[ARM] Better OR's for MVE compares
[llvm-core.git] / test / Transforms / InstCombine / bitcast.ll
blob0f0cbdb364af54f691baf5726c854d5e391b72fb
1 ; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
2 ; RUN: opt < %s -instcombine -S | FileCheck %s
4 target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64"
5 target triple = "x86_64-apple-darwin10.0.0"
7 ; Bitcasts between vectors and scalars are valid.
8 ; PR4487
9 define i32 @test1(i64 %a) {
10 ; CHECK-LABEL: @test1(
11 ; CHECK-NEXT:    ret i32 0
13   %t1 = bitcast i64 %a to <2 x i32>
14   %t2 = bitcast i64 %a to <2 x i32>
15   %t3 = xor <2 x i32> %t1, %t2
16   %t4 = extractelement <2 x i32> %t3, i32 0
17   ret i32 %t4
20 ; Perform the bitwise logic in the source type of the operands to eliminate bitcasts.
22 define <2 x i32> @xor_two_vector_bitcasts(<1 x i64> %a, <1 x i64> %b) {
23 ; CHECK-LABEL: @xor_two_vector_bitcasts(
24 ; CHECK-NEXT:    [[T31:%.*]] = xor <1 x i64> [[A:%.*]], [[B:%.*]]
25 ; CHECK-NEXT:    [[T3:%.*]] = bitcast <1 x i64> [[T31]] to <2 x i32>
26 ; CHECK-NEXT:    ret <2 x i32> [[T3]]
28   %t1 = bitcast <1 x i64> %a to <2 x i32>
29   %t2 = bitcast <1 x i64> %b to <2 x i32>
30   %t3 = xor <2 x i32> %t1, %t2
31   ret <2 x i32> %t3
34 ; No change. Bitcasts are canonicalized above bitwise logic.
36 define <2 x i32> @xor_bitcast_vec_to_vec(<1 x i64> %a) {
37 ; CHECK-LABEL: @xor_bitcast_vec_to_vec(
38 ; CHECK-NEXT:    [[T1:%.*]] = bitcast <1 x i64> [[A:%.*]] to <2 x i32>
39 ; CHECK-NEXT:    [[T2:%.*]] = xor <2 x i32> [[T1]], <i32 1, i32 2>
40 ; CHECK-NEXT:    ret <2 x i32> [[T2]]
42   %t1 = bitcast <1 x i64> %a to <2 x i32>
43   %t2 = xor <2 x i32> <i32 1, i32 2>, %t1
44   ret <2 x i32> %t2
47 ; No change. Bitcasts are canonicalized above bitwise logic.
49 define i64 @and_bitcast_vec_to_int(<2 x i32> %a) {
50 ; CHECK-LABEL: @and_bitcast_vec_to_int(
51 ; CHECK-NEXT:    [[T1:%.*]] = bitcast <2 x i32> [[A:%.*]] to i64
52 ; CHECK-NEXT:    [[T2:%.*]] = and i64 [[T1]], 3
53 ; CHECK-NEXT:    ret i64 [[T2]]
55   %t1 = bitcast <2 x i32> %a to i64
56   %t2 = and i64 %t1, 3
57   ret i64 %t2
60 ; No change. Bitcasts are canonicalized above bitwise logic.
62 define <2 x i32> @or_bitcast_int_to_vec(i64 %a) {
63 ; CHECK-LABEL: @or_bitcast_int_to_vec(
64 ; CHECK-NEXT:    [[T1:%.*]] = bitcast i64 [[A:%.*]] to <2 x i32>
65 ; CHECK-NEXT:    [[T2:%.*]] = or <2 x i32> [[T1]], <i32 1, i32 2>
66 ; CHECK-NEXT:    ret <2 x i32> [[T2]]
68   %t1 = bitcast i64 %a to <2 x i32>
69   %t2 = or <2 x i32> %t1, <i32 1, i32 2>
70   ret <2 x i32> %t2
73 ; PR26702 - https://bugs.llvm.org//show_bug.cgi?id=26702
74 ; Bitcast is canonicalized above logic, so we can see the not-not pattern.
