1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This class wraps target description classes used by the various code
11 // generation TableGen backends. This makes it easier to access the data and
12 // provides a single place that needs to check it for validity. All of these
13 // classes abort on error conditions.
15 //===----------------------------------------------------------------------===//
17 #include "CodeGenTarget.h"
18 #include "CodeGenDAGPatterns.h"
19 #include "CodeGenIntrinsics.h"
20 #include "CodeGenSchedule.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/TableGen/Error.h"
25 #include "llvm/TableGen/Record.h"
29 cl::OptionCategory
AsmParserCat("Options for -gen-asm-parser");
30 cl::OptionCategory
AsmWriterCat("Options for -gen-asm-writer");
32 static cl::opt
<unsigned>
33 AsmParserNum("asmparsernum", cl::init(0),
34 cl::desc("Make -gen-asm-parser emit assembly parser #N"),
35 cl::cat(AsmParserCat
));
37 static cl::opt
<unsigned>
38 AsmWriterNum("asmwriternum", cl::init(0),
39 cl::desc("Make -gen-asm-writer emit assembly writer #N"),
40 cl::cat(AsmWriterCat
));
42 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen
43 /// record corresponds to.
44 MVT::SimpleValueType
llvm::getValueType(Record
*Rec
) {
45 return (MVT::SimpleValueType
)Rec
->getValueAsInt("Value");
48 StringRef
llvm::getName(MVT::SimpleValueType T
) {
50 case MVT::Other
: return "UNKNOWN";
51 case MVT::iPTR
: return "TLI.getPointerTy()";
52 case MVT::iPTRAny
: return "TLI.getPointerTy()";
53 default: return getEnumName(T
);
57 StringRef
llvm::getEnumName(MVT::SimpleValueType T
) {
59 case MVT::Other
: return "MVT::Other";
60 case MVT::i1
: return "MVT::i1";
61 case MVT::i8
: return "MVT::i8";
62 case MVT::i16
: return "MVT::i16";
63 case MVT::i32
: return "MVT::i32";
64 case MVT::i64
: return "MVT::i64";
65 case MVT::i128
: return "MVT::i128";
66 case MVT::Any
: return "MVT::Any";
67 case MVT::iAny
: return "MVT::iAny";
68 case MVT::fAny
: return "MVT::fAny";
69 case MVT::vAny
: return "MVT::vAny";
70 case MVT::f16
: return "MVT::f16";
71 case MVT::f32
: return "MVT::f32";
72 case MVT::f64
: return "MVT::f64";
73 case MVT::f80
: return "MVT::f80";
74 case MVT::f128
: return "MVT::f128";
75 case MVT::ppcf128
: return "MVT::ppcf128";
76 case MVT::x86mmx
: return "MVT::x86mmx";
77 case MVT::Glue
: return "MVT::Glue";
78 case MVT::isVoid
: return "MVT::isVoid";
79 case MVT::v1i1
: return "MVT::v1i1";
80 case MVT::v2i1
: return "MVT::v2i1";
81 case MVT::v4i1
: return "MVT::v4i1";
82 case MVT::v8i1
: return "MVT::v8i1";
83 case MVT::v16i1
: return "MVT::v16i1";
84 case MVT::v32i1
: return "MVT::v32i1";
85 case MVT::v64i1
: return "MVT::v64i1";
86 case MVT::v128i1
: return "MVT::v128i1";
87 case MVT::v512i1
: return "MVT::v512i1";
88 case MVT::v1024i1
: return "MVT::v1024i1";
89 case MVT::v1i8
: return "MVT::v1i8";
90 case MVT::v2i8
: return "MVT::v2i8";
91 case MVT::v4i8
: return "MVT::v4i8";
92 case MVT::v8i8
: return "MVT::v8i8";
93 case MVT::v16i8
: return "MVT::v16i8";
94 case MVT::v32i8
: return "MVT::v32i8";
95 case MVT::v64i8
: return "MVT::v64i8";
96 case MVT::v128i8
: return "MVT::v128i8";
97 case MVT::v256i8
: return "MVT::v256i8";
98 case MVT::v1i16
: return "MVT::v1i16";
99 case MVT::v2i16
: return "MVT::v2i16";
100 case MVT::v4i16
: return "MVT::v4i16";
101 case MVT::v8i16
: return "MVT::v8i16";
102 case MVT::v16i16
: return "MVT::v16i16";
103 case MVT::v32i16
: return "MVT::v32i16";
104 case MVT::v64i16
: return "MVT::v64i16";
