Another attempt to fix the build bot breaks after r360426
[llvm-core.git] / lib / CodeGen / MachineScheduler.cpp
blob4b61dad4ac57b146476029a27238e1bdb98b3284
1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // MachineScheduler schedules machine instructions after phi elimination. It
10 // preserves LiveIntervals so it can be invoked before register allocation.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/MachineScheduler.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/PriorityQueue.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/CodeGen/LiveInterval.h"
24 #include "llvm/CodeGen/LiveIntervals.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineDominators.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineFunctionPass.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineLoopInfo.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachinePassRegistry.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/Passes.h"
35 #include "llvm/CodeGen/RegisterClassInfo.h"
36 #include "llvm/CodeGen/RegisterPressure.h"
37 #include "llvm/CodeGen/ScheduleDAG.h"
38 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
39 #include "llvm/CodeGen/ScheduleDAGMutation.h"
40 #include "llvm/CodeGen/ScheduleDFS.h"
41 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
42 #include "llvm/CodeGen/SlotIndexes.h"
43 #include "llvm/CodeGen/TargetFrameLowering.h"
44 #include "llvm/CodeGen/TargetInstrInfo.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/CodeGen/TargetPassConfig.h"
47 #include "llvm/CodeGen/TargetRegisterInfo.h"
48 #include "llvm/CodeGen/TargetSchedule.h"
49 #include "llvm/CodeGen/TargetSubtargetInfo.h"
50 #include "llvm/Config/llvm-config.h"
51 #include "llvm/MC/LaneBitmask.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/GraphWriter.h"
58 #include "llvm/Support/MachineValueType.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <cstdint>
63 #include <iterator>
64 #include <limits>
65 #include <memory>
66 #include <string>
67 #include <tuple>
68 #include <utility>
69 #include <vector>
71 using namespace llvm;
73 #define DEBUG_TYPE "machine-scheduler"
75 namespace llvm {
77 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
78 cl::desc("Force top-down list scheduling"));
79 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
80 cl::desc("Force bottom-up list scheduling"));
81 cl::opt<bool>
82 DumpCriticalPathLength("misched-dcpl", cl::Hidden,
83 cl::desc("Print critical path length to stdout"));
85 } // end namespace llvm
87 #ifndef NDEBUG
88 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
89 cl::desc("Pop up a window to show MISched dags after they are processed"));
91 /// In some situations a few uninteresting nodes depend on nearly all other
92 /// nodes in the graph, provide a cutoff to hide them.
93 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
94 cl::desc("Hide nodes with more predecessor/successor than cutoff"));
96 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
97 cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
99 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
100 cl::desc("Only schedule this function"));
101 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
102 cl::desc("Only schedule this MBB#"));
103 static cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden,
104 cl::desc("Print schedule DAGs"));
105 #else
106 static const bool ViewMISchedDAGs = false;
107 static const bool PrintDAGs = false;
108 #endif // NDEBUG
110 /// Avoid quadratic complexity in unusually large basic blocks by limiting the
111 /// size of the ready lists.
112 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden,
113 cl::desc("Limit ready list to N instructions"), cl::init(256));
115 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
116 cl::desc("Enable register pressure scheduling."), cl::init(true));
118 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
119 cl::desc("Enable cyclic critical path analysis."), cl::init(true));
121 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden,
122 cl::desc("Enable memop clustering."),
123 cl::init(true));
125 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
126 cl::desc("Verify machine instrs before and after machine scheduling"));
128 // DAG subtrees must have at least this many nodes.
129 static const unsigned MinSubtreeSize = 8;
131 // Pin the vtables to this file.
132 void MachineSchedStrategy::anchor() {}
134 void ScheduleDAGMutation::anchor() {}
136 //===----------------------------------------------------------------------===//
137 // Machine Instruction Scheduling Pass and Registry
138 //===----------------------------------------------------------------------===//
140 MachineSchedContext::MachineSchedContext() {
141 RegClassInfo = new RegisterClassInfo();
144 MachineSchedContext::~MachineSchedContext() {
145 delete RegClassInfo;
148 namespace {
150 /// Base class for a machine scheduler class that can run at any point.
151 class MachineSchedulerBase : public MachineSchedContext,
152 public MachineFunctionPass {
153 public:
154 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
156 void print(raw_ostream &O, const Module* = nullptr) const override;
158 protected:
159 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
162 /// MachineScheduler runs after coalescing and before register allocation.
163 class MachineScheduler : public MachineSchedulerBase {
164 public:
165 MachineScheduler();
167 void getAnalysisUsage(AnalysisUsage &AU) const override;
169 bool runOnMachineFunction(MachineFunction&) override;
171 static char ID; // Class identification, replacement for typeinfo
173 protected:
174 ScheduleDAGInstrs *createMachineScheduler();
177 /// PostMachineScheduler runs after shortly before code emission.
178 class PostMachineScheduler : public MachineSchedulerBase {
179 public:
180 PostMachineScheduler();
182 void getAnalysisUsage(AnalysisUsage &AU) const override;
184 bool runOnMachineFunction(MachineFunction&) override;
186 static char ID; // Class identification, replacement for typeinfo
188 protected:
189 ScheduleDAGInstrs *createPostMachineScheduler();
192 } // end anonymous namespace
194 char MachineScheduler::ID = 0;
196 char &llvm::MachineSchedulerID = MachineScheduler::ID;
198 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE,
199 "Machine Instruction Scheduler", false, false)
200 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
201 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
202 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
203 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
204 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE,
205 "Machine Instruction Scheduler", false, false)
207 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) {
208 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
211 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
212 AU.setPreservesCFG();
213 AU.addRequiredID(MachineDominatorsID);
214 AU.addRequired<MachineLoopInfo>();
215 AU.addRequired<AAResultsWrapperPass>();
216 AU.addRequired<TargetPassConfig>();
217 AU.addRequired<SlotIndexes>();
218 AU.addPreserved<SlotIndexes>();
219 AU.addRequired<LiveIntervals>();
220 AU.addPreserved<LiveIntervals>();
221 MachineFunctionPass::getAnalysisUsage(AU);
224 char PostMachineScheduler::ID = 0;
226 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
228 INITIALIZE_PASS(PostMachineScheduler, "postmisched",
229 "PostRA Machine Instruction Scheduler", false, false)
231 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) {
232 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
235 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
236 AU.setPreservesCFG();
237 AU.addRequiredID(MachineDominatorsID);
238 AU.addRequired<MachineLoopInfo>();
239 AU.addRequired<TargetPassConfig>();
240 MachineFunctionPass::getAnalysisUsage(AU);
243 MachinePassRegistry<MachineSchedRegistry::ScheduleDAGCtor>
244 MachineSchedRegistry::Registry;
246 /// A dummy default scheduler factory indicates whether the scheduler
247 /// is overridden on the command line.
248 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
249 return nullptr;
252 /// MachineSchedOpt allows command line selection of the scheduler.
253 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
254 RegisterPassParser<MachineSchedRegistry>>
255 MachineSchedOpt("misched",
256 cl::init(&useDefaultMachineSched), cl::Hidden,
257 cl::desc("Machine instruction scheduler to use"));
259 static MachineSchedRegistry
260 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
261 useDefaultMachineSched);
263 static cl::opt<bool> EnableMachineSched(
264 "enable-misched",
265 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
266 cl::Hidden);
268 static cl::opt<bool> EnablePostRAMachineSched(
269 "enable-post-misched",
270 cl::desc("Enable the post-ra machine instruction scheduling pass."),
271 cl::init(true), cl::Hidden);
273 /// Decrement this iterator until reaching the top or a non-debug instr.
274 static MachineBasicBlock::const_iterator
275 priorNonDebug(MachineBasicBlock::const_iterator I,
276 MachineBasicBlock::const_iterator Beg) {
277 assert(I != Beg && "reached the top of the region, cannot decrement");
278 while (--I != Beg) {
279 if (!I->isDebugInstr())
280 break;
282 return I;
285 /// Non-const version.
286 static MachineBasicBlock::iterator
287 priorNonDebug(MachineBasicBlock::iterator I,
288 MachineBasicBlock::const_iterator Beg) {
289 return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)
290 .getNonConstIterator();
293 /// If this iterator is a debug value, increment until reaching the End or a
294 /// non-debug instruction.
295 static MachineBasicBlock::const_iterator
296 nextIfDebug(MachineBasicBlock::const_iterator I,
297 MachineBasicBlock::const_iterator End) {
298 for(; I != End; ++I) {
299 if (!I->isDebugInstr())
300 break;
302 return I;
305 /// Non-const version.
306 static MachineBasicBlock::iterator
307 nextIfDebug(MachineBasicBlock::iterator I,
308 MachineBasicBlock::const_iterator End) {
309 return nextIfDebug(MachineBasicBlock::const_iterator(I), End)
310 .getNonConstIterator();
313 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
314 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
315 // Select the scheduler, or set the default.
316 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
317 if (Ctor != useDefaultMachineSched)
318 return Ctor(this);
320 // Get the default scheduler set by the target for this function.
321 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
322 if (Scheduler)
323 return Scheduler;
325 // Default to GenericScheduler.
326 return createGenericSchedLive(this);
329 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
330 /// the caller. We don't have a command line option to override the postRA
331 /// scheduler. The Target must configure it.
332 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
333 // Get the postRA scheduler set by the target for this function.
334 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
335 if (Scheduler)
336 return Scheduler;
338 // Default to GenericScheduler.
339 return createGenericSchedPostRA(this);
342 /// Top-level MachineScheduler pass driver.
344 /// Visit blocks in function order. Divide each block into scheduling regions
345 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
346 /// consistent with the DAG builder, which traverses the interior of the
347 /// scheduling regions bottom-up.
349 /// This design avoids exposing scheduling boundaries to the DAG builder,
350 /// simplifying the DAG builder's support for "special" target instructions.
351 /// At the same time the design allows target schedulers to operate across
352 /// scheduling boundaries, for example to bundle the boundary instructions
353 /// without reordering them. This creates complexity, because the target
354 /// scheduler must update the RegionBegin and RegionEnd positions cached by
355 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
356 /// design would be to split blocks at scheduling boundaries, but LLVM has a
357 /// general bias against block splitting purely for implementation simplicity.
358 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
359 if (skipFunction(mf.getFunction()))
360 return false;
362 if (EnableMachineSched.getNumOccurrences()) {
363 if (!EnableMachineSched)
364 return false;
365 } else if (!mf.getSubtarget().enableMachineScheduler())
366 return false;
368 LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
370 // Initialize the context of the pass.
371 MF = &mf;
372 MLI = &getAnalysis<MachineLoopInfo>();
373 MDT = &getAnalysis<MachineDominatorTree>();
374 PassConfig = &getAnalysis<TargetPassConfig>();
375 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
377 LIS = &getAnalysis<LiveIntervals>();
379 if (VerifyScheduling) {
380 LLVM_DEBUG(LIS->dump());
381 MF->verify(this, "Before machine scheduling.");
383 RegClassInfo->runOnMachineFunction(*MF);
385 // Instantiate the selected scheduler for this target, function, and
386 // optimization level.
387 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
388 scheduleRegions(*Scheduler, false);
390 LLVM_DEBUG(LIS->dump());
391 if (VerifyScheduling)
392 MF->verify(this, "After machine scheduling.");
393 return true;
396 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
397 if (skipFunction(mf.getFunction()))
398 return false;
400 if (EnablePostRAMachineSched.getNumOccurrences()) {
401 if (!EnablePostRAMachineSched)
402 return false;
403 } else if (!mf.getSubtarget().enablePostRAScheduler()) {
404 LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
405 return false;
407 LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
409 // Initialize the context of the pass.
410 MF = &mf;
411 MLI = &getAnalysis<MachineLoopInfo>();
412 PassConfig = &getAnalysis<TargetPassConfig>();
414 if (VerifyScheduling)
415 MF->verify(this, "Before post machine scheduling.");
417 // Instantiate the selected scheduler for this target, function, and
418 // optimization level.
419 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
420 scheduleRegions(*Scheduler, true);
422 if (VerifyScheduling)
423 MF->verify(this, "After post machine scheduling.");
424 return true;
427 /// Return true of the given instruction should not be included in a scheduling
428 /// region.
430 /// MachineScheduler does not currently support scheduling across calls. To
431 /// handle calls, the DAG builder needs to be modified to create register
432 /// anti/output dependencies on the registers clobbered by the call's regmask
433 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
434 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
435 /// the boundary, but there would be no benefit to postRA scheduling across
436 /// calls this late anyway.
437 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
438 MachineBasicBlock *MBB,
439 MachineFunction *MF,
440 const TargetInstrInfo *TII) {
441 return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF);
444 /// A region of an MBB for scheduling.
445 namespace {
446 struct SchedRegion {
447 /// RegionBegin is the first instruction in the scheduling region, and
448 /// RegionEnd is either MBB->end() or the scheduling boundary after the
449 /// last instruction in the scheduling region. These iterators cannot refer
450 /// to instructions outside of the identified scheduling region because
451 /// those may be reordered before scheduling this region.
452 MachineBasicBlock::iterator RegionBegin;
453 MachineBasicBlock::iterator RegionEnd;
454 unsigned NumRegionInstrs;
456 SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E,
457 unsigned N) :
458 RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {}
460 } // end anonymous namespace
462 using MBBRegionsVector = SmallVector<SchedRegion, 16>;
464 static void
465 getSchedRegions(MachineBasicBlock *MBB,
466 MBBRegionsVector &Regions,
467 bool RegionsTopDown) {
468 MachineFunction *MF = MBB->getParent();
469 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
471 MachineBasicBlock::iterator I = nullptr;
472 for(MachineBasicBlock::iterator RegionEnd = MBB->end();
473 RegionEnd != MBB->begin(); RegionEnd = I) {
475 // Avoid decrementing RegionEnd for blocks with no terminator.
476 if (RegionEnd != MBB->end() ||
477 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
478 --RegionEnd;
481 // The next region starts above the previous region. Look backward in the
482 // instruction stream until we find the nearest boundary.
483 unsigned NumRegionInstrs = 0;
484 I = RegionEnd;
485 for (;I != MBB->begin(); --I) {
486 MachineInstr &MI = *std::prev(I);
487 if (isSchedBoundary(&MI, &*MBB, MF, TII))
488 break;
489 if (!MI.isDebugInstr()) {
490 // MBB::size() uses instr_iterator to count. Here we need a bundle to
491 // count as a single instruction.
492 ++NumRegionInstrs;
496 // It's possible we found a scheduling region that only has debug
497 // instructions. Don't bother scheduling these.
498 if (NumRegionInstrs != 0)
499 Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs));
502 if (RegionsTopDown)
503 std::reverse(Regions.begin(), Regions.end());
506 /// Main driver for both MachineScheduler and PostMachineScheduler.
507 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
508 bool FixKillFlags) {
509 // Visit all machine basic blocks.
511 // TODO: Visit blocks in global postorder or postorder within the bottom-up
512 // loop tree. Then we can optionally compute global RegPressure.
