1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 /// \file This register allocator allocates registers to a basic block at a
10 /// time, attempting to keep values in registers and reusing registers as
13 //===----------------------------------------------------------------------===//
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/IndexedMap.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/SparseSet.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/RegAllocRegistry.h"
31 #include "llvm/CodeGen/RegisterClassInfo.h"
32 #include "llvm/CodeGen/TargetInstrInfo.h"
33 #include "llvm/CodeGen/TargetOpcodes.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/TargetSubtargetInfo.h"
36 #include "llvm/IR/DebugLoc.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/MC/MCInstrDesc.h"
39 #include "llvm/MC/MCRegisterInfo.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/Compiler.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/raw_ostream.h"
52 #define DEBUG_TYPE "regalloc"
54 STATISTIC(NumStores
, "Number of stores added");
55 STATISTIC(NumLoads
, "Number of loads added");
56 STATISTIC(NumCoalesced
, "Number of copies coalesced");
58 static RegisterRegAlloc
59 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator
);
63 class RegAllocFast
: public MachineFunctionPass
{
67 RegAllocFast() : MachineFunctionPass(ID
), StackSlotForVirtReg(-1) {}
70 MachineFrameInfo
*MFI
;
71 MachineRegisterInfo
*MRI
;
72 const TargetRegisterInfo
*TRI
;
73 const TargetInstrInfo
*TII
;
74 RegisterClassInfo RegClassInfo
;
76 /// Basic block currently being allocated.
77 MachineBasicBlock
*MBB
;
79 /// Maps virtual regs to the frame index where these values are spilled.
80 IndexedMap
<int, VirtReg2IndexFunctor
> StackSlotForVirtReg
;
82 /// Everything we know about a live virtual register.
84 MachineInstr
*LastUse
= nullptr; ///< Last instr to use reg.
85 unsigned VirtReg
; ///< Virtual register number.
86 MCPhysReg PhysReg
= 0; ///< Currently held here.
87 unsigned short LastOpNum
= 0; ///< OpNum on LastUse.
88 bool Dirty
= false; ///< Register needs spill.
90 explicit LiveReg(unsigned VirtReg
) : VirtReg(VirtReg
) {}
92 unsigned getSparseSetIndex() const {
93 return TargetRegisterInfo::virtReg2Index(VirtReg
);
97 using LiveRegMap
= SparseSet
<LiveReg
>;
98 /// This map contains entries for each virtual register that is currently
99 /// available in a physical register.
100 LiveRegMap LiveVirtRegs
;
102 DenseMap
<unsigned, SmallVector
<MachineInstr
*, 2>> LiveDbgValueMap
;
104 /// Has a bit set for every virtual register for which it was determined
105 /// that it is alive across blocks.
106 BitVector MayLiveAcrossBlocks
;
108 /// State of a physical register.
110 /// A disabled register is not available for allocation, but an alias may
111 /// be in use. A register can only be moved out of the disabled state if
112 /// all aliases are disabled.
115 /// A free register is not currently in use and can be allocated
116 /// immediately without checking aliases.
119 /// A reserved register has been assigned explicitly (e.g., setting up a
120 /// call parameter), and it remains reserved until it is used.
123 /// A register state may also be a virtual register number, indication
124 /// that the physical register is currently allocated to a virtual
125 /// register. In that case, LiveVirtRegs contains the inverse mapping.
128 /// Maps each physical register to a RegState enum or a virtual register.
129 std::vector
<unsigned> PhysRegState
;
131 SmallVector
<unsigned, 16> VirtDead
;
132 SmallVector
<MachineInstr
*, 32> Coalesced
;
134 using RegUnitSet
= SparseSet
<uint16_t, identity
<uint16_t>>;
135 /// Set of register units that are used in the current instruction, and so
136 /// cannot be allocated.
137 RegUnitSet UsedInInstr
;
139 void setPhysRegState(MCPhysReg PhysReg
, unsigned NewState
);
141 /// Mark a physreg as used in this instruction.
142 void markRegUsedInInstr(MCPhysReg PhysReg
) {
143 for (MCRegUnitIterator
Units(PhysReg
, TRI
); Units
.isValid(); ++Units
)
144 UsedInInstr
.insert(*Units
);
147 /// Check if a physreg or any of its aliases are used in this instruction.
