1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements some loop unrolling utilities for loops with run-time
11 // trip counts. See LoopUnroll.cpp for unrolling loops with compile-time
14 // The functions in this file are used to generate extra code when the
15 // run-time trip count modulo the unroll factor is not 0. When this is the
16 // case, we need to generate code to execute these 'left over' iterations.
18 // The current strategy generates an if-then-else sequence prior to the
19 // unrolled loop to execute the 'left over' iterations before or after the
22 //===----------------------------------------------------------------------===//
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/LoopIterator.h"
28 #include "llvm/Analysis/ScalarEvolution.h"
29 #include "llvm/Analysis/ScalarEvolutionExpander.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Transforms/Utils.h"
37 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
38 #include "llvm/Transforms/Utils/Cloning.h"
39 #include "llvm/Transforms/Utils/LoopUtils.h"
40 #include "llvm/Transforms/Utils/UnrollLoop.h"
45 #define DEBUG_TYPE "loop-unroll"
47 STATISTIC(NumRuntimeUnrolled
,
48 "Number of loops unrolled with run-time trip counts");
49 static cl::opt
<bool> UnrollRuntimeMultiExit(
50 "unroll-runtime-multi-exit", cl::init(false), cl::Hidden
,
51 cl::desc("Allow runtime unrolling for loops with multiple exits, when "
52 "epilog is generated"));
54 /// Connect the unrolling prolog code to the original loop.
55 /// The unrolling prolog code contains code to execute the
56 /// 'extra' iterations if the run-time trip count modulo the
57 /// unroll count is non-zero.
59 /// This function performs the following:
60 /// - Create PHI nodes at prolog end block to combine values
61 /// that exit the prolog code and jump around the prolog.
62 /// - Add a PHI operand to a PHI node at the loop exit block
63 /// for values that exit the prolog and go around the loop.
64 /// - Branch around the original loop if the trip count is less
65 /// than the unroll factor.
67 static void ConnectProlog(Loop
*L
, Value
*BECount
, unsigned Count
,
68 BasicBlock
*PrologExit
,
69 BasicBlock
*OriginalLoopLatchExit
,
70 BasicBlock
*PreHeader
, BasicBlock
*NewPreHeader
,
71 ValueToValueMapTy
&VMap
, DominatorTree
*DT
,
72 LoopInfo
*LI
, bool PreserveLCSSA
) {
73 BasicBlock
*Latch
= L
->getLoopLatch();
74 assert(Latch
&& "Loop must have a latch");
75 BasicBlock
*PrologLatch
= cast
<BasicBlock
>(VMap
[Latch
]);
77 // Create a PHI node for each outgoing value from the original loop
78 // (which means it is an outgoing value from the prolog code too).
79 // The new PHI node is inserted in the prolog end basic block.
80 // The new PHI node value is added as an operand of a PHI node in either
81 // the loop header or the loop exit block.
82 for (BasicBlock
*Succ
: successors(Latch
)) {
83 for (PHINode
&PN
: Succ
->phis()) {
84 // Add a new PHI node to the prolog end block and add the
85 // appropriate incoming values.
86 PHINode
*NewPN
= PHINode::Create(PN
.getType(), 2, PN
.getName() + ".unr",
87 PrologExit
->getFirstNonPHI());
88 // Adding a value to the new PHI node from the original loop preheader.
89 // This is the value that skips all the prolog code.
90 if (L
->contains(&PN
)) {
91 NewPN
->addIncoming(PN
.getIncomingValueForBlock(NewPreHeader
),
94 NewPN
->addIncoming(UndefValue::get(PN
.getType()), PreHeader
);
97 Value
*V
= PN
.getIncomingValueForBlock(Latch
);
98 if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
103 // Adding a value to the new PHI node from the last prolog block
105 NewPN
->addIncoming(V
, PrologLatch
);
107 // Update the existing PHI node operand with the value from the
108 // new PHI node. How this is done depends on if the existing
109 // PHI node is in the original loop block, or the exit block.
110 if (L
->contains(&PN
)) {
111 PN
.setIncomingValue(PN
.getBasicBlockIndex(NewPreHeader
), NewPN
);
113 PN
.addIncoming(NewPN
, PrologExit
);
118 // Make sure that created prolog loop is in simplified form
119 SmallVector
<BasicBlock
*, 4> PrologExitPreds
;
120 Loop
*PrologLoop
= LI
->getLoopFor(PrologLatch
);
122 for (BasicBlock
*PredBB
: predecessors(PrologExit
))
123 if (PrologLoop
->contains(PredBB
))
124 PrologExitPreds
.push_back(PredBB
);
126 SplitBlockPredecessors(PrologExit
, PrologExitPreds
, ".unr-lcssa", DT
, LI
,
127 nullptr, PreserveLCSSA
);
130 // Create a branch around the original loop, which is taken if there are no
131 // iterations remaining to be executed after running the prologue.
132 Instruction
*InsertPt
= PrologExit
->getTerminator();
133 IRBuilder
<> B(InsertPt
);
135 assert(Count
!= 0 && "nonsensical Count!");
137 // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1)
138 // This means %xtraiter is (BECount + 1) and all of the iterations of this
139 // loop were executed by the prologue. Note that if BECount <u (Count - 1)
140 // then (BECount + 1) cannot unsigned-overflow.