513 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
514 MBB != MBBEnd; ++MBB) {
516 Scheduler.startBlock(&*MBB);
518 #ifndef NDEBUG
519 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
520 continue;
521 if (SchedOnlyBlock.getNumOccurrences()
522 && (int)SchedOnlyBlock != MBB->getNumber())
523 continue;
524 #endif
526 // Break the block into scheduling regions [I, RegionEnd). RegionEnd
527 // points to the scheduling boundary at the bottom of the region. The DAG
528 // does not include RegionEnd, but the region does (i.e. the next
529 // RegionEnd is above the previous RegionBegin). If the current block has
530 // no terminator then RegionEnd == MBB->end() for the bottom region.
532 // All the regions of MBB are first found and stored in MBBRegions, which
533 // will be processed (MBB) top-down if initialized with true.
535 // The Scheduler may insert instructions during either schedule() or
536 // exitRegion(), even for empty regions. So the local iterators 'I' and
537 // 'RegionEnd' are invalid across these calls. Instructions must not be
538 // added to other regions than the current one without updating MBBRegions.
540 MBBRegionsVector MBBRegions;
541 getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown());
542 for (MBBRegionsVector::iterator R = MBBRegions.begin();
543 R != MBBRegions.end(); ++R) {
544 MachineBasicBlock::iterator I = R->RegionBegin;
545 MachineBasicBlock::iterator RegionEnd = R->RegionEnd;
546 unsigned NumRegionInstrs = R->NumRegionInstrs;
548 // Notify the scheduler of the region, even if we may skip scheduling
549 // it. Perhaps it still needs to be bundled.
550 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
552 // Skip empty scheduling regions (0 or 1 schedulable instructions).
553 if (I == RegionEnd || I == std::prev(RegionEnd)) {
554 // Close the current region. Bundle the terminator if needed.
555 // This invalidates 'RegionEnd' and 'I'.
556 Scheduler.exitRegion();
557 continue;
559 LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
560 LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB)
561 << " " << MBB->getName() << "\n From: " << *I
562 << " To: ";
563 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
564 else dbgs() << "End";
565 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
566 if (DumpCriticalPathLength) {
567 errs() << MF->getName();
568 errs() << ":%bb. " << MBB->getNumber();
569 errs() << " " << MBB->getName() << " \n";
572 // Schedule a region: possibly reorder instructions.
573 // This invalidates the original region iterators.
574 Scheduler.schedule();
576 // Close the current region.
577 Scheduler.exitRegion();
579 Scheduler.finishBlock();
580 // FIXME: Ideally, no further passes should rely on kill flags. However,
581 // thumb2 size reduction is currently an exception, so the PostMIScheduler
582 // needs to do this.
583 if (FixKillFlags)
584 Scheduler.fixupKills(*MBB);
586 Scheduler.finalizeSchedule();
589 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
590 // unimplemented
593 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
594 LLVM_DUMP_METHOD void ReadyQueue::dump() const {
595 dbgs() << "Queue " << Name << ": ";
596 for (const SUnit *SU : Queue)
597 dbgs() << SU->NodeNum << " ";
598 dbgs() << "\n";
600 #endif
602 //===----------------------------------------------------------------------===//
603 // ScheduleDAGMI - Basic machine instruction scheduling. This is
604 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
605 // virtual registers.
606 // ===----------------------------------------------------------------------===/
608 // Provide a vtable anchor.
609 ScheduleDAGMI::~ScheduleDAGMI() = default;
611 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
612 /// NumPredsLeft reaches zero, release the successor node.
614 /// FIXME: Adjust SuccSU height based on MinLatency.
615 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
616 SUnit *SuccSU = SuccEdge->getSUnit();
618 if (SuccEdge->isWeak()) {
619 --SuccSU->WeakPredsLeft;
620 if (SuccEdge->isCluster())
621 NextClusterSucc = SuccSU;
622 return;
624 #ifndef NDEBUG
625 if (SuccSU->NumPredsLeft == 0) {
626 dbgs() << "*** Scheduling failed! ***\n";
627 dumpNode(*SuccSU);
628 dbgs() << " has been released too many times!\n";
629 llvm_unreachable(nullptr);
631 #endif
632 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
633 // CurrCycle may have advanced since then.
634 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
635 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
637 --SuccSU->NumPredsLeft;
638 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
639 SchedImpl->releaseTopNode(SuccSU);
642 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
643 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
644 for (SDep &Succ : SU->Succs)
645 releaseSucc(SU, &Succ);
648 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
649 /// NumSuccsLeft reaches zero, release the predecessor node.
651 /// FIXME: Adjust PredSU height based on MinLatency.
652 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
653 SUnit *PredSU = PredEdge->getSUnit();
655 if (PredEdge->isWeak()) {
656 --PredSU->WeakSuccsLeft;
657 if (PredEdge->isCluster())
658 NextClusterPred = PredSU;
659 return;
661 #ifndef NDEBUG
662 if (PredSU->NumSuccsLeft == 0) {
663 dbgs() << "*** Scheduling failed! ***\n";
664 dumpNode(*PredSU);
665 dbgs() << " has been released too many times!\n";
666 llvm_unreachable(nullptr);
668 #endif
669 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
670 // CurrCycle may have advanced since then.
671 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
672 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
674 --PredSU->NumSuccsLeft;
675 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
676 SchedImpl->releaseBottomNode(PredSU);
679 /// releasePredecessors - Call releasePred on each of SU's predecessors.
680 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
681 for (SDep &Pred : SU->Preds)
682 releasePred(SU, &Pred);
685 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) {
686 ScheduleDAGInstrs::startBlock(bb);
687 SchedImpl->enterMBB(bb);
690 void ScheduleDAGMI::finishBlock() {
691 SchedImpl->leaveMBB();
692 ScheduleDAGInstrs::finishBlock();
695 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
696 /// crossing a scheduling boundary. [begin, end) includes all instructions in
697 /// the region, including the boundary itself and single-instruction regions
698 /// that don't get scheduled.
699 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
700 MachineBasicBlock::iterator begin,
701 MachineBasicBlock::iterator end,
702 unsigned regioninstrs)
704 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
706 SchedImpl->initPolicy(begin, end, regioninstrs);
709 /// This is normally called from the main scheduler loop but may also be invoked
710 /// by the scheduling strategy to perform additional code motion.
711 void ScheduleDAGMI::moveInstruction(
712 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
713 // Advance RegionBegin if the first instruction moves down.
714 if (&*RegionBegin == MI)
715 ++RegionBegin;
717 // Update the instruction stream.
718 BB->splice(InsertPos, BB, MI);
720 // Update LiveIntervals
721 if (LIS)
722 LIS->handleMove(*MI, /*UpdateFlags=*/true);
724 // Recede RegionBegin if an instruction moves above the first.
725 if (RegionBegin == InsertPos)
726 RegionBegin = MI;
729 bool ScheduleDAGMI::checkSchedLimit() {
730 #ifndef NDEBUG
731 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
732 CurrentTop = CurrentBottom;
733 return false;
735 ++NumInstrsScheduled;
736 #endif
737 return true;
740 /// Per-region scheduling driver, called back from
741 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that
742 /// does not consider liveness or register pressure. It is useful for PostRA
743 /// scheduling and potentially other custom schedulers.
744 void ScheduleDAGMI::schedule() {
745 LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
746 LLVM_DEBUG(SchedImpl->dumpPolicy());
748 // Build the DAG.
749 buildSchedGraph(AA);
751 postprocessDAG();
753 SmallVector<SUnit*, 8> TopRoots, BotRoots;
754 findRootsAndBiasEdges(TopRoots, BotRoots);
756 LLVM_DEBUG(dump());
757 if (PrintDAGs) dump();
758 if (ViewMISchedDAGs) viewGraph();
760 // Initialize the strategy before modifying the DAG.
761 // This may initialize a DFSResult to be used for queue priority.
762 SchedImpl->initialize(this);
764 // Initialize ready queues now that the DAG and priority data are finalized.
765 initQueues(TopRoots, BotRoots);
767 bool IsTopNode = false;
768 while (true) {
769 LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
770 SUnit *SU = SchedImpl->pickNode(IsTopNode);
771 if (!SU) break;
773 assert(!SU->isScheduled && "Node already scheduled");
774 if (!checkSchedLimit())
775 break;
777 MachineInstr *MI = SU->getInstr();
778 if (IsTopNode) {
779 assert(SU->isTopReady() && "node still has unscheduled dependencies");
780 if (&*CurrentTop == MI)
781 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
782 else
783 moveInstruction(MI, CurrentTop);
784 } else {
785 assert(SU->isBottomReady() && "node still has unscheduled dependencies");
786 MachineBasicBlock::iterator priorII =
787 priorNonDebug(CurrentBottom, CurrentTop);
788 if (&*priorII == MI)
789 CurrentBottom = priorII;
790 else {
791 if (&*CurrentTop == MI)
792 CurrentTop = nextIfDebug(++CurrentTop, priorII);
793 moveInstruction(MI, CurrentBottom);
794 CurrentBottom = MI;
797 // Notify the scheduling strategy before updating the DAG.
798 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
799 // runs, it can then use the accurate ReadyCycle time to determine whether
800 // newly released nodes can move to the readyQ.
801 SchedImpl->schedNode(SU, IsTopNode);
803 updateQueues(SU, IsTopNode);
805 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
807 placeDebugValues();
809 LLVM_DEBUG({
810 dbgs() << "*** Final schedule for "
811 << printMBBReference(*begin()->getParent()) << " ***\n";
812 dumpSchedule();
813 dbgs() << '\n';
817 /// Apply each ScheduleDAGMutation step in order.
818 void ScheduleDAGMI::postprocessDAG() {
819 for (auto &m : Mutations)
820 m->apply(this);
823 void ScheduleDAGMI::
824 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
825 SmallVectorImpl<SUnit*> &BotRoots) {
826 for (SUnit &SU : SUnits) {
827 assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits");
829 // Order predecessors so DFSResult follows the critical path.
830 SU.biasCriticalPath();
832 // A SUnit is ready to top schedule if it has no predecessors.
833 if (!SU.NumPredsLeft)
834 TopRoots.push_back(&SU);
835 // A SUnit is ready to bottom schedule if it has no successors.
836 if (!SU.NumSuccsLeft)
837 BotRoots.push_back(&SU);
839 ExitSU.biasCriticalPath();
842 /// Identify DAG roots and setup scheduler queues.
843 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
844 ArrayRef<SUnit*> BotRoots) {
845 NextClusterSucc = nullptr;
846 NextClusterPred = nullptr;
848 // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
850 // Nodes with unreleased weak edges can still be roots.
851 // Release top roots in forward order.
852 for (SUnit *SU : TopRoots)
853 SchedImpl->releaseTopNode(SU);
855 // Release bottom roots in reverse order so the higher priority nodes appear
856 // first. This is more natural and slightly more efficient.
857 for (SmallVectorImpl<SUnit*>::const_reverse_iterator
858 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
859 SchedImpl->releaseBottomNode(*I);
862 releaseSuccessors(&EntrySU);
863 releasePredecessors(&ExitSU);
865 SchedImpl->registerRoots();
867 // Advance past initial DebugValues.
868 CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
869 CurrentBottom = RegionEnd;
872 /// Update scheduler queues after scheduling an instruction.
873 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
874 // Release dependent instructions for scheduling.
875 if (IsTopNode)
876 releaseSuccessors(SU);
877 else
878 releasePredecessors(SU);
880 SU->isScheduled = true;
883 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
884 void ScheduleDAGMI::placeDebugValues() {
885 // If first instruction was a DBG_VALUE then put it back.
886 if (FirstDbgValue) {
887 BB->splice(RegionBegin, BB, FirstDbgValue);
888 RegionBegin = FirstDbgValue;
891 for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator
892 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
893 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
894 MachineInstr *DbgValue = P.first;
895 MachineBasicBlock::iterator OrigPrevMI = P.second;
896 if (&*RegionBegin == DbgValue)
897 ++RegionBegin;
898 BB->splice(++OrigPrevMI, BB, DbgValue);
899 if (OrigPrevMI == std::prev(RegionEnd))
900 RegionEnd = DbgValue;
902 DbgValues.clear();
903 FirstDbgValue = nullptr;
906 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
907 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const {
908 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
909 if (SUnit *SU = getSUnit(&(*MI)))
910 dumpNode(*SU);
911 else
912 dbgs() << "Missing SUnit\n";
915 #endif
917 //===----------------------------------------------------------------------===//
918 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
919 // preservation.
920 //===----------------------------------------------------------------------===//
922 ScheduleDAGMILive::~ScheduleDAGMILive() {
923 delete DFSResult;
926 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) {
927 const MachineInstr &MI = *SU.getInstr();
928 for (const MachineOperand &MO : MI.operands()) {
929 if (!MO.isReg())
930 continue;
931 if (!MO.readsReg())
932 continue;
933 if (TrackLaneMasks && !MO.isUse())
934 continue;
936 unsigned Reg = MO.getReg();
937 if (!TargetRegisterInfo::isVirtualRegister(Reg))
938 continue;
940 // Ignore re-defs.
941 if (TrackLaneMasks) {
942 bool FoundDef = false;
943 for (const MachineOperand &MO2 : MI.operands()) {
944 if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) {
945 FoundDef = true;
946 break;
949 if (FoundDef)
950 continue;
953 // Record this local VReg use.
954 VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
955 for (; UI != VRegUses.end(); ++UI) {
956 if (UI->SU == &SU)
957 break;
959 if (UI == VRegUses.end())
960 VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU));
964 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
965 /// crossing a scheduling boundary. [begin, end) includes all instructions in
966 /// the region, including the boundary itself and single-instruction regions
967 /// that don't get scheduled.
968 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
969 MachineBasicBlock::iterator begin,
970 MachineBasicBlock::iterator end,
971 unsigned regioninstrs)
973 // ScheduleDAGMI initializes SchedImpl's per-region policy.
974 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
976 // For convenience remember the end of the liveness region.
977 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
979 SUPressureDiffs.clear();
981 ShouldTrackPressure = SchedImpl->shouldTrackPressure();
982 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks();
984 assert((!ShouldTrackLaneMasks || ShouldTrackPressure) &&
985 "ShouldTrackLaneMasks requires ShouldTrackPressure");
988 // Setup the register pressure trackers for the top scheduled top and bottom
989 // scheduled regions.
990 void ScheduleDAGMILive::initRegPressure() {
991 VRegUses.clear();
992 VRegUses.setUniverse(MRI.getNumVirtRegs());
993 for (SUnit &SU : SUnits)
994 collectVRegUses(SU);
996 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin,
997 ShouldTrackLaneMasks, false);
998 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
999 ShouldTrackLaneMasks, false);
1001 // Close the RPTracker to finalize live ins.
1002 RPTracker.closeRegion();
1004 LLVM_DEBUG(RPTracker.dump());
1006 // Initialize the live ins and live outs.
1007 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
1008 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
1010 // Close one end of the tracker so we can call
1011 // getMaxUpward/DownwardPressureDelta before advancing across any
1012 // instructions. This converts currently live regs into live ins/outs.
