[LoopUnroll] Add check to Latch's terminator in UnrollRuntimeLoopRemainder
[llvm-core.git] / lib / Transforms / Utils / LoopUnrollRuntime.cpp
blob3361883acd0c088b7e8d709bc35bf9c85c30b336
1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements some loop unrolling utilities for loops with run-time
11 // trip counts. See LoopUnroll.cpp for unrolling loops with compile-time
12 // trip counts.
14 // The functions in this file are used to generate extra code when the
15 // run-time trip count modulo the unroll factor is not 0. When this is the
16 // case, we need to generate code to execute these 'left over' iterations.
18 // The current strategy generates an if-then-else sequence prior to the
19 // unrolled loop to execute the 'left over' iterations before or after the
20 // unrolled loop.
22 //===----------------------------------------------------------------------===//
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/LoopIterator.h"
28 #include "llvm/Analysis/ScalarEvolution.h"
29 #include "llvm/Analysis/ScalarEvolutionExpander.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Transforms/Utils.h"
37 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
38 #include "llvm/Transforms/Utils/Cloning.h"
39 #include "llvm/Transforms/Utils/LoopUtils.h"
40 #include "llvm/Transforms/Utils/UnrollLoop.h"
41 #include <algorithm>
43 using namespace llvm;
45 #define DEBUG_TYPE "loop-unroll"
47 STATISTIC(NumRuntimeUnrolled,
48 "Number of loops unrolled with run-time trip counts");
49 static cl::opt<bool> UnrollRuntimeMultiExit(
50 "unroll-runtime-multi-exit", cl::init(false), cl::Hidden,
51 cl::desc("Allow runtime unrolling for loops with multiple exits, when "
52 "epilog is generated"));
54 /// Connect the unrolling prolog code to the original loop.
55 /// The unrolling prolog code contains code to execute the
56 /// 'extra' iterations if the run-time trip count modulo the
57 /// unroll count is non-zero.
58 ///
59 /// This function performs the following:
60 /// - Create PHI nodes at prolog end block to combine values
61 /// that exit the prolog code and jump around the prolog.
62 /// - Add a PHI operand to a PHI node at the loop exit block
63 /// for values that exit the prolog and go around the loop.
64 /// - Branch around the original loop if the trip count is less
65 /// than the unroll factor.
66 ///
67 static void ConnectProlog(Loop *L, Value *BECount, unsigned Count,
68 BasicBlock *PrologExit,
69 BasicBlock *OriginalLoopLatchExit,
70 BasicBlock *PreHeader, BasicBlock *NewPreHeader,
71 ValueToValueMapTy &VMap, DominatorTree *DT,
72 LoopInfo *LI, bool PreserveLCSSA) {
73 BasicBlock *Latch = L->getLoopLatch();
74 assert(Latch && "Loop must have a latch");
75 BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]);
77 // Create a PHI node for each outgoing value from the original loop
78 // (which means it is an outgoing value from the prolog code too).
79 // The new PHI node is inserted in the prolog end basic block.
80 // The new PHI node value is added as an operand of a PHI node in either
81 // the loop header or the loop exit block.
82 for (BasicBlock *Succ : successors(Latch)) {
83 for (PHINode &PN : Succ->phis()) {
84 // Add a new PHI node to the prolog end block and add the
85 // appropriate incoming values.
86 PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr",
87 PrologExit->getFirstNonPHI());
88 // Adding a value to the new PHI node from the original loop preheader.
89 // This is the value that skips all the prolog code.
90 if (L->contains(&PN)) {
91 NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader),
92 PreHeader);
93 } else {
94 NewPN->addIncoming(UndefValue::get(PN.getType()), PreHeader);
97 Value *V = PN.getIncomingValueForBlock(Latch);
98 if (Instruction *I = dyn_cast<Instruction>(V)) {
99 if (L->contains(I)) {
100 V = VMap.lookup(I);
103 // Adding a value to the new PHI node from the last prolog block
104 // that was created.
105 NewPN->addIncoming(V, PrologLatch);
107 // Update the existing PHI node operand with the value from the
108 // new PHI node. How this is done depends on if the existing
109 // PHI node is in the original loop block, or the exit block.
110 if (L->contains(&PN)) {
111 PN.setIncomingValue(PN.getBasicBlockIndex(NewPreHeader), NewPN);
112 } else {
113 PN.addIncoming(NewPN, PrologExit);
118 // Make sure that created prolog loop is in simplified form
119 SmallVector<BasicBlock *, 4> PrologExitPreds;
120 Loop *PrologLoop = LI->getLoopFor(PrologLatch);
121 if (PrologLoop) {
122 for (BasicBlock *PredBB : predecessors(PrologExit))
123 if (PrologLoop->contains(PredBB))
124 PrologExitPreds.push_back(PredBB);
126 SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI,
127 nullptr, PreserveLCSSA);
130 // Create a branch around the original loop, which is taken if there are no
131 // iterations remaining to be executed after running the prologue.
