Another attempt to fix the build bot breaks after r360426
[llvm-core.git] / lib / CodeGen / MachineVerifier.cpp
blobb1964d68111d675ef282caed1d47dc6ec260f384
1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Pass to verify generated machine code. The following is checked:
11 // Operand counts: All explicit operands must be present.
13 // Register classes: All physical and virtual register operands must be
14 // compatible with the register class required by the instruction descriptor.
16 // Register live intervals: Registers must be defined only once, and must be
17 // defined before use.
19 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the
20 // command-line option -verify-machineinstrs, or by defining the environment
21 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
22 // the verifier errors.
23 //===----------------------------------------------------------------------===//
25 #include "LiveRangeCalc.h"
26 #include "llvm/ADT/BitVector.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/DenseSet.h"
29 #include "llvm/ADT/DepthFirstIterator.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetOperations.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/StringRef.h"
35 #include "llvm/ADT/Twine.h"
36 #include "llvm/Analysis/EHPersonalities.h"
37 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
38 #include "llvm/CodeGen/LiveInterval.h"
39 #include "llvm/CodeGen/LiveIntervals.h"
40 #include "llvm/CodeGen/LiveStacks.h"
41 #include "llvm/CodeGen/LiveVariables.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineFunctionPass.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBundle.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachineRegisterInfo.h"
51 #include "llvm/CodeGen/PseudoSourceValue.h"
52 #include "llvm/CodeGen/SlotIndexes.h"
53 #include "llvm/CodeGen/StackMaps.h"
54 #include "llvm/CodeGen/TargetInstrInfo.h"
55 #include "llvm/CodeGen/TargetOpcodes.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/TargetSubtargetInfo.h"
58 #include "llvm/IR/BasicBlock.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/InlineAsm.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/MC/LaneBitmask.h"
63 #include "llvm/MC/MCAsmInfo.h"
64 #include "llvm/MC/MCInstrDesc.h"
65 #include "llvm/MC/MCRegisterInfo.h"
66 #include "llvm/MC/MCTargetOptions.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/LowLevelTypeImpl.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <string>
80 #include <utility>
82 using namespace llvm;
84 namespace {
86 struct MachineVerifier {
87 MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
89 unsigned verify(MachineFunction &MF);
91 Pass *const PASS;
92 const char *Banner;
93 const MachineFunction *MF;
94 const TargetMachine *TM;
95 const TargetInstrInfo *TII;
96 const TargetRegisterInfo *TRI;
97 const MachineRegisterInfo *MRI;
99 unsigned foundErrors;
101 // Avoid querying the MachineFunctionProperties for each operand.
102 bool isFunctionRegBankSelected;
103 bool isFunctionSelected;
105 using RegVector = SmallVector<unsigned, 16>;
106 using RegMaskVector = SmallVector<const uint32_t *, 4>;
107 using RegSet = DenseSet<unsigned>;
108 using RegMap = DenseMap<unsigned, const MachineInstr *>;
109 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
111 const MachineInstr *FirstNonPHI;
112 const MachineInstr *FirstTerminator;
113 BlockSet FunctionBlocks;
115 BitVector regsReserved;
116 RegSet regsLive;
117 RegVector regsDefined, regsDead, regsKilled;
118 RegMaskVector regMasks;
120 SlotIndex lastIndex;
122 // Add Reg and any sub-registers to RV
123 void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
124 RV.push_back(Reg);
125 if (TargetRegisterInfo::isPhysicalRegister(Reg))
126 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
127 RV.push_back(*SubRegs);
130 struct BBInfo {
131 // Is this MBB reachable from the MF entry point?
132 bool reachable = false;
134 // Vregs that must be live in because they are used without being
135 // defined. Map value is the user.
136 RegMap vregsLiveIn;
138 // Regs killed in MBB. They may be defined again, and will then be in both
139 // regsKilled and regsLiveOut.
140 RegSet regsKilled;
142 // Regs defined in MBB and live out. Note that vregs passing through may
143 // be live out without being mentioned here.
144 RegSet regsLiveOut;
146 // Vregs that pass through MBB untouched. This set is disjoint from
147 // regsKilled and regsLiveOut.
148 RegSet vregsPassed;
150 // Vregs that must pass through MBB because they are needed by a successor
151 // block. This set is disjoint from regsLiveOut.
152 RegSet vregsRequired;
154 // Set versions of block's predecessor and successor lists.
155 BlockSet Preds, Succs;
157 BBInfo() = default;
159 // Add register to vregsPassed if it belongs there. Return true if
160 // anything changed.
161 bool addPassed(unsigned Reg) {
162 if (!TargetRegisterInfo::isVirtualRegister(Reg))
163 return false;
164 if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
165 return false;
166 return vregsPassed.insert(Reg).second;
169 // Same for a full set.
170 bool addPassed(const RegSet &RS) {
171 bool changed = false;
172 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
173 if (addPassed(*I))
174 changed = true;
175 return changed;
178 // Add register to vregsRequired if it belongs there. Return true if
179 // anything changed.
180 bool addRequired(unsigned Reg) {
181 if (!TargetRegisterInfo::isVirtualRegister(Reg))
182 return false;
183 if (regsLiveOut.count(Reg))
184 return false;
185 return vregsRequired.insert(Reg).second;
188 // Same for a full set.
189 bool addRequired(const RegSet &RS) {
190 bool changed = false;
191 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
192 if (addRequired(*I))
193 changed = true;
194 return changed;
197 // Same for a full map.
198 bool addRequired(const RegMap &RM) {
199 bool changed = false;
200 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
201 if (addRequired(I->first))
202 changed = true;
203 return changed;
206 // Live-out registers are either in regsLiveOut or vregsPassed.
207 bool isLiveOut(unsigned Reg) const {
208 return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
212 // Extra register info per MBB.
213 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
215 bool isReserved(unsigned Reg) {
216 return Reg < regsReserved.size() && regsReserved.test(Reg);
219 bool isAllocatable(unsigned Reg) const {
220 return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
221 !regsReserved.test(Reg);
224 // Analysis information if available
225 LiveVariables *LiveVars;
226 LiveIntervals *LiveInts;
227 LiveStacks *LiveStks;
228 SlotIndexes *Indexes;
230 void visitMachineFunctionBefore();
231 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
232 void visitMachineBundleBefore(const MachineInstr *MI);
234 bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
235 void verifyPreISelGenericInstruction(const MachineInstr *MI);
236 void visitMachineInstrBefore(const MachineInstr *MI);
237 void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
238 void visitMachineInstrAfter(const MachineInstr *MI);
239 void visitMachineBundleAfter(const MachineInstr *MI);
240 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
241 void visitMachineFunctionAfter();
243 void report(const char *msg, const MachineFunction *MF);
244 void report(const char *msg, const MachineBasicBlock *MBB);
245 void report(const char *msg, const MachineInstr *MI);
246 void report(const char *msg, const MachineOperand *MO, unsigned MONum,
247 LLT MOVRegType = LLT{});
249 void report_context(const LiveInterval &LI) const;
250 void report_context(const LiveRange &LR, unsigned VRegUnit,
251 LaneBitmask LaneMask) const;
252 void report_context(const LiveRange::Segment &S) const;
253 void report_context(const VNInfo &VNI) const;
254 void report_context(SlotIndex Pos) const;
255 void report_context(MCPhysReg PhysReg) const;
256 void report_context_liverange(const LiveRange &LR) const;
257 void report_context_lanemask(LaneBitmask LaneMask) const;
258 void report_context_vreg(unsigned VReg) const;
259 void report_context_vreg_regunit(unsigned VRegOrUnit) const;
261 void verifyInlineAsm(const MachineInstr *MI);
263 void checkLiveness(const MachineOperand *MO, unsigned MONum);
264 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
265 SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
266 LaneBitmask LaneMask = LaneBitmask::getNone());
267 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
268 SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
269 bool SubRangeCheck = false,
270 LaneBitmask LaneMask = LaneBitmask::getNone());
272 void markReachable(const MachineBasicBlock *MBB);
273 void calcRegsPassed();
274 void checkPHIOps(const MachineBasicBlock &MBB);
276 void calcRegsRequired();
277 void verifyLiveVariables();
278 void verifyLiveIntervals();
279 void verifyLiveInterval(const LiveInterval&);
280 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
281 LaneBitmask);
282 void verifyLiveRangeSegment(const LiveRange&,
283 const LiveRange::const_iterator I, unsigned,
284 LaneBitmask);
285 void verifyLiveRange(const LiveRange&, unsigned,
286 LaneBitmask LaneMask = LaneBitmask::getNone());
288 void verifyStackFrame();
290 void verifySlotIndexes() const;
291 void verifyProperties(const MachineFunction &MF);
294 struct MachineVerifierPass : public MachineFunctionPass {
295 static char ID; // Pass ID, replacement for typeid
297 const std::string Banner;
299 MachineVerifierPass(std::string banner = std::string())
300 : MachineFunctionPass(ID), Banner(std::move(banner)) {
301 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
304 void getAnalysisUsage(AnalysisUsage &AU) const override {
305 AU.setPreservesAll();
306 MachineFunctionPass::getAnalysisUsage(AU);
309 bool runOnMachineFunction(MachineFunction &MF) override {
310 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
311 if (FoundErrors)
312 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
313 return false;
317 } // end anonymous namespace
319 char MachineVerifierPass::ID = 0;
321 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
322 "Verify generated machine code", false, false)
324 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
325 return new MachineVerifierPass(Banner);
328 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
329 const {
330 MachineFunction &MF = const_cast<MachineFunction&>(*this);
331 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
332 if (AbortOnErrors && FoundErrors)
333 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
334 return FoundErrors == 0;
337 void MachineVerifier::verifySlotIndexes() const {
338 if (Indexes == nullptr)
339 return;
341 // Ensure the IdxMBB list is sorted by slot indexes.
342 SlotIndex Last;
343 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
344 E = Indexes->MBBIndexEnd(); I != E; ++I) {
345 assert(!Last.isValid() || I->first > Last);
346 Last = I->first;
350 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
351 // If a pass has introduced virtual registers without clearing the
352 // NoVRegs property (or set it without allocating the vregs)
353 // then report an error.
354 if (MF.getProperties().hasProperty(
355 MachineFunctionProperties::Property::NoVRegs) &&
356 MRI->getNumVirtRegs())
357 report("Function has NoVRegs property but there are VReg operands", &MF);
360 unsigned MachineVerifier::verify(MachineFunction &MF) {
361 foundErrors = 0;
363 this->MF = &MF;
364 TM = &MF.getTarget();
365 TII = MF.getSubtarget().getInstrInfo();
366 TRI = MF.getSubtarget().getRegisterInfo();
367 MRI = &MF.getRegInfo();
369 const bool isFunctionFailedISel = MF.getProperties().hasProperty(
370 MachineFunctionProperties::Property::FailedISel);
372 // If we're mid-GlobalISel and we already triggered the fallback path then
373 // it's expected that the MIR is somewhat broken but that's ok since we'll
374 // reset it and clear the FailedISel attribute in ResetMachineFunctions.
