Another attempt to fix the build bot breaks after r360426
[llvm-core.git] / lib / CodeGen / LiveDebugVariables.cpp
blob648d3eefc2a3439fa36ea78825b240159847ac3c
1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the LiveDebugVariables analysis.
11 // Remove all DBG_VALUE instructions referencing virtual registers and replace
12 // them with a data structure tracking where live user variables are kept - in a
13 // virtual register or in a stack slot.
15 // Allow the data structure to be updated during register allocation when values
16 // are moved between registers and stack slots. Finally emit new DBG_VALUE
17 // instructions after register allocation is complete.
19 //===----------------------------------------------------------------------===//
21 #include "LiveDebugVariables.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/IntervalMap.h"
25 #include "llvm/ADT/MapVector.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/CodeGen/LexicalScopes.h"
32 #include "llvm/CodeGen/LiveInterval.h"
33 #include "llvm/CodeGen/LiveIntervals.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineDominators.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineInstr.h"
38 #include "llvm/CodeGen/MachineInstrBuilder.h"
39 #include "llvm/CodeGen/MachineOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/SlotIndexes.h"
42 #include "llvm/CodeGen/TargetInstrInfo.h"
43 #include "llvm/CodeGen/TargetOpcodes.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/VirtRegMap.h"
47 #include "llvm/Config/llvm-config.h"
48 #include "llvm/IR/DebugInfoMetadata.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/MC/MCRegisterInfo.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Compiler.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <iterator>
62 #include <memory>
63 #include <utility>
65 using namespace llvm;
67 #define DEBUG_TYPE "livedebugvars"
69 static cl::opt<bool>
70 EnableLDV("live-debug-variables", cl::init(true),
71 cl::desc("Enable the live debug variables pass"), cl::Hidden);
73 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted");
74 STATISTIC(NumInsertedDebugLabels, "Number of DBG_LABELs inserted");
76 char LiveDebugVariables::ID = 0;
78 INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE,
79 "Debug Variable Analysis", false, false)
80 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
81 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
82 INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE,
83 "Debug Variable Analysis", false, false)
85 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const {
86 AU.addRequired<MachineDominatorTree>();
87 AU.addRequiredTransitive<LiveIntervals>();
88 AU.setPreservesAll();
89 MachineFunctionPass::getAnalysisUsage(AU);
92 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) {
93 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
96 enum : unsigned { UndefLocNo = ~0U };
98 /// Describes a location by number along with some flags about the original
99 /// usage of the location.
100 class DbgValueLocation {
101 public:
102 DbgValueLocation(unsigned LocNo, bool WasIndirect)
103 : LocNo(LocNo), WasIndirect(WasIndirect) {
104 static_assert(sizeof(*this) == sizeof(unsigned), "bad bitfield packing");
105 assert(locNo() == LocNo && "location truncation");
108 DbgValueLocation() : LocNo(0), WasIndirect(0) {}
110 unsigned locNo() const {
111 // Fix up the undef location number, which gets truncated.
112 return LocNo == INT_MAX ? UndefLocNo : LocNo;
114 bool wasIndirect() const { return WasIndirect; }
115 bool isUndef() const { return locNo() == UndefLocNo; }
117 DbgValueLocation changeLocNo(unsigned NewLocNo) const {
118 return DbgValueLocation(NewLocNo, WasIndirect);
121 friend inline bool operator==(const DbgValueLocation &LHS,
122 const DbgValueLocation &RHS) {
123 return LHS.LocNo == RHS.LocNo && LHS.WasIndirect == RHS.WasIndirect;
126 friend inline bool operator!=(const DbgValueLocation &LHS,
127 const DbgValueLocation &RHS) {
128 return !(LHS == RHS);
131 private:
132 unsigned LocNo : 31;
133 unsigned WasIndirect : 1;
136 /// Map of where a user value is live, and its location.
137 using LocMap = IntervalMap<SlotIndex, DbgValueLocation, 4>;
139 /// Map of stack slot offsets for spilled locations.
140 /// Non-spilled locations are not added to the map.
141 using SpillOffsetMap = DenseMap<unsigned, unsigned>;
143 namespace {
145 class LDVImpl;
147 /// A user value is a part of a debug info user variable.
149 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register
150 /// holds part of a user variable. The part is identified by a byte offset.
152 /// UserValues are grouped into equivalence classes for easier searching. Two
153 /// user values are related if they refer to the same variable, or if they are
154 /// held by the same virtual register. The equivalence class is the transitive
155 /// closure of that relation.
156 class UserValue {
157 const DILocalVariable *Variable; ///< The debug info variable we are part of.
158 const DIExpression *Expression; ///< Any complex address expression.
159 DebugLoc dl; ///< The debug location for the variable. This is
160 ///< used by dwarf writer to find lexical scope.
161 UserValue *leader; ///< Equivalence class leader.
162 UserValue *next = nullptr; ///< Next value in equivalence class, or null.
164 /// Numbered locations referenced by locmap.
165 SmallVector<MachineOperand, 4> locations;
167 /// Map of slot indices where this value is live.
168 LocMap locInts;
170 /// Set of interval start indexes that have been trimmed to the
171 /// lexical scope.
172 SmallSet<SlotIndex, 2> trimmedDefs;
174 /// Insert a DBG_VALUE into MBB at Idx for LocNo.
175 void insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx,
176 SlotIndex StopIdx, DbgValueLocation Loc, bool Spilled,
177 unsigned SpillOffset, LiveIntervals &LIS,
178 const TargetInstrInfo &TII,
179 const TargetRegisterInfo &TRI);
181 /// Replace OldLocNo ranges with NewRegs ranges where NewRegs
182 /// is live. Returns true if any changes were made.
183 bool splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
184 LiveIntervals &LIS);
186 public:
187 /// Create a new UserValue.
188 UserValue(const DILocalVariable *var, const DIExpression *expr, DebugLoc L,
189 LocMap::Allocator &alloc)
190 : Variable(var), Expression(expr), dl(std::move(L)), leader(this),
191 locInts(alloc) {}
193 /// Get the leader of this value's equivalence class.
194 UserValue *getLeader() {
195 UserValue *l = leader;
196 while (l != l->leader)
197 l = l->leader;
198 return leader = l;
201 /// Return the next UserValue in the equivalence class.
202 UserValue *getNext() const { return next; }
204 /// Does this UserValue match the parameters?
205 bool match(const DILocalVariable *Var, const DIExpression *Expr,
206 const DILocation *IA) const {
207 // FIXME: The fragment should be part of the equivalence class, but not
208 // other things in the expression like stack values.
209 return Var == Variable && Expr == Expression && dl->getInlinedAt() == IA;
212 /// Merge equivalence classes.
