1 //===------------ FixedLenDecoderEmitter.cpp - Decoder Generator ----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // It contains the tablegen backend that emits the decoder functions for
11 // targets with fixed length instruction set.
13 //===----------------------------------------------------------------------===//
15 #include "CodeGenInstruction.h"
16 #include "CodeGenTarget.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/CachedHashString.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/MC/MCFixedLenDisassembler.h"
26 #include "llvm/Support/Casting.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/FormattedStream.h"
30 #include "llvm/Support/LEB128.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/TableGen/Error.h"
33 #include "llvm/TableGen/Record.h"
47 #define DEBUG_TYPE "decoder-emitter"
51 struct EncodingField
{
52 unsigned Base
, Width
, Offset
;
53 EncodingField(unsigned B
, unsigned W
, unsigned O
)
54 : Base(B
), Width(W
), Offset(O
) { }
58 std::vector
<EncodingField
> Fields
;
60 bool HasCompleteDecoder
;
62 OperandInfo(std::string D
, bool HCD
)
63 : Decoder(std::move(D
)), HasCompleteDecoder(HCD
) {}
65 void addField(unsigned Base
, unsigned Width
, unsigned Offset
) {
66 Fields
.push_back(EncodingField(Base
, Width
, Offset
));
69 unsigned numFields() const { return Fields
.size(); }
71 typedef std::vector
<EncodingField
>::const_iterator const_iterator
;
73 const_iterator
begin() const { return Fields
.begin(); }
74 const_iterator
end() const { return Fields
.end(); }
77 typedef std::vector
<uint8_t> DecoderTable
;
78 typedef uint32_t DecoderFixup
;
79 typedef std::vector
<DecoderFixup
> FixupList
;
80 typedef std::vector
<FixupList
> FixupScopeList
;
81 typedef SmallSetVector
<CachedHashString
, 16> PredicateSet
;
82 typedef SmallSetVector
<CachedHashString
, 16> DecoderSet
;
83 struct DecoderTableInfo
{
85 FixupScopeList FixupStack
;
86 PredicateSet Predicates
;
90 class FixedLenDecoderEmitter
{
91 ArrayRef
<const CodeGenInstruction
*> NumberedInstructions
;
94 // Defaults preserved here for documentation, even though they aren't
95 // strictly necessary given the way that this is currently being called.
96 FixedLenDecoderEmitter(RecordKeeper
&R
, std::string PredicateNamespace
,
97 std::string GPrefix
= "if (",
98 std::string GPostfix
= " == MCDisassembler::Fail)",
99 std::string ROK
= "MCDisassembler::Success",
100 std::string RFail
= "MCDisassembler::Fail",
102 : Target(R
), PredicateNamespace(std::move(PredicateNamespace
)),
103 GuardPrefix(std::move(GPrefix
)), GuardPostfix(std::move(GPostfix
)),
104 ReturnOK(std::move(ROK
)), ReturnFail(std::move(RFail
)),
105 Locals(std::move(L
)) {}
107 // Emit the decoder state machine table.
108 void emitTable(formatted_raw_ostream
&o
, DecoderTable
&Table
,
109 unsigned Indentation
, unsigned BitWidth
,
110 StringRef Namespace
) const;
111 void emitPredicateFunction(formatted_raw_ostream
&OS
,
112 PredicateSet
&Predicates
,
113 unsigned Indentation
) const;
114 void emitDecoderFunction(formatted_raw_ostream
&OS
,
115 DecoderSet
&Decoders
,
116 unsigned Indentation
) const;
118 // run - Output the code emitter
119 void run(raw_ostream
&o
);
122 CodeGenTarget Target
;
125 std::string PredicateNamespace
;
126 std::string GuardPrefix
, GuardPostfix
;
127 std::string ReturnOK
, ReturnFail
;
131 } // end anonymous namespace
133 // The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system
136 // BIT_UNFILTERED is used as the init value for a filter position. It is used
137 // only for filter processings.
142 BIT_UNFILTERED
// unfiltered
145 static bool ValueSet(bit_value_t V
) {
146 return (V
== BIT_TRUE
|| V
== BIT_FALSE
);
149 static bool ValueNotSet(bit_value_t V
) {
150 return (V
== BIT_UNSET
);
153 static int Value(bit_value_t V
) {
154 return ValueNotSet(V
) ? -1 : (V
== BIT_FALSE
? 0 : 1);
157 static bit_value_t
bitFromBits(const BitsInit
&bits
, unsigned index
) {
158 if (BitInit
*bit
= dyn_cast
<BitInit
>(bits
.getBit(index
)))
159 return bit
->getValue() ? BIT_TRUE
: BIT_FALSE
;
161 // The bit is uninitialized.
165 // Prints the bit value for each position.
166 static void dumpBits(raw_ostream
&o
, const BitsInit
&bits
) {
167 for (unsigned index
= bits
.getNumBits(); index
> 0; --index
) {
168 switch (bitFromBits(bits
, index
- 1)) {
179 llvm_unreachable("unexpected return value from bitFromBits");
184 static BitsInit
&getBitsField(const Record
&def
, StringRef str
) {
185 BitsInit
*bits
= def
.getValueAsBitsInit(str
);
189 // Representation of the instruction to work on.
190 typedef std::vector
<bit_value_t
> insn_t
;
196 /// Filter - Filter works with FilterChooser to produce the decoding tree for
199 /// It is useful to think of a Filter as governing the switch stmts of the
200 /// decoding tree in a certain level. Each case stmt delegates to an inferior
201 /// FilterChooser to decide what further decoding logic to employ, or in another
202 /// words, what other remaining bits to look at. The FilterChooser eventually
203 /// chooses a best Filter to do its job.
205 /// This recursive scheme ends when the number of Opcodes assigned to the
206 /// FilterChooser becomes 1 or if there is a conflict. A conflict happens when
207 /// the Filter/FilterChooser combo does not know how to distinguish among the
208 /// Opcodes assigned.
210 /// An example of a conflict is
213 /// 111101000.00........00010000....
214 /// 111101000.00........0001........
215 /// 1111010...00........0001........
216 /// 1111010...00....................
217 /// 1111010.........................
218 /// 1111............................
219 /// ................................
220 /// VST4q8a 111101000_00________00010000____
221 /// VST4q8b 111101000_00________00010000____
223 /// The Debug output shows the path that the decoding tree follows to reach the
224 /// the conclusion that there is a conflict. VST4q8a is a vst4 to double-spaced
225 /// even registers, while VST4q8b is a vst4 to double-spaced odd registers.
227 /// The encoding info in the .td files does not specify this meta information,
228 /// which could have been used by the decoder to resolve the conflict. The
229 /// decoder could try to decode the even/odd register numbering and assign to
230 /// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a"
231 /// version and return the Opcode since the two have the same Asm format string.
234 const FilterChooser
*Owner
;// points to the FilterChooser who owns this filter
235 unsigned StartBit
; // the starting bit position
236 unsigned NumBits
; // number of bits to filter
237 bool Mixed
; // a mixed region contains both set and unset bits
239 // Map of well-known segment value to the set of uid's with that value.
240 std::map
<uint64_t, std::vector
<unsigned>> FilteredInstructions
;
242 // Set of uid's with non-constant segment values.
243 std::vector
<unsigned> VariableInstructions
;
245 // Map of well-known segment value to its delegate.
246 std::map
<unsigned, std::unique_ptr
<const FilterChooser
>> FilterChooserMap
;
248 // Number of instructions which fall under FilteredInstructions category.
249 unsigned NumFiltered
;
251 // Keeps track of the last opcode in the filtered bucket.
252 unsigned LastOpcFiltered
;
256 Filter(FilterChooser
&owner
, unsigned startBit
, unsigned numBits
, bool mixed
);
260 unsigned getNumFiltered() const { return NumFiltered
; }
262 unsigned getSingletonOpc() const {
263 assert(NumFiltered
== 1);
264 return LastOpcFiltered
;
267 // Return the filter chooser for the group of instructions without constant
269 const FilterChooser
&getVariableFC() const {
270 assert(NumFiltered
== 1);
271 assert(FilterChooserMap
.size() == 1);
272 return *(FilterChooserMap
.find((unsigned)-1)->second
);
275 // Divides the decoding task into sub tasks and delegates them to the
276 // inferior FilterChooser's.
278 // A special case arises when there's only one entry in the filtered
279 // instructions. In order to unambiguously decode the singleton, we need to
280 // match the remaining undecoded encoding bits against the singleton.
283 // Emit table entries to decode instructions given a segment or segments of
285 void emitTableEntry(DecoderTableInfo
&TableInfo
) const;
287 // Returns the number of fanout produced by the filter. More fanout implies
288 // the filter distinguishes more categories of instructions.
289 unsigned usefulness() const;
290 }; // end class Filter
292 } // end anonymous namespace
294 // These are states of our finite state machines used in FilterChooser's
295 // filterProcessor() which produces the filter candidates to use.
304 /// FilterChooser - FilterChooser chooses the best filter among a set of Filters
305 /// in order to perform the decoding of instructions at the current level.
307 /// Decoding proceeds from the top down. Based on the well-known encoding bits
308 /// of instructions available, FilterChooser builds up the possible Filters that
309 /// can further the task of decoding by distinguishing among the remaining
310 /// candidate instructions.
312 /// Once a filter has been chosen, it is called upon to divide the decoding task
313 /// into sub-tasks and delegates them to its inferior FilterChoosers for further
316 /// It is useful to think of a Filter as governing the switch stmts of the
317 /// decoding tree. And each case is delegated to an inferior FilterChooser to
318 /// decide what further remaining bits to look at.
321 class FilterChooser
{
325 // Vector of codegen instructions to choose our filter.
326 ArrayRef
<const CodeGenInstruction
*> AllInstructions
;
328 // Vector of uid's for this filter chooser to work on.
329 const std::vector
<unsigned> &Opcodes
;
331 // Lookup table for the operand decoding of instructions.
332 const std::map
<unsigned, std::vector
<OperandInfo
>> &Operands
;
334 // Vector of candidate filters.
335 std::vector
<Filter
> Filters
;
337 // Array of bit values passed down from our parent.
338 // Set to all BIT_UNFILTERED's for Parent == NULL.
339 std::vector
<bit_value_t
> FilterBitValues
;
341 // Links to the FilterChooser above us in the decoding tree.
342 const FilterChooser
*Parent
;
344 // Index of the best filter from Filters.
347 // Width of instructions
351 const FixedLenDecoderEmitter
*Emitter
;
354 FilterChooser(ArrayRef
<const CodeGenInstruction
*> Insts
,
355 const std::vector
<unsigned> &IDs
,
356 const std::map
<unsigned, std::vector
<OperandInfo
>> &Ops
,
358 const FixedLenDecoderEmitter
*E
)
359 : AllInstructions(Insts
), Opcodes(IDs
), Operands(Ops
),
360 FilterBitValues(BW
, BIT_UNFILTERED
), Parent(nullptr), BestIndex(-1),
361 BitWidth(BW
), Emitter(E
) {
365 FilterChooser(ArrayRef
<const CodeGenInstruction
*> Insts
,
366 const std::vector
<unsigned> &IDs
,
367 const std::map
<unsigned, std::vector
<OperandInfo
>> &Ops
,
368 const std::vector
<bit_value_t
> &ParentFilterBitValues
,
369 const FilterChooser
&parent
)
370 : AllInstructions(Insts
), Opcodes(IDs
), Operands(Ops
),
371 FilterBitValues(ParentFilterBitValues
), Parent(&parent
), BestIndex(-1),
372 BitWidth(parent
.BitWidth
), Emitter(parent
.Emitter
) {
376 FilterChooser(const FilterChooser
&) = delete;
377 void operator=(const FilterChooser
&) = delete;
379 unsigned getBitWidth() const { return BitWidth
; }
382 // Populates the insn given the uid.