375 if (isFunctionFailedISel)
376 return foundErrors;
378 isFunctionRegBankSelected =
379 !isFunctionFailedISel &&
380 MF.getProperties().hasProperty(
381 MachineFunctionProperties::Property::RegBankSelected);
382 isFunctionSelected = !isFunctionFailedISel &&
383 MF.getProperties().hasProperty(
384 MachineFunctionProperties::Property::Selected);
385 LiveVars = nullptr;
386 LiveInts = nullptr;
387 LiveStks = nullptr;
388 Indexes = nullptr;
389 if (PASS) {
390 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
391 // We don't want to verify LiveVariables if LiveIntervals is available.
392 if (!LiveInts)
393 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
394 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
395 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
398 verifySlotIndexes();
400 verifyProperties(MF);
402 visitMachineFunctionBefore();
403 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
404 MFI!=MFE; ++MFI) {
405 visitMachineBasicBlockBefore(&*MFI);
406 // Keep track of the current bundle header.
407 const MachineInstr *CurBundle = nullptr;
408 // Do we expect the next instruction to be part of the same bundle?
409 bool InBundle = false;
411 for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
412 MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
413 if (MBBI->getParent() != &*MFI) {
414 report("Bad instruction parent pointer", &*MFI);
415 errs() << "Instruction: " << *MBBI;
416 continue;
419 // Check for consistent bundle flags.
420 if (InBundle && !MBBI->isBundledWithPred())
421 report("Missing BundledPred flag, "
422 "BundledSucc was set on predecessor",
423 &*MBBI);
424 if (!InBundle && MBBI->isBundledWithPred())
425 report("BundledPred flag is set, "
426 "but BundledSucc not set on predecessor",
427 &*MBBI);
429 // Is this a bundle header?
430 if (!MBBI->isInsideBundle()) {
431 if (CurBundle)
432 visitMachineBundleAfter(CurBundle);
433 CurBundle = &*MBBI;
434 visitMachineBundleBefore(CurBundle);
435 } else if (!CurBundle)
436 report("No bundle header", &*MBBI);
437 visitMachineInstrBefore(&*MBBI);
438 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
439 const MachineInstr &MI = *MBBI;
440 const MachineOperand &Op = MI.getOperand(I);
441 if (Op.getParent() != &MI) {
442 // Make sure to use correct addOperand / RemoveOperand / ChangeTo
443 // functions when replacing operands of a MachineInstr.
444 report("Instruction has operand with wrong parent set", &MI);
447 visitMachineOperand(&Op, I);
450 visitMachineInstrAfter(&*MBBI);
452 // Was this the last bundled instruction?
453 InBundle = MBBI->isBundledWithSucc();
455 if (CurBundle)
456 visitMachineBundleAfter(CurBundle);
457 if (InBundle)
458 report("BundledSucc flag set on last instruction in block", &MFI->back());
459 visitMachineBasicBlockAfter(&*MFI);
461 visitMachineFunctionAfter();
463 // Clean up.
464 regsLive.clear();
465 regsDefined.clear();
466 regsDead.clear();
467 regsKilled.clear();
468 regMasks.clear();
469 MBBInfoMap.clear();
471 return foundErrors;
474 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
475 assert(MF);
476 errs() << '\n';
477 if (!foundErrors++) {
478 if (Banner)
479 errs() << "# " << Banner << '\n';
480 if (LiveInts != nullptr)
481 LiveInts->print(errs());
482 else
483 MF->print(errs(), Indexes);
485 errs() << "*** Bad machine code: " << msg << " ***\n"
486 << "- function: " << MF->getName() << "\n";
489 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
490 assert(MBB);
491 report(msg, MBB->getParent());
492 errs() << "- basic block: " << printMBBReference(*MBB) << ' '
493 << MBB->getName() << " (" << (const void *)MBB << ')';
494 if (Indexes)
495 errs() << " [" << Indexes->getMBBStartIdx(MBB)
496 << ';' << Indexes->getMBBEndIdx(MBB) << ')';
497 errs() << '\n';
500 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
501 assert(MI);
502 report(msg, MI->getParent());
503 errs() << "- instruction: ";
504 if (Indexes && Indexes->hasIndex(*MI))
505 errs() << Indexes->getInstructionIndex(*MI) << '\t';
506 MI->print(errs(), /*SkipOpers=*/true);
509 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
510 unsigned MONum, LLT MOVRegType) {
511 assert(MO);
512 report(msg, MO->getParent());
513 errs() << "- operand " << MONum << ": ";
514 MO->print(errs(), MOVRegType, TRI);
515 errs() << "\n";
518 void MachineVerifier::report_context(SlotIndex Pos) const {
519 errs() << "- at: " << Pos << '\n';
522 void MachineVerifier::report_context(const LiveInterval &LI) const {
523 errs() << "- interval: " << LI << '\n';
526 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit,
527 LaneBitmask LaneMask) const {
528 report_context_liverange(LR);
529 report_context_vreg_regunit(VRegUnit);
530 if (LaneMask.any())
531 report_context_lanemask(LaneMask);
534 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
535 errs() << "- segment: " << S << '\n';
538 void MachineVerifier::report_context(const VNInfo &VNI) const {
539 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n";
542 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
543 errs() << "- liverange: " << LR << '\n';
546 void MachineVerifier::report_context(MCPhysReg PReg) const {
547 errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
550 void MachineVerifier::report_context_vreg(unsigned VReg) const {
551 errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
554 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
555 if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
556 report_context_vreg(VRegOrUnit);
557 } else {
558 errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n';
562 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
563 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n';
566 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
567 BBInfo &MInfo = MBBInfoMap[MBB];
568 if (!MInfo.reachable) {
569 MInfo.reachable = true;
570 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
571 SuE = MBB->succ_end(); SuI != SuE; ++SuI)
572 markReachable(*SuI);
576 void MachineVerifier::visitMachineFunctionBefore() {
577 lastIndex = SlotIndex();
578 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
579 : TRI->getReservedRegs(*MF);
581 if (!MF->empty())
582 markReachable(&MF->front());
584 // Build a set of the basic blocks in the function.
585 FunctionBlocks.clear();
586 for (const auto &MBB : *MF) {
587 FunctionBlocks.insert(&MBB);
588 BBInfo &MInfo = MBBInfoMap[&MBB];
590 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
591 if (MInfo.Preds.size() != MBB.pred_size())
592 report("MBB has duplicate entries in its predecessor list.", &MBB);
594 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
595 if (MInfo.Succs.size() != MBB.succ_size())
596 report("MBB has duplicate entries in its successor list.", &MBB);
599 // Check that the register use lists are sane.
600 MRI->verifyUseLists();
602 if (!MF->empty())
603 verifyStackFrame();
606 // Does iterator point to a and b as the first two elements?
607 static bool matchPair(MachineBasicBlock::const_succ_iterator i,
608 const MachineBasicBlock *a, const MachineBasicBlock *b) {
609 if (*i == a)
610 return *++i == b;
611 if (*i == b)
612 return *++i == a;
613 return false;
616 void
617 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
618 FirstTerminator = nullptr;
619 FirstNonPHI = nullptr;
621 if (!MF->getProperties().hasProperty(
622 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
623 // If this block has allocatable physical registers live-in, check that
624 // it is an entry block or landing pad.
625 for (const auto &LI : MBB->liveins()) {
626 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
627 MBB->getIterator() != MBB->getParent()->begin()) {
628 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
629 report_context(LI.PhysReg);
634 // Count the number of landing pad successors.
635 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
636 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
637 E = MBB->succ_end(); I != E; ++I) {
638 if ((*I)->isEHPad())
639 LandingPadSuccs.insert(*I);
640 if (!FunctionBlocks.count(*I))
641 report("MBB has successor that isn't part of the function.", MBB);
642 if (!MBBInfoMap[*I].Preds.count(MBB)) {
643 report("Inconsistent CFG", MBB);
644 errs() << "MBB is not in the predecessor list of the successor "
645 << printMBBReference(*(*I)) << ".\n";
649 // Check the predecessor list.
650 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
651 E = MBB->pred_end(); I != E; ++I) {
652 if (!FunctionBlocks.count(*I))
653 report("MBB has predecessor that isn't part of the function.", MBB);
654 if (!MBBInfoMap[*I].Succs.count(MBB)) {
655 report("Inconsistent CFG", MBB);
656 errs() << "MBB is not in the successor list of the predecessor "
657 << printMBBReference(*(*I)) << ".\n";
661 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
662 const BasicBlock *BB = MBB->getBasicBlock();
663 const Function &F = MF->getFunction();
664 if (LandingPadSuccs.size() > 1 &&
665 !(AsmInfo &&
666 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
667 BB && isa<SwitchInst>(BB->getTerminator())) &&
668 !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
669 report("MBB has more than one landing pad successor", MBB);
671 // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
672 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
673 SmallVector<MachineOperand, 4> Cond;
674 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
675 Cond)) {
676 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
677 // check whether its answers match up with reality.
678 if (!TBB && !FBB) {
679 // Block falls through to its successor.
680 MachineFunction::const_iterator MBBI = MBB->getIterator();
681 ++MBBI;
682 if (MBBI == MF->end()) {
683 // It's possible that the block legitimately ends with a noreturn
684 // call or an unreachable, in which case it won't actually fall
685 // out the bottom of the function.
686 } else if (MBB->succ_size() == LandingPadSuccs.size()) {
687 // It's possible that the block legitimately ends with a noreturn
688 // call or an unreachable, in which case it won't actually fall
689 // out of the block.
690 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
691 report("MBB exits via unconditional fall-through but doesn't have "
692 "exactly one CFG successor!", MBB);
693 } else if (!MBB->isSuccessor(&*MBBI)) {
694 report("MBB exits via unconditional fall-through but its successor "
695 "differs from its CFG successor!", MBB);
697 if (!MBB->empty() && MBB->back().isBarrier() &&
698 !TII->isPredicated(MBB->back())) {
699 report("MBB exits via unconditional fall-through but ends with a "
700 "barrier instruction!", MBB);
702 if (!Cond.empty()) {
703 report("MBB exits via unconditional fall-through but has a condition!",
704 MBB);
706 } else if (TBB && !FBB && Cond.empty()) {
707 // Block unconditionally branches somewhere.
708 // If the block has exactly one successor, that happens to be a
709 // landingpad, accept it as valid control flow.
710 if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
711 (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
712 *MBB->succ_begin() != *LandingPadSuccs.begin())) {
713 report("MBB exits via unconditional branch but doesn't have "
714 "exactly one CFG successor!", MBB);
715 } else if (!MBB->isSuccessor(TBB)) {
716 report("MBB exits via unconditional branch but the CFG "
717 "successor doesn't match the actual successor!", MBB);
719 if (MBB->empty()) {
720 report("MBB exits via unconditional branch but doesn't contain "
721 "any instructions!", MBB);
722 } else if (!MBB->back().isBarrier()) {
723 report("MBB exits via unconditional branch but doesn't end with a "
724 "barrier instruction!", MBB);
725 } else if (!MBB->back().isTerminator()) {
726 report("MBB exits via unconditional branch but the branch isn't a "
727 "terminator instruction!", MBB);
729 } else if (TBB && !FBB && !Cond.empty()) {
730 // Block conditionally branches somewhere, otherwise falls through.