1013 TopRPTracker.closeTop();
1014 BotRPTracker.closeBottom();
1016 BotRPTracker.initLiveThru(RPTracker);
1017 if (!BotRPTracker.getLiveThru().empty()) {
1018 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
1019 LLVM_DEBUG(dbgs() << "Live Thru: ";
1020 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
1023 // For each live out vreg reduce the pressure change associated with other
1024 // uses of the same vreg below the live-out reaching def.
1025 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
1027 // Account for liveness generated by the region boundary.
1028 if (LiveRegionEnd != RegionEnd) {
1029 SmallVector<RegisterMaskPair, 8> LiveUses;
1030 BotRPTracker.recede(&LiveUses);
1031 updatePressureDiffs(LiveUses);
1034 LLVM_DEBUG(dbgs() << "Top Pressure:\n";
1035 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
1036 dbgs() << "Bottom Pressure:\n";
1037 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI););
1039 assert((BotRPTracker.getPos() == RegionEnd ||
1040 (RegionEnd->isDebugInstr() &&
1041 BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) &&
1042 "Can't find the region bottom");
1044 // Cache the list of excess pressure sets in this region. This will also track
1045 // the max pressure in the scheduled code for these sets.
1046 RegionCriticalPSets.clear();
1047 const std::vector<unsigned> &RegionPressure =
1048 RPTracker.getPressure().MaxSetPressure;
1049 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
1050 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
1051 if (RegionPressure[i] > Limit) {
1052 LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit
1053 << " Actual " << RegionPressure[i] << "\n");
1054 RegionCriticalPSets.push_back(PressureChange(i));
1057 LLVM_DEBUG(dbgs() << "Excess PSets: ";
1058 for (const PressureChange &RCPS
1059 : RegionCriticalPSets) dbgs()
1060 << TRI->getRegPressureSetName(RCPS.getPSet()) << " ";
1061 dbgs() << "\n");
1064 void ScheduleDAGMILive::
1065 updateScheduledPressure(const SUnit *SU,
1066 const std::vector<unsigned> &NewMaxPressure) {
1067 const PressureDiff &PDiff = getPressureDiff(SU);
1068 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
1069 for (const PressureChange &PC : PDiff) {
1070 if (!PC.isValid())
1071 break;
1072 unsigned ID = PC.getPSet();
1073 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
1074 ++CritIdx;
1075 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
1076 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
1077 && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max())
1078 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
1080 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
1081 if (NewMaxPressure[ID] >= Limit - 2) {
1082 LLVM_DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": "
1083 << NewMaxPressure[ID]
1084 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ")
1085 << Limit << "(+ " << BotRPTracker.getLiveThru()[ID]
1086 << " livethru)\n");
1091 /// Update the PressureDiff array for liveness after scheduling this
1092 /// instruction.
1093 void ScheduleDAGMILive::updatePressureDiffs(
1094 ArrayRef<RegisterMaskPair> LiveUses) {
1095 for (const RegisterMaskPair &P : LiveUses) {
1096 unsigned Reg = P.RegUnit;
1097 /// FIXME: Currently assuming single-use physregs.
1098 if (!TRI->isVirtualRegister(Reg))
1099 continue;
1101 if (ShouldTrackLaneMasks) {
1102 // If the register has just become live then other uses won't change
1103 // this fact anymore => decrement pressure.
1104 // If the register has just become dead then other uses make it come
1105 // back to life => increment pressure.
1106 bool Decrement = P.LaneMask.any();
1108 for (const VReg2SUnit &V2SU
1109 : make_range(VRegUses.find(Reg), VRegUses.end())) {
1110 SUnit &SU = *V2SU.SU;
1111 if (SU.isScheduled || &SU == &ExitSU)
1112 continue;
1114 PressureDiff &PDiff = getPressureDiff(&SU);
1115 PDiff.addPressureChange(Reg, Decrement, &MRI);
1116 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") "
1117 << printReg(Reg, TRI) << ':'
1118 << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr();
1119 dbgs() << " to "; PDiff.dump(*TRI););
1121 } else {
1122 assert(P.LaneMask.any());
1123 LLVM_DEBUG(dbgs() << " LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n");
1124 // This may be called before CurrentBottom has been initialized. However,
1125 // BotRPTracker must have a valid position. We want the value live into the
1126 // instruction or live out of the block, so ask for the previous
1127 // instruction's live-out.
1128 const LiveInterval &LI = LIS->getInterval(Reg);
1129 VNInfo *VNI;
1130 MachineBasicBlock::const_iterator I =
1131 nextIfDebug(BotRPTracker.getPos(), BB->end());
1132 if (I == BB->end())
1133 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1134 else {
1135 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I));
1136 VNI = LRQ.valueIn();
1138 // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
1139 assert(VNI && "No live value at use.");
1140 for (const VReg2SUnit &V2SU
1141 : make_range(VRegUses.find(Reg), VRegUses.end())) {
1142 SUnit *SU = V2SU.SU;
1143 // If this use comes before the reaching def, it cannot be a last use,
1144 // so decrease its pressure change.
1145 if (!SU->isScheduled && SU != &ExitSU) {
1146 LiveQueryResult LRQ =
1147 LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1148 if (LRQ.valueIn() == VNI) {
1149 PressureDiff &PDiff = getPressureDiff(SU);
1150 PDiff.addPressureChange(Reg, true, &MRI);
1151 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") "
1152 << *SU->getInstr();
1153 dbgs() << " to "; PDiff.dump(*TRI););
1161 void ScheduleDAGMILive::dump() const {
1162 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1163 if (EntrySU.getInstr() != nullptr)
1164 dumpNodeAll(EntrySU);
1165 for (const SUnit &SU : SUnits) {
1166 dumpNodeAll(SU);
1167 if (ShouldTrackPressure) {
1168 dbgs() << " Pressure Diff : ";
1169 getPressureDiff(&SU).dump(*TRI);
1171 dbgs() << " Single Issue : ";
1172 if (SchedModel.mustBeginGroup(SU.getInstr()) &&
1173 SchedModel.mustEndGroup(SU.getInstr()))
1174 dbgs() << "true;";
1175 else
1176 dbgs() << "false;";
1177 dbgs() << '\n';
1179 if (ExitSU.getInstr() != nullptr)
1180 dumpNodeAll(ExitSU);
1181 #endif
1184 /// schedule - Called back from MachineScheduler::runOnMachineFunction
1185 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
1186 /// only includes instructions that have DAG nodes, not scheduling boundaries.
1188 /// This is a skeletal driver, with all the functionality pushed into helpers,
1189 /// so that it can be easily extended by experimental schedulers. Generally,
1190 /// implementing MachineSchedStrategy should be sufficient to implement a new
1191 /// scheduling algorithm. However, if a scheduler further subclasses
1192 /// ScheduleDAGMILive then it will want to override this virtual method in order
1193 /// to update any specialized state.
1194 void ScheduleDAGMILive::schedule() {
1195 LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
1196 LLVM_DEBUG(SchedImpl->dumpPolicy());
1197 buildDAGWithRegPressure();
1199 postprocessDAG();
1201 SmallVector<SUnit*, 8> TopRoots, BotRoots;
1202 findRootsAndBiasEdges(TopRoots, BotRoots);
1204 // Initialize the strategy before modifying the DAG.
1205 // This may initialize a DFSResult to be used for queue priority.
1206 SchedImpl->initialize(this);
1208 LLVM_DEBUG(dump());
1209 if (PrintDAGs) dump();
1210 if (ViewMISchedDAGs) viewGraph();
1212 // Initialize ready queues now that the DAG and priority data are finalized.
1213 initQueues(TopRoots, BotRoots);
1215 bool IsTopNode = false;
1216 while (true) {
1217 LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
1218 SUnit *SU = SchedImpl->pickNode(IsTopNode);
1219 if (!SU) break;
1221 assert(!SU->isScheduled && "Node already scheduled");
1222 if (!checkSchedLimit())
1223 break;
1225 scheduleMI(SU, IsTopNode);
1227 if (DFSResult) {
1228 unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1229 if (!ScheduledTrees.test(SubtreeID)) {
1230 ScheduledTrees.set(SubtreeID);
1231 DFSResult->scheduleTree(SubtreeID);
1232 SchedImpl->scheduleTree(SubtreeID);
1236 // Notify the scheduling strategy after updating the DAG.
1237 SchedImpl->schedNode(SU, IsTopNode);
1239 updateQueues(SU, IsTopNode);
1241 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1243 placeDebugValues();
1245 LLVM_DEBUG({
1246 dbgs() << "*** Final schedule for "
1247 << printMBBReference(*begin()->getParent()) << " ***\n";
1248 dumpSchedule();
1249 dbgs() << '\n';
1253 /// Build the DAG and setup three register pressure trackers.
1254 void ScheduleDAGMILive::buildDAGWithRegPressure() {
1255 if (!ShouldTrackPressure) {
1256 RPTracker.reset();
1257 RegionCriticalPSets.clear();
1258 buildSchedGraph(AA);
1259 return;
1262 // Initialize the register pressure tracker used by buildSchedGraph.
1263 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1264 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true);
1266 // Account for liveness generate by the region boundary.
1267 if (LiveRegionEnd != RegionEnd)
1268 RPTracker.recede();
1270 // Build the DAG, and compute current register pressure.
1271 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks);
1273 // Initialize top/bottom trackers after computing region pressure.
1274 initRegPressure();
1277 void ScheduleDAGMILive::computeDFSResult() {
1278 if (!DFSResult)
1279 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1280 DFSResult->clear();
1281 ScheduledTrees.clear();
1282 DFSResult->resize(SUnits.size());
1283 DFSResult->compute(SUnits);
1284 ScheduledTrees.resize(DFSResult->getNumSubtrees());
1287 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
1288 /// only provides the critical path for single block loops. To handle loops that
1289 /// span blocks, we could use the vreg path latencies provided by
1290 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1291 /// available for use in the scheduler.
1293 /// The cyclic path estimation identifies a def-use pair that crosses the back
1294 /// edge and considers the depth and height of the nodes. For example, consider
1295 /// the following instruction sequence where each instruction has unit latency
1296 /// and defines an epomymous virtual register:
1298 /// a->b(a,c)->c(b)->d(c)->exit
1300 /// The cyclic critical path is a two cycles: b->c->b
1301 /// The acyclic critical path is four cycles: a->b->c->d->exit
1302 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
1303 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1304 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1305 /// LiveInDepth = depth(b) = len(a->b) = 1
1307 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1308 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1309 /// CyclicCriticalPath = min(2, 2) = 2
1311 /// This could be relevant to PostRA scheduling, but is currently implemented
1312 /// assuming LiveIntervals.
1313 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1314 // This only applies to single block loop.
1315 if (!BB->isSuccessor(BB))
1316 return 0;
1318 unsigned MaxCyclicLatency = 0;
1319 // Visit each live out vreg def to find def/use pairs that cross iterations.
1320 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) {
1321 unsigned Reg = P.RegUnit;
1322 if (!TRI->isVirtualRegister(Reg))
1323 continue;
1324 const LiveInterval &LI = LIS->getInterval(Reg);
1325 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1326 if (!DefVNI)
1327 continue;
1329 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1330 const SUnit *DefSU = getSUnit(DefMI);
1331 if (!DefSU)
1332 continue;
1334 unsigned LiveOutHeight = DefSU->getHeight();
1335 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1336 // Visit all local users of the vreg def.
1337 for (const VReg2SUnit &V2SU
1338 : make_range(VRegUses.find(Reg), VRegUses.end())) {
1339 SUnit *SU = V2SU.SU;
1340 if (SU == &ExitSU)
1341 continue;
1343 // Only consider uses of the phi.
1344 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1345 if (!LRQ.valueIn()->isPHIDef())
1346 continue;
1348 // Assume that a path spanning two iterations is a cycle, which could
1349 // overestimate in strange cases. This allows cyclic latency to be
1350 // estimated as the minimum slack of the vreg's depth or height.
1351 unsigned CyclicLatency = 0;
1352 if (LiveOutDepth > SU->getDepth())
1353 CyclicLatency = LiveOutDepth - SU->getDepth();
1355 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
1356 if (LiveInHeight > LiveOutHeight) {
1357 if (LiveInHeight - LiveOutHeight < CyclicLatency)
1358 CyclicLatency = LiveInHeight - LiveOutHeight;
1359 } else
1360 CyclicLatency = 0;
1362 LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1363 << SU->NodeNum << ") = " << CyclicLatency << "c\n");
1364 if (CyclicLatency > MaxCyclicLatency)
1365 MaxCyclicLatency = CyclicLatency;
1368 LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1369 return MaxCyclicLatency;
1372 /// Release ExitSU predecessors and setup scheduler queues. Re-position
1373 /// the Top RP tracker in case the region beginning has changed.
1374 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots,
1375 ArrayRef<SUnit*> BotRoots) {
1376 ScheduleDAGMI::initQueues(TopRoots, BotRoots);
1377 if (ShouldTrackPressure) {
1378 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1379 TopRPTracker.setPos(CurrentTop);
1383 /// Move an instruction and update register pressure.
1384 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1385 // Move the instruction to its new location in the instruction stream.
1386 MachineInstr *MI = SU->getInstr();
1388 if (IsTopNode) {
1389 assert(SU->isTopReady() && "node still has unscheduled dependencies");
1390 if (&*CurrentTop == MI)
1391 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1392 else {
1393 moveInstruction(MI, CurrentTop);
1394 TopRPTracker.setPos(MI);
1397 if (ShouldTrackPressure) {
1398 // Update top scheduled pressure.
1399 RegisterOperands RegOpers;
1400 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1401 if (ShouldTrackLaneMasks) {
1402 // Adjust liveness and add missing dead+read-undef flags.
1403 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1404 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1405 } else {
1406 // Adjust for missing dead-def flags.
1407 RegOpers.detectDeadDefs(*MI, *LIS);
1410 TopRPTracker.advance(RegOpers);
1411 assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1412 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure(
1413 TopRPTracker.getRegSetPressureAtPos(), TRI););
1415 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1417 } else {
1418 assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1419 MachineBasicBlock::iterator priorII =
1420 priorNonDebug(CurrentBottom, CurrentTop);
1421 if (&*priorII == MI)
1422 CurrentBottom = priorII;
1423 else {
1424 if (&*CurrentTop == MI) {
1425 CurrentTop = nextIfDebug(++CurrentTop, priorII);
1426 TopRPTracker.setPos(CurrentTop);
1428 moveInstruction(MI, CurrentBottom);
1429 CurrentBottom = MI;
1430 BotRPTracker.setPos(CurrentBottom);
1432 if (ShouldTrackPressure) {
1433 RegisterOperands RegOpers;
1434 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1435 if (ShouldTrackLaneMasks) {
1436 // Adjust liveness and add missing dead+read-undef flags.
1437 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1438 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1439 } else {
1440 // Adjust for missing dead-def flags.
1441 RegOpers.detectDeadDefs(*MI, *LIS);
1444 if (BotRPTracker.getPos() != CurrentBottom)
1445 BotRPTracker.recedeSkipDebugValues();
1446 SmallVector<RegisterMaskPair, 8> LiveUses;
1447 BotRPTracker.recede(RegOpers, &LiveUses);
1448 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1449 LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure(
1450 BotRPTracker.getRegSetPressureAtPos(), TRI););
1452 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1453 updatePressureDiffs(LiveUses);
1458 //===----------------------------------------------------------------------===//
1459 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores.
