[ValueTracking] Remove unused matchSelectPattern optional argument. NFCI.
[llvm-core.git] / include / llvm / MC / MCInstrDesc.h
blobb119d90f6513f5df58589379ab45c86fc6e631ca
1 //===-- llvm/MC/MCInstrDesc.h - Instruction Descriptors -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the MCOperandInfo and MCInstrDesc classes, which
10 // are used to describe target instructions and their operands.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_MC_MCINSTRDESC_H
15 #define LLVM_MC_MCINSTRDESC_H
17 #include "llvm/MC/MCRegisterInfo.h"
18 #include "llvm/Support/DataTypes.h"
19 #include <string>
21 namespace llvm {
22 class MCInst;
23 class MCSubtargetInfo;
24 class FeatureBitset;
26 //===----------------------------------------------------------------------===//
27 // Machine Operand Flags and Description
28 //===----------------------------------------------------------------------===//
30 namespace MCOI {
31 // Operand constraints
32 enum OperandConstraint {
33 TIED_TO = 0, // Must be allocated the same register as.
34 EARLY_CLOBBER // Operand is an early clobber register operand
37 /// These are flags set on operands, but should be considered
38 /// private, all access should go through the MCOperandInfo accessors.
39 /// See the accessors for a description of what these are.
40 enum OperandFlags { LookupPtrRegClass = 0, Predicate, OptionalDef };
42 /// Operands are tagged with one of the values of this enum.
43 enum OperandType {
44 OPERAND_UNKNOWN = 0,
45 OPERAND_IMMEDIATE = 1,
46 OPERAND_REGISTER = 2,
47 OPERAND_MEMORY = 3,
48 OPERAND_PCREL = 4,
50 OPERAND_FIRST_GENERIC = 6,
51 OPERAND_GENERIC_0 = 6,
52 OPERAND_GENERIC_1 = 7,
53 OPERAND_GENERIC_2 = 8,
54 OPERAND_GENERIC_3 = 9,
55 OPERAND_GENERIC_4 = 10,
56 OPERAND_GENERIC_5 = 11,
57 OPERAND_LAST_GENERIC = 11,
59 OPERAND_FIRST_GENERIC_IMM = 12,
60 OPERAND_GENERIC_IMM_0 = 12,
61 OPERAND_LAST_GENERIC_IMM = 12,
63 OPERAND_FIRST_TARGET = 13,
68 /// This holds information about one operand of a machine instruction,
69 /// indicating the register class for register operands, etc.
70 class MCOperandInfo {
71 public:
72 /// This specifies the register class enumeration of the operand
73 /// if the operand is a register. If isLookupPtrRegClass is set, then this is
74 /// an index that is passed to TargetRegisterInfo::getPointerRegClass(x) to
75 /// get a dynamic register class.
76 int16_t RegClass;
78 /// These are flags from the MCOI::OperandFlags enum.
79 uint8_t Flags;
81 /// Information about the type of the operand.
82 uint8_t OperandType;
83 /// The lower 16 bits are used to specify which constraints are set.
84 /// The higher 16 bits are used to specify the value of constraints (4 bits
85 /// each).
86 uint32_t Constraints;
88 /// Set if this operand is a pointer value and it requires a callback
89 /// to look up its register class.
90 bool isLookupPtrRegClass() const {
91 return Flags & (1 << MCOI::LookupPtrRegClass);
94 /// Set if this is one of the operands that made up of the predicate
95 /// operand that controls an isPredicable() instruction.
96 bool isPredicate() const { return Flags & (1 << MCOI::Predicate); }
98 /// Set if this operand is a optional def.
