[llvm-exegesis] Fix wrong index type.
[llvm-core.git] / utils / TableGen / CodeGenTarget.cpp
blob2766fcca16165aed242eee8b17d37c775675be47
1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This class wraps target description classes used by the various code
11 // generation TableGen backends. This makes it easier to access the data and
12 // provides a single place that needs to check it for validity. All of these
13 // classes abort on error conditions.
15 //===----------------------------------------------------------------------===//
17 #include "CodeGenTarget.h"
18 #include "CodeGenDAGPatterns.h"
19 #include "CodeGenIntrinsics.h"
20 #include "CodeGenSchedule.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/TableGen/Error.h"
25 #include "llvm/TableGen/Record.h"
26 #include <algorithm>
27 using namespace llvm;
29 cl::OptionCategory AsmParserCat("Options for -gen-asm-parser");
30 cl::OptionCategory AsmWriterCat("Options for -gen-asm-writer");
32 static cl::opt<unsigned>
33 AsmParserNum("asmparsernum", cl::init(0),
34 cl::desc("Make -gen-asm-parser emit assembly parser #N"),
35 cl::cat(AsmParserCat));
37 static cl::opt<unsigned>
38 AsmWriterNum("asmwriternum", cl::init(0),
39 cl::desc("Make -gen-asm-writer emit assembly writer #N"),
40 cl::cat(AsmWriterCat));
42 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen
43 /// record corresponds to.
44 MVT::SimpleValueType llvm::getValueType(Record *Rec) {
45 return (MVT::SimpleValueType)Rec->getValueAsInt("Value");
48 StringRef llvm::getName(MVT::SimpleValueType T) {
49 switch (T) {
50 case MVT::Other: return "UNKNOWN";
51 case MVT::iPTR: return "TLI.getPointerTy()";
52 case MVT::iPTRAny: return "TLI.getPointerTy()";
53 default: return getEnumName(T);
57 StringRef llvm::getEnumName(MVT::SimpleValueType T) {
58 switch (T) {
59 case MVT::Other: return "MVT::Other";
60 case MVT::i1: return "MVT::i1";
61 case MVT::i8: return "MVT::i8";
62 case MVT::i16: return "MVT::i16";
63 case MVT::i32: return "MVT::i32";
64 case MVT::i64: return "MVT::i64";
65 case MVT::i128: return "MVT::i128";
66 case MVT::Any: return "MVT::Any";
67 case MVT::iAny: return "MVT::iAny";
68 case MVT::fAny: return "MVT::fAny";
69 case MVT::vAny: return "MVT::vAny";
70 case MVT::f16: return "MVT::f16";
71 case MVT::f32: return "MVT::f32";
72 case MVT::f64: return "MVT::f64";
73 case MVT::f80: return "MVT::f80";
74 case MVT::f128: return "MVT::f128";
75 case MVT::ppcf128: return "MVT::ppcf128";
76 case MVT::x86mmx: return "MVT::x86mmx";
77 case MVT::Glue: return "MVT::Glue";
78 case MVT::isVoid: return "MVT::isVoid";
79 case MVT::v1i1: return "MVT::v1i1";
80 case MVT::v2i1: return "MVT::v2i1";
81 case MVT::v4i1: return "MVT::v4i1";
82 case MVT::v8i1: return "MVT::v8i1";
83 case MVT::v16i1: return "MVT::v16i1";
84 case MVT::v32i1: return "MVT::v32i1";
85 case MVT::v64i1: return "MVT::v64i1";
86 case MVT::v128i1: return "MVT::v128i1";
87 case MVT::v512i1: return "MVT::v512i1";
88 case MVT::v1024i1: return "MVT::v1024i1";
