[ValueTracking] Remove unused matchSelectPattern optional argument. NFCI.
[llvm-core.git] / include / llvm / Support / MathExtras.h
blob775d19a698f4973875c54347b6deb6c4d3c81c81
1 //===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains some functions that are useful for math stuff.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_SUPPORT_MATHEXTRAS_H
14 #define LLVM_SUPPORT_MATHEXTRAS_H
16 #include "llvm/Support/Compiler.h"
17 #include "llvm/Support/SwapByteOrder.h"
18 #include <algorithm>
19 #include <cassert>
20 #include <climits>
21 #include <cstring>
22 #include <limits>
23 #include <type_traits>
25 #ifdef __ANDROID_NDK__
26 #include <android/api-level.h>
27 #endif
29 #ifdef _MSC_VER
30 // Declare these intrinsics manually rather including intrin.h. It's very
31 // expensive, and MathExtras.h is popular.
32 // #include <intrin.h>
33 extern "C" {
34 unsigned char _BitScanForward(unsigned long *_Index, unsigned long _Mask);
35 unsigned char _BitScanForward64(unsigned long *_Index, unsigned __int64 _Mask);
36 unsigned char _BitScanReverse(unsigned long *_Index, unsigned long _Mask);
37 unsigned char _BitScanReverse64(unsigned long *_Index, unsigned __int64 _Mask);
39 #endif
41 namespace llvm {
42 /// The behavior an operation has on an input of 0.
43 enum ZeroBehavior {
44 /// The returned value is undefined.
45 ZB_Undefined,
46 /// The returned value is numeric_limits<T>::max()
47 ZB_Max,
48 /// The returned value is numeric_limits<T>::digits
49 ZB_Width
52 namespace detail {
53 template <typename T, std::size_t SizeOfT> struct TrailingZerosCounter {
54 static unsigned count(T Val, ZeroBehavior) {
55 if (!Val)
56 return std::numeric_limits<T>::digits;
57 if (Val & 0x1)
58 return 0;
60 // Bisection method.
61 unsigned ZeroBits = 0;
62 T Shift = std::numeric_limits<T>::digits >> 1;
63 T Mask = std::numeric_limits<T>::max() >> Shift;
64 while (Shift) {
65 if ((Val & Mask) == 0) {
66 Val >>= Shift;
67 ZeroBits |= Shift;
69 Shift >>= 1;
70 Mask >>= Shift;
72 return ZeroBits;
76 #if defined(__GNUC__) || defined(_MSC_VER)
77 template <typename T> struct TrailingZerosCounter<T, 4> {
78 static unsigned count(T Val, ZeroBehavior ZB) {
79 if (ZB != ZB_Undefined && Val == 0)
80 return 32;
82 #if __has_builtin(__builtin_ctz) || defined(__GNUC__)
83 return __builtin_ctz(Val);
84 #elif defined(_MSC_VER)
85 unsigned long Index;
86 _BitScanForward(&Index, Val);
87 return Index;
88 #endif
92 #if !defined(_MSC_VER) || defined(_M_X64)
93 template <typename T> struct TrailingZerosCounter<T, 8> {
94 static unsigned count(T Val, ZeroBehavior ZB) {
95 if (ZB != ZB_Undefined && Val == 0)
96 return 64;
98 #if __has_builtin(__builtin_ctzll) || defined(__GNUC__)
99 return __builtin_ctzll(Val);
100 #elif defined(_MSC_VER)
101 unsigned long Index;
102 _BitScanForward64(&Index, Val);
103 return Index;
104 #endif
107 #endif
108 #endif
109 } // namespace detail
111 /// Count number of 0's from the least significant bit to the most
112 /// stopping at the first 1.
114 /// Only unsigned integral types are allowed.
116 /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
117 /// valid arguments.
118 template <typename T>
119 unsigned countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
120 static_assert(std::numeric_limits<T>::is_integer &&
121 !std::numeric_limits<T>::is_signed,
122 "Only unsigned integral types are allowed.");
123 return llvm::detail::TrailingZerosCounter<T, sizeof(T)>::count(Val, ZB);
126 namespace detail {
127 template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter {
128 static unsigned count(T Val, ZeroBehavior) {
129 if (!Val)
130 return std::numeric_limits<T>::digits;
132 // Bisection method.