148 bool isRegUsedInInstr(MCPhysReg PhysReg
) const {
149 for (MCRegUnitIterator
Units(PhysReg
, TRI
); Units
.isValid(); ++Units
)
150 if (UsedInInstr
.count(*Units
))
158 spillImpossible
= ~0u
162 StringRef
getPassName() const override
{ return "Fast Register Allocator"; }
164 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
165 AU
.setPreservesCFG();
166 MachineFunctionPass::getAnalysisUsage(AU
);
169 MachineFunctionProperties
getRequiredProperties() const override
{
170 return MachineFunctionProperties().set(
171 MachineFunctionProperties::Property::NoPHIs
);
174 MachineFunctionProperties
getSetProperties() const override
{
175 return MachineFunctionProperties().set(
176 MachineFunctionProperties::Property::NoVRegs
);
180 bool runOnMachineFunction(MachineFunction
&MF
) override
;
182 void allocateBasicBlock(MachineBasicBlock
&MBB
);
183 void allocateInstruction(MachineInstr
&MI
);
184 void handleDebugValue(MachineInstr
&MI
);
185 void handleThroughOperands(MachineInstr
&MI
,
186 SmallVectorImpl
<unsigned> &VirtDead
);
187 bool isLastUseOfLocalReg(const MachineOperand
&MO
) const;
189 void addKillFlag(const LiveReg
&LRI
);
190 void killVirtReg(LiveReg
&LR
);
191 void killVirtReg(unsigned VirtReg
);
192 void spillVirtReg(MachineBasicBlock::iterator MI
, LiveReg
&LR
);
193 void spillVirtReg(MachineBasicBlock::iterator MI
, unsigned VirtReg
);
195 void usePhysReg(MachineOperand
&MO
);
196 void definePhysReg(MachineBasicBlock::iterator MI
, MCPhysReg PhysReg
,
198 unsigned calcSpillCost(MCPhysReg PhysReg
) const;
199 void assignVirtToPhysReg(LiveReg
&, MCPhysReg PhysReg
);
201 LiveRegMap::iterator
findLiveVirtReg(unsigned VirtReg
) {
202 return LiveVirtRegs
.find(TargetRegisterInfo::virtReg2Index(VirtReg
));
205 LiveRegMap::const_iterator
findLiveVirtReg(unsigned VirtReg
) const {
206 return LiveVirtRegs
.find(TargetRegisterInfo::virtReg2Index(VirtReg
));
209 void allocVirtReg(MachineInstr
&MI
, LiveReg
&LR
, unsigned Hint
);
210 void allocVirtRegUndef(MachineOperand
&MO
);
211 MCPhysReg
defineVirtReg(MachineInstr
&MI
, unsigned OpNum
, unsigned VirtReg
,
213 LiveReg
&reloadVirtReg(MachineInstr
&MI
, unsigned OpNum
, unsigned VirtReg
,
215 void spillAll(MachineBasicBlock::iterator MI
, bool OnlyLiveOut
);
216 bool setPhysReg(MachineInstr
&MI
, MachineOperand
&MO
, MCPhysReg PhysReg
);
218 int getStackSpaceFor(unsigned VirtReg
);
219 void spill(MachineBasicBlock::iterator Before
, unsigned VirtReg
,
220 MCPhysReg AssignedReg
, bool Kill
);
221 void reload(MachineBasicBlock::iterator Before
, unsigned VirtReg
,
224 bool mayLiveOut(unsigned VirtReg
);
229 } // end anonymous namespace
231 char RegAllocFast::ID
= 0;
233 INITIALIZE_PASS(RegAllocFast
, "regallocfast", "Fast Register Allocator", false,
236 void RegAllocFast::setPhysRegState(MCPhysReg PhysReg
, unsigned NewState
) {
237 PhysRegState
[PhysReg
] = NewState
;
240 /// This allocates space for the specified virtual register to be held on the
242 int RegAllocFast::getStackSpaceFor(unsigned VirtReg
) {
243 // Find the location Reg would belong...
244 int SS
= StackSlotForVirtReg
[VirtReg
];
245 // Already has space allocated?
249 // Allocate a new stack object for this spill location...
250 const TargetRegisterClass
&RC
= *MRI
->getRegClass(VirtReg
);
251 unsigned Size
= TRI
->getSpillSize(RC
);
252 unsigned Align
= TRI
->getSpillAlignment(RC
);
253 int FrameIdx
= MFI
->CreateSpillStackObject(Size
, Align
);
256 StackSlotForVirtReg
[VirtReg
] = FrameIdx
;
260 /// Returns false if \p VirtReg is known to not live out of the current block.
261 bool RegAllocFast::mayLiveOut(unsigned VirtReg
) {
262 if (MayLiveAcrossBlocks
.test(TargetRegisterInfo::virtReg2Index(VirtReg
))) {
263 // Cannot be live-out if there are no successors.
264 return !MBB
->succ_empty();
267 // If this block loops back to itself, it would be necessary to check whether
268 // the use comes after the def.
269 if (MBB
->isSuccessor(MBB
))
272 // See if the first \p Limit uses of the register are all in the current
274 static const unsigned Limit
= 8;
276 for (const MachineInstr
&UseInst
: MRI
->reg_nodbg_instructions(VirtReg
)) {
277 if (UseInst
.getParent() != MBB
|| ++C
>= Limit
) {
278 MayLiveAcrossBlocks
.set(TargetRegisterInfo::virtReg2Index(VirtReg
));
279 // Cannot be live-out if there are no successors.
280 return !MBB
->succ_empty();
287 /// Insert spill instruction for \p AssignedReg before \p Before. Update
288 /// DBG_VALUEs with \p VirtReg operands with the stack slot.
289 void RegAllocFast::spill(MachineBasicBlock::iterator Before
, unsigned VirtReg
,
290 MCPhysReg AssignedReg
, bool Kill
) {
291 LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg
, TRI
)
292 << " in " << printReg(AssignedReg
, TRI
));
293 int FI
= getStackSpaceFor(VirtReg
);
294 LLVM_DEBUG(dbgs() << " to stack slot #" << FI
<< '\n');
296 const TargetRegisterClass
&RC
= *MRI
->getRegClass(VirtReg
);
297 TII
->storeRegToStackSlot(*MBB
, Before
, AssignedReg
, Kill
, FI
, &RC
, TRI
);
300 // If this register is used by DBG_VALUE then insert new DBG_VALUE to
301 // identify spilled location as the place to find corresponding variable's
303 SmallVectorImpl
<MachineInstr
*> &LRIDbgValues
= LiveDbgValueMap
[VirtReg
];
304 for (MachineInstr
*DBG
: LRIDbgValues
) {
305 MachineInstr
*NewDV
= buildDbgValueForSpill(*MBB
, Before
, *DBG
, FI
);
306 assert(NewDV
->getParent() == MBB
&& "dangling parent pointer");
308 LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV
);
310 // Now this register is spilled there is should not be any DBG_VALUE
311 // pointing to this register because they are all pointing to spilled value
313 LRIDbgValues
.clear();
316 /// Insert reload instruction for \p PhysReg before \p Before.
317 void RegAllocFast::reload(MachineBasicBlock::iterator Before
, unsigned VirtReg
,
319 LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg
, TRI
) << " into "
320 << printReg(PhysReg
, TRI
) << '\n');
321 int FI
= getStackSpaceFor(VirtReg
);
322 const TargetRegisterClass
&RC
= *MRI
->getRegClass(VirtReg
);
323 TII
->loadRegFromStackSlot(*MBB
, Before
, PhysReg
, FI
, &RC
, TRI
);
327 /// Return true if MO is the only remaining reference to its virtual register,
328 /// and it is guaranteed to be a block-local register.