731 MachineFunction::const_iterator MBBI = MBB->getIterator();
732 ++MBBI;
733 if (MBBI == MF->end()) {
734 report("MBB conditionally falls through out of function!", MBB);
735 } else if (MBB->succ_size() == 1) {
736 // A conditional branch with only one successor is weird, but allowed.
737 if (&*MBBI != TBB)
738 report("MBB exits via conditional branch/fall-through but only has "
739 "one CFG successor!", MBB);
740 else if (TBB != *MBB->succ_begin())
741 report("MBB exits via conditional branch/fall-through but the CFG "
742 "successor don't match the actual successor!", MBB);
743 } else if (MBB->succ_size() != 2) {
744 report("MBB exits via conditional branch/fall-through but doesn't have "
745 "exactly two CFG successors!", MBB);
746 } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) {
747 report("MBB exits via conditional branch/fall-through but the CFG "
748 "successors don't match the actual successors!", MBB);
750 if (MBB->empty()) {
751 report("MBB exits via conditional branch/fall-through but doesn't "
752 "contain any instructions!", MBB);
753 } else if (MBB->back().isBarrier()) {
754 report("MBB exits via conditional branch/fall-through but ends with a "
755 "barrier instruction!", MBB);
756 } else if (!MBB->back().isTerminator()) {
757 report("MBB exits via conditional branch/fall-through but the branch "
758 "isn't a terminator instruction!", MBB);
760 } else if (TBB && FBB) {
761 // Block conditionally branches somewhere, otherwise branches
762 // somewhere else.
763 if (MBB->succ_size() == 1) {
764 // A conditional branch with only one successor is weird, but allowed.
765 if (FBB != TBB)
766 report("MBB exits via conditional branch/branch through but only has "
767 "one CFG successor!", MBB);
768 else if (TBB != *MBB->succ_begin())
769 report("MBB exits via conditional branch/branch through but the CFG "
770 "successor don't match the actual successor!", MBB);
771 } else if (MBB->succ_size() != 2) {
772 report("MBB exits via conditional branch/branch but doesn't have "
773 "exactly two CFG successors!", MBB);
774 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
775 report("MBB exits via conditional branch/branch but the CFG "
776 "successors don't match the actual successors!", MBB);
778 if (MBB->empty()) {
779 report("MBB exits via conditional branch/branch but doesn't "
780 "contain any instructions!", MBB);
781 } else if (!MBB->back().isBarrier()) {
782 report("MBB exits via conditional branch/branch but doesn't end with a "
783 "barrier instruction!", MBB);
784 } else if (!MBB->back().isTerminator()) {
785 report("MBB exits via conditional branch/branch but the branch "
786 "isn't a terminator instruction!", MBB);
788 if (Cond.empty()) {
789 report("MBB exits via conditional branch/branch but there's no "
790 "condition!", MBB);
792 } else {
793 report("AnalyzeBranch returned invalid data!", MBB);
797 regsLive.clear();
798 if (MRI->tracksLiveness()) {
799 for (const auto &LI : MBB->liveins()) {
800 if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) {
801 report("MBB live-in list contains non-physical register", MBB);
802 continue;
804 for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
805 SubRegs.isValid(); ++SubRegs)
806 regsLive.insert(*SubRegs);
810 const MachineFrameInfo &MFI = MF->getFrameInfo();
811 BitVector PR = MFI.getPristineRegs(*MF);
812 for (unsigned I : PR.set_bits()) {
813 for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
814 SubRegs.isValid(); ++SubRegs)
815 regsLive.insert(*SubRegs);
818 regsKilled.clear();
819 regsDefined.clear();
821 if (Indexes)
822 lastIndex = Indexes->getMBBStartIdx(MBB);
825 // This function gets called for all bundle headers, including normal
826 // stand-alone unbundled instructions.
827 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
828 if (Indexes && Indexes->hasIndex(*MI)) {
829 SlotIndex idx = Indexes->getInstructionIndex(*MI);
830 if (!(idx > lastIndex)) {
831 report("Instruction index out of order", MI);
832 errs() << "Last instruction was at " << lastIndex << '\n';
834 lastIndex = idx;
837 // Ensure non-terminators don't follow terminators.
838 // Ignore predicated terminators formed by if conversion.
839 // FIXME: If conversion shouldn't need to violate this rule.
840 if (MI->isTerminator() && !TII->isPredicated(*MI)) {
841 if (!FirstTerminator)
842 FirstTerminator = MI;
843 } else if (FirstTerminator) {
844 report("Non-terminator instruction after the first terminator", MI);
845 errs() << "First terminator was:\t" << *FirstTerminator;
849 // The operands on an INLINEASM instruction must follow a template.
850 // Verify that the flag operands make sense.
851 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
852 // The first two operands on INLINEASM are the asm string and global flags.
853 if (MI->getNumOperands() < 2) {
854 report("Too few operands on inline asm", MI);
855 return;
857 if (!MI->getOperand(0).isSymbol())
858 report("Asm string must be an external symbol", MI);
859 if (!MI->getOperand(1).isImm())
860 report("Asm flags must be an immediate", MI);
861 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
862 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
863 // and Extra_IsConvergent = 32.
864 if (!isUInt<6>(MI->getOperand(1).getImm()))
865 report("Unknown asm flags", &MI->getOperand(1), 1);
867 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
869 unsigned OpNo = InlineAsm::MIOp_FirstOperand;
870 unsigned NumOps;
871 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
872 const MachineOperand &MO = MI->getOperand(OpNo);
873 // There may be implicit ops after the fixed operands.
874 if (!MO.isImm())
875 break;
876 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
879 if (OpNo > MI->getNumOperands())
880 report("Missing operands in last group", MI);
882 // An optional MDNode follows the groups.
883 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
884 ++OpNo;
886 // All trailing operands must be implicit registers.
887 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
888 const MachineOperand &MO = MI->getOperand(OpNo);
889 if (!MO.isReg() || !MO.isImplicit())
890 report("Expected implicit register after groups", &MO, OpNo);
894 /// Check that types are consistent when two operands need to have the same
895 /// number of vector elements.
896 /// \return true if the types are valid.
897 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
898 const MachineInstr *MI) {
899 if (Ty0.isVector() != Ty1.isVector()) {
900 report("operand types must be all-vector or all-scalar", MI);
901 // Generally we try to report as many issues as possible at once, but in
902 // this case it's not clear what should we be comparing the size of the
903 // scalar with: the size of the whole vector or its lane. Instead of
904 // making an arbitrary choice and emitting not so helpful message, let's
905 // avoid the extra noise and stop here.
906 return false;
909 if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) {
910 report("operand types must preserve number of vector elements", MI);
911 return false;
914 return true;
917 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
918 if (isFunctionSelected)
919 report("Unexpected generic instruction in a Selected function", MI);
921 const MCInstrDesc &MCID = MI->getDesc();
922 unsigned NumOps = MI->getNumOperands();
924 // Check types.
925 SmallVector<LLT, 4> Types;
926 for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
927 I != E; ++I) {
928 if (!MCID.OpInfo[I].isGenericType())
929 continue;
930 // Generic instructions specify type equality constraints between some of
931 // their operands. Make sure these are consistent.
932 size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
933 Types.resize(std::max(TypeIdx + 1, Types.size()));
935 const MachineOperand *MO = &MI->getOperand(I);
936 if (!MO->isReg()) {
937 report("generic instruction must use register operands", MI);
938 continue;
941 LLT OpTy = MRI->getType(MO->getReg());
942 // Don't report a type mismatch if there is no actual mismatch, only a
943 // type missing, to reduce noise:
944 if (OpTy.isValid()) {
945 // Only the first valid type for a type index will be printed: don't
946 // overwrite it later so it's always clear which type was expected:
947 if (!Types[TypeIdx].isValid())
948 Types[TypeIdx] = OpTy;
949 else if (Types[TypeIdx] != OpTy)
950 report("Type mismatch in generic instruction", MO, I, OpTy);
951 } else {
952 // Generic instructions must have types attached to their operands.
953 report("Generic instruction is missing a virtual register type", MO, I);
957 // Generic opcodes must not have physical register operands.
958 for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
959 const MachineOperand *MO = &MI->getOperand(I);
960 if (MO->isReg() && TargetRegisterInfo::isPhysicalRegister(MO->getReg()))
961 report("Generic instruction cannot have physical register", MO, I);
964 // Avoid out of bounds in checks below. This was already reported earlier.
965 if (MI->getNumOperands() < MCID.getNumOperands())
966 return;
968 StringRef ErrorInfo;
969 if (!TII->verifyInstruction(*MI, ErrorInfo))
970 report(ErrorInfo.data(), MI);
972 // Verify properties of various specific instruction types
973 switch (MI->getOpcode()) {
974 case TargetOpcode::G_CONSTANT:
975 case TargetOpcode::G_FCONSTANT: {
976 if (MI->getNumOperands() < MCID.getNumOperands())
977 break;
979 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
980 if (DstTy.isVector())
981 report("Instruction cannot use a vector result type", MI);
983 if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
984 if (!MI->getOperand(1).isCImm()) {
985 report("G_CONSTANT operand must be cimm", MI);
986 break;
989 const ConstantInt *CI = MI->getOperand(1).getCImm();
990 if (CI->getBitWidth() != DstTy.getSizeInBits())
991 report("inconsistent constant size", MI);
992 } else {
993 if (!MI->getOperand(1).isFPImm()) {
994 report("G_FCONSTANT operand must be fpimm", MI);
995 break;
997 const ConstantFP *CF = MI->getOperand(1).getFPImm();
999 if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
1000 DstTy.getSizeInBits()) {
1001 report("inconsistent constant size", MI);
1005 break;
1007 case TargetOpcode::G_LOAD:
1008 case TargetOpcode::G_STORE:
1009 case TargetOpcode::G_ZEXTLOAD:
1010 case TargetOpcode::G_SEXTLOAD: {
1011 LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
1012 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1013 if (!PtrTy.isPointer())
1014 report("Generic memory instruction must access a pointer", MI);
1016 // Generic loads and stores must have a single MachineMemOperand
1017 // describing that access.