383 void insnWithID(insn_t
&Insn
, unsigned Opcode
) const {
384 BitsInit
&Bits
= getBitsField(*AllInstructions
[Opcode
]->TheDef
, "Inst");
386 // We may have a SoftFail bitmask, which specifies a mask where an encoding
387 // may differ from the value in "Inst" and yet still be valid, but the
388 // disassembler should return SoftFail instead of Success.
390 // This is used for marking UNPREDICTABLE instructions in the ARM world.
392 AllInstructions
[Opcode
]->TheDef
->getValueAsBitsInit("SoftFail");
394 for (unsigned i
= 0; i
< BitWidth
; ++i
) {
395 if (SFBits
&& bitFromBits(*SFBits
, i
) == BIT_TRUE
)
396 Insn
.push_back(BIT_UNSET
);
398 Insn
.push_back(bitFromBits(Bits
, i
));
402 // Returns the record name.
403 const StringRef
nameWithID(unsigned Opcode
) const {
404 return AllInstructions
[Opcode
]->TheDef
->getName();
407 // Populates the field of the insn given the start position and the number of
408 // consecutive bits to scan for.
410 // Returns false if there exists any uninitialized bit value in the range.
411 // Returns true, otherwise.
412 bool fieldFromInsn(uint64_t &Field
, insn_t
&Insn
, unsigned StartBit
,
413 unsigned NumBits
) const;
415 /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
416 /// filter array as a series of chars.
417 void dumpFilterArray(raw_ostream
&o
,
418 const std::vector
<bit_value_t
> & filter
) const;
420 /// dumpStack - dumpStack traverses the filter chooser chain and calls
421 /// dumpFilterArray on each filter chooser up to the top level one.
422 void dumpStack(raw_ostream
&o
, const char *prefix
) const;
424 Filter
&bestFilter() {
425 assert(BestIndex
!= -1 && "BestIndex not set");
426 return Filters
[BestIndex
];
429 bool PositionFiltered(unsigned i
) const {
430 return ValueSet(FilterBitValues
[i
]);
433 // Calculates the island(s) needed to decode the instruction.
434 // This returns a lit of undecoded bits of an instructions, for example,
435 // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
436 // decoded bits in order to verify that the instruction matches the Opcode.
437 unsigned getIslands(std::vector
<unsigned> &StartBits
,
438 std::vector
<unsigned> &EndBits
,
439 std::vector
<uint64_t> &FieldVals
,
440 const insn_t
&Insn
) const;
442 // Emits code to check the Predicates member of an instruction are true.
443 // Returns true if predicate matches were emitted, false otherwise.
444 bool emitPredicateMatch(raw_ostream
&o
, unsigned &Indentation
,
447 bool doesOpcodeNeedPredicate(unsigned Opc
) const;
448 unsigned getPredicateIndex(DecoderTableInfo
&TableInfo
, StringRef P
) const;
449 void emitPredicateTableEntry(DecoderTableInfo
&TableInfo
,
452 void emitSoftFailTableEntry(DecoderTableInfo
&TableInfo
,
455 // Emits table entries to decode the singleton.
456 void emitSingletonTableEntry(DecoderTableInfo
&TableInfo
,
459 // Emits code to decode the singleton, and then to decode the rest.
460 void emitSingletonTableEntry(DecoderTableInfo
&TableInfo
,
461 const Filter
&Best
) const;
463 void emitBinaryParser(raw_ostream
&o
, unsigned &Indentation
,
464 const OperandInfo
&OpInfo
,
465 bool &OpHasCompleteDecoder
) const;
467 void emitDecoder(raw_ostream
&OS
, unsigned Indentation
, unsigned Opc
,
468 bool &HasCompleteDecoder
) const;
469 unsigned getDecoderIndex(DecoderSet
&Decoders
, unsigned Opc
,
470 bool &HasCompleteDecoder
) const;
472 // Assign a single filter and run with it.
473 void runSingleFilter(unsigned startBit
, unsigned numBit
, bool mixed
);
475 // reportRegion is a helper function for filterProcessor to mark a region as
476 // eligible for use as a filter region.
477 void reportRegion(bitAttr_t RA
, unsigned StartBit
, unsigned BitIndex
,
480 // FilterProcessor scans the well-known encoding bits of the instructions and
481 // builds up a list of candidate filters. It chooses the best filter and
482 // recursively descends down the decoding tree.
483 bool filterProcessor(bool AllowMixed
, bool Greedy
= true);
485 // Decides on the best configuration of filter(s) to use in order to decode
486 // the instructions. A conflict of instructions may occur, in which case we
487 // dump the conflict set to the standard error.
491 // emitTableEntries - Emit state machine entries to decode our share of
493 void emitTableEntries(DecoderTableInfo
&TableInfo
) const;
496 } // end anonymous namespace
498 ///////////////////////////
500 // Filter Implementation //
502 ///////////////////////////
504 Filter::Filter(Filter
&&f
)
505 : Owner(f
.Owner
), StartBit(f
.StartBit
), NumBits(f
.NumBits
), Mixed(f
.Mixed
),
506 FilteredInstructions(std::move(f
.FilteredInstructions
)),
507 VariableInstructions(std::move(f
.VariableInstructions
)),
508 FilterChooserMap(std::move(f
.FilterChooserMap
)), NumFiltered(f
.NumFiltered
),
509 LastOpcFiltered(f
.LastOpcFiltered
) {
512 Filter::Filter(FilterChooser
&owner
, unsigned startBit
, unsigned numBits
,
514 : Owner(&owner
), StartBit(startBit
), NumBits(numBits
), Mixed(mixed
) {
515 assert(StartBit
+ NumBits
- 1 < Owner
->BitWidth
);
520 for (unsigned i
= 0, e
= Owner
->Opcodes
.size(); i
!= e
; ++i
) {
523 // Populates the insn given the uid.
524 Owner
->insnWithID(Insn
, Owner
->Opcodes
[i
]);
527 // Scans the segment for possibly well-specified encoding bits.
528 bool ok
= Owner
->fieldFromInsn(Field
, Insn
, StartBit
, NumBits
);
531 // The encoding bits are well-known. Lets add the uid of the
532 // instruction into the bucket keyed off the constant field value.
533 LastOpcFiltered
= Owner
->Opcodes
[i
];
534 FilteredInstructions
[Field
].push_back(LastOpcFiltered
);
537 // Some of the encoding bit(s) are unspecified. This contributes to
538 // one additional member of "Variable" instructions.
539 VariableInstructions
.push_back(Owner
->Opcodes
[i
]);
543 assert((FilteredInstructions
.size() + VariableInstructions
.size() > 0)
544 && "Filter returns no instruction categories");
547 // Divides the decoding task into sub tasks and delegates them to the
548 // inferior FilterChooser's.
550 // A special case arises when there's only one entry in the filtered
551 // instructions. In order to unambiguously decode the singleton, we need to
552 // match the remaining undecoded encoding bits against the singleton.
553 void Filter::recurse() {
554 // Starts by inheriting our parent filter chooser's filter bit values.
555 std::vector
<bit_value_t
> BitValueArray(Owner
->FilterBitValues
);
557 if (!VariableInstructions
.empty()) {
558 // Conservatively marks each segment position as BIT_UNSET.
559 for (unsigned bitIndex
= 0; bitIndex
< NumBits
; ++bitIndex
)
560 BitValueArray
[StartBit
+ bitIndex
] = BIT_UNSET
;
562 // Delegates to an inferior filter chooser for further processing on this
563 // group of instructions whose segment values are variable.
564 FilterChooserMap
.insert(
565 std::make_pair(-1U, llvm::make_unique
<FilterChooser
>(
566 Owner
->AllInstructions
, VariableInstructions
,
567 Owner
->Operands
, BitValueArray
, *Owner
)));
570 // No need to recurse for a singleton filtered instruction.
571 // See also Filter::emit*().
572 if (getNumFiltered() == 1) {
573 assert(FilterChooserMap
.size() == 1);
577 // Otherwise, create sub choosers.
578 for (const auto &Inst
: FilteredInstructions
) {
580 // Marks all the segment positions with either BIT_TRUE or BIT_FALSE.
581 for (unsigned bitIndex
= 0; bitIndex
< NumBits
; ++bitIndex
) {
582 if (Inst
.first
& (1ULL << bitIndex
))
583 BitValueArray
[StartBit
+ bitIndex
] = BIT_TRUE
;
585 BitValueArray
[StartBit
+ bitIndex
] = BIT_FALSE
;
588 // Delegates to an inferior filter chooser for further processing on this
589 // category of instructions.
590 FilterChooserMap
.insert(std::make_pair(
591 Inst
.first
, llvm::make_unique
<FilterChooser
>(
592 Owner
->AllInstructions
, Inst
.second
,
593 Owner
->Operands
, BitValueArray
, *Owner
)));
597 static void resolveTableFixups(DecoderTable
&Table
, const FixupList
&Fixups
,
599 // Any NumToSkip fixups in the current scope can resolve to the
601 for (FixupList::const_reverse_iterator I
= Fixups
.rbegin(),
604 // Calculate the distance from the byte following the fixup entry byte
605 // to the destination. The Target is calculated from after the 16-bit
606 // NumToSkip entry itself, so subtract two from the displacement here
607 // to account for that.
608 uint32_t FixupIdx
= *I
;
609 uint32_t Delta
= DestIdx
- FixupIdx
- 3;
610 // Our NumToSkip entries are 24-bits. Make sure our table isn't too
612 assert(Delta
< (1u << 24));
613 Table
[FixupIdx
] = (uint8_t)Delta
;
614 Table
[FixupIdx
+ 1] = (uint8_t)(Delta
>> 8);
615 Table
[FixupIdx
+ 2] = (uint8_t)(Delta
>> 16);
619 // Emit table entries to decode instructions given a segment or segments
621 void Filter::emitTableEntry(DecoderTableInfo
&TableInfo
) const {
622 TableInfo
.Table
.push_back(MCD::OPC_ExtractField
);
623 TableInfo
.Table
.push_back(StartBit
);
624 TableInfo
.Table
.push_back(NumBits
);
626 // A new filter entry begins a new scope for fixup resolution.
627 TableInfo
.FixupStack
.emplace_back();
629 DecoderTable
&Table
= TableInfo
.Table
;
631 size_t PrevFilter
= 0;
632 bool HasFallthrough
= false;
633 for (auto &Filter
: FilterChooserMap
) {
634 // Field value -1 implies a non-empty set of variable instructions.
635 // See also recurse().