142 B
.CreateICmpULT(BECount
, ConstantInt::get(BECount
->getType(), Count
- 1));
143 // Split the exit to maintain loop canonicalization guarantees
144 SmallVector
<BasicBlock
*, 4> Preds(predecessors(OriginalLoopLatchExit
));
145 SplitBlockPredecessors(OriginalLoopLatchExit
, Preds
, ".unr-lcssa", DT
, LI
,
146 nullptr, PreserveLCSSA
);
147 // Add the branch to the exit block (around the unrolled loop)
148 B
.CreateCondBr(BrLoopExit
, OriginalLoopLatchExit
, NewPreHeader
);
149 InsertPt
->eraseFromParent();
151 DT
->changeImmediateDominator(OriginalLoopLatchExit
, PrologExit
);
154 /// Connect the unrolling epilog code to the original loop.
155 /// The unrolling epilog code contains code to execute the
156 /// 'extra' iterations if the run-time trip count modulo the
157 /// unroll count is non-zero.
159 /// This function performs the following:
160 /// - Update PHI nodes at the unrolling loop exit and epilog loop exit
161 /// - Create PHI nodes at the unrolling loop exit to combine
162 /// values that exit the unrolling loop code and jump around it.
163 /// - Update PHI operands in the epilog loop by the new PHI nodes
164 /// - Branch around the epilog loop if extra iters (ModVal) is zero.
166 static void ConnectEpilog(Loop
*L
, Value
*ModVal
, BasicBlock
*NewExit
,
167 BasicBlock
*Exit
, BasicBlock
*PreHeader
,
168 BasicBlock
*EpilogPreHeader
, BasicBlock
*NewPreHeader
,
169 ValueToValueMapTy
&VMap
, DominatorTree
*DT
,
170 LoopInfo
*LI
, bool PreserveLCSSA
) {
171 BasicBlock
*Latch
= L
->getLoopLatch();
172 assert(Latch
&& "Loop must have a latch");
173 BasicBlock
*EpilogLatch
= cast
<BasicBlock
>(VMap
[Latch
]);
175 // Loop structure should be the following:
189 // Update PHI nodes at NewExit and Exit.
190 for (PHINode
&PN
: NewExit
->phis()) {
191 // PN should be used in another PHI located in Exit block as
192 // Exit was split by SplitBlockPredecessors into Exit and NewExit
193 // Basicaly it should look like:
195 // PN = PHI [I, Latch]
198 // EpilogPN = PHI [PN, EpilogPreHeader]
200 // There is EpilogPreHeader incoming block instead of NewExit as
201 // NewExit was spilt 1 more time to get EpilogPreHeader.
202 assert(PN
.hasOneUse() && "The phi should have 1 use");
203 PHINode
*EpilogPN
= cast
<PHINode
>(PN
.use_begin()->getUser());
204 assert(EpilogPN
->getParent() == Exit
&& "EpilogPN should be in Exit block");
206 // Add incoming PreHeader from branch around the Loop
207 PN
.addIncoming(UndefValue::get(PN
.getType()), PreHeader
);
209 Value
*V
= PN
.getIncomingValueForBlock(Latch
);
210 Instruction
*I
= dyn_cast
<Instruction
>(V
);
211 if (I
&& L
->contains(I
))
212 // If value comes from an instruction in the loop add VMap value.
214 // For the instruction out of the loop, constant or undefined value
215 // insert value itself.
216 EpilogPN
->addIncoming(V
, EpilogLatch
);
218 assert(EpilogPN
->getBasicBlockIndex(EpilogPreHeader
) >= 0 &&
219 "EpilogPN should have EpilogPreHeader incoming block");
220 // Change EpilogPreHeader incoming block to NewExit.
221 EpilogPN
->setIncomingBlock(EpilogPN
->getBasicBlockIndex(EpilogPreHeader
),
223 // Now PHIs should look like:
225 // PN = PHI [I, Latch], [undef, PreHeader]
228 // EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch]
231 // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader).
232 // Update corresponding PHI nodes in epilog loop.
233 for (BasicBlock
*Succ
: successors(Latch
)) {
234 // Skip this as we already updated phis in exit blocks.
235 if (!L
->contains(Succ
))
237 for (PHINode
&PN
: Succ
->phis()) {
238 // Add new PHI nodes to the loop exit block and update epilog
239 // PHIs with the new PHI values.
240 PHINode
*NewPN
= PHINode::Create(PN
.getType(), 2, PN
.getName() + ".unr",
241 NewExit
->getFirstNonPHI());
242 // Adding a value to the new PHI node from the unrolling loop preheader.
243 NewPN
->addIncoming(PN
.getIncomingValueForBlock(NewPreHeader
), PreHeader
);
244 // Adding a value to the new PHI node from the unrolling loop latch.
245 NewPN
->addIncoming(PN
.getIncomingValueForBlock(Latch
), Latch
);
247 // Update the existing PHI node operand with the value from the new PHI
248 // node. Corresponding instruction in epilog loop should be PHI.