76 define <2 x i64> @is_negative(<4 x i32> %x) {
77 ; CHECK-LABEL: @is_negative(
78 ; CHECK-NEXT:    [[LOBIT:%.*]] = ashr <4 x i32> %x, <i32 31, i32 31, i32 31, i32 31>
79 ; CHECK-NEXT:    [[NOTNOT:%.*]] = bitcast <4 x i32> [[LOBIT]] to <2 x i64>
80 ; CHECK-NEXT:    ret <2 x i64> [[NOTNOT]]
82   %lobit = ashr <4 x i32> %x, <i32 31, i32 31, i32 31, i32 31>
83   %not = xor <4 x i32> %lobit, <i32 -1, i32 -1, i32 -1, i32 -1>
84   %bc = bitcast <4 x i32> %not to <2 x i64>
85   %notnot = xor <2 x i64> %bc, <i64 -1, i64 -1>
86   ret <2 x i64> %notnot
89 ; This variation has an extra bitcast at the end. This means that the 2nd xor
90 ; can be done in <4 x i32> to eliminate a bitcast regardless of canonicalizaion.
92 define <4 x i32> @is_negative_bonus_bitcast(<4 x i32> %x) {
93 ; CHECK-LABEL: @is_negative_bonus_bitcast(
94 ; CHECK-NEXT:    [[LOBIT:%.*]] = ashr <4 x i32> %x, <i32 31, i32 31, i32 31, i32 31>
95 ; CHECK-NEXT:    ret <4 x i32> [[LOBIT]]
97   %lobit = ashr <4 x i32> %x, <i32 31, i32 31, i32 31, i32 31>
98   %not = xor <4 x i32> %lobit, <i32 -1, i32 -1, i32 -1, i32 -1>
99   %bc = bitcast <4 x i32> %not to <2 x i64>
100   %notnot = xor <2 x i64> %bc, <i64 -1, i64 -1>
101   %bc2 = bitcast <2 x i64> %notnot to <4 x i32>
102   ret <4 x i32> %bc2
105 ; Bitcasts are canonicalized above bitwise logic.
107 define <2 x i8> @canonicalize_bitcast_logic_with_constant(<4 x i4> %x) {
108 ; CHECK-LABEL: @canonicalize_bitcast_logic_with_constant(
109 ; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <4 x i4> [[X:%.*]] to <2 x i8>
110 ; CHECK-NEXT:    [[B:%.*]] = and <2 x i8> [[TMP1]], <i8 -128, i8 -128>
111 ; CHECK-NEXT:    ret <2 x i8> [[B]]
113   %a = and <4 x i4> %x, <i4 0, i4 8, i4 0, i4 8>
114   %b = bitcast <4 x i4> %a to <2 x i8>
115   ret <2 x i8> %b
118 ; PR27925 - https://llvm.org/bugs/show_bug.cgi?id=27925
120 define <4 x i32> @bitcasts_and_bitcast(<4 x i32> %a, <8 x i16> %b) {
121 ; CHECK-LABEL: @bitcasts_and_bitcast(
122 ; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <8 x i16> [[B:%.*]] to <4 x i32>
123 ; CHECK-NEXT:    [[BC3:%.*]] = and <4 x i32> [[TMP1]], [[A:%.*]]
124 ; CHECK-NEXT:    ret <4 x i32> [[BC3]]
126   %bc1 = bitcast <4 x i32> %a to <2 x i64>
127   %bc2 = bitcast <8 x i16> %b to <2 x i64>
128   %and = and <2 x i64> %bc2, %bc1
129   %bc3 = bitcast <2 x i64> %and to <4 x i32>
130   ret <4 x i32> %bc3
133 ; The destination must have an integer element type.
134 ; FIXME: We can still eliminate one bitcast in this test by doing the logic op
135 ; in the type of the input that has an integer element type.