105 case MVT::v128i16
: return "MVT::v128i16";
106 case MVT::v1i32
: return "MVT::v1i32";
107 case MVT::v2i32
: return "MVT::v2i32";
108 case MVT::v4i32
: return "MVT::v4i32";
109 case MVT::v8i32
: return "MVT::v8i32";
110 case MVT::v16i32
: return "MVT::v16i32";
111 case MVT::v32i32
: return "MVT::v32i32";
112 case MVT::v64i32
: return "MVT::v64i32";
113 case MVT::v1i64
: return "MVT::v1i64";
114 case MVT::v2i64
: return "MVT::v2i64";
115 case MVT::v4i64
: return "MVT::v4i64";
116 case MVT::v8i64
: return "MVT::v8i64";
117 case MVT::v16i64
: return "MVT::v16i64";
118 case MVT::v32i64
: return "MVT::v32i64";
119 case MVT::v1i128
: return "MVT::v1i128";
120 case MVT::v2f16
: return "MVT::v2f16";
121 case MVT::v4f16
: return "MVT::v4f16";
122 case MVT::v8f16
: return "MVT::v8f16";
123 case MVT::v1f32
: return "MVT::v1f32";
124 case MVT::v2f32
: return "MVT::v2f32";
125 case MVT::v4f32
: return "MVT::v4f32";
126 case MVT::v8f32
: return "MVT::v8f32";
127 case MVT::v16f32
: return "MVT::v16f32";
128 case MVT::v1f64
: return "MVT::v1f64";
129 case MVT::v2f64
: return "MVT::v2f64";
130 case MVT::v4f64
: return "MVT::v4f64";
131 case MVT::v8f64
: return "MVT::v8f64";
132 case MVT::nxv1i1
: return "MVT::nxv1i1";
133 case MVT::nxv2i1
: return "MVT::nxv2i1";
134 case MVT::nxv4i1
: return "MVT::nxv4i1";
135 case MVT::nxv8i1
: return "MVT::nxv8i1";
136 case MVT::nxv16i1
: return "MVT::nxv16i1";
137 case MVT::nxv32i1
: return "MVT::nxv32i1";
138 case MVT::nxv1i8
: return "MVT::nxv1i8";
139 case MVT::nxv2i8
: return "MVT::nxv2i8";
140 case MVT::nxv4i8
: return "MVT::nxv4i8";
141 case MVT::nxv8i8
: return "MVT::nxv8i8";
142 case MVT::nxv16i8
: return "MVT::nxv16i8";
143 case MVT::nxv32i8
: return "MVT::nxv32i8";
144 case MVT::nxv1i16
: return "MVT::nxv1i16";
145 case MVT::nxv2i16
: return "MVT::nxv2i16";
146 case MVT::nxv4i16
: return "MVT::nxv4i16";
147 case MVT::nxv8i16
: return "MVT::nxv8i16";
148 case MVT::nxv16i16
: return "MVT::nxv16i16";
149 case MVT::nxv32i16
: return "MVT::nxv32i16";
150 case MVT::nxv1i32
: return "MVT::nxv1i32";
151 case MVT::nxv2i32
: return "MVT::nxv2i32";
152 case MVT::nxv4i32
: return "MVT::nxv4i32";
153 case MVT::nxv8i32
: return "MVT::nxv8i32";
154 case MVT::nxv16i32
: return "MVT::nxv16i32";
155 case MVT::nxv1i64
: return "MVT::nxv1i64";
156 case MVT::nxv2i64
: return "MVT::nxv2i64";
157 case MVT::nxv4i64
: return "MVT::nxv4i64";
158 case MVT::nxv8i64
: return "MVT::nxv8i64";
159 case MVT::nxv16i64
: return "MVT::nxv16i64";
160 case MVT::nxv2f16
: return "MVT::nxv2f16";
161 case MVT::nxv4f16
: return "MVT::nxv4f16";
162 case MVT::nxv8f16
: return "MVT::nxv8f16";
163 case MVT::nxv1f32
: return "MVT::nxv1f32";
164 case MVT::nxv2f32
: return "MVT::nxv2f32";
165 case MVT::nxv4f32
: return "MVT::nxv4f32";
166 case MVT::nxv8f32
: return "MVT::nxv8f32";
167 case MVT::nxv16f32
: return "MVT::nxv16f32";
168 case MVT::nxv1f64
: return "MVT::nxv1f64";
169 case MVT::nxv2f64
: return "MVT::nxv2f64";
170 case MVT::nxv4f64
: return "MVT::nxv4f64";
171 case MVT::nxv8f64
: return "MVT::nxv8f64";
172 case MVT::token
: return "MVT::token";
173 case MVT::Metadata
: return "MVT::Metadata";
174 case MVT::iPTR
: return "MVT::iPTR";
175 case MVT::iPTRAny
: return "MVT::iPTRAny";
176 case MVT::Untyped
: return "MVT::Untyped";
177 case MVT::ExceptRef
: return "MVT::ExceptRef";
178 default: llvm_unreachable("ILLEGAL VALUE TYPE!");
182 /// getQualifiedName - Return the name of the specified record, with a
183 /// namespace qualifier if the record contains one.