89 case MVT::v1i8: return "MVT::v1i8";
90 case MVT::v2i8: return "MVT::v2i8";
91 case MVT::v4i8: return "MVT::v4i8";
92 case MVT::v8i8: return "MVT::v8i8";
93 case MVT::v16i8: return "MVT::v16i8";
94 case MVT::v32i8: return "MVT::v32i8";
95 case MVT::v64i8: return "MVT::v64i8";
96 case MVT::v128i8: return "MVT::v128i8";
97 case MVT::v256i8: return "MVT::v256i8";
98 case MVT::v1i16: return "MVT::v1i16";
99 case MVT::v2i16: return "MVT::v2i16";
100 case MVT::v4i16: return "MVT::v4i16";
101 case MVT::v8i16: return "MVT::v8i16";
102 case MVT::v16i16: return "MVT::v16i16";
103 case MVT::v32i16: return "MVT::v32i16";
104 case MVT::v64i16: return "MVT::v64i16";
105 case MVT::v128i16: return "MVT::v128i16";
106 case MVT::v1i32: return "MVT::v1i32";
107 case MVT::v2i32: return "MVT::v2i32";
108 case MVT::v4i32: return "MVT::v4i32";
109 case MVT::v8i32: return "MVT::v8i32";
110 case MVT::v16i32: return "MVT::v16i32";
111 case MVT::v32i32: return "MVT::v32i32";
112 case MVT::v64i32: return "MVT::v64i32";
113 case MVT::v1i64: return "MVT::v1i64";
114 case MVT::v2i64: return "MVT::v2i64";
115 case MVT::v4i64: return "MVT::v4i64";
116 case MVT::v8i64: return "MVT::v8i64";
117 case MVT::v16i64: return "MVT::v16i64";
118 case MVT::v32i64: return "MVT::v32i64";
119 case MVT::v1i128: return "MVT::v1i128";
120 case MVT::v2f16: return "MVT::v2f16";
121 case MVT::v4f16: return "MVT::v4f16";
122 case MVT::v8f16: return "MVT::v8f16";
123 case MVT::v1f32: return "MVT::v1f32";
124 case MVT::v2f32: return "MVT::v2f32";
125 case MVT::v4f32: return "MVT::v4f32";
126 case MVT::v8f32: return "MVT::v8f32";
127 case MVT::v16f32: return "MVT::v16f32";
128 case MVT::v1f64: return "MVT::v1f64";
129 case MVT::v2f64: return "MVT::v2f64";
130 case MVT::v4f64: return "MVT::v4f64";
131 case MVT::v8f64: return "MVT::v8f64";
132 case MVT::nxv1i1: return "MVT::nxv1i1";
133 case MVT::nxv2i1: return "MVT::nxv2i1";
134 case MVT::nxv4i1: return "MVT::nxv4i1";
135 case MVT::nxv8i1: return "MVT::nxv8i1";
136 case MVT::nxv16i1: return "MVT::nxv16i1";
137 case MVT::nxv32i1: return "MVT::nxv32i1";
138 case MVT::nxv1i8: return "MVT::nxv1i8";
139 case MVT::nxv2i8: return "MVT::nxv2i8";
140 case MVT::nxv4i8: return "MVT::nxv4i8";
141 case MVT::nxv8i8: return "MVT::nxv8i8";
142 case MVT::nxv16i8: return "MVT::nxv16i8";
143 case MVT::nxv32i8: return "MVT::nxv32i8";
144 case MVT::nxv1i16: return "MVT::nxv1i16";
145 case MVT::nxv2i16: return "MVT::nxv2i16";
146 case MVT::nxv4i16: return "MVT::nxv4i16";
147 case MVT::nxv8i16: return "MVT::nxv8i16";
148 case MVT::nxv16i16: return "MVT::nxv16i16";
149 case MVT::nxv32i16: return "MVT::nxv32i16";
150 case MVT::nxv1i32: return "MVT::nxv1i32";
151 case MVT::nxv2i32: return "MVT::nxv2i32";
152 case MVT::nxv4i32: return "MVT::nxv4i32";
153 case MVT::nxv8i32: return "MVT::nxv8i32";
154 case MVT::nxv16i32: return "MVT::nxv16i32";
155 case MVT::nxv1i64: return "MVT::nxv1i64";
156 case MVT::nxv2i64: return "MVT::nxv2i64";
157 case MVT::nxv4i64: return "MVT::nxv4i64";