99 bool isOptionalDef() const { return Flags & (1 << MCOI::OptionalDef); }
101 bool isGenericType() const {
102 return OperandType >= MCOI::OPERAND_FIRST_GENERIC &&
103 OperandType <= MCOI::OPERAND_LAST_GENERIC;
106 unsigned getGenericTypeIndex() const {
107 assert(isGenericType() && "non-generic types don't have an index");
108 return OperandType - MCOI::OPERAND_FIRST_GENERIC;
111 bool isGenericImm() const {
112 return OperandType >= MCOI::OPERAND_FIRST_GENERIC_IMM &&
113 OperandType <= MCOI::OPERAND_LAST_GENERIC_IMM;
116 unsigned getGenericImmIndex() const {
117 assert(isGenericImm() && "non-generic immediates don't have an index");
118 return OperandType - MCOI::OPERAND_FIRST_GENERIC_IMM;
122 //===----------------------------------------------------------------------===//
123 // Machine Instruction Flags and Description
124 //===----------------------------------------------------------------------===//
126 namespace MCID {
127 /// These should be considered private to the implementation of the
128 /// MCInstrDesc class. Clients should use the predicate methods on MCInstrDesc,
129 /// not use these directly. These all correspond to bitfields in the
130 /// MCInstrDesc::Flags field.
131 enum Flag {
132 Variadic = 0,
133 HasOptionalDef,
134 Pseudo,
135 Return,
136 EHScopeReturn,
137 Call,
138 Barrier,
139 Terminator,
140 Branch,
141 IndirectBranch,
142 Compare,
143 MoveImm,
144 MoveReg,
145 Bitcast,
146 Select,
147 DelaySlot,
148 FoldableAsLoad,
149 MayLoad,
150 MayStore,
151 MayRaiseFPException,
152 Predicable,
153 NotDuplicable,
154 UnmodeledSideEffects,
155 Commutable,
156 ConvertibleTo3Addr,
157 UsesCustomInserter,
158 HasPostISelHook,
159 Rematerializable,
160 CheapAsAMove,
161 ExtraSrcRegAllocReq,
162 ExtraDefRegAllocReq,
163 RegSequence,
164 ExtractSubreg,
165 InsertSubreg,
166 Convergent,
167 Add,
168 Trap,
169 VariadicOpsAreDefs,
173 /// Describe properties that are true of each instruction in the target
174 /// description file. This captures information about side effects, register
175 /// use and many other things. There is one instance of this struct for each
176 /// target instruction class, and the MachineInstr class points to this struct
177 /// directly to describe itself.
178 class MCInstrDesc {
179 public:
180 unsigned short Opcode; // The opcode number
181 unsigned short NumOperands; // Num of args (may be more if variable_ops)
182 unsigned char NumDefs; // Num of args that are definitions
183 unsigned char Size; // Number of bytes in encoding.
184 unsigned short SchedClass; // enum identifying instr sched class
185 uint64_t Flags; // Flags identifying machine instr class
186 uint64_t TSFlags; // Target Specific Flag values
187 const MCPhysReg *ImplicitUses; // Registers implicitly read by this instr
188 const MCPhysReg *ImplicitDefs; // Registers implicitly defined by this instr
189 const MCOperandInfo *OpInfo; // 'NumOperands' entries about operands
190 // Subtarget feature that this is deprecated on, if any
191 // -1 implies this is not deprecated by any single feature. It may still be
192 // deprecated due to a "complex" reason, below.
193 int64_t DeprecatedFeature;
195 // A complex method to determine if a certain instruction is deprecated or
196 // not, and return the reason for deprecation.
197 bool (*ComplexDeprecationInfo)(MCInst &, const MCSubtargetInfo &,
198 std::string &);
200 /// Returns the value of the specific constraint if
201 /// it is set. Returns -1 if it is not set.
202 int getOperandConstraint(unsigned OpNum,
203 MCOI::OperandConstraint Constraint) const {
204 if (OpNum < NumOperands &&
205 (OpInfo[OpNum].Constraints & (1 << Constraint))) {
206 unsigned Pos = 16 + Constraint * 4;
207 return (int)(OpInfo[OpNum].Constraints >> Pos) & 0xf;
209 return -1;
212 /// Returns true if a certain instruction is deprecated and if so
213 /// returns the reason in \p Info.
214 bool getDeprecatedInfo(MCInst &MI, const MCSubtargetInfo &STI,
215 std::string &Info) const;
217 /// Return the opcode number for this descriptor.
218 unsigned getOpcode() const { return Opcode; }
220 /// Return the number of declared MachineOperands for this
221 /// MachineInstruction. Note that variadic (isVariadic() returns true)
222 /// instructions may have additional operands at the end of the list, and note
223 /// that the machine instruction may include implicit register def/uses as
224 /// well.