329 bool RegAllocFast::isLastUseOfLocalReg(const MachineOperand
&MO
) const {
330 // If the register has ever been spilled or reloaded, we conservatively assume
331 // it is a global register used in multiple blocks.
332 if (StackSlotForVirtReg
[MO
.getReg()] != -1)
335 // Check that the use/def chain has exactly one operand - MO.
336 MachineRegisterInfo::reg_nodbg_iterator I
= MRI
->reg_nodbg_begin(MO
.getReg());
339 return ++I
== MRI
->reg_nodbg_end();
342 /// Set kill flags on last use of a virtual register.
343 void RegAllocFast::addKillFlag(const LiveReg
&LR
) {
344 if (!LR
.LastUse
) return;
345 MachineOperand
&MO
= LR
.LastUse
->getOperand(LR
.LastOpNum
);
346 if (MO
.isUse() && !LR
.LastUse
->isRegTiedToDefOperand(LR
.LastOpNum
)) {
347 if (MO
.getReg() == LR
.PhysReg
)
349 // else, don't do anything we are problably redefining a
350 // subreg of this register and given we don't track which
351 // lanes are actually dead, we cannot insert a kill flag here.
352 // Otherwise we may end up in a situation like this:
353 // ... = (MO) physreg:sub1, implicit killed physreg
354 // ... <== Here we would allow later pass to reuse physreg:sub1
355 // which is potentially wrong.
357 // ... = LR.sub1 <== This is going to use physreg:sub1
361 /// Mark virtreg as no longer available.
362 void RegAllocFast::killVirtReg(LiveReg
&LR
) {
364 assert(PhysRegState
[LR
.PhysReg
] == LR
.VirtReg
&&
365 "Broken RegState mapping");
366 setPhysRegState(LR
.PhysReg
, regFree
);
370 /// Mark virtreg as no longer available.
371 void RegAllocFast::killVirtReg(unsigned VirtReg
) {
372 assert(TargetRegisterInfo::isVirtualRegister(VirtReg
) &&
373 "killVirtReg needs a virtual register");
374 LiveRegMap::iterator LRI
= findLiveVirtReg(VirtReg
);
375 if (LRI
!= LiveVirtRegs
.end() && LRI
->PhysReg
)
379 /// This method spills the value specified by VirtReg into the corresponding
380 /// stack slot if needed.
381 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI
,
383 assert(TargetRegisterInfo::isVirtualRegister(VirtReg
) &&
384 "Spilling a physical register is illegal!");
385 LiveRegMap::iterator LRI
= findLiveVirtReg(VirtReg
);
386 assert(LRI
!= LiveVirtRegs
.end() && LRI
->PhysReg
&&
387 "Spilling unmapped virtual register");
388 spillVirtReg(MI
, *LRI
);
391 /// Do the actual work of spilling.
392 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI
, LiveReg
&LR
) {
393 assert(PhysRegState
[LR
.PhysReg
] == LR
.VirtReg
&& "Broken RegState mapping");
396 // If this physreg is used by the instruction, we want to kill it on the
397 // instruction, not on the spill.
398 bool SpillKill
= MachineBasicBlock::iterator(LR
.LastUse
) != MI
;
401 spill(MI
, LR
.VirtReg
, LR
.PhysReg
, SpillKill
);
404 LR
.LastUse
= nullptr; // Don't kill register again
409 /// Spill all dirty virtregs without killing them.
410 void RegAllocFast::spillAll(MachineBasicBlock::iterator MI
, bool OnlyLiveOut
) {
411 if (LiveVirtRegs
.empty())
413 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
414 // of spilling here is deterministic, if arbitrary.
415 for (LiveReg
&LR
: LiveVirtRegs
) {
418 if (OnlyLiveOut
&& !mayLiveOut(LR
.VirtReg
))
420 spillVirtReg(MI
, LR
);
422 LiveVirtRegs
.clear();
425 /// Handle the direct use of a physical register. Check that the register is
426 /// not used by a virtreg. Kill the physreg, marking it free. This may add
427 /// implicit kills to MO->getParent() and invalidate MO.
428 void RegAllocFast::usePhysReg(MachineOperand
&MO
) {
429 // Ignore undef uses.
433 unsigned PhysReg
= MO
.getReg();
434 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg
) &&
435 "Bad usePhysReg operand");
437 markRegUsedInInstr(PhysReg
);
438 switch (PhysRegState
[PhysReg
]) {
442 PhysRegState
[PhysReg
] = regFree
;
448 // The physreg was allocated to a virtual register. That means the value we
449 // wanted has been clobbered.
450 llvm_unreachable("Instruction uses an allocated register");
453 // Maybe a superregister is reserved?
454 for (MCRegAliasIterator
AI(PhysReg
, TRI
, false); AI
.isValid(); ++AI
) {
455 MCPhysReg Alias
= *AI
;
456 switch (PhysRegState
[Alias
]) {
460 // Either PhysReg is a subregister of Alias and we mark the
461 // whole register as free, or PhysReg is the superregister of
462 // Alias and we mark all the aliases as disabled before freeing
464 // In the latter case, since PhysReg was disabled, this means that
465 // its value is defined only by physical sub-registers. This check
466 // is performed by the assert of the default case in this loop.
467 // Note: The value of the superregister may only be partial
468 // defined, that is why regDisabled is a valid state for aliases.
469 assert((TRI
->isSuperRegister(PhysReg
, Alias
) ||
470 TRI
->isSuperRegister(Alias
, PhysReg
)) &&
471 "Instruction is not using a subregister of a reserved register");
474 if (TRI
->isSuperRegister(PhysReg
, Alias
)) {
475 // Leave the superregister in the working set.
476 setPhysRegState(Alias
, regFree
);
477 MO
.getParent()->addRegisterKilled(Alias
, TRI
, true);
480 // Some other alias was in the working set - clear it.
481 setPhysRegState(Alias
, regDisabled
);
484 llvm_unreachable("Instruction uses an alias of an allocated register");
488 // All aliases are disabled, bring register into working set.