132 Instruction *InsertPt = PrologExit->getTerminator();
133 IRBuilder<> B(InsertPt);
135 assert(Count != 0 && "nonsensical Count!");
137 // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1)
138 // This means %xtraiter is (BECount + 1) and all of the iterations of this
139 // loop were executed by the prologue. Note that if BECount <u (Count - 1)
140 // then (BECount + 1) cannot unsigned-overflow.
141 Value *BrLoopExit =
142 B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1));
143 // Split the exit to maintain loop canonicalization guarantees
144 SmallVector<BasicBlock *, 4> Preds(predecessors(OriginalLoopLatchExit));
145 SplitBlockPredecessors(OriginalLoopLatchExit, Preds, ".unr-lcssa", DT, LI,
146 nullptr, PreserveLCSSA);
147 // Add the branch to the exit block (around the unrolled loop)
148 B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader);
149 InsertPt->eraseFromParent();
150 if (DT)
151 DT->changeImmediateDominator(OriginalLoopLatchExit, PrologExit);
154 /// Connect the unrolling epilog code to the original loop.
155 /// The unrolling epilog code contains code to execute the
156 /// 'extra' iterations if the run-time trip count modulo the
157 /// unroll count is non-zero.
159 /// This function performs the following:
160 /// - Update PHI nodes at the unrolling loop exit and epilog loop exit
161 /// - Create PHI nodes at the unrolling loop exit to combine
162 /// values that exit the unrolling loop code and jump around it.
163 /// - Update PHI operands in the epilog loop by the new PHI nodes
164 /// - Branch around the epilog loop if extra iters (ModVal) is zero.
166 static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit,
167 BasicBlock *Exit, BasicBlock *PreHeader,
168 BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader,
169 ValueToValueMapTy &VMap, DominatorTree *DT,
170 LoopInfo *LI, bool PreserveLCSSA) {
171 BasicBlock *Latch = L->getLoopLatch();
172 assert(Latch && "Loop must have a latch");
173 BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]);
175 // Loop structure should be the following:
177 // PreHeader
178 // NewPreHeader
179 // Header
180 // ...
181 // Latch
182 // NewExit (PN)
183 // EpilogPreHeader
184 // EpilogHeader
185 // ...
186 // EpilogLatch
187 // Exit (EpilogPN)
189 // Update PHI nodes at NewExit and Exit.
190 for (PHINode &PN : NewExit->phis()) {
191 // PN should be used in another PHI located in Exit block as
192 // Exit was split by SplitBlockPredecessors into Exit and NewExit
193 // Basicaly it should look like:
194 // NewExit:
195 // PN = PHI [I, Latch]
196 // ...
197 // Exit:
198 // EpilogPN = PHI [PN, EpilogPreHeader]
200 // There is EpilogPreHeader incoming block instead of NewExit as
201 // NewExit was spilt 1 more time to get EpilogPreHeader.
202 assert(PN.hasOneUse() && "The phi should have 1 use");
203 PHINode *EpilogPN = cast<PHINode>(PN.use_begin()->getUser());
204 assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block");
206 // Add incoming PreHeader from branch around the Loop
207 PN.addIncoming(UndefValue::get(PN.getType()), PreHeader);
209 Value *V = PN.getIncomingValueForBlock(Latch);
210 Instruction *I = dyn_cast<Instruction>(V);
211 if (I && L->contains(I))
212 // If value comes from an instruction in the loop add VMap value.
213 V = VMap.lookup(I);
214 // For the instruction out of the loop, constant or undefined value
215 // insert value itself.
216 EpilogPN->addIncoming(V, EpilogLatch);
218 assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 &&
219 "EpilogPN should have EpilogPreHeader incoming block");
220 // Change EpilogPreHeader incoming block to NewExit.
221 EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader),
222 NewExit);
223 // Now PHIs should look like:
224 // NewExit:
225 // PN = PHI [I, Latch], [undef, PreHeader]
226 // ...
227 // Exit:
228 // EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch]
231 // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader).
232 // Update corresponding PHI nodes in epilog loop.
233 for (BasicBlock *Succ : successors(Latch)) {
234 // Skip this as we already updated phis in exit blocks.
235 if (!L->contains(Succ))
236 continue;
237 for (PHINode &PN : Succ->phis()) {
238 // Add new PHI nodes to the loop exit block and update epilog
239 // PHIs with the new PHI values.
240 PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr",
241 NewExit->getFirstNonPHI());
242 // Adding a value to the new PHI node from the unrolling loop preheader.
243 NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), PreHeader);
244 // Adding a value to the new PHI node from the unrolling loop latch.