225 unsigned getNumOperands() const { return NumOperands; }
227 using const_opInfo_iterator = const MCOperandInfo *;
229 const_opInfo_iterator opInfo_begin() const { return OpInfo; }
230 const_opInfo_iterator opInfo_end() const { return OpInfo + NumOperands; }
232 iterator_range<const_opInfo_iterator> operands() const {
233 return make_range(opInfo_begin(), opInfo_end());
236 /// Return the number of MachineOperands that are register
237 /// definitions. Register definitions always occur at the start of the
238 /// machine operand list. This is the number of "outs" in the .td file,
239 /// and does not include implicit defs.
240 unsigned getNumDefs() const { return NumDefs; }
242 /// Return flags of this instruction.
243 uint64_t getFlags() const { return Flags; }
245 /// Return true if this instruction can have a variable number of
246 /// operands. In this case, the variable operands will be after the normal
247 /// operands but before the implicit definitions and uses (if any are
248 /// present).
249 bool isVariadic() const { return Flags & (1ULL << MCID::Variadic); }
251 /// Set if this instruction has an optional definition, e.g.
252 /// ARM instructions which can set condition code if 's' bit is set.
253 bool hasOptionalDef() const { return Flags & (1ULL << MCID::HasOptionalDef); }
255 /// Return true if this is a pseudo instruction that doesn't
256 /// correspond to a real machine instruction.
257 bool isPseudo() const { return Flags & (1ULL << MCID::Pseudo); }
259 /// Return true if the instruction is a return.
260 bool isReturn() const { return Flags & (1ULL << MCID::Return); }
262 /// Return true if the instruction is an add instruction.
263 bool isAdd() const { return Flags & (1ULL << MCID::Add); }
265 /// Return true if this instruction is a trap.
266 bool isTrap() const { return Flags & (1ULL << MCID::Trap); }
268 /// Return true if the instruction is a register to register move.
269 bool isMoveReg() const { return Flags & (1ULL << MCID::MoveReg); }
271 /// Return true if the instruction is a call.
272 bool isCall() const { return Flags & (1ULL << MCID::Call); }
274 /// Returns true if the specified instruction stops control flow
275 /// from executing the instruction immediately following it. Examples include
276 /// unconditional branches and return instructions.
277 bool isBarrier() const { return Flags & (1ULL << MCID::Barrier); }
279 /// Returns true if this instruction part of the terminator for
280 /// a basic block. Typically this is things like return and branch
281 /// instructions.
283 /// Various passes use this to insert code into the bottom of a basic block,
284 /// but before control flow occurs.
285 bool isTerminator() const { return Flags & (1ULL << MCID::Terminator); }
287 /// Returns true if this is a conditional, unconditional, or
288 /// indirect branch. Predicates below can be used to discriminate between
289 /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
290 /// get more information.
291 bool isBranch() const { return Flags & (1ULL << MCID::Branch); }
293 /// Return true if this is an indirect branch, such as a
294 /// branch through a register.
295 bool isIndirectBranch() const { return Flags & (1ULL << MCID::IndirectBranch); }
297 /// Return true if this is a branch which may fall
298 /// through to the next instruction or may transfer control flow to some other
299 /// block. The TargetInstrInfo::AnalyzeBranch method can be used to get more
300 /// information about this branch.
301 bool isConditionalBranch() const {
302 return isBranch() & !isBarrier() & !isIndirectBranch();
305 /// Return true if this is a branch which always
306 /// transfers control flow to some other block. The
307 /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
308 /// about this branch.
309 bool isUnconditionalBranch() const {
310 return isBranch() & isBarrier() & !isIndirectBranch();
313 /// Return true if this is a branch or an instruction which directly
314 /// writes to the program counter. Considered 'may' affect rather than
315 /// 'does' affect as things like predication are not taken into account.
316 bool mayAffectControlFlow(const MCInst &MI, const MCRegisterInfo &RI) const;
318 /// Return true if this instruction has a predicate operand
319 /// that controls execution. It may be set to 'always', or may be set to other
320 /// values. There are various methods in TargetInstrInfo that can be used to
321 /// control and modify the predicate in this instruction.
322 bool isPredicable() const { return Flags & (1ULL << MCID::Predicable); }
324 /// Return true if this instruction is a comparison.