489 setPhysRegState(PhysReg
, regFree
);
493 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very
494 /// similar to defineVirtReg except the physreg is reserved instead of
496 void RegAllocFast::definePhysReg(MachineBasicBlock::iterator MI
,
497 MCPhysReg PhysReg
, RegState NewState
) {
498 markRegUsedInInstr(PhysReg
);
499 switch (unsigned VirtReg
= PhysRegState
[PhysReg
]) {
503 spillVirtReg(MI
, VirtReg
);
507 setPhysRegState(PhysReg
, NewState
);
511 // This is a disabled register, disable all aliases.
512 setPhysRegState(PhysReg
, NewState
);
513 for (MCRegAliasIterator
AI(PhysReg
, TRI
, false); AI
.isValid(); ++AI
) {
514 MCPhysReg Alias
= *AI
;
515 switch (unsigned VirtReg
= PhysRegState
[Alias
]) {
519 spillVirtReg(MI
, VirtReg
);
523 setPhysRegState(Alias
, regDisabled
);
524 if (TRI
->isSuperRegister(PhysReg
, Alias
))
531 /// Return the cost of spilling clearing out PhysReg and aliases so it is free
532 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases
533 /// disabled - it can be allocated directly.
534 /// \returns spillImpossible when PhysReg or an alias can't be spilled.
535 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg
) const {
536 if (isRegUsedInInstr(PhysReg
)) {
537 LLVM_DEBUG(dbgs() << printReg(PhysReg
, TRI
)
538 << " is already used in instr.\n");
539 return spillImpossible
;
541 switch (unsigned VirtReg
= PhysRegState
[PhysReg
]) {
547 LLVM_DEBUG(dbgs() << printReg(VirtReg
, TRI
) << " corresponding "
548 << printReg(PhysReg
, TRI
) << " is reserved already.\n");
549 return spillImpossible
;
551 LiveRegMap::const_iterator LRI
= findLiveVirtReg(VirtReg
);
552 assert(LRI
!= LiveVirtRegs
.end() && LRI
->PhysReg
&&
553 "Missing VirtReg entry");
554 return LRI
->Dirty
? spillDirty
: spillClean
;
558 // This is a disabled register, add up cost of aliases.
559 LLVM_DEBUG(dbgs() << printReg(PhysReg
, TRI
) << " is disabled.\n");
561 for (MCRegAliasIterator
AI(PhysReg
, TRI
, false); AI
.isValid(); ++AI
) {
562 MCPhysReg Alias
= *AI
;
563 switch (unsigned VirtReg
= PhysRegState
[Alias
]) {
570 return spillImpossible
;
572 LiveRegMap::const_iterator LRI
= findLiveVirtReg(VirtReg
);
573 assert(LRI
!= LiveVirtRegs
.end() && LRI
->PhysReg
&&
574 "Missing VirtReg entry");
575 Cost
+= LRI
->Dirty
? spillDirty
: spillClean
;
583 /// This method updates local state so that we know that PhysReg is the
584 /// proper container for VirtReg now. The physical register must not be used
585 /// for anything else when this is called.
586 void RegAllocFast::assignVirtToPhysReg(LiveReg
&LR
, MCPhysReg PhysReg
) {
587 unsigned VirtReg
= LR
.VirtReg
;
588 LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg
, TRI
) << " to "
589 << printReg(PhysReg
, TRI
) << '\n');
590 assert(LR
.PhysReg
== 0 && "Already assigned a physreg");
591 assert(PhysReg
!= 0 && "Trying to assign no register");
592 LR
.PhysReg
= PhysReg
;
593 setPhysRegState(PhysReg
, VirtReg
);
596 /// Allocates a physical register for VirtReg.
597 void RegAllocFast::allocVirtReg(MachineInstr
&MI
, LiveReg
&LR
, unsigned Hint
) {
598 const unsigned VirtReg
= LR
.VirtReg
;
600 assert(TargetRegisterInfo::isVirtualRegister(VirtReg
) &&
601 "Can only allocate virtual registers");
603 const TargetRegisterClass
&RC
= *MRI
->getRegClass(VirtReg
);
604 LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg
)
605 << " in class " << TRI
->getRegClassName(&RC
)
606 << " with hint " << printReg(Hint
, TRI
) << '\n');
608 // Take hint when possible.
609 if (TargetRegisterInfo::isPhysicalRegister(Hint
) &&
610 MRI
->isAllocatable(Hint
) && RC
.contains(Hint
)) {
611 // Ignore the hint if we would have to spill a dirty register.
612 unsigned Cost
= calcSpillCost(Hint
);
613 if (Cost
< spillDirty
) {
615 definePhysReg(MI
, Hint
, regFree
);
616 assignVirtToPhysReg(LR
, Hint
);
621 MCPhysReg BestReg
= 0;
622 unsigned BestCost
= spillImpossible
;
623 ArrayRef
<MCPhysReg
> AllocationOrder
= RegClassInfo
.getOrder(&RC
);
624 for (MCPhysReg PhysReg
: AllocationOrder
) {
625 LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg
, TRI
) << ' ');
626 unsigned Cost
= calcSpillCost(PhysReg
);
627 LLVM_DEBUG(dbgs() << "Cost: " << Cost
<< " BestCost: " << BestCost
<< '\n');
628 // Immediate take a register with cost 0.