158 case MVT::nxv8i64: return "MVT::nxv8i64";
159 case MVT::nxv16i64: return "MVT::nxv16i64";
160 case MVT::nxv2f16: return "MVT::nxv2f16";
161 case MVT::nxv4f16: return "MVT::nxv4f16";
162 case MVT::nxv8f16: return "MVT::nxv8f16";
163 case MVT::nxv1f32: return "MVT::nxv1f32";
164 case MVT::nxv2f32: return "MVT::nxv2f32";
165 case MVT::nxv4f32: return "MVT::nxv4f32";
166 case MVT::nxv8f32: return "MVT::nxv8f32";
167 case MVT::nxv16f32: return "MVT::nxv16f32";
168 case MVT::nxv1f64: return "MVT::nxv1f64";
169 case MVT::nxv2f64: return "MVT::nxv2f64";
170 case MVT::nxv4f64: return "MVT::nxv4f64";
171 case MVT::nxv8f64: return "MVT::nxv8f64";
172 case MVT::token: return "MVT::token";
173 case MVT::Metadata: return "MVT::Metadata";
174 case MVT::iPTR: return "MVT::iPTR";
175 case MVT::iPTRAny: return "MVT::iPTRAny";
176 case MVT::Untyped: return "MVT::Untyped";
177 case MVT::ExceptRef: return "MVT::ExceptRef";
178 default: llvm_unreachable("ILLEGAL VALUE TYPE!");
182 /// getQualifiedName - Return the name of the specified record, with a
183 /// namespace qualifier if the record contains one.
185 std::string llvm::getQualifiedName(const Record *R) {
186 std::string Namespace;
187 if (R->getValue("Namespace"))
188 Namespace = R->getValueAsString("Namespace");
189 if (Namespace.empty()) return R->getName();
190 return Namespace + "::" + R->getName().str();
194 /// getTarget - Return the current instance of the Target class.
196 CodeGenTarget::CodeGenTarget(RecordKeeper &records)
197 : Records(records), CGH(records) {
198 std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target");
199 if (Targets.size() == 0)
200 PrintFatalError("ERROR: No 'Target' subclasses defined!");
201 if (Targets.size() != 1)
202 PrintFatalError("ERROR: Multiple subclasses of Target defined!");
203 TargetRec = Targets[0];
206 CodeGenTarget::~CodeGenTarget() {
209 const StringRef CodeGenTarget::getName() const {
210 return TargetRec->getName();
213 StringRef CodeGenTarget::getInstNamespace() const {
214 for (const CodeGenInstruction *Inst : getInstructionsByEnumValue()) {
215 // Make sure not to pick up "TargetOpcode" by accidentally getting
216 // the namespace off the PHI instruction or something.
217 if (Inst->Namespace != "TargetOpcode")
218 return Inst->Namespace;
221 return "";
224 Record *CodeGenTarget::getInstructionSet() const {
225 return TargetRec->getValueAsDef("InstructionSet");
228 bool CodeGenTarget::getAllowRegisterRenaming() const {
229 return TargetRec->getValueAsInt("AllowRegisterRenaming");
232 /// getAsmParser - Return the AssemblyParser definition for this target.
234 Record *CodeGenTarget::getAsmParser() const {
235 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers");
236 if (AsmParserNum >= LI.size())
237 PrintFatalError("Target does not have an AsmParser #" +
238 Twine(AsmParserNum) + "!");
239 return LI[AsmParserNum];
242 /// getAsmParserVariant - Return the AssmblyParserVariant definition for
243 /// this target.
