Another attempt to fix the build bot breaks after r360426
[llvm-core.git] / lib / CodeGen / MachinePipeliner.cpp
blob9c1a5a733753f563466b7df2313564bb757def2e
1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
11 // This SMS implementation is a target-independent back-end pass. When enabled,
12 // the pass runs just prior to the register allocation pass, while the machine
13 // IR is in SSA form. If software pipelining is successful, then the original
14 // loop is replaced by the optimized loop. The optimized loop contains one or
15 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
16 // the instructions cannot be scheduled in a given MII, we increase the MII by
17 // one and try again.
19 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We
20 // represent loop carried dependences in the DAG as order edges to the Phi
21 // nodes. We also perform several passes over the DAG to eliminate unnecessary
22 // edges that inhibit the ability to pipeline. The implementation uses the
23 // DFAPacketizer class to compute the minimum initiation interval and the check
24 // where an instruction may be inserted in the pipelined schedule.
26 // In order for the SMS pass to work, several target specific hooks need to be
27 // implemented to get information about the loop structure and to rewrite
28 // instructions.
30 //===----------------------------------------------------------------------===//
32 #include "llvm/ADT/ArrayRef.h"
33 #include "llvm/ADT/BitVector.h"
34 #include "llvm/ADT/DenseMap.h"
35 #include "llvm/ADT/MapVector.h"
36 #include "llvm/ADT/PriorityQueue.h"
37 #include "llvm/ADT/SetVector.h"
38 #include "llvm/ADT/SmallPtrSet.h"
39 #include "llvm/ADT/SmallSet.h"
40 #include "llvm/ADT/SmallVector.h"
41 #include "llvm/ADT/Statistic.h"
42 #include "llvm/ADT/iterator_range.h"
43 #include "llvm/Analysis/AliasAnalysis.h"
44 #include "llvm/Analysis/MemoryLocation.h"
45 #include "llvm/Analysis/ValueTracking.h"
46 #include "llvm/CodeGen/DFAPacketizer.h"
47 #include "llvm/CodeGen/LiveIntervals.h"
48 #include "llvm/CodeGen/MachineBasicBlock.h"
49 #include "llvm/CodeGen/MachineDominators.h"
50 #include "llvm/CodeGen/MachineFunction.h"
51 #include "llvm/CodeGen/MachineFunctionPass.h"
52 #include "llvm/CodeGen/MachineInstr.h"
53 #include "llvm/CodeGen/MachineInstrBuilder.h"
54 #include "llvm/CodeGen/MachineLoopInfo.h"
55 #include "llvm/CodeGen/MachineMemOperand.h"
56 #include "llvm/CodeGen/MachineOperand.h"
57 #include "llvm/CodeGen/MachinePipeliner.h"
58 #include "llvm/CodeGen/MachineRegisterInfo.h"
59 #include "llvm/CodeGen/RegisterPressure.h"
60 #include "llvm/CodeGen/ScheduleDAG.h"
61 #include "llvm/CodeGen/ScheduleDAGMutation.h"
62 #include "llvm/CodeGen/TargetOpcodes.h"
63 #include "llvm/CodeGen/TargetRegisterInfo.h"
64 #include "llvm/CodeGen/TargetSubtargetInfo.h"
65 #include "llvm/Config/llvm-config.h"
66 #include "llvm/IR/Attributes.h"
67 #include "llvm/IR/DebugLoc.h"
68 #include "llvm/IR/Function.h"
69 #include "llvm/MC/LaneBitmask.h"
70 #include "llvm/MC/MCInstrDesc.h"
71 #include "llvm/MC/MCInstrItineraries.h"
72 #include "llvm/MC/MCRegisterInfo.h"
73 #include "llvm/Pass.h"
74 #include "llvm/Support/CommandLine.h"
75 #include "llvm/Support/Compiler.h"
76 #include "llvm/Support/Debug.h"
77 #include "llvm/Support/MathExtras.h"
78 #include "llvm/Support/raw_ostream.h"
79 #include <algorithm>
80 #include <cassert>
81 #include <climits>
82 #include <cstdint>
83 #include <deque>
84 #include <functional>
85 #include <iterator>
86 #include <map>
87 #include <memory>
88 #include <tuple>
89 #include <utility>
90 #include <vector>
92 using namespace llvm;
94 #define DEBUG_TYPE "pipeliner"
96 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
97 STATISTIC(NumPipelined, "Number of loops software pipelined");
98 STATISTIC(NumNodeOrderIssues, "Number of node order issues found");
100 /// A command line option to turn software pipelining on or off.
101 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
102 cl::ZeroOrMore,
103 cl::desc("Enable Software Pipelining"));
105 /// A command line option to enable SWP at -Os.
106 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
107 cl::desc("Enable SWP at Os."), cl::Hidden,
108 cl::init(false));
110 /// A command line argument to limit minimum initial interval for pipelining.
111 static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
112 cl::desc("Size limit for the MII."),
113 cl::Hidden, cl::init(27));
115 /// A command line argument to limit the number of stages in the pipeline.
116 static cl::opt<int>
117 SwpMaxStages("pipeliner-max-stages",
118 cl::desc("Maximum stages allowed in the generated scheduled."),
119 cl::Hidden, cl::init(3));
121 /// A command line option to disable the pruning of chain dependences due to
122 /// an unrelated Phi.
123 static cl::opt<bool>
124 SwpPruneDeps("pipeliner-prune-deps",
125 cl::desc("Prune dependences between unrelated Phi nodes."),
126 cl::Hidden, cl::init(true));
128 /// A command line option to disable the pruning of loop carried order
129 /// dependences.
130 static cl::opt<bool>
131 SwpPruneLoopCarried("pipeliner-prune-loop-carried",
132 cl::desc("Prune loop carried order dependences."),
133 cl::Hidden, cl::init(true));
135 #ifndef NDEBUG
136 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
137 #endif
139 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
140 cl::ReallyHidden, cl::init(false),
141 cl::ZeroOrMore, cl::desc("Ignore RecMII"));
143 namespace llvm {
145 // A command line option to enable the CopyToPhi DAG mutation.
146 cl::opt<bool>
147 SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden,
148 cl::init(true), cl::ZeroOrMore,
149 cl::desc("Enable CopyToPhi DAG Mutation"));
151 } // end namespace llvm
153 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
154 char MachinePipeliner::ID = 0;
155 #ifndef NDEBUG
156 int MachinePipeliner::NumTries = 0;
157 #endif
158 char &llvm::MachinePipelinerID = MachinePipeliner::ID;
160 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE,
161 "Modulo Software Pipelining", false, false)
162 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
163 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
164 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
165 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
166 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE,
167 "Modulo Software Pipelining", false, false)
169 /// The "main" function for implementing Swing Modulo Scheduling.
170 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
171 if (skipFunction(mf.getFunction()))
172 return false;
174 if (!EnableSWP)
175 return false;
177 if (mf.getFunction().getAttributes().hasAttribute(
178 AttributeList::FunctionIndex, Attribute::OptimizeForSize) &&
179 !EnableSWPOptSize.getPosition())
180 return false;
182 MF = &mf;
183 MLI = &getAnalysis<MachineLoopInfo>();
184 MDT = &getAnalysis<MachineDominatorTree>();
185 TII = MF->getSubtarget().getInstrInfo();
186 RegClassInfo.runOnMachineFunction(*MF);
188 for (auto &L : *MLI)
189 scheduleLoop(*L);
191 return false;
194 /// Attempt to perform the SMS algorithm on the specified loop. This function is
195 /// the main entry point for the algorithm. The function identifies candidate
196 /// loops, calculates the minimum initiation interval, and attempts to schedule
197 /// the loop.
198 bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
199 bool Changed = false;
200 for (auto &InnerLoop : L)
201 Changed |= scheduleLoop(*InnerLoop);
203 #ifndef NDEBUG
204 // Stop trying after reaching the limit (if any).
205 int Limit = SwpLoopLimit;
206 if (Limit >= 0) {
207 if (NumTries >= SwpLoopLimit)
208 return Changed;
209 NumTries++;
211 #endif
213 setPragmaPipelineOptions(L);
214 if (!canPipelineLoop(L)) {
215 LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n");
216 return Changed;
219 ++NumTrytoPipeline;
221 Changed = swingModuloScheduler(L);
223 return Changed;
226 void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) {
227 MachineBasicBlock *LBLK = L.getTopBlock();
229 if (LBLK == nullptr)
230 return;
232 const BasicBlock *BBLK = LBLK->getBasicBlock();
233 if (BBLK == nullptr)
234 return;
236 const Instruction *TI = BBLK->getTerminator();
237 if (TI == nullptr)
238 return;
240 MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop);
241 if (LoopID == nullptr)
242 return;
244 assert(LoopID->getNumOperands() > 0 && "requires atleast one operand");
245 assert(LoopID->getOperand(0) == LoopID && "invalid loop");
247 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
248 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
250 if (MD == nullptr)
251 continue;
253 MDString *S = dyn_cast<MDString>(MD->getOperand(0));
255 if (S == nullptr)
256 continue;
258 if (S->getString() == "llvm.loop.pipeline.initiationinterval") {
259 assert(MD->getNumOperands() == 2 &&
260 "Pipeline initiation interval hint metadata should have two operands.");
261 II_setByPragma =
262 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
263 assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive.");
264 } else if (S->getString() == "llvm.loop.pipeline.disable") {
265 disabledByPragma = true;
270 /// Return true if the loop can be software pipelined. The algorithm is
271 /// restricted to loops with a single basic block. Make sure that the
272 /// branch in the loop can be analyzed.
273 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
274 if (L.getNumBlocks() != 1)
275 return false;
277 if (disabledByPragma)
278 return false;
280 // Check if the branch can't be understood because we can't do pipelining
281 // if that's the case.
282 LI.TBB = nullptr;
283 LI.FBB = nullptr;
284 LI.BrCond.clear();
285 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond))
286 return false;
288 LI.LoopInductionVar = nullptr;
289 LI.LoopCompare = nullptr;
290 if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare))
291 return false;
293 if (!L.getLoopPreheader())
294 return false;
296 // Remove any subregisters from inputs to phi nodes.
297 preprocessPhiNodes(*L.getHeader());
298 return true;
301 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) {
302 MachineRegisterInfo &MRI = MF->getRegInfo();
303 SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes();
305 for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) {
306 MachineOperand &DefOp = PI.getOperand(0);
307 assert(DefOp.getSubReg() == 0);
308 auto *RC = MRI.getRegClass(DefOp.getReg());
310 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) {
311 MachineOperand &RegOp = PI.getOperand(i);
312 if (RegOp.getSubReg() == 0)
313 continue;
315 // If the operand uses a subregister, replace it with a new register
316 // without subregisters, and generate a copy to the new register.
317 unsigned NewReg = MRI.createVirtualRegister(RC);
318 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB();
319 MachineBasicBlock::iterator At = PredB.getFirstTerminator();
320 const DebugLoc &DL = PredB.findDebugLoc(At);
321 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg)
322 .addReg(RegOp.getReg(), getRegState(RegOp),
323 RegOp.getSubReg());
324 Slots.insertMachineInstrInMaps(*Copy);
325 RegOp.setReg(NewReg);
326 RegOp.setSubReg(0);
331 /// The SMS algorithm consists of the following main steps:
332 /// 1. Computation and analysis of the dependence graph.
333 /// 2. Ordering of the nodes (instructions).
334 /// 3. Attempt to Schedule the loop.
335 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
336 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");
338 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo,
339 II_setByPragma);
341 MachineBasicBlock *MBB = L.getHeader();
342 // The kernel should not include any terminator instructions. These
343 // will be added back later.
344 SMS.startBlock(MBB);
346 // Compute the number of 'real' instructions in the basic block by
347 // ignoring terminators.
348 unsigned size = MBB->size();
349 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
350 E = MBB->instr_end();
351 I != E; ++I, --size)
354 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
355 SMS.schedule();
356 SMS.exitRegion();
358 SMS.finishBlock();
359 return SMS.hasNewSchedule();
362 void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) {
363 if (II_setByPragma > 0)
364 MII = II_setByPragma;
365 else
366 MII = std::max(ResMII, RecMII);
369 void SwingSchedulerDAG::setMAX_II() {
370 if (II_setByPragma > 0)
371 MAX_II = II_setByPragma;
372 else
373 MAX_II = MII + 10;
376 /// We override the schedule function in ScheduleDAGInstrs to implement the
377 /// scheduling part of the Swing Modulo Scheduling algorithm.
378 void SwingSchedulerDAG::schedule() {
379 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
380 buildSchedGraph(AA);
381 addLoopCarriedDependences(AA);
382 updatePhiDependences();
383 Topo.InitDAGTopologicalSorting();
384 changeDependences();
385 postprocessDAG();
386 LLVM_DEBUG(dump());
388 NodeSetType NodeSets;
389 findCircuits(NodeSets);
390 NodeSetType Circuits = NodeSets;
392 // Calculate the MII.
393 unsigned ResMII = calculateResMII();
394 unsigned RecMII = calculateRecMII(NodeSets);
396 fuseRecs(NodeSets);
398 // This flag is used for testing and can cause correctness problems.
399 if (SwpIgnoreRecMII)
400 RecMII = 0;
402 setMII(ResMII, RecMII);
403 setMAX_II();
405 LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II
406 << " (rec=" << RecMII << ", res=" << ResMII << ")\n");
408 // Can't schedule a loop without a valid MII.
409 if (MII == 0)
410 return;
412 // Don't pipeline large loops.
413 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii)
414 return;
416 computeNodeFunctions(NodeSets);
418 registerPressureFilter(NodeSets);
420 colocateNodeSets(NodeSets);
422 checkNodeSets(NodeSets);
424 LLVM_DEBUG({
425 for (auto &I : NodeSets) {
426 dbgs() << " Rec NodeSet ";
427 I.dump();
431 llvm::stable_sort(NodeSets, std::greater<NodeSet>());
433 groupRemainingNodes(NodeSets);
435 removeDuplicateNodes(NodeSets);
437 LLVM_DEBUG({
438 for (auto &I : NodeSets) {
439 dbgs() << " NodeSet ";
440 I.dump();
444 computeNodeOrder(NodeSets);
446 // check for node order issues
447 checkValidNodeOrder(Circuits);
449 SMSchedule Schedule(Pass.MF);
450 Scheduled = schedulePipeline(Schedule);
452 if (!Scheduled)
453 return;
455 unsigned numStages = Schedule.getMaxStageCount();
456 // No need to generate pipeline if there are no overlapped iterations.
457 if (numStages == 0)
458 return;
460 // Check that the maximum stage count is less than user-defined limit.
461 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages)
462 return;
464 generatePipelinedLoop(Schedule);
465 ++NumPipelined;
468 /// Clean up after the software pipeliner runs.
469 void SwingSchedulerDAG::finishBlock() {
470 for (MachineInstr *I : NewMIs)
471 MF.DeleteMachineInstr(I);
472 NewMIs.clear();
474 // Call the superclass.
475 ScheduleDAGInstrs::finishBlock();
478 /// Return the register values for the operands of a Phi instruction.
479 /// This function assume the instruction is a Phi.
480 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
481 unsigned &InitVal, unsigned &LoopVal) {
482 assert(Phi.isPHI() && "Expecting a Phi.");
484 InitVal = 0;
485 LoopVal = 0;
486 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
487 if (Phi.getOperand(i + 1).getMBB() != Loop)
488 InitVal = Phi.getOperand(i).getReg();
489 else
490 LoopVal = Phi.getOperand(i).getReg();
492 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
495 /// Return the Phi register value that comes from the incoming block.
496 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
497 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
498 if (Phi.getOperand(i + 1).getMBB() != LoopBB)
499 return Phi.getOperand(i).getReg();
500 return 0;
503 /// Return the Phi register value that comes the loop block.
504 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
505 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
506 if (Phi.getOperand(i + 1).getMBB() == LoopBB)
507 return Phi.getOperand(i).getReg();
508 return 0;
511 /// Return true if SUb can be reached from SUa following the chain edges.