185 std::string
llvm::getQualifiedName(const Record
*R
) {
186 std::string Namespace
;
187 if (R
->getValue("Namespace"))
188 Namespace
= R
->getValueAsString("Namespace");
189 if (Namespace
.empty()) return R
->getName();
190 return Namespace
+ "::" + R
->getName().str();
194 /// getTarget - Return the current instance of the Target class.
196 CodeGenTarget::CodeGenTarget(RecordKeeper
&records
)
197 : Records(records
), CGH(records
) {
198 std::vector
<Record
*> Targets
= Records
.getAllDerivedDefinitions("Target");
199 if (Targets
.size() == 0)
200 PrintFatalError("ERROR: No 'Target' subclasses defined!");
201 if (Targets
.size() != 1)
202 PrintFatalError("ERROR: Multiple subclasses of Target defined!");
203 TargetRec
= Targets
[0];
206 CodeGenTarget::~CodeGenTarget() {
209 const StringRef
CodeGenTarget::getName() const {
210 return TargetRec
->getName();
213 StringRef
CodeGenTarget::getInstNamespace() const {
214 for (const CodeGenInstruction
*Inst
: getInstructionsByEnumValue()) {
215 // Make sure not to pick up "TargetOpcode" by accidentally getting
216 // the namespace off the PHI instruction or something.
217 if (Inst
->Namespace
!= "TargetOpcode")
218 return Inst
->Namespace
;
224 Record
*CodeGenTarget::getInstructionSet() const {
225 return TargetRec
->getValueAsDef("InstructionSet");
228 bool CodeGenTarget::getAllowRegisterRenaming() const {
229 return TargetRec
->getValueAsInt("AllowRegisterRenaming");
232 /// getAsmParser - Return the AssemblyParser definition for this target.
234 Record
*CodeGenTarget::getAsmParser() const {
235 std::vector
<Record
*> LI
= TargetRec
->getValueAsListOfDefs("AssemblyParsers");
236 if (AsmParserNum
>= LI
.size())
237 PrintFatalError("Target does not have an AsmParser #" +
238 Twine(AsmParserNum
) + "!");
239 return LI
[AsmParserNum
];
242 /// getAsmParserVariant - Return the AssmblyParserVariant definition for
245 Record
*CodeGenTarget::getAsmParserVariant(unsigned i
) const {
246 std::vector
<Record
*> LI
=
247 TargetRec
->getValueAsListOfDefs("AssemblyParserVariants");
249 PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i
) +
254 /// getAsmParserVariantCount - Return the AssmblyParserVariant definition
255 /// available for this target.
257 unsigned CodeGenTarget::getAsmParserVariantCount() const {
258 std::vector
<Record
*> LI
=
259 TargetRec
->getValueAsListOfDefs("AssemblyParserVariants");
263 /// getAsmWriter - Return the AssemblyWriter definition for this target.
