1 //===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 #include "PPCTargetTransformInfo.h"
11 #include "llvm/Analysis/TargetTransformInfo.h"
12 #include "llvm/CodeGen/BasicTTIImpl.h"
13 #include "llvm/CodeGen/CostTable.h"
14 #include "llvm/CodeGen/TargetLowering.h"
15 #include "llvm/Support/CommandLine.h"
16 #include "llvm/Support/Debug.h"
19 #define DEBUG_TYPE "ppctti"
21 static cl::opt
<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting",
22 cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden
);
24 // This is currently only used for the data prefetch pass which is only enabled
25 // for BG/Q by default.
26 static cl::opt
<unsigned>
27 CacheLineSize("ppc-loop-prefetch-cache-line", cl::Hidden
, cl::init(64),
28 cl::desc("The loop prefetch cache line size"));
30 //===----------------------------------------------------------------------===//
34 //===----------------------------------------------------------------------===//
36 TargetTransformInfo::PopcntSupportKind
37 PPCTTIImpl::getPopcntSupport(unsigned TyWidth
) {
38 assert(isPowerOf2_32(TyWidth
) && "Ty width must be power of 2");
39 if (ST
->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable
&& TyWidth
<= 64)
40 return ST
->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow
?
41 TTI::PSK_SlowHardware
: TTI::PSK_FastHardware
;
42 return TTI::PSK_Software
;
45 int PPCTTIImpl::getIntImmCost(const APInt
&Imm
, Type
*Ty
) {
46 if (DisablePPCConstHoist
)
47 return BaseT::getIntImmCost(Imm
, Ty
);
49 assert(Ty
->isIntegerTy());
51 unsigned BitSize
= Ty
->getPrimitiveSizeInBits();
58 if (Imm
.getBitWidth() <= 64) {
59 if (isInt
<16>(Imm
.getSExtValue()))
60 return TTI::TCC_Basic
;
62 if (isInt
<32>(Imm
.getSExtValue())) {
63 // A constant that can be materialized using lis.
64 if ((Imm
.getZExtValue() & 0xFFFF) == 0)
65 return TTI::TCC_Basic
;
67 return 2 * TTI::TCC_Basic
;
71 return 4 * TTI::TCC_Basic
;
74 int PPCTTIImpl::getIntImmCost(Intrinsic::ID IID
, unsigned Idx
, const APInt
&Imm
,
76 if (DisablePPCConstHoist
)
77 return BaseT::getIntImmCost(IID
, Idx
, Imm
, Ty
);
79 assert(Ty
->isIntegerTy());
81 unsigned BitSize
= Ty
->getPrimitiveSizeInBits();
88 case Intrinsic::sadd_with_overflow
:
89 case Intrinsic::uadd_with_overflow
:
90 case Intrinsic::ssub_with_overflow
:
91 case Intrinsic::usub_with_overflow
:
92 if ((Idx
== 1) && Imm
.getBitWidth() <= 64 && isInt
<16>(Imm
.getSExtValue()))
95 case Intrinsic::experimental_stackmap
:
96 if ((Idx
< 2) || (Imm
.getBitWidth() <= 64 && isInt
<64>(Imm
.getSExtValue())))
99 case Intrinsic::experimental_patchpoint_void
:
100 case Intrinsic::experimental_patchpoint_i64
:
101 if ((Idx
< 4) || (Imm
.getBitWidth() <= 64 && isInt
<64>(Imm
.getSExtValue())))
102 return TTI::TCC_Free
;
105 return PPCTTIImpl::getIntImmCost(Imm
, Ty
);
108 int PPCTTIImpl::getIntImmCost(unsigned Opcode
, unsigned Idx
, const APInt
&Imm
,
110 if (DisablePPCConstHoist
)
111 return BaseT::getIntImmCost(Opcode
, Idx
, Imm
, Ty
);
113 assert(Ty
->isIntegerTy());
115 unsigned BitSize
= Ty
->getPrimitiveSizeInBits();
119 unsigned ImmIdx
= ~0U;
120 bool ShiftedFree
= false, RunFree
= false, UnsignedFree
= false,
124 return TTI::TCC_Free
;
125 case Instruction::GetElementPtr
:
126 // Always hoist the base address of a GetElementPtr. This prevents the
127 // creation of new constants for every base constant that gets constant
128 // folded with the offset.