512 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
513 SmallPtrSet<SUnit *, 8> Visited;
514 SmallVector<SUnit *, 8> Worklist;
515 Worklist.push_back(SUa);
516 while (!Worklist.empty()) {
517 const SUnit *SU = Worklist.pop_back_val();
518 for (auto &SI : SU->Succs) {
519 SUnit *SuccSU = SI.getSUnit();
520 if (SI.getKind() == SDep::Order) {
521 if (Visited.count(SuccSU))
522 continue;
523 if (SuccSU == SUb)
524 return true;
525 Worklist.push_back(SuccSU);
526 Visited.insert(SuccSU);
530 return false;
533 /// Return true if the instruction causes a chain between memory
534 /// references before and after it.
535 static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) {
536 return MI.isCall() || MI.hasUnmodeledSideEffects() ||
537 (MI.hasOrderedMemoryRef() &&
538 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA)));
541 /// Return the underlying objects for the memory references of an instruction.
542 /// This function calls the code in ValueTracking, but first checks that the
543 /// instruction has a memory operand.
544 static void getUnderlyingObjects(const MachineInstr *MI,
545 SmallVectorImpl<const Value *> &Objs,
546 const DataLayout &DL) {
547 if (!MI->hasOneMemOperand())
548 return;
549 MachineMemOperand *MM = *MI->memoperands_begin();
550 if (!MM->getValue())
551 return;
552 GetUnderlyingObjects(MM->getValue(), Objs, DL);
553 for (const Value *V : Objs) {
554 if (!isIdentifiedObject(V)) {
555 Objs.clear();
556 return;
558 Objs.push_back(V);
562 /// Add a chain edge between a load and store if the store can be an
563 /// alias of the load on a subsequent iteration, i.e., a loop carried
564 /// dependence. This code is very similar to the code in ScheduleDAGInstrs
565 /// but that code doesn't create loop carried dependences.
566 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
567 MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads;
568 Value *UnknownValue =
569 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext()));
570 for (auto &SU : SUnits) {
571 MachineInstr &MI = *SU.getInstr();
572 if (isDependenceBarrier(MI, AA))
573 PendingLoads.clear();
574 else if (MI.mayLoad()) {
575 SmallVector<const Value *, 4> Objs;
576 getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
577 if (Objs.empty())
578 Objs.push_back(UnknownValue);
579 for (auto V : Objs) {
580 SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
581 SUs.push_back(&SU);
583 } else if (MI.mayStore()) {
584 SmallVector<const Value *, 4> Objs;
585 getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
586 if (Objs.empty())
587 Objs.push_back(UnknownValue);
588 for (auto V : Objs) {
589 MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I =
590 PendingLoads.find(V);
591 if (I == PendingLoads.end())
592 continue;
593 for (auto Load : I->second) {
594 if (isSuccOrder(Load, &SU))
595 continue;
596 MachineInstr &LdMI = *Load->getInstr();
597 // First, perform the cheaper check that compares the base register.
598 // If they are the same and the load offset is less than the store
599 // offset, then mark the dependence as loop carried potentially.
600 const MachineOperand *BaseOp1, *BaseOp2;
601 int64_t Offset1, Offset2;
602 if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1, TRI) &&
603 TII->getMemOperandWithOffset(MI, BaseOp2, Offset2, TRI)) {
604 if (BaseOp1->isIdenticalTo(*BaseOp2) &&
605 (int)Offset1 < (int)Offset2) {
606 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) &&
607 "What happened to the chain edge?");
608 SDep Dep(Load, SDep::Barrier);
609 Dep.setLatency(1);
610 SU.addPred(Dep);
611 continue;
614 // Second, the more expensive check that uses alias analysis on the
615 // base registers. If they alias, and the load offset is less than
616 // the store offset, the mark the dependence as loop carried.
617 if (!AA) {
618 SDep Dep(Load, SDep::Barrier);
619 Dep.setLatency(1);
620 SU.addPred(Dep);
621 continue;
623 MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
624 MachineMemOperand *MMO2 = *MI.memoperands_begin();
625 if (!MMO1->getValue() || !MMO2->getValue()) {
626 SDep Dep(Load, SDep::Barrier);
627 Dep.setLatency(1);
628 SU.addPred(Dep);
629 continue;
631 if (MMO1->getValue() == MMO2->getValue() &&
632 MMO1->getOffset() <= MMO2->getOffset()) {
633 SDep Dep(Load, SDep::Barrier);
634 Dep.setLatency(1);
635 SU.addPred(Dep);
636 continue;
638 AliasResult AAResult = AA->alias(
639 MemoryLocation(MMO1->getValue(), LocationSize::unknown(),
640 MMO1->getAAInfo()),
641 MemoryLocation(MMO2->getValue(), LocationSize::unknown(),
642 MMO2->getAAInfo()));
644 if (AAResult != NoAlias) {
645 SDep Dep(Load, SDep::Barrier);
646 Dep.setLatency(1);
647 SU.addPred(Dep);
655 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
656 /// processes dependences for PHIs. This function adds true dependences
657 /// from a PHI to a use, and a loop carried dependence from the use to the
658 /// PHI. The loop carried dependence is represented as an anti dependence
659 /// edge. This function also removes chain dependences between unrelated
660 /// PHIs.
661 void SwingSchedulerDAG::updatePhiDependences() {
662 SmallVector<SDep, 4> RemoveDeps;
663 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
665 // Iterate over each DAG node.
666 for (SUnit &I : SUnits) {
667 RemoveDeps.clear();
668 // Set to true if the instruction has an operand defined by a Phi.
669 unsigned HasPhiUse = 0;
670 unsigned HasPhiDef = 0;
671 MachineInstr *MI = I.getInstr();
672 // Iterate over each operand, and we process the definitions.
673 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
674 MOE = MI->operands_end();
675 MOI != MOE; ++MOI) {
676 if (!MOI->isReg())
677 continue;
678 unsigned Reg = MOI->getReg();
679 if (MOI->isDef()) {
680 // If the register is used by a Phi, then create an anti dependence.
681 for (MachineRegisterInfo::use_instr_iterator
682 UI = MRI.use_instr_begin(Reg),
683 UE = MRI.use_instr_end();
684 UI != UE; ++UI) {
685 MachineInstr *UseMI = &*UI;
686 SUnit *SU = getSUnit(UseMI);
687 if (SU != nullptr && UseMI->isPHI()) {
688 if (!MI->isPHI()) {
689 SDep Dep(SU, SDep::Anti, Reg);
690 Dep.setLatency(1);
691 I.addPred(Dep);
692 } else {
693 HasPhiDef = Reg;
694 // Add a chain edge to a dependent Phi that isn't an existing
695 // predecessor.
696 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
697 I.addPred(SDep(SU, SDep::Barrier));
701 } else if (MOI->isUse()) {
702 // If the register is defined by a Phi, then create a true dependence.
703 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
704 if (DefMI == nullptr)
705 continue;
706 SUnit *SU = getSUnit(DefMI);
707 if (SU != nullptr && DefMI->isPHI()) {
708 if (!MI->isPHI()) {
709 SDep Dep(SU, SDep::Data, Reg);
710 Dep.setLatency(0);
711 ST.adjustSchedDependency(SU, &I, Dep);
712 I.addPred(Dep);
713 } else {
714 HasPhiUse = Reg;
715 // Add a chain edge to a dependent Phi that isn't an existing
716 // predecessor.
717 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
718 I.addPred(SDep(SU, SDep::Barrier));
723 // Remove order dependences from an unrelated Phi.
724 if (!SwpPruneDeps)
725 continue;
726 for (auto &PI : I.Preds) {
727 MachineInstr *PMI = PI.getSUnit()->getInstr();
728 if (PMI->isPHI() && PI.getKind() == SDep::Order) {
729 if (I.getInstr()->isPHI()) {
730 if (PMI->getOperand(0).getReg() == HasPhiUse)
731 continue;
732 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
733 continue;
735 RemoveDeps.push_back(PI);
738 for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
739 I.removePred(RemoveDeps[i]);
743 /// Iterate over each DAG node and see if we can change any dependences
744 /// in order to reduce the recurrence MII.
745 void SwingSchedulerDAG::changeDependences() {
746 // See if an instruction can use a value from the previous iteration.
747 // If so, we update the base and offset of the instruction and change
748 // the dependences.
749 for (SUnit &I : SUnits) {
750 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
751 int64_t NewOffset = 0;
752 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
753 NewOffset))
754 continue;
756 // Get the MI and SUnit for the instruction that defines the original base.
757 unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg();
758 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
759 if (!DefMI)
760 continue;
761 SUnit *DefSU = getSUnit(DefMI);
762 if (!DefSU)
763 continue;
764 // Get the MI and SUnit for the instruction that defins the new base.
765 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
766 if (!LastMI)
767 continue;
768 SUnit *LastSU = getSUnit(LastMI);
769 if (!LastSU)
770 continue;
772 if (Topo.IsReachable(&I, LastSU))
773 continue;
775 // Remove the dependence. The value now depends on a prior iteration.
776 SmallVector<SDep, 4> Deps;
777 for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E;
778 ++P)
779 if (P->getSUnit() == DefSU)
780 Deps.push_back(*P);
781 for (int i = 0, e = Deps.size(); i != e; i++) {
782 Topo.RemovePred(&I, Deps[i].getSUnit());
783 I.removePred(Deps[i]);
785 // Remove the chain dependence between the instructions.
786 Deps.clear();
787 for (auto &P : LastSU->Preds)
788 if (P.getSUnit() == &I && P.getKind() == SDep::Order)
789 Deps.push_back(P);
790 for (int i = 0, e = Deps.size(); i != e; i++) {
791 Topo.RemovePred(LastSU, Deps[i].getSUnit());
792 LastSU->removePred(Deps[i]);
795 // Add a dependence between the new instruction and the instruction
796 // that defines the new base.
797 SDep Dep(&I, SDep::Anti, NewBase);
798 Topo.AddPred(LastSU, &I);
799 LastSU->addPred(Dep);
801 // Remember the base and offset information so that we can update the
802 // instruction during code generation.
803 InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
807 namespace {
809 // FuncUnitSorter - Comparison operator used to sort instructions by
810 // the number of functional unit choices.
811 struct FuncUnitSorter {
812 const InstrItineraryData *InstrItins;
813 DenseMap<unsigned, unsigned> Resources;
815 FuncUnitSorter(const InstrItineraryData *IID) : InstrItins(IID) {}
817 // Compute the number of functional unit alternatives needed
818 // at each stage, and take the minimum value. We prioritize the
819 // instructions by the least number of choices first.
820 unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const {
821 unsigned schedClass = Inst->getDesc().getSchedClass();
822 unsigned min = UINT_MAX;
823 for (const InstrStage *IS = InstrItins->beginStage(schedClass),
824 *IE = InstrItins->endStage(schedClass);
825 IS != IE; ++IS) {
826 unsigned funcUnits = IS->getUnits();
827 unsigned numAlternatives = countPopulation(funcUnits);
828 if (numAlternatives < min) {
829 min = numAlternatives;
830 F = funcUnits;
833 return min;
836 // Compute the critical resources needed by the instruction. This
837 // function records the functional units needed by instructions that
838 // must use only one functional unit. We use this as a tie breaker
839 // for computing the resource MII. The instrutions that require
840 // the same, highly used, functional unit have high priority.
841 void calcCriticalResources(MachineInstr &MI) {
842 unsigned SchedClass = MI.getDesc().getSchedClass();
843 for (const InstrStage *IS = InstrItins->beginStage(SchedClass),
844 *IE = InstrItins->endStage(SchedClass);
845 IS != IE; ++IS) {
846 unsigned FuncUnits = IS->getUnits();
847 if (countPopulation(FuncUnits) == 1)
848 Resources[FuncUnits]++;
852 /// Return true if IS1 has less priority than IS2.
853 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
854 unsigned F1 = 0, F2 = 0;
855 unsigned MFUs1 = minFuncUnits(IS1, F1);
856 unsigned MFUs2 = minFuncUnits(IS2, F2);
857 if (MFUs1 == 1 && MFUs2 == 1)
858 return Resources.lookup(F1) < Resources.lookup(F2);
859 return MFUs1 > MFUs2;
863 } // end anonymous namespace
865 /// Calculate the resource constrained minimum initiation interval for the
866 /// specified loop. We use the DFA to model the resources needed for
867 /// each instruction, and we ignore dependences. A different DFA is created
868 /// for each cycle that is required. When adding a new instruction, we attempt
869 /// to add it to each existing DFA, until a legal space is found. If the
870 /// instruction cannot be reserved in an existing DFA, we create a new one.
871 unsigned SwingSchedulerDAG::calculateResMII() {
872 SmallVector<DFAPacketizer *, 8> Resources;
873 MachineBasicBlock *MBB = Loop.getHeader();
874 Resources.push_back(TII->CreateTargetScheduleState(MF.getSubtarget()));
876 // Sort the instructions by the number of available choices for scheduling,
877 // least to most. Use the number of critical resources as the tie breaker.
878 FuncUnitSorter FUS =
879 FuncUnitSorter(MF.getSubtarget().getInstrItineraryData());
880 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
881 E = MBB->getFirstTerminator();
882 I != E; ++I)
883 FUS.calcCriticalResources(*I);
884 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
885 FuncUnitOrder(FUS);
887 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
888 E = MBB->getFirstTerminator();
889 I != E; ++I)
890 FuncUnitOrder.push(&*I);
892 while (!FuncUnitOrder.empty()) {
893 MachineInstr *MI = FuncUnitOrder.top();
894 FuncUnitOrder.pop();
895 if (TII->isZeroCost(MI->getOpcode()))
896 continue;
897 // Attempt to reserve the instruction in an existing DFA. At least one
898 // DFA is needed for each cycle.
899 unsigned NumCycles = getSUnit(MI)->Latency;
900 unsigned ReservedCycles = 0;
901 SmallVectorImpl<DFAPacketizer *>::iterator RI = Resources.begin();
902 SmallVectorImpl<DFAPacketizer *>::iterator RE = Resources.end();
903 for (unsigned C = 0; C < NumCycles; ++C)
904 while (RI != RE) {
905 if ((*RI++)->canReserveResources(*MI)) {
906 ++ReservedCycles;
907 break;
910 // Start reserving resources using existing DFAs.
911 for (unsigned C = 0; C < ReservedCycles; ++C) {
912 --RI;
913 (*RI)->reserveResources(*MI);
915 // Add new DFAs, if needed, to reserve resources.
916 for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
917 DFAPacketizer *NewResource =
918 TII->CreateTargetScheduleState(MF.getSubtarget());
919 assert(NewResource->canReserveResources(*MI) && "Reserve error.");
920 NewResource->reserveResources(*MI);
921 Resources.push_back(NewResource);
924 int Resmii = Resources.size();
925 // Delete the memory for each of the DFAs that were created earlier.
926 for (DFAPacketizer *RI : Resources) {
927 DFAPacketizer *D = RI;
928 delete D;
930 Resources.clear();
931 return Resmii;
934 /// Calculate the recurrence-constrainted minimum initiation interval.
935 /// Iterate over each circuit. Compute the delay(c) and distance(c)
936 /// for each circuit. The II needs to satisfy the inequality
937 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
938 /// II that satisfies the inequality, and the RecMII is the maximum
939 /// of those values.
940 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
941 unsigned RecMII = 0;
943 for (NodeSet &Nodes : NodeSets) {
944 if (Nodes.empty())
945 continue;
947 unsigned Delay = Nodes.getLatency();
948 unsigned Distance = 1;
950 // ii = ceil(delay / distance)
951 unsigned CurMII = (Delay + Distance - 1) / Distance;
952 Nodes.setRecMII(CurMII);
953 if (CurMII > RecMII)
954 RecMII = CurMII;
957 return RecMII;
960 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
961 /// but we do this to find the circuits, and then change them back.
962 static void swapAntiDependences(std::vector<SUnit> &SUnits) {
963 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
964 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
965 SUnit *SU = &SUnits[i];
966 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end();
967 IP != EP; ++IP) {
968 if (IP->getKind() != SDep::Anti)
969 continue;
970 DepsAdded.push_back(std::make_pair(SU, *IP));
973 for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(),
974 E = DepsAdded.end();
975 I != E; ++I) {
976 // Remove this anti dependency and add one in the reverse direction.
977 SUnit *SU = I->first;
978 SDep &D = I->second;
979 SUnit *TargetSU = D.getSUnit();
980 unsigned Reg = D.getReg();
981 unsigned Lat = D.getLatency();
982 SU->removePred(D);
983 SDep Dep(SU, SDep::Anti, Reg);
984 Dep.setLatency(Lat);
985 TargetSU->addPred(Dep);
989 /// Create the adjacency structure of the nodes in the graph.