1018 if (!MI->hasOneMemOperand()) {
1019 report("Generic instruction accessing memory must have one mem operand",
1020 MI);
1021 } else {
1022 const MachineMemOperand &MMO = **MI->memoperands_begin();
1023 if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
1024 MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
1025 if (MMO.getSizeInBits() >= ValTy.getSizeInBits())
1026 report("Generic extload must have a narrower memory type", MI);
1027 } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
1028 if (MMO.getSize() > ValTy.getSizeInBytes())
1029 report("load memory size cannot exceed result size", MI);
1030 } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
1031 if (ValTy.getSizeInBytes() < MMO.getSize())
1032 report("store memory size cannot exceed value size", MI);
1036 break;
1038 case TargetOpcode::G_PHI: {
1039 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1040 if (!DstTy.isValid() ||
1041 !std::all_of(MI->operands_begin() + 1, MI->operands_end(),
1042 [this, &DstTy](const MachineOperand &MO) {
1043 if (!MO.isReg())
1044 return true;
1045 LLT Ty = MRI->getType(MO.getReg());
1046 if (!Ty.isValid() || (Ty != DstTy))
1047 return false;
1048 return true;
1050 report("Generic Instruction G_PHI has operands with incompatible/missing "
1051 "types",
1052 MI);
1053 break;
1055 case TargetOpcode::G_BITCAST: {
1056 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1057 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1058 if (!DstTy.isValid() || !SrcTy.isValid())
1059 break;
1061 if (SrcTy.isPointer() != DstTy.isPointer())
1062 report("bitcast cannot convert between pointers and other types", MI);
1064 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1065 report("bitcast sizes must match", MI);
1066 break;
1068 case TargetOpcode::G_INTTOPTR:
1069 case TargetOpcode::G_PTRTOINT:
1070 case TargetOpcode::G_ADDRSPACE_CAST: {
1071 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1072 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1073 if (!DstTy.isValid() || !SrcTy.isValid())
1074 break;
1076 verifyVectorElementMatch(DstTy, SrcTy, MI);
1078 DstTy = DstTy.getScalarType();
1079 SrcTy = SrcTy.getScalarType();
1081 if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
1082 if (!DstTy.isPointer())
1083 report("inttoptr result type must be a pointer", MI);
1084 if (SrcTy.isPointer())
1085 report("inttoptr source type must not be a pointer", MI);
1086 } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
1087 if (!SrcTy.isPointer())
1088 report("ptrtoint source type must be a pointer", MI);
1089 if (DstTy.isPointer())
1090 report("ptrtoint result type must not be a pointer", MI);
1091 } else {
1092 assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
1093 if (!SrcTy.isPointer() || !DstTy.isPointer())
1094 report("addrspacecast types must be pointers", MI);
1095 else {
1096 if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
1097 report("addrspacecast must convert different address spaces", MI);
1101 break;
1103 case TargetOpcode::G_GEP: {
1104 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1105 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1106 LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
1107 if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
1108 break;
1110 if (!PtrTy.getScalarType().isPointer())
1111 report("gep first operand must be a pointer", MI);
1113 if (OffsetTy.getScalarType().isPointer())
1114 report("gep offset operand must not be a pointer", MI);
1116 // TODO: Is the offset allowed to be a scalar with a vector?
1117 break;
1119 case TargetOpcode::G_SEXT:
1120 case TargetOpcode::G_ZEXT:
1121 case TargetOpcode::G_ANYEXT:
1122 case TargetOpcode::G_TRUNC:
1123 case TargetOpcode::G_FPEXT:
1124 case TargetOpcode::G_FPTRUNC: {
1125 // Number of operands and presense of types is already checked (and
1126 // reported in case of any issues), so no need to report them again. As
1127 // we're trying to report as many issues as possible at once, however, the
1128 // instructions aren't guaranteed to have the right number of operands or
1129 // types attached to them at this point
1130 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1131 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1132 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1133 if (!DstTy.isValid() || !SrcTy.isValid())
1134 break;
1136 LLT DstElTy = DstTy.getScalarType();
1137 LLT SrcElTy = SrcTy.getScalarType();
1138 if (DstElTy.isPointer() || SrcElTy.isPointer())
1139 report("Generic extend/truncate can not operate on pointers", MI);
1141 verifyVectorElementMatch(DstTy, SrcTy, MI);
1143 unsigned DstSize = DstElTy.getSizeInBits();
1144 unsigned SrcSize = SrcElTy.getSizeInBits();
1145 switch (MI->getOpcode()) {
1146 default:
1147 if (DstSize <= SrcSize)
1148 report("Generic extend has destination type no larger than source", MI);
1149 break;
1150 case TargetOpcode::G_TRUNC:
1151 case TargetOpcode::G_FPTRUNC:
1152 if (DstSize >= SrcSize)
1153 report("Generic truncate has destination type no smaller than source",
1154 MI);
1155 break;
1157 break;
1159 case TargetOpcode::G_SELECT: {
1160 LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
1161 LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
1162 if (!SelTy.isValid() || !CondTy.isValid())
1163 break;
1165 // Scalar condition select on a vector is valid.
1166 if (CondTy.isVector())
1167 verifyVectorElementMatch(SelTy, CondTy, MI);
1168 break;
1170 case TargetOpcode::G_MERGE_VALUES: {
1171 // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1172 // e.g. s2N = MERGE sN, sN
1173 // Merging multiple scalars into a vector is not allowed, should use
1174 // G_BUILD_VECTOR for that.
1175 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1176 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1177 if (DstTy.isVector() || SrcTy.isVector())
1178 report("G_MERGE_VALUES cannot operate on vectors", MI);
1179 break;
1181 case TargetOpcode::G_UNMERGE_VALUES: {
1182 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1183 LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
1184 // For now G_UNMERGE can split vectors.
1185 for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
1186 if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
1187 report("G_UNMERGE_VALUES destination types do not match", MI);
1189 if (SrcTy.getSizeInBits() !=
1190 (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
1191 report("G_UNMERGE_VALUES source operand does not cover dest operands",
1192 MI);
1194 break;
1196 case TargetOpcode::G_BUILD_VECTOR: {
1197 // Source types must be scalars, dest type a vector. Total size of scalars
1198 // must match the dest vector size.
1199 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1200 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1201 if (!DstTy.isVector() || SrcEltTy.isVector()) {
1202 report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1203 break;
1206 if (DstTy.getElementType() != SrcEltTy)
1207 report("G_BUILD_VECTOR result element type must match source type", MI);
1209 if (DstTy.getNumElements() != MI->getNumOperands() - 1)
1210 report("G_BUILD_VECTOR must have an operand for each elemement", MI);
1212 for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1213 if (MRI->getType(MI->getOperand(1).getReg()) !=
1214 MRI->getType(MI->getOperand(i).getReg()))
1215 report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1218 break;
1220 case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1221 // Source types must be scalars, dest type a vector. Scalar types must be
1222 // larger than the dest vector elt type, as this is a truncating operation.
1223 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1224 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1225 if (!DstTy.isVector() || SrcEltTy.isVector())
1226 report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1227 MI);
1228 for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1229 if (MRI->getType(MI->getOperand(1).getReg()) !=
1230 MRI->getType(MI->getOperand(i).getReg()))
1231 report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1232 MI);
1234 if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1235 report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1236 "dest elt type",
1237 MI);
1238 break;
1240 case TargetOpcode::G_CONCAT_VECTORS: {
1241 // Source types should be vectors, and total size should match the dest
1242 // vector size.
1243 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1244 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1245 if (!DstTy.isVector() || !SrcTy.isVector())
1246 report("G_CONCAT_VECTOR requires vector source and destination operands",
1247 MI);
1248 for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1249 if (MRI->getType(MI->getOperand(1).getReg()) !=
1250 MRI->getType(MI->getOperand(i).getReg()))
1251 report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1253 if (DstTy.getNumElements() !=
1254 SrcTy.getNumElements() * (MI->getNumOperands() - 1))
1255 report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1256 break;
1258 case TargetOpcode::G_ICMP:
1259 case TargetOpcode::G_FCMP: {
1260 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1261 LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
1263 if ((DstTy.isVector() != SrcTy.isVector()) ||
1264 (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
1265 report("Generic vector icmp/fcmp must preserve number of lanes", MI);
1267 break;
1269 case TargetOpcode::G_EXTRACT: {
1270 const MachineOperand &SrcOp = MI->getOperand(1);
1271 if (!SrcOp.isReg()) {
1272 report("extract source must be a register", MI);
1273 break;
1276 const MachineOperand &OffsetOp = MI->getOperand(2);
1277 if (!OffsetOp.isImm()) {
1278 report("extract offset must be a constant", MI);
1279 break;
1282 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1283 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1284 if (SrcSize == DstSize)
1285 report("extract source must be larger than result", MI);
1287 if (DstSize + OffsetOp.getImm() > SrcSize)
1288 report("extract reads past end of register", MI);
1289 break;
1291 case TargetOpcode::G_INSERT: {
1292 const MachineOperand &SrcOp = MI->getOperand(2);
1293 if (!SrcOp.isReg()) {
1294 report("insert source must be a register", MI);
1295 break;
1298 const MachineOperand &OffsetOp = MI->getOperand(3);
1299 if (!OffsetOp.isImm()) {
1300 report("insert offset must be a constant", MI);
1301 break;
1304 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1305 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1307 if (DstSize <= SrcSize)
1308 report("inserted size must be smaller than total register", MI);
1310 if (SrcSize + OffsetOp.getImm() > DstSize)
1311 report("insert writes past end of register", MI);
1313 break;
1315 default:
1316 break;
1320 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
1321 const MCInstrDesc &MCID = MI->getDesc();
1322 if (MI->getNumOperands() < MCID.getNumOperands()) {
1323 report("Too few operands", MI);
1324 errs() << MCID.getNumOperands() << " operands expected, but "
1325 << MI->getNumOperands() << " given.\n";
1328 if (MI->isPHI()) {
1329 if (MF->getProperties().hasProperty(
1330 MachineFunctionProperties::Property::NoPHIs))
1331 report("Found PHI instruction with NoPHIs property set", MI);
1333 if (FirstNonPHI)
1334 report("Found PHI instruction after non-PHI", MI);
1335 } else if (FirstNonPHI == nullptr)
1336 FirstNonPHI = MI;
1338 // Check the tied operands.
1339 if (MI->isInlineAsm())
1340 verifyInlineAsm(MI);
1342 // Check the MachineMemOperands for basic consistency.
1343 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
1344 E = MI->memoperands_end();
1345 I != E; ++I) {
1346 if ((*I)->isLoad() && !MI->mayLoad())
1347 report("Missing mayLoad flag", MI);
1348 if ((*I)->isStore() && !MI->mayStore())
1349 report("Missing mayStore flag", MI);
1352 // Debug values must not have a slot index.
1353 // Other instructions must have one, unless they are inside a bundle.
1354 if (LiveInts) {
1355 bool mapped = !LiveInts->isNotInMIMap(*MI);
1356 if (MI->isDebugInstr()) {
1357 if (mapped)
1358 report("Debug instruction has a slot index", MI);
1359 } else if (MI->isInsideBundle()) {
1360 if (mapped)
1361 report("Instruction inside bundle has a slot index", MI);
1362 } else {
1363 if (!mapped)
1364 report("Missing slot index", MI);
1368 if (isPreISelGenericOpcode(MCID.getOpcode())) {
1369 verifyPreISelGenericInstruction(MI);
1370 return;
1373 StringRef ErrorInfo;
1374 if (!TII->verifyInstruction(*MI, ErrorInfo))
1375 report(ErrorInfo.data(), MI);
1377 // Verify properties of various specific instruction types
1378 switch (MI->getOpcode()) {
1379 case TargetOpcode::COPY: {
1380 if (foundErrors)
1381 break;
1382 const MachineOperand &DstOp = MI->getOperand(0);
1383 const MachineOperand &SrcOp = MI->getOperand(1);
1384 LLT DstTy = MRI->getType(DstOp.getReg());
1385 LLT SrcTy = MRI->getType(SrcOp.getReg());
1386 if (SrcTy.isValid() && DstTy.isValid()) {
1387 // If both types are valid, check that the types are the same.