249 PHINode
*VPN
= cast
<PHINode
>(VMap
[&PN
]);
250 VPN
->setIncomingValue(VPN
->getBasicBlockIndex(EpilogPreHeader
), NewPN
);
254 Instruction
*InsertPt
= NewExit
->getTerminator();
255 IRBuilder
<> B(InsertPt
);
256 Value
*BrLoopExit
= B
.CreateIsNotNull(ModVal
, "lcmp.mod");
257 assert(Exit
&& "Loop must have a single exit block only");
258 // Split the epilogue exit to maintain loop canonicalization guarantees
259 SmallVector
<BasicBlock
*, 4> Preds(predecessors(Exit
));
260 SplitBlockPredecessors(Exit
, Preds
, ".epilog-lcssa", DT
, LI
, nullptr,
262 // Add the branch to the exit block (around the unrolling loop)
263 B
.CreateCondBr(BrLoopExit
, EpilogPreHeader
, Exit
);
264 InsertPt
->eraseFromParent();
266 DT
->changeImmediateDominator(Exit
, NewExit
);
268 // Split the main loop exit to maintain canonicalization guarantees.
269 SmallVector
<BasicBlock
*, 4> NewExitPreds
{Latch
};
270 SplitBlockPredecessors(NewExit
, NewExitPreds
, ".loopexit", DT
, LI
, nullptr,
274 /// Create a clone of the blocks in a loop and connect them together.
275 /// If CreateRemainderLoop is false, loop structure will not be cloned,
276 /// otherwise a new loop will be created including all cloned blocks, and the
277 /// iterator of it switches to count NewIter down to 0.
278 /// The cloned blocks should be inserted between InsertTop and InsertBot.
279 /// If loop structure is cloned InsertTop should be new preheader, InsertBot
281 /// Return the new cloned loop that is created when CreateRemainderLoop is true.
283 CloneLoopBlocks(Loop
*L
, Value
*NewIter
, const bool CreateRemainderLoop
,
284 const bool UseEpilogRemainder
, const bool UnrollRemainder
,
285 BasicBlock
*InsertTop
,
286 BasicBlock
*InsertBot
, BasicBlock
*Preheader
,
287 std::vector
<BasicBlock
*> &NewBlocks
, LoopBlocksDFS
&LoopBlocks
,
288 ValueToValueMapTy
&VMap
, DominatorTree
*DT
, LoopInfo
*LI
) {
289 StringRef suffix
= UseEpilogRemainder
? "epil" : "prol";
290 BasicBlock
*Header
= L
->getHeader();
291 BasicBlock
*Latch
= L
->getLoopLatch();
292 Function
*F
= Header
->getParent();
293 LoopBlocksDFS::RPOIterator BlockBegin
= LoopBlocks
.beginRPO();
294 LoopBlocksDFS::RPOIterator BlockEnd
= LoopBlocks
.endRPO();
295 Loop
*ParentLoop
= L
->getParentLoop();
296 NewLoopsMap NewLoops
;
297 NewLoops
[ParentLoop
] = ParentLoop
;
298 if (!CreateRemainderLoop
)
299 NewLoops
[L
] = ParentLoop
;
301 // For each block in the original loop, create a new copy,
302 // and update the value map with the newly created values.
303 for (LoopBlocksDFS::RPOIterator BB
= BlockBegin
; BB
!= BlockEnd
; ++BB
) {
304 BasicBlock
*NewBB
= CloneBasicBlock(*BB
, VMap
, "." + suffix
, F
);
305 NewBlocks
.push_back(NewBB
);
307 // If we're unrolling the outermost loop, there's no remainder loop,
308 // and this block isn't in a nested loop, then the new block is not
309 // in any loop. Otherwise, add it to loopinfo.
310 if (CreateRemainderLoop
|| LI
->getLoopFor(*BB
) != L
|| ParentLoop
)
311 addClonedBlockToLoopInfo(*BB
, NewBB
, LI
, NewLoops
);
315 // For the first block, add a CFG connection to this newly
317 InsertTop
->getTerminator()->setSuccessor(0, NewBB
);
322 // The header is dominated by the preheader.
323 DT
->addNewBlock(NewBB
, InsertTop
);
325 // Copy information from original loop to unrolled loop.
326 BasicBlock
*IDomBB
= DT
->getNode(*BB
)->getIDom()->getBlock();
327 DT
->addNewBlock(NewBB
, cast
<BasicBlock
>(VMap
[IDomBB
]));
332 // For the last block, if CreateRemainderLoop is false, create a direct
333 // jump to InsertBot. If not, create a loop back to cloned head.