630 assignVirtToPhysReg(LR
, PhysReg
);
633 if (Cost
< BestCost
) {
640 // Nothing we can do: Report an error and keep going with an invalid
642 if (MI
.isInlineAsm())
643 MI
.emitError("inline assembly requires more registers than available");
645 MI
.emitError("ran out of registers during register allocation");
646 definePhysReg(MI
, *AllocationOrder
.begin(), regFree
);
647 assignVirtToPhysReg(LR
, *AllocationOrder
.begin());
651 definePhysReg(MI
, BestReg
, regFree
);
652 assignVirtToPhysReg(LR
, BestReg
);
655 void RegAllocFast::allocVirtRegUndef(MachineOperand
&MO
) {
656 assert(MO
.isUndef() && "expected undef use");
657 unsigned VirtReg
= MO
.getReg();
658 assert(TargetRegisterInfo::isVirtualRegister(VirtReg
) && "Expected virtreg");
660 LiveRegMap::const_iterator LRI
= findLiveVirtReg(VirtReg
);
662 if (LRI
!= LiveVirtRegs
.end() && LRI
->PhysReg
) {
663 PhysReg
= LRI
->PhysReg
;
665 const TargetRegisterClass
&RC
= *MRI
->getRegClass(VirtReg
);
666 ArrayRef
<MCPhysReg
> AllocationOrder
= RegClassInfo
.getOrder(&RC
);
667 assert(!AllocationOrder
.empty() && "Allocation order must not be empty");
668 PhysReg
= AllocationOrder
[0];
671 unsigned SubRegIdx
= MO
.getSubReg();
672 if (SubRegIdx
!= 0) {
673 PhysReg
= TRI
->getSubReg(PhysReg
, SubRegIdx
);
677 MO
.setIsRenamable(true);
680 /// Allocates a register for VirtReg and mark it as dirty.
681 MCPhysReg
RegAllocFast::defineVirtReg(MachineInstr
&MI
, unsigned OpNum
,
682 unsigned VirtReg
, unsigned Hint
) {
683 assert(TargetRegisterInfo::isVirtualRegister(VirtReg
) &&
684 "Not a virtual register");
685 LiveRegMap::iterator LRI
;
687 std::tie(LRI
, New
) = LiveVirtRegs
.insert(LiveReg(VirtReg
));
689 // If there is no hint, peek at the only use of this register.
690 if ((!Hint
|| !TargetRegisterInfo::isPhysicalRegister(Hint
)) &&
691 MRI
->hasOneNonDBGUse(VirtReg
)) {
692 const MachineInstr
&UseMI
= *MRI
->use_instr_nodbg_begin(VirtReg
);
693 // It's a copy, use the destination register as a hint.
694 if (UseMI
.isCopyLike())
695 Hint
= UseMI
.getOperand(0).getReg();
697 allocVirtReg(MI
, *LRI
, Hint
);
698 } else if (LRI
->LastUse
) {
699 // Redefining a live register - kill at the last use, unless it is this
700 // instruction defining VirtReg multiple times.
701 if (LRI
->LastUse
!= &MI
|| LRI
->LastUse
->getOperand(LRI
->LastOpNum
).isUse())
704 assert(LRI
->PhysReg
&& "Register not assigned");
706 LRI
->LastOpNum
= OpNum
;
708 markRegUsedInInstr(LRI
->PhysReg
);
712 /// Make sure VirtReg is available in a physreg and return it.
713 RegAllocFast::LiveReg
&RegAllocFast::reloadVirtReg(MachineInstr
&MI
,
717 assert(TargetRegisterInfo::isVirtualRegister(VirtReg
) &&
718 "Not a virtual register");
719 LiveRegMap::iterator LRI
;
721 std::tie(LRI
, New
) = LiveVirtRegs
.insert(LiveReg(VirtReg
));
722 MachineOperand
&MO
= MI
.getOperand(OpNum
);
724 allocVirtReg(MI
, *LRI
, Hint
);
725 reload(MI
, VirtReg
, LRI
->PhysReg
);
726 } else if (LRI
->Dirty
) {
727 if (isLastUseOfLocalReg(MO
)) {
728 LLVM_DEBUG(dbgs() << "Killing last use: " << MO
<< '\n');
733 } else if (MO
.isKill()) {
734 LLVM_DEBUG(dbgs() << "Clearing dubious kill: " << MO
<< '\n');
736 } else if (MO
.isDead()) {
737 LLVM_DEBUG(dbgs() << "Clearing dubious dead: " << MO
<< '\n');
740 } else if (MO
.isKill()) {
741 // We must remove kill flags from uses of reloaded registers because the
742 // register would be killed immediately, and there might be a second use:
743 // %foo = OR killed %x, %x
744 // This would cause a second reload of %x into a different register.
745 LLVM_DEBUG(dbgs() << "Clearing clean kill: " << MO
<< '\n');
747 } else if (MO
.isDead()) {
748 LLVM_DEBUG(dbgs() << "Clearing clean dead: " << MO
<< '\n');
751 assert(LRI
->PhysReg
&& "Register not assigned");
753 LRI
->LastOpNum
= OpNum
;
754 markRegUsedInInstr(LRI
->PhysReg
);
758 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This
759 /// may invalidate any operand pointers. Return true if the operand kills its
761 bool RegAllocFast::setPhysReg(MachineInstr
&MI
, MachineOperand
&MO
,
763 bool Dead
= MO
.isDead();
764 if (!MO
.getSubReg()) {
766 MO
.setIsRenamable(true);
767 return MO
.isKill() || Dead
;
770 // Handle subregister index.
771 MO
.setReg(PhysReg
? TRI
->getSubReg(PhysReg
, MO
.getSubReg()) : 0);
772 MO
.setIsRenamable(true);
775 // A kill flag implies killing the full register. Add corresponding super
778 MI
.addRegisterKilled(PhysReg
, TRI
, true);
782 // A <def,read-undef> of a sub-register requires an implicit def of the full
784 if (MO
.isDef() && MO
.isUndef())
785 MI
.addRegisterDefined(PhysReg
, TRI
);
790 // Handles special instruction operand like early clobbers and tied ops when
791 // there are additional physreg defines.
792 void RegAllocFast::handleThroughOperands(MachineInstr
&MI
,
793 SmallVectorImpl
<unsigned> &VirtDead
) {
794 LLVM_DEBUG(dbgs() << "Scanning for through registers:");
795 SmallSet
<unsigned, 8> ThroughRegs
;
796 for (const MachineOperand
&MO
: MI
.operands()) {
797 if (!MO
.isReg()) continue;
798 unsigned Reg
= MO
.getReg();
799 if (!TargetRegisterInfo::isVirtualRegister(Reg
))
801 if (MO
.isEarlyClobber() || (MO
.isUse() && MO
.isTied()) ||
802 (MO
.getSubReg() && MI
.readsVirtualRegister(Reg
))) {
803 if (ThroughRegs
.insert(Reg
).second
)
804 LLVM_DEBUG(dbgs() << ' ' << printReg(Reg
));
808 // If any physreg defines collide with preallocated through registers,
809 // we must spill and reallocate.