245 NewPN->addIncoming(PN.getIncomingValueForBlock(Latch), Latch);
247 // Update the existing PHI node operand with the value from the new PHI
248 // node. Corresponding instruction in epilog loop should be PHI.
249 PHINode *VPN = cast<PHINode>(VMap[&PN]);
250 VPN->setIncomingValue(VPN->getBasicBlockIndex(EpilogPreHeader), NewPN);
254 Instruction *InsertPt = NewExit->getTerminator();
255 IRBuilder<> B(InsertPt);
256 Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod");
257 assert(Exit && "Loop must have a single exit block only");
258 // Split the epilogue exit to maintain loop canonicalization guarantees
259 SmallVector<BasicBlock*, 4> Preds(predecessors(Exit));
260 SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI, nullptr,
261 PreserveLCSSA);
262 // Add the branch to the exit block (around the unrolling loop)
263 B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit);
264 InsertPt->eraseFromParent();
265 if (DT)
266 DT->changeImmediateDominator(Exit, NewExit);
268 // Split the main loop exit to maintain canonicalization guarantees.
269 SmallVector<BasicBlock*, 4> NewExitPreds{Latch};
270 SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI, nullptr,
271 PreserveLCSSA);
274 /// Create a clone of the blocks in a loop and connect them together.
275 /// If CreateRemainderLoop is false, loop structure will not be cloned,
276 /// otherwise a new loop will be created including all cloned blocks, and the
277 /// iterator of it switches to count NewIter down to 0.
278 /// The cloned blocks should be inserted between InsertTop and InsertBot.
279 /// If loop structure is cloned InsertTop should be new preheader, InsertBot
280 /// new loop exit.
281 /// Return the new cloned loop that is created when CreateRemainderLoop is true.
282 static Loop *
283 CloneLoopBlocks(Loop *L, Value *NewIter, const bool CreateRemainderLoop,
284 const bool UseEpilogRemainder, const bool UnrollRemainder,
285 BasicBlock *InsertTop,
286 BasicBlock *InsertBot, BasicBlock *Preheader,
287 std::vector<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
288 ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI) {
289 StringRef suffix = UseEpilogRemainder ? "epil" : "prol";
290 BasicBlock *Header = L->getHeader();
291 BasicBlock *Latch = L->getLoopLatch();
292 Function *F = Header->getParent();
293 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
294 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
295 Loop *ParentLoop = L->getParentLoop();
296 NewLoopsMap NewLoops;
297 NewLoops[ParentLoop] = ParentLoop;
298 if (!CreateRemainderLoop)
299 NewLoops[L] = ParentLoop;
301 // For each block in the original loop, create a new copy,
302 // and update the value map with the newly created values.
303 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
304 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F);
305 NewBlocks.push_back(NewBB);
307 // If we're unrolling the outermost loop, there's no remainder loop,
308 // and this block isn't in a nested loop, then the new block is not
309 // in any loop. Otherwise, add it to loopinfo.
310 if (CreateRemainderLoop || LI->getLoopFor(*BB) != L || ParentLoop)
311 addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops);
313 VMap[*BB] = NewBB;
314 if (Header == *BB) {
315 // For the first block, add a CFG connection to this newly
316 // created block.
317 InsertTop->getTerminator()->setSuccessor(0, NewBB);
320 if (DT) {
321 if (Header == *BB) {
322 // The header is dominated by the preheader.
323 DT->addNewBlock(NewBB, InsertTop);
324 } else {
325 // Copy information from original loop to unrolled loop.
326 BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock();
327 DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB]));
331 if (Latch == *BB) {
332 // For the last block, if CreateRemainderLoop is false, create a direct
333 // jump to InsertBot. If not, create a loop back to cloned head.
334 VMap.erase((*BB)->getTerminator());
335 BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]);
336 BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator());
337 IRBuilder<> Builder(LatchBR);
338 if (!CreateRemainderLoop) {
339 Builder.CreateBr(InsertBot);
340 } else {
341 PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2,
342 suffix + ".iter",
343 FirstLoopBB->getFirstNonPHI());
344 Value *IdxSub =
345 Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
346 NewIdx->getName() + ".sub");
347 Value *IdxCmp =
348 Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp");
349 Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot);
350 NewIdx->addIncoming(NewIter, InsertTop);
351 NewIdx->addIncoming(IdxSub, NewBB);
353 LatchBR->eraseFromParent();
357 // Change the incoming values to the ones defined in the preheader or
358 // cloned loop.