133 unsigned ZeroBits = 0;
134 for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) {
135 T Tmp = Val >> Shift;
136 if (Tmp)
137 Val = Tmp;
138 else
139 ZeroBits |= Shift;
141 return ZeroBits;
145 #if defined(__GNUC__) || defined(_MSC_VER)
146 template <typename T> struct LeadingZerosCounter<T, 4> {
147 static unsigned count(T Val, ZeroBehavior ZB) {
148 if (ZB != ZB_Undefined && Val == 0)
149 return 32;
151 #if __has_builtin(__builtin_clz) || defined(__GNUC__)
152 return __builtin_clz(Val);
153 #elif defined(_MSC_VER)
154 unsigned long Index;
155 _BitScanReverse(&Index, Val);
156 return Index ^ 31;
157 #endif
161 #if !defined(_MSC_VER) || defined(_M_X64)
162 template <typename T> struct LeadingZerosCounter<T, 8> {
163 static unsigned count(T Val, ZeroBehavior ZB) {
164 if (ZB != ZB_Undefined && Val == 0)
165 return 64;
167 #if __has_builtin(__builtin_clzll) || defined(__GNUC__)
168 return __builtin_clzll(Val);
169 #elif defined(_MSC_VER)
170 unsigned long Index;
171 _BitScanReverse64(&Index, Val);
172 return Index ^ 63;
173 #endif
176 #endif
177 #endif
178 } // namespace detail
180 /// Count number of 0's from the most significant bit to the least
181 /// stopping at the first 1.
183 /// Only unsigned integral types are allowed.
185 /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
186 /// valid arguments.
187 template <typename T>
188 unsigned countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
189 static_assert(std::numeric_limits<T>::is_integer &&
190 !std::numeric_limits<T>::is_signed,
191 "Only unsigned integral types are allowed.");
192 return llvm::detail::LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB);
195 /// Get the index of the first set bit starting from the least
196 /// significant bit.
198 /// Only unsigned integral types are allowed.
200 /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
201 /// valid arguments.
202 template <typename T> T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) {
203 if (ZB == ZB_Max && Val == 0)
204 return std::numeric_limits<T>::max();
206 return countTrailingZeros(Val, ZB_Undefined);
209 /// Create a bitmask with the N right-most bits set to 1, and all other
210 /// bits set to 0. Only unsigned types are allowed.
211 template <typename T> T maskTrailingOnes(unsigned N) {
212 static_assert(std::is_unsigned<T>::value, "Invalid type!");
213 const unsigned Bits = CHAR_BIT * sizeof(T);
214 assert(N <= Bits && "Invalid bit index");
215 return N == 0 ? 0 : (T(-1) >> (Bits - N));
218 /// Create a bitmask with the N left-most bits set to 1, and all other
219 /// bits set to 0. Only unsigned types are allowed.
220 template <typename T> T maskLeadingOnes(unsigned N) {
221 return ~maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N);
224 /// Create a bitmask with the N right-most bits set to 0, and all other
225 /// bits set to 1. Only unsigned types are allowed.
226 template <typename T> T maskTrailingZeros(unsigned N) {
227 return maskLeadingOnes<T>(CHAR_BIT * sizeof(T) - N);
230 /// Create a bitmask with the N left-most bits set to 0, and all other
231 /// bits set to 1. Only unsigned types are allowed.
232 template <typename T> T maskLeadingZeros(unsigned N) {
233 return maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N);
236 /// Get the index of the last set bit starting from the least
237 /// significant bit.
239 /// Only unsigned integral types are allowed.
241 /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
242 /// valid arguments.
243 template <typename T> T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) {
244 if (ZB == ZB_Max && Val == 0)
245 return std::numeric_limits<T>::max();
247 // Use ^ instead of - because both gcc and llvm can remove the associated ^
248 // in the __builtin_clz intrinsic on x86.
249 return countLeadingZeros(Val, ZB_Undefined) ^
250 (std::numeric_limits<T>::digits - 1);
253 /// Macro compressed bit reversal table for 256 bits.