130 return 2 * TTI::TCC_Basic
;
131 return TTI::TCC_Free
;
132 case Instruction::And
:
133 RunFree
= true; // (for the rotate-and-mask instructions)
135 case Instruction::Add
:
136 case Instruction::Or
:
137 case Instruction::Xor
:
140 case Instruction::Sub
:
141 case Instruction::Mul
:
142 case Instruction::Shl
:
143 case Instruction::LShr
:
144 case Instruction::AShr
:
147 case Instruction::ICmp
:
150 // Zero comparisons can use record-form instructions.
152 case Instruction::Select
:
155 case Instruction::PHI
:
156 case Instruction::Call
:
157 case Instruction::Ret
:
158 case Instruction::Load
:
159 case Instruction::Store
:
163 if (ZeroFree
&& Imm
== 0)
164 return TTI::TCC_Free
;
166 if (Idx
== ImmIdx
&& Imm
.getBitWidth() <= 64) {
167 if (isInt
<16>(Imm
.getSExtValue()))
168 return TTI::TCC_Free
;
171 if (Imm
.getBitWidth() <= 32 &&
172 (isShiftedMask_32(Imm
.getZExtValue()) ||
173 isShiftedMask_32(~Imm
.getZExtValue())))
174 return TTI::TCC_Free
;
177 (isShiftedMask_64(Imm
.getZExtValue()) ||
178 isShiftedMask_64(~Imm
.getZExtValue())))
179 return TTI::TCC_Free
;
182 if (UnsignedFree
&& isUInt
<16>(Imm
.getZExtValue()))
183 return TTI::TCC_Free
;
185 if (ShiftedFree
&& (Imm
.getZExtValue() & 0xFFFF) == 0)
186 return TTI::TCC_Free
;
189 return PPCTTIImpl::getIntImmCost(Imm
, Ty
);
192 unsigned PPCTTIImpl::getUserCost(const User
*U
,
193 ArrayRef
<const Value
*> Operands
) {
194 if (U
->getType()->isVectorTy()) {
195 // Instructions that need to be split should cost more.
196 std::pair
<int, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, U
->getType());
197 return LT
.first
* BaseT::getUserCost(U
, Operands
);
200 return BaseT::getUserCost(U
, Operands
);
203 void PPCTTIImpl::getUnrollingPreferences(Loop
*L
, ScalarEvolution
&SE
,
204 TTI::UnrollingPreferences
&UP
) {
205 if (ST
->getDarwinDirective() == PPC::DIR_A2
) {
206 // The A2 is in-order with a deep pipeline, and concatenation unrolling
207 // helps expose latency-hiding opportunities to the instruction scheduler.
208 UP
.Partial
= UP
.Runtime
= true;
210 // We unroll a lot on the A2 (hundreds of instructions), and the benefits
211 // often outweigh the cost of a division to compute the trip count.
212 UP
.AllowExpensiveTripCount
= true;
215 BaseT::getUnrollingPreferences(L
, SE
, UP
);
218 bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions
) {
219 // On the A2, always unroll aggressively. For QPX unaligned loads, we depend
220 // on combining the loads generated for consecutive accesses, and failure to
221 // do so is particularly expensive. This makes it much more likely (compared
222 // to only using concatenation unrolling).
223 if (ST
->getDarwinDirective() == PPC::DIR_A2
)
226 return LoopHasReductions
;
229 const PPCTTIImpl::TTI::MemCmpExpansionOptions
*
230 PPCTTIImpl::enableMemCmpExpansion(bool IsZeroCmp
) const {
231 static const auto Options
= []() {
232 TTI::MemCmpExpansionOptions Options
;
233 Options
.LoadSizes
.push_back(8);
234 Options
.LoadSizes
.push_back(4);
235 Options
.LoadSizes
.push_back(2);
236 Options
.LoadSizes
.push_back(1);
242 bool PPCTTIImpl::enableInterleavedAccessVectorization() {
246 unsigned PPCTTIImpl::getNumberOfRegisters(bool Vector
) {
247 if (Vector
&& !ST
->hasAltivec() && !ST
->hasQPX())
249 return ST
->hasVSX() ? 64 : 32;
252 unsigned PPCTTIImpl::getRegisterBitWidth(bool Vector
) const {
254 if (ST
->hasQPX()) return 256;
255 if (ST
->hasAltivec()) return 128;
265 unsigned PPCTTIImpl::getCacheLineSize() {
266 // Check first if the user specified a custom line size.
267 if (CacheLineSize
.getNumOccurrences() > 0)
268 return CacheLineSize
;
270 // On P7, P8 or P9 we have a cache line size of 128.
271 unsigned Directive
= ST
->getDarwinDirective();
272 if (Directive
== PPC::DIR_PWR7
|| Directive
== PPC::DIR_PWR8
||
273 Directive
== PPC::DIR_PWR9
)
276 // On other processors return a default of 64 bytes.