810 LLVM_DEBUG(dbgs() << "\nChecking for physdef collisions.\n");
811 for (const MachineOperand
&MO
: MI
.operands()) {
812 if (!MO
.isReg() || !MO
.isDef()) continue;
813 unsigned Reg
= MO
.getReg();
814 if (!Reg
|| !TargetRegisterInfo::isPhysicalRegister(Reg
)) continue;
815 markRegUsedInInstr(Reg
);
816 for (MCRegAliasIterator
AI(Reg
, TRI
, true); AI
.isValid(); ++AI
) {
817 if (ThroughRegs
.count(PhysRegState
[*AI
]))
818 definePhysReg(MI
, *AI
, regFree
);
822 SmallVector
<unsigned, 8> PartialDefs
;
823 LLVM_DEBUG(dbgs() << "Allocating tied uses.\n");
824 for (unsigned I
= 0, E
= MI
.getNumOperands(); I
!= E
; ++I
) {
825 MachineOperand
&MO
= MI
.getOperand(I
);
826 if (!MO
.isReg()) continue;
827 unsigned Reg
= MO
.getReg();
828 if (!TargetRegisterInfo::isVirtualRegister(Reg
)) continue;
830 if (!MO
.isTied()) continue;
831 LLVM_DEBUG(dbgs() << "Operand " << I
<< "(" << MO
832 << ") is tied to operand " << MI
.findTiedOperandIdx(I
)
834 LiveReg
&LR
= reloadVirtReg(MI
, I
, Reg
, 0);
835 MCPhysReg PhysReg
= LR
.PhysReg
;
836 setPhysReg(MI
, MO
, PhysReg
);
837 // Note: we don't update the def operand yet. That would cause the normal
838 // def-scan to attempt spilling.
839 } else if (MO
.getSubReg() && MI
.readsVirtualRegister(Reg
)) {
840 LLVM_DEBUG(dbgs() << "Partial redefine: " << MO
<< '\n');
841 // Reload the register, but don't assign to the operand just yet.
842 // That would confuse the later phys-def processing pass.
843 LiveReg
&LR
= reloadVirtReg(MI
, I
, Reg
, 0);
844 PartialDefs
.push_back(LR
.PhysReg
);
848 LLVM_DEBUG(dbgs() << "Allocating early clobbers.\n");
849 for (unsigned I
= 0, E
= MI
.getNumOperands(); I
!= E
; ++I
) {
850 const MachineOperand
&MO
= MI
.getOperand(I
);
851 if (!MO
.isReg()) continue;
852 unsigned Reg
= MO
.getReg();
853 if (!TargetRegisterInfo::isVirtualRegister(Reg
)) continue;
854 if (!MO
.isEarlyClobber())
856 // Note: defineVirtReg may invalidate MO.
857 MCPhysReg PhysReg
= defineVirtReg(MI
, I
, Reg
, 0);
858 if (setPhysReg(MI
, MI
.getOperand(I
), PhysReg
))
859 VirtDead
.push_back(Reg
);
862 // Restore UsedInInstr to a state usable for allocating normal virtual uses.
864 for (const MachineOperand
&MO
: MI
.operands()) {
865 if (!MO
.isReg() || (MO
.isDef() && !MO
.isEarlyClobber())) continue;
866 unsigned Reg
= MO
.getReg();
867 if (!Reg
|| !TargetRegisterInfo::isPhysicalRegister(Reg
)) continue;
868 LLVM_DEBUG(dbgs() << "\tSetting " << printReg(Reg
, TRI
)
869 << " as used in instr\n");
870 markRegUsedInInstr(Reg
);
873 // Also mark PartialDefs as used to avoid reallocation.
874 for (unsigned PartialDef
: PartialDefs
)
875 markRegUsedInInstr(PartialDef
);
879 void RegAllocFast::dumpState() {
880 for (unsigned Reg
= 1, E
= TRI
->getNumRegs(); Reg
!= E
; ++Reg
) {
881 if (PhysRegState
[Reg
] == regDisabled
) continue;
882 dbgs() << " " << printReg(Reg
, TRI
);
883 switch(PhysRegState
[Reg
]) {
890 dbgs() << '=' << printReg(PhysRegState
[Reg
]);
891 LiveRegMap::iterator LRI
= findLiveVirtReg(PhysRegState
[Reg
]);
892 assert(LRI
!= LiveVirtRegs
.end() && LRI
->PhysReg
&&
893 "Missing VirtReg entry");
896 assert(LRI
->PhysReg
== Reg
&& "Bad inverse map");
902 // Check that LiveVirtRegs is the inverse.
903 for (LiveRegMap::iterator i
= LiveVirtRegs
.begin(),
904 e
= LiveVirtRegs
.end(); i
!= e
; ++i
) {
907 assert(TargetRegisterInfo::isVirtualRegister(i
->VirtReg
) &&
909 assert(TargetRegisterInfo::isPhysicalRegister(i
->PhysReg
) &&
911 assert(PhysRegState
[i
->PhysReg
] == i
->VirtReg
&& "Bad inverse map");
916 void RegAllocFast::allocateInstruction(MachineInstr
&MI
) {
917 const MCInstrDesc
&MCID
= MI
.getDesc();
919 // If this is a copy, we may be able to coalesce.
920 unsigned CopySrcReg
= 0;
921 unsigned CopyDstReg
= 0;
922 unsigned CopySrcSub
= 0;
923 unsigned CopyDstSub
= 0;
925 CopyDstReg
= MI
.getOperand(0).getReg();
926 CopySrcReg
= MI
.getOperand(1).getReg();
927 CopyDstSub
= MI
.getOperand(0).getSubReg();
928 CopySrcSub
= MI
.getOperand(1).getSubReg();
931 // Track registers used by instruction.