636 if (Filter
.first
== (unsigned)-1) {
637 HasFallthrough
= true;
639 // Each scope should always have at least one filter value to check
641 assert(PrevFilter
!= 0 && "empty filter set!");
642 FixupList
&CurScope
= TableInfo
.FixupStack
.back();
643 // Resolve any NumToSkip fixups in the current scope.
644 resolveTableFixups(Table
, CurScope
, Table
.size());
646 PrevFilter
= 0; // Don't re-process the filter's fallthrough.
648 Table
.push_back(MCD::OPC_FilterValue
);
649 // Encode and emit the value to filter against.
651 unsigned Len
= encodeULEB128(Filter
.first
, Buffer
);
652 Table
.insert(Table
.end(), Buffer
, Buffer
+ Len
);
653 // Reserve space for the NumToSkip entry. We'll backpatch the value
655 PrevFilter
= Table
.size();
661 // We arrive at a category of instructions with the same segment value.
662 // Now delegate to the sub filter chooser for further decodings.
663 // The case may fallthrough, which happens if the remaining well-known
664 // encoding bits do not match exactly.
665 Filter
.second
->emitTableEntries(TableInfo
);
667 // Now that we've emitted the body of the handler, update the NumToSkip
668 // of the filter itself to be able to skip forward when false. Subtract
669 // two as to account for the width of the NumToSkip field itself.
671 uint32_t NumToSkip
= Table
.size() - PrevFilter
- 3;
672 assert(NumToSkip
< (1u << 24) && "disassembler decoding table too large!");
673 Table
[PrevFilter
] = (uint8_t)NumToSkip
;
674 Table
[PrevFilter
+ 1] = (uint8_t)(NumToSkip
>> 8);
675 Table
[PrevFilter
+ 2] = (uint8_t)(NumToSkip
>> 16);
679 // Any remaining unresolved fixups bubble up to the parent fixup scope.
680 assert(TableInfo
.FixupStack
.size() > 1 && "fixup stack underflow!");
681 FixupScopeList::iterator Source
= TableInfo
.FixupStack
.end() - 1;
682 FixupScopeList::iterator Dest
= Source
- 1;
683 Dest
->insert(Dest
->end(), Source
->begin(), Source
->end());
684 TableInfo
.FixupStack
.pop_back();
686 // If there is no fallthrough, then the final filter should get fixed
687 // up according to the enclosing scope rather than the current position.
689 TableInfo
.FixupStack
.back().push_back(PrevFilter
);
692 // Returns the number of fanout produced by the filter. More fanout implies
693 // the filter distinguishes more categories of instructions.
694 unsigned Filter::usefulness() const {
695 if (!VariableInstructions
.empty())
696 return FilteredInstructions
.size();
698 return FilteredInstructions
.size() + 1;
701 //////////////////////////////////
703 // Filterchooser Implementation //
705 //////////////////////////////////
707 // Emit the decoder state machine table.
708 void FixedLenDecoderEmitter::emitTable(formatted_raw_ostream
&OS
,
710 unsigned Indentation
,
712 StringRef Namespace
) const {
713 OS
.indent(Indentation
) << "static const uint8_t DecoderTable" << Namespace
714 << BitWidth
<< "[] = {\n";
718 // FIXME: We may be able to use the NumToSkip values to recover
719 // appropriate indentation levels.
720 DecoderTable::const_iterator I
= Table
.begin();
721 DecoderTable::const_iterator E
= Table
.end();
723 assert (I
< E
&& "incomplete decode table entry!");
725 uint64_t Pos
= I
- Table
.begin();
726 OS
<< "/* " << Pos
<< " */";
731 PrintFatalError("invalid decode table opcode");
732 case MCD::OPC_ExtractField
: {
734 unsigned Start
= *I
++;
736 OS
.indent(Indentation
) << "MCD::OPC_ExtractField, " << Start
<< ", "
737 << Len
<< ", // Inst{";
739 OS
<< (Start
+ Len
- 1) << "-";
740 OS
<< Start
<< "} ...\n";
743 case MCD::OPC_FilterValue
: {
745 OS
.indent(Indentation
) << "MCD::OPC_FilterValue, ";
746 // The filter value is ULEB128 encoded.
748 OS
<< (unsigned)*I
++ << ", ";
749 OS
<< (unsigned)*I
++ << ", ";
751 // 24-bit numtoskip value.
753 uint32_t NumToSkip
= Byte
;
754 OS
<< (unsigned)Byte
<< ", ";
756 OS
<< (unsigned)Byte
<< ", ";
757 NumToSkip
|= Byte
<< 8;
759 OS
<< utostr(Byte
) << ", ";
760 NumToSkip
|= Byte
<< 16;
761 OS
<< "// Skip to: " << ((I
- Table
.begin()) + NumToSkip
) << "\n";
764 case MCD::OPC_CheckField
: {
766 unsigned Start
= *I
++;
768 OS
.indent(Indentation
) << "MCD::OPC_CheckField, " << Start
<< ", "
769 << Len
<< ", ";// << Val << ", " << NumToSkip << ",\n";
770 // ULEB128 encoded field value.
771 for (; *I
>= 128; ++I
)
772 OS
<< (unsigned)*I
<< ", ";
773 OS
<< (unsigned)*I
++ << ", ";
774 // 24-bit numtoskip value.
776 uint32_t NumToSkip
= Byte
;
777 OS
<< (unsigned)Byte
<< ", ";
779 OS
<< (unsigned)Byte
<< ", ";
780 NumToSkip
|= Byte
<< 8;
782 OS
<< utostr(Byte
) << ", ";
783 NumToSkip
|= Byte
<< 16;
784 OS
<< "// Skip to: " << ((I
- Table
.begin()) + NumToSkip
) << "\n";
787 case MCD::OPC_CheckPredicate
: {
789 OS
.indent(Indentation
) << "MCD::OPC_CheckPredicate, ";
790 for (; *I
>= 128; ++I
)
791 OS
<< (unsigned)*I
<< ", ";
792 OS
<< (unsigned)*I
++ << ", ";
794 // 24-bit numtoskip value.
796 uint32_t NumToSkip
= Byte
;
797 OS
<< (unsigned)Byte
<< ", ";
799 OS
<< (unsigned)Byte
<< ", ";
800 NumToSkip
|= Byte
<< 8;
802 OS
<< utostr(Byte
) << ", ";
803 NumToSkip
|= Byte
<< 16;
804 OS
<< "// Skip to: " << ((I
- Table
.begin()) + NumToSkip
) << "\n";
807 case MCD::OPC_Decode
:
808 case MCD::OPC_TryDecode
: {
809 bool IsTry
= *I
== MCD::OPC_TryDecode
;
811 // Extract the ULEB128 encoded Opcode to a buffer.
812 uint8_t Buffer
[16], *p
= Buffer
;
813 while ((*p
++ = *I
++) >= 128)
814 assert((p
- Buffer
) <= (ptrdiff_t)sizeof(Buffer
)
815 && "ULEB128 value too large!");
816 // Decode the Opcode value.
817 unsigned Opc
= decodeULEB128(Buffer
);
818 OS
.indent(Indentation
) << "MCD::OPC_" << (IsTry
? "Try" : "")
820 for (p
= Buffer
; *p
>= 128; ++p
)
821 OS
<< (unsigned)*p
<< ", ";
822 OS
<< (unsigned)*p
<< ", ";
825 for (; *I
>= 128; ++I
)
826 OS
<< (unsigned)*I
<< ", ";
827 OS
<< (unsigned)*I
++ << ", ";
831 << NumberedInstructions
[Opc
]->TheDef
->getName() << "\n";
835 // Fallthrough for OPC_TryDecode.
837 // 24-bit numtoskip value.
839 uint32_t NumToSkip
= Byte
;
840 OS
<< (unsigned)Byte
<< ", ";
842 OS
<< (unsigned)Byte
<< ", ";
843 NumToSkip
|= Byte
<< 8;
845 OS
<< utostr(Byte
) << ", ";
846 NumToSkip
|= Byte
<< 16;
849 << NumberedInstructions
[Opc
]->TheDef
->getName()
850 << ", skip to: " << ((I
- Table
.begin()) + NumToSkip
) << "\n";
853 case MCD::OPC_SoftFail
: {
855 OS
.indent(Indentation
) << "MCD::OPC_SoftFail";
860 OS
<< ", " << (unsigned)*I
;
861 Value
+= (*I
& 0x7f) << Shift
;
863 } while (*I
++ >= 128);
873 OS
<< ", " << (unsigned)*I
;
874 Value
+= (*I
& 0x7f) << Shift
;
876 } while (*I
++ >= 128);
885 case MCD::OPC_Fail
: {
887 OS
.indent(Indentation
) << "MCD::OPC_Fail,\n";
892 OS
.indent(Indentation
) << "0\n";
896 OS
.indent(Indentation
) << "};\n\n";
899 void FixedLenDecoderEmitter::
900 emitPredicateFunction(formatted_raw_ostream
&OS
, PredicateSet
&Predicates
,
901 unsigned Indentation
) const {
902 // The predicate function is just a big switch statement based on the
903 // input predicate index.
904 OS
.indent(Indentation
) << "static bool checkDecoderPredicate(unsigned Idx, "
905 << "const FeatureBitset& Bits) {\n";
907 if (!Predicates
.empty()) {
908 OS
.indent(Indentation
) << "switch (Idx) {\n";
909 OS
.indent(Indentation
) << "default: llvm_unreachable(\"Invalid index!\");\n";
911 for (const auto &Predicate
: Predicates
) {
912 OS
.indent(Indentation
) << "case " << Index
++ << ":\n";
913 OS
.indent(Indentation
+2) << "return (" << Predicate
<< ");\n";
915 OS
.indent(Indentation
) << "}\n";
917 // No case statement to emit
918 OS
.indent(Indentation
) << "llvm_unreachable(\"Invalid index!\");\n";
921 OS
.indent(Indentation
) << "}\n\n";
924 void FixedLenDecoderEmitter::
925 emitDecoderFunction(formatted_raw_ostream
&OS
, DecoderSet
&Decoders
,
926 unsigned Indentation
) const {
927 // The decoder function is just a big switch statement based on the
928 // input decoder index.
929 OS
.indent(Indentation
) << "template<typename InsnType>\n";
930 OS
.indent(Indentation
) << "static DecodeStatus decodeToMCInst(DecodeStatus S,"
931 << " unsigned Idx, InsnType insn, MCInst &MI,\n";
932 OS
.indent(Indentation
) << " uint64_t "
933 << "Address, const void *Decoder, bool &DecodeComplete) {\n";
935 OS
.indent(Indentation
) << "DecodeComplete = true;\n";
936 OS
.indent(Indentation
) << "InsnType tmp;\n";
937 OS
.indent(Indentation
) << "switch (Idx) {\n";
938 OS
.indent(Indentation
) << "default: llvm_unreachable(\"Invalid index!\");\n";
940 for (const auto &Decoder
: Decoders
) {
941 OS
.indent(Indentation
) << "case " << Index
++ << ":\n";
943 OS
.indent(Indentation
+2) << "return S;\n";
945 OS
.indent(Indentation
) << "}\n";
947 OS
.indent(Indentation
) << "}\n\n";
950 // Populates the field of the insn given the start position and the number of
951 // consecutive bits to scan for.
953 // Returns false if and on the first uninitialized bit value encountered.
954 // Returns true, otherwise.