255 /// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
256 static const unsigned char BitReverseTable256[256] = {
257 #define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64
258 #define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16)
259 #define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4)
260 R6(0), R6(2), R6(1), R6(3)
261 #undef R2
262 #undef R4
263 #undef R6
266 /// Reverse the bits in \p Val.
267 template <typename T>
268 T reverseBits(T Val) {
269 unsigned char in[sizeof(Val)];
270 unsigned char out[sizeof(Val)];
271 std::memcpy(in, &Val, sizeof(Val));
272 for (unsigned i = 0; i < sizeof(Val); ++i)
273 out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]];
274 std::memcpy(&Val, out, sizeof(Val));
275 return Val;
278 // NOTE: The following support functions use the _32/_64 extensions instead of
279 // type overloading so that signed and unsigned integers can be used without
280 // ambiguity.
282 /// Return the high 32 bits of a 64 bit value.
283 constexpr inline uint32_t Hi_32(uint64_t Value) {
284 return static_cast<uint32_t>(Value >> 32);
287 /// Return the low 32 bits of a 64 bit value.
288 constexpr inline uint32_t Lo_32(uint64_t Value) {
289 return static_cast<uint32_t>(Value);
292 /// Make a 64-bit integer from a high / low pair of 32-bit integers.
293 constexpr inline uint64_t Make_64(uint32_t High, uint32_t Low) {
294 return ((uint64_t)High << 32) | (uint64_t)Low;
297 /// Checks if an integer fits into the given bit width.
298 template <unsigned N> constexpr inline bool isInt(int64_t x) {
299 return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
301 // Template specializations to get better code for common cases.
302 template <> constexpr inline bool isInt<8>(int64_t x) {
303 return static_cast<int8_t>(x) == x;
305 template <> constexpr inline bool isInt<16>(int64_t x) {
306 return static_cast<int16_t>(x) == x;
308 template <> constexpr inline bool isInt<32>(int64_t x) {
309 return static_cast<int32_t>(x) == x;
312 /// Checks if a signed integer is an N bit number shifted left by S.
313 template <unsigned N, unsigned S>
314 constexpr inline bool isShiftedInt(int64_t x) {
315 static_assert(
316 N > 0, "isShiftedInt<0> doesn't make sense (refers to a 0-bit number.");
317 static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide.");
318 return isInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0);
321 /// Checks if an unsigned integer fits into the given bit width.
323 /// This is written as two functions rather than as simply
325 /// return N >= 64 || X < (UINT64_C(1) << N);
327 /// to keep MSVC from (incorrectly) warning on isUInt<64> that we're shifting
328 /// left too many places.
329 template <unsigned N>
330 constexpr inline typename std::enable_if<(N < 64), bool>::type
331 isUInt(uint64_t X) {
332 static_assert(N > 0, "isUInt<0> doesn't make sense");
333 return X < (UINT64_C(1) << (N));
335 template <unsigned N>
336 constexpr inline typename std::enable_if<N >= 64, bool>::type
337 isUInt(uint64_t X) {
338 return true;
341 // Template specializations to get better code for common cases.
342 template <> constexpr inline bool isUInt<8>(uint64_t x) {
343 return static_cast<uint8_t>(x) == x;
345 template <> constexpr inline bool isUInt<16>(uint64_t x) {
346 return static_cast<uint16_t>(x) == x;
348 template <> constexpr inline bool isUInt<32>(uint64_t x) {
349 return static_cast<uint32_t>(x) == x;
352 /// Checks if a unsigned integer is an N bit number shifted left by S.
353 template <unsigned N, unsigned S>
354 constexpr inline bool isShiftedUInt(uint64_t x) {
355 static_assert(
356 N > 0, "isShiftedUInt<0> doesn't make sense (refers to a 0-bit number)");
357 static_assert(N + S <= 64,
358 "isShiftedUInt<N, S> with N + S > 64 is too wide.");
359 // Per the two static_asserts above, S must be strictly less than 64. So
360 // 1 << S is not undefined behavior.
361 return isUInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0);
364 /// Gets the maximum value for a N-bit unsigned integer.