325 bool isCompare() const { return Flags & (1ULL << MCID::Compare); }
327 /// Return true if this instruction is a move immediate
328 /// (including conditional moves) instruction.
329 bool isMoveImmediate() const { return Flags & (1ULL << MCID::MoveImm); }
331 /// Return true if this instruction is a bitcast instruction.
332 bool isBitcast() const { return Flags & (1ULL << MCID::Bitcast); }
334 /// Return true if this is a select instruction.
335 bool isSelect() const { return Flags & (1ULL << MCID::Select); }
337 /// Return true if this instruction cannot be safely
338 /// duplicated. For example, if the instruction has a unique labels attached
339 /// to it, duplicating it would cause multiple definition errors.
340 bool isNotDuplicable() const { return Flags & (1ULL << MCID::NotDuplicable); }
342 /// Returns true if the specified instruction has a delay slot which
343 /// must be filled by the code generator.
344 bool hasDelaySlot() const { return Flags & (1ULL << MCID::DelaySlot); }
346 /// Return true for instructions that can be folded as memory operands
347 /// in other instructions. The most common use for this is instructions that
348 /// are simple loads from memory that don't modify the loaded value in any
349 /// way, but it can also be used for instructions that can be expressed as
350 /// constant-pool loads, such as V_SETALLONES on x86, to allow them to be
351 /// folded when it is beneficial. This should only be set on instructions
352 /// that return a value in their only virtual register definition.
353 bool canFoldAsLoad() const { return Flags & (1ULL << MCID::FoldableAsLoad); }
355 /// Return true if this instruction behaves
356 /// the same way as the generic REG_SEQUENCE instructions.
357 /// E.g., on ARM,
358 /// dX VMOVDRR rY, rZ
359 /// is equivalent to
360 /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
362 /// Note that for the optimizers to be able to take advantage of
363 /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
364 /// override accordingly.
365 bool isRegSequenceLike() const { return Flags & (1ULL << MCID::RegSequence); }
367 /// Return true if this instruction behaves
368 /// the same way as the generic EXTRACT_SUBREG instructions.
369 /// E.g., on ARM,
370 /// rX, rY VMOVRRD dZ
371 /// is equivalent to two EXTRACT_SUBREG:
372 /// rX = EXTRACT_SUBREG dZ, ssub_0
373 /// rY = EXTRACT_SUBREG dZ, ssub_1
375 /// Note that for the optimizers to be able to take advantage of
376 /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
377 /// override accordingly.
378 bool isExtractSubregLike() const {
379 return Flags & (1ULL << MCID::ExtractSubreg);
382 /// Return true if this instruction behaves
383 /// the same way as the generic INSERT_SUBREG instructions.
384 /// E.g., on ARM,
385 /// dX = VSETLNi32 dY, rZ, Imm
386 /// is equivalent to a INSERT_SUBREG:
387 /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
389 /// Note that for the optimizers to be able to take advantage of
390 /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
391 /// override accordingly.
392 bool isInsertSubregLike() const { return Flags & (1ULL << MCID::InsertSubreg); }
395 /// Return true if this instruction is convergent.
397 /// Convergent instructions may not be made control-dependent on any
398 /// additional values.
399 bool isConvergent() const { return Flags & (1ULL << MCID::Convergent); }
401 /// Return true if variadic operands of this instruction are definitions.
402 bool variadicOpsAreDefs() const {
403 return Flags & (1ULL << MCID::VariadicOpsAreDefs);
406 //===--------------------------------------------------------------------===//
407 // Side Effect Analysis
408 //===--------------------------------------------------------------------===//
410 /// Return true if this instruction could possibly read memory.
411 /// Instructions with this flag set are not necessarily simple load
412 /// instructions, they may load a value and modify it, for example.
413 bool mayLoad() const { return Flags & (1ULL << MCID::MayLoad); }
415 /// Return true if this instruction could possibly modify memory.
416 /// Instructions with this flag set are not necessarily simple store
417 /// instructions, they may store a modified value based on their operands, or
418 /// may not actually modify anything, for example.
419 bool mayStore() const { return Flags & (1ULL << MCID::MayStore); }
421 /// Return true if this instruction may raise a floating-point exception.
