividend,
151 /// and the second is the constant shift amount (representing the
152 /// divisor).
153 SRA_ADDZE,
155 /// CALL - A direct function call.
156 /// CALL_NOP is a call with the special NOP which follows 64-bit
157 /// SVR4 calls.
158 CALL, CALL_NOP,
160 /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
161 /// MTCTR instruction.
162 MTCTR,
164 /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
165 /// BCTRL instruction.
166 BCTRL,
168 /// CHAIN,FLAG = BCTRL(CHAIN, ADDR, INFLAG) - The combination of a bctrl
169 /// instruction and the TOC reload required on SVR4 PPC64.
170 BCTRL_LOAD_TOC,
172 /// Return with a flag operand, matched by 'blr'
173 RET_FLAG,
175 /// R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction.
176 /// This copies the bits corresponding to the specified CRREG into the
177 /// resultant GPR. Bits corresponding to other CR regs are undefined.
178 MFOCRF,
180 /// Direct move from a VSX register to a GPR
181 MFVSR,
183 /// Direct move from a GPR to a VSX register (algebraic)
184 MTVSRA,
186 /// Direct move from a GPR to a VSX register (zero)
187 MTVSRZ,
189 /// Extract a subvector from signed integer vector and convert to FP.
190 /// It is primarily used to convert a (widened) illegal integer vector
191 /// type to a legal floating point vector type.
192 /// For example v2i32 -> widened to v4i32 -> v2f64
193 SINT_VEC_TO_FP,
195 /// Extract a subvector from unsigned integer vector and convert to FP.
196 /// As with SINT_VEC_TO_FP, used for converting illegal types.
197 UINT_VEC_TO_FP,
199 // FIXME: Remove these once the ANDI glue bug is fixed:
200 /// i1 = ANDIo_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the
201 /// eq or gt bit of CR0 after executing andi. x, 1. This is used to
202 /// implement truncation of i32 or i64 to i1.
203 ANDIo_1_EQ_BIT, ANDIo_1_GT_BIT,
205 // READ_TIME_BASE - A read of the 64-bit time-base register on a 32-bit
206 // target (returns (Lo, Hi)). It takes a chain operand.
207 READ_TIME_BASE,
209 // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
210 EH_SJLJ_SETJMP,
212 // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
213 EH_SJLJ_LONGJMP,
215 /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
216 /// instructions. For lack of better number, we use the opcode number
217 /// encoding for the OPC field to identify the compare. For example, 838
218 /// is VCMPGTSH.
219 VCMP,
221 /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
222 /// altivec VCMP*o instructions. For lack of better number, we use the
223 /// opcode number encoding for the OPC field to identify the compare. For
224 /// example, 838 is VCMPGTSH.
225 VCMPo,
227 /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
228 /// corresponds to the COND_BRANCH pseudo instruction. CRRC is the
229 /// condition register to branch on, OPC is the branch opcode to use (e.g.
230 /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
231 /// an optional input flag argument.
232 COND_BRANCH,
234 /// CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based
235 /// loops.
236 BDNZ, BDZ,
238 /// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding
239 /// towards zero. Used only as part of the long double-to-int
240 /// conversion sequence.
241 FADDRTZ,
243 /// F8RC = MFFS - This moves the FPSCR (not modeled) into the register.
244 MFFS,
246 /// TC_RETURN - A tail call return.
247 /// operand #0 chain
248 /// operand #1 callee (register or absolute)
249 /// operand #2 stack adjustment
250 /// operand #3 optional in flag
251 TC_RETURN,
253 /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
254 CR6SET,
255 CR6UNSET,
257 /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by initial-exec TLS
258 /// on PPC32.
259 PPC32_GOT,
261 /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by general dynamic and
262 /// local dynamic TLS on PPC32.
263 PPC32_PICGOT,
265 /// G8RC = ADDIS_GOT_TPREL_HA %x2, Symbol - Used by the initial-exec
266 /// TLS model, produces an ADDIS8 instruction that adds the GOT
267 /// base to sym\@got\@tprel\@ha.
268 ADDIS_GOT_TPREL_HA,
270 /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
271 /// TLS model, produces a LD instruction with base register G8RReg
272 /// and offset sym\@got\@tprel\@l. This completes the addition that
273 /// finds the offset of "sym" relative to the thread pointer.
274 LD_GOT_TPREL_L,
276 /// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS
277 /// model, produces an ADD instruction that adds the contents of
278 /// G8RReg to the thread pointer. Symbol contains a relocation
279 /// sym\@tls which is to be replaced by the thread pointer and
280 /// identifies to the linker that the instruction is part of a
281 /// TLS sequence.