365 inline uint64_t maxUIntN(uint64_t N) {
366 assert(N > 0 && N <= 64 && "integer width out of range");
368 // uint64_t(1) << 64 is undefined behavior, so we can't do
369 // (uint64_t(1) << N) - 1
370 // without checking first that N != 64. But this works and doesn't have a
371 // branch.
372 return UINT64_MAX >> (64 - N);
375 /// Gets the minimum value for a N-bit signed integer.
376 inline int64_t minIntN(int64_t N) {
377 assert(N > 0 && N <= 64 && "integer width out of range");
379 return -(UINT64_C(1)<<(N-1));
382 /// Gets the maximum value for a N-bit signed integer.
383 inline int64_t maxIntN(int64_t N) {
384 assert(N > 0 && N <= 64 && "integer width out of range");
386 // This relies on two's complement wraparound when N == 64, so we convert to
387 // int64_t only at the very end to avoid UB.
388 return (UINT64_C(1) << (N - 1)) - 1;
391 /// Checks if an unsigned integer fits into the given (dynamic) bit width.
392 inline bool isUIntN(unsigned N, uint64_t x) {
393 return N >= 64 || x <= maxUIntN(N);
396 /// Checks if an signed integer fits into the given (dynamic) bit width.
397 inline bool isIntN(unsigned N, int64_t x) {
398 return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N));
401 /// Return true if the argument is a non-empty sequence of ones starting at the
402 /// least significant bit with the remainder zero (32 bit version).
403 /// Ex. isMask_32(0x0000FFFFU) == true.
404 constexpr inline bool isMask_32(uint32_t Value) {
405 return Value && ((Value + 1) & Value) == 0;
408 /// Return true if the argument is a non-empty sequence of ones starting at the
409 /// least significant bit with the remainder zero (64 bit version).
410 constexpr inline bool isMask_64(uint64_t Value) {
411 return Value && ((Value + 1) & Value) == 0;
414 /// Return true if the argument contains a non-empty sequence of ones with the
415 /// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true.
416 constexpr inline bool isShiftedMask_32(uint32_t Value) {
417 return Value && isMask_32((Value - 1) | Value);
420 /// Return true if the argument contains a non-empty sequence of ones with the
421 /// remainder zero (64 bit version.)
422 constexpr inline bool isShiftedMask_64(uint64_t Value) {
423 return Value && isMask_64((Value - 1) | Value);
426 /// Return true if the argument is a power of two > 0.
427 /// Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
428 constexpr inline bool isPowerOf2_32(uint32_t Value) {
429 return Value && !(Value & (Value - 1));
432 /// Return true if the argument is a power of two > 0 (64 bit edition.)
433 constexpr inline bool isPowerOf2_64(uint64_t Value) {
434 return Value && !(Value & (Value - 1));
437 /// Return a byte-swapped representation of the 16-bit argument.
438 inline uint16_t ByteSwap_16(uint16_t Value) {
439 return sys::SwapByteOrder_16(Value);
442 /// Return a byte-swapped representation of the 32-bit argument.
443 inline uint32_t ByteSwap_32(uint32_t Value) {
444 return sys::SwapByteOrder_32(Value);
447 /// Return a byte-swapped representation of the 64-bit argument.
448 inline uint64_t ByteSwap_64(uint64_t Value) {
449 return sys::SwapByteOrder_64(Value);
452 /// Count the number of ones from the most significant bit to the first
453 /// zero bit.
455 /// Ex. countLeadingOnes(0xFF0FFF00) == 8.
456 /// Only unsigned integral types are allowed.
458 /// \param ZB the behavior on an input of all ones. Only ZB_Width and
459 /// ZB_Undefined are valid arguments.
460 template <typename T>
461 unsigned countLeadingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
462 static_assert(std::numeric_limits<T>::is_integer &&
463 !std::numeric_limits<T>::is_signed,
464 "Only unsigned integral types are allowed.");
465 return countLeadingZeros<T>(~Value, ZB);
468 /// Count the number of ones from the least significant bit to the first
469 /// zero bit.
471 /// Ex. countTrailingOnes(0x00FF00FF) == 8.
472 /// Only unsigned integral types are allowed.