1460 //===----------------------------------------------------------------------===//
1462 namespace {
1464 /// Post-process the DAG to create cluster edges between neighboring
1465 /// loads or between neighboring stores.
1466 class BaseMemOpClusterMutation : public ScheduleDAGMutation {
1467 struct MemOpInfo {
1468 SUnit *SU;
1469 const MachineOperand *BaseOp;
1470 int64_t Offset;
1472 MemOpInfo(SUnit *su, const MachineOperand *Op, int64_t ofs)
1473 : SU(su), BaseOp(Op), Offset(ofs) {}
1475 bool operator<(const MemOpInfo &RHS) const {
1476 if (BaseOp->getType() != RHS.BaseOp->getType())
1477 return BaseOp->getType() < RHS.BaseOp->getType();
1479 if (BaseOp->isReg())
1480 return std::make_tuple(BaseOp->getReg(), Offset, SU->NodeNum) <
1481 std::make_tuple(RHS.BaseOp->getReg(), RHS.Offset,
1482 RHS.SU->NodeNum);
1483 if (BaseOp->isFI()) {
1484 const MachineFunction &MF =
1485 *BaseOp->getParent()->getParent()->getParent();
1486 const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering();
1487 bool StackGrowsDown = TFI.getStackGrowthDirection() ==
1488 TargetFrameLowering::StackGrowsDown;
1489 // Can't use tuple comparison here since we might need to use a
1490 // different order when the stack grows down.
1491 if (BaseOp->getIndex() != RHS.BaseOp->getIndex())
1492 return StackGrowsDown ? BaseOp->getIndex() > RHS.BaseOp->getIndex()
1493 : BaseOp->getIndex() < RHS.BaseOp->getIndex();
1495 if (Offset != RHS.Offset)
1496 return StackGrowsDown ? Offset > RHS.Offset : Offset < RHS.Offset;
1498 return SU->NodeNum < RHS.SU->NodeNum;
1501 llvm_unreachable("MemOpClusterMutation only supports register or frame "
1502 "index bases.");
1506 const TargetInstrInfo *TII;
1507 const TargetRegisterInfo *TRI;
1508 bool IsLoad;
1510 public:
1511 BaseMemOpClusterMutation(const TargetInstrInfo *tii,
1512 const TargetRegisterInfo *tri, bool IsLoad)
1513 : TII(tii), TRI(tri), IsLoad(IsLoad) {}
1515 void apply(ScheduleDAGInstrs *DAGInstrs) override;
1517 protected:
1518 void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGInstrs *DAG);
1521 class StoreClusterMutation : public BaseMemOpClusterMutation {
1522 public:
1523 StoreClusterMutation(const TargetInstrInfo *tii,
1524 const TargetRegisterInfo *tri)
1525 : BaseMemOpClusterMutation(tii, tri, false) {}
1528 class LoadClusterMutation : public BaseMemOpClusterMutation {
1529 public:
1530 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri)
1531 : BaseMemOpClusterMutation(tii, tri, true) {}
1534 } // end anonymous namespace
1536 namespace llvm {
1538 std::unique_ptr<ScheduleDAGMutation>
1539 createLoadClusterDAGMutation(const TargetInstrInfo *TII,
1540 const TargetRegisterInfo *TRI) {
1541 return EnableMemOpCluster ? llvm::make_unique<LoadClusterMutation>(TII, TRI)
1542 : nullptr;
1545 std::unique_ptr<ScheduleDAGMutation>
1546 createStoreClusterDAGMutation(const TargetInstrInfo *TII,
1547 const TargetRegisterInfo *TRI) {
1548 return EnableMemOpCluster ? llvm::make_unique<StoreClusterMutation>(TII, TRI)
1549 : nullptr;
1552 } // end namespace llvm
1554 void BaseMemOpClusterMutation::clusterNeighboringMemOps(
1555 ArrayRef<SUnit *> MemOps, ScheduleDAGInstrs *DAG) {
1556 SmallVector<MemOpInfo, 32> MemOpRecords;
1557 for (SUnit *SU : MemOps) {
1558 const MachineOperand *BaseOp;
1559 int64_t Offset;
1560 if (TII->getMemOperandWithOffset(*SU->getInstr(), BaseOp, Offset, TRI))
1561 MemOpRecords.push_back(MemOpInfo(SU, BaseOp, Offset));
1563 if (MemOpRecords.size() < 2)
1564 return;
1566 llvm::sort(MemOpRecords);
1567 unsigned ClusterLength = 1;
1568 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) {
1569 SUnit *SUa = MemOpRecords[Idx].SU;
1570 SUnit *SUb = MemOpRecords[Idx+1].SU;
1571 if (TII->shouldClusterMemOps(*MemOpRecords[Idx].BaseOp,
1572 *MemOpRecords[Idx + 1].BaseOp,
1573 ClusterLength) &&
1574 DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
1575 LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU("
1576 << SUb->NodeNum << ")\n");
1577 // Copy successor edges from SUa to SUb. Interleaving computation
1578 // dependent on SUa can prevent load combining due to register reuse.
1579 // Predecessor edges do not need to be copied from SUb to SUa since nearby
1580 // loads should have effectively the same inputs.
1581 for (const SDep &Succ : SUa->Succs) {
1582 if (Succ.getSUnit() == SUb)
1583 continue;
1584 LLVM_DEBUG(dbgs() << " Copy Succ SU(" << Succ.getSUnit()->NodeNum
1585 << ")\n");
1586 DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial));
1588 ++ClusterLength;
1589 } else
1590 ClusterLength = 1;
1594 /// Callback from DAG postProcessing to create cluster edges for loads.
1595 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAG) {
1596 // Map DAG NodeNum to store chain ID.
1597 DenseMap<unsigned, unsigned> StoreChainIDs;
1598 // Map each store chain to a set of dependent MemOps.
1599 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
1600 for (SUnit &SU : DAG->SUnits) {
1601 if ((IsLoad && !SU.getInstr()->mayLoad()) ||
1602 (!IsLoad && !SU.getInstr()->mayStore()))
1603 continue;
1605 unsigned ChainPredID = DAG->SUnits.size();
1606 for (const SDep &Pred : SU.Preds) {
1607 if (Pred.isCtrl()) {
1608 ChainPredID = Pred.getSUnit()->NodeNum;
1609 break;
1612 // Check if this chain-like pred has been seen
1613 // before. ChainPredID==MaxNodeID at the top of the schedule.
1614 unsigned NumChains = StoreChainDependents.size();
1615 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
1616 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
1617 if (Result.second)
1618 StoreChainDependents.resize(NumChains + 1);
1619 StoreChainDependents[Result.first->second].push_back(&SU);
1622 // Iterate over the store chains.
1623 for (auto &SCD : StoreChainDependents)
1624 clusterNeighboringMemOps(SCD, DAG);
1627 //===----------------------------------------------------------------------===//
1628 // CopyConstrain - DAG post-processing to encourage copy elimination.
1629 //===----------------------------------------------------------------------===//
1631 namespace {
1633 /// Post-process the DAG to create weak edges from all uses of a copy to
1634 /// the one use that defines the copy's source vreg, most likely an induction
1635 /// variable increment.
1636 class CopyConstrain : public ScheduleDAGMutation {
1637 // Transient state.
1638 SlotIndex RegionBeginIdx;
1640 // RegionEndIdx is the slot index of the last non-debug instruction in the
1641 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1642 SlotIndex RegionEndIdx;
1644 public:
1645 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
1647 void apply(ScheduleDAGInstrs *DAGInstrs) override;
1649 protected:
1650 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
1653 } // end anonymous namespace
1655 namespace llvm {
1657 std::unique_ptr<ScheduleDAGMutation>
1658 createCopyConstrainDAGMutation(const TargetInstrInfo *TII,
1659 const TargetRegisterInfo *TRI) {
1660 return llvm::make_unique<CopyConstrain>(TII, TRI);
1663 } // end namespace llvm
1665 /// constrainLocalCopy handles two possibilities:
1666 /// 1) Local src:
1667 /// I0: = dst
1668 /// I1: src = ...
1669 /// I2: = dst
1670 /// I3: dst = src (copy)
1671 /// (create pred->succ edges I0->I1, I2->I1)
1673 /// 2) Local copy:
1674 /// I0: dst = src (copy)
1675 /// I1: = dst
1676 /// I2: src = ...
1677 /// I3: = dst
1678 /// (create pred->succ edges I1->I2, I3->I2)
1680 /// Although the MachineScheduler is currently constrained to single blocks,
1681 /// this algorithm should handle extended blocks. An EBB is a set of
1682 /// contiguously numbered blocks such that the previous block in the EBB is
1683 /// always the single predecessor.
1684 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
1685 LiveIntervals *LIS = DAG->getLIS();
1686 MachineInstr *Copy = CopySU->getInstr();
1688 // Check for pure vreg copies.
1689 const MachineOperand &SrcOp = Copy->getOperand(1);
1690 unsigned SrcReg = SrcOp.getReg();
1691 if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !SrcOp.readsReg())
1692 return;
1694 const MachineOperand &DstOp = Copy->getOperand(0);
1695 unsigned DstReg = DstOp.getReg();
1696 if (!TargetRegisterInfo::isVirtualRegister(DstReg) || DstOp.isDead())
1697 return;
1699 // Check if either the dest or source is local. If it's live across a back
1700 // edge, it's not local. Note that if both vregs are live across the back
1701 // edge, we cannot successfully contrain the copy without cyclic scheduling.
1702 // If both the copy's source and dest are local live intervals, then we
1703 // should treat the dest as the global for the purpose of adding
1704 // constraints. This adds edges from source's other uses to the copy.
1705 unsigned LocalReg = SrcReg;
1706 unsigned GlobalReg = DstReg;
1707 LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
1708 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
1709 LocalReg = DstReg;
1710 GlobalReg = SrcReg;
1711 LocalLI = &LIS->getInterval(LocalReg);
1712 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
1713 return;
1715 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
1717 // Find the global segment after the start of the local LI.
1718 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
1719 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
1720 // local live range. We could create edges from other global uses to the local
1721 // start, but the coalescer should have already eliminated these cases, so
1722 // don't bother dealing with it.
1723 if (GlobalSegment == GlobalLI->end())
1724 return;
1726 // If GlobalSegment is killed at the LocalLI->start, the call to find()
1727 // returned the next global segment. But if GlobalSegment overlaps with
1728 // LocalLI->start, then advance to the next segment. If a hole in GlobalLI
1729 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1730 if (GlobalSegment->contains(LocalLI->beginIndex()))
1731 ++GlobalSegment;
1733 if (GlobalSegment == GlobalLI->end())
1734 return;
1736 // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1737 if (GlobalSegment != GlobalLI->begin()) {
1738 // Two address defs have no hole.
1739 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
1740 GlobalSegment->start)) {
1741 return;
1743 // If the prior global segment may be defined by the same two-address
1744 // instruction that also defines LocalLI, then can't make a hole here.
1745 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
1746 LocalLI->beginIndex())) {
1747 return;
1749 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1750 // it would be a disconnected component in the live range.
1751 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
1752 "Disconnected LRG within the scheduling region.");
1754 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1755 if (!GlobalDef)
1756 return;
1758 SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1759 if (!GlobalSU)
1760 return;
1762 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1763 // constraining the uses of the last local def to precede GlobalDef.
1764 SmallVector<SUnit*,8> LocalUses;
1765 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1766 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1767 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1768 for (const SDep &Succ : LastLocalSU->Succs) {
1769 if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg)
1770 continue;
1771 if (Succ.getSUnit() == GlobalSU)
1772 continue;
1773 if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit()))
1774 return;
1775 LocalUses.push_back(Succ.getSUnit());
1777 // Open the top of the GlobalLI hole by constraining any earlier global uses
1778 // to precede the start of LocalLI.
1779 SmallVector<SUnit*,8> GlobalUses;
1780 MachineInstr *FirstLocalDef =
1781 LIS->getInstructionFromIndex(LocalLI->beginIndex());
1782 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1783 for (const SDep &Pred : GlobalSU->Preds) {
1784 if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg)
1785 continue;
1786 if (Pred.getSUnit() == FirstLocalSU)
1787 continue;
1788 if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit()))
1789 return;
1790 GlobalUses.push_back(Pred.getSUnit());
1792 LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1793 // Add the weak edges.
1794 for (SmallVectorImpl<SUnit*>::const_iterator
1795 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
1796 LLVM_DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU("
1797 << GlobalSU->NodeNum << ")\n");
1798 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
1800 for (SmallVectorImpl<SUnit*>::const_iterator
1801 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
1802 LLVM_DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU("
1803 << FirstLocalSU->NodeNum << ")\n");
1804 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
1808 /// Callback from DAG postProcessing to create weak edges to encourage
1809 /// copy elimination.
1810 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) {
1811 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1812 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
1814 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1815 if (FirstPos == DAG->end())
1816 return;
1817 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos);
1818 RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1819 *priorNonDebug(DAG->end(), DAG->begin()));
1821 for (SUnit &SU : DAG->SUnits) {
1822 if (!SU.getInstr()->isCopy())
1823 continue;
1825 constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG));
1829 //===----------------------------------------------------------------------===//
1830 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
1831 // and possibly other custom schedulers.
1832 //===----------------------------------------------------------------------===//
1834 static const unsigned InvalidCycle = ~0U;
1836 SchedBoundary::~SchedBoundary() { delete HazardRec; }
1838 /// Given a Count of resource usage and a Latency value, return true if a
1839 /// SchedBoundary becomes resource limited.
1840 static bool checkResourceLimit(unsigned LFactor, unsigned Count,
1841 unsigned Latency) {
1842 return (int)(Count - (Latency * LFactor)) > (int)LFactor;
1845 void SchedBoundary::reset() {
1846 // A new HazardRec is created for each DAG and owned by SchedBoundary.
1847 // Destroying and reconstructing it is very expensive though. So keep
1848 // invalid, placeholder HazardRecs.
1849 if (HazardRec && HazardRec->isEnabled()) {
1850 delete HazardRec;
1851 HazardRec = nullptr;
1853 Available.clear();
1854 Pending.clear();
1855 CheckPending = false;
1856 CurrCycle = 0;
1857 CurrMOps = 0;
1858 MinReadyCycle = std::numeric_limits<unsigned>::max();
1859 ExpectedLatency = 0;
1860 DependentLatency = 0;
1861 RetiredMOps = 0;
1862 MaxExecutedResCount = 0;
1863 ZoneCritResIdx = 0;
1864 IsResourceLimited = false;
1865 ReservedCycles.clear();
1866 #ifndef NDEBUG
1867 // Track the maximum number of stall cycles that could arise either from the
1868 // latency of a DAG edge or the number of cycles that a processor resource is
1869 // reserved (SchedBoundary::ReservedCycles).
1870 MaxObservedStall = 0;
1871 #endif
1872 // Reserve a zero-count for invalid CritResIdx.