280 unsigned PPCTTIImpl::getPrefetchDistance() {
281 // This seems like a reasonable default for the BG/Q (this pass is enabled, by
282 // default, only on the BG/Q).
286 unsigned PPCTTIImpl::getMaxInterleaveFactor(unsigned VF
) {
287 unsigned Directive
= ST
->getDarwinDirective();
288 // The 440 has no SIMD support, but floating-point instructions
289 // have a 5-cycle latency, so unroll by 5x for latency hiding.
290 if (Directive
== PPC::DIR_440
)
293 // The A2 has no SIMD support, but floating-point instructions
294 // have a 6-cycle latency, so unroll by 6x for latency hiding.
295 if (Directive
== PPC::DIR_A2
)
298 // FIXME: For lack of any better information, do no harm...
299 if (Directive
== PPC::DIR_E500mc
|| Directive
== PPC::DIR_E5500
)
302 // For P7 and P8, floating-point instructions have a 6-cycle latency and
303 // there are two execution units, so unroll by 12x for latency hiding.
304 // FIXME: the same for P9 as previous gen until POWER9 scheduling is ready
305 if (Directive
== PPC::DIR_PWR7
|| Directive
== PPC::DIR_PWR8
||
306 Directive
== PPC::DIR_PWR9
)
309 // For most things, modern systems have two execution units (and
310 // out-of-order execution).
314 int PPCTTIImpl::getArithmeticInstrCost(
315 unsigned Opcode
, Type
*Ty
, TTI::OperandValueKind Op1Info
,
316 TTI::OperandValueKind Op2Info
, TTI::OperandValueProperties Opd1PropInfo
,
317 TTI::OperandValueProperties Opd2PropInfo
, ArrayRef
<const Value
*> Args
) {
318 assert(TLI
->InstructionOpcodeToISD(Opcode
) && "Invalid opcode");
320 // Fallback to the default implementation.
321 return BaseT::getArithmeticInstrCost(Opcode
, Ty
, Op1Info
, Op2Info
,
322 Opd1PropInfo
, Opd2PropInfo
);
325 int PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind
, Type
*Tp
, int Index
,
327 // Legalize the type.
328 std::pair
<int, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, Tp
);
330 // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations
331 // (at least in the sense that there need only be one non-loop-invariant
332 // instruction). We need one such shuffle instruction for each actual
333 // register (this is not true for arbitrary shuffles, but is true for the
334 // structured types of shuffles covered by TTI::ShuffleKind).
338 int PPCTTIImpl::getCastInstrCost(unsigned Opcode
, Type
*Dst
, Type
*Src
,
339 const Instruction
*I
) {
340 assert(TLI
->InstructionOpcodeToISD(Opcode
) && "Invalid opcode");
342 return BaseT::getCastInstrCost(Opcode
, Dst
, Src
);
345 int PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode
, Type
*ValTy
, Type
*CondTy
,
346 const Instruction
*I
) {
347 return BaseT::getCmpSelInstrCost(Opcode
, ValTy
, CondTy
, I
);
350 int PPCTTIImpl::getVectorInstrCost(unsigned Opcode
, Type
*Val
, unsigned Index
) {
351 assert(Val
->isVectorTy() && "This must be a vector type");
353 int ISD
= TLI
->InstructionOpcodeToISD(Opcode
);
354 assert(ISD
&& "Invalid opcode");
356 if (ST
->hasVSX() && Val
->getScalarType()->isDoubleTy()) {
357 // Double-precision scalars are already located in index #0.
361 return BaseT::getVectorInstrCost(Opcode
, Val
, Index
);
362 } else if (ST
->hasQPX() && Val
->getScalarType()->isFloatingPointTy()) {
363 // Floating point scalars are already located in index #0.
367 return BaseT::getVectorInstrCost(Opcode
, Val
, Index
);
370 // Estimated cost of a load-hit-store delay. This was obtained
371 // experimentally as a minimum needed to prevent unprofitable
372 // vectorization for the paq8p benchmark. It may need to be
373 // raised further if other unprofitable cases remain.
374 unsigned LHSPenalty
= 2;
375 if (ISD
== ISD::INSERT_VECTOR_ELT
)
378 // Vector element insert/extract with Altivec is very expensive,
379 // because they require store and reload with the attendant
380 // processor stall for load-hit-store. Until VSX is available,
381 // these need to be estimated as very costly.