990 void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
991 SwingSchedulerDAG *DAG) {
992 BitVector Added(SUnits.size());
993 DenseMap<int, int> OutputDeps;
994 for (int i = 0, e = SUnits.size(); i != e; ++i) {
995 Added.reset();
996 // Add any successor to the adjacency matrix and exclude duplicates.
997 for (auto &SI : SUnits[i].Succs) {
998 // Only create a back-edge on the first and last nodes of a dependence
999 // chain. This records any chains and adds them later.
1000 if (SI.getKind() == SDep::Output) {
1001 int N = SI.getSUnit()->NodeNum;
1002 int BackEdge = i;
1003 auto Dep = OutputDeps.find(BackEdge);
1004 if (Dep != OutputDeps.end()) {
1005 BackEdge = Dep->second;
1006 OutputDeps.erase(Dep);
1008 OutputDeps[N] = BackEdge;
1010 // Do not process a boundary node, an artificial node.
1011 // A back-edge is processed only if it goes to a Phi.
1012 if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() ||
1013 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
1014 continue;
1015 int N = SI.getSUnit()->NodeNum;
1016 if (!Added.test(N)) {
1017 AdjK[i].push_back(N);
1018 Added.set(N);
1021 // A chain edge between a store and a load is treated as a back-edge in the
1022 // adjacency matrix.
1023 for (auto &PI : SUnits[i].Preds) {
1024 if (!SUnits[i].getInstr()->mayStore() ||
1025 !DAG->isLoopCarriedDep(&SUnits[i], PI, false))
1026 continue;
1027 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
1028 int N = PI.getSUnit()->NodeNum;
1029 if (!Added.test(N)) {
1030 AdjK[i].push_back(N);
1031 Added.set(N);
1036 // Add back-edges in the adjacency matrix for the output dependences.
1037 for (auto &OD : OutputDeps)
1038 if (!Added.test(OD.second)) {
1039 AdjK[OD.first].push_back(OD.second);
1040 Added.set(OD.second);
1044 /// Identify an elementary circuit in the dependence graph starting at the
1045 /// specified node.
1046 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
1047 bool HasBackedge) {
1048 SUnit *SV = &SUnits[V];
1049 bool F = false;
1050 Stack.insert(SV);
1051 Blocked.set(V);
1053 for (auto W : AdjK[V]) {
1054 if (NumPaths > MaxPaths)
1055 break;
1056 if (W < S)
1057 continue;
1058 if (W == S) {
1059 if (!HasBackedge)
1060 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
1061 F = true;
1062 ++NumPaths;
1063 break;
1064 } else if (!Blocked.test(W)) {
1065 if (circuit(W, S, NodeSets,
1066 Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge))
1067 F = true;
1071 if (F)
1072 unblock(V);
1073 else {
1074 for (auto W : AdjK[V]) {
1075 if (W < S)
1076 continue;
1077 if (B[W].count(SV) == 0)
1078 B[W].insert(SV);
1081 Stack.pop_back();
1082 return F;
1085 /// Unblock a node in the circuit finding algorithm.
1086 void SwingSchedulerDAG::Circuits::unblock(int U) {
1087 Blocked.reset(U);
1088 SmallPtrSet<SUnit *, 4> &BU = B[U];
1089 while (!BU.empty()) {
1090 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
1091 assert(SI != BU.end() && "Invalid B set.");
1092 SUnit *W = *SI;
1093 BU.erase(W);
1094 if (Blocked.test(W->NodeNum))
1095 unblock(W->NodeNum);
1099 /// Identify all the elementary circuits in the dependence graph using
1100 /// Johnson's circuit algorithm.
1101 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
1102 // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1103 // but we do this to find the circuits, and then change them back.
1104 swapAntiDependences(SUnits);
1106 Circuits Cir(SUnits, Topo);
1107 // Create the adjacency structure.
1108 Cir.createAdjacencyStructure(this);
1109 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1110 Cir.reset();
1111 Cir.circuit(i, i, NodeSets);
1114 // Change the dependences back so that we've created a DAG again.
1115 swapAntiDependences(SUnits);
1118 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that
1119 // is loop-carried to the USE in next iteration. This will help pipeliner avoid
1120 // additional copies that are needed across iterations. An artificial dependence
1121 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE.
1123 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried)
1124 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE
1125 // PHI-------True-Dep------> USEOfPhi
1127 // The mutation creates
1128 // USEOfPHI -------Artificial-Dep---> SRCOfCopy
1130 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy
1131 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled
1132 // late to avoid additional copies across iterations. The possible scheduling
1133 // order would be
1134 // USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE.
1136 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) {
1137 for (SUnit &SU : DAG->SUnits) {
1138 // Find the COPY/REG_SEQUENCE instruction.
1139 if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence())
1140 continue;
1142 // Record the loop carried PHIs.
1143 SmallVector<SUnit *, 4> PHISUs;
1144 // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions.
1145 SmallVector<SUnit *, 4> SrcSUs;
1147 for (auto &Dep : SU.Preds) {
1148 SUnit *TmpSU = Dep.getSUnit();
1149 MachineInstr *TmpMI = TmpSU->getInstr();
1150 SDep::Kind DepKind = Dep.getKind();
1151 // Save the loop carried PHI.
1152 if (DepKind == SDep::Anti && TmpMI->isPHI())
1153 PHISUs.push_back(TmpSU);
1154 // Save the source of COPY/REG_SEQUENCE.
1155 // If the source has no pre-decessors, we will end up creating cycles.
1156 else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0)
1157 SrcSUs.push_back(TmpSU);
1160 if (PHISUs.size() == 0 || SrcSUs.size() == 0)
1161 continue;
1163 // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this
1164 // SUnit to the container.
1165 SmallVector<SUnit *, 8> UseSUs;
1166 for (auto I = PHISUs.begin(); I != PHISUs.end(); ++I) {
1167 for (auto &Dep : (*I)->Succs) {
1168 if (Dep.getKind() != SDep::Data)
1169 continue;
1171 SUnit *TmpSU = Dep.getSUnit();
1172 MachineInstr *TmpMI = TmpSU->getInstr();
1173 if (TmpMI->isPHI() || TmpMI->isRegSequence()) {
1174 PHISUs.push_back(TmpSU);
1175 continue;
1177 UseSUs.push_back(TmpSU);
1181 if (UseSUs.size() == 0)
1182 continue;
1184 SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG);
1185 // Add the artificial dependencies if it does not form a cycle.
1186 for (auto I : UseSUs) {
1187 for (auto Src : SrcSUs) {
1188 if (!SDAG->Topo.IsReachable(I, Src) && Src != I) {
1189 Src->addPred(SDep(I, SDep::Artificial));
1190 SDAG->Topo.AddPred(Src, I);
1197 /// Return true for DAG nodes that we ignore when computing the cost functions.
1198 /// We ignore the back-edge recurrence in order to avoid unbounded recursion
1199 /// in the calculation of the ASAP, ALAP, etc functions.
1200 static bool ignoreDependence(const SDep &D, bool isPred) {
1201 if (D.isArtificial())
1202 return true;
1203 return D.getKind() == SDep::Anti && isPred;
1206 /// Compute several functions need to order the nodes for scheduling.
1207 /// ASAP - Earliest time to schedule a node.
1208 /// ALAP - Latest time to schedule a node.
1209 /// MOV - Mobility function, difference between ALAP and ASAP.
1210 /// D - Depth of each node.
1211 /// H - Height of each node.
1212 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
1213 ScheduleInfo.resize(SUnits.size());
1215 LLVM_DEBUG({
1216 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
1217 E = Topo.end();
1218 I != E; ++I) {
1219 const SUnit &SU = SUnits[*I];
1220 dumpNode(SU);
1224 int maxASAP = 0;
1225 // Compute ASAP and ZeroLatencyDepth.
1226 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
1227 E = Topo.end();
1228 I != E; ++I) {
1229 int asap = 0;
1230 int zeroLatencyDepth = 0;
1231 SUnit *SU = &SUnits[*I];
1232 for (SUnit::const_pred_iterator IP = SU->Preds.begin(),
1233 EP = SU->Preds.end();
1234 IP != EP; ++IP) {
1235 SUnit *pred = IP->getSUnit();
1236 if (IP->getLatency() == 0)
1237 zeroLatencyDepth =
1238 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1);
1239 if (ignoreDependence(*IP, true))
1240 continue;
1241 asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() -
1242 getDistance(pred, SU, *IP) * MII));
1244 maxASAP = std::max(maxASAP, asap);
1245 ScheduleInfo[*I].ASAP = asap;
1246 ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth;
1249 // Compute ALAP, ZeroLatencyHeight, and MOV.
1250 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(),
1251 E = Topo.rend();
1252 I != E; ++I) {
1253 int alap = maxASAP;
1254 int zeroLatencyHeight = 0;
1255 SUnit *SU = &SUnits[*I];
1256 for (SUnit::const_succ_iterator IS = SU->Succs.begin(),
1257 ES = SU->Succs.end();
1258 IS != ES; ++IS) {
1259 SUnit *succ = IS->getSUnit();
1260 if (IS->getLatency() == 0)
1261 zeroLatencyHeight =
1262 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1);
1263 if (ignoreDependence(*IS, true))
1264 continue;
1265 alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() +
1266 getDistance(SU, succ, *IS) * MII));
1269 ScheduleInfo[*I].ALAP = alap;
1270 ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight;
1273 // After computing the node functions, compute the summary for each node set.
1274 for (NodeSet &I : NodeSets)
1275 I.computeNodeSetInfo(this);
1277 LLVM_DEBUG({
1278 for (unsigned i = 0; i < SUnits.size(); i++) {
1279 dbgs() << "\tNode " << i << ":\n";
1280 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n";
1281 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n";
1282 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n";
1283 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n";
1284 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n";
1285 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n";
1286 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n";
1291 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined
1292 /// as the predecessors of the elements of NodeOrder that are not also in
1293 /// NodeOrder.
1294 static bool pred_L(SetVector<SUnit *> &NodeOrder,
1295 SmallSetVector<SUnit *, 8> &Preds,
1296 const NodeSet *S = nullptr) {
1297 Preds.clear();
1298 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1299 I != E; ++I) {
1300 for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end();
1301 PI != PE; ++PI) {
1302 if (S && S->count(PI->getSUnit()) == 0)
1303 continue;
1304 if (ignoreDependence(*PI, true))
1305 continue;
1306 if (NodeOrder.count(PI->getSUnit()) == 0)
1307 Preds.insert(PI->getSUnit());
1309 // Back-edges are predecessors with an anti-dependence.
1310 for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(),
1311 ES = (*I)->Succs.end();
1312 IS != ES; ++IS) {
1313 if (IS->getKind() != SDep::Anti)
1314 continue;
1315 if (S && S->count(IS->getSUnit()) == 0)
1316 continue;
1317 if (NodeOrder.count(IS->getSUnit()) == 0)
1318 Preds.insert(IS->getSUnit());
1321 return !Preds.empty();
1324 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined
1325 /// as the successors of the elements of NodeOrder that are not also in
1326 /// NodeOrder.
1327 static bool succ_L(SetVector<SUnit *> &NodeOrder,
1328 SmallSetVector<SUnit *, 8> &Succs,
1329 const NodeSet *S = nullptr) {
1330 Succs.clear();
1331 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1332 I != E; ++I) {
1333 for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end();
1334 SI != SE; ++SI) {
1335 if (S && S->count(SI->getSUnit()) == 0)
1336 continue;
1337 if (ignoreDependence(*SI, false))
1338 continue;
1339 if (NodeOrder.count(SI->getSUnit()) == 0)
1340 Succs.insert(SI->getSUnit());
1342 for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(),
1343 PE = (*I)->Preds.end();
1344 PI != PE; ++PI) {
1345 if (PI->getKind() != SDep::Anti)
1346 continue;
1347 if (S && S->count(PI->getSUnit()) == 0)
1348 continue;
1349 if (NodeOrder.count(PI->getSUnit()) == 0)
1350 Succs.insert(PI->getSUnit());
1353 return !Succs.empty();
1356 /// Return true if there is a path from the specified node to any of the nodes
1357 /// in DestNodes. Keep track and return the nodes in any path.
1358 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
1359 SetVector<SUnit *> &DestNodes,
1360 SetVector<SUnit *> &Exclude,
1361 SmallPtrSet<SUnit *, 8> &Visited) {
1362 if (Cur->isBoundaryNode())
1363 return false;
1364 if (Exclude.count(Cur) != 0)
1365 return false;
1366 if (DestNodes.count(Cur) != 0)
1367 return true;
1368 if (!Visited.insert(Cur).second)
1369 return Path.count(Cur) != 0;
1370 bool FoundPath = false;
1371 for (auto &SI : Cur->Succs)
1372 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
1373 for (auto &PI : Cur->Preds)
1374 if (PI.getKind() == SDep::Anti)
1375 FoundPath |=
1376 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
1377 if (FoundPath)
1378 Path.insert(Cur);
1379 return FoundPath;
1382 /// Return true if Set1 is a subset of Set2.
1383 template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) {
1384 for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I)
1385 if (Set2.count(*I) == 0)
1386 return false;
1387 return true;
1390 /// Compute the live-out registers for the instructions in a node-set.
1391 /// The live-out registers are those that are defined in the node-set,
1392 /// but not used. Except for use operands of Phis.
1393 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
1394 NodeSet &NS) {
1395 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1396 MachineRegisterInfo &MRI = MF.getRegInfo();
1397 SmallVector<RegisterMaskPair, 8> LiveOutRegs;
1398 SmallSet<unsigned, 4> Uses;
1399 for (SUnit *SU : NS) {
1400 const MachineInstr *MI = SU->getInstr();
1401 if (MI->isPHI())
1402 continue;
1403 for (const MachineOperand &MO : MI->operands())
1404 if (MO.isReg() && MO.isUse()) {
1405 unsigned Reg = MO.getReg();
1406 if (TargetRegisterInfo::isVirtualRegister(Reg))
1407 Uses.insert(Reg);
1408 else if (MRI.isAllocatable(Reg))
1409 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1410 Uses.insert(*Units);
1413 for (SUnit *SU : NS)
1414 for (const MachineOperand &MO : SU->getInstr()->operands())
1415 if (MO.isReg() && MO.isDef() && !MO.isDead()) {
1416 unsigned Reg = MO.getReg();
1417 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1418 if (!Uses.count(Reg))
1419 LiveOutRegs.push_back(RegisterMaskPair(Reg,
1420 LaneBitmask::getNone()));
1421 } else if (MRI.isAllocatable(Reg)) {
1422 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1423 if (!Uses.count(*Units))
1424 LiveOutRegs.push_back(RegisterMaskPair(*Units,
1425 LaneBitmask::getNone()));
1428 RPTracker.addLiveRegs(LiveOutRegs);
1431 /// A heuristic to filter nodes in recurrent node-sets if the register
1432 /// pressure of a set is too high.
1433 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
1434 for (auto &NS : NodeSets) {
1435 // Skip small node-sets since they won't cause register pressure problems.
1436 if (NS.size() <= 2)
1437 continue;
1438 IntervalPressure RecRegPressure;
1439 RegPressureTracker RecRPTracker(RecRegPressure);
1440 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
1441 computeLiveOuts(MF, RecRPTracker, NS);
1442 RecRPTracker.closeBottom();
1444 std::vector<SUnit *> SUnits(NS.begin(), NS.end());
1445 llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) {
1446 return A->NodeNum > B->NodeNum;
1449 for (auto &SU : SUnits) {
1450 // Since we're computing the register pressure for a subset of the
1451 // instructions in a block, we need to set the tracker for each
1452 // instruction in the node-set. The tracker is set to the instruction
1453 // just after the one we're interested in.
1454 MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
1455 RecRPTracker.setPos(std::next(CurInstI));
1457 RegPressureDelta RPDelta;
1458 ArrayRef<PressureChange> CriticalPSets;
1459 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
1460 CriticalPSets,
1461 RecRegPressure.MaxSetPressure);
1462 if (RPDelta.Excess.isValid()) {
1463 LLVM_DEBUG(
1464 dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
1465 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
1466 << ":" << RPDelta.Excess.getUnitInc());
1467 NS.setExceedPressure(SU);
1468 break;
1470 RecRPTracker.recede();
1475 /// A heuristic to colocate node sets that have the same set of
1476 /// successors.