1388 if (SrcTy != DstTy) {
1389 report("Copy Instruction is illegal with mismatching types", MI);
1390 errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1393 if (SrcTy.isValid() || DstTy.isValid()) {
1394 // If one of them have valid types, let's just check they have the same
1395 // size.
1396 unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI);
1397 unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI);
1398 assert(SrcSize && "Expecting size here");
1399 assert(DstSize && "Expecting size here");
1400 if (SrcSize != DstSize)
1401 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1402 report("Copy Instruction is illegal with mismatching sizes", MI);
1403 errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1404 << "\n";
1407 break;
1409 case TargetOpcode::STATEPOINT:
1410 if (!MI->getOperand(StatepointOpers::IDPos).isImm() ||
1411 !MI->getOperand(StatepointOpers::NBytesPos).isImm() ||
1412 !MI->getOperand(StatepointOpers::NCallArgsPos).isImm())
1413 report("meta operands to STATEPOINT not constant!", MI);
1414 break;
1416 auto VerifyStackMapConstant = [&](unsigned Offset) {
1417 if (!MI->getOperand(Offset).isImm() ||
1418 MI->getOperand(Offset).getImm() != StackMaps::ConstantOp ||
1419 !MI->getOperand(Offset + 1).isImm())
1420 report("stack map constant to STATEPOINT not well formed!", MI);
1422 const unsigned VarStart = StatepointOpers(MI).getVarIdx();
1423 VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset);
1424 VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset);
1425 VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset);
1427 // TODO: verify we have properly encoded deopt arguments
1428 break;
1432 void
1433 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1434 const MachineInstr *MI = MO->getParent();
1435 const MCInstrDesc &MCID = MI->getDesc();
1436 unsigned NumDefs = MCID.getNumDefs();
1437 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1438 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1440 // The first MCID.NumDefs operands must be explicit register defines
1441 if (MONum < NumDefs) {
1442 const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1443 if (!MO->isReg())
1444 report("Explicit definition must be a register", MO, MONum);
1445 else if (!MO->isDef() && !MCOI.isOptionalDef())
1446 report("Explicit definition marked as use", MO, MONum);
1447 else if (MO->isImplicit())
1448 report("Explicit definition marked as implicit", MO, MONum);
1449 } else if (MONum < MCID.getNumOperands()) {
1450 const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1451 // Don't check if it's the last operand in a variadic instruction. See,
1452 // e.g., LDM_RET in the arm back end.
1453 if (MO->isReg() &&
1454 !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
1455 if (MO->isDef() && !MCOI.isOptionalDef())
1456 report("Explicit operand marked as def", MO, MONum);
1457 if (MO->isImplicit())
1458 report("Explicit operand marked as implicit", MO, MONum);
1461 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1462 if (TiedTo != -1) {
1463 if (!MO->isReg())
1464 report("Tied use must be a register", MO, MONum);
1465 else if (!MO->isTied())
1466 report("Operand should be tied", MO, MONum);
1467 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1468 report("Tied def doesn't match MCInstrDesc", MO, MONum);
1469 else if (TargetRegisterInfo::isPhysicalRegister(MO->getReg())) {
1470 const MachineOperand &MOTied = MI->getOperand(TiedTo);
1471 if (!MOTied.isReg())
1472 report("Tied counterpart must be a register", &MOTied, TiedTo);
1473 else if (TargetRegisterInfo::isPhysicalRegister(MOTied.getReg()) &&
1474 MO->getReg() != MOTied.getReg())
1475 report("Tied physical registers must match.", &MOTied, TiedTo);
1477 } else if (MO->isReg() && MO->isTied())
1478 report("Explicit operand should not be tied", MO, MONum);
1479 } else {
1480 // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1481 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1482 report("Extra explicit operand on non-variadic instruction", MO, MONum);
1485 switch (MO->getType()) {
1486 case MachineOperand::MO_Register: {
1487 const unsigned Reg = MO->getReg();
1488 if (!Reg)
1489 return;
1490 if (MRI->tracksLiveness() && !MI->isDebugValue())
1491 checkLiveness(MO, MONum);
1493 // Verify the consistency of tied operands.
1494 if (MO->isTied()) {
1495 unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1496 const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1497 if (!OtherMO.isReg())
1498 report("Must be tied to a register", MO, MONum);
1499 if (!OtherMO.isTied())
1500 report("Missing tie flags on tied operand", MO, MONum);
1501 if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1502 report("Inconsistent tie links", MO, MONum);
1503 if (MONum < MCID.getNumDefs()) {
1504 if (OtherIdx < MCID.getNumOperands()) {
1505 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1506 report("Explicit def tied to explicit use without tie constraint",
1507 MO, MONum);
1508 } else {
1509 if (!OtherMO.isImplicit())
1510 report("Explicit def should be tied to implicit use", MO, MONum);
1515 // Verify two-address constraints after leaving SSA form.
1516 unsigned DefIdx;
1517 if (!MRI->isSSA() && MO->isUse() &&
1518 MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1519 Reg != MI->getOperand(DefIdx).getReg())
1520 report("Two-address instruction operands must be identical", MO, MONum);
1522 // Check register classes.
1523 unsigned SubIdx = MO->getSubReg();
1525 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1526 if (SubIdx) {
1527 report("Illegal subregister index for physical register", MO, MONum);
1528 return;
1530 if (MONum < MCID.getNumOperands()) {
1531 if (const TargetRegisterClass *DRC =
1532 TII->getRegClass(MCID, MONum, TRI, *MF)) {
1533 if (!DRC->contains(Reg)) {
1534 report("Illegal physical register for instruction", MO, MONum);
1535 errs() << printReg(Reg, TRI) << " is not a "
1536 << TRI->getRegClassName(DRC) << " register.\n";
1540 if (MO->isRenamable()) {
1541 if (MRI->isReserved(Reg)) {
1542 report("isRenamable set on reserved register", MO, MONum);
1543 return;
1546 if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
1547 report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
1548 return;
1550 } else {
1551 // Virtual register.
1552 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1553 if (!RC) {
1554 // This is a generic virtual register.
1556 // If we're post-Select, we can't have gvregs anymore.
1557 if (isFunctionSelected) {
1558 report("Generic virtual register invalid in a Selected function",
1559 MO, MONum);
1560 return;
1563 // The gvreg must have a type and it must not have a SubIdx.
1564 LLT Ty = MRI->getType(Reg);
1565 if (!Ty.isValid()) {
1566 report("Generic virtual register must have a valid type", MO,
1567 MONum);
1568 return;
1571 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1573 // If we're post-RegBankSelect, the gvreg must have a bank.
1574 if (!RegBank && isFunctionRegBankSelected) {
1575 report("Generic virtual register must have a bank in a "
1576 "RegBankSelected function",
1577 MO, MONum);
1578 return;
1581 // Make sure the register fits into its register bank if any.
1582 if (RegBank && Ty.isValid() &&
1583 RegBank->getSize() < Ty.getSizeInBits()) {
1584 report("Register bank is too small for virtual register", MO,
1585 MONum);
1586 errs() << "Register bank " << RegBank->getName() << " too small("
1587 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
1588 << "-bits\n";
1589 return;
1591 if (SubIdx) {
1592 report("Generic virtual register does not allow subregister index", MO,
1593 MONum);
1594 return;
1597 // If this is a target specific instruction and this operand
1598 // has register class constraint, the virtual register must
1599 // comply to it.
1600 if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
1601 MONum < MCID.getNumOperands() &&
1602 TII->getRegClass(MCID, MONum, TRI, *MF)) {
1603 report("Virtual register does not match instruction constraint", MO,
1604 MONum);
1605 errs() << "Expect register class "
1606 << TRI->getRegClassName(
1607 TII->getRegClass(MCID, MONum, TRI, *MF))
1608 << " but got nothing\n";
1609 return;
1612 break;
1614 if (SubIdx) {
1615 const TargetRegisterClass *SRC =
1616 TRI->getSubClassWithSubReg(RC, SubIdx);
1617 if (!SRC) {
1618 report("Invalid subregister index for virtual register", MO, MONum);
1619 errs() << "Register class " << TRI->getRegClassName(RC)
1620 << " does not support subreg index " << SubIdx << "\n";
1621 return;
1623 if (RC != SRC) {
1624 report("Invalid register class for subregister index", MO, MONum);
1625 errs() << "Register class " << TRI->getRegClassName(RC)
1626 << " does not fully support subreg index " << SubIdx << "\n";
1627 return;
1630 if (MONum < MCID.getNumOperands()) {
1631 if (const TargetRegisterClass *DRC =
1632 TII->getRegClass(MCID, MONum, TRI, *MF)) {
1633 if (SubIdx) {
1634 const TargetRegisterClass *SuperRC =
1635 TRI->getLargestLegalSuperClass(RC, *MF);
1636 if (!SuperRC) {
1637 report("No largest legal super class exists.", MO, MONum);
1638 return;
1640 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
1641 if (!DRC) {
1642 report("No matching super-reg register class.", MO, MONum);
1643 return;
1646 if (!RC->hasSuperClassEq(DRC)) {
1647 report("Illegal virtual register for instruction", MO, MONum);
1648 errs() << "Expected a " << TRI->getRegClassName(DRC)
1649 << " register, but got a " << TRI->getRegClassName(RC)
1650 << " register\n";
1655 break;
1658 case MachineOperand::MO_RegisterMask:
1659 regMasks.push_back(MO->getRegMask());
1660 break;
1662 case MachineOperand::MO_MachineBasicBlock:
1663 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
1664 report("PHI operand is not in the CFG", MO, MONum);
1665 break;
1667 case MachineOperand::MO_FrameIndex:
1668 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
1669 LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1670 int FI = MO->getIndex();
1671 LiveInterval &LI = LiveStks->getInterval(FI);
1672 SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
1674 bool stores = MI->mayStore();
1675 bool loads = MI->mayLoad();
1676 // For a memory-to-memory move, we need to check if the frame
1677 // index is used for storing or loading, by inspecting the
1678 // memory operands.