359 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
360 PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
361 if (!CreateRemainderLoop) {
362 if (UseEpilogRemainder) {
363 unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
364 NewPHI->setIncomingBlock(idx, InsertTop);
365 NewPHI->removeIncomingValue(Latch, false);
366 } else {
367 VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader);
368 cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
370 } else {
371 unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
372 NewPHI->setIncomingBlock(idx, InsertTop);
373 BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
374 idx = NewPHI->getBasicBlockIndex(Latch);
375 Value *InVal = NewPHI->getIncomingValue(idx);
376 NewPHI->setIncomingBlock(idx, NewLatch);
377 if (Value *V = VMap.lookup(InVal))
378 NewPHI->setIncomingValue(idx, V);
381 if (CreateRemainderLoop) {
382 Loop *NewLoop = NewLoops[L];
383 assert(NewLoop && "L should have been cloned");
385 // Only add loop metadata if the loop is not going to be completely
386 // unrolled.
387 if (UnrollRemainder)
388 return NewLoop;
390 // Add unroll disable metadata to disable future unrolling for this loop.
391 NewLoop->setLoopAlreadyUnrolled();
392 return NewLoop;
394 else
395 return nullptr;
398 /// Returns true if we can safely unroll a multi-exit/exiting loop. OtherExits
399 /// is populated with all the loop exit blocks other than the LatchExit block.
400 static bool
401 canSafelyUnrollMultiExitLoop(Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits,
402 BasicBlock *LatchExit, bool PreserveLCSSA,
403 bool UseEpilogRemainder) {
405 // We currently have some correctness constrains in unrolling a multi-exit
406 // loop. Check for these below.
408 // We rely on LCSSA form being preserved when the exit blocks are transformed.
409 if (!PreserveLCSSA)
410 return false;
411 SmallVector<BasicBlock *, 4> Exits;
412 L->getUniqueExitBlocks(Exits);
413 for (auto *BB : Exits)
414 if (BB != LatchExit)
415 OtherExits.push_back(BB);
417 // TODO: Support multiple exiting blocks jumping to the `LatchExit` when
418 // UnrollRuntimeMultiExit is true. This will need updating the logic in
419 // connectEpilog/connectProlog.
420 if (!LatchExit->getSinglePredecessor()) {
421 LLVM_DEBUG(
422 dbgs() << "Bailout for multi-exit handling when latch exit has >1 "
423 "predecessor.\n");
424 return false;
426 // FIXME: We bail out of multi-exit unrolling when epilog loop is generated
427 // and L is an inner loop. This is because in presence of multiple exits, the
428 // outer loop is incorrect: we do not add the EpilogPreheader and exit to the
429 // outer loop. This is automatically handled in the prolog case, so we do not
430 // have that bug in prolog generation.
431 if (UseEpilogRemainder && L->getParentLoop())
432 return false;
434 // All constraints have been satisfied.
435 return true;
438 /// Returns true if we can profitably unroll the multi-exit loop L. Currently,
439 /// we return true only if UnrollRuntimeMultiExit is set to true.
440 static bool canProfitablyUnrollMultiExitLoop(
441 Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, BasicBlock *LatchExit,
442 bool PreserveLCSSA, bool UseEpilogRemainder) {
444 #if !defined(NDEBUG)
445 SmallVector<BasicBlock *, 8> OtherExitsDummyCheck;
446 assert(canSafelyUnrollMultiExitLoop(L, OtherExitsDummyCheck, LatchExit,
447 PreserveLCSSA, UseEpilogRemainder) &&
448 "Should be safe to unroll before checking profitability!");
449 #endif
451 // Priority goes to UnrollRuntimeMultiExit if it's supplied.
452 if (UnrollRuntimeMultiExit.getNumOccurrences())
453 return UnrollRuntimeMultiExit;
455 // The main pain point with multi-exit loop unrolling is that once unrolled,
456 // we will not be able to merge all blocks into a straight line code.
457 // There are branches within the unrolled loop that go to the OtherExits.
458 // The second point is the increase in code size, but this is true
459 // irrespective of multiple exits.
461 // Note: Both the heuristics below are coarse grained. We are essentially
462 // enabling unrolling of loops that have a single side exit other than the
463 // normal LatchExit (i.e. exiting into a deoptimize block).
464 // The heuristics considered are:
465 // 1. low number of branches in the unrolled version.
466 // 2. high predictability of these extra branches.
467 // We avoid unrolling loops that have more than two exiting blocks. This
468 // limits the total number of branches in the unrolled loop to be atmost
469 // the unroll factor (since one of the exiting blocks is the latch block).
470 SmallVector<BasicBlock*, 4> ExitingBlocks;
471 L->getExitingBlocks(ExitingBlocks);
472 if (ExitingBlocks.size() > 2)
473 return false;
475 // The second heuristic is that L has one exit other than the latchexit and
476 // that exit is a deoptimize block. We know that deoptimize blocks are rarely
477 // taken, which also implies the branch leading to the deoptimize block is
478 // highly predictable.