955 bool FilterChooser::fieldFromInsn(uint64_t &Field
, insn_t
&Insn
,
956 unsigned StartBit
, unsigned NumBits
) const {
959 for (unsigned i
= 0; i
< NumBits
; ++i
) {
960 if (Insn
[StartBit
+ i
] == BIT_UNSET
)
963 if (Insn
[StartBit
+ i
] == BIT_TRUE
)
964 Field
= Field
| (1ULL << i
);
970 /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
971 /// filter array as a series of chars.
972 void FilterChooser::dumpFilterArray(raw_ostream
&o
,
973 const std::vector
<bit_value_t
> &filter
) const {
974 for (unsigned bitIndex
= BitWidth
; bitIndex
> 0; bitIndex
--) {
975 switch (filter
[bitIndex
- 1]) {
992 /// dumpStack - dumpStack traverses the filter chooser chain and calls
993 /// dumpFilterArray on each filter chooser up to the top level one.
994 void FilterChooser::dumpStack(raw_ostream
&o
, const char *prefix
) const {
995 const FilterChooser
*current
= this;
999 dumpFilterArray(o
, current
->FilterBitValues
);
1001 current
= current
->Parent
;
1005 // Calculates the island(s) needed to decode the instruction.
1006 // This returns a list of undecoded bits of an instructions, for example,
1007 // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
1008 // decoded bits in order to verify that the instruction matches the Opcode.
1009 unsigned FilterChooser::getIslands(std::vector
<unsigned> &StartBits
,
1010 std::vector
<unsigned> &EndBits
,
1011 std::vector
<uint64_t> &FieldVals
,
1012 const insn_t
&Insn
) const {
1013 unsigned Num
, BitNo
;
1016 uint64_t FieldVal
= 0;
1019 // 1: Water (the bit value does not affect decoding)
1020 // 2: Island (well-known bit value needed for decoding)
1024 for (unsigned i
= 0; i
< BitWidth
; ++i
) {
1025 Val
= Value(Insn
[i
]);
1026 bool Filtered
= PositionFiltered(i
);
1028 default: llvm_unreachable("Unreachable code!");
1031 if (Filtered
|| Val
== -1)
1032 State
= 1; // Still in Water
1034 State
= 2; // Into the Island
1036 StartBits
.push_back(i
);
1041 if (Filtered
|| Val
== -1) {
1042 State
= 1; // Into the Water
1043 EndBits
.push_back(i
- 1);
1044 FieldVals
.push_back(FieldVal
);
1047 State
= 2; // Still in Island
1049 FieldVal
= FieldVal
| Val
<< BitNo
;
1054 // If we are still in Island after the loop, do some housekeeping.
1056 EndBits
.push_back(BitWidth
- 1);
1057 FieldVals
.push_back(FieldVal
);
1061 assert(StartBits
.size() == Num
&& EndBits
.size() == Num
&&
1062 FieldVals
.size() == Num
);
1066 void FilterChooser::emitBinaryParser(raw_ostream
&o
, unsigned &Indentation
,
1067 const OperandInfo
&OpInfo
,
1068 bool &OpHasCompleteDecoder
) const {
1069 const std::string
&Decoder
= OpInfo
.Decoder
;
1071 if (OpInfo
.numFields() != 1)
1072 o
.indent(Indentation
) << "tmp = 0;\n";
1074 for (const EncodingField
&EF
: OpInfo
) {
1075 o
.indent(Indentation
) << "tmp ";
1076 if (OpInfo
.numFields() != 1) o
<< '|';
1077 o
<< "= fieldFromInstruction"
1078 << "(insn, " << EF
.Base
<< ", " << EF
.Width
<< ')';
1079 if (OpInfo
.numFields() != 1 || EF
.Offset
!= 0)
1080 o
<< " << " << EF
.Offset
;
1084 if (Decoder
!= "") {
1085 OpHasCompleteDecoder
= OpInfo
.HasCompleteDecoder
;
1086 o
.indent(Indentation
) << Emitter
->GuardPrefix
<< Decoder
1087 << "(MI, tmp, Address, Decoder)"
1088 << Emitter
->GuardPostfix
1089 << " { " << (OpHasCompleteDecoder
? "" : "DecodeComplete = false; ")
1090 << "return MCDisassembler::Fail; }\n";
1092 OpHasCompleteDecoder
= true;
1093 o
.indent(Indentation
) << "MI.addOperand(MCOperand::createImm(tmp));\n";
1097 void FilterChooser::emitDecoder(raw_ostream
&OS
, unsigned Indentation
,
1098 unsigned Opc
, bool &HasCompleteDecoder
) const {
1099 HasCompleteDecoder
= true;
1101 for (const auto &Op
: Operands
.find(Opc
)->second
) {
1102 // If a custom instruction decoder was specified, use that.
1103 if (Op
.numFields() == 0 && !Op
.Decoder
.empty()) {
1104 HasCompleteDecoder
= Op
.HasCompleteDecoder
;
1105 OS
.indent(Indentation
) << Emitter
->GuardPrefix
<< Op
.Decoder
1106 << "(MI, insn, Address, Decoder)"
1107 << Emitter
->GuardPostfix
1108 << " { " << (HasCompleteDecoder
? "" : "DecodeComplete = false; ")
1109 << "return MCDisassembler::Fail; }\n";
1113 bool OpHasCompleteDecoder
;
1114 emitBinaryParser(OS
, Indentation
, Op
, OpHasCompleteDecoder
);
1115 if (!OpHasCompleteDecoder
)
1116 HasCompleteDecoder
= false;
1120 unsigned FilterChooser::getDecoderIndex(DecoderSet
&Decoders
,
1122 bool &HasCompleteDecoder
) const {
1123 // Build up the predicate string.
1124 SmallString
<256> Decoder
;
1125 // FIXME: emitDecoder() function can take a buffer directly rather than
1127 raw_svector_ostream
S(Decoder
);
1129 emitDecoder(S
, I
, Opc
, HasCompleteDecoder
);
1131 // Using the full decoder string as the key value here is a bit
1132 // heavyweight, but is effective. If the string comparisons become a
1133 // performance concern, we can implement a mangling of the predicate
1134 // data easily enough with a map back to the actual string. That's
1135 // overkill for now, though.
1137 // Make sure the predicate is in the table.
1138 Decoders
.insert(CachedHashString(Decoder
));
1139 // Now figure out the index for when we write out the table.
1140 DecoderSet::const_iterator P
= find(Decoders
, Decoder
.str());
1141 return (unsigned)(P
- Decoders
.begin());
1144 static void emitSinglePredicateMatch(raw_ostream
&o
, StringRef str
,
1145 const std::string
&PredicateNamespace
) {
1147 o
<< "!Bits[" << PredicateNamespace
<< "::"
1148 << str
.slice(1,str
.size()) << "]";
1150 o
<< "Bits[" << PredicateNamespace
<< "::" << str
<< "]";
1153 bool FilterChooser::emitPredicateMatch(raw_ostream
&o
, unsigned &Indentation
,
1154 unsigned Opc
) const {
1155 ListInit
*Predicates
=
1156 AllInstructions
[Opc
]->TheDef
->getValueAsListInit("Predicates");
1157 bool IsFirstEmission
= true;
1158 for (unsigned i
= 0; i
< Predicates
->size(); ++i
) {
1159 Record
*Pred
= Predicates
->getElementAsRecord(i
);
1160 if (!Pred
->getValue("AssemblerMatcherPredicate"))
1163 StringRef P
= Pred
->getValueAsString("AssemblerCondString");
1168 if (!IsFirstEmission
)
1171 std::pair
<StringRef
, StringRef
> pairs
= P
.split(',');
1172 while (!pairs
.second
.empty()) {
1173 emitSinglePredicateMatch(o
, pairs
.first
, Emitter
->PredicateNamespace
);
1175 pairs
= pairs
.second
.split(',');
1177 emitSinglePredicateMatch(o
, pairs
.first
, Emitter
->PredicateNamespace
);
1178 IsFirstEmission
= false;
1180 return !Predicates
->empty();
1183 bool FilterChooser::doesOpcodeNeedPredicate(unsigned Opc
) const {
1184 ListInit
*Predicates
=
1185 AllInstructions
[Opc
]->TheDef
->getValueAsListInit("Predicates");
1186 for (unsigned i
= 0; i
< Predicates
->size(); ++i
) {
1187 Record
*Pred
= Predicates
->getElementAsRecord(i
);
1188 if (!Pred
->getValue("AssemblerMatcherPredicate"))
1191 StringRef P
= Pred
->getValueAsString("AssemblerCondString");
1201 unsigned FilterChooser::getPredicateIndex(DecoderTableInfo
&TableInfo
,
1202 StringRef Predicate
) const {
1203 // Using the full predicate string as the key value here is a bit
1204 // heavyweight, but is effective. If the string comparisons become a
1205 // performance concern, we can implement a mangling of the predicate
1206 // data easily enough with a map back to the actual string. That's
1207 // overkill for now, though.
1209 // Make sure the predicate is in the table.
1210 TableInfo
.Predicates
.insert(CachedHashString(Predicate
));
1211 // Now figure out the index for when we write out the table.
1212 PredicateSet::const_iterator P
= find(TableInfo
.Predicates
, Predicate
);
1213 return (unsigned)(P
- TableInfo
.Predicates
.begin());
1216 void FilterChooser::emitPredicateTableEntry(DecoderTableInfo
&TableInfo
,
1217 unsigned Opc
) const {
1218 if (!doesOpcodeNeedPredicate(Opc
))
1221 // Build up the predicate string.
1222 SmallString
<256> Predicate
;
1223 // FIXME: emitPredicateMatch() functions can take a buffer directly rather
1225 raw_svector_ostream
PS(Predicate
);
1227 emitPredicateMatch(PS
, I
, Opc
);
1229 // Figure out the index into the predicate table for the predicate just
1231 unsigned PIdx
= getPredicateIndex(TableInfo
, PS
.str());
1232 SmallString
<16> PBytes
;
1233 raw_svector_ostream
S(PBytes
);
1234 encodeULEB128(PIdx
, S
);
1236 TableInfo
.Table
.push_back(MCD::OPC_CheckPredicate
);
1238 for (unsigned i
= 0, e
= PBytes
.size(); i
!= e
; ++i
)
1239 TableInfo
.Table
.push_back(PBytes
[i
]);
1240 // Push location for NumToSkip backpatching.
1241 TableInfo
.FixupStack
.back().push_back(TableInfo
.Table
.size());
1242 TableInfo
.Table
.push_back(0);
1243 TableInfo
.Table
.push_back(0);
1244 TableInfo
.Table
.push_back(0);
1247 void FilterChooser::emitSoftFailTableEntry(DecoderTableInfo
&TableInfo
,
1248 unsigned Opc
) const {
1250 AllInstructions
[Opc
]->TheDef
->getValueAsBitsInit("SoftFail");
1251 if (!SFBits
) return;
1252 BitsInit
*InstBits
= AllInstructions
[Opc
]->TheDef
->getValueAsBitsInit("Inst");
1254 APInt
PositiveMask(BitWidth
, 0ULL);
1255 APInt
NegativeMask(BitWidth
, 0ULL);
1256 for (unsigned i
= 0; i
< BitWidth
; ++i
) {
1257 bit_value_t B
= bitFromBits(*SFBits
, i
);
1258 bit_value_t IB
= bitFromBits(*InstBits
, i
);
1260 if (B
!= BIT_TRUE
) continue;
1264 // The bit is meant to be false, so emit a check to see if it is true.