282 ADD_TLS,
284 /// G8RC = ADDIS_TLSGD_HA %x2, Symbol - For the general-dynamic TLS
285 /// model, produces an ADDIS8 instruction that adds the GOT base
286 /// register to sym\@got\@tlsgd\@ha.
287 ADDIS_TLSGD_HA,
289 /// %x3 = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
290 /// model, produces an ADDI8 instruction that adds G8RReg to
291 /// sym\@got\@tlsgd\@l and stores the result in X3. Hidden by
292 /// ADDIS_TLSGD_L_ADDR until after register assignment.
293 ADDI_TLSGD_L,
295 /// %x3 = GET_TLS_ADDR %x3, Symbol - For the general-dynamic TLS
296 /// model, produces a call to __tls_get_addr(sym\@tlsgd). Hidden by
297 /// ADDIS_TLSGD_L_ADDR until after register assignment.
298 GET_TLS_ADDR,
300 /// G8RC = ADDI_TLSGD_L_ADDR G8RReg, Symbol, Symbol - Op that
301 /// combines ADDI_TLSGD_L and GET_TLS_ADDR until expansion following
302 /// register assignment.
303 ADDI_TLSGD_L_ADDR,
305 /// G8RC = ADDIS_TLSLD_HA %x2, Symbol - For the local-dynamic TLS
306 /// model, produces an ADDIS8 instruction that adds the GOT base
307 /// register to sym\@got\@tlsld\@ha.
308 ADDIS_TLSLD_HA,
310 /// %x3 = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
311 /// model, produces an ADDI8 instruction that adds G8RReg to
312 /// sym\@got\@tlsld\@l and stores the result in X3. Hidden by
313 /// ADDIS_TLSLD_L_ADDR until after register assignment.
314 ADDI_TLSLD_L,
316 /// %x3 = GET_TLSLD_ADDR %x3, Symbol - For the local-dynamic TLS
317 /// model, produces a call to __tls_get_addr(sym\@tlsld). Hidden by
318 /// ADDIS_TLSLD_L_ADDR until after register assignment.
319 GET_TLSLD_ADDR,
321 /// G8RC = ADDI_TLSLD_L_ADDR G8RReg, Symbol, Symbol - Op that
322 /// combines ADDI_TLSLD_L and GET_TLSLD_ADDR until expansion
323 /// following register assignment.
324 ADDI_TLSLD_L_ADDR,
326 /// G8RC = ADDIS_DTPREL_HA %x3, Symbol - For the local-dynamic TLS
327 /// model, produces an ADDIS8 instruction that adds X3 to
328 /// sym\@dtprel\@ha.
329 ADDIS_DTPREL_HA,
331 /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
332 /// model, produces an ADDI8 instruction that adds G8RReg to
333 /// sym\@got\@dtprel\@l.
334 ADDI_DTPREL_L,
336 /// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded
337 /// during instruction selection to optimize a BUILD_VECTOR into
338 /// operations on splats. This is necessary to avoid losing these
339 /// optimizations due to constant folding.
340 VADD_SPLAT,
342 /// CHAIN = SC CHAIN, Imm128 - System call. The 7-bit unsigned
343 /// operand identifies the operating system entry point.
346 /// CHAIN = CLRBHRB CHAIN - Clear branch history rolling buffer.
347 CLRBHRB,
349 /// GPRC, CHAIN = MFBHRBE CHAIN, Entry, Dummy - Move from branch
350 /// history rolling buffer entry.
351 MFBHRBE,
353 /// CHAIN = RFEBB CHAIN, State - Return from event-based branch.
354 RFEBB,
356 /// VSRC, CHAIN = XXSWAPD CHAIN, VSRC - Occurs only for little
357 /// endian. Maps to an xxswapd instruction that corrects an lxvd2x
358 /// or stxvd2x instruction. The chain is necessary because the
359 /// sequence replaces a load and needs to provide the same number
360 /// of outputs.
361 XXSWAPD,
363 /// An SDNode for swaps that are not associated with any loads/stores
364 /// and thereby have no chain.
365 SWAP_NO_CHAIN,
367 /// QVFPERM = This corresponds to the QPX qvfperm instruction.
368 QVFPERM,
370 /// QVGPCI = This corresponds to the QPX qvgpci instruction.
371 QVGPCI,
373 /// QVALIGNI = This corresponds to the QPX qvaligni instruction.
374 QVALIGNI,
376 /// QVESPLATI = This corresponds to the QPX qvesplati instruction.
377 QVESPLATI,
379 /// QBFLT = Access the underlying QPX floating-point boolean
380 /// representation.
381 QBFLT,
383 /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
384 /// byte-swapping store instruction. It byte-swaps the low "Type" bits of
385 /// the GPRC input, then stores it through Ptr. Type can be either i16 or
386 /// i32.
