[PowerPC] Zero-extend the compare operand for ATOMIC_CMP_SWAP
[llvm-core.git] / lib / Target / PowerPC / PPCTargetTransformInfo.cpp
blobaa4073f7ea025b9818fff0bf0200d4122e432948
1 //===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
10 #include "PPCTargetTransformInfo.h"
11 #include "llvm/Analysis/TargetTransformInfo.h"
12 #include "llvm/CodeGen/BasicTTIImpl.h"
13 #include "llvm/CodeGen/CostTable.h"
14 #include "llvm/CodeGen/TargetLowering.h"
15 #include "llvm/Support/CommandLine.h"
16 #include "llvm/Support/Debug.h"
17 using namespace llvm;
19 #define DEBUG_TYPE "ppctti"
21 static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting",
22 cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden);
24 // This is currently only used for the data prefetch pass which is only enabled
25 // for BG/Q by default.
26 static cl::opt<unsigned>
27 CacheLineSize("ppc-loop-prefetch-cache-line", cl::Hidden, cl::init(64),
28 cl::desc("The loop prefetch cache line size"));
30 //===----------------------------------------------------------------------===//
32 // PPC cost model.
34 //===----------------------------------------------------------------------===//
36 TargetTransformInfo::PopcntSupportKind
37 PPCTTIImpl::getPopcntSupport(unsigned TyWidth) {
38 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
39 if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64)
40 return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ?
41 TTI::PSK_SlowHardware : TTI::PSK_FastHardware;
42 return TTI::PSK_Software;
45 int PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
46 if (DisablePPCConstHoist)
47 return BaseT::getIntImmCost(Imm, Ty);
49 assert(Ty->isIntegerTy());
51 unsigned BitSize = Ty->getPrimitiveSizeInBits();
52 if (BitSize == 0)
53 return ~0U;
55 if (Imm == 0)
56 return TTI::TCC_Free;
58 if (Imm.getBitWidth() <= 64) {
59 if (isInt<16>(Imm.getSExtValue()))
60 return TTI::TCC_Basic;
62 if (isInt<32>(Imm.getSExtValue())) {
63 // A constant that can be materialized using lis.
64 if ((Imm.getZExtValue() & 0xFFFF) == 0)
65 return TTI::TCC_Basic;
67 return 2 * TTI::TCC_Basic;
71 return 4 * TTI::TCC_Basic;
74 int PPCTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
75 Type *Ty) {
76 if (DisablePPCConstHoist)
77 return BaseT::getIntImmCost(IID, Idx, Imm, Ty);
79 assert(Ty->isIntegerTy());
81 unsigned BitSize = Ty->getPrimitiveSizeInBits();
82 if (BitSize == 0)
83 return ~0U;
85 switch (IID) {
86 default:
87 return TTI::TCC_Free;
88 case Intrinsic::sadd_with_overflow:
89 case Intrinsic::uadd_with_overflow:
90 case Intrinsic::ssub_with_overflow:
91 case Intrinsic::usub_with_overflow:
92 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue()))
93 return TTI::TCC_Free;
94 break;
95 case Intrinsic::experimental_stackmap:
96 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
97 return TTI::TCC_Free;
98 break;
99 case Intrinsic::experimental_patchpoint_void:
100 case Intrinsic::experimental_patchpoint_i64:
101 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
102 return TTI::TCC_Free;
103 break;
105 return PPCTTIImpl::getIntImmCost(Imm, Ty);
108 int PPCTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
109 Type *Ty) {
110 if (DisablePPCConstHoist)
111 return BaseT::getIntImmCost(Opcode, Idx, Imm, Ty);
113 assert(Ty->isIntegerTy());
115 unsigned BitSize = Ty->getPrimitiveSizeInBits();
116 if (BitSize == 0)
117 return ~0U;
119 unsigned ImmIdx = ~0U;
120 bool ShiftedFree = false, RunFree = false, UnsignedFree = false,
121 ZeroFree = false;
122 switch (Opcode) {
123 default:
124 return TTI::TCC_Free;
125 case Instruction::GetElementPtr:
126 // Always hoist the base address of a GetElementPtr. This prevents the
127 // creation of new constants for every base constant that gets constant
128 // folded with the offset.