1679 if (stores && loads) {
1680 for (auto *MMO : MI->memoperands()) {
1681 const PseudoSourceValue *PSV = MMO->getPseudoValue();
1682 if (PSV == nullptr) continue;
1683 const FixedStackPseudoSourceValue *Value =
1684 dyn_cast<FixedStackPseudoSourceValue>(PSV);
1685 if (Value == nullptr) continue;
1686 if (Value->getFrameIndex() != FI) continue;
1688 if (MMO->isStore())
1689 loads = false;
1690 else
1691 stores = false;
1692 break;
1694 if (loads == stores)
1695 report("Missing fixed stack memoperand.", MI);
1697 if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
1698 report("Instruction loads from dead spill slot", MO, MONum);
1699 errs() << "Live stack: " << LI << '\n';
1701 if (stores && !LI.liveAt(Idx.getRegSlot())) {
1702 report("Instruction stores to dead spill slot", MO, MONum);
1703 errs() << "Live stack: " << LI << '\n';
1706 break;
1708 default:
1709 break;
1713 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
1714 unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
1715 LaneBitmask LaneMask) {
1716 LiveQueryResult LRQ = LR.Query(UseIdx);
1717 // Check if we have a segment at the use, note however that we only need one
1718 // live subregister range, the others may be dead.
1719 if (!LRQ.valueIn() && LaneMask.none()) {
1720 report("No live segment at use", MO, MONum);
1721 report_context_liverange(LR);
1722 report_context_vreg_regunit(VRegOrUnit);
1723 report_context(UseIdx);
1725 if (MO->isKill() && !LRQ.isKill()) {
1726 report("Live range continues after kill flag", MO, MONum);
1727 report_context_liverange(LR);
1728 report_context_vreg_regunit(VRegOrUnit);
1729 if (LaneMask.any())
1730 report_context_lanemask(LaneMask);
1731 report_context(UseIdx);
1735 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
1736 unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
1737 bool SubRangeCheck, LaneBitmask LaneMask) {
1738 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
1739 assert(VNI && "NULL valno is not allowed");
1740 if (VNI->def != DefIdx) {
1741 report("Inconsistent valno->def", MO, MONum);
1742 report_context_liverange(LR);
1743 report_context_vreg_regunit(VRegOrUnit);
1744 if (LaneMask.any())
1745 report_context_lanemask(LaneMask);
1746 report_context(*VNI);
1747 report_context(DefIdx);
1749 } else {
1750 report("No live segment at def", MO, MONum);
1751 report_context_liverange(LR);
1752 report_context_vreg_regunit(VRegOrUnit);
1753 if (LaneMask.any())
1754 report_context_lanemask(LaneMask);
1755 report_context(DefIdx);
1757 // Check that, if the dead def flag is present, LiveInts agree.
1758 if (MO->isDead()) {
1759 LiveQueryResult LRQ = LR.Query(DefIdx);
1760 if (!LRQ.isDeadDef()) {
1761 assert(TargetRegisterInfo::isVirtualRegister(VRegOrUnit) &&
1762 "Expecting a virtual register.");
1763 // A dead subreg def only tells us that the specific subreg is dead. There
1764 // could be other non-dead defs of other subregs, or we could have other
1765 // parts of the register being live through the instruction. So unless we
1766 // are checking liveness for a subrange it is ok for the live range to
1767 // continue, given that we have a dead def of a subregister.
1768 if (SubRangeCheck || MO->getSubReg() == 0) {
1769 report("Live range continues after dead def flag", MO, MONum);
1770 report_context_liverange(LR);
1771 report_context_vreg_regunit(VRegOrUnit);
1772 if (LaneMask.any())
1773 report_context_lanemask(LaneMask);
1779 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
1780 const MachineInstr *MI = MO->getParent();
1781 const unsigned Reg = MO->getReg();
1783 // Both use and def operands can read a register.
1784 if (MO->readsReg()) {
1785 if (MO->isKill())
1786 addRegWithSubRegs(regsKilled, Reg);
1788 // Check that LiveVars knows this kill.
1789 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
1790 MO->isKill()) {
1791 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1792 if (!is_contained(VI.Kills, MI))
1793 report("Kill missing from LiveVariables", MO, MONum);
1796 // Check LiveInts liveness and kill.
1797 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1798 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
1799 // Check the cached regunit intervals.
1800 if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1801 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1802 if (MRI->isReservedRegUnit(*Units))
1803 continue;
1804 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
1805 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
1809 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1810 if (LiveInts->hasInterval(Reg)) {
1811 // This is a virtual register interval.
1812 const LiveInterval &LI = LiveInts->getInterval(Reg);
1813 checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
1815 if (LI.hasSubRanges() && !MO->isDef()) {
1816 unsigned SubRegIdx = MO->getSubReg();
1817 LaneBitmask MOMask = SubRegIdx != 0
1818 ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1819 : MRI->getMaxLaneMaskForVReg(Reg);
1820 LaneBitmask LiveInMask;
1821 for (const LiveInterval::SubRange &SR : LI.subranges()) {
1822 if ((MOMask & SR.LaneMask).none())
1823 continue;
1824 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
1825 LiveQueryResult LRQ = SR.Query(UseIdx);
1826 if (LRQ.valueIn())
1827 LiveInMask |= SR.LaneMask;
1829 // At least parts of the register has to be live at the use.
1830 if ((LiveInMask & MOMask).none()) {
1831 report("No live subrange at use", MO, MONum);
1832 report_context(LI);
1833 report_context(UseIdx);
1836 } else {
1837 report("Virtual register has no live interval", MO, MONum);
1842 // Use of a dead register.
1843 if (!regsLive.count(Reg)) {
1844 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1845 // Reserved registers may be used even when 'dead'.
1846 bool Bad = !isReserved(Reg);
1847 // We are fine if just any subregister has a defined value.
1848 if (Bad) {
1849 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid();
1850 ++SubRegs) {
1851 if (regsLive.count(*SubRegs)) {
1852 Bad = false;
1853 break;
1857 // If there is an additional implicit-use of a super register we stop
1858 // here. By definition we are fine if the super register is not
1859 // (completely) dead, if the complete super register is dead we will
1860 // get a report for its operand.
1861 if (Bad) {
1862 for (const MachineOperand &MOP : MI->uses()) {
1863 if (!MOP.isReg() || !MOP.isImplicit())
1864 continue;
1866 if (!TargetRegisterInfo::isPhysicalRegister(MOP.getReg()))
1867 continue;
1869 for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid();
1870 ++SubRegs) {
1871 if (*SubRegs == Reg) {
1872 Bad = false;
1873 break;
1878 if (Bad)
1879 report("Using an undefined physical register", MO, MONum);
1880 } else if (MRI->def_empty(Reg)) {
1881 report("Reading virtual register without a def", MO, MONum);
1882 } else {
1883 BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1884 // We don't know which virtual registers are live in, so only complain
1885 // if vreg was killed in this MBB. Otherwise keep track of vregs that
1886 // must be live in. PHI instructions are handled separately.
1887 if (MInfo.regsKilled.count(Reg))
1888 report("Using a killed virtual register", MO, MONum);
1889 else if (!MI->isPHI())
1890 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
1895 if (MO->isDef()) {
1896 // Register defined.
1897 // TODO: verify that earlyclobber ops are not used.
1898 if (MO->isDead())
1899 addRegWithSubRegs(regsDead, Reg);
1900 else
1901 addRegWithSubRegs(regsDefined, Reg);
1903 // Verify SSA form.
1904 if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
1905 std::next(MRI->def_begin(Reg)) != MRI->def_end())
1906 report("Multiple virtual register defs in SSA form", MO, MONum);
1908 // Check LiveInts for a live segment, but only for virtual registers.
1909 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1910 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
1911 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
1913 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1914 if (LiveInts->hasInterval(Reg)) {
1915 const LiveInterval &LI = LiveInts->getInterval(Reg);
1916 checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
1918 if (LI.hasSubRanges()) {
1919 unsigned SubRegIdx = MO->getSubReg();
1920 LaneBitmask MOMask = SubRegIdx != 0
1921 ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1922 : MRI->getMaxLaneMaskForVReg(Reg);
1923 for (const LiveInterval::SubRange &SR : LI.subranges()) {
1924 if ((SR.LaneMask & MOMask).none())
1925 continue;
1926 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
1929 } else {
1930 report("Virtual register has no Live interval", MO, MONum);
1937 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {}
1939 // This function gets called after visiting all instructions in a bundle. The
1940 // argument points to the bundle header.
1941 // Normal stand-alone instructions are also considered 'bundles', and this
1942 // function is called for all of them.
1943 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
1944 BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1945 set_union(MInfo.regsKilled, regsKilled);
1946 set_subtract(regsLive, regsKilled); regsKilled.clear();
1947 // Kill any masked registers.
1948 while (!regMasks.empty()) {
1949 const uint32_t *Mask = regMasks.pop_back_val();
1950 for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
1951 if (TargetRegisterInfo::isPhysicalRegister(*I) &&
1952 MachineOperand::clobbersPhysReg(Mask, *I))
1953 regsDead.push_back(*I);
1955 set_subtract(regsLive, regsDead); regsDead.clear();
1956 set_union(regsLive, regsDefined); regsDefined.clear();
1959 void
1960 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
1961 MBBInfoMap[MBB].regsLiveOut = regsLive;
1962 regsLive.clear();
1964 if (Indexes) {
1965 SlotIndex stop = Indexes->getMBBEndIdx(MBB);
1966 if (!(stop > lastIndex)) {
1967 report("Block ends before last instruction index", MBB);
1968 errs() << "Block ends at " << stop
1969 << " last instruction was at " << lastIndex << '\n';
1971 lastIndex = stop;
1975 // Calculate the largest possible vregsPassed sets. These are the registers that
1976 // can pass through an MBB live, but may not be live every time. It is assumed
1977 // that all vregsPassed sets are empty before the call.
1978 void MachineVerifier::calcRegsPassed() {
1979 // First push live-out regs to successors' vregsPassed. Remember the MBBs that
1980 // have any vregsPassed.
1981 SmallPtrSet<const MachineBasicBlock*, 8> todo;
1982 for (const auto &MBB : *MF) {
1983 BBInfo &MInfo = MBBInfoMap[&MBB];
1984 if (!MInfo.reachable)
1985 continue;
1986 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
1987 SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
1988 BBInfo &SInfo = MBBInfoMap[*SuI];
1989 if (SInfo.addPassed(MInfo.regsLiveOut))
1990 todo.insert(*SuI);
1994 // Iteratively push vregsPassed to successors. This will converge to the same
1995 // final state regardless of DenseSet iteration order.
1996 while (!todo.empty()) {
1997 const MachineBasicBlock *MBB = *todo.begin();
1998 todo.erase(MBB);
1999 BBInfo &MInfo = MBBInfoMap[MBB];
2000 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
2001 SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
2002 if (*SuI == MBB)
2003 continue;
2004 BBInfo &SInfo = MBBInfoMap[*SuI];
2005 if (SInfo.addPassed(MInfo.vregsPassed))
2006 todo.insert(*SuI);
2011 // Calculate the set of virtual registers that must be passed through each basic
2012 // block in order to satisfy the requirements of successor blocks. This is very
2013 // similar to calcRegsPassed, only backwards.
2014 void MachineVerifier::calcRegsRequired() {
2015 // First push live-in regs to predecessors' vregsRequired.