245 Record *CodeGenTarget::getAsmParserVariant(unsigned i) const {
246 std::vector<Record*> LI =
247 TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
248 if (i >= LI.size())
249 PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) +
250 "!");
251 return LI[i];
254 /// getAsmParserVariantCount - Return the AssmblyParserVariant definition
255 /// available for this target.
257 unsigned CodeGenTarget::getAsmParserVariantCount() const {
258 std::vector<Record*> LI =
259 TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
260 return LI.size();
263 /// getAsmWriter - Return the AssemblyWriter definition for this target.
265 Record *CodeGenTarget::getAsmWriter() const {
266 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters");
267 if (AsmWriterNum >= LI.size())
268 PrintFatalError("Target does not have an AsmWriter #" +
269 Twine(AsmWriterNum) + "!");
270 return LI[AsmWriterNum];
273 CodeGenRegBank &CodeGenTarget::getRegBank() const {
274 if (!RegBank)
275 RegBank = llvm::make_unique<CodeGenRegBank>(Records, getHwModes());
276 return *RegBank;
279 void CodeGenTarget::ReadRegAltNameIndices() const {
280 RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex");
281 llvm::sort(RegAltNameIndices, LessRecord());
284 /// getRegisterByName - If there is a register with the specific AsmName,
285 /// return it.
286 const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const {
287 const StringMap<CodeGenRegister*> &Regs = getRegBank().getRegistersByName();
288 StringMap<CodeGenRegister*>::const_iterator I = Regs.find(Name);
289 if (I == Regs.end())
290 return nullptr;
291 return I->second;
294 std::vector<ValueTypeByHwMode> CodeGenTarget::getRegisterVTs(Record *R)
295 const {
296 const CodeGenRegister *Reg = getRegBank().getReg(R);
297 std::vector<ValueTypeByHwMode> Result;
298 for (const auto &RC : getRegBank().getRegClasses()) {
299 if (RC.contains(Reg)) {
300 ArrayRef<ValueTypeByHwMode> InVTs = RC.getValueTypes();
301 Result.insert(Result.end(), InVTs.begin(), InVTs.end());
305 // Remove duplicates.
306 llvm::sort(Result);
307 Result.erase(std::unique(Result.begin(), Result.end()), Result.end());
308 return Result;
312 void CodeGenTarget::ReadLegalValueTypes() const {
313 for (const auto &RC : getRegBank().getRegClasses())
314 LegalValueTypes.insert(LegalValueTypes.end(), RC.VTs.begin(), RC.VTs.end());
316 // Remove duplicates.
317 llvm::sort(LegalValueTypes);
318 LegalValueTypes.erase(std::unique(LegalValueTypes.begin(),
319 LegalValueTypes.end()),
320 LegalValueTypes.end());
323 CodeGenSchedModels &CodeGenTarget::getSchedModels() const {
324 if (!SchedModels)
325 SchedModels = llvm::make_unique<CodeGenSchedModels>(Records, *this);
326 return *SchedModels;
329 void CodeGenTarget::ReadInstructions() const {
330 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
331 if (Insts.size() <= 2)
332 PrintFatalError("No 'Instruction' subclasses defined!");
334 // Parse the instructions defined in the .td file.
335 for (unsigned i = 0, e = Insts.size(); i != e; ++i)
336 Instructions[Insts[i]] = llvm::make_unique<CodeGenInstruction>(Insts[i]);
339 static const CodeGenInstruction *
340 GetInstByName(const char *Name,
341 const DenseMap<const Record*,
342 std::unique_ptr<CodeGenInstruction>> &Insts,
343 RecordKeeper &Records) {
344 const Record *Rec = Records.getDef(Name);
346 const auto I = Insts.find(Rec);
347 if (!Rec || I == Insts.end())
348 PrintFatalError(Twine("Could not find '") + Name + "' instruction!");
349 return I->second.get();
352 static const char *const FixedInstrs[] = {
353 #define HANDLE_TARGET_OPCODE(OPC) #OPC,
354 #include "llvm/Support/TargetOpcodes.def"
355 nullptr};
357 unsigned CodeGenTarget::getNumFixedInstructions() {
358 return array_lengthof(FixedInstrs) - 1;
361 /// Return all of the instructions defined by the target, ordered by
362 /// their enum value.