422 bool mayRaiseFPException() const {
423 return Flags & (1ULL << MCID::MayRaiseFPException);
426 /// Return true if this instruction has side
427 /// effects that are not modeled by other flags. This does not return true
428 /// for instructions whose effects are captured by:
430 /// 1. Their operand list and implicit definition/use list. Register use/def
431 /// info is explicit for instructions.
432 /// 2. Memory accesses. Use mayLoad/mayStore.
433 /// 3. Calling, branching, returning: use isCall/isReturn/isBranch.
435 /// Examples of side effects would be modifying 'invisible' machine state like
436 /// a control register, flushing a cache, modifying a register invisible to
437 /// LLVM, etc.
438 bool hasUnmodeledSideEffects() const {
439 return Flags & (1ULL << MCID::UnmodeledSideEffects);
442 //===--------------------------------------------------------------------===//
443 // Flags that indicate whether an instruction can be modified by a method.
444 //===--------------------------------------------------------------------===//
446 /// Return true if this may be a 2- or 3-address instruction (of the
447 /// form "X = op Y, Z, ..."), which produces the same result if Y and Z are
448 /// exchanged. If this flag is set, then the
449 /// TargetInstrInfo::commuteInstruction method may be used to hack on the
450 /// instruction.
452 /// Note that this flag may be set on instructions that are only commutable
453 /// sometimes. In these cases, the call to commuteInstruction will fail.
454 /// Also note that some instructions require non-trivial modification to
455 /// commute them.
456 bool isCommutable() const { return Flags & (1ULL << MCID::Commutable); }
458 /// Return true if this is a 2-address instruction which can be changed
459 /// into a 3-address instruction if needed. Doing this transformation can be
460 /// profitable in the register allocator, because it means that the
461 /// instruction can use a 2-address form if possible, but degrade into a less
462 /// efficient form if the source and dest register cannot be assigned to the
463 /// same register. For example, this allows the x86 backend to turn a "shl
464 /// reg, 3" instruction into an LEA instruction, which is the same speed as
465 /// the shift but has bigger code size.
467 /// If this returns true, then the target must implement the
468 /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
469 /// is allowed to fail if the transformation isn't valid for this specific
470 /// instruction (e.g. shl reg, 4 on x86).
472 bool isConvertibleTo3Addr() const {
473 return Flags & (1ULL << MCID::ConvertibleTo3Addr);
476 /// Return true if this instruction requires custom insertion support
477 /// when the DAG scheduler is inserting it into a machine basic block. If
478 /// this is true for the instruction, it basically means that it is a pseudo
479 /// instruction used at SelectionDAG time that is expanded out into magic code
480 /// by the target when MachineInstrs are formed.
482 /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
483 /// is used to insert this into the MachineBasicBlock.
484 bool usesCustomInsertionHook() const {
485 return Flags & (1ULL << MCID::UsesCustomInserter);
488 /// Return true if this instruction requires *adjustment* after
489 /// instruction selection by calling a target hook. For example, this can be
490 /// used to fill in ARM 's' optional operand depending on whether the
491 /// conditional flag register is used.
492 bool hasPostISelHook() const { return Flags & (1ULL << MCID::HasPostISelHook); }
494 /// Returns true if this instruction is a candidate for remat. This
495 /// flag is only used in TargetInstrInfo method isTriviallyRematerializable.
497 /// If this flag is set, the isReallyTriviallyReMaterializable()
498 /// or isReallyTriviallyReMaterializableGeneric methods are called to verify
499 /// the instruction is really rematable.
500 bool isRematerializable() const {
501 return Flags & (1ULL << MCID::Rematerializable);
504 /// Returns true if this instruction has the same cost (or less) than a
505 /// move instruction. This is useful during certain types of optimizations
506 /// (e.g., remat during two-address conversion or machine licm) where we would
507 /// like to remat or hoist the instruction, but not if it costs more than
508 /// moving the instruction into the appropriate register. Note, we are not
509 /// marking copies from and to the same register class with this flag.
511 /// This method could be called by interface TargetInstrInfo::isAsCheapAsAMove
512 /// for different subtargets.