213 static UserValue *merge(UserValue *L1, UserValue *L2) {
214 L2 = L2->getLeader();
215 if (!L1)
216 return L2;
217 L1 = L1->getLeader();
218 if (L1 == L2)
219 return L1;
220 // Splice L2 before L1's members.
221 UserValue *End = L2;
222 while (End->next) {
223 End->leader = L1;
224 End = End->next;
226 End->leader = L1;
227 End->next = L1->next;
228 L1->next = L2;
229 return L1;
232 /// Return the location number that matches Loc.
234 /// For undef values we always return location number UndefLocNo without
235 /// inserting anything in locations. Since locations is a vector and the
236 /// location number is the position in the vector and UndefLocNo is ~0,
237 /// we would need a very big vector to put the value at the right position.
238 unsigned getLocationNo(const MachineOperand &LocMO) {
239 if (LocMO.isReg()) {
240 if (LocMO.getReg() == 0)
241 return UndefLocNo;
242 // For register locations we dont care about use/def and other flags.
243 for (unsigned i = 0, e = locations.size(); i != e; ++i)
244 if (locations[i].isReg() &&
245 locations[i].getReg() == LocMO.getReg() &&
246 locations[i].getSubReg() == LocMO.getSubReg())
247 return i;
248 } else
249 for (unsigned i = 0, e = locations.size(); i != e; ++i)
250 if (LocMO.isIdenticalTo(locations[i]))
251 return i;
252 locations.push_back(LocMO);
253 // We are storing a MachineOperand outside a MachineInstr.
254 locations.back().clearParent();
255 // Don't store def operands.
256 if (locations.back().isReg()) {
257 if (locations.back().isDef())
258 locations.back().setIsDead(false);
259 locations.back().setIsUse();
261 return locations.size() - 1;
264 /// Ensure that all virtual register locations are mapped.
265 void mapVirtRegs(LDVImpl *LDV);
267 /// Add a definition point to this value.
268 void addDef(SlotIndex Idx, const MachineOperand &LocMO, bool IsIndirect) {
269 DbgValueLocation Loc(getLocationNo(LocMO), IsIndirect);
270 // Add a singular (Idx,Idx) -> Loc mapping.
271 LocMap::iterator I = locInts.find(Idx);
272 if (!I.valid() || I.start() != Idx)
273 I.insert(Idx, Idx.getNextSlot(), Loc);
274 else
275 // A later DBG_VALUE at the same SlotIndex overrides the old location.
276 I.setValue(Loc);
279 /// Extend the current definition as far as possible down.
281 /// Stop when meeting an existing def or when leaving the live
282 /// range of VNI. End points where VNI is no longer live are added to Kills.
284 /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a
285 /// data-flow analysis to propagate them beyond basic block boundaries.
287 /// \param Idx Starting point for the definition.
288 /// \param Loc Location number to propagate.
289 /// \param LR Restrict liveness to where LR has the value VNI. May be null.
290 /// \param VNI When LR is not null, this is the value to restrict to.
291 /// \param [out] Kills Append end points of VNI's live range to Kills.
292 /// \param LIS Live intervals analysis.
293 void extendDef(SlotIndex Idx, DbgValueLocation Loc,
294 LiveRange *LR, const VNInfo *VNI,
295 SmallVectorImpl<SlotIndex> *Kills,
296 LiveIntervals &LIS);
298 /// The value in LI/LocNo may be copies to other registers. Determine if
299 /// any of the copies are available at the kill points, and add defs if
300 /// possible.
302 /// \param LI Scan for copies of the value in LI->reg.
303 /// \param LocNo Location number of LI->reg.
304 /// \param WasIndirect Indicates if the original use of LI->reg was indirect
305 /// \param Kills Points where the range of LocNo could be extended.
306 /// \param [in,out] NewDefs Append (Idx, LocNo) of inserted defs here.
307 void addDefsFromCopies(
308 LiveInterval *LI, unsigned LocNo, bool WasIndirect,
309 const SmallVectorImpl<SlotIndex> &Kills,
310 SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs,
311 MachineRegisterInfo &MRI, LiveIntervals &LIS);
313 /// Compute the live intervals of all locations after collecting all their
314 /// def points.
315 void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
316 LiveIntervals &LIS, LexicalScopes &LS);
318 /// Replace OldReg ranges with NewRegs ranges where NewRegs is
319 /// live. Returns true if any changes were made.
320 bool splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs,
321 LiveIntervals &LIS);
323 /// Rewrite virtual register locations according to the provided virtual
324 /// register map. Record the stack slot offsets for the locations that
325 /// were spilled.
326 void rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF,
327 const TargetInstrInfo &TII,
328 const TargetRegisterInfo &TRI,
329 SpillOffsetMap &SpillOffsets);
331 /// Recreate DBG_VALUE instruction from data structures.
332 void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
333 const TargetInstrInfo &TII,
334 const TargetRegisterInfo &TRI,
335 const SpillOffsetMap &SpillOffsets);
337 /// Return DebugLoc of this UserValue.
338 DebugLoc getDebugLoc() { return dl;}
340 void print(raw_ostream &, const TargetRegisterInfo *);
343 /// A user label is a part of a debug info user label.
344 class UserLabel {
345 const DILabel *Label; ///< The debug info label we are part of.
346 DebugLoc dl; ///< The debug location for the label. This is
347 ///< used by dwarf writer to find lexical scope.
348 SlotIndex loc; ///< Slot used by the debug label.
350 /// Insert a DBG_LABEL into MBB at Idx.
351 void insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx,
352 LiveIntervals &LIS, const TargetInstrInfo &TII);
354 public:
355 /// Create a new UserLabel.
356 UserLabel(const DILabel *label, DebugLoc L, SlotIndex Idx)
357 : Label(label), dl(std::move(L)), loc(Idx) {}
359 /// Does this UserLabel match the parameters?
360 bool match(const DILabel *L, const DILocation *IA,
361 const SlotIndex Index) const {
362 return Label == L && dl->getInlinedAt() == IA && loc == Index;
365 /// Recreate DBG_LABEL instruction from data structures.
366 void emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII);
368 /// Return DebugLoc of this UserLabel.
369 DebugLoc getDebugLoc() { return dl; }
371 void print(raw_ostream &, const TargetRegisterInfo *);
374 /// Implementation of the LiveDebugVariables pass.
375 class LDVImpl {
376 LiveDebugVariables &pass;
377 LocMap::Allocator allocator;
378 MachineFunction *MF = nullptr;
379 LiveIntervals *LIS;
380 const TargetRegisterInfo *TRI;
382 /// Whether emitDebugValues is called.
383 bool EmitDone = false;
385 /// Whether the machine function is modified during the pass.