334 VMap
.erase((*BB
)->getTerminator());
335 BasicBlock
*FirstLoopBB
= cast
<BasicBlock
>(VMap
[Header
]);
336 BranchInst
*LatchBR
= cast
<BranchInst
>(NewBB
->getTerminator());
337 IRBuilder
<> Builder(LatchBR
);
338 if (!CreateRemainderLoop
) {
339 Builder
.CreateBr(InsertBot
);
341 PHINode
*NewIdx
= PHINode::Create(NewIter
->getType(), 2,
343 FirstLoopBB
->getFirstNonPHI());
345 Builder
.CreateSub(NewIdx
, ConstantInt::get(NewIdx
->getType(), 1),
346 NewIdx
->getName() + ".sub");
348 Builder
.CreateIsNotNull(IdxSub
, NewIdx
->getName() + ".cmp");
349 Builder
.CreateCondBr(IdxCmp
, FirstLoopBB
, InsertBot
);
350 NewIdx
->addIncoming(NewIter
, InsertTop
);
351 NewIdx
->addIncoming(IdxSub
, NewBB
);
353 LatchBR
->eraseFromParent();
357 // Change the incoming values to the ones defined in the preheader or
359 for (BasicBlock::iterator I
= Header
->begin(); isa
<PHINode
>(I
); ++I
) {
360 PHINode
*NewPHI
= cast
<PHINode
>(VMap
[&*I
]);
361 if (!CreateRemainderLoop
) {
362 if (UseEpilogRemainder
) {
363 unsigned idx
= NewPHI
->getBasicBlockIndex(Preheader
);
364 NewPHI
->setIncomingBlock(idx
, InsertTop
);
365 NewPHI
->removeIncomingValue(Latch
, false);
367 VMap
[&*I
] = NewPHI
->getIncomingValueForBlock(Preheader
);
368 cast
<BasicBlock
>(VMap
[Header
])->getInstList().erase(NewPHI
);
371 unsigned idx
= NewPHI
->getBasicBlockIndex(Preheader
);
372 NewPHI
->setIncomingBlock(idx
, InsertTop
);
373 BasicBlock
*NewLatch
= cast
<BasicBlock
>(VMap
[Latch
]);
374 idx
= NewPHI
->getBasicBlockIndex(Latch
);
375 Value
*InVal
= NewPHI
->getIncomingValue(idx
);
376 NewPHI
->setIncomingBlock(idx
, NewLatch
);
377 if (Value
*V
= VMap
.lookup(InVal
))
378 NewPHI
->setIncomingValue(idx
, V
);
381 if (CreateRemainderLoop
) {
382 Loop
*NewLoop
= NewLoops
[L
];
383 assert(NewLoop
&& "L should have been cloned");
385 // Only add loop metadata if the loop is not going to be completely
390 // Add unroll disable metadata to disable future unrolling for this loop.
391 NewLoop
->setLoopAlreadyUnrolled();
398 /// Returns true if we can safely unroll a multi-exit/exiting loop. OtherExits
399 /// is populated with all the loop exit blocks other than the LatchExit block.
401 canSafelyUnrollMultiExitLoop(Loop
*L
, SmallVectorImpl
<BasicBlock
*> &OtherExits
,
402 BasicBlock
*LatchExit
, bool PreserveLCSSA
,
403 bool UseEpilogRemainder
) {
405 // We currently have some correctness constrains in unrolling a multi-exit
406 // loop. Check for these below.
408 // We rely on LCSSA form being preserved when the exit blocks are transformed.
411 SmallVector
<BasicBlock
*, 4> Exits
;
412 L
->getUniqueExitBlocks(Exits
);
413 for (auto *BB
: Exits
)
415 OtherExits
.push_back(BB
);
417 // TODO: Support multiple exiting blocks jumping to the `LatchExit` when
418 // UnrollRuntimeMultiExit is true. This will need updating the logic in
419 // connectEpilog/connectProlog.
420 if (!LatchExit
->getSinglePredecessor()) {
422 dbgs() << "Bailout for multi-exit handling when latch exit has >1 "
426 // FIXME: We bail out of multi-exit unrolling when epilog loop is generated
427 // and L is an inner loop. This is because in presence of multiple exits, the
428 // outer loop is incorrect: we do not add the EpilogPreheader and exit to the
429 // outer loop. This is automatically handled in the prolog case, so we do not
430 // have that bug in prolog generation.
431 if (UseEpilogRemainder
&& L
->getParentLoop())
434 // All constraints have been satisfied.
438 /// Returns true if we can profitably unroll the multi-exit loop L. Currently,
439 /// we return true only if UnrollRuntimeMultiExit is set to true.
440 static bool canProfitablyUnrollMultiExitLoop(
441 Loop
*L
, SmallVectorImpl
<BasicBlock
*> &OtherExits
, BasicBlock
*LatchExit
,
442 bool PreserveLCSSA
, bool UseEpilogRemainder
) {
445 SmallVector
<BasicBlock
*, 8> OtherExitsDummyCheck
;
446 assert(canSafelyUnrollMultiExitLoop(L
, OtherExitsDummyCheck
, LatchExit
,
447 PreserveLCSSA
, UseEpilogRemainder
) &&
448 "Should be safe to unroll before checking profitability!");
451 // Priority goes to UnrollRuntimeMultiExit if it's supplied.
452 if (UnrollRuntimeMultiExit
.getNumOccurrences())
453 return UnrollRuntimeMultiExit
;
455 // The main pain point with multi-exit loop unrolling is that once unrolled,
456 // we will not be able to merge all blocks into a straight line code.
457 // There are branches within the unrolled loop that go to the OtherExits.
458 // The second point is the increase in code size, but this is true
459 // irrespective of multiple exits.
461 // Note: Both the heuristics below are coarse grained. We are essentially
462 // enabling unrolling of loops that have a single side exit other than the
463 // normal LatchExit (i.e. exiting into a deoptimize block).
464 // The heuristics considered are:
465 // 1. low number of branches in the unrolled version.
466 // 2. high predictability of these extra branches.
