Another attempt to fix the build bot breaks after r360426
[llvm-core.git] / lib / CodeGen / RegAllocFast.cpp
blob52502a4b8218a795b21950afced841509da69128
1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This register allocator allocates registers to a basic block at a
10 /// time, attempting to keep values in registers and reusing registers as
11 /// appropriate.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/IndexedMap.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/SparseSet.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/RegAllocRegistry.h"
31 #include "llvm/CodeGen/RegisterClassInfo.h"
32 #include "llvm/CodeGen/TargetInstrInfo.h"
33 #include "llvm/CodeGen/TargetOpcodes.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/TargetSubtargetInfo.h"
36 #include "llvm/IR/DebugLoc.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/MC/MCInstrDesc.h"
39 #include "llvm/MC/MCRegisterInfo.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/Compiler.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include <cassert>
47 #include <tuple>
48 #include <vector>
50 using namespace llvm;
52 #define DEBUG_TYPE "regalloc"
54 STATISTIC(NumStores, "Number of stores added");
55 STATISTIC(NumLoads , "Number of loads added");
56 STATISTIC(NumCoalesced, "Number of copies coalesced");
58 static RegisterRegAlloc
59 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator);
61 namespace {
63 class RegAllocFast : public MachineFunctionPass {
64 public:
65 static char ID;
67 RegAllocFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1) {}
69 private:
70 MachineFrameInfo *MFI;
71 MachineRegisterInfo *MRI;
72 const TargetRegisterInfo *TRI;
73 const TargetInstrInfo *TII;
74 RegisterClassInfo RegClassInfo;
76 /// Basic block currently being allocated.
77 MachineBasicBlock *MBB;
79 /// Maps virtual regs to the frame index where these values are spilled.
80 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
82 /// Everything we know about a live virtual register.
83 struct LiveReg {
84 MachineInstr *LastUse = nullptr; ///< Last instr to use reg.
85 unsigned VirtReg; ///< Virtual register number.
86 MCPhysReg PhysReg = 0; ///< Currently held here.
87 unsigned short LastOpNum = 0; ///< OpNum on LastUse.
88 bool Dirty = false; ///< Register needs spill.
90 explicit LiveReg(unsigned VirtReg) : VirtReg(VirtReg) {}
92 unsigned getSparseSetIndex() const {
93 return TargetRegisterInfo::virtReg2Index(VirtReg);
97 using LiveRegMap = SparseSet<LiveReg>;
98 /// This map contains entries for each virtual register that is currently
99 /// available in a physical register.
100 LiveRegMap LiveVirtRegs;
102 DenseMap<unsigned, SmallVector<MachineInstr *, 2>> LiveDbgValueMap;
104 /// Has a bit set for every virtual register for which it was determined
105 /// that it is alive across blocks.
106 BitVector MayLiveAcrossBlocks;
108 /// State of a physical register.
109 enum RegState {
110 /// A disabled register is not available for allocation, but an alias may
111 /// be in use. A register can only be moved out of the disabled state if
112 /// all aliases are disabled.
113 regDisabled,
115 /// A free register is not currently in use and can be allocated
116 /// immediately without checking aliases.
117 regFree,
119 /// A reserved register has been assigned explicitly (e.g., setting up a
120 /// call parameter), and it remains reserved until it is used.
121 regReserved
123 /// A register state may also be a virtual register number, indication
124 /// that the physical register is currently allocated to a virtual
125 /// register. In that case, LiveVirtRegs contains the inverse mapping.
128 /// Maps each physical register to a RegState enum or a virtual register.
129 std::vector<unsigned> PhysRegState;
131 SmallVector<unsigned, 16> VirtDead;
132 SmallVector<MachineInstr *, 32> Coalesced;
134 using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>;
135 /// Set of register units that are used in the current instruction, and so
136 /// cannot be allocated.
137 RegUnitSet UsedInInstr;
139 void setPhysRegState(MCPhysReg PhysReg, unsigned NewState);
141 /// Mark a physreg as used in this instruction.
142 void markRegUsedInInstr(MCPhysReg PhysReg) {
143 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
144 UsedInInstr.insert(*Units);
147 /// Check if a physreg or any of its aliases are used in this instruction.