1873 ExecutedResCounts.resize(1);
1874 assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
1877 void SchedRemainder::
1878 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
1879 reset();
1880 if (!SchedModel->hasInstrSchedModel())
1881 return;
1882 RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
1883 for (SUnit &SU : DAG->SUnits) {
1884 const MCSchedClassDesc *SC = DAG->getSchedClass(&SU);
1885 RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC)
1886 * SchedModel->getMicroOpFactor();
1887 for (TargetSchedModel::ProcResIter
1888 PI = SchedModel->getWriteProcResBegin(SC),
1889 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1890 unsigned PIdx = PI->ProcResourceIdx;
1891 unsigned Factor = SchedModel->getResourceFactor(PIdx);
1892 RemainingCounts[PIdx] += (Factor * PI->Cycles);
1897 void SchedBoundary::
1898 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
1899 reset();
1900 DAG = dag;
1901 SchedModel = smodel;
1902 Rem = rem;
1903 if (SchedModel->hasInstrSchedModel()) {
1904 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds());
1905 ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle);
1909 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
1910 /// these "soft stalls" differently than the hard stall cycles based on CPU
1911 /// resources and computed by checkHazard(). A fully in-order model
1912 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
1913 /// available for scheduling until they are ready. However, a weaker in-order
1914 /// model may use this for heuristics. For example, if a processor has in-order
1915 /// behavior when reading certain resources, this may come into play.
1916 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
1917 if (!SU->isUnbuffered)
1918 return 0;
1920 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
1921 if (ReadyCycle > CurrCycle)
1922 return ReadyCycle - CurrCycle;
1923 return 0;
1926 /// Compute the next cycle at which the given processor resource can be
1927 /// scheduled.
1928 unsigned SchedBoundary::
1929 getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
1930 unsigned NextUnreserved = ReservedCycles[PIdx];
1931 // If this resource has never been used, always return cycle zero.
1932 if (NextUnreserved == InvalidCycle)
1933 return 0;
1934 // For bottom-up scheduling add the cycles needed for the current operation.
1935 if (!isTop())
1936 NextUnreserved += Cycles;
1937 return NextUnreserved;
1940 /// Does this SU have a hazard within the current instruction group.
1942 /// The scheduler supports two modes of hazard recognition. The first is the
1943 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
1944 /// supports highly complicated in-order reservation tables
1945 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
1947 /// The second is a streamlined mechanism that checks for hazards based on
1948 /// simple counters that the scheduler itself maintains. It explicitly checks
1949 /// for instruction dispatch limitations, including the number of micro-ops that
1950 /// can dispatch per cycle.
1952 /// TODO: Also check whether the SU must start a new group.
1953 bool SchedBoundary::checkHazard(SUnit *SU) {
1954 if (HazardRec->isEnabled()
1955 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
1956 return true;
1959 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
1960 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
1961 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops="
1962 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
1963 return true;
1966 if (CurrMOps > 0 &&
1967 ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) ||
1968 (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) {
1969 LLVM_DEBUG(dbgs() << " hazard: SU(" << SU->NodeNum << ") must "
1970 << (isTop() ? "begin" : "end") << " group\n");
1971 return true;
1974 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
1975 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1976 for (const MCWriteProcResEntry &PE :
1977 make_range(SchedModel->getWriteProcResBegin(SC),
1978 SchedModel->getWriteProcResEnd(SC))) {
1979 unsigned ResIdx = PE.ProcResourceIdx;
1980 unsigned Cycles = PE.Cycles;
1981 unsigned NRCycle = getNextResourceCycle(ResIdx, Cycles);
1982 if (NRCycle > CurrCycle) {
1983 #ifndef NDEBUG
1984 MaxObservedStall = std::max(Cycles, MaxObservedStall);
1985 #endif
1986 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") "
1987 << SchedModel->getResourceName(ResIdx) << "="
1988 << NRCycle << "c\n");
1989 return true;
1993 return false;
1996 // Find the unscheduled node in ReadySUs with the highest latency.
1997 unsigned SchedBoundary::
1998 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
1999 SUnit *LateSU = nullptr;
2000 unsigned RemLatency = 0;
2001 for (SUnit *SU : ReadySUs) {
2002 unsigned L = getUnscheduledLatency(SU);
2003 if (L > RemLatency) {
2004 RemLatency = L;
2005 LateSU = SU;
2008 if (LateSU) {
2009 LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU("
2010 << LateSU->NodeNum << ") " << RemLatency << "c\n");
2012 return RemLatency;
2015 // Count resources in this zone and the remaining unscheduled
2016 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
2017 // resource index, or zero if the zone is issue limited.
2018 unsigned SchedBoundary::
2019 getOtherResourceCount(unsigned &OtherCritIdx) {
2020 OtherCritIdx = 0;
2021 if (!SchedModel->hasInstrSchedModel())
2022 return 0;
2024 unsigned OtherCritCount = Rem->RemIssueCount
2025 + (RetiredMOps * SchedModel->getMicroOpFactor());
2026 LLVM_DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: "
2027 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
2028 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
2029 PIdx != PEnd; ++PIdx) {
2030 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
2031 if (OtherCount > OtherCritCount) {
2032 OtherCritCount = OtherCount;
2033 OtherCritIdx = PIdx;
2036 if (OtherCritIdx) {
2037 LLVM_DEBUG(
2038 dbgs() << " " << Available.getName() << " + Remain CritRes: "
2039 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
2040 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
2042 return OtherCritCount;
2045 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) {
2046 assert(SU->getInstr() && "Scheduled SUnit must have instr");
2048 #ifndef NDEBUG
2049 // ReadyCycle was been bumped up to the CurrCycle when this node was
2050 // scheduled, but CurrCycle may have been eagerly advanced immediately after
2051 // scheduling, so may now be greater than ReadyCycle.
2052 if (ReadyCycle > CurrCycle)
2053 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
2054 #endif
2056 if (ReadyCycle < MinReadyCycle)
2057 MinReadyCycle = ReadyCycle;
2059 // Check for interlocks first. For the purpose of other heuristics, an
2060 // instruction that cannot issue appears as if it's not in the ReadyQueue.
2061 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2062 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) ||
2063 Available.size() >= ReadyListLimit)
2064 Pending.push(SU);
2065 else
2066 Available.push(SU);
2069 /// Move the boundary of scheduled code by one cycle.
2070 void SchedBoundary::bumpCycle(unsigned NextCycle) {
2071 if (SchedModel->getMicroOpBufferSize() == 0) {
2072 assert(MinReadyCycle < std::numeric_limits<unsigned>::max() &&
2073 "MinReadyCycle uninitialized");
2074 if (MinReadyCycle > NextCycle)
2075 NextCycle = MinReadyCycle;
2077 // Update the current micro-ops, which will issue in the next cycle.
2078 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
2079 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
2081 // Decrement DependentLatency based on the next cycle.
2082 if ((NextCycle - CurrCycle) > DependentLatency)
2083 DependentLatency = 0;
2084 else
2085 DependentLatency -= (NextCycle - CurrCycle);
2087 if (!HazardRec->isEnabled()) {
2088 // Bypass HazardRec virtual calls.
2089 CurrCycle = NextCycle;
2090 } else {
2091 // Bypass getHazardType calls in case of long latency.
2092 for (; CurrCycle != NextCycle; ++CurrCycle) {
2093 if (isTop())
2094 HazardRec->AdvanceCycle();
2095 else
2096 HazardRec->RecedeCycle();
2099 CheckPending = true;
2100 IsResourceLimited =
2101 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2102 getScheduledLatency());
2104 LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName()
2105 << '\n');
2108 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
2109 ExecutedResCounts[PIdx] += Count;
2110 if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
2111 MaxExecutedResCount = ExecutedResCounts[PIdx];
2114 /// Add the given processor resource to this scheduled zone.
2116 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
2117 /// during which this resource is consumed.
2119 /// \return the next cycle at which the instruction may execute without
2120 /// oversubscribing resources.
2121 unsigned SchedBoundary::
2122 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
2123 unsigned Factor = SchedModel->getResourceFactor(PIdx);
2124 unsigned Count = Factor * Cycles;
2125 LLVM_DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) << " +"
2126 << Cycles << "x" << Factor << "u\n");
2128 // Update Executed resources counts.
2129 incExecutedResources(PIdx, Count);
2130 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
2131 Rem->RemainingCounts[PIdx] -= Count;
2133 // Check if this resource exceeds the current critical resource. If so, it
2134 // becomes the critical resource.
2135 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
2136 ZoneCritResIdx = PIdx;
2137 LLVM_DEBUG(dbgs() << " *** Critical resource "
2138 << SchedModel->getResourceName(PIdx) << ": "
2139 << getResourceCount(PIdx) / SchedModel->getLatencyFactor()
2140 << "c\n");
2142 // For reserved resources, record the highest cycle using the resource.
2143 unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles);
2144 if (NextAvailable > CurrCycle) {
2145 LLVM_DEBUG(dbgs() << " Resource conflict: "
2146 << SchedModel->getProcResource(PIdx)->Name
2147 << " reserved until @" << NextAvailable << "\n");
2149 return NextAvailable;
2152 /// Move the boundary of scheduled code by one SUnit.
2153 void SchedBoundary::bumpNode(SUnit *SU) {
2154 // Update the reservation table.
2155 if (HazardRec->isEnabled()) {
2156 if (!isTop() && SU->isCall) {
2157 // Calls are scheduled with their preceding instructions. For bottom-up
2158 // scheduling, clear the pipeline state before emitting.
2159 HazardRec->Reset();
2161 HazardRec->EmitInstruction(SU);
2162 // Scheduling an instruction may have made pending instructions available.
2163 CheckPending = true;
2165 // checkHazard should prevent scheduling multiple instructions per cycle that
2166 // exceed the issue width.
2167 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2168 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
2169 assert(
2170 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
2171 "Cannot schedule this instruction's MicroOps in the current cycle.");
2173 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2174 LLVM_DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n");
2176 unsigned NextCycle = CurrCycle;
2177 switch (SchedModel->getMicroOpBufferSize()) {
2178 case 0:
2179 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
2180 break;
2181 case 1:
2182 if (ReadyCycle > NextCycle) {
2183 NextCycle = ReadyCycle;
2184 LLVM_DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n");
2186 break;
2187 default:
2188 // We don't currently model the OOO reorder buffer, so consider all
2189 // scheduled MOps to be "retired". We do loosely model in-order resource
2190 // latency. If this instruction uses an in-order resource, account for any
2191 // likely stall cycles.
2192 if (SU->isUnbuffered && ReadyCycle > NextCycle)
2193 NextCycle = ReadyCycle;
2194 break;
2196 RetiredMOps += IncMOps;
2198 // Update resource counts and critical resource.
2199 if (SchedModel->hasInstrSchedModel()) {
2200 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
2201 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
2202 Rem->RemIssueCount -= DecRemIssue;
2203 if (ZoneCritResIdx) {
2204 // Scale scheduled micro-ops for comparing with the critical resource.
2205 unsigned ScaledMOps =
2206 RetiredMOps * SchedModel->getMicroOpFactor();
2208 // If scaled micro-ops are now more than the previous critical resource by
2209 // a full cycle, then micro-ops issue becomes critical.
2210 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
2211 >= (int)SchedModel->getLatencyFactor()) {
2212 ZoneCritResIdx = 0;
2213 LLVM_DEBUG(dbgs() << " *** Critical resource NumMicroOps: "
2214 << ScaledMOps / SchedModel->getLatencyFactor()
2215 << "c\n");
2218 for (TargetSchedModel::ProcResIter
2219 PI = SchedModel->getWriteProcResBegin(SC),
2220 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2221 unsigned RCycle =
2222 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
2223 if (RCycle > NextCycle)
2224 NextCycle = RCycle;
2226 if (SU->hasReservedResource) {
2227 // For reserved resources, record the highest cycle using the resource.
2228 // For top-down scheduling, this is the cycle in which we schedule this
2229 // instruction plus the number of cycles the operations reserves the
2230 // resource. For bottom-up is it simply the instruction's cycle.
2231 for (TargetSchedModel::ProcResIter
2232 PI = SchedModel->getWriteProcResBegin(SC),
2233 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2234 unsigned PIdx = PI->ProcResourceIdx;
2235 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
2236 if (isTop()) {
2237 ReservedCycles[PIdx] =
2238 std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles);
2240 else
2241 ReservedCycles[PIdx] = NextCycle;
2246 // Update ExpectedLatency and DependentLatency.
2247 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2248 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2249 if (SU->getDepth() > TopLatency) {
2250 TopLatency = SU->getDepth();
2251 LLVM_DEBUG(dbgs() << " " << Available.getName() << " TopLatency SU("
2252 << SU->NodeNum << ") " << TopLatency << "c\n");
2254 if (SU->getHeight() > BotLatency) {
2255 BotLatency = SU->getHeight();
2256 LLVM_DEBUG(dbgs() << " " << Available.getName() << " BotLatency SU("
2257 << SU->NodeNum << ") " << BotLatency << "c\n");
2259 // If we stall for any reason, bump the cycle.
2260 if (NextCycle > CurrCycle)
2261 bumpCycle(NextCycle);
2262 else
2263 // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2264 // resource limited. If a stall occurred, bumpCycle does this.
2265 IsResourceLimited =
2266 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2267 getScheduledLatency());
2269 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
2270 // resets CurrMOps. Loop to handle instructions with more MOps than issue in
2271 // one cycle. Since we commonly reach the max MOps here, opportunistically
2272 // bump the cycle to avoid uselessly checking everything in the readyQ.
2273 CurrMOps += IncMOps;
2275 // Bump the cycle count for issue group constraints.
2276 // This must be done after NextCycle has been adjust for all other stalls.
2277 // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set
2278 // currCycle to X.
2279 if ((isTop() && SchedModel->mustEndGroup(SU->getInstr())) ||
2280 (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) {
2281 LLVM_DEBUG(dbgs() << " Bump cycle to " << (isTop() ? "end" : "begin")
2282 << " group\n");
2283 bumpCycle(++NextCycle);
2286 while (CurrMOps >= SchedModel->getIssueWidth()) {
2287 LLVM_DEBUG(dbgs() << " *** Max MOps " << CurrMOps << " at cycle "
2288 << CurrCycle << '\n');
2289 bumpCycle(++NextCycle);
2291 LLVM_DEBUG(dumpScheduledState());
2294 /// Release pending ready nodes in to the available queue. This makes them
2295 /// visible to heuristics.
2296 void SchedBoundary::releasePending() {
2297 // If the available queue is empty, it is safe to reset MinReadyCycle.
2298 if (Available.empty())
2299 MinReadyCycle = std::numeric_limits<unsigned>::max();
2301 // Check to see if any of the pending instructions are ready to issue. If
2302 // so, add them to the available queue.
2303 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2304 for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
2305 SUnit *SU = *(Pending.begin()+i);
2306 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2308 if (ReadyCycle < MinReadyCycle)
2309 MinReadyCycle = ReadyCycle;
2311 if (!IsBuffered && ReadyCycle > CurrCycle)
2312 continue;
2314 if (checkHazard(SU))
2315 continue;
2317 if (Available.size() >= ReadyListLimit)
2318 break;
2320 Available.push(SU);
2321 Pending.remove(Pending.begin()+i);
2322 --i; --e;
2324 CheckPending = false;
2327 /// Remove SU from the ready set for this boundary.