467 // We avoid unrolling loops that have more than two exiting blocks. This
468 // limits the total number of branches in the unrolled loop to be atmost
469 // the unroll factor (since one of the exiting blocks is the latch block).
470 SmallVector
<BasicBlock
*, 4> ExitingBlocks
;
471 L
->getExitingBlocks(ExitingBlocks
);
472 if (ExitingBlocks
.size() > 2)
475 // The second heuristic is that L has one exit other than the latchexit and
476 // that exit is a deoptimize block. We know that deoptimize blocks are rarely
477 // taken, which also implies the branch leading to the deoptimize block is
478 // highly predictable.
479 return (OtherExits
.size() == 1 &&
480 OtherExits
[0]->getTerminatingDeoptimizeCall());
481 // TODO: These can be fine-tuned further to consider code size or deopt states
482 // that are captured by the deoptimize exit block.
483 // Also, we can extend this to support more cases, if we actually
484 // know of kinds of multiexit loops that would benefit from unrolling.
487 /// Insert code in the prolog/epilog code when unrolling a loop with a
488 /// run-time trip-count.
490 /// This method assumes that the loop unroll factor is total number
491 /// of loop bodies in the loop after unrolling. (Some folks refer
492 /// to the unroll factor as the number of *extra* copies added).
493 /// We assume also that the loop unroll factor is a power-of-two. So, after
494 /// unrolling the loop, the number of loop bodies executed is 2,
495 /// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch
496 /// instruction in SimplifyCFG.cpp. Then, the backend decides how code for
497 /// the switch instruction is generated.
499 /// ***Prolog case***
500 /// extraiters = tripcount % loopfactor
501 /// if (extraiters == 0) jump Loop:
504 /// extraiters -= 1 // Omitted if unroll factor is 2.
505 /// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
506 /// if (tripcount < loopfactor) jump End:
511 /// ***Epilog case***
512 /// extraiters = tripcount % loopfactor
513 /// if (tripcount < loopfactor) jump LoopExit:
514 /// unroll_iters = tripcount - extraiters
515 /// Loop: LoopBody; (executes unroll_iter times);
517 /// if (unroll_iter != 0) jump Loop:
519 /// if (extraiters == 0) jump EpilExit:
520 /// Epil: LoopBody; (executes extraiters times)
521 /// extraiters -= 1 // Omitted if unroll factor is 2.
522 /// if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2.
525 bool llvm::UnrollRuntimeLoopRemainder(Loop
*L
, unsigned Count
,
526 bool AllowExpensiveTripCount
,
527 bool UseEpilogRemainder
,
528 bool UnrollRemainder
,
529 LoopInfo
*LI
, ScalarEvolution
*SE
,
530 DominatorTree
*DT
, AssumptionCache
*AC
,
531 bool PreserveLCSSA
) {
532 LLVM_DEBUG(dbgs() << "Trying runtime unrolling on Loop: \n");
533 LLVM_DEBUG(L
->dump());
534 LLVM_DEBUG(UseEpilogRemainder
? dbgs() << "Using epilog remainder.\n"
535 : dbgs() << "Using prolog remainder.\n");
537 // Make sure the loop is in canonical form.
538 if (!L
->isLoopSimplifyForm()) {
539 LLVM_DEBUG(dbgs() << "Not in simplify form!\n");
543 // Guaranteed by LoopSimplifyForm.
544 BasicBlock
*Latch
= L
->getLoopLatch();
545 BasicBlock
*Header
= L
->getHeader();
547 BranchInst
*LatchBR
= cast
<BranchInst
>(Latch
->getTerminator());
549 if (!LatchBR
|| LatchBR
->isUnconditional()) {
550 // The loop-rotate pass can be helpful to avoid this in many cases.
553 << "Loop latch not terminated by a conditional branch.\n");
557 unsigned ExitIndex
= LatchBR
->getSuccessor(0) == Header
? 1 : 0;
558 BasicBlock
*LatchExit
= LatchBR
->getSuccessor(ExitIndex
);
560 if (L
->contains(LatchExit
)) {
561 // Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the
562 // targets of the Latch be an exit block out of the loop.
565 << "One of the loop latch successors must be the exit block.\n");
569 // These are exit blocks other than the target of the latch exiting block.
570 SmallVector
<BasicBlock
*, 4> OtherExits
;
571 bool isMultiExitUnrollingEnabled
=
572 canSafelyUnrollMultiExitLoop(L
, OtherExits
, LatchExit
, PreserveLCSSA
,
573 UseEpilogRemainder
) &&
574 canProfitablyUnrollMultiExitLoop(L
, OtherExits
, LatchExit
, PreserveLCSSA
,
576 // Support only single exit and exiting block unless multi-exit loop unrolling is enabled.
577 if (!isMultiExitUnrollingEnabled
&&
578 (!L
->getExitingBlock() || OtherExits
.size())) {
581 << "Multiple exit/exiting blocks in loop and multi-exit unrolling not "
585 // Use Scalar Evolution to compute the trip count. This allows more loops to
586 // be unrolled than relying on induction var simplification.
590 // Only unroll loops with a computable trip count, and the trip count needs
591 // to be an int value (allowing a pointer type is a TODO item).