387 STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE,
389 /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
390 /// byte-swapping load instruction. It loads "Type" bits, byte swaps it,
391 /// then puts it in the bottom bits of the GPRC. TYPE can be either i16
392 /// or i32.
393 LBRX,
395 /// STFIWX - The STFIWX instruction. The first operand is an input token
396 /// chain, then an f64 value to store, then an address to store it to.
397 STFIWX,
399 /// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point
400 /// load which sign-extends from a 32-bit integer value into the
401 /// destination 64-bit register.
402 LFIWAX,
404 /// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point
405 /// load which zero-extends from a 32-bit integer value into the
406 /// destination 64-bit register.
407 LFIWZX,
409 /// GPRC, CHAIN = LXSIZX, CHAIN, Ptr, ByteWidth - This is a load of an
410 /// integer smaller than 64 bits into a VSR. The integer is zero-extended.
411 /// This can be used for converting loaded integers to floating point.
412 LXSIZX,
414 /// STXSIX - The STXSI[bh]X instruction. The first operand is an input
415 /// chain, then an f64 value to store, then an address to store it to,
416 /// followed by a byte-width for the store.
417 STXSIX,
419 /// VSRC, CHAIN = LXVD2X_LE CHAIN, Ptr - Occurs only for little endian.
420 /// Maps directly to an lxvd2x instruction that will be followed by
421 /// an xxswapd.
422 LXVD2X,
424 /// CHAIN = STXVD2X CHAIN, VSRC, Ptr - Occurs only for little endian.
425 /// Maps directly to an stxvd2x instruction that will be preceded by
426 /// an xxswapd.
427 STXVD2X,
429 /// QBRC, CHAIN = QVLFSb CHAIN, Ptr
430 /// The 4xf32 load used for v4i1 constants.
431 QVLFSb,
433 /// ATOMIC_CMP_SWAP - the exact same as the target-independent nodes
434 /// except they ensure that the compare input is zero-extended for
435 /// sub-word versions because the atomic loads zero-extend.
436 ATOMIC_CMP_SWAP_8, ATOMIC_CMP_SWAP_16,
438 /// GPRC = TOC_ENTRY GA, TOC
439 /// Loads the entry for GA from the TOC, where the TOC base is given by
440 /// the last operand.
441 TOC_ENTRY
444 } // end namespace PPCISD
446 /// Define some predicates that are used for node matching.
447 namespace PPC {
449 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
450 /// VPKUHUM instruction.
451 bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
452 SelectionDAG &DAG);
454 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
455 /// VPKUWUM instruction.
456 bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
457 SelectionDAG &DAG);
459 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
460 /// VPKUDUM instruction.
461 bool isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
462 SelectionDAG &DAG);
464 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
465 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
466 bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
467 unsigned ShuffleKind, SelectionDAG &DAG);
469 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
470 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
471 bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
472 unsigned ShuffleKind, SelectionDAG &DAG);
474 /// isVMRGEOShuffleMask - Return true if this is a shuffle mask suitable for
475 /// a VMRGEW or VMRGOW instruction
476 bool isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
477 unsigned ShuffleKind, SelectionDAG &DAG);
478 /// isXXSLDWIShuffleMask - Return true if this is a shuffle mask suitable
479 /// for a XXSLDWI instruction.
480 bool isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
481 bool &Swap, bool IsLE);
483 /// isXXBRHShuffleMask - Return true if this is a shuffle mask suitable
484 /// for a XXBRH instruction.
485 bool isXXBRHShuffleMask(ShuffleVectorSDNode *N);
487 /// isXXBRWShuffleMask - Return true if this is a shuffle mask suitable
488 /// for a XXBRW instruction.
489 bool isXXBRWShuffleMask(ShuffleVectorSDNode *N);
491 /// isXXBRDShuffleMask - Return true if this is a shuffle mask suitable
492 /// for a XXBRD instruction.
493 bool isXXBRDShuffleMask(ShuffleVectorSDNode *N);
495 /// isXXBRQShuffleMask - Return true if this is a shuffle mask suitable
496 /// for a XXBRQ instruction.
497 bool isXXBRQShuffleMask(ShuffleVectorSDNode *N);
499 /// isXXPERMDIShuffleMask - Return true if this is a shuffle mask suitable
500 /// for a XXPERMDI instruction.
501 bool isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
502 bool &Swap, bool IsLE);
504 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the
505 /// shift amount, otherwise return -1.
506 int isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
507 SelectionDAG &DAG);
509 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
510 /// specifies a splat of a single element that is suitable for input to
511 /// VSPLTB/VSPLTH/VSPLTW.