363 void CodeGenTarget::ComputeInstrsByEnum() const {
364 const auto &Insts = getInstructions();
365 for (const char *const *p = FixedInstrs; *p; ++p) {
366 const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records);
367 assert(Instr && "Missing target independent instruction");
368 assert(Instr->Namespace == "TargetOpcode" && "Bad namespace");
369 InstrsByEnum.push_back(Instr);
371 unsigned EndOfPredefines = InstrsByEnum.size();
372 assert(EndOfPredefines == getNumFixedInstructions() &&
373 "Missing generic opcode");
375 for (const auto &I : Insts) {
376 const CodeGenInstruction *CGI = I.second.get();
377 if (CGI->Namespace != "TargetOpcode") {
378 InstrsByEnum.push_back(CGI);
379 if (CGI->TheDef->getValueAsBit("isPseudo"))
380 ++NumPseudoInstructions;
384 assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr");
386 // All of the instructions are now in random order based on the map iteration.
387 llvm::sort(
388 InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(),
389 [](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) {
390 const auto &D1 = *Rec1->TheDef;
391 const auto &D2 = *Rec2->TheDef;
392 return std::make_tuple(!D1.getValueAsBit("isPseudo"), D1.getName()) <
393 std::make_tuple(!D2.getValueAsBit("isPseudo"), D2.getName());
398 /// isLittleEndianEncoding - Return whether this target encodes its instruction
399 /// in little-endian format, i.e. bits laid out in the order [0..n]
401 bool CodeGenTarget::isLittleEndianEncoding() const {
402 return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
405 /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit
406 /// encodings, reverse the bit order of all instructions.
407 void CodeGenTarget::reverseBitsForLittleEndianEncoding() {
408 if (!isLittleEndianEncoding())
409 return;
411 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
412 for (Record *R : Insts) {
413 if (R->getValueAsString("Namespace") == "TargetOpcode" ||
414 R->getValueAsBit("isPseudo"))
415 continue;
417 BitsInit *BI = R->getValueAsBitsInit("Inst");
419 unsigned numBits = BI->getNumBits();
421 SmallVector<Init *, 16> NewBits(numBits);
423 for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) {
424 unsigned bitSwapIdx = numBits - bit - 1;
425 Init *OrigBit = BI->getBit(bit);
426 Init *BitSwap = BI->getBit(bitSwapIdx);
427 NewBits[bit] = BitSwap;
428 NewBits[bitSwapIdx] = OrigBit;
430 if (numBits % 2) {
431 unsigned middle = (numBits + 1) / 2;
432 NewBits[middle] = BI->getBit(middle);
435 BitsInit *NewBI = BitsInit::get(NewBits);
437 // Update the bits in reversed order so that emitInstrOpBits will get the
438 // correct endianness.
439 R->getValue("Inst")->setValue(NewBI);
443 /// guessInstructionProperties - Return true if it's OK to guess instruction
444 /// properties instead of raising an error.
446 /// This is configurable as a temporary migration aid. It will eventually be
447 /// permanently false.
448 bool CodeGenTarget::guessInstructionProperties() const {
449 return getInstructionSet()->getValueAsBit("guessInstructionProperties");
452 //===----------------------------------------------------------------------===//
453 // ComplexPattern implementation
455 ComplexPattern::ComplexPattern(Record *R) {
456 Ty = ::getValueType(R->getValueAsDef("Ty"));
457 NumOperands = R->getValueAsInt("NumOperands");
458 SelectFunc = R->getValueAsString("SelectFunc");
459 RootNodes = R->getValueAsListOfDefs("RootNodes");
461 // FIXME: This is a hack to statically increase the priority of patterns which
462 // maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. To get best
463 // possible pattern match we'll need to dynamically calculate the complexity
464 // of all patterns a dag can potentially map to.