592 // We calculate the backedge count by using getExitCount on the Latch block,
593 // which is proven to be the only exiting block in this loop. This is same as
594 // calculating getBackedgeTakenCount on the loop (which computes SCEV for all
596 const SCEV
*BECountSC
= SE
->getExitCount(L
, Latch
);
597 if (isa
<SCEVCouldNotCompute
>(BECountSC
) ||
598 !BECountSC
->getType()->isIntegerTy()) {
599 LLVM_DEBUG(dbgs() << "Could not compute exit block SCEV\n");
603 unsigned BEWidth
= cast
<IntegerType
>(BECountSC
->getType())->getBitWidth();
605 // Add 1 since the backedge count doesn't include the first loop iteration.
606 const SCEV
*TripCountSC
=
607 SE
->getAddExpr(BECountSC
, SE
->getConstant(BECountSC
->getType(), 1));
608 if (isa
<SCEVCouldNotCompute
>(TripCountSC
)) {
609 LLVM_DEBUG(dbgs() << "Could not compute trip count SCEV.\n");
613 BasicBlock
*PreHeader
= L
->getLoopPreheader();
614 BranchInst
*PreHeaderBR
= cast
<BranchInst
>(PreHeader
->getTerminator());
615 const DataLayout
&DL
= Header
->getModule()->getDataLayout();
616 SCEVExpander
Expander(*SE
, DL
, "loop-unroll");
617 if (!AllowExpensiveTripCount
&&
618 Expander
.isHighCostExpansion(TripCountSC
, L
, PreHeaderBR
)) {
619 LLVM_DEBUG(dbgs() << "High cost for expanding trip count scev!\n");
623 // This constraint lets us deal with an overflowing trip count easily; see the
624 // comment on ModVal below.
625 if (Log2_32(Count
) > BEWidth
) {
628 << "Count failed constraint on overflow trip count calculation.\n");
632 // Loop structure is the following:
640 BasicBlock
*NewPreHeader
;
641 BasicBlock
*NewExit
= nullptr;
642 BasicBlock
*PrologExit
= nullptr;
643 BasicBlock
*EpilogPreHeader
= nullptr;
644 BasicBlock
*PrologPreHeader
= nullptr;
646 if (UseEpilogRemainder
) {
647 // If epilog remainder
648 // Split PreHeader to insert a branch around loop for unrolling.
649 NewPreHeader
= SplitBlock(PreHeader
, PreHeader
->getTerminator(), DT
, LI
);
650 NewPreHeader
->setName(PreHeader
->getName() + ".new");
651 // Split LatchExit to create phi nodes from branch above.
652 SmallVector
<BasicBlock
*, 4> Preds(predecessors(LatchExit
));
653 NewExit
= SplitBlockPredecessors(LatchExit
, Preds
, ".unr-lcssa", DT
, LI
,
654 nullptr, PreserveLCSSA
);
655 // NewExit gets its DebugLoc from LatchExit, which is not part of the
657 // Fix this by setting Loop's DebugLoc to NewExit.
658 auto *NewExitTerminator
= NewExit
->getTerminator();
659 NewExitTerminator
->setDebugLoc(Header
->getTerminator()->getDebugLoc());
660 // Split NewExit to insert epilog remainder loop.
661 EpilogPreHeader
= SplitBlock(NewExit
, NewExitTerminator
, DT
, LI
);
662 EpilogPreHeader
->setName(Header
->getName() + ".epil.preheader");
664 // If prolog remainder
665 // Split the original preheader twice to insert prolog remainder loop
666 PrologPreHeader
= SplitEdge(PreHeader
, Header
, DT
, LI
);
667 PrologPreHeader
->setName(Header
->getName() + ".prol.preheader");
668 PrologExit
= SplitBlock(PrologPreHeader
, PrologPreHeader
->getTerminator(),
670 PrologExit
->setName(Header
->getName() + ".prol.loopexit");
671 // Split PrologExit to get NewPreHeader.
672 NewPreHeader
= SplitBlock(PrologExit
, PrologExit
->getTerminator(), DT
, LI
);
673 NewPreHeader
->setName(PreHeader
->getName() + ".new");
675 // Loop structure should be the following:
678 // PreHeader PreHeader
679 // *NewPreHeader *PrologPreHeader
680 // Header *PrologExit
684 // *EpilogPreHeader Latch
685 // LatchExit LatchExit
687 // Calculate conditions for branch around loop for unrolling
688 // in epilog case and around prolog remainder loop in prolog case.
689 // Compute the number of extra iterations required, which is:
690 // extra iterations = run-time trip count % loop unroll factor
691 PreHeaderBR
= cast
<BranchInst
>(PreHeader
->getTerminator());
692 Value
*TripCount
= Expander
.expandCodeFor(TripCountSC
, TripCountSC
->getType(),
694 Value
*BECount
= Expander
.expandCodeFor(BECountSC
, BECountSC
->getType(),
696 IRBuilder
<> B(PreHeaderBR
);
698 // Calculate ModVal = (BECount + 1) % Count.
699 // Note that TripCount is BECount + 1.
700 if (isPowerOf2_32(Count
)) {
701 // When Count is power of 2 we don't BECount for epilog case, however we'll
702 // need it for a branch around unrolling loop for prolog case.
703 ModVal
= B
.CreateAnd(TripCount
, Count
- 1, "xtraiter");
704 // 1. There are no iterations to be run in the prolog/epilog loop.