1477 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
1478 unsigned Colocate = 0;
1479 for (int i = 0, e = NodeSets.size(); i < e; ++i) {
1480 NodeSet &N1 = NodeSets[i];
1481 SmallSetVector<SUnit *, 8> S1;
1482 if (N1.empty() || !succ_L(N1, S1))
1483 continue;
1484 for (int j = i + 1; j < e; ++j) {
1485 NodeSet &N2 = NodeSets[j];
1486 if (N1.compareRecMII(N2) != 0)
1487 continue;
1488 SmallSetVector<SUnit *, 8> S2;
1489 if (N2.empty() || !succ_L(N2, S2))
1490 continue;
1491 if (isSubset(S1, S2) && S1.size() == S2.size()) {
1492 N1.setColocate(++Colocate);
1493 N2.setColocate(Colocate);
1494 break;
1500 /// Check if the existing node-sets are profitable. If not, then ignore the
1501 /// recurrent node-sets, and attempt to schedule all nodes together. This is
1502 /// a heuristic. If the MII is large and all the recurrent node-sets are small,
1503 /// then it's best to try to schedule all instructions together instead of
1504 /// starting with the recurrent node-sets.
1505 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
1506 // Look for loops with a large MII.
1507 if (MII < 17)
1508 return;
1509 // Check if the node-set contains only a simple add recurrence.
1510 for (auto &NS : NodeSets) {
1511 if (NS.getRecMII() > 2)
1512 return;
1513 if (NS.getMaxDepth() > MII)
1514 return;
1516 NodeSets.clear();
1517 LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n");
1518 return;
1521 /// Add the nodes that do not belong to a recurrence set into groups
1522 /// based upon connected componenets.
1523 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
1524 SetVector<SUnit *> NodesAdded;
1525 SmallPtrSet<SUnit *, 8> Visited;
1526 // Add the nodes that are on a path between the previous node sets and
1527 // the current node set.
1528 for (NodeSet &I : NodeSets) {
1529 SmallSetVector<SUnit *, 8> N;
1530 // Add the nodes from the current node set to the previous node set.
1531 if (succ_L(I, N)) {
1532 SetVector<SUnit *> Path;
1533 for (SUnit *NI : N) {
1534 Visited.clear();
1535 computePath(NI, Path, NodesAdded, I, Visited);
1537 if (!Path.empty())
1538 I.insert(Path.begin(), Path.end());
1540 // Add the nodes from the previous node set to the current node set.
1541 N.clear();
1542 if (succ_L(NodesAdded, N)) {
1543 SetVector<SUnit *> Path;
1544 for (SUnit *NI : N) {
1545 Visited.clear();
1546 computePath(NI, Path, I, NodesAdded, Visited);
1548 if (!Path.empty())
1549 I.insert(Path.begin(), Path.end());
1551 NodesAdded.insert(I.begin(), I.end());
1554 // Create a new node set with the connected nodes of any successor of a node
1555 // in a recurrent set.
1556 NodeSet NewSet;
1557 SmallSetVector<SUnit *, 8> N;
1558 if (succ_L(NodesAdded, N))
1559 for (SUnit *I : N)
1560 addConnectedNodes(I, NewSet, NodesAdded);
1561 if (!NewSet.empty())
1562 NodeSets.push_back(NewSet);
1564 // Create a new node set with the connected nodes of any predecessor of a node
1565 // in a recurrent set.
1566 NewSet.clear();
1567 if (pred_L(NodesAdded, N))
1568 for (SUnit *I : N)
1569 addConnectedNodes(I, NewSet, NodesAdded);
1570 if (!NewSet.empty())
1571 NodeSets.push_back(NewSet);
1573 // Create new nodes sets with the connected nodes any remaining node that
1574 // has no predecessor.
1575 for (unsigned i = 0; i < SUnits.size(); ++i) {
1576 SUnit *SU = &SUnits[i];
1577 if (NodesAdded.count(SU) == 0) {
1578 NewSet.clear();
1579 addConnectedNodes(SU, NewSet, NodesAdded);
1580 if (!NewSet.empty())
1581 NodeSets.push_back(NewSet);
1586 /// Add the node to the set, and add all of its connected nodes to the set.
1587 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
1588 SetVector<SUnit *> &NodesAdded) {
1589 NewSet.insert(SU);
1590 NodesAdded.insert(SU);
1591 for (auto &SI : SU->Succs) {
1592 SUnit *Successor = SI.getSUnit();
1593 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0)
1594 addConnectedNodes(Successor, NewSet, NodesAdded);
1596 for (auto &PI : SU->Preds) {
1597 SUnit *Predecessor = PI.getSUnit();
1598 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
1599 addConnectedNodes(Predecessor, NewSet, NodesAdded);
1603 /// Return true if Set1 contains elements in Set2. The elements in common
1604 /// are returned in a different container.
1605 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
1606 SmallSetVector<SUnit *, 8> &Result) {
1607 Result.clear();
1608 for (unsigned i = 0, e = Set1.size(); i != e; ++i) {
1609 SUnit *SU = Set1[i];
1610 if (Set2.count(SU) != 0)
1611 Result.insert(SU);
1613 return !Result.empty();
1616 /// Merge the recurrence node sets that have the same initial node.
1617 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
1618 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1619 ++I) {
1620 NodeSet &NI = *I;
1621 for (NodeSetType::iterator J = I + 1; J != E;) {
1622 NodeSet &NJ = *J;
1623 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
1624 if (NJ.compareRecMII(NI) > 0)
1625 NI.setRecMII(NJ.getRecMII());
1626 for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI;
1627 ++NII)
1628 I->insert(*NII);
1629 NodeSets.erase(J);
1630 E = NodeSets.end();
1631 } else {
1632 ++J;
1638 /// Remove nodes that have been scheduled in previous NodeSets.
1639 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
1640 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1641 ++I)
1642 for (NodeSetType::iterator J = I + 1; J != E;) {
1643 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
1645 if (J->empty()) {
1646 NodeSets.erase(J);
1647 E = NodeSets.end();
1648 } else {
1649 ++J;
1654 /// Compute an ordered list of the dependence graph nodes, which
1655 /// indicates the order that the nodes will be scheduled. This is a
1656 /// two-level algorithm. First, a partial order is created, which
1657 /// consists of a list of sets ordered from highest to lowest priority.
1658 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
1659 SmallSetVector<SUnit *, 8> R;
1660 NodeOrder.clear();
1662 for (auto &Nodes : NodeSets) {
1663 LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
1664 OrderKind Order;
1665 SmallSetVector<SUnit *, 8> N;
1666 if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) {
1667 R.insert(N.begin(), N.end());
1668 Order = BottomUp;
1669 LLVM_DEBUG(dbgs() << " Bottom up (preds) ");
1670 } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) {
1671 R.insert(N.begin(), N.end());
1672 Order = TopDown;
1673 LLVM_DEBUG(dbgs() << " Top down (succs) ");
1674 } else if (isIntersect(N, Nodes, R)) {
1675 // If some of the successors are in the existing node-set, then use the
1676 // top-down ordering.
1677 Order = TopDown;
1678 LLVM_DEBUG(dbgs() << " Top down (intersect) ");
1679 } else if (NodeSets.size() == 1) {
1680 for (auto &N : Nodes)
1681 if (N->Succs.size() == 0)
1682 R.insert(N);
1683 Order = BottomUp;
1684 LLVM_DEBUG(dbgs() << " Bottom up (all) ");
1685 } else {
1686 // Find the node with the highest ASAP.
1687 SUnit *maxASAP = nullptr;
1688 for (SUnit *SU : Nodes) {
1689 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) ||
1690 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum))
1691 maxASAP = SU;
1693 R.insert(maxASAP);
1694 Order = BottomUp;
1695 LLVM_DEBUG(dbgs() << " Bottom up (default) ");
1698 while (!R.empty()) {
1699 if (Order == TopDown) {
1700 // Choose the node with the maximum height. If more than one, choose
1701 // the node wiTH the maximum ZeroLatencyHeight. If still more than one,
1702 // choose the node with the lowest MOV.
1703 while (!R.empty()) {
1704 SUnit *maxHeight = nullptr;
1705 for (SUnit *I : R) {
1706 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight))
1707 maxHeight = I;
1708 else if (getHeight(I) == getHeight(maxHeight) &&
1709 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight))
1710 maxHeight = I;
1711 else if (getHeight(I) == getHeight(maxHeight) &&
1712 getZeroLatencyHeight(I) ==
1713 getZeroLatencyHeight(maxHeight) &&
1714 getMOV(I) < getMOV(maxHeight))
1715 maxHeight = I;
1717 NodeOrder.insert(maxHeight);
1718 LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " ");
1719 R.remove(maxHeight);
1720 for (const auto &I : maxHeight->Succs) {
1721 if (Nodes.count(I.getSUnit()) == 0)
1722 continue;
1723 if (NodeOrder.count(I.getSUnit()) != 0)
1724 continue;
1725 if (ignoreDependence(I, false))
1726 continue;
1727 R.insert(I.getSUnit());
1729 // Back-edges are predecessors with an anti-dependence.
1730 for (const auto &I : maxHeight->Preds) {
1731 if (I.getKind() != SDep::Anti)
1732 continue;
1733 if (Nodes.count(I.getSUnit()) == 0)
1734 continue;
1735 if (NodeOrder.count(I.getSUnit()) != 0)
1736 continue;
1737 R.insert(I.getSUnit());
1740 Order = BottomUp;
1741 LLVM_DEBUG(dbgs() << "\n Switching order to bottom up ");
1742 SmallSetVector<SUnit *, 8> N;
1743 if (pred_L(NodeOrder, N, &Nodes))
1744 R.insert(N.begin(), N.end());
1745 } else {
1746 // Choose the node with the maximum depth. If more than one, choose
1747 // the node with the maximum ZeroLatencyDepth. If still more than one,
1748 // choose the node with the lowest MOV.
1749 while (!R.empty()) {
1750 SUnit *maxDepth = nullptr;
1751 for (SUnit *I : R) {
1752 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth))
1753 maxDepth = I;
1754 else if (getDepth(I) == getDepth(maxDepth) &&
1755 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth))
1756 maxDepth = I;
1757 else if (getDepth(I) == getDepth(maxDepth) &&
1758 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) &&
1759 getMOV(I) < getMOV(maxDepth))
1760 maxDepth = I;
1762 NodeOrder.insert(maxDepth);
1763 LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " ");
1764 R.remove(maxDepth);
1765 if (Nodes.isExceedSU(maxDepth)) {
1766 Order = TopDown;
1767 R.clear();
1768 R.insert(Nodes.getNode(0));
1769 break;
1771 for (const auto &I : maxDepth->Preds) {
1772 if (Nodes.count(I.getSUnit()) == 0)
1773 continue;
1774 if (NodeOrder.count(I.getSUnit()) != 0)
1775 continue;
1776 R.insert(I.getSUnit());
1778 // Back-edges are predecessors with an anti-dependence.
1779 for (const auto &I : maxDepth->Succs) {
1780 if (I.getKind() != SDep::Anti)
1781 continue;
1782 if (Nodes.count(I.getSUnit()) == 0)
1783 continue;
1784 if (NodeOrder.count(I.getSUnit()) != 0)
1785 continue;
1786 R.insert(I.getSUnit());
1789 Order = TopDown;
1790 LLVM_DEBUG(dbgs() << "\n Switching order to top down ");
1791 SmallSetVector<SUnit *, 8> N;
1792 if (succ_L(NodeOrder, N, &Nodes))
1793 R.insert(N.begin(), N.end());
1796 LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n");
1799 LLVM_DEBUG({
1800 dbgs() << "Node order: ";
1801 for (SUnit *I : NodeOrder)
1802 dbgs() << " " << I->NodeNum << " ";
1803 dbgs() << "\n";
1807 /// Process the nodes in the computed order and create the pipelined schedule
1808 /// of the instructions, if possible. Return true if a schedule is found.
1809 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
1810 if (NodeOrder.empty())
1811 return false;
1813 bool scheduleFound = false;
1814 unsigned II = 0;
1815 // Keep increasing II until a valid schedule is found.
1816 for (II = MII; II <= MAX_II && !scheduleFound; ++II) {
1817 Schedule.reset();
1818 Schedule.setInitiationInterval(II);
1819 LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n");
1821 SetVector<SUnit *>::iterator NI = NodeOrder.begin();
1822 SetVector<SUnit *>::iterator NE = NodeOrder.end();
1823 do {
1824 SUnit *SU = *NI;
1826 // Compute the schedule time for the instruction, which is based
1827 // upon the scheduled time for any predecessors/successors.
1828 int EarlyStart = INT_MIN;
1829 int LateStart = INT_MAX;
1830 // These values are set when the size of the schedule window is limited
1831 // due to chain dependences.
1832 int SchedEnd = INT_MAX;
1833 int SchedStart = INT_MIN;
1834 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
1835 II, this);
1836 LLVM_DEBUG({
1837 dbgs() << "Inst (" << SU->NodeNum << ") ";
1838 SU->getInstr()->dump();
1839 dbgs() << "\n";
1841 LLVM_DEBUG({
1842 dbgs() << "\tes: " << EarlyStart << " ls: " << LateStart
1843 << " me: " << SchedEnd << " ms: " << SchedStart << "\n";
1846 if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
1847 SchedStart > LateStart)
1848 scheduleFound = false;
1849 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) {
1850 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
1851 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
1852 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) {
1853 SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
1854 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
1855 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
1856 SchedEnd =
1857 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
1858 // When scheduling a Phi it is better to start at the late cycle and go
1859 // backwards. The default order may insert the Phi too far away from
1860 // its first dependence.
1861 if (SU->getInstr()->isPHI())
1862 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
1863 else
1864 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
1865 } else {
1866 int FirstCycle = Schedule.getFirstCycle();
1867 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
1868 FirstCycle + getASAP(SU) + II - 1, II);
1870 // Even if we find a schedule, make sure the schedule doesn't exceed the
1871 // allowable number of stages. We keep trying if this happens.
1872 if (scheduleFound)
1873 if (SwpMaxStages > -1 &&
1874 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
1875 scheduleFound = false;
1877 LLVM_DEBUG({
1878 if (!scheduleFound)
1879 dbgs() << "\tCan't schedule\n";
1881 } while (++NI != NE && scheduleFound);
1883 // If a schedule is found, check if it is a valid schedule too.
1884 if (scheduleFound)
1885 scheduleFound = Schedule.isValidSchedule(this);
1888 LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound << " (II=" << II
1889 << ")\n");
1891 if (scheduleFound)
1892 Schedule.finalizeSchedule(this);
1893 else
1894 Schedule.reset();
1896 return scheduleFound && Schedule.getMaxStageCount() > 0;
1899 /// Given a schedule for the loop, generate a new version of the loop,
1900 /// and replace the old version. This function generates a prolog
1901 /// that contains the initial iterations in the pipeline, and kernel
1902 /// loop, and the epilogue that contains the code for the final
1903 /// iterations.
1904 void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) {
1905 // Create a new basic block for the kernel and add it to the CFG.
1906 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
1908 unsigned MaxStageCount = Schedule.getMaxStageCount();
1910 // Remember the registers that are used in different stages. The index is
1911 // the iteration, or stage, that the instruction is scheduled in. This is
1912 // a map between register names in the original block and the names created
1913 // in each stage of the pipelined loop.
1914 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
1915 InstrMapTy InstrMap;
1917 SmallVector<MachineBasicBlock *, 4> PrologBBs;
1918 // Generate the prolog instructions that set up the pipeline.
1919 generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs);
1920 MF.insert(BB->getIterator(), KernelBB);
1922 // Rearrange the instructions to generate the new, pipelined loop,
1923 // and update register names as needed.
1924 for (int Cycle = Schedule.getFirstCycle(),
1925 LastCycle = Schedule.getFinalCycle();
1926 Cycle <= LastCycle; ++Cycle) {
1927 std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle);
1928 // This inner loop schedules each instruction in the cycle.
1929 for (SUnit *CI : CycleInstrs) {
1930 if (CI->getInstr()->isPHI())
1931 continue;
1932 unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr()));
1933 MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum);
1934 updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap);
1935 KernelBB->push_back(NewMI);
1936 InstrMap[NewMI] = CI->getInstr();
1940 // Copy any terminator instructions to the new kernel, and update
1941 // names as needed.