935 // Mark physreg uses and early clobbers as used.
936 // Find the end of the virtreg operands
937 unsigned VirtOpEnd
= 0;
938 bool hasTiedOps
= false;
939 bool hasEarlyClobbers
= false;
940 bool hasPartialRedefs
= false;
941 bool hasPhysDefs
= false;
942 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
943 MachineOperand
&MO
= MI
.getOperand(i
);
944 // Make sure MRI knows about registers clobbered by regmasks.
945 if (MO
.isRegMask()) {
946 MRI
->addPhysRegsUsedFromRegMask(MO
.getRegMask());
949 if (!MO
.isReg()) continue;
950 unsigned Reg
= MO
.getReg();
952 if (TargetRegisterInfo::isVirtualRegister(Reg
)) {
955 hasTiedOps
= hasTiedOps
||
956 MCID
.getOperandConstraint(i
, MCOI::TIED_TO
) != -1;
958 if (MO
.isEarlyClobber())
959 hasEarlyClobbers
= true;
960 if (MO
.getSubReg() && MI
.readsVirtualRegister(Reg
))
961 hasPartialRedefs
= true;
965 if (!MRI
->isAllocatable(Reg
)) continue;
968 } else if (MO
.isEarlyClobber()) {
969 definePhysReg(MI
, Reg
,
970 (MO
.isImplicit() || MO
.isDead()) ? regFree
: regReserved
);
971 hasEarlyClobbers
= true;
976 // The instruction may have virtual register operands that must be allocated
977 // the same register at use-time and def-time: early clobbers and tied
978 // operands. If there are also physical defs, these registers must avoid
979 // both physical defs and uses, making them more constrained than normal
981 // Similarly, if there are multiple defs and tied operands, we must make
982 // sure the same register is allocated to uses and defs.
983 // We didn't detect inline asm tied operands above, so just make this extra
984 // pass for all inline asm.
985 if (MI
.isInlineAsm() || hasEarlyClobbers
|| hasPartialRedefs
||
986 (hasTiedOps
&& (hasPhysDefs
|| MCID
.getNumDefs() > 1))) {
987 handleThroughOperands(MI
, VirtDead
);
988 // Don't attempt coalescing when we have funny stuff going on.
990 // Pretend we have early clobbers so the use operands get marked below.
991 // This is not necessary for the common case of a single tied use.
992 hasEarlyClobbers
= true;
996 // Allocate virtreg uses.
997 bool HasUndefUse
= false;
998 for (unsigned I
= 0; I
!= VirtOpEnd
; ++I
) {
999 MachineOperand
&MO
= MI
.getOperand(I
);
1000 if (!MO
.isReg()) continue;
1001 unsigned Reg
= MO
.getReg();
1002 if (!TargetRegisterInfo::isVirtualRegister(Reg
)) continue;
1006 // There is no need to allocate a register for an undef use.
1009 LiveReg
&LR
= reloadVirtReg(MI
, I
, Reg
, CopyDstReg
);
1010 MCPhysReg PhysReg
= LR
.PhysReg
;
1011 CopySrcReg
= (CopySrcReg
== Reg
|| CopySrcReg
== PhysReg
) ? PhysReg
: 0;
1012 if (setPhysReg(MI
, MO
, PhysReg
))
1017 // Allocate undef operands. This is a separate step because in a situation
1018 // like ` = OP undef %X, %X` both operands need the same register assign
1019 // so we should perform the normal assignment first.
1021 for (MachineOperand
&MO
: MI
.uses()) {
1022 if (!MO
.isReg() || !MO
.isUse())
1024 unsigned Reg
= MO
.getReg();
1025 if (!TargetRegisterInfo::isVirtualRegister(Reg
))
1028 assert(MO
.isUndef() && "Should only have undef virtreg uses left");
1029 allocVirtRegUndef(MO
);
1033 // Track registers defined by instruction - early clobbers and tied uses at
1035 UsedInInstr
.clear();
1036 if (hasEarlyClobbers
) {
1037 for (const MachineOperand
&MO
: MI
.operands()) {
1038 if (!MO
.isReg()) continue;
1039 unsigned Reg
= MO
.getReg();
1040 if (!Reg
|| !TargetRegisterInfo::isPhysicalRegister(Reg
)) continue;
1041 // Look for physreg defs and tied uses.
1042 if (!MO
.isDef() && !MO
.isTied()) continue;
1043 markRegUsedInInstr(Reg
);
1047 unsigned DefOpEnd
= MI
.getNumOperands();
1049 // Spill all virtregs before a call. This serves one purpose: If an
1050 // exception is thrown, the landing pad is going to expect to find
1051 // registers in their spill slots.
1052 // Note: although this is appealing to just consider all definitions
1053 // as call-clobbered, this is not correct because some of those
1054 // definitions may be used later on and we do not want to reuse
1055 // those for virtual registers in between.
1056 LLVM_DEBUG(dbgs() << " Spilling remaining registers before call.\n");
1057 spillAll(MI
, /*OnlyLiveOut*/ false);
1061 // Mark all physreg defs as used before allocating virtreg defs.
1062 for (unsigned I
= 0; I
!= DefOpEnd
; ++I
) {
1063 const MachineOperand
&MO
= MI
.getOperand(I
);
1064 if (!MO
.isReg() || !MO
.isDef() || !MO
.getReg() || MO
.isEarlyClobber())
1066 unsigned Reg
= MO
.getReg();
1068 if (!Reg
|| !TargetRegisterInfo::isPhysicalRegister(Reg
) ||
1069 !MRI
->isAllocatable(Reg
))
1071 definePhysReg(MI
, Reg
, MO
.isDead() ? regFree
: regReserved
);
1075 // Allocate defs and collect dead defs.