386 bool ModifiedMF = false;
388 /// All allocated UserValue instances.
389 SmallVector<std::unique_ptr<UserValue>, 8> userValues;
391 /// All allocated UserLabel instances.
392 SmallVector<std::unique_ptr<UserLabel>, 2> userLabels;
394 /// Map virtual register to eq class leader.
395 using VRMap = DenseMap<unsigned, UserValue *>;
396 VRMap virtRegToEqClass;
398 /// Map user variable to eq class leader.
399 using UVMap = DenseMap<const DILocalVariable *, UserValue *>;
400 UVMap userVarMap;
402 /// Find or create a UserValue.
403 UserValue *getUserValue(const DILocalVariable *Var, const DIExpression *Expr,
404 const DebugLoc &DL);
406 /// Find the EC leader for VirtReg or null.
407 UserValue *lookupVirtReg(unsigned VirtReg);
409 /// Add DBG_VALUE instruction to our maps.
411 /// \param MI DBG_VALUE instruction
412 /// \param Idx Last valid SLotIndex before instruction.
414 /// \returns True if the DBG_VALUE instruction should be deleted.
415 bool handleDebugValue(MachineInstr &MI, SlotIndex Idx);
417 /// Add DBG_LABEL instruction to UserLabel.
419 /// \param MI DBG_LABEL instruction
420 /// \param Idx Last valid SlotIndex before instruction.
422 /// \returns True if the DBG_LABEL instruction should be deleted.
423 bool handleDebugLabel(MachineInstr &MI, SlotIndex Idx);
425 /// Collect and erase all DBG_VALUE instructions, adding a UserValue def
426 /// for each instruction.
428 /// \param mf MachineFunction to be scanned.
430 /// \returns True if any debug values were found.
431 bool collectDebugValues(MachineFunction &mf);
433 /// Compute the live intervals of all user values after collecting all
434 /// their def points.
435 void computeIntervals();
437 public:
438 LDVImpl(LiveDebugVariables *ps) : pass(*ps) {}
440 bool runOnMachineFunction(MachineFunction &mf);
442 /// Release all memory.
443 void clear() {
444 MF = nullptr;
445 userValues.clear();
446 userLabels.clear();
447 virtRegToEqClass.clear();
448 userVarMap.clear();
449 // Make sure we call emitDebugValues if the machine function was modified.
450 assert((!ModifiedMF || EmitDone) &&
451 "Dbg values are not emitted in LDV");
452 EmitDone = false;
453 ModifiedMF = false;
456 /// Map virtual register to an equivalence class.
457 void mapVirtReg(unsigned VirtReg, UserValue *EC);
459 /// Replace all references to OldReg with NewRegs.
460 void splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs);
462 /// Recreate DBG_VALUE instruction from data structures.
463 void emitDebugValues(VirtRegMap *VRM);
465 void print(raw_ostream&);
468 } // end anonymous namespace
470 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
471 static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS,
472 const LLVMContext &Ctx) {
473 if (!DL)
474 return;
476 auto *Scope = cast<DIScope>(DL.getScope());
477 // Omit the directory, because it's likely to be long and uninteresting.
478 CommentOS << Scope->getFilename();
479 CommentOS << ':' << DL.getLine();
480 if (DL.getCol() != 0)
481 CommentOS << ':' << DL.getCol();
483 DebugLoc InlinedAtDL = DL.getInlinedAt();
484 if (!InlinedAtDL)
485 return;
487 CommentOS << " @[ ";
488 printDebugLoc(InlinedAtDL, CommentOS, Ctx);
489 CommentOS << " ]";
492 static void printExtendedName(raw_ostream &OS, const DINode *Node,
493 const DILocation *DL) {
494 const LLVMContext &Ctx = Node->getContext();
495 StringRef Res;
496 unsigned Line;
497 if (const auto *V = dyn_cast<const DILocalVariable>(Node)) {
498 Res = V->getName();
499 Line = V->getLine();
500 } else if (const auto *L = dyn_cast<const DILabel>(Node)) {
501 Res = L->getName();
502 Line = L->getLine();
505 if (!Res.empty())
506 OS << Res << "," << Line;
507 auto *InlinedAt = DL ? DL->getInlinedAt() : nullptr;
508 if (InlinedAt) {
509 if (DebugLoc InlinedAtDL = InlinedAt) {
510 OS << " @[";
511 printDebugLoc(InlinedAtDL, OS, Ctx);
512 OS << "]";
517 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
518 OS << "!\"";
519 printExtendedName(OS, Variable, dl);
521 OS << "\"\t";
522 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) {
523 OS << " [" << I.start() << ';' << I.stop() << "):";
524 if (I.value().isUndef())
525 OS << "undef";
526 else {
527 OS << I.value().locNo();
528 if (I.value().wasIndirect())
529 OS << " ind";
532 for (unsigned i = 0, e = locations.size(); i != e; ++i) {
533 OS << " Loc" << i << '=';
534 locations[i].print(OS, TRI);
536 OS << '\n';
539 void UserLabel::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
540 OS << "!\"";
541 printExtendedName(OS, Label, dl);
543 OS << "\"\t";
544 OS << loc;
545 OS << '\n';
548 void LDVImpl::print(raw_ostream &OS) {
549 OS << "********** DEBUG VARIABLES **********\n";
550 for (auto &userValue : userValues)
551 userValue->print(OS, TRI);
552 OS << "********** DEBUG LABELS **********\n";
553 for (auto &userLabel : userLabels)
554 userLabel->print(OS, TRI);
556 #endif
558 void UserValue::mapVirtRegs(LDVImpl *LDV) {
559 for (unsigned i = 0, e = locations.size(); i != e; ++i)
560 if (locations[i].isReg() &&
561 TargetRegisterInfo::isVirtualRegister(locations[i].getReg()))
562 LDV->mapVirtReg(locations[i].getReg(), this);
565 UserValue *LDVImpl::getUserValue(const DILocalVariable *Var,
566 const DIExpression *Expr, const DebugLoc &DL) {
567 UserValue *&Leader = userVarMap[Var];
568 if (Leader) {
569 UserValue *UV = Leader->getLeader();
570 Leader = UV;
571 for (; UV; UV = UV->getNext())
572 if (UV->match(Var, Expr, DL->getInlinedAt()))
573 return UV;
576 userValues.push_back(
577 llvm::make_unique<UserValue>(Var, Expr, DL, allocator));
578 UserValue *UV = userValues.back().get();
579 Leader = UserValue::merge(Leader, UV);
580 return UV;
583 void LDVImpl::mapVirtReg(unsigned VirtReg, UserValue *EC) {
584 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Only map VirtRegs");
585 UserValue *&Leader = virtRegToEqClass[VirtReg];
586 Leader = UserValue::merge(Leader, EC);
589 UserValue *LDVImpl::lookupVirtReg(unsigned VirtReg) {
590 if (UserValue *UV = virtRegToEqClass.lookup(VirtReg))
591 return UV->getLeader();
592 return nullptr;
595 bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) {
596 // DBG_VALUE loc, offset, variable
597 if (MI.getNumOperands() != 4 ||
598 !(MI.getOperand(1).isReg() || MI.getOperand(1).isImm()) ||
599 !MI.getOperand(2).isMetadata()) {
600 LLVM_DEBUG(dbgs() << "Can't handle " << MI);
601 return false;
604 // Detect invalid DBG_VALUE instructions, with a debug-use of a virtual
605 // register that hasn't been defined yet. If we do not remove those here, then
606 // the re-insertion of the DBG_VALUE instruction after register allocation
607 // will be incorrect.