2328 void SchedBoundary::removeReady(SUnit *SU) {
2329 if (Available.isInQueue(SU))
2330 Available.remove(Available.find(SU));
2331 else {
2332 assert(Pending.isInQueue(SU) && "bad ready count");
2333 Pending.remove(Pending.find(SU));
2337 /// If this queue only has one ready candidate, return it. As a side effect,
2338 /// defer any nodes that now hit a hazard, and advance the cycle until at least
2339 /// one node is ready. If multiple instructions are ready, return NULL.
2340 SUnit *SchedBoundary::pickOnlyChoice() {
2341 if (CheckPending)
2342 releasePending();
2344 if (CurrMOps > 0) {
2345 // Defer any ready instrs that now have a hazard.
2346 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2347 if (checkHazard(*I)) {
2348 Pending.push(*I);
2349 I = Available.remove(I);
2350 continue;
2352 ++I;
2355 for (unsigned i = 0; Available.empty(); ++i) {
2356 // FIXME: Re-enable assert once PR20057 is resolved.
2357 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2358 // "permanent hazard");
2359 (void)i;
2360 bumpCycle(CurrCycle + 1);
2361 releasePending();
2364 LLVM_DEBUG(Pending.dump());
2365 LLVM_DEBUG(Available.dump());
2367 if (Available.size() == 1)
2368 return *Available.begin();
2369 return nullptr;
2372 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2373 // This is useful information to dump after bumpNode.
2374 // Note that the Queue contents are more useful before pickNodeFromQueue.
2375 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const {
2376 unsigned ResFactor;
2377 unsigned ResCount;
2378 if (ZoneCritResIdx) {
2379 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2380 ResCount = getResourceCount(ZoneCritResIdx);
2381 } else {
2382 ResFactor = SchedModel->getMicroOpFactor();
2383 ResCount = RetiredMOps * ResFactor;
2385 unsigned LFactor = SchedModel->getLatencyFactor();
2386 dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2387 << " Retired: " << RetiredMOps;
2388 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c";
2389 dbgs() << "\n Critical: " << ResCount / LFactor << "c, "
2390 << ResCount / ResFactor << " "
2391 << SchedModel->getResourceName(ZoneCritResIdx)
2392 << "\n ExpectedLatency: " << ExpectedLatency << "c\n"
2393 << (IsResourceLimited ? " - Resource" : " - Latency")
2394 << " limited.\n";
2396 #endif
2398 //===----------------------------------------------------------------------===//
2399 // GenericScheduler - Generic implementation of MachineSchedStrategy.
2400 //===----------------------------------------------------------------------===//
2402 void GenericSchedulerBase::SchedCandidate::
2403 initResourceDelta(const ScheduleDAGMI *DAG,
2404 const TargetSchedModel *SchedModel) {
2405 if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2406 return;
2408 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2409 for (TargetSchedModel::ProcResIter
2410 PI = SchedModel->getWriteProcResBegin(SC),
2411 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2412 if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2413 ResDelta.CritResources += PI->Cycles;
2414 if (PI->ProcResourceIdx == Policy.DemandResIdx)
2415 ResDelta.DemandedResources += PI->Cycles;
2419 /// Compute remaining latency. We need this both to determine whether the
2420 /// overall schedule has become latency-limited and whether the instructions
2421 /// outside this zone are resource or latency limited.
2423 /// The "dependent" latency is updated incrementally during scheduling as the
2424 /// max height/depth of scheduled nodes minus the cycles since it was
2425 /// scheduled:
2426 /// DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2428 /// The "independent" latency is the max ready queue depth:
2429 /// ILat = max N.depth for N in Available|Pending
2431 /// RemainingLatency is the greater of independent and dependent latency.
2433 /// These computations are expensive, especially in DAGs with many edges, so
2434 /// only do them if necessary.
2435 static unsigned computeRemLatency(SchedBoundary &CurrZone) {
2436 unsigned RemLatency = CurrZone.getDependentLatency();
2437 RemLatency = std::max(RemLatency,
2438 CurrZone.findMaxLatency(CurrZone.Available.elements()));
2439 RemLatency = std::max(RemLatency,
2440 CurrZone.findMaxLatency(CurrZone.Pending.elements()));
2441 return RemLatency;
2444 /// Returns true if the current cycle plus remaning latency is greater than
2445 /// the critical path in the scheduling region.
2446 bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy,
2447 SchedBoundary &CurrZone,
2448 bool ComputeRemLatency,
2449 unsigned &RemLatency) const {
2450 // The current cycle is already greater than the critical path, so we are
2451 // already latency limited and don't need to compute the remaining latency.
2452 if (CurrZone.getCurrCycle() > Rem.CriticalPath)
2453 return true;
2455 // If we haven't scheduled anything yet, then we aren't latency limited.
2456 if (CurrZone.getCurrCycle() == 0)
2457 return false;
2459 if (ComputeRemLatency)
2460 RemLatency = computeRemLatency(CurrZone);
2462 return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath;
2465 /// Set the CandPolicy given a scheduling zone given the current resources and
2466 /// latencies inside and outside the zone.
2467 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA,
2468 SchedBoundary &CurrZone,
2469 SchedBoundary *OtherZone) {
2470 // Apply preemptive heuristics based on the total latency and resources
2471 // inside and outside this zone. Potential stalls should be considered before
2472 // following this policy.
2474 // Compute the critical resource outside the zone.
2475 unsigned OtherCritIdx = 0;
2476 unsigned OtherCount =
2477 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
2479 bool OtherResLimited = false;
2480 unsigned RemLatency = 0;
2481 bool RemLatencyComputed = false;
2482 if (SchedModel->hasInstrSchedModel() && OtherCount != 0) {
2483 RemLatency = computeRemLatency(CurrZone);
2484 RemLatencyComputed = true;
2485 OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(),
2486 OtherCount, RemLatency);
2489 // Schedule aggressively for latency in PostRA mode. We don't check for
2490 // acyclic latency during PostRA, and highly out-of-order processors will
2491 // skip PostRA scheduling.
2492 if (!OtherResLimited &&
2493 (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed,
2494 RemLatency))) {
2495 Policy.ReduceLatency |= true;
2496 LLVM_DEBUG(dbgs() << " " << CurrZone.Available.getName()
2497 << " RemainingLatency " << RemLatency << " + "
2498 << CurrZone.getCurrCycle() << "c > CritPath "
2499 << Rem.CriticalPath << "\n");
2501 // If the same resource is limiting inside and outside the zone, do nothing.
2502 if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
2503 return;
2505 LLVM_DEBUG(if (CurrZone.isResourceLimited()) {
2506 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: "
2507 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n";
2508 } if (OtherResLimited) dbgs()
2509 << " RemainingLimit: "
2510 << SchedModel->getResourceName(OtherCritIdx) << "\n";
2511 if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs()
2512 << " Latency limited both directions.\n");
2514 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
2515 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
2517 if (OtherResLimited)
2518 Policy.DemandResIdx = OtherCritIdx;
2521 #ifndef NDEBUG
2522 const char *GenericSchedulerBase::getReasonStr(
2523 GenericSchedulerBase::CandReason Reason) {
2524 switch (Reason) {
2525 case NoCand: return "NOCAND ";
2526 case Only1: return "ONLY1 ";
2527 case PhysReg: return "PHYS-REG ";
2528 case RegExcess: return "REG-EXCESS";
2529 case RegCritical: return "REG-CRIT ";
2530 case Stall: return "STALL ";
2531 case Cluster: return "CLUSTER ";
2532 case Weak: return "WEAK ";
2533 case RegMax: return "REG-MAX ";
2534 case ResourceReduce: return "RES-REDUCE";
2535 case ResourceDemand: return "RES-DEMAND";
2536 case TopDepthReduce: return "TOP-DEPTH ";
2537 case TopPathReduce: return "TOP-PATH ";
2538 case BotHeightReduce:return "BOT-HEIGHT";
2539 case BotPathReduce: return "BOT-PATH ";
2540 case NextDefUse: return "DEF-USE ";
2541 case NodeOrder: return "ORDER ";
2543 llvm_unreachable("Unknown reason!");
2546 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
2547 PressureChange P;
2548 unsigned ResIdx = 0;
2549 unsigned Latency = 0;
2550 switch (Cand.Reason) {
2551 default:
2552 break;
2553 case RegExcess:
2554 P = Cand.RPDelta.Excess;
2555 break;
2556 case RegCritical:
2557 P = Cand.RPDelta.CriticalMax;
2558 break;
2559 case RegMax:
2560 P = Cand.RPDelta.CurrentMax;
2561 break;
2562 case ResourceReduce:
2563 ResIdx = Cand.Policy.ReduceResIdx;
2564 break;
2565 case ResourceDemand:
2566 ResIdx = Cand.Policy.DemandResIdx;
2567 break;
2568 case TopDepthReduce:
2569 Latency = Cand.SU->getDepth();
2570 break;
2571 case TopPathReduce:
2572 Latency = Cand.SU->getHeight();
2573 break;
2574 case BotHeightReduce:
2575 Latency = Cand.SU->getHeight();
2576 break;
2577 case BotPathReduce:
2578 Latency = Cand.SU->getDepth();
2579 break;
2581 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2582 if (P.isValid())
2583 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
2584 << ":" << P.getUnitInc() << " ";
2585 else
2586 dbgs() << " ";
2587 if (ResIdx)
2588 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2589 else
2590 dbgs() << " ";
2591 if (Latency)
2592 dbgs() << " " << Latency << " cycles ";
2593 else
2594 dbgs() << " ";
2595 dbgs() << '\n';
2597 #endif
2599 namespace llvm {
2600 /// Return true if this heuristic determines order.
2601 bool tryLess(int TryVal, int CandVal,
2602 GenericSchedulerBase::SchedCandidate &TryCand,
2603 GenericSchedulerBase::SchedCandidate &Cand,
2604 GenericSchedulerBase::CandReason Reason) {
2605 if (TryVal < CandVal) {
2606 TryCand.Reason = Reason;
2607 return true;
2609 if (TryVal > CandVal) {
2610 if (Cand.Reason > Reason)
2611 Cand.Reason = Reason;
2612 return true;
2614 return false;
2617 bool tryGreater(int TryVal, int CandVal,
2618 GenericSchedulerBase::SchedCandidate &TryCand,
2619 GenericSchedulerBase::SchedCandidate &Cand,
2620 GenericSchedulerBase::CandReason Reason) {
2621 if (TryVal > CandVal) {
2622 TryCand.Reason = Reason;
2623 return true;
2625 if (TryVal < CandVal) {
2626 if (Cand.Reason > Reason)
2627 Cand.Reason = Reason;
2628 return true;
2630 return false;
2633 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
2634 GenericSchedulerBase::SchedCandidate &Cand,
2635 SchedBoundary &Zone) {
2636 if (Zone.isTop()) {
2637 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
2638 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2639 TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
2640 return true;
2642 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2643 TryCand, Cand, GenericSchedulerBase::TopPathReduce))
2644 return true;
2645 } else {
2646 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
2647 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2648 TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
2649 return true;
2651 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2652 TryCand, Cand, GenericSchedulerBase::BotPathReduce))
2653 return true;
2655 return false;
2657 } // end namespace llvm
2659 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) {
2660 LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2661 << GenericSchedulerBase::getReasonStr(Reason) << '\n');
2664 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) {
2665 tracePick(Cand.Reason, Cand.AtTop);
2668 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
2669 assert(dag->hasVRegLiveness() &&
2670 "(PreRA)GenericScheduler needs vreg liveness");
2671 DAG = static_cast<ScheduleDAGMILive*>(dag);
2672 SchedModel = DAG->getSchedModel();
2673 TRI = DAG->TRI;
2675 Rem.init(DAG, SchedModel);
2676 Top.init(DAG, SchedModel, &Rem);
2677 Bot.init(DAG, SchedModel, &Rem);
2679 // Initialize resource counts.
2681 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
2682 // are disabled, then these HazardRecs will be disabled.
2683 const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2684 if (!Top.HazardRec) {
2685 Top.HazardRec =
2686 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2687 Itin, DAG);
2689 if (!Bot.HazardRec) {
2690 Bot.HazardRec =
2691 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2692 Itin, DAG);
2694 TopCand.SU = nullptr;
2695 BotCand.SU = nullptr;
2698 /// Initialize the per-region scheduling policy.
2699 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
2700 MachineBasicBlock::iterator End,
2701 unsigned NumRegionInstrs) {
2702 const MachineFunction &MF = *Begin->getMF();
2703 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
2705 // Avoid setting up the register pressure tracker for small regions to save
2706 // compile time. As a rough heuristic, only track pressure when the number of
2707 // schedulable instructions exceeds half the integer register file.
2708 RegionPolicy.ShouldTrackPressure = true;
2709 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
2710 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
2711 if (TLI->isTypeLegal(LegalIntVT)) {
2712 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
2713 TLI->getRegClassFor(LegalIntVT));
2714 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
2718 // For generic targets, we default to bottom-up, because it's simpler and more
2719 // compile-time optimizations have been implemented in that direction.
2720 RegionPolicy.OnlyBottomUp = true;
2722 // Allow the subtarget to override default policy.
2723 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs);
2725 // After subtarget overrides, apply command line options.
2726 if (!EnableRegPressure)
2727 RegionPolicy.ShouldTrackPressure = false;
2729 // Check -misched-topdown/bottomup can force or unforce scheduling direction.
2730 // e.g. -misched-bottomup=false allows scheduling in both directions.
2731 assert((!ForceTopDown || !ForceBottomUp) &&
2732 "-misched-topdown incompatible with -misched-bottomup");
2733 if (ForceBottomUp.getNumOccurrences() > 0) {
2734 RegionPolicy.OnlyBottomUp = ForceBottomUp;
2735 if (RegionPolicy.OnlyBottomUp)
2736 RegionPolicy.OnlyTopDown = false;
2738 if (ForceTopDown.getNumOccurrences() > 0) {
2739 RegionPolicy.OnlyTopDown = ForceTopDown;
2740 if (RegionPolicy.OnlyTopDown)
2741 RegionPolicy.OnlyBottomUp = false;
2745 void GenericScheduler::dumpPolicy() const {
2746 // Cannot completely remove virtual function even in release mode.
2747 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2748 dbgs() << "GenericScheduler RegionPolicy: "
2749 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
2750 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
2751 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
2752 << "\n";
2753 #endif
2756 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
2757 /// critical path by more cycles than it takes to drain the instruction buffer.
2758 /// We estimate an upper bounds on in-flight instructions as:
2760 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
2761 /// InFlightIterations = AcyclicPath / CyclesPerIteration
2762 /// InFlightResources = InFlightIterations * LoopResources
2764 /// TODO: Check execution resources in addition to IssueCount.
2765 void GenericScheduler::checkAcyclicLatency() {
2766 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
2767 return;
2769 // Scaled number of cycles per loop iteration.