265 Record
*CodeGenTarget::getAsmWriter() const {
266 std::vector
<Record
*> LI
= TargetRec
->getValueAsListOfDefs("AssemblyWriters");
267 if (AsmWriterNum
>= LI
.size())
268 PrintFatalError("Target does not have an AsmWriter #" +
269 Twine(AsmWriterNum
) + "!");
270 return LI
[AsmWriterNum
];
273 CodeGenRegBank
&CodeGenTarget::getRegBank() const {
275 RegBank
= llvm::make_unique
<CodeGenRegBank
>(Records
, getHwModes());
279 void CodeGenTarget::ReadRegAltNameIndices() const {
280 RegAltNameIndices
= Records
.getAllDerivedDefinitions("RegAltNameIndex");
281 llvm::sort(RegAltNameIndices
, LessRecord());
284 /// getRegisterByName - If there is a register with the specific AsmName,
286 const CodeGenRegister
*CodeGenTarget::getRegisterByName(StringRef Name
) const {
287 const StringMap
<CodeGenRegister
*> &Regs
= getRegBank().getRegistersByName();
288 StringMap
<CodeGenRegister
*>::const_iterator I
= Regs
.find(Name
);
294 std::vector
<ValueTypeByHwMode
> CodeGenTarget::getRegisterVTs(Record
*R
)
296 const CodeGenRegister
*Reg
= getRegBank().getReg(R
);
297 std::vector
<ValueTypeByHwMode
> Result
;
298 for (const auto &RC
: getRegBank().getRegClasses()) {
299 if (RC
.contains(Reg
)) {
300 ArrayRef
<ValueTypeByHwMode
> InVTs
= RC
.getValueTypes();
301 Result
.insert(Result
.end(), InVTs
.begin(), InVTs
.end());
305 // Remove duplicates.
307 Result
.erase(std::unique(Result
.begin(), Result
.end()), Result
.end());
312 void CodeGenTarget::ReadLegalValueTypes() const {
313 for (const auto &RC
: getRegBank().getRegClasses())
314 LegalValueTypes
.insert(LegalValueTypes
.end(), RC
.VTs
.begin(), RC
.VTs
.end());
316 // Remove duplicates.
317 llvm::sort(LegalValueTypes
);
318 LegalValueTypes
.erase(std::unique(LegalValueTypes
.begin(),
319 LegalValueTypes
.end()),
320 LegalValueTypes
.end());
323 CodeGenSchedModels
&CodeGenTarget::getSchedModels() const {
325 SchedModels
= llvm::make_unique
<CodeGenSchedModels
>(Records
, *this);
329 void CodeGenTarget::ReadInstructions() const {
330 std::vector
<Record
*> Insts
= Records
.getAllDerivedDefinitions("Instruction");
331 if (Insts
.size() <= 2)
332 PrintFatalError("No 'Instruction' subclasses defined!");
334 // Parse the instructions defined in the .td file.
335 for (unsigned i
= 0, e
= Insts
.size(); i
!= e
; ++i
)
336 Instructions
[Insts
[i
]] = llvm::make_unique
<CodeGenInstruction
>(Insts
[i
]);
339 static const CodeGenInstruction
*
340 GetInstByName(const char *Name
,
341 const DenseMap
<const Record
*,
342 std::unique_ptr
<CodeGenInstruction
>> &Insts
,
343 RecordKeeper
&Records
) {
344 const Record
*Rec
= Records
.getDef(Name
);
346 const auto I
= Insts
.find(Rec
);
347 if (!Rec
|| I
== Insts
.end())
348 PrintFatalError(Twine("Could not find '") + Name
+ "' instruction!");
349 return I
->second
.get();
352 static const char *const FixedInstrs
[] = {
353 #define HANDLE_TARGET_OPCODE(OPC) #OPC,
354 #include "llvm/Support/TargetOpcodes.def"
357 unsigned CodeGenTarget::getNumFixedInstructions() {
358 return array_lengthof(FixedInstrs
) - 1;
361 /// Return all of the instructions defined by the target, ordered by
362 /// their enum value.