137 define <4 x float> @bitcasts_and_bitcast_to_fp(<4 x float> %a, <8 x i16> %b) {
138 ; CHECK-LABEL: @bitcasts_and_bitcast_to_fp(
139 ; CHECK-NEXT:    [[BC1:%.*]] = bitcast <4 x float> [[A:%.*]] to <2 x i64>
140 ; CHECK-NEXT:    [[BC2:%.*]] = bitcast <8 x i16> [[B:%.*]] to <2 x i64>
141 ; CHECK-NEXT:    [[AND:%.*]] = and <2 x i64> [[BC2]], [[BC1]]
142 ; CHECK-NEXT:    [[BC3:%.*]] = bitcast <2 x i64> [[AND]] to <4 x float>
143 ; CHECK-NEXT:    ret <4 x float> [[BC3]]
145   %bc1 = bitcast <4 x float> %a to <2 x i64>
146   %bc2 = bitcast <8 x i16> %b to <2 x i64>
147   %and = and <2 x i64> %bc2, %bc1
148   %bc3 = bitcast <2 x i64> %and to <4 x float>
149   ret <4 x float> %bc3
152 ; FIXME: Transform limited from changing vector op to integer op to avoid codegen problems.
154 define i128 @bitcast_or_bitcast(i128 %a, <2 x i64> %b) {
155 ; CHECK-LABEL: @bitcast_or_bitcast(
156 ; CHECK-NEXT:    [[BC1:%.*]] = bitcast i128 [[A:%.*]] to <2 x i64>
157 ; CHECK-NEXT:    [[OR:%.*]] = or <2 x i64> [[BC1]], [[B:%.*]]
158 ; CHECK-NEXT:    [[BC2:%.*]] = bitcast <2 x i64> [[OR]] to i128
159 ; CHECK-NEXT:    ret i128 [[BC2]]
161   %bc1 = bitcast i128 %a to <2 x i64>
162   %or = or <2 x i64> %b, %bc1
163   %bc2 = bitcast <2 x i64> %or to i128
164   ret i128 %bc2
167 ; FIXME: Transform limited from changing integer op to vector op to avoid codegen problems.
169 define <4 x i32> @bitcast_xor_bitcast(<4 x i32> %a, i128 %b) {
170 ; CHECK-LABEL: @bitcast_xor_bitcast(
171 ; CHECK-NEXT:    [[BC1:%.*]] = bitcast <4 x i32> [[A:%.*]] to i128
172 ; CHECK-NEXT:    [[XOR:%.*]] = xor i128 [[BC1]], [[B:%.*]]
173 ; CHECK-NEXT:    [[BC2:%.*]] = bitcast i128 [[XOR]] to <4 x i32>
174 ; CHECK-NEXT:    ret <4 x i32> [[BC2]]
176   %bc1 = bitcast <4 x i32> %a to i128
177   %xor = xor i128 %bc1, %b
178   %bc2 = bitcast i128 %xor to <4 x i32>
179   ret <4 x i32> %bc2
182 ; https://llvm.org/bugs/show_bug.cgi?id=6137#c6
184 define <4 x float> @bitcast_vector_select(<4 x float> %x, <2 x i64> %y, <4 x i1> %cmp) {
185 ; CHECK-LABEL: @bitcast_vector_select(
186 ; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <2 x i64> [[Y:%.*]] to <4 x float>
187 ; CHECK-NEXT:    [[T7:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x float> [[X:%.*]], <4 x float> [[TMP1]]
188 ; CHECK-NEXT:    ret <4 x float> [[T7]]
190   %t4 = bitcast <4 x float> %x to <4 x i32>
191   %t5 = bitcast <2 x i64> %y to <4 x i32>
192   %t6 = select <4 x i1> %cmp, <4 x i32> %t4, <4 x i32> %t5
193   %t7 = bitcast <4 x i32> %t6 to <4 x float>
194   ret <4 x float> %t7
197 define float @bitcast_scalar_select_of_scalars(float %x, i32 %y, i1 %cmp) {
198 ; CHECK-LABEL: @bitcast_scalar_select_of_scalars(
199 ; CHECK-NEXT:    [[TMP1:%.*]] = bitcast i32 [[Y:%.*]] to float
200 ; CHECK-NEXT:    [[T7:%.*]] = select i1 [[CMP:%.*]], float [[X:%.*]], float [[TMP1]]
201 ; CHECK-NEXT:    ret float [[T7]]
203   %t4 = bitcast float %x to i32
204   %t6 = select i1 %cmp, i32 %t4, i32 %y
205   %t7 = bitcast i32 %t6 to float
206   ret float %t7
209 ; FIXME: We should change the select operand types to scalars, but we need to make
210 ; sure the backend can reverse that transform if needed.