2016 SmallPtrSet<const MachineBasicBlock*, 8> todo;
2017 for (const auto &MBB : *MF) {
2018 BBInfo &MInfo = MBBInfoMap[&MBB];
2019 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
2020 PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
2021 BBInfo &PInfo = MBBInfoMap[*PrI];
2022 if (PInfo.addRequired(MInfo.vregsLiveIn))
2023 todo.insert(*PrI);
2027 // Iteratively push vregsRequired to predecessors. This will converge to the
2028 // same final state regardless of DenseSet iteration order.
2029 while (!todo.empty()) {
2030 const MachineBasicBlock *MBB = *todo.begin();
2031 todo.erase(MBB);
2032 BBInfo &MInfo = MBBInfoMap[MBB];
2033 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
2034 PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
2035 if (*PrI == MBB)
2036 continue;
2037 BBInfo &SInfo = MBBInfoMap[*PrI];
2038 if (SInfo.addRequired(MInfo.vregsRequired))
2039 todo.insert(*PrI);
2044 // Check PHI instructions at the beginning of MBB. It is assumed that
2045 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
2046 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
2047 BBInfo &MInfo = MBBInfoMap[&MBB];
2049 SmallPtrSet<const MachineBasicBlock*, 8> seen;
2050 for (const MachineInstr &Phi : MBB) {
2051 if (!Phi.isPHI())
2052 break;
2053 seen.clear();
2055 const MachineOperand &MODef = Phi.getOperand(0);
2056 if (!MODef.isReg() || !MODef.isDef()) {
2057 report("Expected first PHI operand to be a register def", &MODef, 0);
2058 continue;
2060 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
2061 MODef.isEarlyClobber() || MODef.isDebug())
2062 report("Unexpected flag on PHI operand", &MODef, 0);
2063 unsigned DefReg = MODef.getReg();
2064 if (!TargetRegisterInfo::isVirtualRegister(DefReg))
2065 report("Expected first PHI operand to be a virtual register", &MODef, 0);
2067 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
2068 const MachineOperand &MO0 = Phi.getOperand(I);
2069 if (!MO0.isReg()) {
2070 report("Expected PHI operand to be a register", &MO0, I);
2071 continue;
2073 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
2074 MO0.isDebug() || MO0.isTied())
2075 report("Unexpected flag on PHI operand", &MO0, I);
2077 const MachineOperand &MO1 = Phi.getOperand(I + 1);
2078 if (!MO1.isMBB()) {
2079 report("Expected PHI operand to be a basic block", &MO1, I + 1);
2080 continue;
2083 const MachineBasicBlock &Pre = *MO1.getMBB();
2084 if (!Pre.isSuccessor(&MBB)) {
2085 report("PHI input is not a predecessor block", &MO1, I + 1);
2086 continue;
2089 if (MInfo.reachable) {
2090 seen.insert(&Pre);
2091 BBInfo &PrInfo = MBBInfoMap[&Pre];
2092 if (!MO0.isUndef() && PrInfo.reachable &&
2093 !PrInfo.isLiveOut(MO0.getReg()))
2094 report("PHI operand is not live-out from predecessor", &MO0, I);
2098 // Did we see all predecessors?
2099 if (MInfo.reachable) {
2100 for (MachineBasicBlock *Pred : MBB.predecessors()) {
2101 if (!seen.count(Pred)) {
2102 report("Missing PHI operand", &Phi);
2103 errs() << printMBBReference(*Pred)
2104 << " is a predecessor according to the CFG.\n";
2111 void MachineVerifier::visitMachineFunctionAfter() {
2112 calcRegsPassed();
2114 for (const MachineBasicBlock &MBB : *MF)
2115 checkPHIOps(MBB);
2117 // Now check liveness info if available
2118 calcRegsRequired();
2120 // Check for killed virtual registers that should be live out.
2121 for (const auto &MBB : *MF) {
2122 BBInfo &MInfo = MBBInfoMap[&MBB];
2123 for (RegSet::iterator
2124 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
2125 ++I)
2126 if (MInfo.regsKilled.count(*I)) {
2127 report("Virtual register killed in block, but needed live out.", &MBB);
2128 errs() << "Virtual register " << printReg(*I)
2129 << " is used after the block.\n";
2133 if (!MF->empty()) {
2134 BBInfo &MInfo = MBBInfoMap[&MF->front()];
2135 for (RegSet::iterator
2136 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
2137 ++I) {
2138 report("Virtual register defs don't dominate all uses.", MF);
2139 report_context_vreg(*I);
2143 if (LiveVars)
2144 verifyLiveVariables();
2145 if (LiveInts)
2146 verifyLiveIntervals();
2149 void MachineVerifier::verifyLiveVariables() {
2150 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
2151 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
2152 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
2153 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2154 for (const auto &MBB : *MF) {
2155 BBInfo &MInfo = MBBInfoMap[&MBB];
2157 // Our vregsRequired should be identical to LiveVariables' AliveBlocks
2158 if (MInfo.vregsRequired.count(Reg)) {
2159 if (!VI.AliveBlocks.test(MBB.getNumber())) {
2160 report("LiveVariables: Block missing from AliveBlocks", &MBB);
2161 errs() << "Virtual register " << printReg(Reg)
2162 << " must be live through the block.\n";
2164 } else {
2165 if (VI.AliveBlocks.test(MBB.getNumber())) {
2166 report("LiveVariables: Block should not be in AliveBlocks", &MBB);
2167 errs() << "Virtual register " << printReg(Reg)
2168 << " is not needed live through the block.\n";
2175 void MachineVerifier::verifyLiveIntervals() {
2176 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
2177 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
2178 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
2180 // Spilling and splitting may leave unused registers around. Skip them.
2181 if (MRI->reg_nodbg_empty(Reg))
2182 continue;
2184 if (!LiveInts->hasInterval(Reg)) {
2185 report("Missing live interval for virtual register", MF);
2186 errs() << printReg(Reg, TRI) << " still has defs or uses\n";
2187 continue;
2190 const LiveInterval &LI = LiveInts->getInterval(Reg);
2191 assert(Reg == LI.reg && "Invalid reg to interval mapping");
2192 verifyLiveInterval(LI);
2195 // Verify all the cached regunit intervals.
2196 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
2197 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
2198 verifyLiveRange(*LR, i);
2201 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
2202 const VNInfo *VNI, unsigned Reg,
2203 LaneBitmask LaneMask) {
2204 if (VNI->isUnused())
2205 return;
2207 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
2209 if (!DefVNI) {
2210 report("Value not live at VNInfo def and not marked unused", MF);
2211 report_context(LR, Reg, LaneMask);
2212 report_context(*VNI);
2213 return;
2216 if (DefVNI != VNI) {
2217 report("Live segment at def has different VNInfo", MF);
2218 report_context(LR, Reg, LaneMask);
2219 report_context(*VNI);
2220 return;
2223 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
2224 if (!MBB) {
2225 report("Invalid VNInfo definition index", MF);
2226 report_context(LR, Reg, LaneMask);
2227 report_context(*VNI);
2228 return;
2231 if (VNI->isPHIDef()) {
2232 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
2233 report("PHIDef VNInfo is not defined at MBB start", MBB);
2234 report_context(LR, Reg, LaneMask);
2235 report_context(*VNI);
2237 return;
2240 // Non-PHI def.
2241 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
2242 if (!MI) {
2243 report("No instruction at VNInfo def index", MBB);
2244 report_context(LR, Reg, LaneMask);
2245 report_context(*VNI);
2246 return;
2249 if (Reg != 0) {
2250 bool hasDef = false;
2251 bool isEarlyClobber = false;
2252 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2253 if (!MOI->isReg() || !MOI->isDef())
2254 continue;
2255 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2256 if (MOI->getReg() != Reg)
2257 continue;
2258 } else {
2259 if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
2260 !TRI->hasRegUnit(MOI->getReg(), Reg))
2261 continue;
2263 if (LaneMask.any() &&
2264 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
2265 continue;
2266 hasDef = true;
2267 if (MOI->isEarlyClobber())
2268 isEarlyClobber = true;
2271 if (!hasDef) {
2272 report("Defining instruction does not modify register", MI);
2273 report_context(LR, Reg, LaneMask);
2274 report_context(*VNI);
2277 // Early clobber defs begin at USE slots, but other defs must begin at
2278 // DEF slots.
2279 if (isEarlyClobber) {
2280 if (!VNI->def.isEarlyClobber()) {
2281 report("Early clobber def must be at an early-clobber slot", MBB);
2282 report_context(LR, Reg, LaneMask);
2283 report_context(*VNI);
2285 } else if (!VNI->def.isRegister()) {
2286 report("Non-PHI, non-early clobber def must be at a register slot", MBB);
2287 report_context(LR, Reg, LaneMask);
2288 report_context(*VNI);
2293 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
2294 const LiveRange::const_iterator I,
2295 unsigned Reg, LaneBitmask LaneMask)
2297 const LiveRange::Segment &S = *I;
2298 const VNInfo *VNI = S.valno;
2299 assert(VNI && "Live segment has no valno");
2301 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
2302 report("Foreign valno in live segment", MF);
2303 report_context(LR, Reg, LaneMask);
2304 report_context(S);
2305 report_context(*VNI);
2308 if (VNI->isUnused()) {
2309 report("Live segment valno is marked unused", MF);
2310 report_context(LR, Reg, LaneMask);
2311 report_context(S);
2314 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
2315 if (!MBB) {
2316 report("Bad start of live segment, no basic block", MF);
2317 report_context(LR, Reg, LaneMask);
2318 report_context(S);
2319 return;
2321 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
2322 if (S.start != MBBStartIdx && S.start != VNI->def) {
2323 report("Live segment must begin at MBB entry or valno def", MBB);
2324 report_context(LR, Reg, LaneMask);
2325 report_context(S);
2328 const MachineBasicBlock *EndMBB =
2329 LiveInts->getMBBFromIndex(S.end.getPrevSlot());
2330 if (!EndMBB) {
2331 report("Bad end of live segment, no basic block", MF);
2332 report_context(LR, Reg, LaneMask);
2333 report_context(S);
2334 return;
2337 // No more checks for live-out segments.
2338 if (S.end == LiveInts->getMBBEndIdx(EndMBB))
2339 return;
2341 // RegUnit intervals are allowed dead phis.
2342 if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() &&
2343 S.start == VNI->def && S.end == VNI->def.getDeadSlot())
2344 return;
2346 // The live segment is ending inside EndMBB
2347 const MachineInstr *MI =
2348 LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
2349 if (!MI) {
2350 report("Live segment doesn't end at a valid instruction", EndMBB);
2351 report_context(LR, Reg, LaneMask);
2352 report_context(S);
2353 return;
2356 // The block slot must refer to a basic block boundary.
2357 if (S.end.isBlock()) {
2358 report("Live segment ends at B slot of an instruction", EndMBB);
2359 report_context(LR, Reg, LaneMask);
2360 report_context(S);
2363 if (S.end.isDead()) {
2364 // Segment ends on the dead slot.
2365 // That means there must be a dead def.