363 void CodeGenTarget::ComputeInstrsByEnum() const {
364 const auto &Insts
= getInstructions();
365 for (const char *const *p
= FixedInstrs
; *p
; ++p
) {
366 const CodeGenInstruction
*Instr
= GetInstByName(*p
, Insts
, Records
);
367 assert(Instr
&& "Missing target independent instruction");
368 assert(Instr
->Namespace
== "TargetOpcode" && "Bad namespace");
369 InstrsByEnum
.push_back(Instr
);
371 unsigned EndOfPredefines
= InstrsByEnum
.size();
372 assert(EndOfPredefines
== getNumFixedInstructions() &&
373 "Missing generic opcode");
375 for (const auto &I
: Insts
) {
376 const CodeGenInstruction
*CGI
= I
.second
.get();
377 if (CGI
->Namespace
!= "TargetOpcode") {
378 InstrsByEnum
.push_back(CGI
);
379 if (CGI
->TheDef
->getValueAsBit("isPseudo"))
380 ++NumPseudoInstructions
;
384 assert(InstrsByEnum
.size() == Insts
.size() && "Missing predefined instr");
386 // All of the instructions are now in random order based on the map iteration.
388 InstrsByEnum
.begin() + EndOfPredefines
, InstrsByEnum
.end(),
389 [](const CodeGenInstruction
*Rec1
, const CodeGenInstruction
*Rec2
) {
390 const auto &D1
= *Rec1
->TheDef
;
391 const auto &D2
= *Rec2
->TheDef
;
392 return std::make_tuple(!D1
.getValueAsBit("isPseudo"), D1
.getName()) <
393 std::make_tuple(!D2
.getValueAsBit("isPseudo"), D2
.getName());
398 /// isLittleEndianEncoding - Return whether this target encodes its instruction
399 /// in little-endian format, i.e. bits laid out in the order [0..n]
401 bool CodeGenTarget::isLittleEndianEncoding() const {
402 return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
405 /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit
406 /// encodings, reverse the bit order of all instructions.
407 void CodeGenTarget::reverseBitsForLittleEndianEncoding() {
408 if (!isLittleEndianEncoding())
411 std::vector
<Record
*> Insts
= Records
.getAllDerivedDefinitions("Instruction");
412 for (Record
*R
: Insts
) {
413 if (R
->getValueAsString("Namespace") == "TargetOpcode" ||
414 R
->getValueAsBit("isPseudo"))
417 BitsInit
*BI
= R
->getValueAsBitsInit("Inst");
419 unsigned numBits
= BI
->getNumBits();
421 SmallVector
<Init
*, 16> NewBits(numBits
);
423 for (unsigned bit
= 0, end
= numBits
/ 2; bit
!= end
; ++bit
) {
424 unsigned bitSwapIdx
= numBits
- bit
- 1;
425 Init
*OrigBit
= BI
->getBit(bit
);
426 Init
*BitSwap
= BI
->getBit(bitSwapIdx
);
427 NewBits
[bit
] = BitSwap
;
428 NewBits
[bitSwapIdx
] = OrigBit
;
431 unsigned middle
= (numBits
+ 1) / 2;
432 NewBits
[middle
] = BI
->getBit(middle
);
435 BitsInit
*NewBI
= BitsInit::get(NewBits
);
437 // Update the bits in reversed order so that emitInstrOpBits will get the
438 // correct endianness.
439 R
->getValue("Inst")->setValue(NewBI
);
443 /// guessInstructionProperties - Return true if it's OK to guess instruction
444 /// properties instead of raising an error.
446 /// This is configurable as a temporary migration aid. It will eventually be
447 /// permanently false.
448 bool CodeGenTarget::guessInstructionProperties() const {
449 return getInstructionSet()->getValueAsBit("guessInstructionProperties");
452 //===----------------------------------------------------------------------===//
453 // ComplexPattern implementation
455 ComplexPattern::ComplexPattern(Record
*R
) {
456 Ty
= ::getValueType(R
->getValueAsDef("Ty"));
457 NumOperands
= R
->getValueAsInt("NumOperands");
458 SelectFunc
= R
->getValueAsString("SelectFunc");
459 RootNodes
= R
->getValueAsListOfDefs("RootNodes");
461 // FIXME: This is a hack to statically increase the priority of patterns which
462 // maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. To get best
463 // possible pattern match we'll need to dynamically calculate the complexity
464 // of all patterns a dag can potentially map to.