1265 PositiveMask
.setBit(i
);
1268 // The bit is meant to be true, so emit a check to see if it is false.
1269 NegativeMask
.setBit(i
);
1272 // The bit is not set; this must be an error!
1273 StringRef Name
= AllInstructions
[Opc
]->TheDef
->getName();
1274 errs() << "SoftFail Conflict: bit SoftFail{" << i
<< "} in " << Name
1275 << " is set but Inst{" << i
<< "} is unset!\n"
1276 << " - You can only mark a bit as SoftFail if it is fully defined"
1277 << " (1/0 - not '?') in Inst\n";
1282 bool NeedPositiveMask
= PositiveMask
.getBoolValue();
1283 bool NeedNegativeMask
= NegativeMask
.getBoolValue();
1285 if (!NeedPositiveMask
&& !NeedNegativeMask
)
1288 TableInfo
.Table
.push_back(MCD::OPC_SoftFail
);
1290 SmallString
<16> MaskBytes
;
1291 raw_svector_ostream
S(MaskBytes
);
1292 if (NeedPositiveMask
) {
1293 encodeULEB128(PositiveMask
.getZExtValue(), S
);
1294 for (unsigned i
= 0, e
= MaskBytes
.size(); i
!= e
; ++i
)
1295 TableInfo
.Table
.push_back(MaskBytes
[i
]);
1297 TableInfo
.Table
.push_back(0);
1298 if (NeedNegativeMask
) {
1300 encodeULEB128(NegativeMask
.getZExtValue(), S
);
1301 for (unsigned i
= 0, e
= MaskBytes
.size(); i
!= e
; ++i
)
1302 TableInfo
.Table
.push_back(MaskBytes
[i
]);
1304 TableInfo
.Table
.push_back(0);
1307 // Emits table entries to decode the singleton.
1308 void FilterChooser::emitSingletonTableEntry(DecoderTableInfo
&TableInfo
,
1309 unsigned Opc
) const {
1310 std::vector
<unsigned> StartBits
;
1311 std::vector
<unsigned> EndBits
;
1312 std::vector
<uint64_t> FieldVals
;
1314 insnWithID(Insn
, Opc
);
1316 // Look for islands of undecoded bits of the singleton.
1317 getIslands(StartBits
, EndBits
, FieldVals
, Insn
);
1319 unsigned Size
= StartBits
.size();
1321 // Emit the predicate table entry if one is needed.
1322 emitPredicateTableEntry(TableInfo
, Opc
);
1324 // Check any additional encoding fields needed.
1325 for (unsigned I
= Size
; I
!= 0; --I
) {
1326 unsigned NumBits
= EndBits
[I
-1] - StartBits
[I
-1] + 1;
1327 TableInfo
.Table
.push_back(MCD::OPC_CheckField
);
1328 TableInfo
.Table
.push_back(StartBits
[I
-1]);
1329 TableInfo
.Table
.push_back(NumBits
);
1330 uint8_t Buffer
[16], *p
;
1331 encodeULEB128(FieldVals
[I
-1], Buffer
);
1332 for (p
= Buffer
; *p
>= 128 ; ++p
)
1333 TableInfo
.Table
.push_back(*p
);
1334 TableInfo
.Table
.push_back(*p
);
1335 // Push location for NumToSkip backpatching.
1336 TableInfo
.FixupStack
.back().push_back(TableInfo
.Table
.size());
1337 // The fixup is always 24-bits, so go ahead and allocate the space
1338 // in the table so all our relative position calculations work OK even
1339 // before we fully resolve the real value here.
1340 TableInfo
.Table
.push_back(0);
1341 TableInfo
.Table
.push_back(0);
1342 TableInfo
.Table
.push_back(0);
1345 // Check for soft failure of the match.
1346 emitSoftFailTableEntry(TableInfo
, Opc
);
1348 bool HasCompleteDecoder
;
1349 unsigned DIdx
= getDecoderIndex(TableInfo
.Decoders
, Opc
, HasCompleteDecoder
);
1351 // Produce OPC_Decode or OPC_TryDecode opcode based on the information
1352 // whether the instruction decoder is complete or not. If it is complete
1353 // then it handles all possible values of remaining variable/unfiltered bits
1354 // and for any value can determine if the bitpattern is a valid instruction
1355 // or not. This means OPC_Decode will be the final step in the decoding
1356 // process. If it is not complete, then the Fail return code from the
1357 // decoder method indicates that additional processing should be done to see
1358 // if there is any other instruction that also matches the bitpattern and
1360 TableInfo
.Table
.push_back(HasCompleteDecoder
? MCD::OPC_Decode
:
1361 MCD::OPC_TryDecode
);
1362 uint8_t Buffer
[16], *p
;
1363 encodeULEB128(Opc
, Buffer
);
1364 for (p
= Buffer
; *p
>= 128 ; ++p
)
1365 TableInfo
.Table
.push_back(*p
);
1366 TableInfo
.Table
.push_back(*p
);
1368 SmallString
<16> Bytes
;
1369 raw_svector_ostream
S(Bytes
);
1370 encodeULEB128(DIdx
, S
);
1373 for (unsigned i
= 0, e
= Bytes
.size(); i
!= e
; ++i
)
1374 TableInfo
.Table
.push_back(Bytes
[i
]);
1376 if (!HasCompleteDecoder
) {
1377 // Push location for NumToSkip backpatching.
1378 TableInfo
.FixupStack
.back().push_back(TableInfo
.Table
.size());
1379 // Allocate the space for the fixup.
1380 TableInfo
.Table
.push_back(0);
1381 TableInfo
.Table
.push_back(0);
1382 TableInfo
.Table
.push_back(0);
1386 // Emits table entries to decode the singleton, and then to decode the rest.
1387 void FilterChooser::emitSingletonTableEntry(DecoderTableInfo
&TableInfo
,
1388 const Filter
&Best
) const {
1389 unsigned Opc
= Best
.getSingletonOpc();
1391 // complex singletons need predicate checks from the first singleton
1392 // to refer forward to the variable filterchooser that follows.
1393 TableInfo
.FixupStack
.emplace_back();
1395 emitSingletonTableEntry(TableInfo
, Opc
);
1397 resolveTableFixups(TableInfo
.Table
, TableInfo
.FixupStack
.back(),
1398 TableInfo
.Table
.size());
1399 TableInfo
.FixupStack
.pop_back();
1401 Best
.getVariableFC().emitTableEntries(TableInfo
);
1404 // Assign a single filter and run with it. Top level API client can initialize
1405 // with a single filter to start the filtering process.
1406 void FilterChooser::runSingleFilter(unsigned startBit
, unsigned numBit
,
1409 Filters
.emplace_back(*this, startBit
, numBit
, true);
1410 BestIndex
= 0; // Sole Filter instance to choose from.
1411 bestFilter().recurse();
1414 // reportRegion is a helper function for filterProcessor to mark a region as
1415 // eligible for use as a filter region.
1416 void FilterChooser::reportRegion(bitAttr_t RA
, unsigned StartBit
,
1417 unsigned BitIndex
, bool AllowMixed
) {
1418 if (RA
== ATTR_MIXED
&& AllowMixed
)
1419 Filters
.emplace_back(*this, StartBit
, BitIndex
- StartBit
, true);
1420 else if (RA
== ATTR_ALL_SET
&& !AllowMixed
)
1421 Filters
.emplace_back(*this, StartBit
, BitIndex
- StartBit
, false);
1424 // FilterProcessor scans the well-known encoding bits of the instructions and
1425 // builds up a list of candidate filters. It chooses the best filter and
1426 // recursively descends down the decoding tree.
1427 bool FilterChooser::filterProcessor(bool AllowMixed
, bool Greedy
) {
1430 unsigned numInstructions
= Opcodes
.size();
1432 assert(numInstructions
&& "Filter created with no instructions");
1434 // No further filtering is necessary.
1435 if (numInstructions
== 1)
1438 // Heuristics. See also doFilter()'s "Heuristics" comment when num of
1439 // instructions is 3.
1440 if (AllowMixed
&& !Greedy
) {
1441 assert(numInstructions
== 3);
1443 for (unsigned i
= 0; i
< Opcodes
.size(); ++i
) {
1444 std::vector
<unsigned> StartBits
;
1445 std::vector
<unsigned> EndBits
;
1446 std::vector
<uint64_t> FieldVals
;
1449 insnWithID(Insn
, Opcodes
[i
]);
1451 // Look for islands of undecoded bits of any instruction.
1452 if (getIslands(StartBits
, EndBits
, FieldVals
, Insn
) > 0) {
1453 // Found an instruction with island(s). Now just assign a filter.
1454 runSingleFilter(StartBits
[0], EndBits
[0] - StartBits
[0] + 1, true);
1462 // We maintain BIT_WIDTH copies of the bitAttrs automaton.
1463 // The automaton consumes the corresponding bit from each
1466 // Input symbols: 0, 1, and _ (unset).
1467 // States: NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED.
1468 // Initial state: NONE.
1470 // (NONE) ------- [01] -> (ALL_SET)
1471 // (NONE) ------- _ ----> (ALL_UNSET)
1472 // (ALL_SET) ---- [01] -> (ALL_SET)
1473 // (ALL_SET) ---- _ ----> (MIXED)
1474 // (ALL_UNSET) -- [01] -> (MIXED)
1475 // (ALL_UNSET) -- _ ----> (ALL_UNSET)
1476 // (MIXED) ------ . ----> (MIXED)
1477 // (FILTERED)---- . ----> (FILTERED)
1479 std::vector
<bitAttr_t
> bitAttrs
;
1481 // FILTERED bit positions provide no entropy and are not worthy of pursuing.
1482 // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position.
1483 for (BitIndex
= 0; BitIndex
< BitWidth
; ++BitIndex
)
1484 if (FilterBitValues
[BitIndex
] == BIT_TRUE
||
1485 FilterBitValues
[BitIndex
] == BIT_FALSE
)
1486 bitAttrs
.push_back(ATTR_FILTERED
);
1488 bitAttrs
.push_back(ATTR_NONE
);
1490 for (unsigned InsnIndex
= 0; InsnIndex
< numInstructions
; ++InsnIndex
) {
1493 insnWithID(insn
, Opcodes
[InsnIndex
]);
1495 for (BitIndex
= 0; BitIndex
< BitWidth
; ++BitIndex
) {
1496 switch (bitAttrs
[BitIndex
]) {
1498 if (insn
[BitIndex
] == BIT_UNSET
)
1499 bitAttrs
[BitIndex
] = ATTR_ALL_UNSET
;
1501 bitAttrs
[BitIndex
] = ATTR_ALL_SET
;
1504 if (insn
[BitIndex
] == BIT_UNSET
)
1505 bitAttrs
[BitIndex
] = ATTR_MIXED
;
1507 case ATTR_ALL_UNSET
:
1508 if (insn
[BitIndex
] != BIT_UNSET
)
1509 bitAttrs
[BitIndex
] = ATTR_MIXED
;
1518 // The regionAttr automaton consumes the bitAttrs automatons' state,
1519 // lowest-to-highest.