212 define float @bitcast_scalar_select_type_mismatch1(float %x, <4 x i8> %y, i1 %cmp) {
213 ; CHECK-LABEL: @bitcast_scalar_select_type_mismatch1(
214 ; CHECK-NEXT:    [[T4:%.*]] = bitcast float [[X:%.*]] to <4 x i8>
215 ; CHECK-NEXT:    [[T6:%.*]] = select i1 [[CMP:%.*]], <4 x i8> [[T4]], <4 x i8> [[Y:%.*]]
216 ; CHECK-NEXT:    [[T7:%.*]] = bitcast <4 x i8> [[T6]] to float
217 ; CHECK-NEXT:    ret float [[T7]]
219   %t4 = bitcast float %x to <4 x i8>
220   %t6 = select i1 %cmp, <4 x i8> %t4, <4 x i8> %y
221   %t7 = bitcast <4 x i8> %t6 to float
222   ret float %t7
225 ; FIXME: We should change the select operand types to vectors, but we need to make
226 ; sure the backend can reverse that transform if needed.
228 define <4 x i8> @bitcast_scalar_select_type_mismatch2(<4 x i8> %x, float %y, i1 %cmp) {
229 ; CHECK-LABEL: @bitcast_scalar_select_type_mismatch2(
230 ; CHECK-NEXT:    [[T4:%.*]] = bitcast <4 x i8> [[X:%.*]] to float
231 ; CHECK-NEXT:    [[T6:%.*]] = select i1 [[CMP:%.*]], float [[T4]], float [[Y:%.*]]
232 ; CHECK-NEXT:    [[T7:%.*]] = bitcast float [[T6]] to <4 x i8>
233 ; CHECK-NEXT:    ret <4 x i8> [[T7]]
235   %t4 = bitcast <4 x i8> %x to float
236   %t6 = select i1 %cmp, float %t4, float %y
237   %t7 = bitcast float %t6 to <4 x i8>
238   ret <4 x i8> %t7
241 define <4 x float> @bitcast_scalar_select_of_vectors(<4 x float> %x, <2 x i64> %y, i1 %cmp) {
242 ; CHECK-LABEL: @bitcast_scalar_select_of_vectors(
243 ; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <2 x i64> [[Y:%.*]] to <4 x float>
244 ; CHECK-NEXT:    [[T7:%.*]] = select i1 [[CMP:%.*]], <4 x float> [[X:%.*]], <4 x float> [[TMP1]]
245 ; CHECK-NEXT:    ret <4 x float> [[T7]]
247   %t4 = bitcast <4 x float> %x to <4 x i32>
248   %t5 = bitcast <2 x i64> %y to <4 x i32>
249   %t6 = select i1 %cmp, <4 x i32> %t4, <4 x i32> %t5
250   %t7 = bitcast <4 x i32> %t6 to <4 x float>
251   ret <4 x float> %t7
254 ; Can't change the type of the vector select if the dest type is scalar.
256 define float @bitcast_vector_select_no_fold1(float %x, <2 x i16> %y, <4 x i1> %cmp) {
257 ; CHECK-LABEL: @bitcast_vector_select_no_fold1(
258 ; CHECK-NEXT:    [[T4:%.*]] = bitcast float [[X:%.*]] to <4 x i8>
259 ; CHECK-NEXT:    [[T5:%.*]] = bitcast <2 x i16> [[Y:%.*]] to <4 x i8>
260 ; CHECK-NEXT:    [[T6:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i8> [[T4]], <4 x i8> [[T5]]
261 ; CHECK-NEXT:    [[T7:%.*]] = bitcast <4 x i8> [[T6]] to float
262 ; CHECK-NEXT:    ret float [[T7]]
264   %t4 = bitcast float %x to <4 x i8>
265   %t5 = bitcast <2 x i16> %y to <4 x i8>
266   %t6 = select <4 x i1> %cmp, <4 x i8> %t4, <4 x i8> %t5
267   %t7 = bitcast <4 x i8> %t6 to float
268   ret float %t7
271 ; Can't change the type of the vector select if the number of elements in the dest type is not the same.