608 // TODO: If earlier passes are corrected to generate sane debug information
609 // (and if the machine verifier is improved to catch this), then these checks
610 // could be removed or replaced by asserts.
611 bool Discard = false;
612 if (MI.getOperand(0).isReg() &&
613 TargetRegisterInfo::isVirtualRegister(MI.getOperand(0).getReg())) {
614 const unsigned Reg = MI.getOperand(0).getReg();
615 if (!LIS->hasInterval(Reg)) {
616 // The DBG_VALUE is described by a virtual register that does not have a
617 // live interval. Discard the DBG_VALUE.
618 Discard = true;
619 LLVM_DEBUG(dbgs() << "Discarding debug info (no LIS interval): " << Idx
620 << " " << MI);
621 } else {
622 // The DBG_VALUE is only valid if either Reg is live out from Idx, or Reg
623 // is defined dead at Idx (where Idx is the slot index for the instruction
624 // preceding the DBG_VALUE).
625 const LiveInterval &LI = LIS->getInterval(Reg);
626 LiveQueryResult LRQ = LI.Query(Idx);
627 if (!LRQ.valueOutOrDead()) {
628 // We have found a DBG_VALUE with the value in a virtual register that
629 // is not live. Discard the DBG_VALUE.
630 Discard = true;
631 LLVM_DEBUG(dbgs() << "Discarding debug info (reg not live): " << Idx
632 << " " << MI);
637 // Get or create the UserValue for (variable,offset) here.
638 bool IsIndirect = MI.getOperand(1).isImm();
639 if (IsIndirect)
640 assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
641 const DILocalVariable *Var = MI.getDebugVariable();
642 const DIExpression *Expr = MI.getDebugExpression();
643 UserValue *UV =
644 getUserValue(Var, Expr, MI.getDebugLoc());
645 if (!Discard)
646 UV->addDef(Idx, MI.getOperand(0), IsIndirect);
647 else {
648 MachineOperand MO = MachineOperand::CreateReg(0U, false);
649 MO.setIsDebug();
650 UV->addDef(Idx, MO, false);
652 return true;
655 bool LDVImpl::handleDebugLabel(MachineInstr &MI, SlotIndex Idx) {
656 // DBG_LABEL label
657 if (MI.getNumOperands() != 1 || !MI.getOperand(0).isMetadata()) {
658 LLVM_DEBUG(dbgs() << "Can't handle " << MI);
659 return false;
662 // Get or create the UserLabel for label here.
663 const DILabel *Label = MI.getDebugLabel();
664 const DebugLoc &DL = MI.getDebugLoc();
665 bool Found = false;
666 for (auto const &L : userLabels) {
667 if (L->match(Label, DL->getInlinedAt(), Idx)) {
668 Found = true;
669 break;
672 if (!Found)
673 userLabels.push_back(llvm::make_unique<UserLabel>(Label, DL, Idx));
675 return true;
678 bool LDVImpl::collectDebugValues(MachineFunction &mf) {
679 bool Changed = false;
680 for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE;
681 ++MFI) {
682 MachineBasicBlock *MBB = &*MFI;
683 for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end();
684 MBBI != MBBE;) {
685 // Use the first debug instruction in the sequence to get a SlotIndex
686 // for following consecutive debug instructions.
687 if (!MBBI->isDebugInstr()) {
688 ++MBBI;
689 continue;
691 // Debug instructions has no slot index. Use the previous
692 // non-debug instruction's SlotIndex as its SlotIndex.
693 SlotIndex Idx =
694 MBBI == MBB->begin()
695 ? LIS->getMBBStartIdx(MBB)
696 : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot();
697 // Handle consecutive debug instructions with the same slot index.
698 do {
699 // Only handle DBG_VALUE in handleDebugValue(). Skip all other
700 // kinds of debug instructions.
701 if ((MBBI->isDebugValue() && handleDebugValue(*MBBI, Idx)) ||
702 (MBBI->isDebugLabel() && handleDebugLabel(*MBBI, Idx))) {
703 MBBI = MBB->erase(MBBI);
704 Changed = true;
705 } else
706 ++MBBI;
707 } while (MBBI != MBBE && MBBI->isDebugInstr());
710 return Changed;
713 void UserValue::extendDef(SlotIndex Idx, DbgValueLocation Loc, LiveRange *LR,
714 const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills,
715 LiveIntervals &LIS) {
716 SlotIndex Start = Idx;
717 MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start);
718 SlotIndex Stop = LIS.getMBBEndIdx(MBB);
719 LocMap::iterator I = locInts.find(Start);
721 // Limit to VNI's live range.
722 bool ToEnd = true;
723 if (LR && VNI) {
724 LiveInterval::Segment *Segment = LR->getSegmentContaining(Start);
725 if (!Segment || Segment->valno != VNI) {
726 if (Kills)
727 Kills->push_back(Start);
728 return;
730 if (Segment->end < Stop) {
731 Stop = Segment->end;
732 ToEnd = false;
736 // There could already be a short def at Start.
737 if (I.valid() && I.start() <= Start) {
738 // Stop when meeting a different location or an already extended interval.
739 Start = Start.getNextSlot();
740 if (I.value() != Loc || I.stop() != Start)
741 return;
742 // This is a one-slot placeholder. Just skip it.
743 ++I;
746 // Limited by the next def.
747 if (I.valid() && I.start() < Stop) {
748 Stop = I.start();
749 ToEnd = false;
751 // Limited by VNI's live range.
752 else if (!ToEnd && Kills)
753 Kills->push_back(Stop);
755 if (Start < Stop)
756 I.insert(Start, Stop, Loc);
759 void UserValue::addDefsFromCopies(
760 LiveInterval *LI, unsigned LocNo, bool WasIndirect,
761 const SmallVectorImpl<SlotIndex> &Kills,
762 SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs,
763 MachineRegisterInfo &MRI, LiveIntervals &LIS) {
764 if (Kills.empty())
765 return;
766 // Don't track copies from physregs, there are too many uses.