465 int64_t RawComplexity
= R
->getValueAsInt("Complexity");
466 if (RawComplexity
== -1)
467 Complexity
= NumOperands
* 3;
469 Complexity
= RawComplexity
;
471 // FIXME: Why is this different from parseSDPatternOperatorProperties?
472 // Parse the properties.
474 std::vector
<Record
*> PropList
= R
->getValueAsListOfDefs("Properties");
475 for (unsigned i
= 0, e
= PropList
.size(); i
!= e
; ++i
)
476 if (PropList
[i
]->getName() == "SDNPHasChain") {
477 Properties
|= 1 << SDNPHasChain
;
478 } else if (PropList
[i
]->getName() == "SDNPOptInGlue") {
479 Properties
|= 1 << SDNPOptInGlue
;
480 } else if (PropList
[i
]->getName() == "SDNPMayStore") {
481 Properties
|= 1 << SDNPMayStore
;
482 } else if (PropList
[i
]->getName() == "SDNPMayLoad") {
483 Properties
|= 1 << SDNPMayLoad
;
484 } else if (PropList
[i
]->getName() == "SDNPSideEffect") {
485 Properties
|= 1 << SDNPSideEffect
;
486 } else if (PropList
[i
]->getName() == "SDNPMemOperand") {
487 Properties
|= 1 << SDNPMemOperand
;
488 } else if (PropList
[i
]->getName() == "SDNPVariadic") {
489 Properties
|= 1 << SDNPVariadic
;
490 } else if (PropList
[i
]->getName() == "SDNPWantRoot") {
491 Properties
|= 1 << SDNPWantRoot
;
492 } else if (PropList
[i
]->getName() == "SDNPWantParent") {
493 Properties
|= 1 << SDNPWantParent
;
495 PrintFatalError("Unsupported SD Node property '" +
496 PropList
[i
]->getName() + "' on ComplexPattern '" +
497 R
->getName() + "'!");
501 //===----------------------------------------------------------------------===//
502 // CodeGenIntrinsic Implementation
503 //===----------------------------------------------------------------------===//
505 CodeGenIntrinsicTable::CodeGenIntrinsicTable(const RecordKeeper
&RC
,
507 std::vector
<Record
*> Defs
= RC
.getAllDerivedDefinitions("Intrinsic");
509 Intrinsics
.reserve(Defs
.size());
511 for (unsigned I
= 0, e
= Defs
.size(); I
!= e
; ++I
) {
512 bool isTarget
= Defs
[I
]->getValueAsBit("isTarget");
513 if (isTarget
== TargetOnly
)
514 Intrinsics
.push_back(CodeGenIntrinsic(Defs
[I
]));
516 llvm::sort(Intrinsics
,
517 [](const CodeGenIntrinsic
&LHS
, const CodeGenIntrinsic
&RHS
) {
518 return std::tie(LHS
.TargetPrefix
, LHS
.Name
) <
519 std::tie(RHS
.TargetPrefix
, RHS
.Name
);
521 Targets
.push_back({"", 0, 0});
522 for (size_t I
= 0, E
= Intrinsics
.size(); I
< E
; ++I
)
523 if (Intrinsics
[I
].TargetPrefix
!= Targets
.back().Name
) {
524 Targets
.back().Count
= I
- Targets
.back().Offset
;
525 Targets
.push_back({Intrinsics
[I
].TargetPrefix
, I
, 0});
527 Targets
.back().Count
= Intrinsics
.size() - Targets
.back().Offset
;
530 CodeGenIntrinsic::CodeGenIntrinsic(Record
*R
) {
532 std::string DefName
= R
->getName();
533 ModRef
= ReadWriteMem
;
535 isOverloaded
= false;
536 isCommutative
= false;
539 isNoDuplicate
= false;
540 isConvergent
= false;
541 isSpeculatable
= false;
542 hasSideEffects
= false;
544 if (DefName
.size() <= 4 ||
545 std::string(DefName
.begin(), DefName
.begin() + 4) != "int_")
546 PrintFatalError("Intrinsic '" + DefName
+ "' does not start with 'int_'!");
548 EnumName
= std::string(DefName
.begin()+4, DefName
.end());
550 if (R
->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field.
551 GCCBuiltinName
= R
->getValueAsString("GCCBuiltinName");
552 if (R
->getValue("MSBuiltinName")) // Ignore a missing MSBuiltinName field.