273 define <2 x float> @bitcast_vector_select_no_fold2(<2 x float> %x, <4 x i16> %y, <8 x i1> %cmp) {
274 ; CHECK-LABEL: @bitcast_vector_select_no_fold2(
275 ; CHECK-NEXT:    [[T4:%.*]] = bitcast <2 x float> [[X:%.*]] to <8 x i8>
276 ; CHECK-NEXT:    [[T5:%.*]] = bitcast <4 x i16> [[Y:%.*]] to <8 x i8>
277 ; CHECK-NEXT:    [[T6:%.*]] = select <8 x i1> [[CMP:%.*]], <8 x i8> [[T4]], <8 x i8> [[T5]]
278 ; CHECK-NEXT:    [[T7:%.*]] = bitcast <8 x i8> [[T6]] to <2 x float>
279 ; CHECK-NEXT:    ret <2 x float> [[T7]]
281   %t4 = bitcast <2 x float> %x to <8 x i8>
282   %t5 = bitcast <4 x i16> %y to <8 x i8>
283   %t6 = select <8 x i1> %cmp, <8 x i8> %t4, <8 x i8> %t5
284   %t7 = bitcast <8 x i8> %t6 to <2 x float>
285   ret <2 x float> %t7
288 ; Optimize bitcasts that are extracting low element of vector.  This happens because of SRoA.
289 ; rdar://7892780
290 define float @test2(<2 x float> %A, <2 x i32> %B) {
291 ; CHECK-LABEL: @test2(
292 ; CHECK-NEXT:    [[TMP24:%.*]] = extractelement <2 x float> [[A:%.*]], i32 0
293 ; CHECK-NEXT:    [[BC:%.*]] = bitcast <2 x i32> [[B:%.*]] to <2 x float>
294 ; CHECK-NEXT:    [[TMP4:%.*]] = extractelement <2 x float> [[BC]], i32 0
295 ; CHECK-NEXT:    [[ADD:%.*]] = fadd float [[TMP24]], [[TMP4]]
296 ; CHECK-NEXT:    ret float [[ADD]]
298   %tmp28 = bitcast <2 x float> %A to i64  ; <i64> [#uses=2]
299   %tmp23 = trunc i64 %tmp28 to i32                ; <i32> [#uses=1]
300   %tmp24 = bitcast i32 %tmp23 to float            ; <float> [#uses=1]
302   %tmp = bitcast <2 x i32> %B to i64
303   %tmp2 = trunc i64 %tmp to i32                ; <i32> [#uses=1]
304   %tmp4 = bitcast i32 %tmp2 to float            ; <float> [#uses=1]
306   %add = fadd float %tmp24, %tmp4
307   ret float %add
310 ; Optimize bitcasts that are extracting other elements of a vector.  This happens because of SRoA.
311 ; rdar://7892780
312 define float @test3(<2 x float> %A, <2 x i64> %B) {
313 ; CHECK-LABEL: @test3(
314 ; CHECK-NEXT:    [[TMP24:%.*]] = extractelement <2 x float> [[A:%.*]], i32 1
315 ; CHECK-NEXT:    [[BC2:%.*]] = bitcast <2 x i64> [[B:%.*]] to <4 x float>
316 ; CHECK-NEXT:    [[TMP4:%.*]] = extractelement <4 x float> [[BC2]], i32 2
317 ; CHECK-NEXT:    [[ADD:%.*]] = fadd float [[TMP24]], [[TMP4]]
318 ; CHECK-NEXT:    ret float [[ADD]]
320   %tmp28 = bitcast <2 x float> %A to i64
321   %tmp29 = lshr i64 %tmp28, 32
322   %tmp23 = trunc i64 %tmp29 to i32
323   %tmp24 = bitcast i32 %tmp23 to float
325   %tmp = bitcast <2 x i64> %B to i128
326   %tmp1 = lshr i128 %tmp, 64
327   %tmp2 = trunc i128 %tmp1 to i32
328   %tmp4 = bitcast i32 %tmp2 to float
330   %add = fadd float %tmp24, %tmp4
331   ret float %add
334 ; Both bitcasts are unnecessary; change the extractelement.
336 define float @bitcast_extelt1(<2 x float> %A) {
337 ; CHECK-LABEL: @bitcast_extelt1(
338 ; CHECK-NEXT:    [[BC2:%.*]] = extractelement <2 x float> [[A:%.*]], i32 0
339 ; CHECK-NEXT:    ret float [[BC2]]
341   %bc1 = bitcast <2 x float> %A to <2 x i32>
342   %ext = extractelement <2 x i32> %bc1, i32 0
343   %bc2 = bitcast i32 %ext to float
344   ret float %bc2
347 ; Second bitcast can be folded into the first.