148 bool isRegUsedInInstr(MCPhysReg PhysReg) const {
149 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
150 if (UsedInInstr.count(*Units))
151 return true;
152 return false;
155 enum : unsigned {
156 spillClean = 50,
157 spillDirty = 100,
158 spillImpossible = ~0u
161 public:
162 StringRef getPassName() const override { return "Fast Register Allocator"; }
164 void getAnalysisUsage(AnalysisUsage &AU) const override {
165 AU.setPreservesCFG();
166 MachineFunctionPass::getAnalysisUsage(AU);
169 MachineFunctionProperties getRequiredProperties() const override {
170 return MachineFunctionProperties().set(
171 MachineFunctionProperties::Property::NoPHIs);
174 MachineFunctionProperties getSetProperties() const override {
175 return MachineFunctionProperties().set(
176 MachineFunctionProperties::Property::NoVRegs);
179 private:
180 bool runOnMachineFunction(MachineFunction &MF) override;
182 void allocateBasicBlock(MachineBasicBlock &MBB);
183 void allocateInstruction(MachineInstr &MI);
184 void handleDebugValue(MachineInstr &MI);
185 void handleThroughOperands(MachineInstr &MI,
186 SmallVectorImpl<unsigned> &VirtDead);
187 bool isLastUseOfLocalReg(const MachineOperand &MO) const;
189 void addKillFlag(const LiveReg &LRI);
190 void killVirtReg(LiveReg &LR);
191 void killVirtReg(unsigned VirtReg);
192 void spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR);
193 void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg);
195 void usePhysReg(MachineOperand &MO);
196 void definePhysReg(MachineBasicBlock::iterator MI, MCPhysReg PhysReg,
197 RegState NewState);
198 unsigned calcSpillCost(MCPhysReg PhysReg) const;
199 void assignVirtToPhysReg(LiveReg &, MCPhysReg PhysReg);
201 LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) {
202 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg));
205 LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const {
206 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg));
209 void allocVirtReg(MachineInstr &MI, LiveReg &LR, unsigned Hint);
210 void allocVirtRegUndef(MachineOperand &MO);
211 MCPhysReg defineVirtReg(MachineInstr &MI, unsigned OpNum, unsigned VirtReg,
212 unsigned Hint);
213 LiveReg &reloadVirtReg(MachineInstr &MI, unsigned OpNum, unsigned VirtReg,
214 unsigned Hint);
215 void spillAll(MachineBasicBlock::iterator MI, bool OnlyLiveOut);
216 bool setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg);
218 int getStackSpaceFor(unsigned VirtReg);
219 void spill(MachineBasicBlock::iterator Before, unsigned VirtReg,
220 MCPhysReg AssignedReg, bool Kill);
221 void reload(MachineBasicBlock::iterator Before, unsigned VirtReg,
222 MCPhysReg PhysReg);
224 bool mayLiveOut(unsigned VirtReg);
226 void dumpState();
229 } // end anonymous namespace
231 char RegAllocFast::ID = 0;
233 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false,
234 false)
236 void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) {
237 PhysRegState[PhysReg] = NewState;
240 /// This allocates space for the specified virtual register to be held on the
241 /// stack.
242 int RegAllocFast::getStackSpaceFor(unsigned VirtReg) {
243 // Find the location Reg would belong...
244 int SS = StackSlotForVirtReg[VirtReg];
245 // Already has space allocated?
246 if (SS != -1)
247 return SS;
249 // Allocate a new stack object for this spill location...
250 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
251 unsigned Size = TRI->getSpillSize(RC);
252 unsigned Align = TRI->getSpillAlignment(RC);
253 int FrameIdx = MFI->CreateSpillStackObject(Size, Align);
255 // Assign the slot.
256 StackSlotForVirtReg[VirtReg] = FrameIdx;
257 return FrameIdx;
260 /// Returns false if \p VirtReg is known to not live out of the current block.
261 bool RegAllocFast::mayLiveOut(unsigned VirtReg) {
262 if (MayLiveAcrossBlocks.test(TargetRegisterInfo::virtReg2Index(VirtReg))) {
263 // Cannot be live-out if there are no successors.
264 return !MBB->succ_empty();
267 // If this block loops back to itself, it would be necessary to check whether
268 // the use comes after the def.
269 if (MBB->isSuccessor(MBB))
270 return true;
272 // See if the first \p Limit uses of the register are all in the current
273 // block.