767 if (!TargetRegisterInfo::isVirtualRegister(LI->reg))
768 return;
770 // Collect all the (vreg, valno) pairs that are copies of LI.
771 SmallVector<std::pair<LiveInterval*, const VNInfo*>, 8> CopyValues;
772 for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg)) {
773 MachineInstr *MI = MO.getParent();
774 // Copies of the full value.
775 if (MO.getSubReg() || !MI->isCopy())
776 continue;
777 unsigned DstReg = MI->getOperand(0).getReg();
779 // Don't follow copies to physregs. These are usually setting up call
780 // arguments, and the argument registers are always call clobbered. We are
781 // better off in the source register which could be a callee-saved register,
782 // or it could be spilled.
783 if (!TargetRegisterInfo::isVirtualRegister(DstReg))
784 continue;
786 // Is LocNo extended to reach this copy? If not, another def may be blocking
787 // it, or we are looking at a wrong value of LI.
788 SlotIndex Idx = LIS.getInstructionIndex(*MI);
789 LocMap::iterator I = locInts.find(Idx.getRegSlot(true));
790 if (!I.valid() || I.value().locNo() != LocNo)
791 continue;
793 if (!LIS.hasInterval(DstReg))
794 continue;
795 LiveInterval *DstLI = &LIS.getInterval(DstReg);
796 const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot());
797 assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value");
798 CopyValues.push_back(std::make_pair(DstLI, DstVNI));
801 if (CopyValues.empty())
802 return;
804 LLVM_DEBUG(dbgs() << "Got " << CopyValues.size() << " copies of " << *LI
805 << '\n');
807 // Try to add defs of the copied values for each kill point.
808 for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
809 SlotIndex Idx = Kills[i];
810 for (unsigned j = 0, e = CopyValues.size(); j != e; ++j) {
811 LiveInterval *DstLI = CopyValues[j].first;
812 const VNInfo *DstVNI = CopyValues[j].second;
813 if (DstLI->getVNInfoAt(Idx) != DstVNI)
814 continue;
815 // Check that there isn't already a def at Idx
816 LocMap::iterator I = locInts.find(Idx);
817 if (I.valid() && I.start() <= Idx)
818 continue;
819 LLVM_DEBUG(dbgs() << "Kill at " << Idx << " covered by valno #"
820 << DstVNI->id << " in " << *DstLI << '\n');
821 MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def);
822 assert(CopyMI && CopyMI->isCopy() && "Bad copy value");
823 unsigned LocNo = getLocationNo(CopyMI->getOperand(0));
824 DbgValueLocation NewLoc(LocNo, WasIndirect);
825 I.insert(Idx, Idx.getNextSlot(), NewLoc);
826 NewDefs.push_back(std::make_pair(Idx, NewLoc));
827 break;
832 void UserValue::computeIntervals(MachineRegisterInfo &MRI,
833 const TargetRegisterInfo &TRI,
834 LiveIntervals &LIS, LexicalScopes &LS) {
835 SmallVector<std::pair<SlotIndex, DbgValueLocation>, 16> Defs;
837 // Collect all defs to be extended (Skipping undefs).
838 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I)
839 if (!I.value().isUndef())
840 Defs.push_back(std::make_pair(I.start(), I.value()));
842 // Extend all defs, and possibly add new ones along the way.
843 for (unsigned i = 0; i != Defs.size(); ++i) {
844 SlotIndex Idx = Defs[i].first;
845 DbgValueLocation Loc = Defs[i].second;
846 const MachineOperand &LocMO = locations[Loc.locNo()];
848 if (!LocMO.isReg()) {
849 extendDef(Idx, Loc, nullptr, nullptr, nullptr, LIS);
850 continue;
853 // Register locations are constrained to where the register value is live.
854 if (TargetRegisterInfo::isVirtualRegister(LocMO.getReg())) {
855 LiveInterval *LI = nullptr;
856 const VNInfo *VNI = nullptr;
857 if (LIS.hasInterval(LocMO.getReg())) {
858 LI = &LIS.getInterval(LocMO.getReg());
859 VNI = LI->getVNInfoAt(Idx);
861 SmallVector<SlotIndex, 16> Kills;
862 extendDef(Idx, Loc, LI, VNI, &Kills, LIS);
863 // FIXME: Handle sub-registers in addDefsFromCopies. The problem is that
864 // if the original location for example is %vreg0:sub_hi, and we find a
865 // full register copy in addDefsFromCopies (at the moment it only handles
866 // full register copies), then we must add the sub1 sub-register index to
867 // the new location. However, that is only possible if the new virtual
868 // register is of the same regclass (or if there is an equivalent
869 // sub-register in that regclass). For now, simply skip handling copies if
870 // a sub-register is involved.
871 if (LI && !LocMO.getSubReg())
872 addDefsFromCopies(LI, Loc.locNo(), Loc.wasIndirect(), Kills, Defs, MRI,
873 LIS);
874 continue;
877 // For physregs, we only mark the start slot idx. DwarfDebug will see it
878 // as if the DBG_VALUE is valid up until the end of the basic block, or
879 // the next def of the physical register. So we do not need to extend the
880 // range. It might actually happen that the DBG_VALUE is the last use of
881 // the physical register (e.g. if this is an unused input argument to a
882 // function).
885 // The computed intervals may extend beyond the range of the debug
886 // location's lexical scope. In this case, splitting of an interval
887 // can result in an interval outside of the scope being created,
888 // causing extra unnecessary DBG_VALUEs to be emitted. To prevent
889 // this, trim the intervals to the lexical scope.
891 LexicalScope *Scope = LS.findLexicalScope(dl);
892 if (!Scope)
893 return;
895 SlotIndex PrevEnd;
896 LocMap::iterator I = locInts.begin();
898 // Iterate over the lexical scope ranges. Each time round the loop
899 // we check the intervals for overlap with the end of the previous
900 // range and the start of the next. The first range is handled as
901 // a special case where there is no PrevEnd.
902 for (const InsnRange &Range : Scope->getRanges()) {
903 SlotIndex RStart = LIS.getInstructionIndex(*Range.first);
904 SlotIndex REnd = LIS.getInstructionIndex(*Range.second);
906 // At the start of each iteration I has been advanced so that
907 // I.stop() >= PrevEnd. Check for overlap.
908 if (PrevEnd && I.start() < PrevEnd) {
909 SlotIndex IStop = I.stop();
910 DbgValueLocation Loc = I.value();
912 // Stop overlaps previous end - trim the end of the interval to
913 // the scope range.