1942 for (MachineBasicBlock::iterator I = BB->getFirstTerminator(),
1943 E = BB->instr_end();
1944 I != E; ++I) {
1945 MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
1946 updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap);
1947 KernelBB->push_back(NewMI);
1948 InstrMap[NewMI] = &*I;
1951 KernelBB->transferSuccessors(BB);
1952 KernelBB->replaceSuccessor(BB, KernelBB);
1954 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule,
1955 VRMap, InstrMap, MaxStageCount, MaxStageCount, false);
1956 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap,
1957 InstrMap, MaxStageCount, MaxStageCount, false);
1959 LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
1961 SmallVector<MachineBasicBlock *, 4> EpilogBBs;
1962 // Generate the epilog instructions to complete the pipeline.
1963 generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs,
1964 PrologBBs);
1966 // We need this step because the register allocation doesn't handle some
1967 // situations well, so we insert copies to help out.
1968 splitLifetimes(KernelBB, EpilogBBs, Schedule);
1970 // Remove dead instructions due to loop induction variables.
1971 removeDeadInstructions(KernelBB, EpilogBBs);
1973 // Add branches between prolog and epilog blocks.
1974 addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap);
1976 // Remove the original loop since it's no longer referenced.
1977 for (auto &I : *BB)
1978 LIS.RemoveMachineInstrFromMaps(I);
1979 BB->clear();
1980 BB->eraseFromParent();
1982 delete[] VRMap;
1985 /// Generate the pipeline prolog code.
1986 void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage,
1987 MachineBasicBlock *KernelBB,
1988 ValueMapTy *VRMap,
1989 MBBVectorTy &PrologBBs) {
1990 MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader();
1991 assert(PreheaderBB != nullptr &&
1992 "Need to add code to handle loops w/o preheader");
1993 MachineBasicBlock *PredBB = PreheaderBB;
1994 InstrMapTy InstrMap;
1996 // Generate a basic block for each stage, not including the last stage,
1997 // which will be generated in the kernel. Each basic block may contain
1998 // instructions from multiple stages/iterations.
1999 for (unsigned i = 0; i < LastStage; ++i) {
2000 // Create and insert the prolog basic block prior to the original loop
2001 // basic block. The original loop is removed later.
2002 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
2003 PrologBBs.push_back(NewBB);
2004 MF.insert(BB->getIterator(), NewBB);
2005 NewBB->transferSuccessors(PredBB);
2006 PredBB->addSuccessor(NewBB);
2007 PredBB = NewBB;
2009 // Generate instructions for each appropriate stage. Process instructions
2010 // in original program order.
2011 for (int StageNum = i; StageNum >= 0; --StageNum) {
2012 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
2013 BBE = BB->getFirstTerminator();
2014 BBI != BBE; ++BBI) {
2015 if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) {
2016 if (BBI->isPHI())
2017 continue;
2018 MachineInstr *NewMI =
2019 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule);
2020 updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule,
2021 VRMap);
2022 NewBB->push_back(NewMI);
2023 InstrMap[NewMI] = &*BBI;
2027 rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap);
2028 LLVM_DEBUG({
2029 dbgs() << "prolog:\n";
2030 NewBB->dump();
2034 PredBB->replaceSuccessor(BB, KernelBB);
2036 // Check if we need to remove the branch from the preheader to the original
2037 // loop, and replace it with a branch to the new loop.
2038 unsigned numBranches = TII->removeBranch(*PreheaderBB);
2039 if (numBranches) {
2040 SmallVector<MachineOperand, 0> Cond;
2041 TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc());
2045 /// Generate the pipeline epilog code. The epilog code finishes the iterations
2046 /// that were started in either the prolog or the kernel. We create a basic
2047 /// block for each stage that needs to complete.
2048 void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage,
2049 MachineBasicBlock *KernelBB,
2050 ValueMapTy *VRMap,
2051 MBBVectorTy &EpilogBBs,
2052 MBBVectorTy &PrologBBs) {
2053 // We need to change the branch from the kernel to the first epilog block, so
2054 // this call to analyze branch uses the kernel rather than the original BB.
2055 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
2056 SmallVector<MachineOperand, 4> Cond;
2057 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
2058 assert(!checkBranch && "generateEpilog must be able to analyze the branch");
2059 if (checkBranch)
2060 return;
2062 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
2063 if (*LoopExitI == KernelBB)
2064 ++LoopExitI;
2065 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
2066 MachineBasicBlock *LoopExitBB = *LoopExitI;
2068 MachineBasicBlock *PredBB = KernelBB;
2069 MachineBasicBlock *EpilogStart = LoopExitBB;
2070 InstrMapTy InstrMap;
2072 // Generate a basic block for each stage, not including the last stage,
2073 // which was generated for the kernel. Each basic block may contain
2074 // instructions from multiple stages/iterations.
2075 int EpilogStage = LastStage + 1;
2076 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
2077 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
2078 EpilogBBs.push_back(NewBB);
2079 MF.insert(BB->getIterator(), NewBB);
2081 PredBB->replaceSuccessor(LoopExitBB, NewBB);
2082 NewBB->addSuccessor(LoopExitBB);
2084 if (EpilogStart == LoopExitBB)
2085 EpilogStart = NewBB;
2087 // Add instructions to the epilog depending on the current block.
2088 // Process instructions in original program order.
2089 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
2090 for (auto &BBI : *BB) {
2091 if (BBI.isPHI())
2092 continue;
2093 MachineInstr *In = &BBI;
2094 if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) {
2095 // Instructions with memoperands in the epilog are updated with
2096 // conservative values.
2097 MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0);
2098 updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap);
2099 NewBB->push_back(NewMI);
2100 InstrMap[NewMI] = In;
2104 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule,
2105 VRMap, InstrMap, LastStage, EpilogStage, i == 1);
2106 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap,
2107 InstrMap, LastStage, EpilogStage, i == 1);
2108 PredBB = NewBB;
2110 LLVM_DEBUG({
2111 dbgs() << "epilog:\n";
2112 NewBB->dump();
2116 // Fix any Phi nodes in the loop exit block.
2117 for (MachineInstr &MI : *LoopExitBB) {
2118 if (!MI.isPHI())
2119 break;
2120 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
2121 MachineOperand &MO = MI.getOperand(i);
2122 if (MO.getMBB() == BB)
2123 MO.setMBB(PredBB);
2127 // Create a branch to the new epilog from the kernel.
2128 // Remove the original branch and add a new branch to the epilog.
2129 TII->removeBranch(*KernelBB);
2130 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
2131 // Add a branch to the loop exit.
2132 if (EpilogBBs.size() > 0) {
2133 MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
2134 SmallVector<MachineOperand, 4> Cond1;
2135 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
2139 /// Replace all uses of FromReg that appear outside the specified
2140 /// basic block with ToReg.
2141 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
2142 MachineBasicBlock *MBB,
2143 MachineRegisterInfo &MRI,
2144 LiveIntervals &LIS) {
2145 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg),
2146 E = MRI.use_end();
2147 I != E;) {
2148 MachineOperand &O = *I;
2149 ++I;
2150 if (O.getParent()->getParent() != MBB)
2151 O.setReg(ToReg);
2153 if (!LIS.hasInterval(ToReg))
2154 LIS.createEmptyInterval(ToReg);
2157 /// Return true if the register has a use that occurs outside the
2158 /// specified loop.
2159 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
2160 MachineRegisterInfo &MRI) {
2161 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg),
2162 E = MRI.use_end();
2163 I != E; ++I)
2164 if (I->getParent()->getParent() != BB)
2165 return true;
2166 return false;
2169 /// Generate Phis for the specific block in the generated pipelined code.
2170 /// This function looks at the Phis from the original code to guide the
2171 /// creation of new Phis.
2172 void SwingSchedulerDAG::generateExistingPhis(
2173 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
2174 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
2175 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
2176 bool IsLast) {
2177 // Compute the stage number for the initial value of the Phi, which
2178 // comes from the prolog. The prolog to use depends on to which kernel/
2179 // epilog that we're adding the Phi.
2180 unsigned PrologStage = 0;
2181 unsigned PrevStage = 0;
2182 bool InKernel = (LastStageNum == CurStageNum);
2183 if (InKernel) {
2184 PrologStage = LastStageNum - 1;
2185 PrevStage = CurStageNum;
2186 } else {
2187 PrologStage = LastStageNum - (CurStageNum - LastStageNum);
2188 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
2191 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
2192 BBE = BB->getFirstNonPHI();
2193 BBI != BBE; ++BBI) {
2194 unsigned Def = BBI->getOperand(0).getReg();
2196 unsigned InitVal = 0;
2197 unsigned LoopVal = 0;
2198 getPhiRegs(*BBI, BB, InitVal, LoopVal);
2200 unsigned PhiOp1 = 0;
2201 // The Phi value from the loop body typically is defined in the loop, but
2202 // not always. So, we need to check if the value is defined in the loop.
2203 unsigned PhiOp2 = LoopVal;
2204 if (VRMap[LastStageNum].count(LoopVal))
2205 PhiOp2 = VRMap[LastStageNum][LoopVal];
2207 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
2208 int LoopValStage =
2209 Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
2210 unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum);
2211 if (NumStages == 0) {
2212 // We don't need to generate a Phi anymore, but we need to rename any uses
2213 // of the Phi value.
2214 unsigned NewReg = VRMap[PrevStage][LoopVal];
2215 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI,
2216 Def, InitVal, NewReg);
2217 if (VRMap[CurStageNum].count(LoopVal))
2218 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
2220 // Adjust the number of Phis needed depending on the number of prologs left,
2221 // and the distance from where the Phi is first scheduled. The number of
2222 // Phis cannot exceed the number of prolog stages. Each stage can
2223 // potentially define two values.
2224 unsigned MaxPhis = PrologStage + 2;
2225 if (!InKernel && (int)PrologStage <= LoopValStage)
2226 MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1);
2227 unsigned NumPhis = std::min(NumStages, MaxPhis);
2229 unsigned NewReg = 0;
2230 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
2231 // In the epilog, we may need to look back one stage to get the correct
2232 // Phi name because the epilog and prolog blocks execute the same stage.
2233 // The correct name is from the previous block only when the Phi has
2234 // been completely scheduled prior to the epilog, and Phi value is not
2235 // needed in multiple stages.
2236 int StageDiff = 0;
2237 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
2238 NumPhis == 1)
2239 StageDiff = 1;
2240 // Adjust the computations below when the phi and the loop definition
2241 // are scheduled in different stages.
2242 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
2243 StageDiff = StageScheduled - LoopValStage;
2244 for (unsigned np = 0; np < NumPhis; ++np) {
2245 // If the Phi hasn't been scheduled, then use the initial Phi operand
2246 // value. Otherwise, use the scheduled version of the instruction. This
2247 // is a little complicated when a Phi references another Phi.
2248 if (np > PrologStage || StageScheduled >= (int)LastStageNum)
2249 PhiOp1 = InitVal;
2250 // Check if the Phi has already been scheduled in a prolog stage.
2251 else if (PrologStage >= AccessStage + StageDiff + np &&
2252 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
2253 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
2254 // Check if the Phi has already been scheduled, but the loop instruction
2255 // is either another Phi, or doesn't occur in the loop.
2256 else if (PrologStage >= AccessStage + StageDiff + np) {
2257 // If the Phi references another Phi, we need to examine the other
2258 // Phi to get the correct value.
2259 PhiOp1 = LoopVal;
2260 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
2261 int Indirects = 1;
2262 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
2263 int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1));
2264 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
2265 PhiOp1 = getInitPhiReg(*InstOp1, BB);
2266 else
2267 PhiOp1 = getLoopPhiReg(*InstOp1, BB);
2268 InstOp1 = MRI.getVRegDef(PhiOp1);
2269 int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1));
2270 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
2271 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
2272 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
2273 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
2274 break;
2276 ++Indirects;
2278 } else
2279 PhiOp1 = InitVal;
2280 // If this references a generated Phi in the kernel, get the Phi operand
2281 // from the incoming block.
2282 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
2283 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
2284 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
2286 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
2287 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
2288 // In the epilog, a map lookup is needed to get the value from the kernel,
2289 // or previous epilog block. How is does this depends on if the
2290 // instruction is scheduled in the previous block.
2291 if (!InKernel) {
2292 int StageDiffAdj = 0;
2293 if (LoopValStage != -1 && StageScheduled > LoopValStage)
2294 StageDiffAdj = StageScheduled - LoopValStage;
2295 // Use the loop value defined in the kernel, unless the kernel
2296 // contains the last definition of the Phi.
2297 if (np == 0 && PrevStage == LastStageNum &&
2298 (StageScheduled != 0 || LoopValStage != 0) &&
2299 VRMap[PrevStage - StageDiffAdj].count(LoopVal))
2300 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
2301 // Use the value defined by the Phi. We add one because we switch
2302 // from looking at the loop value to the Phi definition.
2303 else if (np > 0 && PrevStage == LastStageNum &&
2304 VRMap[PrevStage - np + 1].count(Def))
2305 PhiOp2 = VRMap[PrevStage - np + 1][Def];
2306 // Use the loop value defined in the kernel.
2307 else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 &&
2308 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
2309 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
2310 // Use the value defined by the Phi, unless we're generating the first
2311 // epilog and the Phi refers to a Phi in a different stage.
2312 else if (VRMap[PrevStage - np].count(Def) &&
2313 (!LoopDefIsPhi || PrevStage != LastStageNum))
2314 PhiOp2 = VRMap[PrevStage - np][Def];
2317 // Check if we can reuse an existing Phi. This occurs when a Phi
2318 // references another Phi, and the other Phi is scheduled in an
2319 // earlier stage. We can try to reuse an existing Phi up until the last
2320 // stage of the current Phi.
2321 if (LoopDefIsPhi) {
2322 if (static_cast<int>(PrologStage - np) >= StageScheduled) {
2323 int LVNumStages = Schedule.getStagesForPhi(LoopVal);
2324 int StageDiff = (StageScheduled - LoopValStage);
2325 LVNumStages -= StageDiff;
2326 // Make sure the loop value Phi has been processed already.
2327 if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) {
2328 NewReg = PhiOp2;
2329 unsigned ReuseStage = CurStageNum;
2330 if (Schedule.isLoopCarried(this, *PhiInst))
2331 ReuseStage -= LVNumStages;
2332 // Check if the Phi to reuse has been generated yet. If not, then
2333 // there is nothing to reuse.
2334 if (VRMap[ReuseStage - np].count(LoopVal)) {
2335 NewReg = VRMap[ReuseStage - np][LoopVal];
2337 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2338 &*BBI, Def, NewReg);
2339 // Update the map with the new Phi name.
2340 VRMap[CurStageNum - np][Def] = NewReg;
2341 PhiOp2 = NewReg;
2342 if (VRMap[LastStageNum - np - 1].count(LoopVal))
2343 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
2345 if (IsLast && np == NumPhis - 1)
2346 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2347 continue;
2351 if (InKernel && StageDiff > 0 &&
2352 VRMap[CurStageNum - StageDiff - np].count(LoopVal))
2353 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
2356 const TargetRegisterClass *RC = MRI.getRegClass(Def);
2357 NewReg = MRI.createVirtualRegister(RC);
2359 MachineInstrBuilder NewPhi =
2360 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
2361 TII->get(TargetOpcode::PHI), NewReg);
2362 NewPhi.addReg(PhiOp1).addMBB(BB1);
2363 NewPhi.addReg(PhiOp2).addMBB(BB2);
2364 if (np == 0)
2365 InstrMap[NewPhi] = &*BBI;
2367 // We define the Phis after creating the new pipelined code, so
2368 // we need to rename the Phi values in scheduled instructions.
2370 unsigned PrevReg = 0;
2371 if (InKernel && VRMap[PrevStage - np].count(LoopVal))
2372 PrevReg = VRMap[PrevStage - np][LoopVal];
2373 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
2374 Def, NewReg, PrevReg);
2375 // If the Phi has been scheduled, use the new name for rewriting.
2376 if (VRMap[CurStageNum - np].count(Def)) {
2377 unsigned R = VRMap[CurStageNum - np][Def];
2378 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
2379 R, NewReg);
2382 // Check if we need to rename any uses that occurs after the loop. The
2383 // register to replace depends on whether the Phi is scheduled in the
2384 // epilog.
2385 if (IsLast && np == NumPhis - 1)
2386 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2388 // In the kernel, a dependent Phi uses the value from this Phi.