474 /// \param ZB the behavior on an input of all ones. Only ZB_Width and
475 /// ZB_Undefined are valid arguments.
476 template <typename T>
477 unsigned countTrailingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
478 static_assert(std::numeric_limits<T>::is_integer &&
479 !std::numeric_limits<T>::is_signed,
480 "Only unsigned integral types are allowed.");
481 return countTrailingZeros<T>(~Value, ZB);
484 namespace detail {
485 template <typename T, std::size_t SizeOfT> struct PopulationCounter {
486 static unsigned count(T Value) {
487 // Generic version, forward to 32 bits.
488 static_assert(SizeOfT <= 4, "Not implemented!");
489 #if defined(__GNUC__)
490 return __builtin_popcount(Value);
491 #else
492 uint32_t v = Value;
493 v = v - ((v >> 1) & 0x55555555);
494 v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
495 return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
496 #endif
500 template <typename T> struct PopulationCounter<T, 8> {
501 static unsigned count(T Value) {
502 #if defined(__GNUC__)
503 return __builtin_popcountll(Value);
504 #else
505 uint64_t v = Value;
506 v = v - ((v >> 1) & 0x5555555555555555ULL);
507 v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL);
508 v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
509 return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56);
510 #endif
513 } // namespace detail
515 /// Count the number of set bits in a value.
516 /// Ex. countPopulation(0xF000F000) = 8
517 /// Returns 0 if the word is zero.
518 template <typename T>
519 inline unsigned countPopulation(T Value) {
520 static_assert(std::numeric_limits<T>::is_integer &&
521 !std::numeric_limits<T>::is_signed,
522 "Only unsigned integral types are allowed.");
523 return detail::PopulationCounter<T, sizeof(T)>::count(Value);
526 /// Return the log base 2 of the specified value.
527 inline double Log2(double Value) {
528 #if defined(__ANDROID_API__) && __ANDROID_API__ < 18
529 return __builtin_log(Value) / __builtin_log(2.0);
530 #else
531 return log2(Value);
532 #endif
535 /// Return the floor log base 2 of the specified value, -1 if the value is zero.
536 /// (32 bit edition.)
537 /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
538 inline unsigned Log2_32(uint32_t Value) {
539 return 31 - countLeadingZeros(Value);
542 /// Return the floor log base 2 of the specified value, -1 if the value is zero.
543 /// (64 bit edition.)
544 inline unsigned Log2_64(uint64_t Value) {
545 return 63 - countLeadingZeros(Value);
548 /// Return the ceil log base 2 of the specified value, 32 if the value is zero.
549 /// (32 bit edition).
550 /// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
551 inline unsigned Log2_32_Ceil(uint32_t Value) {
552 return 32 - countLeadingZeros(Value - 1);
555 /// Return the ceil log base 2 of the specified value, 64 if the value is zero.
556 /// (64 bit edition.)
557 inline unsigned Log2_64_Ceil(uint64_t Value) {
558 return 64 - countLeadingZeros(Value - 1);
561 /// Return the greatest common divisor of the values using Euclid's algorithm.
562 template <typename T>
563 inline T greatestCommonDivisor(T A, T B) {
564 while (B) {
565 T Tmp = B;
566 B = A % B;
567 A = Tmp;
569 return A;
572 inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) {
573 return greatestCommonDivisor<uint64_t>(A, B);
576 /// This function takes a 64-bit integer and returns the bit equivalent double.
577 inline double BitsToDouble(uint64_t Bits) {
578 double D;
579 static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
580 memcpy(&D, &Bits, sizeof(Bits));
581 return D;
584 /// This function takes a 32-bit integer and returns the bit equivalent float.
585 inline float BitsToFloat(uint32_t Bits) {
586 float F;
587 static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
588 memcpy(&F, &Bits, sizeof(Bits));
589 return F;
592 /// This function takes a double and returns the bit equivalent 64-bit integer.
593 /// Note that copying doubles around changes the bits of NaNs on some hosts,
594 /// notably x86, so this routine cannot be used if these bits are needed.