1076 for (unsigned I
= 0; I
!= DefOpEnd
; ++I
) {
1077 const MachineOperand
&MO
= MI
.getOperand(I
);
1078 if (!MO
.isReg() || !MO
.isDef() || !MO
.getReg() || MO
.isEarlyClobber())
1080 unsigned Reg
= MO
.getReg();
1082 // We have already dealt with phys regs in the previous scan.
1083 if (TargetRegisterInfo::isPhysicalRegister(Reg
))
1085 MCPhysReg PhysReg
= defineVirtReg(MI
, I
, Reg
, CopySrcReg
);
1086 if (setPhysReg(MI
, MI
.getOperand(I
), PhysReg
)) {
1087 VirtDead
.push_back(Reg
);
1088 CopyDstReg
= 0; // cancel coalescing;
1090 CopyDstReg
= (CopyDstReg
== Reg
|| CopyDstReg
== PhysReg
) ? PhysReg
: 0;
1093 // Kill dead defs after the scan to ensure that multiple defs of the same
1094 // register are allocated identically. We didn't need to do this for uses
1095 // because we are crerating our own kill flags, and they are always at the
1097 for (unsigned VirtReg
: VirtDead
)
1098 killVirtReg(VirtReg
);
1101 LLVM_DEBUG(dbgs() << "<< " << MI
);
1102 if (CopyDstReg
&& CopyDstReg
== CopySrcReg
&& CopyDstSub
== CopySrcSub
) {
1103 LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n");
1104 Coalesced
.push_back(&MI
);
1108 void RegAllocFast::handleDebugValue(MachineInstr
&MI
) {
1109 MachineOperand
&MO
= MI
.getOperand(0);
1111 // Ignore DBG_VALUEs that aren't based on virtual registers. These are
1112 // mostly constants and frame indices.
1115 unsigned Reg
= MO
.getReg();
1116 if (!TargetRegisterInfo::isVirtualRegister(Reg
))
1119 // See if this virtual register has already been allocated to a physical
1120 // register or spilled to a stack slot.
1121 LiveRegMap::iterator LRI
= findLiveVirtReg(Reg
);
1122 if (LRI
!= LiveVirtRegs
.end() && LRI
->PhysReg
) {
1123 setPhysReg(MI
, MO
, LRI
->PhysReg
);
1125 int SS
= StackSlotForVirtReg
[Reg
];
1127 // Modify DBG_VALUE now that the value is in a spill slot.
1128 updateDbgValueForSpill(MI
, SS
);
1129 LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << MI
);
1133 // We can't allocate a physreg for a DebugValue, sorry!
1134 LLVM_DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE");
1138 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so
1139 // that future spills of Reg will have DBG_VALUEs.
1140 LiveDbgValueMap
[Reg
].push_back(&MI
);
1143 void RegAllocFast::allocateBasicBlock(MachineBasicBlock
&MBB
) {
1145 LLVM_DEBUG(dbgs() << "\nAllocating " << MBB
);
1147 PhysRegState
.assign(TRI
->getNumRegs(), regDisabled
);
1148 assert(LiveVirtRegs
.empty() && "Mapping not cleared from last block?");
1150 MachineBasicBlock::iterator MII
= MBB
.begin();
1152 // Add live-in registers as live.
1153 for (const MachineBasicBlock::RegisterMaskPair LI
: MBB
.liveins())
1154 if (MRI
->isAllocatable(LI
.PhysReg
))
1155 definePhysReg(MII
, LI
.PhysReg
, regReserved
);
1160 // Otherwise, sequentially allocate each instruction in the MBB.
1161 for (MachineInstr
&MI
: MBB
) {
1163 dbgs() << "\n>> " << MI
<< "Regs:";
1167 // Special handling for debug values. Note that they are not allowed to
1168 // affect codegen of the other instructions in any way.
1169 if (MI
.isDebugValue()) {
1170 handleDebugValue(MI
);
1174 allocateInstruction(MI
);
1177 // Spill all physical registers holding virtual registers now.
1178 LLVM_DEBUG(dbgs() << "Spilling live registers at end of block.\n");
1179 spillAll(MBB
.getFirstTerminator(), /*OnlyLiveOut*/ true);
1181 // Erase all the coalesced copies. We are delaying it until now because
1182 // LiveVirtRegs might refer to the instrs.
1183 for (MachineInstr
*MI
: Coalesced
)
1185 NumCoalesced
+= Coalesced
.size();
1187 LLVM_DEBUG(MBB
.dump());
1190 bool RegAllocFast::runOnMachineFunction(MachineFunction
&MF
) {
1191 LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
1192 << "********** Function: " << MF
.getName() << '\n');
1193 MRI
= &MF
.getRegInfo();
1194 const TargetSubtargetInfo
&STI
= MF
.getSubtarget();
1195 TRI
= STI
.getRegisterInfo();
1196 TII
= STI
.getInstrInfo();
1197 MFI
= &MF
.getFrameInfo();
1198 MRI
->freezeReservedRegs(MF
);
1199 RegClassInfo
.runOnMachineFunction(MF
);
1200 UsedInInstr
.clear();
1201 UsedInInstr
.setUniverse(TRI
->getNumRegUnits());
1203 // initialize the virtual->physical register map to have a 'null'
1204 // mapping for all virtual registers
1205 unsigned NumVirtRegs
= MRI
->getNumVirtRegs();
1206 StackSlotForVirtReg
.resize(NumVirtRegs
);
1207 LiveVirtRegs
.setUniverse(NumVirtRegs
);
1208 MayLiveAcrossBlocks
.clear();
1209 MayLiveAcrossBlocks
.resize(NumVirtRegs
);
1211 // Loop over all of the basic blocks, eliminating virtual register references
1212 for (MachineBasicBlock
&MBB
: MF
)
1213 allocateBasicBlock(MBB
);
1215 // All machine operands and other references to virtual registers have been
1216 // replaced. Remove the virtual registers.
1217 MRI
->clearVirtRegs();
1219 StackSlotForVirtReg
.clear();
1220 LiveDbgValueMap
.clear();
1224 FunctionPass
*llvm::createFastRegisterAllocator() {
1225 return new RegAllocFast();