2389 if (InKernel)
2390 PhiOp2 = NewReg;
2392 // Update the map with the new Phi name.
2393 VRMap[CurStageNum - np][Def] = NewReg;
2396 while (NumPhis++ < NumStages) {
2397 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis,
2398 &*BBI, Def, NewReg, 0);
2401 // Check if we need to rename a Phi that has been eliminated due to
2402 // scheduling.
2403 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
2404 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
2408 /// Generate Phis for the specified block in the generated pipelined code.
2409 /// These are new Phis needed because the definition is scheduled after the
2410 /// use in the pipelined sequence.
2411 void SwingSchedulerDAG::generatePhis(
2412 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
2413 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
2414 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
2415 bool IsLast) {
2416 // Compute the stage number that contains the initial Phi value, and
2417 // the Phi from the previous stage.
2418 unsigned PrologStage = 0;
2419 unsigned PrevStage = 0;
2420 unsigned StageDiff = CurStageNum - LastStageNum;
2421 bool InKernel = (StageDiff == 0);
2422 if (InKernel) {
2423 PrologStage = LastStageNum - 1;
2424 PrevStage = CurStageNum;
2425 } else {
2426 PrologStage = LastStageNum - StageDiff;
2427 PrevStage = LastStageNum + StageDiff - 1;
2430 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
2431 BBE = BB->instr_end();
2432 BBI != BBE; ++BBI) {
2433 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
2434 MachineOperand &MO = BBI->getOperand(i);
2435 if (!MO.isReg() || !MO.isDef() ||
2436 !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
2437 continue;
2439 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
2440 assert(StageScheduled != -1 && "Expecting scheduled instruction.");
2441 unsigned Def = MO.getReg();
2442 unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum);
2443 // An instruction scheduled in stage 0 and is used after the loop
2444 // requires a phi in the epilog for the last definition from either
2445 // the kernel or prolog.
2446 if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
2447 hasUseAfterLoop(Def, BB, MRI))
2448 NumPhis = 1;
2449 if (!InKernel && (unsigned)StageScheduled > PrologStage)
2450 continue;
2452 unsigned PhiOp2 = VRMap[PrevStage][Def];
2453 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
2454 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
2455 PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
2456 // The number of Phis can't exceed the number of prolog stages. The
2457 // prolog stage number is zero based.
2458 if (NumPhis > PrologStage + 1 - StageScheduled)
2459 NumPhis = PrologStage + 1 - StageScheduled;
2460 for (unsigned np = 0; np < NumPhis; ++np) {
2461 unsigned PhiOp1 = VRMap[PrologStage][Def];
2462 if (np <= PrologStage)
2463 PhiOp1 = VRMap[PrologStage - np][Def];
2464 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) {
2465 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
2466 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
2467 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB)
2468 PhiOp1 = getInitPhiReg(*InstOp1, NewBB);
2470 if (!InKernel)
2471 PhiOp2 = VRMap[PrevStage - np][Def];
2473 const TargetRegisterClass *RC = MRI.getRegClass(Def);
2474 unsigned NewReg = MRI.createVirtualRegister(RC);
2476 MachineInstrBuilder NewPhi =
2477 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
2478 TII->get(TargetOpcode::PHI), NewReg);
2479 NewPhi.addReg(PhiOp1).addMBB(BB1);
2480 NewPhi.addReg(PhiOp2).addMBB(BB2);
2481 if (np == 0)
2482 InstrMap[NewPhi] = &*BBI;
2484 // Rewrite uses and update the map. The actions depend upon whether
2485 // we generating code for the kernel or epilog blocks.
2486 if (InKernel) {
2487 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2488 &*BBI, PhiOp1, NewReg);
2489 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2490 &*BBI, PhiOp2, NewReg);
2492 PhiOp2 = NewReg;
2493 VRMap[PrevStage - np - 1][Def] = NewReg;
2494 } else {
2495 VRMap[CurStageNum - np][Def] = NewReg;
2496 if (np == NumPhis - 1)
2497 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2498 &*BBI, Def, NewReg);
2500 if (IsLast && np == NumPhis - 1)
2501 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2507 /// Remove instructions that generate values with no uses.
2508 /// Typically, these are induction variable operations that generate values
2509 /// used in the loop itself. A dead instruction has a definition with
2510 /// no uses, or uses that occur in the original loop only.
2511 void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB,
2512 MBBVectorTy &EpilogBBs) {
2513 // For each epilog block, check that the value defined by each instruction
2514 // is used. If not, delete it.
2515 for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(),
2516 MBE = EpilogBBs.rend();
2517 MBB != MBE; ++MBB)
2518 for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(),
2519 ME = (*MBB)->instr_rend();
2520 MI != ME;) {
2521 // From DeadMachineInstructionElem. Don't delete inline assembly.
2522 if (MI->isInlineAsm()) {
2523 ++MI;
2524 continue;
2526 bool SawStore = false;
2527 // Check if it's safe to remove the instruction due to side effects.
2528 // We can, and want to, remove Phis here.
2529 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
2530 ++MI;
2531 continue;
2533 bool used = true;
2534 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
2535 MOE = MI->operands_end();
2536 MOI != MOE; ++MOI) {
2537 if (!MOI->isReg() || !MOI->isDef())
2538 continue;
2539 unsigned reg = MOI->getReg();
2540 // Assume physical registers are used, unless they are marked dead.
2541 if (TargetRegisterInfo::isPhysicalRegister(reg)) {
2542 used = !MOI->isDead();
2543 if (used)
2544 break;
2545 continue;
2547 unsigned realUses = 0;
2548 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg),
2549 EI = MRI.use_end();
2550 UI != EI; ++UI) {
2551 // Check if there are any uses that occur only in the original
2552 // loop. If so, that's not a real use.
2553 if (UI->getParent()->getParent() != BB) {
2554 realUses++;
2555 used = true;
2556 break;
2559 if (realUses > 0)
2560 break;
2561 used = false;
2563 if (!used) {
2564 LIS.RemoveMachineInstrFromMaps(*MI);
2565 MI++->eraseFromParent();
2566 continue;
2568 ++MI;
2570 // In the kernel block, check if we can remove a Phi that generates a value
2571 // used in an instruction removed in the epilog block.
2572 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
2573 BBE = KernelBB->getFirstNonPHI();
2574 BBI != BBE;) {
2575 MachineInstr *MI = &*BBI;
2576 ++BBI;
2577 unsigned reg = MI->getOperand(0).getReg();
2578 if (MRI.use_begin(reg) == MRI.use_end()) {
2579 LIS.RemoveMachineInstrFromMaps(*MI);
2580 MI->eraseFromParent();
2585 /// For loop carried definitions, we split the lifetime of a virtual register
2586 /// that has uses past the definition in the next iteration. A copy with a new
2587 /// virtual register is inserted before the definition, which helps with
2588 /// generating a better register assignment.
2590 /// v1 = phi(a, v2) v1 = phi(a, v2)
2591 /// v2 = phi(b, v3) v2 = phi(b, v3)
2592 /// v3 = .. v4 = copy v1
2593 /// .. = V1 v3 = ..
2594 /// .. = v4
2595 void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB,
2596 MBBVectorTy &EpilogBBs,
2597 SMSchedule &Schedule) {
2598 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2599 for (auto &PHI : KernelBB->phis()) {
2600 unsigned Def = PHI.getOperand(0).getReg();
2601 // Check for any Phi definition that used as an operand of another Phi
2602 // in the same block.
2603 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
2604 E = MRI.use_instr_end();
2605 I != E; ++I) {
2606 if (I->isPHI() && I->getParent() == KernelBB) {
2607 // Get the loop carried definition.
2608 unsigned LCDef = getLoopPhiReg(PHI, KernelBB);
2609 if (!LCDef)
2610 continue;
2611 MachineInstr *MI = MRI.getVRegDef(LCDef);
2612 if (!MI || MI->getParent() != KernelBB || MI->isPHI())
2613 continue;
2614 // Search through the rest of the block looking for uses of the Phi
2615 // definition. If one occurs, then split the lifetime.
2616 unsigned SplitReg = 0;
2617 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
2618 KernelBB->instr_end()))
2619 if (BBJ.readsRegister(Def)) {
2620 // We split the lifetime when we find the first use.
2621 if (SplitReg == 0) {
2622 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
2623 BuildMI(*KernelBB, MI, MI->getDebugLoc(),
2624 TII->get(TargetOpcode::COPY), SplitReg)
2625 .addReg(Def);
2627 BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
2629 if (!SplitReg)
2630 continue;
2631 // Search through each of the epilog blocks for any uses to be renamed.
2632 for (auto &Epilog : EpilogBBs)
2633 for (auto &I : *Epilog)
2634 if (I.readsRegister(Def))
2635 I.substituteRegister(Def, SplitReg, 0, *TRI);
2636 break;
2642 /// Remove the incoming block from the Phis in a basic block.
2643 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
2644 for (MachineInstr &MI : *BB) {
2645 if (!MI.isPHI())
2646 break;
2647 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
2648 if (MI.getOperand(i + 1).getMBB() == Incoming) {
2649 MI.RemoveOperand(i + 1);
2650 MI.RemoveOperand(i);
2651 break;
2656 /// Create branches from each prolog basic block to the appropriate epilog
2657 /// block. These edges are needed if the loop ends before reaching the
2658 /// kernel.
2659 void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs,
2660 MachineBasicBlock *KernelBB,
2661 MBBVectorTy &EpilogBBs,
2662 SMSchedule &Schedule, ValueMapTy *VRMap) {
2663 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
2664 MachineInstr *IndVar = Pass.LI.LoopInductionVar;
2665 MachineInstr *Cmp = Pass.LI.LoopCompare;
2666 MachineBasicBlock *LastPro = KernelBB;
2667 MachineBasicBlock *LastEpi = KernelBB;
2669 // Start from the blocks connected to the kernel and work "out"
2670 // to the first prolog and the last epilog blocks.
2671 SmallVector<MachineInstr *, 4> PrevInsts;
2672 unsigned MaxIter = PrologBBs.size() - 1;
2673 unsigned LC = UINT_MAX;
2674 unsigned LCMin = UINT_MAX;
2675 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
2676 // Add branches to the prolog that go to the corresponding
2677 // epilog, and the fall-thru prolog/kernel block.
2678 MachineBasicBlock *Prolog = PrologBBs[j];
2679 MachineBasicBlock *Epilog = EpilogBBs[i];
2680 // We've executed one iteration, so decrement the loop count and check for
2681 // the loop end.
2682 SmallVector<MachineOperand, 4> Cond;
2683 // Check if the LOOP0 has already been removed. If so, then there is no need
2684 // to reduce the trip count.
2685 if (LC != 0)
2686 LC = TII->reduceLoopCount(*Prolog, IndVar, *Cmp, Cond, PrevInsts, j,
2687 MaxIter);
2689 // Record the value of the first trip count, which is used to determine if
2690 // branches and blocks can be removed for constant trip counts.
2691 if (LCMin == UINT_MAX)
2692 LCMin = LC;
2694 unsigned numAdded = 0;
2695 if (TargetRegisterInfo::isVirtualRegister(LC)) {
2696 Prolog->addSuccessor(Epilog);
2697 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
2698 } else if (j >= LCMin) {
2699 Prolog->addSuccessor(Epilog);
2700 Prolog->removeSuccessor(LastPro);
2701 LastEpi->removeSuccessor(Epilog);
2702 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
2703 removePhis(Epilog, LastEpi);
2704 // Remove the blocks that are no longer referenced.
2705 if (LastPro != LastEpi) {
2706 LastEpi->clear();
2707 LastEpi->eraseFromParent();
2709 LastPro->clear();
2710 LastPro->eraseFromParent();
2711 } else {
2712 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
2713 removePhis(Epilog, Prolog);
2715 LastPro = Prolog;
2716 LastEpi = Epilog;
2717 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
2718 E = Prolog->instr_rend();
2719 I != E && numAdded > 0; ++I, --numAdded)
2720 updateInstruction(&*I, false, j, 0, Schedule, VRMap);
2724 /// Return true if we can compute the amount the instruction changes
2725 /// during each iteration. Set Delta to the amount of the change.
2726 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
2727 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2728 const MachineOperand *BaseOp;
2729 int64_t Offset;
2730 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI))
2731 return false;
2733 if (!BaseOp->isReg())
2734 return false;
2736 unsigned BaseReg = BaseOp->getReg();
2738 MachineRegisterInfo &MRI = MF.getRegInfo();
2739 // Check if there is a Phi. If so, get the definition in the loop.
2740 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
2741 if (BaseDef && BaseDef->isPHI()) {
2742 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
2743 BaseDef = MRI.getVRegDef(BaseReg);
2745 if (!BaseDef)
2746 return false;
2748 int D = 0;
2749 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
2750 return false;
2752 Delta = D;
2753 return true;
2756 /// Update the memory operand with a new offset when the pipeliner
2757 /// generates a new copy of the instruction that refers to a
2758 /// different memory location.
2759 void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI,
2760 MachineInstr &OldMI, unsigned Num) {
2761 if (Num == 0)
2762 return;
2763 // If the instruction has memory operands, then adjust the offset
2764 // when the instruction appears in different stages.
2765 if (NewMI.memoperands_empty())
2766 return;
2767 SmallVector<MachineMemOperand *, 2> NewMMOs;
2768 for (MachineMemOperand *MMO : NewMI.memoperands()) {
2769 // TODO: Figure out whether isAtomic is really necessary (see D57601).
2770 if (MMO->isVolatile() || MMO->isAtomic() ||
2771 (MMO->isInvariant() && MMO->isDereferenceable()) ||
2772 (!MMO->getValue())) {
2773 NewMMOs.push_back(MMO);
2774 continue;
2776 unsigned Delta;
2777 if (Num != UINT_MAX && computeDelta(OldMI, Delta)) {
2778 int64_t AdjOffset = Delta * Num;
2779 NewMMOs.push_back(
2780 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()));
2781 } else {
2782 NewMMOs.push_back(
2783 MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize));
2786 NewMI.setMemRefs(MF, NewMMOs);
2789 /// Clone the instruction for the new pipelined loop and update the
2790 /// memory operands, if needed.
2791 MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI,
2792 unsigned CurStageNum,
2793 unsigned InstStageNum) {
2794 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
2795 // Check for tied operands in inline asm instructions. This should be handled
2796 // elsewhere, but I'm not sure of the best solution.
2797 if (OldMI->isInlineAsm())
2798 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
2799 const auto &MO = OldMI->getOperand(i);
2800 if (MO.isReg() && MO.isUse())
2801 break;
2802 unsigned UseIdx;
2803 if (OldMI->isRegTiedToUseOperand(i, &UseIdx))
2804 NewMI->tieOperands(i, UseIdx);
2806 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
2807 return NewMI;
2810 /// Clone the instruction for the new pipelined loop. If needed, this
2811 /// function updates the instruction using the values saved in the
2812 /// InstrChanges structure.
2813 MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI,
2814 unsigned CurStageNum,
2815 unsigned InstStageNum,
2816 SMSchedule &Schedule) {
2817 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
2818 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
2819 InstrChanges.find(getSUnit(OldMI));
2820 if (It != InstrChanges.end()) {
2821 std::pair<unsigned, int64_t> RegAndOffset = It->second;
2822 unsigned BasePos, OffsetPos;
2823 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
2824 return nullptr;
2825 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
2826 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
2827 if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum)
2828 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
2829 NewMI->getOperand(OffsetPos).setImm(NewOffset);
2831 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
2832 return NewMI;
2835 /// Update the machine instruction with new virtual registers. This
2836 /// function may change the defintions and/or uses.
2837 void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef,
2838 unsigned CurStageNum,
2839 unsigned InstrStageNum,
2840 SMSchedule &Schedule,
2841 ValueMapTy *VRMap) {
2842 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
2843 MachineOperand &MO = NewMI->getOperand(i);
2844 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
2845 continue;
2846 unsigned reg = MO.getReg();
2847 if (MO.isDef()) {
2848 // Create a new virtual register for the definition.
2849 const TargetRegisterClass *RC = MRI.getRegClass(reg);
2850 unsigned NewReg = MRI.createVirtualRegister(RC);
2851 MO.setReg(NewReg);
2852 VRMap[CurStageNum][reg] = NewReg;
2853 if (LastDef)
2854 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
2855 } else if (MO.isUse()) {
2856 MachineInstr *Def = MRI.getVRegDef(reg);
2857 // Compute the stage that contains the last definition for instruction.