595 inline uint64_t DoubleToBits(double Double) {
596 uint64_t Bits;
597 static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
598 memcpy(&Bits, &Double, sizeof(Double));
599 return Bits;
602 /// This function takes a float and returns the bit equivalent 32-bit integer.
603 /// Note that copying floats around changes the bits of NaNs on some hosts,
604 /// notably x86, so this routine cannot be used if these bits are needed.
605 inline uint32_t FloatToBits(float Float) {
606 uint32_t Bits;
607 static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
608 memcpy(&Bits, &Float, sizeof(Float));
609 return Bits;
612 /// A and B are either alignments or offsets. Return the minimum alignment that
613 /// may be assumed after adding the two together.
614 constexpr inline uint64_t MinAlign(uint64_t A, uint64_t B) {
615 // The largest power of 2 that divides both A and B.
617 // Replace "-Value" by "1+~Value" in the following commented code to avoid
618 // MSVC warning C4146
619 // return (A | B) & -(A | B);
620 return (A | B) & (1 + ~(A | B));
623 /// Aligns \c Addr to \c Alignment bytes, rounding up.
625 /// Alignment should be a power of two. This method rounds up, so
626 /// alignAddr(7, 4) == 8 and alignAddr(8, 4) == 8.
627 inline uintptr_t alignAddr(const void *Addr, size_t Alignment) {
628 assert(Alignment && isPowerOf2_64((uint64_t)Alignment) &&
629 "Alignment is not a power of two!");
631 assert((uintptr_t)Addr + Alignment - 1 >= (uintptr_t)Addr);
633 return (((uintptr_t)Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1));
636 /// Returns the necessary adjustment for aligning \c Ptr to \c Alignment
637 /// bytes, rounding up.
638 inline size_t alignmentAdjustment(const void *Ptr, size_t Alignment) {
639 return alignAddr(Ptr, Alignment) - (uintptr_t)Ptr;
642 /// Returns the next power of two (in 64-bits) that is strictly greater than A.
643 /// Returns zero on overflow.
644 inline uint64_t NextPowerOf2(uint64_t A) {
645 A |= (A >> 1);
646 A |= (A >> 2);
647 A |= (A >> 4);
648 A |= (A >> 8);
649 A |= (A >> 16);
650 A |= (A >> 32);
651 return A + 1;
654 /// Returns the power of two which is less than or equal to the given value.
655 /// Essentially, it is a floor operation across the domain of powers of two.
656 inline uint64_t PowerOf2Floor(uint64_t A) {
657 if (!A) return 0;
658 return 1ull << (63 - countLeadingZeros(A, ZB_Undefined));
661 /// Returns the power of two which is greater than or equal to the given value.
662 /// Essentially, it is a ceil operation across the domain of powers of two.
663 inline uint64_t PowerOf2Ceil(uint64_t A) {
664 if (!A)
665 return 0;
666 return NextPowerOf2(A - 1);
669 /// Returns the next integer (mod 2**64) that is greater than or equal to
670 /// \p Value and is a multiple of \p Align. \p Align must be non-zero.
672 /// If non-zero \p Skew is specified, the return value will be a minimal
673 /// integer that is greater than or equal to \p Value and equal to
674 /// \p Align * N + \p Skew for some integer N. If \p Skew is larger than
675 /// \p Align, its value is adjusted to '\p Skew mod \p Align'.
677 /// Examples:
678 /// \code
679 /// alignTo(5, 8) = 8
680 /// alignTo(17, 8) = 24
681 /// alignTo(~0LL, 8) = 0
682 /// alignTo(321, 255) = 510
684 /// alignTo(5, 8, 7) = 7
685 /// alignTo(17, 8, 1) = 17
686 /// alignTo(~0LL, 8, 3) = 3
687 /// alignTo(321, 255, 42) = 552
688 /// \endcode
689 inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
690 assert(Align != 0u && "Align can't be 0.");
691 Skew %= Align;
692 return (Value + Align - 1 - Skew) / Align * Align + Skew;
695 /// Returns the next integer (mod 2**64) that is greater than or equal to
696 /// \p Value and is a multiple of \c Align. \c Align must be non-zero.