914 I.setStopUnchecked(PrevEnd);
915 ++I;
917 // If the interval also overlaps the start of the "next" (i.e.
918 // current) range create a new interval for the remainder (which
919 // may be further trimmed).
920 if (RStart < IStop)
921 I.insert(RStart, IStop, Loc);
924 // Advance I so that I.stop() >= RStart, and check for overlap.
925 I.advanceTo(RStart);
926 if (!I.valid())
927 return;
929 if (I.start() < RStart) {
930 // Interval start overlaps range - trim to the scope range.
931 I.setStartUnchecked(RStart);
932 // Remember that this interval was trimmed.
933 trimmedDefs.insert(RStart);
936 // The end of a lexical scope range is the last instruction in the
937 // range. To convert to an interval we need the index of the
938 // instruction after it.
939 REnd = REnd.getNextIndex();
941 // Advance I to first interval outside current range.
942 I.advanceTo(REnd);
943 if (!I.valid())
944 return;
946 PrevEnd = REnd;
949 // Check for overlap with end of final range.
950 if (PrevEnd && I.start() < PrevEnd)
951 I.setStopUnchecked(PrevEnd);
954 void LDVImpl::computeIntervals() {
955 LexicalScopes LS;
956 LS.initialize(*MF);
958 for (unsigned i = 0, e = userValues.size(); i != e; ++i) {
959 userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS);
960 userValues[i]->mapVirtRegs(this);
964 bool LDVImpl::runOnMachineFunction(MachineFunction &mf) {
965 clear();
966 MF = &mf;
967 LIS = &pass.getAnalysis<LiveIntervals>();
968 TRI = mf.getSubtarget().getRegisterInfo();
969 LLVM_DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: "
970 << mf.getName() << " **********\n");
972 bool Changed = collectDebugValues(mf);
973 computeIntervals();
974 LLVM_DEBUG(print(dbgs()));
975 ModifiedMF = Changed;
976 return Changed;
979 static void removeDebugValues(MachineFunction &mf) {
980 for (MachineBasicBlock &MBB : mf) {
981 for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) {
982 if (!MBBI->isDebugValue()) {
983 ++MBBI;
984 continue;
986 MBBI = MBB.erase(MBBI);
991 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) {
992 if (!EnableLDV)
993 return false;
994 if (!mf.getFunction().getSubprogram()) {
995 removeDebugValues(mf);
996 return false;
998 if (!pImpl)
999 pImpl = new LDVImpl(this);
1000 return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf);
1003 void LiveDebugVariables::releaseMemory() {
1004 if (pImpl)
1005 static_cast<LDVImpl*>(pImpl)->clear();
1008 LiveDebugVariables::~LiveDebugVariables() {
1009 if (pImpl)
1010 delete static_cast<LDVImpl*>(pImpl);
1013 //===----------------------------------------------------------------------===//
1014 // Live Range Splitting
1015 //===----------------------------------------------------------------------===//
1017 bool
1018 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
1019 LiveIntervals& LIS) {
1020 LLVM_DEBUG({
1021 dbgs() << "Splitting Loc" << OldLocNo << '\t';
1022 print(dbgs(), nullptr);
1024 bool DidChange = false;
1025 LocMap::iterator LocMapI;
1026 LocMapI.setMap(locInts);
1027 for (unsigned i = 0; i != NewRegs.size(); ++i) {
1028 LiveInterval *LI = &LIS.getInterval(NewRegs[i]);
1029 if (LI->empty())
1030 continue;
1032 // Don't allocate the new LocNo until it is needed.
1033 unsigned NewLocNo = UndefLocNo;
1035 // Iterate over the overlaps between locInts and LI.
1036 LocMapI.find(LI->beginIndex());
1037 if (!LocMapI.valid())
1038 continue;
1039 LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start());
1040 LiveInterval::iterator LIE = LI->end();
1041 while (LocMapI.valid() && LII != LIE) {
1042 // At this point, we know that LocMapI.stop() > LII->start.
1043 LII = LI->advanceTo(LII, LocMapI.start());
1044 if (LII == LIE)
1045 break;
1047 // Now LII->end > LocMapI.start(). Do we have an overlap?
1048 if (LocMapI.value().locNo() == OldLocNo && LII->start < LocMapI.stop()) {
1049 // Overlapping correct location. Allocate NewLocNo now.
1050 if (NewLocNo == UndefLocNo) {
1051 MachineOperand MO = MachineOperand::CreateReg(LI->reg, false);
1052 MO.setSubReg(locations[OldLocNo].getSubReg());
1053 NewLocNo = getLocationNo(MO);
1054 DidChange = true;
1057 SlotIndex LStart = LocMapI.start();
1058 SlotIndex LStop = LocMapI.stop();
1059 DbgValueLocation OldLoc = LocMapI.value();
1061 // Trim LocMapI down to the LII overlap.
1062 if (LStart < LII->start)
1063 LocMapI.setStartUnchecked(LII->start);
1064 if (LStop > LII->end)
1065 LocMapI.setStopUnchecked(LII->end);
1067 // Change the value in the overlap. This may trigger coalescing.
1068 LocMapI.setValue(OldLoc.changeLocNo(NewLocNo));
1070 // Re-insert any removed OldLocNo ranges.
1071 if (LStart < LocMapI.start()) {
1072 LocMapI.insert(LStart, LocMapI.start(), OldLoc);
1073 ++LocMapI;
1074 assert(LocMapI.valid() && "Unexpected coalescing");
1076 if (LStop > LocMapI.stop()) {
1077 ++LocMapI;
1078 LocMapI.insert(LII->end, LStop, OldLoc);
1079 --LocMapI;
1083 // Advance to the next overlap.
1084 if (LII->end < LocMapI.stop()) {
1085 if (++LII == LIE)
1086 break;
1087 LocMapI.advanceTo(LII->start);
1088 } else {
1089 ++LocMapI;
1090 if (!LocMapI.valid())
1091 break;
1092 LII = LI->advanceTo(LII, LocMapI.start());
1097 // Finally, remove any remaining OldLocNo intervals and OldLocNo itself.
1098 locations.erase(locations.begin() + OldLocNo);
1099 LocMapI.goToBegin();
1100 while (LocMapI.valid()) {
1101 DbgValueLocation v = LocMapI.value();
1102 if (v.locNo() == OldLocNo) {
1103 LLVM_DEBUG(dbgs() << "Erasing [" << LocMapI.start() << ';'
1104 << LocMapI.stop() << ")\n");
1105 LocMapI.erase();
1106 } else {
1107 // Undef values always have location number UndefLocNo, so don't change
1108 // locNo in that case. See getLocationNo().