2858 int DefStageNum = Schedule.stageScheduled(getSUnit(Def));
2859 unsigned StageNum = CurStageNum;
2860 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
2861 // Compute the difference in stages between the defintion and the use.
2862 unsigned StageDiff = (InstrStageNum - DefStageNum);
2863 // Make an adjustment to get the last definition.
2864 StageNum -= StageDiff;
2866 if (VRMap[StageNum].count(reg))
2867 MO.setReg(VRMap[StageNum][reg]);
2872 /// Return the instruction in the loop that defines the register.
2873 /// If the definition is a Phi, then follow the Phi operand to
2874 /// the instruction in the loop.
2875 MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) {
2876 SmallPtrSet<MachineInstr *, 8> Visited;
2877 MachineInstr *Def = MRI.getVRegDef(Reg);
2878 while (Def->isPHI()) {
2879 if (!Visited.insert(Def).second)
2880 break;
2881 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
2882 if (Def->getOperand(i + 1).getMBB() == BB) {
2883 Def = MRI.getVRegDef(Def->getOperand(i).getReg());
2884 break;
2887 return Def;
2890 /// Return the new name for the value from the previous stage.
2891 unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage,
2892 unsigned LoopVal, unsigned LoopStage,
2893 ValueMapTy *VRMap,
2894 MachineBasicBlock *BB) {
2895 unsigned PrevVal = 0;
2896 if (StageNum > PhiStage) {
2897 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
2898 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
2899 // The name is defined in the previous stage.
2900 PrevVal = VRMap[StageNum - 1][LoopVal];
2901 else if (VRMap[StageNum].count(LoopVal))
2902 // The previous name is defined in the current stage when the instruction
2903 // order is swapped.
2904 PrevVal = VRMap[StageNum][LoopVal];
2905 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
2906 // The loop value hasn't yet been scheduled.
2907 PrevVal = LoopVal;
2908 else if (StageNum == PhiStage + 1)
2909 // The loop value is another phi, which has not been scheduled.
2910 PrevVal = getInitPhiReg(*LoopInst, BB);
2911 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
2912 // The loop value is another phi, which has been scheduled.
2913 PrevVal =
2914 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
2915 LoopStage, VRMap, BB);
2917 return PrevVal;
2920 /// Rewrite the Phi values in the specified block to use the mappings
2921 /// from the initial operand. Once the Phi is scheduled, we switch
2922 /// to using the loop value instead of the Phi value, so those names
2923 /// do not need to be rewritten.
2924 void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB,
2925 unsigned StageNum,
2926 SMSchedule &Schedule,
2927 ValueMapTy *VRMap,
2928 InstrMapTy &InstrMap) {
2929 for (auto &PHI : BB->phis()) {
2930 unsigned InitVal = 0;
2931 unsigned LoopVal = 0;
2932 getPhiRegs(PHI, BB, InitVal, LoopVal);
2933 unsigned PhiDef = PHI.getOperand(0).getReg();
2935 unsigned PhiStage =
2936 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef)));
2937 unsigned LoopStage =
2938 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
2939 unsigned NumPhis = Schedule.getStagesForPhi(PhiDef);
2940 if (NumPhis > StageNum)
2941 NumPhis = StageNum;
2942 for (unsigned np = 0; np <= NumPhis; ++np) {
2943 unsigned NewVal =
2944 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
2945 if (!NewVal)
2946 NewVal = InitVal;
2947 rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &PHI,
2948 PhiDef, NewVal);
2953 /// Rewrite a previously scheduled instruction to use the register value
2954 /// from the new instruction. Make sure the instruction occurs in the
2955 /// basic block, and we don't change the uses in the new instruction.
2956 void SwingSchedulerDAG::rewriteScheduledInstr(
2957 MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap,
2958 unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg,
2959 unsigned NewReg, unsigned PrevReg) {
2960 bool InProlog = (CurStageNum < Schedule.getMaxStageCount());
2961 int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum;
2962 // Rewrite uses that have been scheduled already to use the new
2963 // Phi register.
2964 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg),
2965 EI = MRI.use_end();
2966 UI != EI;) {
2967 MachineOperand &UseOp = *UI;
2968 MachineInstr *UseMI = UseOp.getParent();
2969 ++UI;
2970 if (UseMI->getParent() != BB)
2971 continue;
2972 if (UseMI->isPHI()) {
2973 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
2974 continue;
2975 if (getLoopPhiReg(*UseMI, BB) != OldReg)
2976 continue;
2978 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
2979 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
2980 SUnit *OrigMISU = getSUnit(OrigInstr->second);
2981 int StageSched = Schedule.stageScheduled(OrigMISU);
2982 int CycleSched = Schedule.cycleScheduled(OrigMISU);
2983 unsigned ReplaceReg = 0;
2984 // This is the stage for the scheduled instruction.
2985 if (StagePhi == StageSched && Phi->isPHI()) {
2986 int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi));
2987 if (PrevReg && InProlog)
2988 ReplaceReg = PrevReg;
2989 else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) &&
2990 (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI()))
2991 ReplaceReg = PrevReg;
2992 else
2993 ReplaceReg = NewReg;
2995 // The scheduled instruction occurs before the scheduled Phi, and the
2996 // Phi is not loop carried.
2997 if (!InProlog && StagePhi + 1 == StageSched &&
2998 !Schedule.isLoopCarried(this, *Phi))
2999 ReplaceReg = NewReg;
3000 if (StagePhi > StageSched && Phi->isPHI())
3001 ReplaceReg = NewReg;
3002 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
3003 ReplaceReg = NewReg;
3004 if (ReplaceReg) {
3005 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
3006 UseOp.setReg(ReplaceReg);
3011 /// Check if we can change the instruction to use an offset value from the
3012 /// previous iteration. If so, return true and set the base and offset values
3013 /// so that we can rewrite the load, if necessary.
3014 /// v1 = Phi(v0, v3)
3015 /// v2 = load v1, 0
3016 /// v3 = post_store v1, 4, x
3017 /// This function enables the load to be rewritten as v2 = load v3, 4.
3018 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
3019 unsigned &BasePos,
3020 unsigned &OffsetPos,
3021 unsigned &NewBase,
3022 int64_t &Offset) {
3023 // Get the load instruction.
3024 if (TII->isPostIncrement(*MI))
3025 return false;
3026 unsigned BasePosLd, OffsetPosLd;
3027 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd))
3028 return false;
3029 unsigned BaseReg = MI->getOperand(BasePosLd).getReg();
3031 // Look for the Phi instruction.
3032 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
3033 MachineInstr *Phi = MRI.getVRegDef(BaseReg);
3034 if (!Phi || !Phi->isPHI())
3035 return false;
3036 // Get the register defined in the loop block.
3037 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
3038 if (!PrevReg)
3039 return false;
3041 // Check for the post-increment load/store instruction.
3042 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
3043 if (!PrevDef || PrevDef == MI)
3044 return false;
3046 if (!TII->isPostIncrement(*PrevDef))
3047 return false;
3049 unsigned BasePos1 = 0, OffsetPos1 = 0;
3050 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1))
3051 return false;
3053 // Make sure that the instructions do not access the same memory location in
3054 // the next iteration.
3055 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
3056 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
3057 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
3058 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset);
3059 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef);
3060 MF.DeleteMachineInstr(NewMI);
3061 if (!Disjoint)
3062 return false;
3064 // Set the return value once we determine that we return true.
3065 BasePos = BasePosLd;
3066 OffsetPos = OffsetPosLd;
3067 NewBase = PrevReg;
3068 Offset = StoreOffset;
3069 return true;
3072 /// Apply changes to the instruction if needed. The changes are need
3073 /// to improve the scheduling and depend up on the final schedule.
3074 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
3075 SMSchedule &Schedule) {
3076 SUnit *SU = getSUnit(MI);
3077 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
3078 InstrChanges.find(SU);
3079 if (It != InstrChanges.end()) {
3080 std::pair<unsigned, int64_t> RegAndOffset = It->second;
3081 unsigned BasePos, OffsetPos;
3082 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
3083 return;
3084 unsigned BaseReg = MI->getOperand(BasePos).getReg();
3085 MachineInstr *LoopDef = findDefInLoop(BaseReg);
3086 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
3087 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
3088 int BaseStageNum = Schedule.stageScheduled(SU);
3089 int BaseCycleNum = Schedule.cycleScheduled(SU);
3090 if (BaseStageNum < DefStageNum) {
3091 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
3092 int OffsetDiff = DefStageNum - BaseStageNum;
3093 if (DefCycleNum < BaseCycleNum) {
3094 NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
3095 if (OffsetDiff > 0)
3096 --OffsetDiff;
3098 int64_t NewOffset =
3099 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
3100 NewMI->getOperand(OffsetPos).setImm(NewOffset);
3101 SU->setInstr(NewMI);
3102 MISUnitMap[NewMI] = SU;
3103 NewMIs.insert(NewMI);
3108 /// Return true for an order or output dependence that is loop carried
3109 /// potentially. A dependence is loop carried if the destination defines a valu
3110 /// that may be used or defined by the source in a subsequent iteration.
3111 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep,
3112 bool isSucc) {
3113 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) ||
3114 Dep.isArtificial())
3115 return false;
3117 if (!SwpPruneLoopCarried)
3118 return true;
3120 if (Dep.getKind() == SDep::Output)
3121 return true;
3123 MachineInstr *SI = Source->getInstr();
3124 MachineInstr *DI = Dep.getSUnit()->getInstr();
3125 if (!isSucc)
3126 std::swap(SI, DI);
3127 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");
3129 // Assume ordered loads and stores may have a loop carried dependence.
3130 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
3131 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
3132 return true;
3134 // Only chain dependences between a load and store can be loop carried.
3135 if (!DI->mayStore() || !SI->mayLoad())
3136 return false;
3138 unsigned DeltaS, DeltaD;
3139 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
3140 return true;
3142 const MachineOperand *BaseOpS, *BaseOpD;
3143 int64_t OffsetS, OffsetD;
3144 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3145 if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, TRI) ||
3146 !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, TRI))
3147 return true;
3149 if (!BaseOpS->isIdenticalTo(*BaseOpD))
3150 return true;
3152 // Check that the base register is incremented by a constant value for each
3153 // iteration.
3154 MachineInstr *Def = MRI.getVRegDef(BaseOpS->getReg());
3155 if (!Def || !Def->isPHI())
3156 return true;
3157 unsigned InitVal = 0;
3158 unsigned LoopVal = 0;
3159 getPhiRegs(*Def, BB, InitVal, LoopVal);
3160 MachineInstr *LoopDef = MRI.getVRegDef(LoopVal);
3161 int D = 0;
3162 if (!LoopDef || !TII->getIncrementValue(*LoopDef, D))
3163 return true;
3165 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
3166 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
3168 // This is the main test, which checks the offset values and the loop
3169 // increment value to determine if the accesses may be loop carried.
3170 if (AccessSizeS == MemoryLocation::UnknownSize ||
3171 AccessSizeD == MemoryLocation::UnknownSize)
3172 return true;
3174 if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD)
3175 return true;
3177 return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD);
3180 void SwingSchedulerDAG::postprocessDAG() {
3181 for (auto &M : Mutations)
3182 M->apply(this);
3185 /// Try to schedule the node at the specified StartCycle and continue
3186 /// until the node is schedule or the EndCycle is reached. This function
3187 /// returns true if the node is scheduled. This routine may search either
3188 /// forward or backward for a place to insert the instruction based upon
3189 /// the relative values of StartCycle and EndCycle.
3190 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
3191 bool forward = true;
3192 if (StartCycle > EndCycle)
3193 forward = false;
3195 // The terminating condition depends on the direction.
3196 int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
3197 for (int curCycle = StartCycle; curCycle != termCycle;
3198 forward ? ++curCycle : --curCycle) {
3200 // Add the already scheduled instructions at the specified cycle to the DFA.
3201 Resources->clearResources();
3202 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II);
3203 checkCycle <= LastCycle; checkCycle += II) {
3204 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle];
3206 for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(),
3207 E = cycleInstrs.end();
3208 I != E; ++I) {
3209 if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode()))
3210 continue;
3211 assert(Resources->canReserveResources(*(*I)->getInstr()) &&
3212 "These instructions have already been scheduled.");
3213 Resources->reserveResources(*(*I)->getInstr());
3216 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
3217 Resources->canReserveResources(*SU->getInstr())) {
3218 LLVM_DEBUG({
3219 dbgs() << "\tinsert at cycle " << curCycle << " ";
3220 SU->getInstr()->dump();
3223 ScheduledInstrs[curCycle].push_back(SU);
3224 InstrToCycle.insert(std::make_pair(SU, curCycle));
3225 if (curCycle > LastCycle)
3226 LastCycle = curCycle;
3227 if (curCycle < FirstCycle)
3228 FirstCycle = curCycle;
3229 return true;
3231 LLVM_DEBUG({
3232 dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
3233 SU->getInstr()->dump();
3236 return false;
3239 // Return the cycle of the earliest scheduled instruction in the chain.
3240 int SMSchedule::earliestCycleInChain(const SDep &Dep) {
3241 SmallPtrSet<SUnit *, 8> Visited;
3242 SmallVector<SDep, 8> Worklist;
3243 Worklist.push_back(Dep);
3244 int EarlyCycle = INT_MAX;
3245 while (!Worklist.empty()) {
3246 const SDep &Cur = Worklist.pop_back_val();
3247 SUnit *PrevSU = Cur.getSUnit();
3248 if (Visited.count(PrevSU))
3249 continue;
3250 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
3251 if (it == InstrToCycle.end())
3252 continue;
3253 EarlyCycle = std::min(EarlyCycle, it->second);
3254 for (const auto &PI : PrevSU->Preds)
3255 if (PI.getKind() == SDep::Order || Dep.getKind() == SDep::Output)
3256 Worklist.push_back(PI);
3257 Visited.insert(PrevSU);
3259 return EarlyCycle;
3262 // Return the cycle of the latest scheduled instruction in the chain.
3263 int SMSchedule::latestCycleInChain(const SDep &Dep) {
3264 SmallPtrSet<SUnit *, 8> Visited;
3265 SmallVector<SDep, 8> Worklist;
3266 Worklist.push_back(Dep);
3267 int LateCycle = INT_MIN;
3268 while (!Worklist.empty()) {
3269 const SDep &Cur = Worklist.pop_back_val();
3270 SUnit *SuccSU = Cur.getSUnit();
3271 if (Visited.count(SuccSU))
3272 continue;
3273 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
3274 if (it == InstrToCycle.end())
3275 continue;
3276 LateCycle = std::max(LateCycle, it->second);
3277 for (const auto &SI : SuccSU->Succs)
3278 if (SI.getKind() == SDep::Order || Dep.getKind() == SDep::Output)
3279 Worklist.push_back(SI);
3280 Visited.insert(SuccSU);
3282 return LateCycle;
3285 /// If an instruction has a use that spans multiple iterations, then
3286 /// return true. These instructions are characterized by having a back-ege
3287 /// to a Phi, which contains a reference to another Phi.
3288 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
3289 for (auto &P : SU->Preds)
3290 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
3291 for (auto &S : P.getSUnit()->Succs)
3292 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI())
3293 return P.getSUnit();
3294 return nullptr;
3297 /// Compute the scheduling start slot for the instruction. The start slot
3298 /// depends on any predecessor or successor nodes scheduled already.
3299 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
3300 int *MinEnd, int *MaxStart, int II,
3301 SwingSchedulerDAG *DAG) {
3302 // Iterate over each instruction that has been scheduled already. The start
3303 // slot computation depends on whether the previously scheduled instruction
3304 // is a predecessor or successor of the specified instruction.
3305 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
3307 // Iterate over each instruction in the current cycle.
3308 for (SUnit *I : getInstructions(cycle)) {
3309 // Because we're processing a DAG for the dependences, we recognize
3310 // the back-edge in recurrences by anti dependences.