129 if (Idx == 0)
130 return 2 * TTI::TCC_Basic;
131 return TTI::TCC_Free;
132 case Instruction::And:
133 RunFree = true; // (for the rotate-and-mask instructions)
134 LLVM_FALLTHROUGH;
135 case Instruction::Add:
136 case Instruction::Or:
137 case Instruction::Xor:
138 ShiftedFree = true;
139 LLVM_FALLTHROUGH;
140 case Instruction::Sub:
141 case Instruction::Mul:
142 case Instruction::Shl:
143 case Instruction::LShr:
144 case Instruction::AShr:
145 ImmIdx = 1;
146 break;
147 case Instruction::ICmp:
148 UnsignedFree = true;
149 ImmIdx = 1;
150 // Zero comparisons can use record-form instructions.
151 LLVM_FALLTHROUGH;
152 case Instruction::Select:
153 ZeroFree = true;
154 break;
155 case Instruction::PHI:
156 case Instruction::Call:
157 case Instruction::Ret:
158 case Instruction::Load:
159 case Instruction::Store:
160 break;
163 if (ZeroFree && Imm == 0)
164 return TTI::TCC_Free;
166 if (Idx == ImmIdx && Imm.getBitWidth() <= 64) {
167 if (isInt<16>(Imm.getSExtValue()))
168 return TTI::TCC_Free;
170 if (RunFree) {
171 if (Imm.getBitWidth() <= 32 &&
172 (isShiftedMask_32(Imm.getZExtValue()) ||
173 isShiftedMask_32(~Imm.getZExtValue())))
174 return TTI::TCC_Free;
176 if (ST->isPPC64() &&
177 (isShiftedMask_64(Imm.getZExtValue()) ||
178 isShiftedMask_64(~Imm.getZExtValue())))
179 return TTI::TCC_Free;
182 if (UnsignedFree && isUInt<16>(Imm.getZExtValue()))
183 return TTI::TCC_Free;
185 if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0)
186 return TTI::TCC_Free;
189 return PPCTTIImpl::getIntImmCost(Imm, Ty);
192 unsigned PPCTTIImpl::getUserCost(const User *U,
193 ArrayRef<const Value *> Operands) {
194 if (U->getType()->isVectorTy()) {
195 // Instructions that need to be split should cost more.
196 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, U->getType());
197 return LT.first * BaseT::getUserCost(U, Operands);
200 return BaseT::getUserCost(U, Operands);
203 void PPCTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
204 TTI::UnrollingPreferences &UP) {
205 if (ST->getDarwinDirective() == PPC::DIR_A2) {
206 // The A2 is in-order with a deep pipeline, and concatenation unrolling
207 // helps expose latency-hiding opportunities to the instruction scheduler.
208 UP.Partial = UP.Runtime = true;
210 // We unroll a lot on the A2 (hundreds of instructions), and the benefits
211 // often outweigh the cost of a division to compute the trip count.
212 UP.AllowExpensiveTripCount = true;
215 BaseT::getUnrollingPreferences(L, SE, UP);
218 bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) {
219 // On the A2, always unroll aggressively. For QPX unaligned loads, we depend
220 // on combining the loads generated for consecutive accesses, and failure to
221 // do so is particularly expensive. This makes it much more likely (compared
222 // to only using concatenation unrolling).
223 if (ST->getDarwinDirective() == PPC::DIR_A2)
224 return true;
226 return LoopHasReductions;
229 const PPCTTIImpl::TTI::MemCmpExpansionOptions *
230 PPCTTIImpl::enableMemCmpExpansion(bool IsZeroCmp) const {
231 static const auto Options = []() {
232 TTI::MemCmpExpansionOptions Options;
233 Options.LoadSizes.push_back(8);
234 Options.LoadSizes.push_back(4);
235 Options.LoadSizes.push_back(2);
236 Options.LoadSizes.push_back(1);
237 return Options;
238 }();
239 return &Options;
242 bool PPCTTIImpl::enableInterleavedAccessVectorization() {
243 return true;
246 unsigned PPCTTIImpl::getNumberOfRegisters(bool Vector) {
247 if (Vector && !ST->hasAltivec() && !ST->hasQPX())
248 return 0;
249 return ST->hasVSX() ? 64 : 32;
252 unsigned PPCTTIImpl::getRegisterBitWidth(bool Vector) const {
253 if (Vector) {
254 if (ST->hasQPX()) return 256;
255 if (ST->hasAltivec()) return 128;
256 return 0;
259 if (ST->isPPC64())
260 return 64;
261 return 32;
265 unsigned PPCTTIImpl::getCacheLineSize() {
266 // Check first if the user specified a custom line size.