1521 // Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed)
1522 // States: NONE, ALL_SET, MIXED
1523 // Initial state: NONE
1525 // (NONE) ----- F --> (NONE)
1526 // (NONE) ----- S --> (ALL_SET) ; and set region start
1527 // (NONE) ----- U --> (NONE)
1528 // (NONE) ----- M --> (MIXED) ; and set region start
1529 // (ALL_SET) -- F --> (NONE) ; and report an ALL_SET region
1530 // (ALL_SET) -- S --> (ALL_SET)
1531 // (ALL_SET) -- U --> (NONE) ; and report an ALL_SET region
1532 // (ALL_SET) -- M --> (MIXED) ; and report an ALL_SET region
1533 // (MIXED) ---- F --> (NONE) ; and report a MIXED region
1534 // (MIXED) ---- S --> (ALL_SET) ; and report a MIXED region
1535 // (MIXED) ---- U --> (NONE) ; and report a MIXED region
1536 // (MIXED) ---- M --> (MIXED)
1538 bitAttr_t RA
= ATTR_NONE
;
1539 unsigned StartBit
= 0;
1541 for (BitIndex
= 0; BitIndex
< BitWidth
; ++BitIndex
) {
1542 bitAttr_t bitAttr
= bitAttrs
[BitIndex
];
1544 assert(bitAttr
!= ATTR_NONE
&& "Bit without attributes");
1552 StartBit
= BitIndex
;
1555 case ATTR_ALL_UNSET
:
1558 StartBit
= BitIndex
;
1562 llvm_unreachable("Unexpected bitAttr!");
1568 reportRegion(RA
, StartBit
, BitIndex
, AllowMixed
);
1573 case ATTR_ALL_UNSET
:
1574 reportRegion(RA
, StartBit
, BitIndex
, AllowMixed
);
1578 reportRegion(RA
, StartBit
, BitIndex
, AllowMixed
);
1579 StartBit
= BitIndex
;
1583 llvm_unreachable("Unexpected bitAttr!");
1589 reportRegion(RA
, StartBit
, BitIndex
, AllowMixed
);
1590 StartBit
= BitIndex
;
1594 reportRegion(RA
, StartBit
, BitIndex
, AllowMixed
);
1595 StartBit
= BitIndex
;
1598 case ATTR_ALL_UNSET
:
1599 reportRegion(RA
, StartBit
, BitIndex
, AllowMixed
);
1605 llvm_unreachable("Unexpected bitAttr!");
1608 case ATTR_ALL_UNSET
:
1609 llvm_unreachable("regionAttr state machine has no ATTR_UNSET state");
1611 llvm_unreachable("regionAttr state machine has no ATTR_FILTERED state");
1615 // At the end, if we're still in ALL_SET or MIXED states, report a region
1622 reportRegion(RA
, StartBit
, BitIndex
, AllowMixed
);
1624 case ATTR_ALL_UNSET
:
1627 reportRegion(RA
, StartBit
, BitIndex
, AllowMixed
);
1631 // We have finished with the filter processings. Now it's time to choose
1632 // the best performing filter.
1634 bool AllUseless
= true;
1635 unsigned BestScore
= 0;
1637 for (unsigned i
= 0, e
= Filters
.size(); i
!= e
; ++i
) {
1638 unsigned Usefulness
= Filters
[i
].usefulness();
1643 if (Usefulness
> BestScore
) {
1645 BestScore
= Usefulness
;
1650 bestFilter().recurse();
1653 } // end of FilterChooser::filterProcessor(bool)
1655 // Decides on the best configuration of filter(s) to use in order to decode
1656 // the instructions. A conflict of instructions may occur, in which case we
1657 // dump the conflict set to the standard error.
1658 void FilterChooser::doFilter() {
1659 unsigned Num
= Opcodes
.size();
1660 assert(Num
&& "FilterChooser created with no instructions");
1662 // Try regions of consecutive known bit values first.
1663 if (filterProcessor(false))
1666 // Then regions of mixed bits (both known and unitialized bit values allowed).
1667 if (filterProcessor(true))
1670 // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where
1671 // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a
1672 // well-known encoding pattern. In such case, we backtrack and scan for the
1673 // the very first consecutive ATTR_ALL_SET region and assign a filter to it.
1674 if (Num
== 3 && filterProcessor(true, false))
1677 // If we come to here, the instruction decoding has failed.
1678 // Set the BestIndex to -1 to indicate so.
1682 // emitTableEntries - Emit state machine entries to decode our share of
1684 void FilterChooser::emitTableEntries(DecoderTableInfo
&TableInfo
) const {
1685 if (Opcodes
.size() == 1) {
1686 // There is only one instruction in the set, which is great!
1687 // Call emitSingletonDecoder() to see whether there are any remaining
1689 emitSingletonTableEntry(TableInfo
, Opcodes
[0]);
1693 // Choose the best filter to do the decodings!
1694 if (BestIndex
!= -1) {
1695 const Filter
&Best
= Filters
[BestIndex
];
1696 if (Best
.getNumFiltered() == 1)
1697 emitSingletonTableEntry(TableInfo
, Best
);
1699 Best
.emitTableEntry(TableInfo
);
1703 // We don't know how to decode these instructions! Dump the
1704 // conflict set and bail.
1706 // Print out useful conflict information for postmortem analysis.
1707 errs() << "Decoding Conflict:\n";
1709 dumpStack(errs(), "\t\t");
1711 for (unsigned i
= 0; i
< Opcodes
.size(); ++i
) {
1712 errs() << '\t' << nameWithID(Opcodes
[i
]) << " ";
1714 getBitsField(*AllInstructions
[Opcodes
[i
]]->TheDef
, "Inst"));
1719 static std::string
findOperandDecoderMethod(TypedInit
*TI
) {
1720 std::string Decoder
;
1722 Record
*Record
= cast
<DefInit
>(TI
)->getDef();
1724 RecordVal
*DecoderString
= Record
->getValue("DecoderMethod");
1725 StringInit
*String
= DecoderString
?
1726 dyn_cast
<StringInit
>(DecoderString
->getValue()) : nullptr;
1728 Decoder
= String
->getValue();
1729 if (!Decoder
.empty())
1733 if (Record
->isSubClassOf("RegisterOperand"))
1734 Record
= Record
->getValueAsDef("RegClass");
1736 if (Record
->isSubClassOf("RegisterClass")) {
1737 Decoder
= "Decode" + Record
->getName().str() + "RegisterClass";
1738 } else if (Record
->isSubClassOf("PointerLikeRegClass")) {
1739 Decoder
= "DecodePointerLikeRegClass" +
1740 utostr(Record
->getValueAsInt("RegClassKind"));
1746 static bool populateInstruction(CodeGenTarget
&Target
,
1747 const CodeGenInstruction
&CGI
, unsigned Opc
,
1748 std::map
<unsigned, std::vector
<OperandInfo
>> &Operands
){
1749 const Record
&Def
= *CGI
.TheDef
;
1750 // If all the bit positions are not specified; do not decode this instruction.
1751 // We are bound to fail! For proper disassembly, the well-known encoding bits
1752 // of the instruction must be fully specified.
1754 BitsInit
&Bits
= getBitsField(Def
, "Inst");
1755 if (Bits
.allInComplete()) return false;
1757 std::vector
<OperandInfo
> InsnOperands
;
1759 // If the instruction has specified a custom decoding hook, use that instead
1760 // of trying to auto-generate the decoder.
1761 StringRef InstDecoder
= Def
.getValueAsString("DecoderMethod");
1762 if (InstDecoder
!= "") {
1763 bool HasCompleteInstDecoder
= Def
.getValueAsBit("hasCompleteDecoder");
1764 InsnOperands
.push_back(OperandInfo(InstDecoder
, HasCompleteInstDecoder
));
1765 Operands
[Opc
] = InsnOperands
;
1769 // Generate a description of the operand of the instruction that we know
1770 // how to decode automatically.
1771 // FIXME: We'll need to have a way to manually override this as needed.
1773 // Gather the outputs/inputs of the instruction, so we can find their
1774 // positions in the encoding. This assumes for now that they appear in the
1775 // MCInst in the order that they're listed.
1776 std::vector
<std::pair
<Init
*, StringRef
>> InOutOperands
;
1777 DagInit
*Out
= Def
.getValueAsDag("OutOperandList");
1778 DagInit
*In
= Def
.getValueAsDag("InOperandList");
1779 for (unsigned i
= 0; i
< Out
->getNumArgs(); ++i
)
1780 InOutOperands
.push_back(std::make_pair(Out
->getArg(i
),
1781 Out
->getArgNameStr(i
)));
1782 for (unsigned i
= 0; i
< In
->getNumArgs(); ++i
)
1783 InOutOperands
.push_back(std::make_pair(In
->getArg(i
),
1784 In
->getArgNameStr(i
)));
1786 // Search for tied operands, so that we can correctly instantiate
1787 // operands that are not explicitly represented in the encoding.
1788 std::map
<std::string
, std::string
> TiedNames
;
1789 for (unsigned i
= 0; i
< CGI
.Operands
.size(); ++i
) {
1790 int tiedTo
= CGI
.Operands
[i
].getTiedRegister();
1792 std::pair
<unsigned, unsigned> SO
=
1793 CGI
.Operands
.getSubOperandNumber(tiedTo
);
1794 TiedNames
[InOutOperands
[i
].second
] = InOutOperands
[SO
.first
].second
;
1795 TiedNames
[InOutOperands
[SO
.first
].second
] = InOutOperands
[i
].second
;
1799 std::map
<std::string
, std::vector
<OperandInfo
>> NumberedInsnOperands
;
1800 std::set
<std::string
> NumberedInsnOperandsNoTie
;
1801 if (Target
.getInstructionSet()->
1802 getValueAsBit("decodePositionallyEncodedOperands")) {
1803 const std::vector
<RecordVal
> &Vals
= Def
.getValues();
1804 unsigned NumberedOp
= 0;
1806 std::set
<unsigned> NamedOpIndices
;
1807 if (Target
.getInstructionSet()->
1808 getValueAsBit("noNamedPositionallyEncodedOperands"))
1809 // Collect the set of operand indices that might correspond to named
1810 // operand, and skip these when assigning operands based on position.
1811 for (unsigned i
= 0, e
= Vals
.size(); i
!= e
; ++i
) {
1813 if (!CGI
.Operands
.hasOperandNamed(Vals
[i
].getName(), OpIdx
))
1816 NamedOpIndices
.insert(OpIdx
);
1819 for (unsigned i
= 0, e
= Vals
.size(); i
!= e
; ++i
) {
1820 // Ignore fixed fields in the record, we're looking for values like:
1821 // bits<5> RST = { ?, ?, ?, ?, ? };
1822 if (Vals
[i
].getPrefix() || Vals
[i
].getValue()->isComplete())
1825 // Determine if Vals[i] actually contributes to the Inst encoding.