512 bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);
514 /// isXXINSERTWMask - Return true if this VECTOR_SHUFFLE can be handled by
515 /// the XXINSERTW instruction introduced in ISA 3.0. This is essentially any
516 /// shuffle of v4f32/v4i32 vectors that just inserts one element from one
517 /// vector into the other. This function will also set a couple of
518 /// output parameters for how much the source vector needs to be shifted and
519 /// what byte number needs to be specified for the instruction to put the
520 /// element in the desired location of the target vector.
521 bool isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
522 unsigned &InsertAtByte, bool &Swap, bool IsLE);
524 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
525 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
526 unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize, SelectionDAG &DAG);
528 /// get_VSPLTI_elt - If this is a build_vector of constants which can be
529 /// formed by using a vspltis[bhw] instruction of the specified element
530 /// size, return the constant being splatted. The ByteSize field indicates
531 /// the number of bytes of each element [124] -> [bhw].
532 SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
534 /// If this is a qvaligni shuffle mask, return the shift
535 /// amount, otherwise return -1.
536 int isQVALIGNIShuffleMask(SDNode *N);
538 } // end namespace PPC
540 class PPCTargetLowering : public TargetLowering {
541 const PPCSubtarget &Subtarget;
543 public:
544 explicit PPCTargetLowering(const PPCTargetMachine &TM,
545 const PPCSubtarget &STI);
547 /// getTargetNodeName() - This method returns the name of a target specific
548 /// DAG node.
549 const char *getTargetNodeName(unsigned Opcode) const override;
551 /// getPreferredVectorAction - The code we generate when vector types are
552 /// legalized by promoting the integer element type is often much worse
553 /// than code we generate if we widen the type for applicable vector types.
554 /// The issue with promoting is that the vector is scalaraized, individual
555 /// elements promoted and then the vector is rebuilt. So say we load a pair
556 /// of v4i8's and shuffle them. This will turn into a mess of 8 extending
557 /// loads, moves back into VSR's (or memory ops if we don't have moves) and
558 /// then the VPERM for the shuffle. All in all a very slow sequence.
559 TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(EVT VT)
560 const override {
561 if (VT.getScalarSizeInBits() % 8 == 0)
562 return TypeWidenVector;
563 return TargetLoweringBase::getPreferredVectorAction(VT);
566 bool useSoftFloat() const override;
568 MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override {
569 return MVT::i32;
572 bool isCheapToSpeculateCttz() const override {
573 return true;
576 bool isCheapToSpeculateCtlz() const override {
577 return true;
580 bool isCtlzFast() const override {
581 return true;
584 bool hasAndNotCompare(SDValue) const override {
585 return true;
588 bool convertSetCCLogicToBitwiseLogic(EVT VT) const override {
589 return VT.isScalarInteger();
592 bool supportSplitCSR(MachineFunction *MF) const override {
593 return
594 MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS &&
595 MF->getFunction().hasFnAttribute(Attribute::NoUnwind);
598 void initializeSplitCSR(MachineBasicBlock *Entry) const override;
600 void insertCopiesSplitCSR(
601 MachineBasicBlock *Entry,
602 const SmallVectorImpl<MachineBasicBlock *> &Exits) const override;
604 /// getSetCCResultType - Return the ISD::SETCC ValueType
605 EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
606 EVT VT) const override;
608 /// Return true if target always beneficiates from combining into FMA for a
609 /// given value type. This must typically return false on targets where FMA
610 /// takes more cycles to execute than FADD.
611 bool enableAggressiveFMAFusion(EVT VT) const override;
613 /// getPreIndexedAddressParts - returns true by value, base pointer and
614 /// offset pointer and addressing mode by reference if the node's address
615 /// can be legally represented as pre-indexed load / store address.
616 bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
617 SDValue &Offset,
618 ISD::MemIndexedMode &AM,
619 SelectionDAG &DAG) const override;
621 /// SelectAddressRegReg - Given the specified addressed, check to see if it
622 /// can be represented as an indexed [r+r] operation. Returns false if it
623 /// can be more efficiently represented with [r+imm].
624 bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
625 SelectionDAG &DAG) const;
627 /// SelectAddressRegImm - Returns true if the address N can be represented
628 /// by a base register plus a signed 16-bit displacement [r+imm], and if it
629 /// is not better represented as reg+reg. If Aligned is true, only accept
630 /// displacements suitable for STD and friends, i.e. multiples of 4.
631 bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
632 SelectionDAG &DAG, unsigned Alignment) const;
634 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
635 /// represented as an indexed [r+r] operation.
636 bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
637 SelectionDAG &DAG) const;
639 Sched::Preference getSchedulingPreference(SDNode *N) const override;
641 /// LowerOperation - Provide custom lowering hooks for some operations.
643 SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
645 /// ReplaceNodeResults - Replace the results of node with an illegal result
646 /// type with new values built out of custom code.