479 return (OtherExits.size() == 1 &&
480 OtherExits[0]->getTerminatingDeoptimizeCall());
481 // TODO: These can be fine-tuned further to consider code size or deopt states
482 // that are captured by the deoptimize exit block.
483 // Also, we can extend this to support more cases, if we actually
484 // know of kinds of multiexit loops that would benefit from unrolling.
487 /// Insert code in the prolog/epilog code when unrolling a loop with a
488 /// run-time trip-count.
490 /// This method assumes that the loop unroll factor is total number
491 /// of loop bodies in the loop after unrolling. (Some folks refer
492 /// to the unroll factor as the number of *extra* copies added).
493 /// We assume also that the loop unroll factor is a power-of-two. So, after
494 /// unrolling the loop, the number of loop bodies executed is 2,
495 /// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch
496 /// instruction in SimplifyCFG.cpp. Then, the backend decides how code for
497 /// the switch instruction is generated.
499 /// ***Prolog case***
500 /// extraiters = tripcount % loopfactor
501 /// if (extraiters == 0) jump Loop:
502 /// else jump Prol:
503 /// Prol: LoopBody;
504 /// extraiters -= 1 // Omitted if unroll factor is 2.
505 /// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
506 /// if (tripcount < loopfactor) jump End:
507 /// Loop:
508 /// ...
509 /// End:
511 /// ***Epilog case***
512 /// extraiters = tripcount % loopfactor
513 /// if (tripcount < loopfactor) jump LoopExit:
514 /// unroll_iters = tripcount - extraiters
515 /// Loop: LoopBody; (executes unroll_iter times);
516 /// unroll_iter -= 1
517 /// if (unroll_iter != 0) jump Loop:
518 /// LoopExit:
519 /// if (extraiters == 0) jump EpilExit:
520 /// Epil: LoopBody; (executes extraiters times)
521 /// extraiters -= 1 // Omitted if unroll factor is 2.
522 /// if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2.
523 /// EpilExit:
525 bool llvm::UnrollRuntimeLoopRemainder(Loop *L, unsigned Count,
526 bool AllowExpensiveTripCount,
527 bool UseEpilogRemainder,
528 bool UnrollRemainder,
529 LoopInfo *LI, ScalarEvolution *SE,
530 DominatorTree *DT, AssumptionCache *AC,
531 bool PreserveLCSSA) {
532 LLVM_DEBUG(dbgs() << "Trying runtime unrolling on Loop: \n");
533 LLVM_DEBUG(L->dump());
534 LLVM_DEBUG(UseEpilogRemainder ? dbgs() << "Using epilog remainder.\n"
535 : dbgs() << "Using prolog remainder.\n");
537 // Make sure the loop is in canonical form.
538 if (!L->isLoopSimplifyForm()) {
539 LLVM_DEBUG(dbgs() << "Not in simplify form!\n");
540 return false;
543 // Guaranteed by LoopSimplifyForm.
544 BasicBlock *Latch = L->getLoopLatch();
545 BasicBlock *Header = L->getHeader();
547 BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
549 if (!LatchBR || LatchBR->isUnconditional()) {
550 // The loop-rotate pass can be helpful to avoid this in many cases.
551 LLVM_DEBUG(
552 dbgs()
553 << "Loop latch not terminated by a conditional branch.\n");
554 return false;
557 unsigned ExitIndex = LatchBR->getSuccessor(0) == Header ? 1 : 0;
558 BasicBlock *LatchExit = LatchBR->getSuccessor(ExitIndex);
560 if (L->contains(LatchExit)) {
561 // Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the
562 // targets of the Latch be an exit block out of the loop.
563 LLVM_DEBUG(
564 dbgs()
565 << "One of the loop latch successors must be the exit block.\n");
566 return false;
569 // These are exit blocks other than the target of the latch exiting block.
570 SmallVector<BasicBlock *, 4> OtherExits;
571 bool isMultiExitUnrollingEnabled =
572 canSafelyUnrollMultiExitLoop(L, OtherExits, LatchExit, PreserveLCSSA,
573 UseEpilogRemainder) &&
574 canProfitablyUnrollMultiExitLoop(L, OtherExits, LatchExit, PreserveLCSSA,
575 UseEpilogRemainder);
576 // Support only single exit and exiting block unless multi-exit loop unrolling is enabled.
577 if (!isMultiExitUnrollingEnabled &&
578 (!L->getExitingBlock() || OtherExits.size())) {
579 LLVM_DEBUG(
580 dbgs()
581 << "Multiple exit/exiting blocks in loop and multi-exit unrolling not "
582 "enabled!\n");
583 return false;
585 // Use Scalar Evolution to compute the trip count. This allows more loops to
586 // be unrolled than relying on induction var simplification.
587 if (!SE)
588 return false;
590 // Only unroll loops with a computable trip count, and the trip count needs
591 // to be an int value (allowing a pointer type is a TODO item).