349 define i64 @bitcast_extelt2(<4 x float> %A) {
350 ; CHECK-LABEL: @bitcast_extelt2(
351 ; CHECK-NEXT:    [[BC:%.*]] = bitcast <4 x float> [[A:%.*]] to <2 x i64>
352 ; CHECK-NEXT:    [[BC2:%.*]] = extractelement <2 x i64> [[BC]], i32 1
353 ; CHECK-NEXT:    ret i64 [[BC2]]
355   %bc1 = bitcast <4 x float> %A to <2 x double>
356   %ext = extractelement <2 x double> %bc1, i32 1
357   %bc2 = bitcast double %ext to i64
358   ret i64 %bc2
361 ; TODO: This should return %A.
363 define <2 x i32> @bitcast_extelt3(<2 x i32> %A) {
364 ; CHECK-LABEL: @bitcast_extelt3(
365 ; CHECK-NEXT:    [[BC1:%.*]] = bitcast <2 x i32> [[A:%.*]] to <1 x i64>
366 ; CHECK-NEXT:    [[EXT:%.*]] = extractelement <1 x i64> [[BC1]], i32 0
367 ; CHECK-NEXT:    [[BC2:%.*]] = bitcast i64 [[EXT]] to <2 x i32>
368 ; CHECK-NEXT:    ret <2 x i32> [[BC2]]
370   %bc1 = bitcast <2 x i32> %A to <1 x i64>
371   %ext = extractelement <1 x i64> %bc1, i32 0
372   %bc2 = bitcast i64 %ext to <2 x i32>
373   ret <2 x i32> %bc2
376 ; Handle the case where the input is not a vector.
378 define double @bitcast_extelt4(i128 %A) {
379 ; CHECK-LABEL: @bitcast_extelt4(
380 ; CHECK-NEXT:    [[BC:%.*]] = bitcast i128 [[A:%.*]] to <2 x double>
381 ; CHECK-NEXT:    [[BC2:%.*]] = extractelement <2 x double> [[BC]], i32 0
382 ; CHECK-NEXT:    ret double [[BC2]]
384   %bc1 = bitcast i128 %A to <2 x i64>
385   %ext = extractelement <2 x i64> %bc1, i32 0
386   %bc2 = bitcast i64 %ext to double
387   ret double %bc2
390 define <2 x i32> @test4(i32 %A, i32 %B){
391 ; CHECK-LABEL: @test4(
392 ; CHECK-NEXT:    [[TMP1:%.*]] = insertelement <2 x i32> undef, i32 [[A:%.*]], i32 0
393 ; CHECK-NEXT:    [[TMP2:%.*]] = insertelement <2 x i32> [[TMP1]], i32 [[B:%.*]], i32 1
394 ; CHECK-NEXT:    ret <2 x i32> [[TMP2]]
396   %tmp38 = zext i32 %A to i64
397   %tmp32 = zext i32 %B to i64
398   %tmp33 = shl i64 %tmp32, 32
399   %ins35 = or i64 %tmp33, %tmp38
400   %tmp43 = bitcast i64 %ins35 to <2 x i32>
401   ret <2 x i32> %tmp43
404 ; rdar://8360454
405 define <2 x float> @test5(float %A, float %B) {
406 ; CHECK-LABEL: @test5(
407 ; CHECK-NEXT:    [[TMP1:%.*]] = insertelement <2 x float> undef, float [[A:%.*]], i32 0
408 ; CHECK-NEXT:    [[TMP2:%.*]] = insertelement <2 x float> [[TMP1]], float [[B:%.*]], i32 1
409 ; CHECK-NEXT:    ret <2 x float> [[TMP2]]
411   %tmp37 = bitcast float %A to i32
412   %tmp38 = zext i32 %tmp37 to i64
413   %tmp31 = bitcast float %B to i32
414   %tmp32 = zext i32 %tmp31 to i64
415   %tmp33 = shl i64 %tmp32, 32
416   %ins35 = or i64 %tmp33, %tmp38
417   %tmp43 = bitcast i64 %ins35 to <2 x float>
418   ret <2 x float> %tmp43
421 define <2 x float> @test6(float %A){
422 ; CHECK-LABEL: @test6(
423 ; CHECK-NEXT:    [[TMP1:%.*]] = insertelement <2 x float> <float 4.200000e+01, float undef>, float [[A:%.*]], i32 1
424 ; CHECK-NEXT:    ret <2 x float> [[TMP1]]
426   %tmp23 = bitcast float %A to i32
427   %tmp24 = zext i32 %tmp23 to i64
428   %tmp25 = shl i64 %tmp24, 32
429   %mask20 = or i64 %tmp25, 1109917696