553 MSBuiltinName
= R
->getValueAsString("MSBuiltinName");
555 TargetPrefix
= R
->getValueAsString("TargetPrefix");
556 Name
= R
->getValueAsString("LLVMName");
559 // If an explicit name isn't specified, derive one from the DefName.
562 for (unsigned i
= 0, e
= EnumName
.size(); i
!= e
; ++i
)
563 Name
+= (EnumName
[i
] == '_') ? '.' : EnumName
[i
];
565 // Verify it starts with "llvm.".
566 if (Name
.size() <= 5 ||
567 std::string(Name
.begin(), Name
.begin() + 5) != "llvm.")
568 PrintFatalError("Intrinsic '" + DefName
+ "'s name does not start with 'llvm.'!");
571 // If TargetPrefix is specified, make sure that Name starts with
572 // "llvm.<targetprefix>.".
573 if (!TargetPrefix
.empty()) {
574 if (Name
.size() < 6+TargetPrefix
.size() ||
575 std::string(Name
.begin() + 5, Name
.begin() + 6 + TargetPrefix
.size())
576 != (TargetPrefix
+ "."))
577 PrintFatalError("Intrinsic '" + DefName
+ "' does not start with 'llvm." +
578 TargetPrefix
+ ".'!");
581 // Parse the list of return types.
582 std::vector
<MVT::SimpleValueType
> OverloadedVTs
;
583 ListInit
*TypeList
= R
->getValueAsListInit("RetTypes");
584 for (unsigned i
= 0, e
= TypeList
->size(); i
!= e
; ++i
) {
585 Record
*TyEl
= TypeList
->getElementAsRecord(i
);
586 assert(TyEl
->isSubClassOf("LLVMType") && "Expected a type!");
587 MVT::SimpleValueType VT
;
588 if (TyEl
->isSubClassOf("LLVMMatchType")) {
589 unsigned MatchTy
= TyEl
->getValueAsInt("Number");
590 assert(MatchTy
< OverloadedVTs
.size() &&
591 "Invalid matching number!");
592 VT
= OverloadedVTs
[MatchTy
];
593 // It only makes sense to use the extended and truncated vector element
594 // variants with iAny types; otherwise, if the intrinsic is not
595 // overloaded, all the types can be specified directly.
596 assert(((!TyEl
->isSubClassOf("LLVMExtendedType") &&
597 !TyEl
->isSubClassOf("LLVMTruncatedType")) ||
598 VT
== MVT::iAny
|| VT
== MVT::vAny
) &&
599 "Expected iAny or vAny type");
601 VT
= getValueType(TyEl
->getValueAsDef("VT"));
603 if (MVT(VT
).isOverloaded()) {
604 OverloadedVTs
.push_back(VT
);
608 // Reject invalid types.
609 if (VT
== MVT::isVoid
)
610 PrintFatalError("Intrinsic '" + DefName
+ " has void in result type list!");
612 IS
.RetVTs
.push_back(VT
);
613 IS
.RetTypeDefs
.push_back(TyEl
);
616 // Parse the list of parameter types.
617 TypeList
= R
->getValueAsListInit("ParamTypes");
618 for (unsigned i
= 0, e
= TypeList
->size(); i
!= e
; ++i
) {
619 Record
*TyEl
= TypeList
->getElementAsRecord(i
);
620 assert(TyEl
->isSubClassOf("LLVMType") && "Expected a type!");
621 MVT::SimpleValueType VT
;
622 if (TyEl
->isSubClassOf("LLVMMatchType")) {
623 unsigned MatchTy
= TyEl
->getValueAsInt("Number");
624 if (MatchTy
>= OverloadedVTs
.size()) {
625 PrintError(R
->getLoc(),
626 "Parameter #" + Twine(i
) + " has out of bounds matching "
627 "number " + Twine(MatchTy
));
628 PrintFatalError(Twine("ParamTypes is ") + TypeList
->getAsString());
630 VT
= OverloadedVTs
[MatchTy
];
631 // It only makes sense to use the extended and truncated vector element
632 // variants with iAny types; otherwise, if the intrinsic is not
633 // overloaded, all the types can be specified directly.