267 if (CacheLineSize.getNumOccurrences() > 0)
268 return CacheLineSize;
270 // On P7, P8 or P9 we have a cache line size of 128.
271 unsigned Directive = ST->getDarwinDirective();
272 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
273 Directive == PPC::DIR_PWR9)
274 return 128;
276 // On other processors return a default of 64 bytes.
277 return 64;
280 unsigned PPCTTIImpl::getPrefetchDistance() {
281 // This seems like a reasonable default for the BG/Q (this pass is enabled, by
282 // default, only on the BG/Q).
283 return 300;
286 unsigned PPCTTIImpl::getMaxInterleaveFactor(unsigned VF) {
287 unsigned Directive = ST->getDarwinDirective();
288 // The 440 has no SIMD support, but floating-point instructions
289 // have a 5-cycle latency, so unroll by 5x for latency hiding.
290 if (Directive == PPC::DIR_440)
291 return 5;
293 // The A2 has no SIMD support, but floating-point instructions
294 // have a 6-cycle latency, so unroll by 6x for latency hiding.
295 if (Directive == PPC::DIR_A2)
296 return 6;
298 // FIXME: For lack of any better information, do no harm...
299 if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500)
300 return 1;
302 // For P7 and P8, floating-point instructions have a 6-cycle latency and
303 // there are two execution units, so unroll by 12x for latency hiding.
304 // FIXME: the same for P9 as previous gen until POWER9 scheduling is ready
305 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
306 Directive == PPC::DIR_PWR9)
307 return 12;
309 // For most things, modern systems have two execution units (and
310 // out-of-order execution).
311 return 2;
314 int PPCTTIImpl::getArithmeticInstrCost(
315 unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info,
316 TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
317 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args) {
318 assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
320 // Fallback to the default implementation.
321 return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
322 Opd1PropInfo, Opd2PropInfo);
325 int PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
326 Type *SubTp) {
327 // Legalize the type.
328 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
330 // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations
331 // (at least in the sense that there need only be one non-loop-invariant
332 // instruction). We need one such shuffle instruction for each actual
333 // register (this is not true for arbitrary shuffles, but is true for the
334 // structured types of shuffles covered by TTI::ShuffleKind).
335 return LT.first;
338 int PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
339 const Instruction *I) {
340 assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
342 return BaseT::getCastInstrCost(Opcode, Dst, Src);
345 int PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
346 const Instruction *I) {
347 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
350 int PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
351 assert(Val->isVectorTy() && "This must be a vector type");
353 int ISD = TLI->InstructionOpcodeToISD(Opcode);
354 assert(ISD && "Invalid opcode");
356 if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) {
357 // Double-precision scalars are already located in index #0.
358 if (Index == 0)
359 return 0;
361 return BaseT::getVectorInstrCost(Opcode, Val, Index);
362 } else if (ST->hasQPX() && Val->getScalarType()->isFloatingPointTy()) {
363 // Floating point scalars are already located in index #0.
364 if (Index == 0)
365 return 0;
367 return BaseT::getVectorInstrCost(Opcode, Val, Index);
370 // Estimated cost of a load-hit-store delay. This was obtained
371 // experimentally as a minimum needed to prevent unprofitable
372 // vectorization for the paq8p benchmark. It may need to be
373 // raised further if other unprofitable cases remain.
374 unsigned LHSPenalty = 2;
375 if (ISD == ISD::INSERT_VECTOR_ELT)
376 LHSPenalty += 7;
378 // Vector element insert/extract with Altivec is very expensive,
379 // because they require store and reload with the attendant
380 // processor stall for load-hit-store. Until VSX is available,
381 // these need to be estimated as very costly.