592 // We calculate the backedge count by using getExitCount on the Latch block,
593 // which is proven to be the only exiting block in this loop. This is same as
594 // calculating getBackedgeTakenCount on the loop (which computes SCEV for all
595 // exiting blocks).
596 const SCEV *BECountSC = SE->getExitCount(L, Latch);
597 if (isa<SCEVCouldNotCompute>(BECountSC) ||
598 !BECountSC->getType()->isIntegerTy()) {
599 LLVM_DEBUG(dbgs() << "Could not compute exit block SCEV\n");
600 return false;
603 unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth();
605 // Add 1 since the backedge count doesn't include the first loop iteration.
606 const SCEV *TripCountSC =
607 SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1));
608 if (isa<SCEVCouldNotCompute>(TripCountSC)) {
609 LLVM_DEBUG(dbgs() << "Could not compute trip count SCEV.\n");
610 return false;
613 BasicBlock *PreHeader = L->getLoopPreheader();
614 BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
615 const DataLayout &DL = Header->getModule()->getDataLayout();
616 SCEVExpander Expander(*SE, DL, "loop-unroll");
617 if (!AllowExpensiveTripCount &&
618 Expander.isHighCostExpansion(TripCountSC, L, PreHeaderBR)) {
619 LLVM_DEBUG(dbgs() << "High cost for expanding trip count scev!\n");
620 return false;
623 // This constraint lets us deal with an overflowing trip count easily; see the
624 // comment on ModVal below.
625 if (Log2_32(Count) > BEWidth) {
626 LLVM_DEBUG(
627 dbgs()
628 << "Count failed constraint on overflow trip count calculation.\n");
629 return false;
632 // Loop structure is the following:
634 // PreHeader
635 // Header
636 // ...
637 // Latch
638 // LatchExit
640 BasicBlock *NewPreHeader;
641 BasicBlock *NewExit = nullptr;
642 BasicBlock *PrologExit = nullptr;
643 BasicBlock *EpilogPreHeader = nullptr;
644 BasicBlock *PrologPreHeader = nullptr;
646 if (UseEpilogRemainder) {
647 // If epilog remainder
648 // Split PreHeader to insert a branch around loop for unrolling.
649 NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI);
650 NewPreHeader->setName(PreHeader->getName() + ".new");
651 // Split LatchExit to create phi nodes from branch above.
652 SmallVector<BasicBlock*, 4> Preds(predecessors(LatchExit));
653 NewExit = SplitBlockPredecessors(LatchExit, Preds, ".unr-lcssa", DT, LI,
654 nullptr, PreserveLCSSA);
655 // NewExit gets its DebugLoc from LatchExit, which is not part of the
656 // original Loop.
657 // Fix this by setting Loop's DebugLoc to NewExit.
658 auto *NewExitTerminator = NewExit->getTerminator();
659 NewExitTerminator->setDebugLoc(Header->getTerminator()->getDebugLoc());
660 // Split NewExit to insert epilog remainder loop.
661 EpilogPreHeader = SplitBlock(NewExit, NewExitTerminator, DT, LI);
662 EpilogPreHeader->setName(Header->getName() + ".epil.preheader");
663 } else {
664 // If prolog remainder
665 // Split the original preheader twice to insert prolog remainder loop
666 PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI);
667 PrologPreHeader->setName(Header->getName() + ".prol.preheader");
668 PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(),
669 DT, LI);
670 PrologExit->setName(Header->getName() + ".prol.loopexit");
671 // Split PrologExit to get NewPreHeader.
672 NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI);
673 NewPreHeader->setName(PreHeader->getName() + ".new");
675 // Loop structure should be the following:
676 // Epilog Prolog
678 // PreHeader PreHeader
679 // *NewPreHeader *PrologPreHeader
680 // Header *PrologExit
681 // ... *NewPreHeader
682 // Latch Header
683 // *NewExit ...
684 // *EpilogPreHeader Latch
685 // LatchExit LatchExit
687 // Calculate conditions for branch around loop for unrolling
688 // in epilog case and around prolog remainder loop in prolog case.
689 // Compute the number of extra iterations required, which is:
690 // extra iterations = run-time trip count % loop unroll factor
691 PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
692 Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
693 PreHeaderBR);
694 Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(),
695 PreHeaderBR);
696 IRBuilder<> B(PreHeaderBR);
697 Value *ModVal;
698 // Calculate ModVal = (BECount + 1) % Count.
699 // Note that TripCount is BECount + 1.
700 if (isPowerOf2_32(Count)) {
701 // When Count is power of 2 we don't BECount for epilog case, however we'll
702 // need it for a branch around unrolling loop for prolog case.
703 ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter");
704 // 1. There are no iterations to be run in the prolog/epilog loop.
705 // OR
706 // 2. The addition computing TripCount overflowed.