648 void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
649 SelectionDAG &DAG) const override;
651 SDValue expandVSXLoadForLE(SDNode *N, DAGCombinerInfo &DCI) const;
652 SDValue expandVSXStoreForLE(SDNode *N, DAGCombinerInfo &DCI) const;
654 SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
656 SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
657 std::vector<SDNode *> *Created) const override;
659 unsigned getRegisterByName(const char* RegName, EVT VT,
660 SelectionDAG &DAG) const override;
662 void computeKnownBitsForTargetNode(const SDValue Op,
663 KnownBits &Known,
664 const APInt &DemandedElts,
665 const SelectionDAG &DAG,
666 unsigned Depth = 0) const override;
668 unsigned getPrefLoopAlignment(MachineLoop *ML) const override;
670 bool shouldInsertFencesForAtomic(const Instruction *I) const override {
671 return true;
674 Instruction *emitLeadingFence(IRBuilder<> &Builder, Instruction *Inst,
675 AtomicOrdering Ord) const override;
676 Instruction *emitTrailingFence(IRBuilder<> &Builder, Instruction *Inst,
677 AtomicOrdering Ord) const override;
679 MachineBasicBlock *
680 EmitInstrWithCustomInserter(MachineInstr &MI,
681 MachineBasicBlock *MBB) const override;
682 MachineBasicBlock *EmitAtomicBinary(MachineInstr &MI,
683 MachineBasicBlock *MBB,
684 unsigned AtomicSize,
685 unsigned BinOpcode,
686 unsigned CmpOpcode = 0,
687 unsigned CmpPred = 0) const;
688 MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr &MI,
689 MachineBasicBlock *MBB,
690 bool is8bit,
691 unsigned Opcode,
692 unsigned CmpOpcode = 0,
693 unsigned CmpPred = 0) const;
695 MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr &MI,
696 MachineBasicBlock *MBB) const;
698 MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr &MI,
699 MachineBasicBlock *MBB) const;
701 ConstraintType getConstraintType(StringRef Constraint) const override;
703 /// Examine constraint string and operand type and determine a weight value.
704 /// The operand object must already have been set up with the operand type.
705 ConstraintWeight getSingleConstraintMatchWeight(
706 AsmOperandInfo &info, const char *constraint) const override;
708 std::pair<unsigned, const TargetRegisterClass *>
709 getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
710 StringRef Constraint, MVT VT) const override;
712 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
713 /// function arguments in the caller parameter area. This is the actual
714 /// alignment, not its logarithm.
715 unsigned getByValTypeAlignment(Type *Ty,
716 const DataLayout &DL) const override;
718 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
719 /// vector. If it is invalid, don't add anything to Ops.
720 void LowerAsmOperandForConstraint(SDValue Op,
721 std::string &Constraint,
722 std::vector<SDValue> &Ops,
723 SelectionDAG &DAG) const override;
725 unsigned
726 getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
727 if (ConstraintCode == "es")
728 return InlineAsm::Constraint_es;
729 else if (ConstraintCode == "o")
730 return InlineAsm::Constraint_o;
731 else if (ConstraintCode == "Q")
732 return InlineAsm::Constraint_Q;
733 else if (ConstraintCode == "Z")
734 return InlineAsm::Constraint_Z;
735 else if (ConstraintCode == "Zy")
736 return InlineAsm::Constraint_Zy;
737 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
740 /// isLegalAddressingMode - Return true if the addressing mode represented
741 /// by AM is legal for this target, for a load/store of the specified type.
742 bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
743 Type *Ty, unsigned AS,
744 Instruction *I = nullptr) const override;
746 /// isLegalICmpImmediate - Return true if the specified immediate is legal
747 /// icmp immediate, that is the target has icmp instructions which can
748 /// compare a register against the immediate without having to materialize
749 /// the immediate into a register.
750 bool isLegalICmpImmediate(int64_t Imm) const override;
752 /// isLegalAddImmediate - Return true if the specified immediate is legal
753 /// add immediate, that is the target has add instructions which can
754 /// add a register and the immediate without having to materialize
755 /// the immediate into a register.
756 bool isLegalAddImmediate(int64_t Imm) const override;
758 /// isTruncateFree - Return true if it's free to truncate a value of
759 /// type Ty1 to type Ty2. e.g. On PPC it's free to truncate a i64 value in
760 /// register X1 to i32 by referencing its sub-register R1.
761 bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
762 bool isTruncateFree(EVT VT1, EVT VT2) const override;
764 bool isZExtFree(SDValue Val, EVT VT2) const override;
766 bool isFPExtFree(EVT DestVT, EVT SrcVT) const override;
768 /// \brief Returns true if it is beneficial to convert a load of a constant
769 /// to just the constant itself.