634 assert(((!TyEl
->isSubClassOf("LLVMExtendedType") &&
635 !TyEl
->isSubClassOf("LLVMTruncatedType") &&
636 !TyEl
->isSubClassOf("LLVMVectorSameWidth")) ||
637 VT
== MVT::iAny
|| VT
== MVT::vAny
) &&
638 "Expected iAny or vAny type");
640 VT
= getValueType(TyEl
->getValueAsDef("VT"));
642 if (MVT(VT
).isOverloaded()) {
643 OverloadedVTs
.push_back(VT
);
647 // Reject invalid types.
648 if (VT
== MVT::isVoid
&& i
!= e
-1 /*void at end means varargs*/)
649 PrintFatalError("Intrinsic '" + DefName
+ " has void in result type list!");
651 IS
.ParamVTs
.push_back(VT
);
652 IS
.ParamTypeDefs
.push_back(TyEl
);
655 // Parse the intrinsic properties.
656 ListInit
*PropList
= R
->getValueAsListInit("IntrProperties");
657 for (unsigned i
= 0, e
= PropList
->size(); i
!= e
; ++i
) {
658 Record
*Property
= PropList
->getElementAsRecord(i
);
659 assert(Property
->isSubClassOf("IntrinsicProperty") &&
660 "Expected a property!");
662 if (Property
->getName() == "IntrNoMem")
664 else if (Property
->getName() == "IntrReadMem")
665 ModRef
= ModRefBehavior(ModRef
& ~MR_Mod
);
666 else if (Property
->getName() == "IntrWriteMem")
667 ModRef
= ModRefBehavior(ModRef
& ~MR_Ref
);
668 else if (Property
->getName() == "IntrArgMemOnly")
669 ModRef
= ModRefBehavior((ModRef
& ~MR_Anywhere
) | MR_ArgMem
);
670 else if (Property
->getName() == "IntrInaccessibleMemOnly")
671 ModRef
= ModRefBehavior((ModRef
& ~MR_Anywhere
) | MR_InaccessibleMem
);
672 else if (Property
->getName() == "IntrInaccessibleMemOrArgMemOnly")
673 ModRef
= ModRefBehavior((ModRef
& ~MR_Anywhere
) | MR_ArgMem
|
675 else if (Property
->getName() == "Commutative")
676 isCommutative
= true;
677 else if (Property
->getName() == "Throws")
679 else if (Property
->getName() == "IntrNoDuplicate")
680 isNoDuplicate
= true;
681 else if (Property
->getName() == "IntrConvergent")
683 else if (Property
->getName() == "IntrNoReturn")
685 else if (Property
->getName() == "IntrSpeculatable")
686 isSpeculatable
= true;
687 else if (Property
->getName() == "IntrHasSideEffects")
688 hasSideEffects
= true;
689 else if (Property
->isSubClassOf("NoCapture")) {
690 unsigned ArgNo
= Property
->getValueAsInt("ArgNo");
691 ArgumentAttributes
.push_back(std::make_pair(ArgNo
, NoCapture
));
692 } else if (Property
->isSubClassOf("Returned")) {
693 unsigned ArgNo
= Property
->getValueAsInt("ArgNo");
694 ArgumentAttributes
.push_back(std::make_pair(ArgNo
, Returned
));
695 } else if (Property
->isSubClassOf("ReadOnly")) {
696 unsigned ArgNo
= Property
->getValueAsInt("ArgNo");
697 ArgumentAttributes
.push_back(std::make_pair(ArgNo
, ReadOnly
));
698 } else if (Property
->isSubClassOf("WriteOnly")) {
699 unsigned ArgNo
= Property
->getValueAsInt("ArgNo");
700 ArgumentAttributes
.push_back(std::make_pair(ArgNo
, WriteOnly
));
701 } else if (Property
->isSubClassOf("ReadNone")) {
702 unsigned ArgNo
= Property
->getValueAsInt("ArgNo");
703 ArgumentAttributes
.push_back(std::make_pair(ArgNo
, ReadNone
));
705 llvm_unreachable("Unknown property!");
708 // Also record the SDPatternOperator Properties.
709 Properties
= parseSDPatternOperatorProperties(R
);
711 // Sort the argument attributes for later benefit.
712 llvm::sort(ArgumentAttributes
);