465 int64_t RawComplexity = R->getValueAsInt("Complexity");
466 if (RawComplexity == -1)
467 Complexity = NumOperands * 3;
468 else
469 Complexity = RawComplexity;
471 // FIXME: Why is this different from parseSDPatternOperatorProperties?
472 // Parse the properties.
473 Properties = 0;
474 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
475 for (unsigned i = 0, e = PropList.size(); i != e; ++i)
476 if (PropList[i]->getName() == "SDNPHasChain") {
477 Properties |= 1 << SDNPHasChain;
478 } else if (PropList[i]->getName() == "SDNPOptInGlue") {
479 Properties |= 1 << SDNPOptInGlue;
480 } else if (PropList[i]->getName() == "SDNPMayStore") {
481 Properties |= 1 << SDNPMayStore;
482 } else if (PropList[i]->getName() == "SDNPMayLoad") {
483 Properties |= 1 << SDNPMayLoad;
484 } else if (PropList[i]->getName() == "SDNPSideEffect") {
485 Properties |= 1 << SDNPSideEffect;
486 } else if (PropList[i]->getName() == "SDNPMemOperand") {
487 Properties |= 1 << SDNPMemOperand;
488 } else if (PropList[i]->getName() == "SDNPVariadic") {
489 Properties |= 1 << SDNPVariadic;
490 } else if (PropList[i]->getName() == "SDNPWantRoot") {
491 Properties |= 1 << SDNPWantRoot;
492 } else if (PropList[i]->getName() == "SDNPWantParent") {
493 Properties |= 1 << SDNPWantParent;
494 } else {
495 PrintFatalError("Unsupported SD Node property '" +
496 PropList[i]->getName() + "' on ComplexPattern '" +
497 R->getName() + "'!");
501 //===----------------------------------------------------------------------===//
502 // CodeGenIntrinsic Implementation
503 //===----------------------------------------------------------------------===//
505 CodeGenIntrinsicTable::CodeGenIntrinsicTable(const RecordKeeper &RC,
506 bool TargetOnly) {
507 std::vector<Record*> Defs = RC.getAllDerivedDefinitions("Intrinsic");
509 Intrinsics.reserve(Defs.size());
511 for (unsigned I = 0, e = Defs.size(); I != e; ++I) {
512 bool isTarget = Defs[I]->getValueAsBit("isTarget");
513 if (isTarget == TargetOnly)
514 Intrinsics.push_back(CodeGenIntrinsic(Defs[I]));
516 llvm::sort(Intrinsics,
517 [](const CodeGenIntrinsic &LHS, const CodeGenIntrinsic &RHS) {
518 return std::tie(LHS.TargetPrefix, LHS.Name) <
519 std::tie(RHS.TargetPrefix, RHS.Name);
521 Targets.push_back({"", 0, 0});
522 for (size_t I = 0, E = Intrinsics.size(); I < E; ++I)
523 if (Intrinsics[I].TargetPrefix != Targets.back().Name) {
524 Targets.back().Count = I - Targets.back().Offset;
525 Targets.push_back({Intrinsics[I].TargetPrefix, I, 0});
527 Targets.back().Count = Intrinsics.size() - Targets.back().Offset;
530 CodeGenIntrinsic::CodeGenIntrinsic(Record *R) {
531 TheDef = R;
532 std::string DefName = R->getName();
533 ModRef = ReadWriteMem;
534 Properties = 0;
535 isOverloaded = false;
536 isCommutative = false;
537 canThrow = false;
538 isNoReturn = false;
539 isNoDuplicate = false;
540 isConvergent = false;
541 isSpeculatable = false;
542 hasSideEffects = false;
544 if (DefName.size() <= 4 ||
545 std::string(DefName.begin(), DefName.begin() + 4) != "int_")
546 PrintFatalError("Intrinsic '" + DefName + "' does not start with 'int_'!");
548 EnumName = std::string(DefName.begin()+4, DefName.end());
550 if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field.