697 template <uint64_t Align> constexpr inline uint64_t alignTo(uint64_t Value) {
698 static_assert(Align != 0u, "Align must be non-zero");
699 return (Value + Align - 1) / Align * Align;
702 /// Returns the integer ceil(Numerator / Denominator).
703 inline uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator) {
704 return alignTo(Numerator, Denominator) / Denominator;
707 /// Returns the largest uint64_t less than or equal to \p Value and is
708 /// \p Skew mod \p Align. \p Align must be non-zero
709 inline uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
710 assert(Align != 0u && "Align can't be 0.");
711 Skew %= Align;
712 return (Value - Skew) / Align * Align + Skew;
715 /// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
716 /// Requires 0 < B <= 32.
717 template <unsigned B> constexpr inline int32_t SignExtend32(uint32_t X) {
718 static_assert(B > 0, "Bit width can't be 0.");
719 static_assert(B <= 32, "Bit width out of range.");
720 return int32_t(X << (32 - B)) >> (32 - B);
723 /// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
724 /// Requires 0 < B < 32.
725 inline int32_t SignExtend32(uint32_t X, unsigned B) {
726 assert(B > 0 && "Bit width can't be 0.");
727 assert(B <= 32 && "Bit width out of range.");
728 return int32_t(X << (32 - B)) >> (32 - B);
731 /// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
732 /// Requires 0 < B < 64.
733 template <unsigned B> constexpr inline int64_t SignExtend64(uint64_t x) {
734 static_assert(B > 0, "Bit width can't be 0.");
735 static_assert(B <= 64, "Bit width out of range.");
736 return int64_t(x << (64 - B)) >> (64 - B);
739 /// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
740 /// Requires 0 < B < 64.
741 inline int64_t SignExtend64(uint64_t X, unsigned B) {
742 assert(B > 0 && "Bit width can't be 0.");
743 assert(B <= 64 && "Bit width out of range.");
744 return int64_t(X << (64 - B)) >> (64 - B);
747 /// Subtract two unsigned integers, X and Y, of type T and return the absolute
748 /// value of the result.
749 template <typename T>
750 typename std::enable_if<std::is_unsigned<T>::value, T>::type
751 AbsoluteDifference(T X, T Y) {
752 return std::max(X, Y) - std::min(X, Y);
755 /// Add two unsigned integers, X and Y, of type T. Clamp the result to the
756 /// maximum representable value of T on overflow. ResultOverflowed indicates if
757 /// the result is larger than the maximum representable value of type T.
758 template <typename T>
759 typename std::enable_if<std::is_unsigned<T>::value, T>::type
760 SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) {
761 bool Dummy;
762 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
763 // Hacker's Delight, p. 29
764 T Z = X + Y;
765 Overflowed = (Z < X || Z < Y);
766 if (Overflowed)
767 return std::numeric_limits<T>::max();
768 else
769 return Z;
772 /// Multiply two unsigned integers, X and Y, of type T. Clamp the result to the
773 /// maximum representable value of T on overflow. ResultOverflowed indicates if
774 /// the result is larger than the maximum representable value of type T.
775 template <typename T>
776 typename std::enable_if<std::is_unsigned<T>::value, T>::type
777 SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) {
778 bool Dummy;
779 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
781 // Hacker's Delight, p. 30 has a different algorithm, but we don't use that
782 // because it fails for uint16_t (where multiplication can have undefined
783 // behavior due to promotion to int), and requires a division in addition
784 // to the multiplication.
786 Overflowed = false;
788 // Log2(Z) would be either Log2Z or Log2Z + 1.
789 // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z
790 // will necessarily be less than Log2Max as desired.
791 int Log2Z = Log2_64(X) + Log2_64(Y);
792 const T Max = std::numeric_limits<T>::max();
793 int Log2Max = Log2_64(Max);
794 if (Log2Z < Log2Max) {
795 return X * Y;
797 if (Log2Z > Log2Max) {
798 Overflowed = true;
799 return Max;
802 // We're going to use the top bit, and maybe overflow one
803 // bit past it. Multiply all but the bottom bit then add
804 // that on at the end.