706 // 2. The addition computing TripCount overflowed.
708 // If (2) is true, we know that TripCount really is (1 << BEWidth) and so
709 // the number of iterations that remain to be run in the original loop is a
710 // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we
711 // explicitly check this above).
713 // As (BECount + 1) can potentially unsigned overflow we count
714 // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count.
715 Value
*ModValTmp
= B
.CreateURem(BECount
,
716 ConstantInt::get(BECount
->getType(),
718 Value
*ModValAdd
= B
.CreateAdd(ModValTmp
,
719 ConstantInt::get(ModValTmp
->getType(), 1));
720 // At that point (BECount % Count) + 1 could be equal to Count.
721 // To handle this case we need to take mod by Count one more time.
722 ModVal
= B
.CreateURem(ModValAdd
,
723 ConstantInt::get(BECount
->getType(), Count
),
727 UseEpilogRemainder
? B
.CreateICmpULT(BECount
,
728 ConstantInt::get(BECount
->getType(),
730 B
.CreateIsNotNull(ModVal
, "lcmp.mod");
731 BasicBlock
*RemainderLoop
= UseEpilogRemainder
? NewExit
: PrologPreHeader
;
732 BasicBlock
*UnrollingLoop
= UseEpilogRemainder
? NewPreHeader
: PrologExit
;
733 // Branch to either remainder (extra iterations) loop or unrolling loop.
734 B
.CreateCondBr(BranchVal
, RemainderLoop
, UnrollingLoop
);
735 PreHeaderBR
->eraseFromParent();
737 if (UseEpilogRemainder
)
738 DT
->changeImmediateDominator(NewExit
, PreHeader
);
740 DT
->changeImmediateDominator(PrologExit
, PreHeader
);
742 Function
*F
= Header
->getParent();
743 // Get an ordered list of blocks in the loop to help with the ordering of the
744 // cloned blocks in the prolog/epilog code
745 LoopBlocksDFS
LoopBlocks(L
);
746 LoopBlocks
.perform(LI
);
749 // For each extra loop iteration, create a copy of the loop's basic blocks
750 // and generate a condition that branches to the copy depending on the
751 // number of 'left over' iterations.
753 std::vector
<BasicBlock
*> NewBlocks
;
754 ValueToValueMapTy VMap
;
756 // For unroll factor 2 remainder loop will have 1 iterations.
757 // Do not create 1 iteration loop.
758 bool CreateRemainderLoop
= (Count
!= 2);
760 // Clone all the basic blocks in the loop. If Count is 2, we don't clone
761 // the loop, otherwise we create a cloned loop to execute the extra
762 // iterations. This function adds the appropriate CFG connections.
763 BasicBlock
*InsertBot
= UseEpilogRemainder
? LatchExit
: PrologExit
;
764 BasicBlock
*InsertTop
= UseEpilogRemainder
? EpilogPreHeader
: PrologPreHeader
;
765 Loop
*remainderLoop
= CloneLoopBlocks(
766 L
, ModVal
, CreateRemainderLoop
, UseEpilogRemainder
, UnrollRemainder
,
767 InsertTop
, InsertBot
,
768 NewPreHeader
, NewBlocks
, LoopBlocks
, VMap
, DT
, LI
);
770 // Insert the cloned blocks into the function.
771 F
->getBasicBlockList().splice(InsertBot
->getIterator(),
772 F
->getBasicBlockList(),
773 NewBlocks
[0]->getIterator(),
776 // Now the loop blocks are cloned and the other exiting blocks from the
777 // remainder are connected to the original Loop's exit blocks. The remaining
778 // work is to update the phi nodes in the original loop, and take in the
779 // values from the cloned region. Also update the dominator info for
780 // OtherExits and their immediate successors, since we have new edges into
782 SmallPtrSet
<BasicBlock
*, 8> ImmediateSuccessorsOfExitBlocks
;
783 for (auto *BB
: OtherExits
) {
784 for (auto &II
: *BB
) {
786 // Given we preserve LCSSA form, we know that the values used outside the
787 // loop will be used through these phi nodes at the exit blocks that are
788 // transformed below.
789 if (!isa
<PHINode
>(II
))
791 PHINode
*Phi
= cast
<PHINode
>(&II
);
792 unsigned oldNumOperands
= Phi
->getNumIncomingValues();
793 // Add the incoming values from the remainder code to the end of the phi
795 for (unsigned i
=0; i
< oldNumOperands
; i
++){
796 Value
*newVal
= VMap
.lookup(Phi
->getIncomingValue(i
));
797 // newVal can be a constant or derived from values outside the loop, and
798 // hence need not have a VMap value. Also, since lookup already generated
799 // a default "null" VMap entry for this value, we need to populate that
800 // VMap entry correctly, with the mapped entry being itself.
802 newVal
= Phi
->getIncomingValue(i
);
803 VMap
[Phi
->getIncomingValue(i
)] = Phi
->getIncomingValue(i
);
805 Phi
->addIncoming(newVal
,
806 cast
<BasicBlock
>(VMap
[Phi
->getIncomingBlock(i
)]));
809 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
810 for (BasicBlock
*SuccBB
: successors(BB
)) {
811 assert(!(any_of(OtherExits
,
812 [SuccBB
](BasicBlock
*EB
) { return EB
== SuccBB
; }) ||
813 SuccBB
== LatchExit
) &&
814 "Breaks the definition of dedicated exits!");
817 // Update the dominator info because the immediate dominator is no longer the
818 // header of the original Loop. BB has edges both from L and remainder code.