1827 for (; bi
< Bits
.getNumBits(); ++bi
) {
1828 VarInit
*Var
= nullptr;
1829 VarBitInit
*BI
= dyn_cast
<VarBitInit
>(Bits
.getBit(bi
));
1831 Var
= dyn_cast
<VarInit
>(BI
->getBitVar());
1833 Var
= dyn_cast
<VarInit
>(Bits
.getBit(bi
));
1835 if (Var
&& Var
->getName() == Vals
[i
].getName())
1839 if (bi
== Bits
.getNumBits())
1842 // Skip variables that correspond to explicitly-named operands.
1844 if (CGI
.Operands
.hasOperandNamed(Vals
[i
].getName(), OpIdx
))
1847 // Get the bit range for this operand:
1848 unsigned bitStart
= bi
++, bitWidth
= 1;
1849 for (; bi
< Bits
.getNumBits(); ++bi
) {
1850 VarInit
*Var
= nullptr;
1851 VarBitInit
*BI
= dyn_cast
<VarBitInit
>(Bits
.getBit(bi
));
1853 Var
= dyn_cast
<VarInit
>(BI
->getBitVar());
1855 Var
= dyn_cast
<VarInit
>(Bits
.getBit(bi
));
1860 if (Var
->getName() != Vals
[i
].getName())
1866 unsigned NumberOps
= CGI
.Operands
.size();
1867 while (NumberedOp
< NumberOps
&&
1868 (CGI
.Operands
.isFlatOperandNotEmitted(NumberedOp
) ||
1869 (!NamedOpIndices
.empty() && NamedOpIndices
.count(
1870 CGI
.Operands
.getSubOperandNumber(NumberedOp
).first
))))
1873 OpIdx
= NumberedOp
++;
1875 // OpIdx now holds the ordered operand number of Vals[i].
1876 std::pair
<unsigned, unsigned> SO
=
1877 CGI
.Operands
.getSubOperandNumber(OpIdx
);
1878 const std::string
&Name
= CGI
.Operands
[SO
.first
].Name
;
1880 LLVM_DEBUG(dbgs() << "Numbered operand mapping for " << Def
.getName()
1881 << ": " << Name
<< "(" << SO
.first
<< ", " << SO
.second
1882 << ") => " << Vals
[i
].getName() << "\n");
1884 std::string Decoder
;
1885 Record
*TypeRecord
= CGI
.Operands
[SO
.first
].Rec
;
1887 RecordVal
*DecoderString
= TypeRecord
->getValue("DecoderMethod");
1888 StringInit
*String
= DecoderString
?
1889 dyn_cast
<StringInit
>(DecoderString
->getValue()) : nullptr;
1890 if (String
&& String
->getValue() != "")
1891 Decoder
= String
->getValue();
1893 if (Decoder
== "" &&
1894 CGI
.Operands
[SO
.first
].MIOperandInfo
&&
1895 CGI
.Operands
[SO
.first
].MIOperandInfo
->getNumArgs()) {
1896 Init
*Arg
= CGI
.Operands
[SO
.first
].MIOperandInfo
->
1898 if (DefInit
*DI
= cast
<DefInit
>(Arg
))
1899 TypeRecord
= DI
->getDef();
1903 if (TypeRecord
->isSubClassOf("RegisterOperand"))
1904 TypeRecord
= TypeRecord
->getValueAsDef("RegClass");
1905 if (TypeRecord
->isSubClassOf("RegisterClass")) {
1906 Decoder
= "Decode" + TypeRecord
->getName().str() + "RegisterClass";
1908 } else if (TypeRecord
->isSubClassOf("PointerLikeRegClass")) {
1909 Decoder
= "DecodePointerLikeRegClass" +
1910 utostr(TypeRecord
->getValueAsInt("RegClassKind"));
1914 DecoderString
= TypeRecord
->getValue("DecoderMethod");
1915 String
= DecoderString
?
1916 dyn_cast
<StringInit
>(DecoderString
->getValue()) : nullptr;
1917 if (!isReg
&& String
&& String
->getValue() != "")
1918 Decoder
= String
->getValue();
1920 RecordVal
*HasCompleteDecoderVal
=
1921 TypeRecord
->getValue("hasCompleteDecoder");
1922 BitInit
*HasCompleteDecoderBit
= HasCompleteDecoderVal
?
1923 dyn_cast
<BitInit
>(HasCompleteDecoderVal
->getValue()) : nullptr;
1924 bool HasCompleteDecoder
= HasCompleteDecoderBit
?
1925 HasCompleteDecoderBit
->getValue() : true;
1927 OperandInfo
OpInfo(Decoder
, HasCompleteDecoder
);
1928 OpInfo
.addField(bitStart
, bitWidth
, 0);
1930 NumberedInsnOperands
[Name
].push_back(OpInfo
);
1932 // FIXME: For complex operands with custom decoders we can't handle tied
1933 // sub-operands automatically. Skip those here and assume that this is
1934 // fixed up elsewhere.
1935 if (CGI
.Operands
[SO
.first
].MIOperandInfo
&&
1936 CGI
.Operands
[SO
.first
].MIOperandInfo
->getNumArgs() > 1 &&
1937 String
&& String
->getValue() != "")
1938 NumberedInsnOperandsNoTie
.insert(Name
);
1942 // For each operand, see if we can figure out where it is encoded.
1943 for (const auto &Op
: InOutOperands
) {
1944 if (!NumberedInsnOperands
[Op
.second
].empty()) {
1945 InsnOperands
.insert(InsnOperands
.end(),
1946 NumberedInsnOperands
[Op
.second
].begin(),
1947 NumberedInsnOperands
[Op
.second
].end());
1950 if (!NumberedInsnOperands
[TiedNames
[Op
.second
]].empty()) {
1951 if (!NumberedInsnOperandsNoTie
.count(TiedNames
[Op
.second
])) {
1952 // Figure out to which (sub)operand we're tied.
1953 unsigned i
= CGI
.Operands
.getOperandNamed(TiedNames
[Op
.second
]);
1954 int tiedTo
= CGI
.Operands
[i
].getTiedRegister();
1956 i
= CGI
.Operands
.getOperandNamed(Op
.second
);
1957 tiedTo
= CGI
.Operands
[i
].getTiedRegister();
1961 std::pair
<unsigned, unsigned> SO
=
1962 CGI
.Operands
.getSubOperandNumber(tiedTo
);
1964 InsnOperands
.push_back(NumberedInsnOperands
[TiedNames
[Op
.second
]]
1971 TypedInit
*TI
= cast
<TypedInit
>(Op
.first
);
1973 // At this point, we can locate the decoder field, but we need to know how
1974 // to interpret it. As a first step, require the target to provide
1975 // callbacks for decoding register classes.
1976 std::string Decoder
= findOperandDecoderMethod(TI
);
1977 Record
*TypeRecord
= cast
<DefInit
>(TI
)->getDef();
1979 RecordVal
*HasCompleteDecoderVal
=
1980 TypeRecord
->getValue("hasCompleteDecoder");
1981 BitInit
*HasCompleteDecoderBit
= HasCompleteDecoderVal
?
1982 dyn_cast
<BitInit
>(HasCompleteDecoderVal
->getValue()) : nullptr;
1983 bool HasCompleteDecoder
= HasCompleteDecoderBit
?
1984 HasCompleteDecoderBit
->getValue() : true;
1986 OperandInfo
OpInfo(Decoder
, HasCompleteDecoder
);
1987 unsigned Base
= ~0U;
1989 unsigned Offset
= 0;
1991 for (unsigned bi
= 0; bi
< Bits
.getNumBits(); ++bi
) {
1992 VarInit
*Var
= nullptr;
1993 VarBitInit
*BI
= dyn_cast
<VarBitInit
>(Bits
.getBit(bi
));
1995 Var
= dyn_cast
<VarInit
>(BI
->getBitVar());
1997 Var
= dyn_cast
<VarInit
>(Bits
.getBit(bi
));
2001 OpInfo
.addField(Base
, Width
, Offset
);
2009 if (Var
->getName() != Op
.second
&&
2010 Var
->getName() != TiedNames
[Op
.second
]) {
2012 OpInfo
.addField(Base
, Width
, Offset
);
2023 Offset
= BI
? BI
->getBitNum() : 0;
2024 } else if (BI
&& BI
->getBitNum() != Offset
+ Width
) {
2025 OpInfo
.addField(Base
, Width
, Offset
);
2028 Offset
= BI
->getBitNum();
2035 OpInfo
.addField(Base
, Width
, Offset
);
2037 if (OpInfo
.numFields() > 0)
2038 InsnOperands
.push_back(OpInfo
);
2041 Operands
[Opc
] = InsnOperands
;
2045 // Dumps the instruction encoding bits.
2046 dumpBits(errs(), Bits
);
2050 // Dumps the list of operand info.
2051 for (unsigned i
= 0, e
= CGI
.Operands
.size(); i
!= e
; ++i
) {
2052 const CGIOperandList::OperandInfo
&Info
= CGI
.Operands
[i
];
2053 const std::string
&OperandName
= Info
.Name
;
2054 const Record
&OperandDef
= *Info
.Rec
;
2056 errs() << "\t" << OperandName
<< " (" << OperandDef
.getName() << ")\n";
2064 // emitFieldFromInstruction - Emit the templated helper function
2065 // fieldFromInstruction().
2066 // On Windows we make sure that this function is not inlined when
2067 // using the VS compiler. It has a bug which causes the function
2068 // to be optimized out in some circustances. See llvm.org/pr38292
2069 static void emitFieldFromInstruction(formatted_raw_ostream
&OS
) {
2070 OS
<< "// Helper function for extracting fields from encoded instructions.\n"
2071 << "template<typename InsnType>\n"
2072 << "#if defined(_MSC_VER) && !defined(__clang__)\n"
2073 << "__declspec(noinline)\n"
2075 << "static InsnType fieldFromInstruction(InsnType insn, unsigned startBit,\n"
2076 << " unsigned numBits) {\n"
2077 << " assert(startBit + numBits <= (sizeof(InsnType)*8) &&\n"
2078 << " \"Instruction field out of bounds!\");\n"
2079 << " InsnType fieldMask;\n"
2080 << " if (numBits == sizeof(InsnType)*8)\n"
2081 << " fieldMask = (InsnType)(-1LL);\n"
2083 << " fieldMask = (((InsnType)1 << numBits) - 1) << startBit;\n"
2084 << " return (insn & fieldMask) >> startBit;\n"
2088 // emitDecodeInstruction - Emit the templated helper function
2089 // decodeInstruction().