2366 if (!SlotIndex::isSameInstr(S.start, S.end)) {
2367 report("Live segment ending at dead slot spans instructions", EndMBB);
2368 report_context(LR, Reg, LaneMask);
2369 report_context(S);
2373 // A live segment can only end at an early-clobber slot if it is being
2374 // redefined by an early-clobber def.
2375 if (S.end.isEarlyClobber()) {
2376 if (I+1 == LR.end() || (I+1)->start != S.end) {
2377 report("Live segment ending at early clobber slot must be "
2378 "redefined by an EC def in the same instruction", EndMBB);
2379 report_context(LR, Reg, LaneMask);
2380 report_context(S);
2384 // The following checks only apply to virtual registers. Physreg liveness
2385 // is too weird to check.
2386 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2387 // A live segment can end with either a redefinition, a kill flag on a
2388 // use, or a dead flag on a def.
2389 bool hasRead = false;
2390 bool hasSubRegDef = false;
2391 bool hasDeadDef = false;
2392 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2393 if (!MOI->isReg() || MOI->getReg() != Reg)
2394 continue;
2395 unsigned Sub = MOI->getSubReg();
2396 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
2397 : LaneBitmask::getAll();
2398 if (MOI->isDef()) {
2399 if (Sub != 0) {
2400 hasSubRegDef = true;
2401 // An operand %0:sub0 reads %0:sub1..n. Invert the lane
2402 // mask for subregister defs. Read-undef defs will be handled by
2403 // readsReg below.
2404 SLM = ~SLM;
2406 if (MOI->isDead())
2407 hasDeadDef = true;
2409 if (LaneMask.any() && (LaneMask & SLM).none())
2410 continue;
2411 if (MOI->readsReg())
2412 hasRead = true;
2414 if (S.end.isDead()) {
2415 // Make sure that the corresponding machine operand for a "dead" live
2416 // range has the dead flag. We cannot perform this check for subregister
2417 // liveranges as partially dead values are allowed.
2418 if (LaneMask.none() && !hasDeadDef) {
2419 report("Instruction ending live segment on dead slot has no dead flag",
2420 MI);
2421 report_context(LR, Reg, LaneMask);
2422 report_context(S);
2424 } else {
2425 if (!hasRead) {
2426 // When tracking subregister liveness, the main range must start new
2427 // values on partial register writes, even if there is no read.
2428 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
2429 !hasSubRegDef) {
2430 report("Instruction ending live segment doesn't read the register",
2431 MI);
2432 report_context(LR, Reg, LaneMask);
2433 report_context(S);
2439 // Now check all the basic blocks in this live segment.
2440 MachineFunction::const_iterator MFI = MBB->getIterator();
2441 // Is this live segment the beginning of a non-PHIDef VN?
2442 if (S.start == VNI->def && !VNI->isPHIDef()) {
2443 // Not live-in to any blocks.
2444 if (MBB == EndMBB)
2445 return;
2446 // Skip this block.
2447 ++MFI;
2450 SmallVector<SlotIndex, 4> Undefs;
2451 if (LaneMask.any()) {
2452 LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
2453 OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
2456 while (true) {
2457 assert(LiveInts->isLiveInToMBB(LR, &*MFI));
2458 // We don't know how to track physregs into a landing pad.
2459 if (!TargetRegisterInfo::isVirtualRegister(Reg) &&
2460 MFI->isEHPad()) {
2461 if (&*MFI == EndMBB)
2462 break;
2463 ++MFI;
2464 continue;
2467 // Is VNI a PHI-def in the current block?
2468 bool IsPHI = VNI->isPHIDef() &&
2469 VNI->def == LiveInts->getMBBStartIdx(&*MFI);
2471 // Check that VNI is live-out of all predecessors.
2472 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
2473 PE = MFI->pred_end(); PI != PE; ++PI) {
2474 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
2475 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
2477 // All predecessors must have a live-out value. However for a phi
2478 // instruction with subregister intervals
2479 // only one of the subregisters (not necessarily the current one) needs to
2480 // be defined.
2481 if (!PVNI && (LaneMask.none() || !IsPHI)) {
2482 if (LiveRangeCalc::isJointlyDominated(*PI, Undefs, *Indexes))
2483 continue;
2484 report("Register not marked live out of predecessor", *PI);
2485 report_context(LR, Reg, LaneMask);
2486 report_context(*VNI);
2487 errs() << " live into " << printMBBReference(*MFI) << '@'
2488 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
2489 << PEnd << '\n';
2490 continue;
2493 // Only PHI-defs can take different predecessor values.
2494 if (!IsPHI && PVNI != VNI) {
2495 report("Different value live out of predecessor", *PI);
2496 report_context(LR, Reg, LaneMask);
2497 errs() << "Valno #" << PVNI->id << " live out of "
2498 << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #"
2499 << VNI->id << " live into " << printMBBReference(*MFI) << '@'
2500 << LiveInts->getMBBStartIdx(&*MFI) << '\n';
2503 if (&*MFI == EndMBB)
2504 break;
2505 ++MFI;
2509 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
2510 LaneBitmask LaneMask) {
2511 for (const VNInfo *VNI : LR.valnos)
2512 verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
2514 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
2515 verifyLiveRangeSegment(LR, I, Reg, LaneMask);
2518 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
2519 unsigned Reg = LI.reg;
2520 assert(TargetRegisterInfo::isVirtualRegister(Reg));
2521 verifyLiveRange(LI, Reg);
2523 LaneBitmask Mask;
2524 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
2525 for (const LiveInterval::SubRange &SR : LI.subranges()) {
2526 if ((Mask & SR.LaneMask).any()) {
2527 report("Lane masks of sub ranges overlap in live interval", MF);
2528 report_context(LI);
2530 if ((SR.LaneMask & ~MaxMask).any()) {
2531 report("Subrange lanemask is invalid", MF);
2532 report_context(LI);
2534 if (SR.empty()) {
2535 report("Subrange must not be empty", MF);
2536 report_context(SR, LI.reg, SR.LaneMask);
2538 Mask |= SR.LaneMask;
2539 verifyLiveRange(SR, LI.reg, SR.LaneMask);
2540 if (!LI.covers(SR)) {
2541 report("A Subrange is not covered by the main range", MF);
2542 report_context(LI);
2546 // Check the LI only has one connected component.
2547 ConnectedVNInfoEqClasses ConEQ(*LiveInts);
2548 unsigned NumComp = ConEQ.Classify(LI);
2549 if (NumComp > 1) {
2550 report("Multiple connected components in live interval", MF);
2551 report_context(LI);
2552 for (unsigned comp = 0; comp != NumComp; ++comp) {
2553 errs() << comp << ": valnos";
2554 for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
2555 E = LI.vni_end(); I!=E; ++I)
2556 if (comp == ConEQ.getEqClass(*I))
2557 errs() << ' ' << (*I)->id;
2558 errs() << '\n';
2563 namespace {
2565 // FrameSetup and FrameDestroy can have zero adjustment, so using a single
2566 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
2567 // value is zero.
2568 // We use a bool plus an integer to capture the stack state.
2569 struct StackStateOfBB {
2570 StackStateOfBB() = default;
2571 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
2572 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
2573 ExitIsSetup(ExitSetup) {}
2575 // Can be negative, which means we are setting up a frame.
2576 int EntryValue = 0;
2577 int ExitValue = 0;
2578 bool EntryIsSetup = false;
2579 bool ExitIsSetup = false;
2582 } // end anonymous namespace
2584 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
2585 /// by a FrameDestroy <n>, stack adjustments are identical on all
2586 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
2587 void MachineVerifier::verifyStackFrame() {
2588 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
2589 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
2590 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
2591 return;
2593 SmallVector<StackStateOfBB, 8> SPState;
2594 SPState.resize(MF->getNumBlockIDs());
2595 df_iterator_default_set<const MachineBasicBlock*> Reachable;
2597 // Visit the MBBs in DFS order.
2598 for (df_ext_iterator<const MachineFunction *,
2599 df_iterator_default_set<const MachineBasicBlock *>>
2600 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
2601 DFI != DFE; ++DFI) {
2602 const MachineBasicBlock *MBB = *DFI;
2604 StackStateOfBB BBState;
2605 // Check the exit state of the DFS stack predecessor.
2606 if (DFI.getPathLength() >= 2) {
2607 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
2608 assert(Reachable.count(StackPred) &&
2609 "DFS stack predecessor is already visited.\n");
2610 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
2611 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
2612 BBState.ExitValue = BBState.EntryValue;
2613 BBState.ExitIsSetup = BBState.EntryIsSetup;
2616 // Update stack state by checking contents of MBB.
2617 for (const auto &I : *MBB) {
2618 if (I.getOpcode() == FrameSetupOpcode) {
2619 if (BBState.ExitIsSetup)
2620 report("FrameSetup is after another FrameSetup", &I);
2621 BBState.ExitValue -= TII->getFrameTotalSize(I);
2622 BBState.ExitIsSetup = true;
2625 if (I.getOpcode() == FrameDestroyOpcode) {
2626 int Size = TII->getFrameTotalSize(I);
2627 if (!BBState.ExitIsSetup)
2628 report("FrameDestroy is not after a FrameSetup", &I);
2629 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
2630 BBState.ExitValue;
2631 if (BBState.ExitIsSetup && AbsSPAdj != Size) {
2632 report("FrameDestroy <n> is after FrameSetup <m>", &I);
2633 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
2634 << AbsSPAdj << ">.\n";
2636 BBState.ExitValue += Size;
2637 BBState.ExitIsSetup = false;
2640 SPState[MBB->getNumber()] = BBState;
2642 // Make sure the exit state of any predecessor is consistent with the entry
2643 // state.
2644 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
2645 E = MBB->pred_end(); I != E; ++I) {
2646 if (Reachable.count(*I) &&
2647 (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
2648 SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
2649 report("The exit stack state of a predecessor is inconsistent.", MBB);
2650 errs() << "Predecessor " << printMBBReference(*(*I))
2651 << " has exit state (" << SPState[(*I)->getNumber()].ExitValue
2652 << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while "
2653 << printMBBReference(*MBB) << " has entry state ("
2654 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
2658 // Make sure the entry state of any successor is consistent with the exit
2659 // state.
2660 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
2661 E = MBB->succ_end(); I != E; ++I) {
2662 if (Reachable.count(*I) &&
2663 (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
2664 SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
2665 report("The entry stack state of a successor is inconsistent.", MBB);
2666 errs() << "Successor " << printMBBReference(*(*I))
2667 << " has entry state (" << SPState[(*I)->getNumber()].EntryValue
2668 << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while "
2669 << printMBBReference(*MBB) << " has exit state ("
2670 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
2674 // Make sure a basic block with return ends with zero stack adjustment.
2675 if (!MBB->empty() && MBB->back().isReturn()) {
2676 if (BBState.ExitIsSetup)
2677 report("A return block ends with a FrameSetup.", MBB);
2678 if (BBState.ExitValue)
2679 report("A return block ends with a nonzero stack adjustment.", MBB);