2770 unsigned IterCount =
2771 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
2772 Rem.RemIssueCount);
2773 // Scaled acyclic critical path.
2774 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
2775 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
2776 unsigned InFlightCount =
2777 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
2778 unsigned BufferLimit =
2779 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
2781 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
2783 LLVM_DEBUG(
2784 dbgs() << "IssueCycles="
2785 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
2786 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
2787 << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount
2788 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
2789 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
2790 if (Rem.IsAcyclicLatencyLimited) dbgs() << " ACYCLIC LATENCY LIMIT\n");
2793 void GenericScheduler::registerRoots() {
2794 Rem.CriticalPath = DAG->ExitSU.getDepth();
2796 // Some roots may not feed into ExitSU. Check all of them in case.
2797 for (const SUnit *SU : Bot.Available) {
2798 if (SU->getDepth() > Rem.CriticalPath)
2799 Rem.CriticalPath = SU->getDepth();
2801 LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
2802 if (DumpCriticalPathLength) {
2803 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
2806 if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) {
2807 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
2808 checkAcyclicLatency();
2812 namespace llvm {
2813 bool tryPressure(const PressureChange &TryP,
2814 const PressureChange &CandP,
2815 GenericSchedulerBase::SchedCandidate &TryCand,
2816 GenericSchedulerBase::SchedCandidate &Cand,
2817 GenericSchedulerBase::CandReason Reason,
2818 const TargetRegisterInfo *TRI,
2819 const MachineFunction &MF) {
2820 // If one candidate decreases and the other increases, go with it.
2821 // Invalid candidates have UnitInc==0.
2822 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
2823 Reason)) {
2824 return true;
2826 // Do not compare the magnitude of pressure changes between top and bottom
2827 // boundary.
2828 if (Cand.AtTop != TryCand.AtTop)
2829 return false;
2831 // If both candidates affect the same set in the same boundary, go with the
2832 // smallest increase.
2833 unsigned TryPSet = TryP.getPSetOrMax();
2834 unsigned CandPSet = CandP.getPSetOrMax();
2835 if (TryPSet == CandPSet) {
2836 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
2837 Reason);
2840 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
2841 std::numeric_limits<int>::max();
2843 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
2844 std::numeric_limits<int>::max();
2846 // If the candidates are decreasing pressure, reverse priority.
2847 if (TryP.getUnitInc() < 0)
2848 std::swap(TryRank, CandRank);
2849 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
2852 unsigned getWeakLeft(const SUnit *SU, bool isTop) {
2853 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
2856 /// Minimize physical register live ranges. Regalloc wants them adjacent to
2857 /// their physreg def/use.
2859 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
2860 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
2861 /// with the operation that produces or consumes the physreg. We'll do this when
2862 /// regalloc has support for parallel copies.
2863 int biasPhysReg(const SUnit *SU, bool isTop) {
2864 const MachineInstr *MI = SU->getInstr();
2866 if (MI->isCopy()) {
2867 unsigned ScheduledOper = isTop ? 1 : 0;
2868 unsigned UnscheduledOper = isTop ? 0 : 1;
2869 // If we have already scheduled the physreg produce/consumer, immediately
2870 // schedule the copy.
2871 if (TargetRegisterInfo::isPhysicalRegister(
2872 MI->getOperand(ScheduledOper).getReg()))
2873 return 1;
2874 // If the physreg is at the boundary, defer it. Otherwise schedule it
2875 // immediately to free the dependent. We can hoist the copy later.
2876 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
2877 if (TargetRegisterInfo::isPhysicalRegister(
2878 MI->getOperand(UnscheduledOper).getReg()))
2879 return AtBoundary ? -1 : 1;
2882 if (MI->isMoveImmediate()) {
2883 // If we have a move immediate and all successors have been assigned, bias
2884 // towards scheduling this later. Make sure all register defs are to
2885 // physical registers.
2886 bool DoBias = true;
2887 for (const MachineOperand &Op : MI->defs()) {
2888 if (Op.isReg() && !TargetRegisterInfo::isPhysicalRegister(Op.getReg())) {
2889 DoBias = false;
2890 break;
2894 if (DoBias)
2895 return isTop ? -1 : 1;
2898 return 0;
2900 } // end namespace llvm
2902 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU,
2903 bool AtTop,
2904 const RegPressureTracker &RPTracker,
2905 RegPressureTracker &TempTracker) {
2906 Cand.SU = SU;
2907 Cand.AtTop = AtTop;
2908 if (DAG->isTrackingPressure()) {
2909 if (AtTop) {
2910 TempTracker.getMaxDownwardPressureDelta(
2911 Cand.SU->getInstr(),
2912 Cand.RPDelta,
2913 DAG->getRegionCriticalPSets(),
2914 DAG->getRegPressure().MaxSetPressure);
2915 } else {
2916 if (VerifyScheduling) {
2917 TempTracker.getMaxUpwardPressureDelta(
2918 Cand.SU->getInstr(),
2919 &DAG->getPressureDiff(Cand.SU),
2920 Cand.RPDelta,
2921 DAG->getRegionCriticalPSets(),
2922 DAG->getRegPressure().MaxSetPressure);
2923 } else {
2924 RPTracker.getUpwardPressureDelta(
2925 Cand.SU->getInstr(),
2926 DAG->getPressureDiff(Cand.SU),
2927 Cand.RPDelta,
2928 DAG->getRegionCriticalPSets(),
2929 DAG->getRegPressure().MaxSetPressure);
2933 LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs()
2934 << " Try SU(" << Cand.SU->NodeNum << ") "
2935 << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":"
2936 << Cand.RPDelta.Excess.getUnitInc() << "\n");
2939 /// Apply a set of heuristics to a new candidate. Heuristics are currently
2940 /// hierarchical. This may be more efficient than a graduated cost model because
2941 /// we don't need to evaluate all aspects of the model for each node in the
2942 /// queue. But it's really done to make the heuristics easier to debug and
2943 /// statistically analyze.
2945 /// \param Cand provides the policy and current best candidate.
2946 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
2947 /// \param Zone describes the scheduled zone that we are extending, or nullptr
2948 // if Cand is from a different zone than TryCand.
2949 void GenericScheduler::tryCandidate(SchedCandidate &Cand,
2950 SchedCandidate &TryCand,
2951 SchedBoundary *Zone) const {
2952 // Initialize the candidate if needed.
2953 if (!Cand.isValid()) {
2954 TryCand.Reason = NodeOrder;
2955 return;
2958 // Bias PhysReg Defs and copies to their uses and defined respectively.
2959 if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop),
2960 biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg))
2961 return;
2963 // Avoid exceeding the target's limit.
2964 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
2965 Cand.RPDelta.Excess,
2966 TryCand, Cand, RegExcess, TRI,
2967 DAG->MF))
2968 return;
2970 // Avoid increasing the max critical pressure in the scheduled region.
2971 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
2972 Cand.RPDelta.CriticalMax,
2973 TryCand, Cand, RegCritical, TRI,
2974 DAG->MF))
2975 return;
2977 // We only compare a subset of features when comparing nodes between
2978 // Top and Bottom boundary. Some properties are simply incomparable, in many
2979 // other instances we should only override the other boundary if something
2980 // is a clear good pick on one boundary. Skip heuristics that are more
2981 // "tie-breaking" in nature.
2982 bool SameBoundary = Zone != nullptr;
2983 if (SameBoundary) {
2984 // For loops that are acyclic path limited, aggressively schedule for
2985 // latency. Within an single cycle, whenever CurrMOps > 0, allow normal
2986 // heuristics to take precedence.
2987 if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() &&
2988 tryLatency(TryCand, Cand, *Zone))
2989 return;
2991 // Prioritize instructions that read unbuffered resources by stall cycles.
2992 if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
2993 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
2994 return;
2997 // Keep clustered nodes together to encourage downstream peephole
2998 // optimizations which may reduce resource requirements.
3000 // This is a best effort to set things up for a post-RA pass. Optimizations
3001 // like generating loads of multiple registers should ideally be done within
3002 // the scheduler pass by combining the loads during DAG postprocessing.
3003 const SUnit *CandNextClusterSU =
3004 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3005 const SUnit *TryCandNextClusterSU =
3006 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3007 if (tryGreater(TryCand.SU == TryCandNextClusterSU,
3008 Cand.SU == CandNextClusterSU,
3009 TryCand, Cand, Cluster))
3010 return;
3012 if (SameBoundary) {
3013 // Weak edges are for clustering and other constraints.
3014 if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
3015 getWeakLeft(Cand.SU, Cand.AtTop),
3016 TryCand, Cand, Weak))
3017 return;
3020 // Avoid increasing the max pressure of the entire region.
3021 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
3022 Cand.RPDelta.CurrentMax,
3023 TryCand, Cand, RegMax, TRI,
3024 DAG->MF))
3025 return;
3027 if (SameBoundary) {
3028 // Avoid critical resource consumption and balance the schedule.
3029 TryCand.initResourceDelta(DAG, SchedModel);
3030 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3031 TryCand, Cand, ResourceReduce))
3032 return;
3033 if (tryGreater(TryCand.ResDelta.DemandedResources,
3034 Cand.ResDelta.DemandedResources,
3035 TryCand, Cand, ResourceDemand))
3036 return;
3038 // Avoid serializing long latency dependence chains.
3039 // For acyclic path limited loops, latency was already checked above.
3040 if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency &&
3041 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone))
3042 return;
3044 // Fall through to original instruction order.
3045 if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
3046 || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
3047 TryCand.Reason = NodeOrder;
3052 /// Pick the best candidate from the queue.
3054 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
3055 /// DAG building. To adjust for the current scheduling location we need to
3056 /// maintain the number of vreg uses remaining to be top-scheduled.
3057 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
3058 const CandPolicy &ZonePolicy,
3059 const RegPressureTracker &RPTracker,
3060 SchedCandidate &Cand) {
3061 // getMaxPressureDelta temporarily modifies the tracker.
3062 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
3064 ReadyQueue &Q = Zone.Available;
3065 for (SUnit *SU : Q) {
3067 SchedCandidate TryCand(ZonePolicy);
3068 initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker);
3069 // Pass SchedBoundary only when comparing nodes from the same boundary.
3070 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
3071 tryCandidate(Cand, TryCand, ZoneArg);
3072 if (TryCand.Reason != NoCand) {
3073 // Initialize resource delta if needed in case future heuristics query it.
3074 if (TryCand.ResDelta == SchedResourceDelta())
3075 TryCand.initResourceDelta(DAG, SchedModel);
3076 Cand.setBest(TryCand);
3077 LLVM_DEBUG(traceCandidate(Cand));
3082 /// Pick the best candidate node from either the top or bottom queue.
3083 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
3084 // Schedule as far as possible in the direction of no choice. This is most
3085 // efficient, but also provides the best heuristics for CriticalPSets.
3086 if (SUnit *SU = Bot.pickOnlyChoice()) {
3087 IsTopNode = false;
3088 tracePick(Only1, false);
3089 return SU;
3091 if (SUnit *SU = Top.pickOnlyChoice()) {
3092 IsTopNode = true;
3093 tracePick(Only1, true);
3094 return SU;
3096 // Set the bottom-up policy based on the state of the current bottom zone and
3097 // the instructions outside the zone, including the top zone.
3098 CandPolicy BotPolicy;
3099 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
3100 // Set the top-down policy based on the state of the current top zone and
3101 // the instructions outside the zone, including the bottom zone.
3102 CandPolicy TopPolicy;
3103 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
3105 // See if BotCand is still valid (because we previously scheduled from Top).
3106 LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
3107 if (!BotCand.isValid() || BotCand.SU->isScheduled ||
3108 BotCand.Policy != BotPolicy) {
3109 BotCand.reset(CandPolicy());
3110 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
3111 assert(BotCand.Reason != NoCand && "failed to find the first candidate");
3112 } else {
3113 LLVM_DEBUG(traceCandidate(BotCand));
3114 #ifndef NDEBUG
3115 if (VerifyScheduling) {
3116 SchedCandidate TCand;
3117 TCand.reset(CandPolicy());
3118 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
3119 assert(TCand.SU == BotCand.SU &&
3120 "Last pick result should correspond to re-picking right now");
3122 #endif
3125 // Check if the top Q has a better candidate.
3126 LLVM_DEBUG(dbgs() << "Picking from Top:\n");
3127 if (!TopCand.isValid() || TopCand.SU->isScheduled ||
3128 TopCand.Policy != TopPolicy) {
3129 TopCand.reset(CandPolicy());
3130 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
3131 assert(TopCand.Reason != NoCand && "failed to find the first candidate");
3132 } else {
3133 LLVM_DEBUG(traceCandidate(TopCand));
3134 #ifndef NDEBUG
3135 if (VerifyScheduling) {
3136 SchedCandidate TCand;
3137 TCand.reset(CandPolicy());
3138 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
3139 assert(TCand.SU == TopCand.SU &&
3140 "Last pick result should correspond to re-picking right now");
3142 #endif
3145 // Pick best from BotCand and TopCand.
3146 assert(BotCand.isValid());
3147 assert(TopCand.isValid());
3148 SchedCandidate Cand = BotCand;
3149 TopCand.Reason = NoCand;
3150 tryCandidate(Cand, TopCand, nullptr);
3151 if (TopCand.Reason != NoCand) {
3152 Cand.setBest(TopCand);
3153 LLVM_DEBUG(traceCandidate(Cand));
3156 IsTopNode = Cand.AtTop;
3157 tracePick(Cand);
3158 return Cand.SU;
3161 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
3162 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
3163 if (DAG->top() == DAG->bottom()) {
3164 assert(Top.Available.empty() && Top.Pending.empty() &&
3165 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
3166 return nullptr;
3168 SUnit *SU;
3169 do {
3170 if (RegionPolicy.OnlyTopDown) {
3171 SU = Top.pickOnlyChoice();
3172 if (!SU) {
3173 CandPolicy NoPolicy;
3174 TopCand.reset(NoPolicy);
3175 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
3176 assert(TopCand.Reason != NoCand && "failed to find a candidate");
3177 tracePick(TopCand);
3178 SU = TopCand.SU;
3180 IsTopNode = true;
3181 } else if (RegionPolicy.OnlyBottomUp) {
3182 SU = Bot.pickOnlyChoice();
3183 if (!SU) {
3184 CandPolicy NoPolicy;
3185 BotCand.reset(NoPolicy);
3186 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
3187 assert(BotCand.Reason != NoCand && "failed to find a candidate");
3188 tracePick(BotCand);
3189 SU = BotCand.SU;
3191 IsTopNode = false;
3192 } else {
3193 SU = pickNodeBidirectional(IsTopNode);
3195 } while (SU->isScheduled);
3197 if (SU->isTopReady())
3198 Top.removeReady(SU);
3199 if (SU->isBottomReady())
3200 Bot.removeReady(SU);
3202 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3203 << *SU->getInstr());
3204 return SU;
3207 void GenericScheduler::reschedulePhysReg(SUnit *SU, bool isTop) {
3208 MachineBasicBlock::iterator InsertPos = SU->getInstr();
3209 if (!isTop)
3210 ++InsertPos;
3211 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
3213 // Find already scheduled copies with a single physreg dependence and move
3214 // them just above the scheduled instruction.