770 bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
771 Type *Ty) const override;
773 bool convertSelectOfConstantsToMath(EVT VT) const override {
774 return true;
777 bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;
779 bool getTgtMemIntrinsic(IntrinsicInfo &Info,
780 const CallInst &I,
781 MachineFunction &MF,
782 unsigned Intrinsic) const override;
784 /// getOptimalMemOpType - Returns the target specific optimal type for load
785 /// and store operations as a result of memset, memcpy, and memmove
786 /// lowering. If DstAlign is zero that means it's safe to destination
787 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
788 /// means there isn't a need to check it against alignment requirement,
789 /// probably because the source does not need to be loaded. If 'IsMemset' is
790 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
791 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
792 /// source is constant so it does not need to be loaded.
793 /// It returns EVT::Other if the type should be determined using generic
794 /// target-independent logic.
796 getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
797 bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
798 MachineFunction &MF) const override;
800 /// Is unaligned memory access allowed for the given type, and is it fast
801 /// relative to software emulation.
802 bool allowsMisalignedMemoryAccesses(EVT VT,
803 unsigned AddrSpace,
804 unsigned Align = 1,
805 bool *Fast = nullptr) const override;
807 /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
808 /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
809 /// expanded to FMAs when this method returns true, otherwise fmuladd is
810 /// expanded to fmul + fadd.
811 bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;
813 const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
815 // Should we expand the build vector with shuffles?
816 bool
817 shouldExpandBuildVectorWithShuffles(EVT VT,
818 unsigned DefinedValues) const override;
820 /// createFastISel - This method returns a target-specific FastISel object,
821 /// or null if the target does not support "fast" instruction selection.
822 FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
823 const TargetLibraryInfo *LibInfo) const override;
825 /// \brief Returns true if an argument of type Ty needs to be passed in a
826 /// contiguous block of registers in calling convention CallConv.
827 bool functionArgumentNeedsConsecutiveRegisters(
828 Type *Ty, CallingConv::ID CallConv, bool isVarArg) const override {
829 // We support any array type as "consecutive" block in the parameter
830 // save area. The element type defines the alignment requirement and
831 // whether the argument should go in GPRs, FPRs, or VRs if available.
833 // Note that clang uses this capability both to implement the ELFv2
834 // homogeneous float/vector aggregate ABI, and to avoid having to use
835 // "byval" when passing aggregates that might fully fit in registers.
836 return Ty->isArrayTy();
839 /// If a physical register, this returns the register that receives the
840 /// exception address on entry to an EH pad.
841 unsigned
842 getExceptionPointerRegister(const Constant *PersonalityFn) const override;
844 /// If a physical register, this returns the register that receives the
845 /// exception typeid on entry to a landing pad.
846 unsigned
847 getExceptionSelectorRegister(const Constant *PersonalityFn) const override;
849 /// Override to support customized stack guard loading.
850 bool useLoadStackGuardNode() const override;
851 void insertSSPDeclarations(Module &M) const override;
853 bool isFPImmLegal(const APFloat &Imm, EVT VT) const override;
855 unsigned getJumpTableEncoding() const override;
856 bool isJumpTableRelative() const override;
857 SDValue getPICJumpTableRelocBase(SDValue Table,
858 SelectionDAG &DAG) const override;
859 const MCExpr *getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
860 unsigned JTI,
861 MCContext &Ctx) const override;
863 private:
864 struct ReuseLoadInfo {
865 SDValue Ptr;
866 SDValue Chain;
867 SDValue ResChain;
868 MachinePointerInfo MPI;
869 bool IsDereferenceable = false;
870 bool IsInvariant = false;
871 unsigned Alignment = 0;
872 AAMDNodes AAInfo;
873 const MDNode *Ranges = nullptr;
875 ReuseLoadInfo() = default;
877 MachineMemOperand::Flags MMOFlags() const {
878 MachineMemOperand::Flags F = MachineMemOperand::MONone;
879 if (IsDereferenceable)
880 F |= MachineMemOperand::MODereferenceable;
881 if (IsInvariant)
882 F |= MachineMemOperand::MOInvariant;
883 return F;
887 bool canReuseLoadAddress(SDValue Op, EVT MemVT, ReuseLoadInfo &RLI,
888 SelectionDAG &DAG,
889 ISD::LoadExtType ET = ISD::NON_EXTLOAD) const;
890 void spliceIntoChain(SDValue ResChain, SDValue NewResChain,
891 SelectionDAG &DAG) const;
893 void LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
894 SelectionDAG &DAG, const SDLoc &dl) const;
895 SDValue LowerFP_TO_INTDirectMove(SDValue Op, SelectionDAG &DAG,
896 const SDLoc &dl) const;
898 bool directMoveIsProfitable(const SDValue &Op) const;
899 SDValue LowerINT_TO_FPDirectMove(SDValue Op, SelectionDAG &DAG,