513 bool isAsCheapAsAMove() const { return Flags & (1ULL << MCID::CheapAsAMove); }
515 /// Returns true if this instruction source operands have special
516 /// register allocation requirements that are not captured by the operand
517 /// register classes. e.g. ARM::STRD's two source registers must be an even /
518 /// odd pair, ARM::STM registers have to be in ascending order. Post-register
519 /// allocation passes should not attempt to change allocations for sources of
520 /// instructions with this flag.
521 bool hasExtraSrcRegAllocReq() const {
522 return Flags & (1ULL << MCID::ExtraSrcRegAllocReq);
525 /// Returns true if this instruction def operands have special register
526 /// allocation requirements that are not captured by the operand register
527 /// classes. e.g. ARM::LDRD's two def registers must be an even / odd pair,
528 /// ARM::LDM registers have to be in ascending order. Post-register
529 /// allocation passes should not attempt to change allocations for definitions
530 /// of instructions with this flag.
531 bool hasExtraDefRegAllocReq() const {
532 return Flags & (1ULL << MCID::ExtraDefRegAllocReq);
535 /// Return a list of registers that are potentially read by any
536 /// instance of this machine instruction. For example, on X86, the "adc"
537 /// instruction adds two register operands and adds the carry bit in from the
538 /// flags register. In this case, the instruction is marked as implicitly
539 /// reading the flags. Likewise, the variable shift instruction on X86 is
540 /// marked as implicitly reading the 'CL' register, which it always does.
542 /// This method returns null if the instruction has no implicit uses.
543 const MCPhysReg *getImplicitUses() const { return ImplicitUses; }
545 /// Return the number of implicit uses this instruction has.
546 unsigned getNumImplicitUses() const {
547 if (!ImplicitUses)
548 return 0;
549 unsigned i = 0;
550 for (; ImplicitUses[i]; ++i) /*empty*/
552 return i;
555 /// Return a list of registers that are potentially written by any
556 /// instance of this machine instruction. For example, on X86, many
557 /// instructions implicitly set the flags register. In this case, they are
558 /// marked as setting the FLAGS. Likewise, many instructions always deposit
559 /// their result in a physical register. For example, the X86 divide
560 /// instruction always deposits the quotient and remainder in the EAX/EDX
561 /// registers. For that instruction, this will return a list containing the
562 /// EAX/EDX/EFLAGS registers.
564 /// This method returns null if the instruction has no implicit defs.
565 const MCPhysReg *getImplicitDefs() const { return ImplicitDefs; }
567 /// Return the number of implicit defs this instruct has.
568 unsigned getNumImplicitDefs() const {
569 if (!ImplicitDefs)
570 return 0;
571 unsigned i = 0;
572 for (; ImplicitDefs[i]; ++i) /*empty*/
574 return i;
577 /// Return true if this instruction implicitly
578 /// uses the specified physical register.
579 bool hasImplicitUseOfPhysReg(unsigned Reg) const {
580 if (const MCPhysReg *ImpUses = ImplicitUses)
581 for (; *ImpUses; ++ImpUses)
582 if (*ImpUses == Reg)
583 return true;
584 return false;
587 /// Return true if this instruction implicitly
588 /// defines the specified physical register.
589 bool hasImplicitDefOfPhysReg(unsigned Reg,
590 const MCRegisterInfo *MRI = nullptr) const;
592 /// Return the scheduling class for this instruction. The
593 /// scheduling class is an index into the InstrItineraryData table. This
594 /// returns zero if there is no known scheduling information for the
595 /// instruction.
596 unsigned getSchedClass() const { return SchedClass; }
598 /// Return the number of bytes in the encoding of this instruction,
599 /// or zero if the encoding size cannot be known from the opcode.
600 unsigned getSize() const { return Size; }
602 /// Find the index of the first operand in the
603 /// operand list that is used to represent the predicate. It returns -1 if
604 /// none is found.
605 int findFirstPredOperandIdx() const {
606 if (isPredicable()) {
607 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
608 if (OpInfo[i].isPredicate())
609 return i;
611 return -1;
614 /// Return true if this instruction defines the specified physical
615 /// register, either explicitly or implicitly.
616 bool hasDefOfPhysReg(const MCInst &MI, unsigned Reg,
617 const MCRegisterInfo &RI) const;
620 } // end namespace llvm
622 #endif