1109 if (!v.isUndef() && v.locNo() > OldLocNo)
1110 LocMapI.setValueUnchecked(v.changeLocNo(v.locNo() - 1));
1111 ++LocMapI;
1115 LLVM_DEBUG({
1116 dbgs() << "Split result: \t";
1117 print(dbgs(), nullptr);
1119 return DidChange;
1122 bool
1123 UserValue::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs,
1124 LiveIntervals &LIS) {
1125 bool DidChange = false;
1126 // Split locations referring to OldReg. Iterate backwards so splitLocation can
1127 // safely erase unused locations.
1128 for (unsigned i = locations.size(); i ; --i) {
1129 unsigned LocNo = i-1;
1130 const MachineOperand *Loc = &locations[LocNo];
1131 if (!Loc->isReg() || Loc->getReg() != OldReg)
1132 continue;
1133 DidChange |= splitLocation(LocNo, NewRegs, LIS);
1135 return DidChange;
1138 void LDVImpl::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs) {
1139 bool DidChange = false;
1140 for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext())
1141 DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS);
1143 if (!DidChange)
1144 return;
1146 // Map all of the new virtual registers.
1147 UserValue *UV = lookupVirtReg(OldReg);
1148 for (unsigned i = 0; i != NewRegs.size(); ++i)
1149 mapVirtReg(NewRegs[i], UV);
1152 void LiveDebugVariables::
1153 splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, LiveIntervals &LIS) {
1154 if (pImpl)
1155 static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs);
1158 void UserValue::rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF,
1159 const TargetInstrInfo &TII,
1160 const TargetRegisterInfo &TRI,
1161 SpillOffsetMap &SpillOffsets) {
1162 // Build a set of new locations with new numbers so we can coalesce our
1163 // IntervalMap if two vreg intervals collapse to the same physical location.
1164 // Use MapVector instead of SetVector because MapVector::insert returns the
1165 // position of the previously or newly inserted element. The boolean value
1166 // tracks if the location was produced by a spill.
1167 // FIXME: This will be problematic if we ever support direct and indirect
1168 // frame index locations, i.e. expressing both variables in memory and
1169 // 'int x, *px = &x'. The "spilled" bit must become part of the location.
1170 MapVector<MachineOperand, std::pair<bool, unsigned>> NewLocations;
1171 SmallVector<unsigned, 4> LocNoMap(locations.size());
1172 for (unsigned I = 0, E = locations.size(); I != E; ++I) {
1173 bool Spilled = false;
1174 unsigned SpillOffset = 0;
1175 MachineOperand Loc = locations[I];
1176 // Only virtual registers are rewritten.
1177 if (Loc.isReg() && Loc.getReg() &&
1178 TargetRegisterInfo::isVirtualRegister(Loc.getReg())) {
1179 unsigned VirtReg = Loc.getReg();
1180 if (VRM.isAssignedReg(VirtReg) &&
1181 TargetRegisterInfo::isPhysicalRegister(VRM.getPhys(VirtReg))) {
1182 // This can create a %noreg operand in rare cases when the sub-register
1183 // index is no longer available. That means the user value is in a
1184 // non-existent sub-register, and %noreg is exactly what we want.
1185 Loc.substPhysReg(VRM.getPhys(VirtReg), TRI);
1186 } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) {
1187 // Retrieve the stack slot offset.
1188 unsigned SpillSize;
1189 const MachineRegisterInfo &MRI = MF.getRegInfo();
1190 const TargetRegisterClass *TRC = MRI.getRegClass(VirtReg);
1191 bool Success = TII.getStackSlotRange(TRC, Loc.getSubReg(), SpillSize,
1192 SpillOffset, MF);
1194 // FIXME: Invalidate the location if the offset couldn't be calculated.
1195 (void)Success;
1197 Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg));
1198 Spilled = true;
1199 } else {
1200 Loc.setReg(0);
1201 Loc.setSubReg(0);
1205 // Insert this location if it doesn't already exist and record a mapping
1206 // from the old number to the new number.
1207 auto InsertResult = NewLocations.insert({Loc, {Spilled, SpillOffset}});
1208 unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first);
1209 LocNoMap[I] = NewLocNo;
1212 // Rewrite the locations and record the stack slot offsets for spills.
1213 locations.clear();
1214 SpillOffsets.clear();
1215 for (auto &Pair : NewLocations) {
1216 bool Spilled;
1217 unsigned SpillOffset;
1218 std::tie(Spilled, SpillOffset) = Pair.second;
1219 locations.push_back(Pair.first);
1220 if (Spilled) {
1221 unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair);
1222 SpillOffsets[NewLocNo] = SpillOffset;
1226 // Update the interval map, but only coalesce left, since intervals to the
1227 // right use the old location numbers. This should merge two contiguous
1228 // DBG_VALUE intervals with different vregs that were allocated to the same
1229 // physical register.
1230 for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) {
1231 DbgValueLocation Loc = I.value();
1232 // Undef values don't exist in locations (and thus not in LocNoMap either)
1233 // so skip over them. See getLocationNo().
1234 if (Loc.isUndef())
1235 continue;
1236 unsigned NewLocNo = LocNoMap[Loc.locNo()];
1237 I.setValueUnchecked(Loc.changeLocNo(NewLocNo));
1238 I.setStart(I.start());
1242 /// Find an iterator for inserting a DBG_VALUE instruction.
1243 static MachineBasicBlock::iterator
1244 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx,
1245 LiveIntervals &LIS) {
1246 SlotIndex Start = LIS.getMBBStartIdx(MBB);
1247 Idx = Idx.getBaseIndex();
1249 // Try to find an insert location by going backwards from Idx.
1250 MachineInstr *MI;
1251 while (!(MI = LIS.getInstructionFromIndex(Idx))) {
1252 // We've reached the beginning of MBB.
1253 if (Idx == Start) {
1254 MachineBasicBlock::iterator I = MBB->SkipPHIsLabelsAndDebug(MBB->begin());
1255 return I;
1257 Idx = Idx.getPrevIndex();
1260 // Don't insert anything after the first terminator, though.
1261 return MI->isTerminator() ? MBB->getFirstTerminator() :
1262 std::next(MachineBasicBlock::iterator(MI));
1265 /// Find an iterator for inserting the next DBG_VALUE instruction
1266 /// (or end if no more insert locations found).
1267 static MachineBasicBlock::iterator
1268 findNextInsertLocation(MachineBasicBlock *MBB,
1269 MachineBasicBlock::iterator I,
1270 SlotIndex StopIdx, MachineOperand &LocMO,
1271 LiveIntervals &LIS,
1272 const TargetRegisterInfo &TRI) {
1273 if (!LocMO.isReg())
1274 return MBB->instr_end();
1275 unsigned Reg = LocMO.getReg();
1277 // Find the next instruction in the MBB that define the register Reg.