900 const SDLoc &dl) const;
902 SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
903 SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
905 bool
906 IsEligibleForTailCallOptimization(SDValue Callee,
907 CallingConv::ID CalleeCC,
908 bool isVarArg,
909 const SmallVectorImpl<ISD::InputArg> &Ins,
910 SelectionDAG& DAG) const;
912 bool
913 IsEligibleForTailCallOptimization_64SVR4(
914 SDValue Callee,
915 CallingConv::ID CalleeCC,
916 ImmutableCallSite CS,
917 bool isVarArg,
918 const SmallVectorImpl<ISD::OutputArg> &Outs,
919 const SmallVectorImpl<ISD::InputArg> &Ins,
920 SelectionDAG& DAG) const;
922 SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG &DAG, int SPDiff,
923 SDValue Chain, SDValue &LROpOut,
924 SDValue &FPOpOut,
925 const SDLoc &dl) const;
927 SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
928 SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
929 SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
930 SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
931 SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
932 SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
933 SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
934 SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
935 SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
936 SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
937 SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
938 SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
939 SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
940 SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const;
941 SDValue LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG) const;
942 SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
943 SDValue LowerEH_DWARF_CFA(SDValue Op, SelectionDAG &DAG) const;
944 SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const;
945 SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const;
946 SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
947 SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
948 SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
949 const SDLoc &dl) const;
950 SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
951 SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
952 SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const;
953 SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const;
954 SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const;
955 SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
956 SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
957 SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
958 SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
959 SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
960 SDValue LowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG) const;
961 SDValue LowerREM(SDValue Op, SelectionDAG &DAG) const;
962 SDValue LowerBSWAP(SDValue Op, SelectionDAG &DAG) const;
963 SDValue LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
964 SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
965 SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const;
966 SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
968 SDValue LowerVectorLoad(SDValue Op, SelectionDAG &DAG) const;
969 SDValue LowerVectorStore(SDValue Op, SelectionDAG &DAG) const;
971 SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
972 CallingConv::ID CallConv, bool isVarArg,
973 const SmallVectorImpl<ISD::InputArg> &Ins,
974 const SDLoc &dl, SelectionDAG &DAG,
975 SmallVectorImpl<SDValue> &InVals) const;
976 SDValue FinishCall(CallingConv::ID CallConv, const SDLoc &dl,
977 bool isTailCall, bool isVarArg, bool isPatchPoint,
978 bool hasNest, SelectionDAG &DAG,
979 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
980 SDValue InFlag, SDValue Chain, SDValue CallSeqStart,
981 SDValue &Callee, int SPDiff, unsigned NumBytes,
982 const SmallVectorImpl<ISD::InputArg> &Ins,
983 SmallVectorImpl<SDValue> &InVals,
984 ImmutableCallSite CS) const;
986 SDValue
987 LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
988 const SmallVectorImpl<ISD::InputArg> &Ins,
989 const SDLoc &dl, SelectionDAG &DAG,
990 SmallVectorImpl<SDValue> &InVals) const override;
992 SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI,
993 SmallVectorImpl<SDValue> &InVals) const override;
995 bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
996 bool isVarArg,
997 const SmallVectorImpl<ISD::OutputArg> &Outs,
998 LLVMContext &Context) const override;
1000 SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1001 const SmallVectorImpl<ISD::OutputArg> &Outs,
1002 const SmallVectorImpl<SDValue> &OutVals,
1003 const SDLoc &dl, SelectionDAG &DAG) const override;
1005 SDValue extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
1006 SelectionDAG &DAG, SDValue ArgVal,
1007 const SDLoc &dl) const;
1009 SDValue LowerFormalArguments_Darwin(
1010 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1011 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1012 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
1013 SDValue LowerFormalArguments_64SVR4(