382 if (ISD
== ISD::EXTRACT_VECTOR_ELT
||
383 ISD
== ISD::INSERT_VECTOR_ELT
)
384 return LHSPenalty
+ BaseT::getVectorInstrCost(Opcode
, Val
, Index
);
386 return BaseT::getVectorInstrCost(Opcode
, Val
, Index
);
389 int PPCTTIImpl::getMemoryOpCost(unsigned Opcode
, Type
*Src
, unsigned Alignment
,
390 unsigned AddressSpace
, const Instruction
*I
) {
391 // Legalize the type.
392 std::pair
<int, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, Src
);
393 assert((Opcode
== Instruction::Load
|| Opcode
== Instruction::Store
) &&
396 int Cost
= BaseT::getMemoryOpCost(Opcode
, Src
, Alignment
, AddressSpace
);
398 bool IsAltivecType
= ST
->hasAltivec() &&
399 (LT
.second
== MVT::v16i8
|| LT
.second
== MVT::v8i16
||
400 LT
.second
== MVT::v4i32
|| LT
.second
== MVT::v4f32
);
401 bool IsVSXType
= ST
->hasVSX() &&
402 (LT
.second
== MVT::v2f64
|| LT
.second
== MVT::v2i64
);
403 bool IsQPXType
= ST
->hasQPX() &&
404 (LT
.second
== MVT::v4f64
|| LT
.second
== MVT::v4f32
);
406 // VSX has 32b/64b load instructions. Legalization can handle loading of
407 // 32b/64b to VSR correctly and cheaply. But BaseT::getMemoryOpCost and
408 // PPCTargetLowering can't compute the cost appropriately. So here we
409 // explicitly check this case.
410 unsigned MemBytes
= Src
->getPrimitiveSizeInBits();
411 if (Opcode
== Instruction::Load
&& ST
->hasVSX() && IsAltivecType
&&
412 (MemBytes
== 64 || (ST
->hasP8Vector() && MemBytes
== 32)))
415 // Aligned loads and stores are easy.
416 unsigned SrcBytes
= LT
.second
.getStoreSize();
417 if (!SrcBytes
|| !Alignment
|| Alignment
>= SrcBytes
)
420 // If we can use the permutation-based load sequence, then this is also
421 // relatively cheap (not counting loop-invariant instructions): one load plus
422 // one permute (the last load in a series has extra cost, but we're
423 // neglecting that here). Note that on the P7, we could do unaligned loads
424 // for Altivec types using the VSX instructions, but that's more expensive
425 // than using the permutation-based load sequence. On the P8, that's no
427 if (Opcode
== Instruction::Load
&&
428 ((!ST
->hasP8Vector() && IsAltivecType
) || IsQPXType
) &&
429 Alignment
>= LT
.second
.getScalarType().getStoreSize())
430 return Cost
+ LT
.first
; // Add the cost of the permutations.
432 // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the
433 // P7, unaligned vector loads are more expensive than the permutation-based
434 // load sequence, so that might be used instead, but regardless, the net cost
435 // is about the same (not counting loop-invariant instructions).
436 if (IsVSXType
|| (ST
->hasVSX() && IsAltivecType
))
439 // Newer PPC supports unaligned memory access.
440 if (TLI
->allowsMisalignedMemoryAccesses(LT
.second
, 0))
443 // PPC in general does not support unaligned loads and stores. They'll need
444 // to be decomposed based on the alignment factor.
446 // Add the cost of each scalar load or store.
447 Cost
+= LT
.first
*(SrcBytes
/Alignment
-1);
449 // For a vector type, there is also scalarization overhead (only for
450 // stores, loads are expanded using the vector-load + permutation sequence,
451 // which is much less expensive).
452 if (Src
->isVectorTy() && Opcode
== Instruction::Store
)
453 for (int i
= 0, e
= Src
->getVectorNumElements(); i
< e
; ++i
)
454 Cost
+= getVectorInstrCost(Instruction::ExtractElement
, Src
, i
);
459 int PPCTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode
, Type
*VecTy
,
461 ArrayRef
<unsigned> Indices
,
463 unsigned AddressSpace
) {
464 assert(isa
<VectorType
>(VecTy
) &&
465 "Expect a vector type for interleaved memory op");
467 // Legalize the type.
468 std::pair
<int, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, VecTy
);
470 // Firstly, the cost of load/store operation.
471 int Cost
= getMemoryOpCost(Opcode
, VecTy
, Alignment
, AddressSpace
);
473 // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations
474 // (at least in the sense that there need only be one non-loop-invariant
475 // instruction). For each result vector, we need one shuffle per incoming
476 // vector (except that the first shuffle can take two incoming vectors
477 // because it does not need to take itself).
478 Cost
+= Factor
*(LT
.first
-1);