274 static const unsigned Limit = 8;
275 unsigned C = 0;
276 for (const MachineInstr &UseInst : MRI->reg_nodbg_instructions(VirtReg)) {
277 if (UseInst.getParent() != MBB || ++C >= Limit) {
278 MayLiveAcrossBlocks.set(TargetRegisterInfo::virtReg2Index(VirtReg));
279 // Cannot be live-out if there are no successors.
280 return !MBB->succ_empty();
284 return false;
287 /// Insert spill instruction for \p AssignedReg before \p Before. Update
288 /// DBG_VALUEs with \p VirtReg operands with the stack slot.
289 void RegAllocFast::spill(MachineBasicBlock::iterator Before, unsigned VirtReg,
290 MCPhysReg AssignedReg, bool Kill) {
291 LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI)
292 << " in " << printReg(AssignedReg, TRI));
293 int FI = getStackSpaceFor(VirtReg);
294 LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n');
296 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
297 TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI);
298 ++NumStores;
300 // If this register is used by DBG_VALUE then insert new DBG_VALUE to
301 // identify spilled location as the place to find corresponding variable's
302 // value.
303 SmallVectorImpl<MachineInstr *> &LRIDbgValues = LiveDbgValueMap[VirtReg];
304 for (MachineInstr *DBG : LRIDbgValues) {
305 MachineInstr *NewDV = buildDbgValueForSpill(*MBB, Before, *DBG, FI);
306 assert(NewDV->getParent() == MBB && "dangling parent pointer");
307 (void)NewDV;
308 LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV);
310 // Now this register is spilled there is should not be any DBG_VALUE
311 // pointing to this register because they are all pointing to spilled value
312 // now.
313 LRIDbgValues.clear();
316 /// Insert reload instruction for \p PhysReg before \p Before.
317 void RegAllocFast::reload(MachineBasicBlock::iterator Before, unsigned VirtReg,
318 MCPhysReg PhysReg) {
319 LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into "
320 << printReg(PhysReg, TRI) << '\n');
321 int FI = getStackSpaceFor(VirtReg);
322 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
323 TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI);
324 ++NumLoads;
327 /// Return true if MO is the only remaining reference to its virtual register,
328 /// and it is guaranteed to be a block-local register.
329 bool RegAllocFast::isLastUseOfLocalReg(const MachineOperand &MO) const {
330 // If the register has ever been spilled or reloaded, we conservatively assume
331 // it is a global register used in multiple blocks.
332 if (StackSlotForVirtReg[MO.getReg()] != -1)
333 return false;
335 // Check that the use/def chain has exactly one operand - MO.
336 MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg());
337 if (&*I != &MO)
338 return false;
339 return ++I == MRI->reg_nodbg_end();
342 /// Set kill flags on last use of a virtual register.
343 void RegAllocFast::addKillFlag(const LiveReg &LR) {
344 if (!LR.LastUse) return;
345 MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum);
346 if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) {
347 if (MO.getReg() == LR.PhysReg)
348 MO.setIsKill();
349 // else, don't do anything we are problably redefining a
350 // subreg of this register and given we don't track which
351 // lanes are actually dead, we cannot insert a kill flag here.
352 // Otherwise we may end up in a situation like this:
353 // ... = (MO) physreg:sub1, implicit killed physreg
354 // ... <== Here we would allow later pass to reuse physreg:sub1
355 // which is potentially wrong.
356 // LR:sub0 = ...
357 // ... = LR.sub1 <== This is going to use physreg:sub1
361 /// Mark virtreg as no longer available.
362 void RegAllocFast::killVirtReg(LiveReg &LR) {
363 addKillFlag(LR);
364 assert(PhysRegState[LR.PhysReg] == LR.VirtReg &&
365 "Broken RegState mapping");
366 setPhysRegState(LR.PhysReg, regFree);
367 LR.PhysReg = 0;
370 /// Mark virtreg as no longer available.
371 void RegAllocFast::killVirtReg(unsigned VirtReg) {
372 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
373 "killVirtReg needs a virtual register");
374 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
375 if (LRI != LiveVirtRegs.end() && LRI->PhysReg)
376 killVirtReg(*LRI);
379 /// This method spills the value specified by VirtReg into the corresponding
380 /// stack slot if needed.