3215 for (SDep &Dep : Deps) {
3216 if (Dep.getKind() != SDep::Data || !TRI->isPhysicalRegister(Dep.getReg()))
3217 continue;
3218 SUnit *DepSU = Dep.getSUnit();
3219 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
3220 continue;
3221 MachineInstr *Copy = DepSU->getInstr();
3222 if (!Copy->isCopy() && !Copy->isMoveImmediate())
3223 continue;
3224 LLVM_DEBUG(dbgs() << " Rescheduling physreg copy ";
3225 DAG->dumpNode(*Dep.getSUnit()));
3226 DAG->moveInstruction(Copy, InsertPos);
3230 /// Update the scheduler's state after scheduling a node. This is the same node
3231 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
3232 /// update it's state based on the current cycle before MachineSchedStrategy
3233 /// does.
3235 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
3236 /// them here. See comments in biasPhysReg.
3237 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3238 if (IsTopNode) {
3239 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3240 Top.bumpNode(SU);
3241 if (SU->hasPhysRegUses)
3242 reschedulePhysReg(SU, true);
3243 } else {
3244 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
3245 Bot.bumpNode(SU);
3246 if (SU->hasPhysRegDefs)
3247 reschedulePhysReg(SU, false);
3251 /// Create the standard converging machine scheduler. This will be used as the
3252 /// default scheduler if the target does not set a default.
3253 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) {
3254 ScheduleDAGMILive *DAG =
3255 new ScheduleDAGMILive(C, llvm::make_unique<GenericScheduler>(C));
3256 // Register DAG post-processors.
3258 // FIXME: extend the mutation API to allow earlier mutations to instantiate
3259 // data and pass it to later mutations. Have a single mutation that gathers
3260 // the interesting nodes in one pass.
3261 DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI));
3262 return DAG;
3265 static ScheduleDAGInstrs *createConveringSched(MachineSchedContext *C) {
3266 return createGenericSchedLive(C);
3269 static MachineSchedRegistry
3270 GenericSchedRegistry("converge", "Standard converging scheduler.",
3271 createConveringSched);
3273 //===----------------------------------------------------------------------===//
3274 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
3275 //===----------------------------------------------------------------------===//
3277 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
3278 DAG = Dag;
3279 SchedModel = DAG->getSchedModel();
3280 TRI = DAG->TRI;
3282 Rem.init(DAG, SchedModel);
3283 Top.init(DAG, SchedModel, &Rem);
3284 BotRoots.clear();
3286 // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
3287 // or are disabled, then these HazardRecs will be disabled.
3288 const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3289 if (!Top.HazardRec) {
3290 Top.HazardRec =
3291 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3292 Itin, DAG);
3296 void PostGenericScheduler::registerRoots() {
3297 Rem.CriticalPath = DAG->ExitSU.getDepth();
3299 // Some roots may not feed into ExitSU. Check all of them in case.
3300 for (const SUnit *SU : BotRoots) {
3301 if (SU->getDepth() > Rem.CriticalPath)
3302 Rem.CriticalPath = SU->getDepth();
3304 LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
3305 if (DumpCriticalPathLength) {
3306 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
3310 /// Apply a set of heuristics to a new candidate for PostRA scheduling.
3312 /// \param Cand provides the policy and current best candidate.
3313 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3314 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
3315 SchedCandidate &TryCand) {
3316 // Initialize the candidate if needed.
3317 if (!Cand.isValid()) {
3318 TryCand.Reason = NodeOrder;
3319 return;
3322 // Prioritize instructions that read unbuffered resources by stall cycles.
3323 if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
3324 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3325 return;
3327 // Keep clustered nodes together.
3328 if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(),
3329 Cand.SU == DAG->getNextClusterSucc(),
3330 TryCand, Cand, Cluster))
3331 return;
3333 // Avoid critical resource consumption and balance the schedule.
3334 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3335 TryCand, Cand, ResourceReduce))
3336 return;
3337 if (tryGreater(TryCand.ResDelta.DemandedResources,
3338 Cand.ResDelta.DemandedResources,
3339 TryCand, Cand, ResourceDemand))
3340 return;
3342 // Avoid serializing long latency dependence chains.
3343 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
3344 return;
3347 // Fall through to original instruction order.
3348 if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
3349 TryCand.Reason = NodeOrder;
3352 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
3353 ReadyQueue &Q = Top.Available;
3354 for (SUnit *SU : Q) {
3355 SchedCandidate TryCand(Cand.Policy);
3356 TryCand.SU = SU;
3357 TryCand.AtTop = true;
3358 TryCand.initResourceDelta(DAG, SchedModel);
3359 tryCandidate(Cand, TryCand);
3360 if (TryCand.Reason != NoCand) {
3361 Cand.setBest(TryCand);
3362 LLVM_DEBUG(traceCandidate(Cand));
3367 /// Pick the next node to schedule.
3368 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
3369 if (DAG->top() == DAG->bottom()) {
3370 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
3371 return nullptr;
3373 SUnit *SU;
3374 do {
3375 SU = Top.pickOnlyChoice();
3376 if (SU) {
3377 tracePick(Only1, true);
3378 } else {
3379 CandPolicy NoPolicy;
3380 SchedCandidate TopCand(NoPolicy);
3381 // Set the top-down policy based on the state of the current top zone and
3382 // the instructions outside the zone, including the bottom zone.
3383 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
3384 pickNodeFromQueue(TopCand);
3385 assert(TopCand.Reason != NoCand && "failed to find a candidate");
3386 tracePick(TopCand);
3387 SU = TopCand.SU;
3389 } while (SU->isScheduled);
3391 IsTopNode = true;
3392 Top.removeReady(SU);
3394 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3395 << *SU->getInstr());
3396 return SU;
3399 /// Called after ScheduleDAGMI has scheduled an instruction and updated
3400 /// scheduled/remaining flags in the DAG nodes.
3401 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3402 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3403 Top.bumpNode(SU);
3406 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) {
3407 return new ScheduleDAGMI(C, llvm::make_unique<PostGenericScheduler>(C),
3408 /*RemoveKillFlags=*/true);
3411 //===----------------------------------------------------------------------===//
3412 // ILP Scheduler. Currently for experimental analysis of heuristics.
3413 //===----------------------------------------------------------------------===//
3415 namespace {
3417 /// Order nodes by the ILP metric.
3418 struct ILPOrder {
3419 const SchedDFSResult *DFSResult = nullptr;
3420 const BitVector *ScheduledTrees = nullptr;
3421 bool MaximizeILP;
3423 ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {}
3425 /// Apply a less-than relation on node priority.
3427 /// (Return true if A comes after B in the Q.)
3428 bool operator()(const SUnit *A, const SUnit *B) const {
3429 unsigned SchedTreeA = DFSResult->getSubtreeID(A);
3430 unsigned SchedTreeB = DFSResult->getSubtreeID(B);
3431 if (SchedTreeA != SchedTreeB) {
3432 // Unscheduled trees have lower priority.
3433 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
3434 return ScheduledTrees->test(SchedTreeB);
3436 // Trees with shallower connections have have lower priority.
3437 if (DFSResult->getSubtreeLevel(SchedTreeA)
3438 != DFSResult->getSubtreeLevel(SchedTreeB)) {
3439 return DFSResult->getSubtreeLevel(SchedTreeA)
3440 < DFSResult->getSubtreeLevel(SchedTreeB);
3443 if (MaximizeILP)
3444 return DFSResult->getILP(A) < DFSResult->getILP(B);
3445 else
3446 return DFSResult->getILP(A) > DFSResult->getILP(B);
3450 /// Schedule based on the ILP metric.
3451 class ILPScheduler : public MachineSchedStrategy {
3452 ScheduleDAGMILive *DAG = nullptr;
3453 ILPOrder Cmp;
3455 std::vector<SUnit*> ReadyQ;
3457 public:
3458 ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {}
3460 void initialize(ScheduleDAGMI *dag) override {
3461 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
3462 DAG = static_cast<ScheduleDAGMILive*>(dag);
3463 DAG->computeDFSResult();
3464 Cmp.DFSResult = DAG->getDFSResult();
3465 Cmp.ScheduledTrees = &DAG->getScheduledTrees();
3466 ReadyQ.clear();
3469 void registerRoots() override {
3470 // Restore the heap in ReadyQ with the updated DFS results.
3471 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3474 /// Implement MachineSchedStrategy interface.
3475 /// -----------------------------------------
3477 /// Callback to select the highest priority node from the ready Q.
3478 SUnit *pickNode(bool &IsTopNode) override {
3479 if (ReadyQ.empty()) return nullptr;
3480 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3481 SUnit *SU = ReadyQ.back();
3482 ReadyQ.pop_back();
3483 IsTopNode = false;
3484 LLVM_DEBUG(dbgs() << "Pick node "
3485 << "SU(" << SU->NodeNum << ") "
3486 << " ILP: " << DAG->getDFSResult()->getILP(SU)
3487 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU)
3488 << " @"
3489 << DAG->getDFSResult()->getSubtreeLevel(
3490 DAG->getDFSResult()->getSubtreeID(SU))
3491 << '\n'
3492 << "Scheduling " << *SU->getInstr());
3493 return SU;
3496 /// Scheduler callback to notify that a new subtree is scheduled.
3497 void scheduleTree(unsigned SubtreeID) override {
3498 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3501 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
3502 /// DFSResults, and resort the priority Q.
3503 void schedNode(SUnit *SU, bool IsTopNode) override {
3504 assert(!IsTopNode && "SchedDFSResult needs bottom-up");
3507 void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
3509 void releaseBottomNode(SUnit *SU) override {
3510 ReadyQ.push_back(SU);
3511 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3515 } // end anonymous namespace
3517 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
3518 return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(true));
3520 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
3521 return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(false));
3524 static MachineSchedRegistry ILPMaxRegistry(
3525 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
3526 static MachineSchedRegistry ILPMinRegistry(
3527 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
3529 //===----------------------------------------------------------------------===//
3530 // Machine Instruction Shuffler for Correctness Testing
3531 //===----------------------------------------------------------------------===//
3533 #ifndef NDEBUG
3534 namespace {
3536 /// Apply a less-than relation on the node order, which corresponds to the
3537 /// instruction order prior to scheduling. IsReverse implements greater-than.
3538 template<bool IsReverse>
3539 struct SUnitOrder {
3540 bool operator()(SUnit *A, SUnit *B) const {
3541 if (IsReverse)
3542 return A->NodeNum > B->NodeNum;
3543 else
3544 return A->NodeNum < B->NodeNum;
3548 /// Reorder instructions as much as possible.
3549 class InstructionShuffler : public MachineSchedStrategy {
3550 bool IsAlternating;
3551 bool IsTopDown;
3553 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
3554 // gives nodes with a higher number higher priority causing the latest
3555 // instructions to be scheduled first.
3556 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>>
3557 TopQ;
3559 // When scheduling bottom-up, use greater-than as the queue priority.
3560 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>>
3561 BottomQ;
3563 public:
3564 InstructionShuffler(bool alternate, bool topdown)
3565 : IsAlternating(alternate), IsTopDown(topdown) {}
3567 void initialize(ScheduleDAGMI*) override {
3568 TopQ.clear();
3569 BottomQ.clear();
3572 /// Implement MachineSchedStrategy interface.
3573 /// -----------------------------------------
3575 SUnit *pickNode(bool &IsTopNode) override {
3576 SUnit *SU;
3577 if (IsTopDown) {
3578 do {
3579 if (TopQ.empty()) return nullptr;
3580 SU = TopQ.top();
3581 TopQ.pop();
3582 } while (SU->isScheduled);
3583 IsTopNode = true;
3584 } else {
3585 do {
3586 if (BottomQ.empty()) return nullptr;
3587 SU = BottomQ.top();
3588 BottomQ.pop();
3589 } while (SU->isScheduled);
3590 IsTopNode = false;
3592 if (IsAlternating)
3593 IsTopDown = !IsTopDown;
3594 return SU;
3597 void schedNode(SUnit *SU, bool IsTopNode) override {}
3599 void releaseTopNode(SUnit *SU) override {
3600 TopQ.push(SU);
3602 void releaseBottomNode(SUnit *SU) override {
3603 BottomQ.push(SU);
3607 } // end anonymous namespace
3609 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
3610 bool Alternate = !ForceTopDown && !ForceBottomUp;
3611 bool TopDown = !ForceBottomUp;
3612 assert((TopDown || !ForceTopDown) &&
3613 "-misched-topdown incompatible with -misched-bottomup");
3614 return new ScheduleDAGMILive(
3615 C, llvm::make_unique<InstructionShuffler>(Alternate, TopDown));
3618 static MachineSchedRegistry ShufflerRegistry(
3619 "shuffle", "Shuffle machine instructions alternating directions",
3620 createInstructionShuffler);
3621 #endif // !NDEBUG
3623 //===----------------------------------------------------------------------===//
3624 // GraphWriter support for ScheduleDAGMILive.
3625 //===----------------------------------------------------------------------===//
3627 #ifndef NDEBUG
3628 namespace llvm {
3630 template<> struct GraphTraits<
3631 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
3633 template<>
3634 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
3635 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
3637 static std::string getGraphName(const ScheduleDAG *G) {
3638 return G->MF.getName();
3641 static bool renderGraphFromBottomUp() {
3642 return true;
3645 static bool isNodeHidden(const SUnit *Node) {
3646 if (ViewMISchedCutoff == 0)
3647 return false;
3648 return (Node->Preds.size() > ViewMISchedCutoff
3649 || Node->Succs.size() > ViewMISchedCutoff);
3652 /// If you want to override the dot attributes printed for a particular
3653 /// edge, override this method.
3654 static std::string getEdgeAttributes(const SUnit *Node,
3655 SUnitIterator EI,
3656 const ScheduleDAG *Graph) {
3657 if (EI.isArtificialDep())
3658 return "color=cyan,style=dashed";
3659 if (EI.isCtrlDep())
3660 return "color=blue,style=dashed";
3661 return "";
3664 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
3665 std::string Str;
3666 raw_string_ostream SS(Str);
3667 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3668 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3669 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3670 SS << "SU:" << SU->NodeNum;
3671 if (DFS)
3672 SS << " I:" << DFS->getNumInstrs(SU);
3673 return SS.str();
3676 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
3677 return G->getGraphNodeLabel(SU);
3680 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
3681 std::string Str("shape=Mrecord");
3682 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3683 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3684 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3685 if (DFS) {
3686 Str += ",style=filled,fillcolor=\"#";
3687 Str += DOT::getColorString(DFS->getSubtreeID(N));
3688 Str += '"';
3690 return Str;
3694 } // end namespace llvm
3695 #endif // NDEBUG
3697 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
3698 /// rendered using 'dot'.
3699 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
3700 #ifndef NDEBUG
3701 ViewGraph(this, Name, false, Title);
3702 #else
3703 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
3704 << "systems with Graphviz or gv!\n";
3705 #endif // NDEBUG
3708 /// Out-of-line implementation with no arguments is handy for gdb.
3709 void ScheduleDAGMI::viewGraph() {
3710 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());