708 // If (2) is true, we know that TripCount really is (1 << BEWidth) and so
709 // the number of iterations that remain to be run in the original loop is a
710 // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we
711 // explicitly check this above).
712 } else {
713 // As (BECount + 1) can potentially unsigned overflow we count
714 // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count.
715 Value *ModValTmp = B.CreateURem(BECount,
716 ConstantInt::get(BECount->getType(),
717 Count));
718 Value *ModValAdd = B.CreateAdd(ModValTmp,
719 ConstantInt::get(ModValTmp->getType(), 1));
720 // At that point (BECount % Count) + 1 could be equal to Count.
721 // To handle this case we need to take mod by Count one more time.
722 ModVal = B.CreateURem(ModValAdd,
723 ConstantInt::get(BECount->getType(), Count),
724 "xtraiter");
726 Value *BranchVal =
727 UseEpilogRemainder ? B.CreateICmpULT(BECount,
728 ConstantInt::get(BECount->getType(),
729 Count - 1)) :
730 B.CreateIsNotNull(ModVal, "lcmp.mod");
731 BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader;
732 BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit;
733 // Branch to either remainder (extra iterations) loop or unrolling loop.
734 B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop);
735 PreHeaderBR->eraseFromParent();
736 if (DT) {
737 if (UseEpilogRemainder)
738 DT->changeImmediateDominator(NewExit, PreHeader);
739 else
740 DT->changeImmediateDominator(PrologExit, PreHeader);
742 Function *F = Header->getParent();
743 // Get an ordered list of blocks in the loop to help with the ordering of the
744 // cloned blocks in the prolog/epilog code
745 LoopBlocksDFS LoopBlocks(L);
746 LoopBlocks.perform(LI);
749 // For each extra loop iteration, create a copy of the loop's basic blocks
750 // and generate a condition that branches to the copy depending on the
751 // number of 'left over' iterations.
753 std::vector<BasicBlock *> NewBlocks;
754 ValueToValueMapTy VMap;
756 // For unroll factor 2 remainder loop will have 1 iterations.
757 // Do not create 1 iteration loop.
758 bool CreateRemainderLoop = (Count != 2);
760 // Clone all the basic blocks in the loop. If Count is 2, we don't clone
761 // the loop, otherwise we create a cloned loop to execute the extra
762 // iterations. This function adds the appropriate CFG connections.
763 BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit;
764 BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader;
765 Loop *remainderLoop = CloneLoopBlocks(
766 L, ModVal, CreateRemainderLoop, UseEpilogRemainder, UnrollRemainder,
767 InsertTop, InsertBot,
768 NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI);
770 // Insert the cloned blocks into the function.
771 F->getBasicBlockList().splice(InsertBot->getIterator(),
772 F->getBasicBlockList(),
773 NewBlocks[0]->getIterator(),
774 F->end());
776 // Now the loop blocks are cloned and the other exiting blocks from the
777 // remainder are connected to the original Loop's exit blocks. The remaining
778 // work is to update the phi nodes in the original loop, and take in the
779 // values from the cloned region. Also update the dominator info for
780 // OtherExits and their immediate successors, since we have new edges into
781 // OtherExits.
782 SmallPtrSet<BasicBlock*, 8> ImmediateSuccessorsOfExitBlocks;
783 for (auto *BB : OtherExits) {
784 for (auto &II : *BB) {
786 // Given we preserve LCSSA form, we know that the values used outside the
787 // loop will be used through these phi nodes at the exit blocks that are
788 // transformed below.
789 if (!isa<PHINode>(II))
790 break;
791 PHINode *Phi = cast<PHINode>(&II);
792 unsigned oldNumOperands = Phi->getNumIncomingValues();
793 // Add the incoming values from the remainder code to the end of the phi
794 // node.
795 for (unsigned i =0; i < oldNumOperands; i++){
796 Value *newVal = VMap.lookup(Phi->getIncomingValue(i));
797 // newVal can be a constant or derived from values outside the loop, and
798 // hence need not have a VMap value. Also, since lookup already generated
799 // a default "null" VMap entry for this value, we need to populate that
800 // VMap entry correctly, with the mapped entry being itself.
801 if (!newVal) {
802 newVal = Phi->getIncomingValue(i);
803 VMap[Phi->getIncomingValue(i)] = Phi->getIncomingValue(i);
805 Phi->addIncoming(newVal,
806 cast<BasicBlock>(VMap[Phi->getIncomingBlock(i)]));
809 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
810 for (BasicBlock *SuccBB : successors(BB)) {
811 assert(!(any_of(OtherExits,
812 [SuccBB](BasicBlock *EB) { return EB == SuccBB; }) ||
813 SuccBB == LatchExit) &&
814 "Breaks the definition of dedicated exits!");
816 #endif
817 // Update the dominator info because the immediate dominator is no longer the
818 // header of the original Loop. BB has edges both from L and remainder code.