381 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI,
382 unsigned VirtReg) {
383 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
384 "Spilling a physical register is illegal!");
385 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
386 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg &&
387 "Spilling unmapped virtual register");
388 spillVirtReg(MI, *LRI);
391 /// Do the actual work of spilling.
392 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR) {
393 assert(PhysRegState[LR.PhysReg] == LR.VirtReg && "Broken RegState mapping");
395 if (LR.Dirty) {
396 // If this physreg is used by the instruction, we want to kill it on the
397 // instruction, not on the spill.
398 bool SpillKill = MachineBasicBlock::iterator(LR.LastUse) != MI;
399 LR.Dirty = false;
401 spill(MI, LR.VirtReg, LR.PhysReg, SpillKill);
403 if (SpillKill)
404 LR.LastUse = nullptr; // Don't kill register again
406 killVirtReg(LR);
409 /// Spill all dirty virtregs without killing them.
410 void RegAllocFast::spillAll(MachineBasicBlock::iterator MI, bool OnlyLiveOut) {
411 if (LiveVirtRegs.empty())
412 return;
413 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
414 // of spilling here is deterministic, if arbitrary.
415 for (LiveReg &LR : LiveVirtRegs) {
416 if (!LR.PhysReg)
417 continue;
418 if (OnlyLiveOut && !mayLiveOut(LR.VirtReg))
419 continue;
420 spillVirtReg(MI, LR);
422 LiveVirtRegs.clear();
425 /// Handle the direct use of a physical register. Check that the register is
426 /// not used by a virtreg. Kill the physreg, marking it free. This may add
427 /// implicit kills to MO->getParent() and invalidate MO.
428 void RegAllocFast::usePhysReg(MachineOperand &MO) {
429 // Ignore undef uses.
430 if (MO.isUndef())
431 return;
433 unsigned PhysReg = MO.getReg();
434 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
435 "Bad usePhysReg operand");
437 markRegUsedInInstr(PhysReg);
438 switch (PhysRegState[PhysReg]) {
439 case regDisabled:
440 break;
441 case regReserved:
442 PhysRegState[PhysReg] = regFree;
443 LLVM_FALLTHROUGH;
444 case regFree:
445 MO.setIsKill();
446 return;
447 default:
448 // The physreg was allocated to a virtual register. That means the value we
449 // wanted has been clobbered.
450 llvm_unreachable("Instruction uses an allocated register");
453 // Maybe a superregister is reserved?
454 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
455 MCPhysReg Alias = *AI;
456 switch (PhysRegState[Alias]) {
457 case regDisabled:
458 break;
459 case regReserved:
460 // Either PhysReg is a subregister of Alias and we mark the
461 // whole register as free, or PhysReg is the superregister of
462 // Alias and we mark all the aliases as disabled before freeing
463 // PhysReg.
464 // In the latter case, since PhysReg was disabled, this means that
465 // its value is defined only by physical sub-registers. This check
466 // is performed by the assert of the default case in this loop.
467 // Note: The value of the superregister may only be partial
468 // defined, that is why regDisabled is a valid state for aliases.
469 assert((TRI->isSuperRegister(PhysReg, Alias) ||
470 TRI->isSuperRegister(Alias, PhysReg)) &&
471 "Instruction is not using a subregister of a reserved register");
472 LLVM_FALLTHROUGH;
473 case regFree:
474 if (TRI->isSuperRegister(PhysReg, Alias)) {
475 // Leave the superregister in the working set.
476 setPhysRegState(Alias, regFree);
477 MO.getParent()->addRegisterKilled(Alias, TRI, true);
478 return;
480 // Some other alias was in the working set - clear it.
481 setPhysRegState(Alias, regDisabled);
482 break;
483 default:
484 llvm_unreachable("Instruction uses an alias of an allocated register");
488 // All aliases are disabled, bring register into working set.
489 setPhysRegState(PhysReg, regFree);
490 MO.setIsKill();
493 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very
494 /// similar to defineVirtReg except the physreg is reserved instead of
495 /// allocated.
496 void RegAllocFast::definePhysReg(MachineBasicBlock::iterator MI,
497 MCPhysReg PhysReg, RegState NewState) {
498 markRegUsedInInstr(PhysReg);
499 switch (unsigned VirtReg = PhysRegState[PhysReg]) {
500 case regDisabled:
501 break;
502 default:
503 spillVirtReg(MI, VirtReg);
504 LLVM_FALLTHROUGH;
505 case regFree:
506 case regReserved:
507 setPhysRegState(PhysReg, NewState);
508 return;
511 // This is a disabled register, disable all aliases.