430   %tmp35 = bitcast i64 %mask20 to <2 x float>
431   ret <2 x float> %tmp35
434 define i64 @ISPC0(i64 %in) {
435 ; CHECK-LABEL: @ISPC0(
436 ; CHECK-NEXT:    ret i64 0
438   %out = and i64 %in, xor (i64 bitcast (<4 x i16> <i16 -1, i16 -1, i16 -1, i16 -1> to i64), i64 -1)
439   ret i64 %out
443 define i64 @Vec2(i64 %in) {
444 ; CHECK-LABEL: @Vec2(
445 ; CHECK-NEXT:    ret i64 0
447   %out = and i64 %in, xor (i64 bitcast (<4 x i16> <i16 0, i16 0, i16 0, i16 0> to i64), i64 0)
448   ret i64 %out
451 define i64 @All11(i64 %in) {
452 ; CHECK-LABEL: @All11(
453 ; CHECK-NEXT:    ret i64 0
455   %out = and i64 %in, xor (i64 bitcast (<2 x float> bitcast (i64 -1 to <2 x float>) to i64), i64 -1)
456   ret i64 %out
460 define i32 @All111(i32 %in) {
461 ; CHECK-LABEL: @All111(
462 ; CHECK-NEXT:    ret i32 0
464   %out = and i32 %in, xor (i32 bitcast (<1 x float> bitcast (i32 -1 to <1 x float>) to i32), i32 -1)
465   ret i32 %out
468 define <2 x i16> @BitcastInsert(i32 %a) {
469 ; CHECK-LABEL: @BitcastInsert(
470 ; CHECK-NEXT:    [[R:%.*]] = bitcast i32 [[A:%.*]] to <2 x i16>
471 ; CHECK-NEXT:    ret <2 x i16> [[R]]
473   %v = insertelement <1 x i32> undef, i32 %a, i32 0
474   %r = bitcast <1 x i32> %v to <2 x i16>
475   ret <2 x i16> %r
478 ; PR17293
479 define <2 x i64> @test7(<2 x i8*>* %arg) nounwind {
480 ; CHECK-LABEL: @test7(
481 ; CHECK-NEXT:    [[CAST:%.*]] = bitcast <2 x i8*>* [[ARG:%.*]] to <2 x i64>*
482 ; CHECK-NEXT:    [[LOAD:%.*]] = load <2 x i64>, <2 x i64>* [[CAST]], align 16
483 ; CHECK-NEXT:    ret <2 x i64> [[LOAD]]
485   %cast = bitcast <2 x i8*>* %arg to <2 x i64>*
486   %load = load <2 x i64>, <2 x i64>* %cast, align 16
487   ret <2 x i64> %load
490 define i8 @test8() {
491 ; CHECK-LABEL: @test8(
492 ; CHECK-NEXT:    ret i8 -85
494   %res = bitcast <8 x i1> <i1 true, i1 true, i1 false, i1 true, i1 false, i1 true, i1 false, i1 true> to i8
495   ret i8 %res
498 @g = internal unnamed_addr global i32 undef
500 define void @constant_fold_vector_to_double() {
501 ; CHECK-LABEL: @constant_fold_vector_to_double(
502 ; CHECK-NEXT:    store volatile double 1.000000e+00, double* undef, align 8
503 ; CHECK-NEXT:    store volatile double 1.000000e+00, double* undef, align 8
504 ; CHECK-NEXT:    store volatile double 1.000000e+00, double* undef, align 8
505 ; CHECK-NEXT:    store volatile double 1.000000e+00, double* undef, align 8
506 ; CHECK-NEXT:    store volatile double 0xFFFFFFFFFFFFFFFF, double* undef, align 8
507 ; CHECK-NEXT:    store volatile double 0x162E000004D2, double* undef, align 8
508 ; CHECK-NEXT:    store volatile double bitcast (<2 x i32> <i32 1234, i32 ptrtoint (i32* @g to i32)> to double), double* undef, align 8
509 ; CHECK-NEXT:    store volatile double 0x400000003F800000, double* undef, align 8
510 ; CHECK-NEXT:    store volatile double 0.000000e+00, double* undef, align 8
511 ; CHECK-NEXT:    store volatile double 0.000000e+00, double* undef, align 8
512 ; CHECK-NEXT:    store volatile double 0.000000e+00, double* undef, align 8