1014 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1015 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1016 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
1017 SDValue LowerFormalArguments_32SVR4(
1018 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1019 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1020 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
1022 SDValue createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
1023 SDValue CallSeqStart,
1024 ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1025 const SDLoc &dl) const;
1027 SDValue LowerCall_Darwin(SDValue Chain, SDValue Callee,
1028 CallingConv::ID CallConv, bool isVarArg,
1029 bool isTailCall, bool isPatchPoint,
1030 const SmallVectorImpl<ISD::OutputArg> &Outs,
1031 const SmallVectorImpl<SDValue> &OutVals,
1032 const SmallVectorImpl<ISD::InputArg> &Ins,
1033 const SDLoc &dl, SelectionDAG &DAG,
1034 SmallVectorImpl<SDValue> &InVals,
1035 ImmutableCallSite CS) const;
1036 SDValue LowerCall_64SVR4(SDValue Chain, SDValue Callee,
1037 CallingConv::ID CallConv, bool isVarArg,
1038 bool isTailCall, bool isPatchPoint,
1039 const SmallVectorImpl<ISD::OutputArg> &Outs,
1040 const SmallVectorImpl<SDValue> &OutVals,
1041 const SmallVectorImpl<ISD::InputArg> &Ins,
1042 const SDLoc &dl, SelectionDAG &DAG,
1043 SmallVectorImpl<SDValue> &InVals,
1044 ImmutableCallSite CS) const;
1045 SDValue LowerCall_32SVR4(SDValue Chain, SDValue Callee,
1046 CallingConv::ID CallConv, bool isVarArg,
1047 bool isTailCall, bool isPatchPoint,
1048 const SmallVectorImpl<ISD::OutputArg> &Outs,
1049 const SmallVectorImpl<SDValue> &OutVals,
1050 const SmallVectorImpl<ISD::InputArg> &Ins,
1051 const SDLoc &dl, SelectionDAG &DAG,
1052 SmallVectorImpl<SDValue> &InVals,
1053 ImmutableCallSite CS) const;
1055 SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
1056 SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
1058 SDValue DAGCombineExtBoolTrunc(SDNode *N, DAGCombinerInfo &DCI) const;
1059 SDValue DAGCombineBuildVector(SDNode *N, DAGCombinerInfo &DCI) const;
1060 SDValue DAGCombineTruncBoolExt(SDNode *N, DAGCombinerInfo &DCI) const;
1061 SDValue combineFPToIntToFP(SDNode *N, DAGCombinerInfo &DCI) const;
1062 SDValue combineSHL(SDNode *N, DAGCombinerInfo &DCI) const;
1063 SDValue combineSRA(SDNode *N, DAGCombinerInfo &DCI) const;
1064 SDValue combineSRL(SDNode *N, DAGCombinerInfo &DCI) const;
1066 /// ConvertSETCCToSubtract - looks at SETCC that compares ints. It replaces
1067 /// SETCC with integer subtraction when (1) there is a legal way of doing it
1068 /// (2) keeping the result of comparison in GPR has performance benefit.
1069 SDValue ConvertSETCCToSubtract(SDNode *N, DAGCombinerInfo &DCI) const;
1071 SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
1072 int &RefinementSteps, bool &UseOneConstNR,
1073 bool Reciprocal) const override;
1074 SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
1075 int &RefinementSteps) const override;
1076 unsigned combineRepeatedFPDivisors() const override;
1078 CCAssignFn *useFastISelCCs(unsigned Flag) const;
1080 SDValue
1081 combineElementTruncationToVectorTruncation(SDNode *N,
1082 DAGCombinerInfo &DCI) const;
1084 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be
1085 /// handled by the VINSERTH instruction introduced in ISA 3.0. This is
1086 /// essentially any shuffle of v8i16 vectors that just inserts one element
1087 /// from one vector into the other.
1088 SDValue lowerToVINSERTH(ShuffleVectorSDNode *N, SelectionDAG &DAG) const;
1090 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be
1091 /// handled by the VINSERTB instruction introduced in ISA 3.0. This is
1092 /// essentially v16i8 vector version of VINSERTH.
1093 SDValue lowerToVINSERTB(ShuffleVectorSDNode *N, SelectionDAG &DAG) const;
1095 // Return whether the call instruction can potentially be optimized to a
1096 // tail call. This will cause the optimizers to attempt to move, or
1097 // duplicate return instructions to help enable tail call optimizations.
1098 bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
1099 }; // end class PPCTargetLowering
1101 namespace PPC {
1103 FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
1104 const TargetLibraryInfo *LibInfo);
1106 } // end namespace PPC
1108 bool CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
1109 CCValAssign::LocInfo &LocInfo,
1110 ISD::ArgFlagsTy &ArgFlags,
1111 CCState &State);
1113 bool CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
1114 MVT &LocVT,
1115 CCValAssign::LocInfo &LocInfo,
1116 ISD::ArgFlagsTy &ArgFlags,
1117 CCState &State);
1119 bool
1120 CC_PPC32_SVR4_Custom_SkipLastArgRegsPPCF128(unsigned &ValNo, MVT &ValVT,
1121 MVT &LocVT,
1122 CCValAssign::LocInfo &LocInfo,
1123 ISD::ArgFlagsTy &ArgFlags,
1124 CCState &State);
1126 bool CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
1127 MVT &LocVT,
1128 CCValAssign::LocInfo &LocInfo,
1129 ISD::ArgFlagsTy &ArgFlags,
1130 CCState &State);
1132 bool isIntS16Immediate(SDNode *N, int16_t &Imm);
1133 bool isIntS16Immediate(SDValue Op, int16_t &Imm);
1135 } // end namespace llvm
1137 #endif // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H