551 GCCBuiltinName = R->getValueAsString("GCCBuiltinName");
552 if (R->getValue("MSBuiltinName")) // Ignore a missing MSBuiltinName field.
553 MSBuiltinName = R->getValueAsString("MSBuiltinName");
555 TargetPrefix = R->getValueAsString("TargetPrefix");
556 Name = R->getValueAsString("LLVMName");
558 if (Name == "") {
559 // If an explicit name isn't specified, derive one from the DefName.
560 Name = "llvm.";
562 for (unsigned i = 0, e = EnumName.size(); i != e; ++i)
563 Name += (EnumName[i] == '_') ? '.' : EnumName[i];
564 } else {
565 // Verify it starts with "llvm.".
566 if (Name.size() <= 5 ||
567 std::string(Name.begin(), Name.begin() + 5) != "llvm.")
568 PrintFatalError("Intrinsic '" + DefName + "'s name does not start with 'llvm.'!");
571 // If TargetPrefix is specified, make sure that Name starts with
572 // "llvm.<targetprefix>.".
573 if (!TargetPrefix.empty()) {
574 if (Name.size() < 6+TargetPrefix.size() ||
575 std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size())
576 != (TargetPrefix + "."))
577 PrintFatalError("Intrinsic '" + DefName + "' does not start with 'llvm." +
578 TargetPrefix + ".'!");
581 // Parse the list of return types.
582 std::vector<MVT::SimpleValueType> OverloadedVTs;
583 ListInit *TypeList = R->getValueAsListInit("RetTypes");
584 for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
585 Record *TyEl = TypeList->getElementAsRecord(i);
586 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
587 MVT::SimpleValueType VT;
588 if (TyEl->isSubClassOf("LLVMMatchType")) {
589 unsigned MatchTy = TyEl->getValueAsInt("Number");
590 assert(MatchTy < OverloadedVTs.size() &&
591 "Invalid matching number!");
592 VT = OverloadedVTs[MatchTy];
593 // It only makes sense to use the extended and truncated vector element
594 // variants with iAny types; otherwise, if the intrinsic is not
595 // overloaded, all the types can be specified directly.
596 assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
597 !TyEl->isSubClassOf("LLVMTruncatedType")) ||
598 VT == MVT::iAny || VT == MVT::vAny) &&
599 "Expected iAny or vAny type");
600 } else {
601 VT = getValueType(TyEl->getValueAsDef("VT"));
603 if (MVT(VT).isOverloaded()) {
604 OverloadedVTs.push_back(VT);
605 isOverloaded = true;
608 // Reject invalid types.
609 if (VT == MVT::isVoid)
610 PrintFatalError("Intrinsic '" + DefName + " has void in result type list!");
612 IS.RetVTs.push_back(VT);
613 IS.RetTypeDefs.push_back(TyEl);
616 // Parse the list of parameter types.
617 TypeList = R->getValueAsListInit("ParamTypes");
618 for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
619 Record *TyEl = TypeList->getElementAsRecord(i);
620 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
621 MVT::SimpleValueType VT;
622 if (TyEl->isSubClassOf("LLVMMatchType")) {
623 unsigned MatchTy = TyEl->getValueAsInt("Number");
624 if (MatchTy >= OverloadedVTs.size()) {
625 PrintError(R->getLoc(),
626 "Parameter #" + Twine(i) + " has out of bounds matching "
627 "number " + Twine(MatchTy));
628 PrintFatalError(Twine("ParamTypes is ") + TypeList->getAsString());
630 VT = OverloadedVTs[MatchTy];
631 // It only makes sense to use the extended and truncated vector element
632 // variants with iAny types; otherwise, if the intrinsic is not
633 // overloaded, all the types can be specified directly.