819 // Since the preheader determines which loop is run (L or directly jump to
820 // the remainder code), we set the immediate dominator as the preheader.
821 if (DT) {
822 DT->changeImmediateDominator(BB, PreHeader);
823 // Also update the IDom for immediate successors of BB. If the current
824 // IDom is the header, update the IDom to be the preheader because that is
825 // the nearest common dominator of all predecessors of SuccBB. We need to
826 // check for IDom being the header because successors of exit blocks can
827 // have edges from outside the loop, and we should not incorrectly update
828 // the IDom in that case.
829 for (BasicBlock *SuccBB: successors(BB))
830 if (ImmediateSuccessorsOfExitBlocks.insert(SuccBB).second) {
831 if (DT->getNode(SuccBB)->getIDom()->getBlock() == Header) {
832 assert(!SuccBB->getSinglePredecessor() &&
833 "BB should be the IDom then!");
834 DT->changeImmediateDominator(SuccBB, PreHeader);
840 // Loop structure should be the following:
841 // Epilog Prolog
843 // PreHeader PreHeader
844 // NewPreHeader PrologPreHeader
845 // Header PrologHeader
846 // ... ...
847 // Latch PrologLatch
848 // NewExit PrologExit
849 // EpilogPreHeader NewPreHeader
850 // EpilogHeader Header
851 // ... ...
852 // EpilogLatch Latch
853 // LatchExit LatchExit
855 // Rewrite the cloned instruction operands to use the values created when the
856 // clone is created.
857 for (BasicBlock *BB : NewBlocks) {
858 for (Instruction &I : *BB) {
859 RemapInstruction(&I, VMap,
860 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
864 if (UseEpilogRemainder) {
865 // Connect the epilog code to the original loop and update the
866 // PHI functions.
867 ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader,
868 EpilogPreHeader, NewPreHeader, VMap, DT, LI,
869 PreserveLCSSA);
871 // Update counter in loop for unrolling.
872 // I should be multiply of Count.
873 IRBuilder<> B2(NewPreHeader->getTerminator());
874 Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter");
875 BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
876 B2.SetInsertPoint(LatchBR);
877 PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter",
878 Header->getFirstNonPHI());
879 Value *IdxSub =
880 B2.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
881 NewIdx->getName() + ".nsub");
882 Value *IdxCmp;
883 if (LatchBR->getSuccessor(0) == Header)
884 IdxCmp = B2.CreateIsNotNull(IdxSub, NewIdx->getName() + ".ncmp");
885 else
886 IdxCmp = B2.CreateIsNull(IdxSub, NewIdx->getName() + ".ncmp");
887 NewIdx->addIncoming(TestVal, NewPreHeader);
888 NewIdx->addIncoming(IdxSub, Latch);
889 LatchBR->setCondition(IdxCmp);
890 } else {
891 // Connect the prolog code to the original loop and update the
892 // PHI functions.
893 ConnectProlog(L, BECount, Count, PrologExit, LatchExit, PreHeader,
894 NewPreHeader, VMap, DT, LI, PreserveLCSSA);
897 // If this loop is nested, then the loop unroller changes the code in the any
898 // of its parent loops, so the Scalar Evolution pass needs to be run again.
899 SE->forgetTopmostLoop(L);
901 // Canonicalize to LoopSimplifyForm both original and remainder loops. We
902 // cannot rely on the LoopUnrollPass to do this because it only does
903 // canonicalization for parent/subloops and not the sibling loops.
904 if (OtherExits.size() > 0) {
905 // Generate dedicated exit blocks for the original loop, to preserve
906 // LoopSimplifyForm.
907 formDedicatedExitBlocks(L, DT, LI, PreserveLCSSA);
908 // Generate dedicated exit blocks for the remainder loop if one exists, to
909 // preserve LoopSimplifyForm.
910 if (remainderLoop)
911 formDedicatedExitBlocks(remainderLoop, DT, LI, PreserveLCSSA);
914 if (remainderLoop && UnrollRemainder) {
915 LLVM_DEBUG(dbgs() << "Unrolling remainder loop\n");
916 UnrollLoop(remainderLoop, /*Count*/ Count - 1, /*TripCount*/ Count - 1,
917 /*Force*/ false, /*AllowRuntime*/ false,
918 /*AllowExpensiveTripCount*/ false, /*PreserveCondBr*/ true,
919 /*PreserveOnlyFirst*/ false, /*TripMultiple*/ 1,
920 /*PeelCount*/ 0, /*UnrollRemainder*/ false, LI, SE, DT, AC,
921 /*ORE*/ nullptr, PreserveLCSSA);
924 NumRuntimeUnrolled++;
925 return true;