805 T Z = (X >> 1) * Y;
806 if (Z & ~(Max >> 1)) {
807 Overflowed = true;
808 return Max;
810 Z <<= 1;
811 if (X & 1)
812 return SaturatingAdd(Z, Y, ResultOverflowed);
814 return Z;
817 /// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to
818 /// the product. Clamp the result to the maximum representable value of T on
819 /// overflow. ResultOverflowed indicates if the result is larger than the
820 /// maximum representable value of type T.
821 template <typename T>
822 typename std::enable_if<std::is_unsigned<T>::value, T>::type
823 SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) {
824 bool Dummy;
825 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
827 T Product = SaturatingMultiply(X, Y, &Overflowed);
828 if (Overflowed)
829 return Product;
831 return SaturatingAdd(A, Product, &Overflowed);
834 /// Use this rather than HUGE_VALF; the latter causes warnings on MSVC.
835 extern const float huge_valf;
838 /// Add two signed integers, computing the two's complement truncated result,
839 /// returning true if overflow occured.
840 template <typename T>
841 typename std::enable_if<std::is_signed<T>::value, T>::type
842 AddOverflow(T X, T Y, T &Result) {
843 #if __has_builtin(__builtin_add_overflow)
844 return __builtin_add_overflow(X, Y, &Result);
845 #else
846 // Perform the unsigned addition.
847 using U = typename std::make_unsigned<T>::type;
848 const U UX = static_cast<U>(X);
849 const U UY = static_cast<U>(Y);
850 const U UResult = UX + UY;
852 // Convert to signed.
853 Result = static_cast<T>(UResult);
855 // Adding two positive numbers should result in a positive number.
856 if (X > 0 && Y > 0)
857 return Result <= 0;
858 // Adding two negatives should result in a negative number.
859 if (X < 0 && Y < 0)
860 return Result >= 0;
861 return false;
862 #endif
865 /// Subtract two signed integers, computing the two's complement truncated
866 /// result, returning true if an overflow ocurred.
867 template <typename T>
868 typename std::enable_if<std::is_signed<T>::value, T>::type
869 SubOverflow(T X, T Y, T &Result) {
870 #if __has_builtin(__builtin_sub_overflow)
871 return __builtin_sub_overflow(X, Y, &Result);
872 #else
873 // Perform the unsigned addition.
874 using U = typename std::make_unsigned<T>::type;
875 const U UX = static_cast<U>(X);
876 const U UY = static_cast<U>(Y);
877 const U UResult = UX - UY;
879 // Convert to signed.
880 Result = static_cast<T>(UResult);
882 // Subtracting a positive number from a negative results in a negative number.
883 if (X <= 0 && Y > 0)
884 return Result >= 0;
885 // Subtracting a negative number from a positive results in a positive number.
886 if (X >= 0 && Y < 0)
887 return Result <= 0;
888 return false;
889 #endif
893 /// Multiply two signed integers, computing the two's complement truncated
894 /// result, returning true if an overflow ocurred.
895 template <typename T>
896 typename std::enable_if<std::is_signed<T>::value, T>::type
897 MulOverflow(T X, T Y, T &Result) {
898 // Perform the unsigned multiplication on absolute values.
899 using U = typename std::make_unsigned<T>::type;
900 const U UX = X < 0 ? (0 - static_cast<U>(X)) : static_cast<U>(X);
901 const U UY = Y < 0 ? (0 - static_cast<U>(Y)) : static_cast<U>(Y);
902 const U UResult = UX * UY;
904 // Convert to signed.
905 const bool IsNegative = (X < 0) ^ (Y < 0);
906 Result = IsNegative ? (0 - UResult) : UResult;
908 // If any of the args was 0, result is 0 and no overflow occurs.
909 if (UX == 0 || UY == 0)
910 return false;
912 // UX and UY are in [1, 2^n], where n is the number of digits.
913 // Check how the max allowed absolute value (2^n for negative, 2^(n-1) for
914 // positive) divided by an argument compares to the other.
915 if (IsNegative)
916 return UX > (static_cast<U>(std::numeric_limits<T>::max()) + U(1)) / UY;
917 else
918 return UX > (static_cast<U>(std::numeric_limits<T>::max())) / UY;
921 } // End llvm namespace
923 #endif