634 assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
635 !TyEl->isSubClassOf("LLVMTruncatedType") &&
636 !TyEl->isSubClassOf("LLVMVectorSameWidth")) ||
637 VT == MVT::iAny || VT == MVT::vAny) &&
638 "Expected iAny or vAny type");
639 } else
640 VT = getValueType(TyEl->getValueAsDef("VT"));
642 if (MVT(VT).isOverloaded()) {
643 OverloadedVTs.push_back(VT);
644 isOverloaded = true;
647 // Reject invalid types.
648 if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/)
649 PrintFatalError("Intrinsic '" + DefName + " has void in result type list!");
651 IS.ParamVTs.push_back(VT);
652 IS.ParamTypeDefs.push_back(TyEl);
655 // Parse the intrinsic properties.
656 ListInit *PropList = R->getValueAsListInit("IntrProperties");
657 for (unsigned i = 0, e = PropList->size(); i != e; ++i) {
658 Record *Property = PropList->getElementAsRecord(i);
659 assert(Property->isSubClassOf("IntrinsicProperty") &&
660 "Expected a property!");
662 if (Property->getName() == "IntrNoMem")
663 ModRef = NoMem;
664 else if (Property->getName() == "IntrReadMem")
665 ModRef = ModRefBehavior(ModRef & ~MR_Mod);
666 else if (Property->getName() == "IntrWriteMem")
667 ModRef = ModRefBehavior(ModRef & ~MR_Ref);
668 else if (Property->getName() == "IntrArgMemOnly")
669 ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem);
670 else if (Property->getName() == "IntrInaccessibleMemOnly")
671 ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_InaccessibleMem);
672 else if (Property->getName() == "IntrInaccessibleMemOrArgMemOnly")
673 ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem |
674 MR_InaccessibleMem);
675 else if (Property->getName() == "Commutative")
676 isCommutative = true;
677 else if (Property->getName() == "Throws")
678 canThrow = true;
679 else if (Property->getName() == "IntrNoDuplicate")
680 isNoDuplicate = true;
681 else if (Property->getName() == "IntrConvergent")
682 isConvergent = true;
683 else if (Property->getName() == "IntrNoReturn")
684 isNoReturn = true;
685 else if (Property->getName() == "IntrSpeculatable")
686 isSpeculatable = true;
687 else if (Property->getName() == "IntrHasSideEffects")
688 hasSideEffects = true;
689 else if (Property->isSubClassOf("NoCapture")) {
690 unsigned ArgNo = Property->getValueAsInt("ArgNo");
691 ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture));
692 } else if (Property->isSubClassOf("Returned")) {
693 unsigned ArgNo = Property->getValueAsInt("ArgNo");
694 ArgumentAttributes.push_back(std::make_pair(ArgNo, Returned));
695 } else if (Property->isSubClassOf("ReadOnly")) {
696 unsigned ArgNo = Property->getValueAsInt("ArgNo");
697 ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadOnly));
698 } else if (Property->isSubClassOf("WriteOnly")) {
699 unsigned ArgNo = Property->getValueAsInt("ArgNo");
700 ArgumentAttributes.push_back(std::make_pair(ArgNo, WriteOnly));
701 } else if (Property->isSubClassOf("ReadNone")) {
702 unsigned ArgNo = Property->getValueAsInt("ArgNo");
703 ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadNone));
704 } else
705 llvm_unreachable("Unknown property!");
708 // Also record the SDPatternOperator Properties.
709 Properties = parseSDPatternOperatorProperties(R);
711 // Sort the argument attributes for later benefit.
712 llvm::sort(ArgumentAttributes);