513 ; CHECK-NEXT:    store volatile double 0.000000e+00, double* undef, align 8
514 ; CHECK-NEXT:    store volatile double 0.000000e+00, double* undef, align 8
515 ; CHECK-NEXT:    store volatile double 0.000000e+00, double* undef, align 8
516 ; CHECK-NEXT:    ret void
518   store volatile double bitcast (<1 x i64> <i64 4607182418800017408> to double), double* undef
519   store volatile double bitcast (<2 x i32> <i32 0, i32 1072693248> to double), double* undef
520   store volatile double bitcast (<4 x i16> <i16 0, i16 0, i16 0, i16 16368> to double), double* undef
521   store volatile double bitcast (<8 x i8> <i8 0, i8 0, i8 0, i8 0, i8 0, i8 0, i8 240, i8 63> to double), double* undef
523   store volatile double bitcast (<2 x i32> <i32 -1, i32 -1> to double), double* undef
524   store volatile double bitcast (<2 x i32> <i32 1234, i32 5678> to double), double* undef
526   store volatile double bitcast (<2 x i32> <i32 1234, i32 ptrtoint (i32* @g to i32)> to double), double* undef
527   store volatile double bitcast (<2 x float> <float 1.0, float 2.0> to double), double* undef
529   store volatile double bitcast (<2 x i32> zeroinitializer to double), double* undef
530   store volatile double bitcast (<4 x i16> zeroinitializer to double), double* undef
531   store volatile double bitcast (<8 x i8> zeroinitializer to double), double* undef
532   store volatile double bitcast (<16 x i4> zeroinitializer to double), double* undef
533   store volatile double bitcast (<32 x i2> zeroinitializer to double), double* undef
534   store volatile double bitcast (<64 x i1> zeroinitializer to double), double* undef
535   ret void
538 define void @constant_fold_vector_to_float() {
539 ; CHECK-LABEL: @constant_fold_vector_to_float(
540 ; CHECK-NEXT:    store volatile float 1.000000e+00, float* undef, align 4
541 ; CHECK-NEXT:    store volatile float 1.000000e+00, float* undef, align 4
542 ; CHECK-NEXT:    store volatile float 1.000000e+00, float* undef, align 4
543 ; CHECK-NEXT:    store volatile float 1.000000e+00, float* undef, align 4
544 ; CHECK-NEXT:    ret void
546   store volatile float bitcast (<1 x i32> <i32 1065353216> to float), float* undef
547   store volatile float bitcast (<2 x i16> <i16 0, i16 16256> to float), float* undef
548   store volatile float bitcast (<4 x i8> <i8 0, i8 0, i8 128, i8 63> to float), float* undef
549   store volatile float bitcast (<32 x i1> <i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 1, i1 1, i1 1, i1 1, i1 1, i1 1, i1 1, i1 0, i1 0> to float), float* undef
551   ret void
554 define void @constant_fold_vector_to_half() {
555 ; CHECK-LABEL: @constant_fold_vector_to_half(
556 ; CHECK-NEXT:    store volatile half 0xH4000, half* undef, align 2
557 ; CHECK-NEXT:    store volatile half 0xH4000, half* undef, align 2
558 ; CHECK-NEXT:    ret void
560   store volatile half bitcast (<2 x i8> <i8 0, i8 64> to half), half* undef
561   store volatile half bitcast (<4 x i4> <i4 0, i4 0, i4 0, i4 4> to half), half* undef
562   ret void