3311 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
3312 const SDep &Dep = SU->Preds[i];
3313 if (Dep.getSUnit() == I) {
3314 if (!DAG->isBackedge(SU, Dep)) {
3315 int EarlyStart = cycle + Dep.getLatency() -
3316 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
3317 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
3318 if (DAG->isLoopCarriedDep(SU, Dep, false)) {
3319 int End = earliestCycleInChain(Dep) + (II - 1);
3320 *MinEnd = std::min(*MinEnd, End);
3322 } else {
3323 int LateStart = cycle - Dep.getLatency() +
3324 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
3325 *MinLateStart = std::min(*MinLateStart, LateStart);
3328 // For instruction that requires multiple iterations, make sure that
3329 // the dependent instruction is not scheduled past the definition.
3330 SUnit *BE = multipleIterations(I, DAG);
3331 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
3332 !SU->isPred(I))
3333 *MinLateStart = std::min(*MinLateStart, cycle);
3335 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) {
3336 if (SU->Succs[i].getSUnit() == I) {
3337 const SDep &Dep = SU->Succs[i];
3338 if (!DAG->isBackedge(SU, Dep)) {
3339 int LateStart = cycle - Dep.getLatency() +
3340 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
3341 *MinLateStart = std::min(*MinLateStart, LateStart);
3342 if (DAG->isLoopCarriedDep(SU, Dep)) {
3343 int Start = latestCycleInChain(Dep) + 1 - II;
3344 *MaxStart = std::max(*MaxStart, Start);
3346 } else {
3347 int EarlyStart = cycle + Dep.getLatency() -
3348 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
3349 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
3357 /// Order the instructions within a cycle so that the definitions occur
3358 /// before the uses. Returns true if the instruction is added to the start
3359 /// of the list, or false if added to the end.
3360 void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
3361 std::deque<SUnit *> &Insts) {
3362 MachineInstr *MI = SU->getInstr();
3363 bool OrderBeforeUse = false;
3364 bool OrderAfterDef = false;
3365 bool OrderBeforeDef = false;
3366 unsigned MoveDef = 0;
3367 unsigned MoveUse = 0;
3368 int StageInst1 = stageScheduled(SU);
3370 unsigned Pos = 0;
3371 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
3372 ++I, ++Pos) {
3373 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
3374 MachineOperand &MO = MI->getOperand(i);
3375 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
3376 continue;
3378 unsigned Reg = MO.getReg();
3379 unsigned BasePos, OffsetPos;
3380 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
3381 if (MI->getOperand(BasePos).getReg() == Reg)
3382 if (unsigned NewReg = SSD->getInstrBaseReg(SU))
3383 Reg = NewReg;
3384 bool Reads, Writes;
3385 std::tie(Reads, Writes) =
3386 (*I)->getInstr()->readsWritesVirtualRegister(Reg);
3387 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
3388 OrderBeforeUse = true;
3389 if (MoveUse == 0)
3390 MoveUse = Pos;
3391 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
3392 // Add the instruction after the scheduled instruction.
3393 OrderAfterDef = true;
3394 MoveDef = Pos;
3395 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
3396 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
3397 OrderBeforeUse = true;
3398 if (MoveUse == 0)
3399 MoveUse = Pos;
3400 } else {
3401 OrderAfterDef = true;
3402 MoveDef = Pos;
3404 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
3405 OrderBeforeUse = true;
3406 if (MoveUse == 0)
3407 MoveUse = Pos;
3408 if (MoveUse != 0) {
3409 OrderAfterDef = true;
3410 MoveDef = Pos - 1;
3412 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
3413 // Add the instruction before the scheduled instruction.
3414 OrderBeforeUse = true;
3415 if (MoveUse == 0)
3416 MoveUse = Pos;
3417 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
3418 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
3419 if (MoveUse == 0) {
3420 OrderBeforeDef = true;
3421 MoveUse = Pos;
3425 // Check for order dependences between instructions. Make sure the source
3426 // is ordered before the destination.
3427 for (auto &S : SU->Succs) {
3428 if (S.getSUnit() != *I)
3429 continue;
3430 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
3431 OrderBeforeUse = true;
3432 if (Pos < MoveUse)
3433 MoveUse = Pos;
3436 for (auto &P : SU->Preds) {
3437 if (P.getSUnit() != *I)
3438 continue;
3439 if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
3440 OrderAfterDef = true;
3441 MoveDef = Pos;
3446 // A circular dependence.
3447 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
3448 OrderBeforeUse = false;
3450 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
3451 // to a loop-carried dependence.
3452 if (OrderBeforeDef)
3453 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
3455 // The uncommon case when the instruction order needs to be updated because
3456 // there is both a use and def.
3457 if (OrderBeforeUse && OrderAfterDef) {
3458 SUnit *UseSU = Insts.at(MoveUse);
3459 SUnit *DefSU = Insts.at(MoveDef);
3460 if (MoveUse > MoveDef) {
3461 Insts.erase(Insts.begin() + MoveUse);
3462 Insts.erase(Insts.begin() + MoveDef);
3463 } else {
3464 Insts.erase(Insts.begin() + MoveDef);
3465 Insts.erase(Insts.begin() + MoveUse);
3467 orderDependence(SSD, UseSU, Insts);
3468 orderDependence(SSD, SU, Insts);
3469 orderDependence(SSD, DefSU, Insts);
3470 return;
3472 // Put the new instruction first if there is a use in the list. Otherwise,
3473 // put it at the end of the list.
3474 if (OrderBeforeUse)
3475 Insts.push_front(SU);
3476 else
3477 Insts.push_back(SU);
3480 /// Return true if the scheduled Phi has a loop carried operand.
3481 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
3482 if (!Phi.isPHI())
3483 return false;
3484 assert(Phi.isPHI() && "Expecting a Phi.");
3485 SUnit *DefSU = SSD->getSUnit(&Phi);
3486 unsigned DefCycle = cycleScheduled(DefSU);
3487 int DefStage = stageScheduled(DefSU);
3489 unsigned InitVal = 0;
3490 unsigned LoopVal = 0;
3491 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
3492 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
3493 if (!UseSU)
3494 return true;
3495 if (UseSU->getInstr()->isPHI())
3496 return true;
3497 unsigned LoopCycle = cycleScheduled(UseSU);
3498 int LoopStage = stageScheduled(UseSU);
3499 return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
3502 /// Return true if the instruction is a definition that is loop carried
3503 /// and defines the use on the next iteration.
3504 /// v1 = phi(v2, v3)
3505 /// (Def) v3 = op v1
3506 /// (MO) = v1
3507 /// If MO appears before Def, then then v1 and v3 may get assigned to the same
3508 /// register.
3509 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
3510 MachineInstr *Def, MachineOperand &MO) {
3511 if (!MO.isReg())
3512 return false;
3513 if (Def->isPHI())
3514 return false;
3515 MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
3516 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
3517 return false;
3518 if (!isLoopCarried(SSD, *Phi))
3519 return false;
3520 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
3521 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
3522 MachineOperand &DMO = Def->getOperand(i);
3523 if (!DMO.isReg() || !DMO.isDef())
3524 continue;
3525 if (DMO.getReg() == LoopReg)
3526 return true;
3528 return false;
3531 // Check if the generated schedule is valid. This function checks if
3532 // an instruction that uses a physical register is scheduled in a
3533 // different stage than the definition. The pipeliner does not handle
3534 // physical register values that may cross a basic block boundary.
3535 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
3536 for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) {
3537 SUnit &SU = SSD->SUnits[i];
3538 if (!SU.hasPhysRegDefs)
3539 continue;
3540 int StageDef = stageScheduled(&SU);
3541 assert(StageDef != -1 && "Instruction should have been scheduled.");
3542 for (auto &SI : SU.Succs)
3543 if (SI.isAssignedRegDep())
3544 if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg()))
3545 if (stageScheduled(SI.getSUnit()) != StageDef)
3546 return false;
3548 return true;
3551 /// A property of the node order in swing-modulo-scheduling is
3552 /// that for nodes outside circuits the following holds:
3553 /// none of them is scheduled after both a successor and a
3554 /// predecessor.
3555 /// The method below checks whether the property is met.
3556 /// If not, debug information is printed and statistics information updated.
3557 /// Note that we do not use an assert statement.
3558 /// The reason is that although an invalid node oder may prevent
3559 /// the pipeliner from finding a pipelined schedule for arbitrary II,
3560 /// it does not lead to the generation of incorrect code.
3561 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const {
3563 // a sorted vector that maps each SUnit to its index in the NodeOrder
3564 typedef std::pair<SUnit *, unsigned> UnitIndex;
3565 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0));
3567 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i)
3568 Indices.push_back(std::make_pair(NodeOrder[i], i));
3570 auto CompareKey = [](UnitIndex i1, UnitIndex i2) {
3571 return std::get<0>(i1) < std::get<0>(i2);
3574 // sort, so that we can perform a binary search
3575 llvm::sort(Indices, CompareKey);
3577 bool Valid = true;
3578 (void)Valid;
3579 // for each SUnit in the NodeOrder, check whether
3580 // it appears after both a successor and a predecessor
3581 // of the SUnit. If this is the case, and the SUnit
3582 // is not part of circuit, then the NodeOrder is not
3583 // valid.
3584 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) {
3585 SUnit *SU = NodeOrder[i];
3586 unsigned Index = i;
3588 bool PredBefore = false;
3589 bool SuccBefore = false;
3591 SUnit *Succ;
3592 SUnit *Pred;
3593 (void)Succ;
3594 (void)Pred;
3596 for (SDep &PredEdge : SU->Preds) {
3597 SUnit *PredSU = PredEdge.getSUnit();
3598 unsigned PredIndex =
3599 std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(),
3600 std::make_pair(PredSU, 0), CompareKey));
3601 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) {
3602 PredBefore = true;
3603 Pred = PredSU;
3604 break;
3608 for (SDep &SuccEdge : SU->Succs) {
3609 SUnit *SuccSU = SuccEdge.getSUnit();
3610 unsigned SuccIndex =
3611 std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(),
3612 std::make_pair(SuccSU, 0), CompareKey));
3613 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) {
3614 SuccBefore = true;
3615 Succ = SuccSU;
3616 break;
3620 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) {
3621 // instructions in circuits are allowed to be scheduled
3622 // after both a successor and predecessor.
3623 bool InCircuit = std::any_of(
3624 Circuits.begin(), Circuits.end(),
3625 [SU](const NodeSet &Circuit) { return Circuit.count(SU); });
3626 if (InCircuit)
3627 LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";);
3628 else {
3629 Valid = false;
3630 NumNodeOrderIssues++;
3631 LLVM_DEBUG(dbgs() << "Predecessor ";);
3633 LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum
3634 << " are scheduled before node " << SU->NodeNum
3635 << "\n";);
3639 LLVM_DEBUG({
3640 if (!Valid)
3641 dbgs() << "Invalid node order found!\n";
3645 /// Attempt to fix the degenerate cases when the instruction serialization
3646 /// causes the register lifetimes to overlap. For example,
3647 /// p' = store_pi(p, b)
3648 /// = load p, offset
3649 /// In this case p and p' overlap, which means that two registers are needed.
3650 /// Instead, this function changes the load to use p' and updates the offset.
3651 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) {
3652 unsigned OverlapReg = 0;
3653 unsigned NewBaseReg = 0;
3654 for (SUnit *SU : Instrs) {
3655 MachineInstr *MI = SU->getInstr();
3656 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
3657 const MachineOperand &MO = MI->getOperand(i);
3658 // Look for an instruction that uses p. The instruction occurs in the
3659 // same cycle but occurs later in the serialized order.
3660 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) {
3661 // Check that the instruction appears in the InstrChanges structure,
3662 // which contains instructions that can have the offset updated.
3663 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
3664 InstrChanges.find(SU);
3665 if (It != InstrChanges.end()) {
3666 unsigned BasePos, OffsetPos;
3667 // Update the base register and adjust the offset.
3668 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) {
3669 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
3670 NewMI->getOperand(BasePos).setReg(NewBaseReg);
3671 int64_t NewOffset =
3672 MI->getOperand(OffsetPos).getImm() - It->second.second;
3673 NewMI->getOperand(OffsetPos).setImm(NewOffset);
3674 SU->setInstr(NewMI);
3675 MISUnitMap[NewMI] = SU;
3676 NewMIs.insert(NewMI);
3679 OverlapReg = 0;
3680 NewBaseReg = 0;
3681 break;
3683 // Look for an instruction of the form p' = op(p), which uses and defines
3684 // two virtual registers that get allocated to the same physical register.
3685 unsigned TiedUseIdx = 0;
3686 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) {
3687 // OverlapReg is p in the example above.
3688 OverlapReg = MI->getOperand(TiedUseIdx).getReg();
3689 // NewBaseReg is p' in the example above.
3690 NewBaseReg = MI->getOperand(i).getReg();
3691 break;
3697 /// After the schedule has been formed, call this function to combine
3698 /// the instructions from the different stages/cycles. That is, this
3699 /// function creates a schedule that represents a single iteration.
3700 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
3701 // Move all instructions to the first stage from later stages.
3702 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
3703 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
3704 ++stage) {
3705 std::deque<SUnit *> &cycleInstrs =
3706 ScheduledInstrs[cycle + (stage * InitiationInterval)];
3707 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(),
3708 E = cycleInstrs.rend();
3709 I != E; ++I)
3710 ScheduledInstrs[cycle].push_front(*I);
3713 // Iterate over the definitions in each instruction, and compute the
3714 // stage difference for each use. Keep the maximum value.
3715 for (auto &I : InstrToCycle) {
3716 int DefStage = stageScheduled(I.first);
3717 MachineInstr *MI = I.first->getInstr();
3718 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
3719 MachineOperand &Op = MI->getOperand(i);
3720 if (!Op.isReg() || !Op.isDef())
3721 continue;
3723 unsigned Reg = Op.getReg();
3724 unsigned MaxDiff = 0;
3725 bool PhiIsSwapped = false;
3726 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg),
3727 EI = MRI.use_end();
3728 UI != EI; ++UI) {
3729 MachineOperand &UseOp = *UI;
3730 MachineInstr *UseMI = UseOp.getParent();
3731 SUnit *SUnitUse = SSD->getSUnit(UseMI);
3732 int UseStage = stageScheduled(SUnitUse);
3733 unsigned Diff = 0;
3734 if (UseStage != -1 && UseStage >= DefStage)
3735 Diff = UseStage - DefStage;
3736 if (MI->isPHI()) {
3737 if (isLoopCarried(SSD, *MI))
3738 ++Diff;
3739 else
3740 PhiIsSwapped = true;
3742 MaxDiff = std::max(Diff, MaxDiff);
3744 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
3748 // Erase all the elements in the later stages. Only one iteration should
3749 // remain in the scheduled list, and it contains all the instructions.
3750 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
3751 ScheduledInstrs.erase(cycle);
3753 // Change the registers in instruction as specified in the InstrChanges
3754 // map. We need to use the new registers to create the correct order.
3755 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) {
3756 SUnit *SU = &SSD->SUnits[i];
3757 SSD->applyInstrChange(SU->getInstr(), *this);
3760 // Reorder the instructions in each cycle to fix and improve the
3761 // generated code.
3762 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
3763 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
3764 std::deque<SUnit *> newOrderPhi;
3765 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
3766 SUnit *SU = cycleInstrs[i];
3767 if (SU->getInstr()->isPHI())
3768 newOrderPhi.push_back(SU);
3770 std::deque<SUnit *> newOrderI;
3771 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
3772 SUnit *SU = cycleInstrs[i];
3773 if (!SU->getInstr()->isPHI())
3774 orderDependence(SSD, SU, newOrderI);
3776 // Replace the old order with the new order.
3777 cycleInstrs.swap(newOrderPhi);
3778 cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end());
3779 SSD->fixupRegisterOverlaps(cycleInstrs);
3782 LLVM_DEBUG(dump(););
3785 void NodeSet::print(raw_ostream &os) const {
3786 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
3787 << " depth " << MaxDepth << " col " << Colocate << "\n";
3788 for (const auto &I : Nodes)
3789 os << " SU(" << I->NodeNum << ") " << *(I->getInstr());
3790 os << "\n";
3793 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3794 /// Print the schedule information to the given output.
3795 void SMSchedule::print(raw_ostream &os) const {
3796 // Iterate over each cycle.
3797 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
3798 // Iterate over each instruction in the cycle.
3799 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
3800 for (SUnit *CI : cycleInstrs->second) {
3801 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
3802 os << "(" << CI->NodeNum << ") ";
3803 CI->getInstr()->print(os);
3804 os << "\n";
3809 /// Utility function used for debugging to print the schedule.
3810 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); }
3811 LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); }
3813 #endif