2090 static void emitDecodeInstruction(formatted_raw_ostream
&OS
) {
2091 OS
<< "template<typename InsnType>\n"
2092 << "static DecodeStatus decodeInstruction(const uint8_t DecodeTable[], "
2094 << " InsnType insn, uint64_t "
2096 << " const void *DisAsm,\n"
2097 << " const MCSubtargetInfo &STI) {\n"
2098 << " const FeatureBitset& Bits = STI.getFeatureBits();\n"
2100 << " const uint8_t *Ptr = DecodeTable;\n"
2101 << " uint32_t CurFieldValue = 0;\n"
2102 << " DecodeStatus S = MCDisassembler::Success;\n"
2103 << " while (true) {\n"
2104 << " ptrdiff_t Loc = Ptr - DecodeTable;\n"
2105 << " switch (*Ptr) {\n"
2107 << " errs() << Loc << \": Unexpected decode table opcode!\\n\";\n"
2108 << " return MCDisassembler::Fail;\n"
2109 << " case MCD::OPC_ExtractField: {\n"
2110 << " unsigned Start = *++Ptr;\n"
2111 << " unsigned Len = *++Ptr;\n"
2113 << " CurFieldValue = fieldFromInstruction(insn, Start, Len);\n"
2114 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_ExtractField(\" << Start << "
2116 << " << Len << \"): \" << CurFieldValue << \"\\n\");\n"
2119 << " case MCD::OPC_FilterValue: {\n"
2120 << " // Decode the field value.\n"
2121 << " unsigned Len;\n"
2122 << " InsnType Val = decodeULEB128(++Ptr, &Len);\n"
2124 << " // NumToSkip is a plain 24-bit integer.\n"
2125 << " unsigned NumToSkip = *Ptr++;\n"
2126 << " NumToSkip |= (*Ptr++) << 8;\n"
2127 << " NumToSkip |= (*Ptr++) << 16;\n"
2129 << " // Perform the filter operation.\n"
2130 << " if (Val != CurFieldValue)\n"
2131 << " Ptr += NumToSkip;\n"
2132 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_FilterValue(\" << Val << "
2133 "\", \" << NumToSkip\n"
2134 << " << \"): \" << ((Val != CurFieldValue) ? \"FAIL:\" "
2136 << " << \" continuing at \" << (Ptr - DecodeTable) << "
2141 << " case MCD::OPC_CheckField: {\n"
2142 << " unsigned Start = *++Ptr;\n"
2143 << " unsigned Len = *++Ptr;\n"
2144 << " InsnType FieldValue = fieldFromInstruction(insn, Start, Len);\n"
2145 << " // Decode the field value.\n"
2146 << " uint32_t ExpectedValue = decodeULEB128(++Ptr, &Len);\n"
2148 << " // NumToSkip is a plain 24-bit integer.\n"
2149 << " unsigned NumToSkip = *Ptr++;\n"
2150 << " NumToSkip |= (*Ptr++) << 8;\n"
2151 << " NumToSkip |= (*Ptr++) << 16;\n"
2153 << " // If the actual and expected values don't match, skip.\n"
2154 << " if (ExpectedValue != FieldValue)\n"
2155 << " Ptr += NumToSkip;\n"
2156 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_CheckField(\" << Start << "
2158 << " << Len << \", \" << ExpectedValue << \", \" << "
2160 << " << \"): FieldValue = \" << FieldValue << \", "
2161 "ExpectedValue = \"\n"
2162 << " << ExpectedValue << \": \"\n"
2163 << " << ((ExpectedValue == FieldValue) ? \"PASS\\n\" : "
2167 << " case MCD::OPC_CheckPredicate: {\n"
2168 << " unsigned Len;\n"
2169 << " // Decode the Predicate Index value.\n"
2170 << " unsigned PIdx = decodeULEB128(++Ptr, &Len);\n"
2172 << " // NumToSkip is a plain 24-bit integer.\n"
2173 << " unsigned NumToSkip = *Ptr++;\n"
2174 << " NumToSkip |= (*Ptr++) << 8;\n"
2175 << " NumToSkip |= (*Ptr++) << 16;\n"
2176 << " // Check the predicate.\n"
2178 << " if (!(Pred = checkDecoderPredicate(PIdx, Bits)))\n"
2179 << " Ptr += NumToSkip;\n"
2181 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_CheckPredicate(\" << PIdx "
2183 << " << (Pred ? \"PASS\\n\" : \"FAIL\\n\"));\n"
2187 << " case MCD::OPC_Decode: {\n"
2188 << " unsigned Len;\n"
2189 << " // Decode the Opcode value.\n"
2190 << " unsigned Opc = decodeULEB128(++Ptr, &Len);\n"
2192 << " unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n"
2196 << " MI.setOpcode(Opc);\n"
2197 << " bool DecodeComplete;\n"
2198 << " S = decodeToMCInst(S, DecodeIdx, insn, MI, Address, DisAsm, "
2199 "DecodeComplete);\n"
2200 << " assert(DecodeComplete);\n"
2202 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_Decode: opcode \" << Opc\n"
2203 << " << \", using decoder \" << DecodeIdx << \": \"\n"
2204 << " << (S != MCDisassembler::Fail ? \"PASS\" : "
2205 "\"FAIL\") << \"\\n\");\n"
2208 << " case MCD::OPC_TryDecode: {\n"
2209 << " unsigned Len;\n"
2210 << " // Decode the Opcode value.\n"
2211 << " unsigned Opc = decodeULEB128(++Ptr, &Len);\n"
2213 << " unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n"
2215 << " // NumToSkip is a plain 24-bit integer.\n"
2216 << " unsigned NumToSkip = *Ptr++;\n"
2217 << " NumToSkip |= (*Ptr++) << 8;\n"
2218 << " NumToSkip |= (*Ptr++) << 16;\n"
2220 << " // Perform the decode operation.\n"
2221 << " MCInst TmpMI;\n"
2222 << " TmpMI.setOpcode(Opc);\n"
2223 << " bool DecodeComplete;\n"
2224 << " S = decodeToMCInst(S, DecodeIdx, insn, TmpMI, Address, DisAsm, "
2225 "DecodeComplete);\n"
2226 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_TryDecode: opcode \" << "
2228 << " << \", using decoder \" << DecodeIdx << \": \");\n"
2230 << " if (DecodeComplete) {\n"
2231 << " // Decoding complete.\n"
2232 << " LLVM_DEBUG(dbgs() << (S != MCDisassembler::Fail ? \"PASS\" : "
2233 "\"FAIL\") << \"\\n\");\n"
2237 << " assert(S == MCDisassembler::Fail);\n"
2238 << " // If the decoding was incomplete, skip.\n"
2239 << " Ptr += NumToSkip;\n"
2240 << " LLVM_DEBUG(dbgs() << \"FAIL: continuing at \" << (Ptr - "
2241 "DecodeTable) << \"\\n\");\n"
2242 << " // Reset decode status. This also drops a SoftFail status "
2244 << " // set before the decode attempt.\n"
2245 << " S = MCDisassembler::Success;\n"
2249 << " case MCD::OPC_SoftFail: {\n"
2250 << " // Decode the mask values.\n"
2251 << " unsigned Len;\n"
2252 << " InsnType PositiveMask = decodeULEB128(++Ptr, &Len);\n"
2254 << " InsnType NegativeMask = decodeULEB128(Ptr, &Len);\n"
2256 << " bool Fail = (insn & PositiveMask) || (~insn & NegativeMask);\n"
2258 << " S = MCDisassembler::SoftFail;\n"
2259 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_SoftFail: \" << (Fail ? "
2260 "\"FAIL\\n\":\"PASS\\n\"));\n"
2263 << " case MCD::OPC_Fail: {\n"
2264 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_Fail\\n\");\n"
2265 << " return MCDisassembler::Fail;\n"
2269 << " llvm_unreachable(\"bogosity detected in disassembler state "
2274 // Emits disassembler code for instruction decoding.
2275 void FixedLenDecoderEmitter::run(raw_ostream
&o
) {
2276 formatted_raw_ostream
OS(o
);
2277 OS
<< "#include \"llvm/MC/MCInst.h\"\n";
2278 OS
<< "#include \"llvm/Support/Debug.h\"\n";
2279 OS
<< "#include \"llvm/Support/DataTypes.h\"\n";
2280 OS
<< "#include \"llvm/Support/LEB128.h\"\n";
2281 OS
<< "#include \"llvm/Support/raw_ostream.h\"\n";
2282 OS
<< "#include <assert.h>\n";
2284 OS
<< "namespace llvm {\n\n";
2286 emitFieldFromInstruction(OS
);
2288 Target
.reverseBitsForLittleEndianEncoding();
2290 // Parameterize the decoders based on namespace and instruction width.
2291 NumberedInstructions
= Target
.getInstructionsByEnumValue();
2292 std::map
<std::pair
<std::string
, unsigned>,
2293 std::vector
<unsigned>> OpcMap
;
2294 std::map
<unsigned, std::vector
<OperandInfo
>> Operands
;
2296 for (unsigned i
= 0; i
< NumberedInstructions
.size(); ++i
) {
2297 const CodeGenInstruction
*Inst
= NumberedInstructions
[i
];
2298 const Record
*Def
= Inst
->TheDef
;
2299 unsigned Size
= Def
->getValueAsInt("Size");
2300 if (Def
->getValueAsString("Namespace") == "TargetOpcode" ||
2301 Def
->getValueAsBit("isPseudo") ||
2302 Def
->getValueAsBit("isAsmParserOnly") ||
2303 Def
->getValueAsBit("isCodeGenOnly"))
2306 StringRef DecoderNamespace
= Def
->getValueAsString("DecoderNamespace");
2309 if (populateInstruction(Target
, *Inst
, i
, Operands
)) {
2310 OpcMap
[std::make_pair(DecoderNamespace
, Size
)].push_back(i
);
2315 DecoderTableInfo TableInfo
;
2316 for (const auto &Opc
: OpcMap
) {
2317 // Emit the decoder for this namespace+width combination.
2318 FilterChooser
FC(NumberedInstructions
, Opc
.second
, Operands
,
2319 8*Opc
.first
.second
, this);
2321 // The decode table is cleared for each top level decoder function. The
2322 // predicates and decoders themselves, however, are shared across all
2323 // decoders to give more opportunities for uniqueing.
2324 TableInfo
.Table
.clear();
2325 TableInfo
.FixupStack
.clear();
2326 TableInfo
.Table
.reserve(16384);
2327 TableInfo
.FixupStack
.emplace_back();
2328 FC
.emitTableEntries(TableInfo
);
2329 // Any NumToSkip fixups in the top level scope can resolve to the
2330 // OPC_Fail at the end of the table.
2331 assert(TableInfo
.FixupStack
.size() == 1 && "fixup stack phasing error!");
2332 // Resolve any NumToSkip fixups in the current scope.
2333 resolveTableFixups(TableInfo
.Table
, TableInfo
.FixupStack
.back(),
2334 TableInfo
.Table
.size());
2335 TableInfo
.FixupStack
.clear();
2337 TableInfo
.Table
.push_back(MCD::OPC_Fail
);
2339 // Print the table to the output stream.
2340 emitTable(OS
, TableInfo
.Table
, 0, FC
.getBitWidth(), Opc
.first
.first
);
2344 // Emit the predicate function.
2345 emitPredicateFunction(OS
, TableInfo
.Predicates
, 0);
2347 // Emit the decoder function.
2348 emitDecoderFunction(OS
, TableInfo
.Decoders
, 0);
2350 // Emit the main entry point for the decoder, decodeInstruction().
2351 emitDecodeInstruction(OS
);
2353 OS
<< "\n} // End llvm namespace\n";
2358 void EmitFixedLenDecoder(RecordKeeper
&RK
, raw_ostream
&OS
,
2359 const std::string
&PredicateNamespace
,
2360 const std::string
&GPrefix
,
2361 const std::string
&GPostfix
, const std::string
&ROK
,
2362 const std::string
&RFail
, const std::string
&L
) {
2363 FixedLenDecoderEmitter(RK
, PredicateNamespace
, GPrefix
, GPostfix
,
2364 ROK
, RFail
, L
).run(OS
);
2367 } // end namespace llvm