819 // Since the preheader determines which loop is run (L or directly jump to
820 // the remainder code), we set the immediate dominator as the preheader.
822 DT
->changeImmediateDominator(BB
, PreHeader
);
823 // Also update the IDom for immediate successors of BB. If the current
824 // IDom is the header, update the IDom to be the preheader because that is
825 // the nearest common dominator of all predecessors of SuccBB. We need to
826 // check for IDom being the header because successors of exit blocks can
827 // have edges from outside the loop, and we should not incorrectly update
828 // the IDom in that case.
829 for (BasicBlock
*SuccBB
: successors(BB
))
830 if (ImmediateSuccessorsOfExitBlocks
.insert(SuccBB
).second
) {
831 if (DT
->getNode(SuccBB
)->getIDom()->getBlock() == Header
) {
832 assert(!SuccBB
->getSinglePredecessor() &&
833 "BB should be the IDom then!");
834 DT
->changeImmediateDominator(SuccBB
, PreHeader
);
840 // Loop structure should be the following:
843 // PreHeader PreHeader
844 // NewPreHeader PrologPreHeader
845 // Header PrologHeader
848 // NewExit PrologExit
849 // EpilogPreHeader NewPreHeader
850 // EpilogHeader Header
853 // LatchExit LatchExit
855 // Rewrite the cloned instruction operands to use the values created when the
857 for (BasicBlock
*BB
: NewBlocks
) {
858 for (Instruction
&I
: *BB
) {
859 RemapInstruction(&I
, VMap
,
860 RF_NoModuleLevelChanges
| RF_IgnoreMissingLocals
);
864 if (UseEpilogRemainder
) {
865 // Connect the epilog code to the original loop and update the
867 ConnectEpilog(L
, ModVal
, NewExit
, LatchExit
, PreHeader
,
868 EpilogPreHeader
, NewPreHeader
, VMap
, DT
, LI
,
871 // Update counter in loop for unrolling.
872 // I should be multiply of Count.
873 IRBuilder
<> B2(NewPreHeader
->getTerminator());
874 Value
*TestVal
= B2
.CreateSub(TripCount
, ModVal
, "unroll_iter");
875 BranchInst
*LatchBR
= cast
<BranchInst
>(Latch
->getTerminator());
876 B2
.SetInsertPoint(LatchBR
);
877 PHINode
*NewIdx
= PHINode::Create(TestVal
->getType(), 2, "niter",
878 Header
->getFirstNonPHI());
880 B2
.CreateSub(NewIdx
, ConstantInt::get(NewIdx
->getType(), 1),
881 NewIdx
->getName() + ".nsub");
883 if (LatchBR
->getSuccessor(0) == Header
)
884 IdxCmp
= B2
.CreateIsNotNull(IdxSub
, NewIdx
->getName() + ".ncmp");
886 IdxCmp
= B2
.CreateIsNull(IdxSub
, NewIdx
->getName() + ".ncmp");
887 NewIdx
->addIncoming(TestVal
, NewPreHeader
);
888 NewIdx
->addIncoming(IdxSub
, Latch
);
889 LatchBR
->setCondition(IdxCmp
);
891 // Connect the prolog code to the original loop and update the
893 ConnectProlog(L
, BECount
, Count
, PrologExit
, LatchExit
, PreHeader
,
894 NewPreHeader
, VMap
, DT
, LI
, PreserveLCSSA
);
897 // If this loop is nested, then the loop unroller changes the code in the any
898 // of its parent loops, so the Scalar Evolution pass needs to be run again.
899 SE
->forgetTopmostLoop(L
);
901 // Canonicalize to LoopSimplifyForm both original and remainder loops. We
902 // cannot rely on the LoopUnrollPass to do this because it only does
903 // canonicalization for parent/subloops and not the sibling loops.
904 if (OtherExits
.size() > 0) {
905 // Generate dedicated exit blocks for the original loop, to preserve
907 formDedicatedExitBlocks(L
, DT
, LI
, PreserveLCSSA
);
908 // Generate dedicated exit blocks for the remainder loop if one exists, to
909 // preserve LoopSimplifyForm.
911 formDedicatedExitBlocks(remainderLoop
, DT
, LI
, PreserveLCSSA
);
914 if (remainderLoop
&& UnrollRemainder
) {
915 LLVM_DEBUG(dbgs() << "Unrolling remainder loop\n");
916 UnrollLoop(remainderLoop
, /*Count*/ Count
- 1, /*TripCount*/ Count
- 1,
917 /*Force*/ false, /*AllowRuntime*/ false,
918 /*AllowExpensiveTripCount*/ false, /*PreserveCondBr*/ true,
919 /*PreserveOnlyFirst*/ false, /*TripMultiple*/ 1,
920 /*PeelCount*/ 0, /*UnrollRemainder*/ false, LI
, SE
, DT
, AC
,
921 /*ORE*/ nullptr, PreserveLCSSA
);
924 NumRuntimeUnrolled
++;