1278 while (I != MBB->end() && !I->isTerminator()) {
1279 if (!LIS.isNotInMIMap(*I) &&
1280 SlotIndex::isEarlierEqualInstr(StopIdx, LIS.getInstructionIndex(*I)))
1281 break;
1282 if (I->definesRegister(Reg, &TRI))
1283 // The insert location is directly after the instruction/bundle.
1284 return std::next(I);
1285 ++I;
1287 return MBB->end();
1290 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx,
1291 SlotIndex StopIdx, DbgValueLocation Loc,
1292 bool Spilled, unsigned SpillOffset,
1293 LiveIntervals &LIS, const TargetInstrInfo &TII,
1294 const TargetRegisterInfo &TRI) {
1295 SlotIndex MBBEndIdx = LIS.getMBBEndIdx(&*MBB);
1296 // Only search within the current MBB.
1297 StopIdx = (MBBEndIdx < StopIdx) ? MBBEndIdx : StopIdx;
1298 MachineBasicBlock::iterator I = findInsertLocation(MBB, StartIdx, LIS);
1299 // Undef values don't exist in locations so create new "noreg" register MOs
1300 // for them. See getLocationNo().
1301 MachineOperand MO = !Loc.isUndef() ?
1302 locations[Loc.locNo()] :
1303 MachineOperand::CreateReg(/* Reg */ 0, /* isDef */ false, /* isImp */ false,
1304 /* isKill */ false, /* isDead */ false,
1305 /* isUndef */ false, /* isEarlyClobber */ false,
1306 /* SubReg */ 0, /* isDebug */ true);
1308 ++NumInsertedDebugValues;
1310 assert(cast<DILocalVariable>(Variable)
1311 ->isValidLocationForIntrinsic(getDebugLoc()) &&
1312 "Expected inlined-at fields to agree");
1314 // If the location was spilled, the new DBG_VALUE will be indirect. If the
1315 // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate
1316 // that the original virtual register was a pointer. Also, add the stack slot
1317 // offset for the spilled register to the expression.
1318 const DIExpression *Expr = Expression;
1319 bool IsIndirect = Loc.wasIndirect();
1320 if (Spilled) {
1321 auto Deref = IsIndirect ? DIExpression::WithDeref : DIExpression::NoDeref;
1322 Expr =
1323 DIExpression::prepend(Expr, DIExpression::NoDeref, SpillOffset, Deref);
1324 IsIndirect = true;
1327 assert((!Spilled || MO.isFI()) && "a spilled location must be a frame index");
1329 do {
1330 BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE),
1331 IsIndirect, MO, Variable, Expr);
1333 // Continue and insert DBG_VALUES after every redefinition of register
1334 // associated with the debug value within the range
1335 I = findNextInsertLocation(MBB, I, StopIdx, MO, LIS, TRI);
1336 } while (I != MBB->end());
1339 void UserLabel::insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx,
1340 LiveIntervals &LIS,
1341 const TargetInstrInfo &TII) {
1342 MachineBasicBlock::iterator I = findInsertLocation(MBB, Idx, LIS);
1343 ++NumInsertedDebugLabels;
1344 BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_LABEL))
1345 .addMetadata(Label);
1348 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
1349 const TargetInstrInfo &TII,
1350 const TargetRegisterInfo &TRI,
1351 const SpillOffsetMap &SpillOffsets) {
1352 MachineFunction::iterator MFEnd = VRM->getMachineFunction().end();
1354 for (LocMap::const_iterator I = locInts.begin(); I.valid();) {
1355 SlotIndex Start = I.start();
1356 SlotIndex Stop = I.stop();
1357 DbgValueLocation Loc = I.value();
1358 auto SpillIt =
1359 !Loc.isUndef() ? SpillOffsets.find(Loc.locNo()) : SpillOffsets.end();
1360 bool Spilled = SpillIt != SpillOffsets.end();
1361 unsigned SpillOffset = Spilled ? SpillIt->second : 0;
1363 // If the interval start was trimmed to the lexical scope insert the
1364 // DBG_VALUE at the previous index (otherwise it appears after the
1365 // first instruction in the range).
1366 if (trimmedDefs.count(Start))
1367 Start = Start.getPrevIndex();
1369 LLVM_DEBUG(dbgs() << "\t[" << Start << ';' << Stop << "):" << Loc.locNo());
1370 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
1371 SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB);
1373 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd);
1374 insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, SpillOffset, LIS, TII,
1375 TRI);
1376 // This interval may span multiple basic blocks.
1377 // Insert a DBG_VALUE into each one.
1378 while (Stop > MBBEnd) {
1379 // Move to the next block.
1380 Start = MBBEnd;
1381 if (++MBB == MFEnd)
1382 break;
1383 MBBEnd = LIS.getMBBEndIdx(&*MBB);
1384 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd);
1385 insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, SpillOffset, LIS, TII,
1386 TRI);
1388 LLVM_DEBUG(dbgs() << '\n');
1389 if (MBB == MFEnd)
1390 break;
1392 ++I;
1396 void UserLabel::emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII) {
1397 LLVM_DEBUG(dbgs() << "\t" << loc);
1398 MachineFunction::iterator MBB = LIS.getMBBFromIndex(loc)->getIterator();
1400 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB));
1401 insertDebugLabel(&*MBB, loc, LIS, TII);
1403 LLVM_DEBUG(dbgs() << '\n');
1406 void LDVImpl::emitDebugValues(VirtRegMap *VRM) {
1407 LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n");
1408 if (!MF)
1409 return;
1410 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1411 SpillOffsetMap SpillOffsets;
1412 for (auto &userValue : userValues) {
1413 LLVM_DEBUG(userValue->print(dbgs(), TRI));
1414 userValue->rewriteLocations(*VRM, *MF, *TII, *TRI, SpillOffsets);
1415 userValue->emitDebugValues(VRM, *LIS, *TII, *TRI, SpillOffsets);
1417 LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG LABELS **********\n");
1418 for (auto &userLabel : userLabels) {
1419 LLVM_DEBUG(userLabel->print(dbgs(), TRI));
1420 userLabel->emitDebugLabel(*LIS, *TII);
1422 EmitDone = true;
1425 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) {
1426 if (pImpl)
1427 static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM);
1430 bool LiveDebugVariables::doInitialization(Module &M) {
1431 return Pass::doInitialization(M);
1434 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1435 LLVM_DUMP_METHOD void LiveDebugVariables::dump() const {
1436 if (pImpl)
1437 static_cast<LDVImpl*>(pImpl)->print(dbgs());
1439 #endif