382 if (ISD == ISD::EXTRACT_VECTOR_ELT ||
383 ISD == ISD::INSERT_VECTOR_ELT)
384 return LHSPenalty + BaseT::getVectorInstrCost(Opcode, Val, Index);
386 return BaseT::getVectorInstrCost(Opcode, Val, Index);
389 int PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
390 unsigned AddressSpace, const Instruction *I) {
391 // Legalize the type.
392 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
393 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
394 "Invalid Opcode");
396 int Cost = BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
398 bool IsAltivecType = ST->hasAltivec() &&
399 (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 ||
400 LT.second == MVT::v4i32 || LT.second == MVT::v4f32);
401 bool IsVSXType = ST->hasVSX() &&
402 (LT.second == MVT::v2f64 || LT.second == MVT::v2i64);
403 bool IsQPXType = ST->hasQPX() &&
404 (LT.second == MVT::v4f64 || LT.second == MVT::v4f32);
406 // VSX has 32b/64b load instructions. Legalization can handle loading of
407 // 32b/64b to VSR correctly and cheaply. But BaseT::getMemoryOpCost and
408 // PPCTargetLowering can't compute the cost appropriately. So here we
409 // explicitly check this case.
410 unsigned MemBytes = Src->getPrimitiveSizeInBits();
411 if (Opcode == Instruction::Load && ST->hasVSX() && IsAltivecType &&
412 (MemBytes == 64 || (ST->hasP8Vector() && MemBytes == 32)))
413 return 1;
415 // Aligned loads and stores are easy.
416 unsigned SrcBytes = LT.second.getStoreSize();
417 if (!SrcBytes || !Alignment || Alignment >= SrcBytes)
418 return Cost;
420 // If we can use the permutation-based load sequence, then this is also
421 // relatively cheap (not counting loop-invariant instructions): one load plus
422 // one permute (the last load in a series has extra cost, but we're
423 // neglecting that here). Note that on the P7, we could do unaligned loads
424 // for Altivec types using the VSX instructions, but that's more expensive
425 // than using the permutation-based load sequence. On the P8, that's no
426 // longer true.
427 if (Opcode == Instruction::Load &&
428 ((!ST->hasP8Vector() && IsAltivecType) || IsQPXType) &&
429 Alignment >= LT.second.getScalarType().getStoreSize())
430 return Cost + LT.first; // Add the cost of the permutations.
432 // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the
433 // P7, unaligned vector loads are more expensive than the permutation-based
434 // load sequence, so that might be used instead, but regardless, the net cost
435 // is about the same (not counting loop-invariant instructions).
436 if (IsVSXType || (ST->hasVSX() && IsAltivecType))
437 return Cost;
439 // Newer PPC supports unaligned memory access.
440 if (TLI->allowsMisalignedMemoryAccesses(LT.second, 0))
441 return Cost;
443 // PPC in general does not support unaligned loads and stores. They'll need
444 // to be decomposed based on the alignment factor.
446 // Add the cost of each scalar load or store.
447 Cost += LT.first*(SrcBytes/Alignment-1);
449 // For a vector type, there is also scalarization overhead (only for
450 // stores, loads are expanded using the vector-load + permutation sequence,
451 // which is much less expensive).
452 if (Src->isVectorTy() && Opcode == Instruction::Store)
453 for (int i = 0, e = Src->getVectorNumElements(); i < e; ++i)
454 Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i);
456 return Cost;
459 int PPCTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
460 unsigned Factor,
461 ArrayRef<unsigned> Indices,
462 unsigned Alignment,
463 unsigned AddressSpace) {
464 assert(isa<VectorType>(VecTy) &&
465 "Expect a vector type for interleaved memory op");
467 // Legalize the type.
468 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, VecTy);
470 // Firstly, the cost of load/store operation.
471 int Cost = getMemoryOpCost(Opcode, VecTy, Alignment, AddressSpace);
473 // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations
474 // (at least in the sense that there need only be one non-loop-invariant
475 // instruction). For each result vector, we need one shuffle per incoming
476 // vector (except that the first shuffle can take two incoming vectors
477 // because it does not need to take itself).
478 Cost += Factor*(LT.first-1);
480 return Cost;