512 setPhysRegState(PhysReg, NewState);
513 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
514 MCPhysReg Alias = *AI;
515 switch (unsigned VirtReg = PhysRegState[Alias]) {
516 case regDisabled:
517 break;
518 default:
519 spillVirtReg(MI, VirtReg);
520 LLVM_FALLTHROUGH;
521 case regFree:
522 case regReserved:
523 setPhysRegState(Alias, regDisabled);
524 if (TRI->isSuperRegister(PhysReg, Alias))
525 return;
526 break;
531 /// Return the cost of spilling clearing out PhysReg and aliases so it is free
532 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases
533 /// disabled - it can be allocated directly.
534 /// \returns spillImpossible when PhysReg or an alias can't be spilled.
535 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const {
536 if (isRegUsedInInstr(PhysReg)) {
537 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI)
538 << " is already used in instr.\n");
539 return spillImpossible;
541 switch (unsigned VirtReg = PhysRegState[PhysReg]) {
542 case regDisabled:
543 break;
544 case regFree:
545 return 0;
546 case regReserved:
547 LLVM_DEBUG(dbgs() << printReg(VirtReg, TRI) << " corresponding "
548 << printReg(PhysReg, TRI) << " is reserved already.\n");
549 return spillImpossible;
550 default: {
551 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
552 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg &&
553 "Missing VirtReg entry");
554 return LRI->Dirty ? spillDirty : spillClean;
558 // This is a disabled register, add up cost of aliases.
559 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is disabled.\n");
560 unsigned Cost = 0;
561 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
562 MCPhysReg Alias = *AI;
563 switch (unsigned VirtReg = PhysRegState[Alias]) {
564 case regDisabled:
565 break;
566 case regFree:
567 ++Cost;
568 break;
569 case regReserved:
570 return spillImpossible;
571 default: {
572 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
573 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg &&
574 "Missing VirtReg entry");
575 Cost += LRI->Dirty ? spillDirty : spillClean;
576 break;
580 return Cost;
583 /// This method updates local state so that we know that PhysReg is the
584 /// proper container for VirtReg now. The physical register must not be used
585 /// for anything else when this is called.
586 void RegAllocFast::assignVirtToPhysReg(LiveReg &LR, MCPhysReg PhysReg) {
587 unsigned VirtReg = LR.VirtReg;
588 LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to "
589 << printReg(PhysReg, TRI) << '\n');
590 assert(LR.PhysReg == 0 && "Already assigned a physreg");
591 assert(PhysReg != 0 && "Trying to assign no register");
592 LR.PhysReg = PhysReg;
593 setPhysRegState(PhysReg, VirtReg);
596 /// Allocates a physical register for VirtReg.
597 void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR, unsigned Hint) {
598 const unsigned VirtReg = LR.VirtReg;
600 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
601 "Can only allocate virtual registers");
603 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
604 LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg)
605 << " in class " << TRI->getRegClassName(&RC)
606 << " with hint " << printReg(Hint, TRI) << '\n');
608 // Take hint when possible.
609 if (TargetRegisterInfo::isPhysicalRegister(Hint) &&
610 MRI->isAllocatable(Hint) && RC.contains(Hint)) {
611 // Ignore the hint if we would have to spill a dirty register.
612 unsigned Cost = calcSpillCost(Hint);
613 if (Cost < spillDirty) {
614 if (Cost)
615 definePhysReg(MI, Hint, regFree);
616 assignVirtToPhysReg(LR, Hint);
617 return;
621 MCPhysReg BestReg = 0;
622 unsigned BestCost = spillImpossible;
623 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
624 for (MCPhysReg PhysReg : AllocationOrder) {
625 LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' ');
626 unsigned Cost = calcSpillCost(PhysReg);
627 LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n');
628 // Immediate take a register with cost 0.
629 if (Cost == 0) {
630 assignVirtToPhysReg(LR, PhysReg);
631 return;
633 if (Cost < BestCost) {
634 BestReg = PhysReg;
635 BestCost = Cost;
639 if (!BestReg) {
640 // Nothing we can do: Report an error and keep going with an invalid
641 // allocation.
642 if (MI.isInlineAsm())
643 MI.emitError("inline assembly requires more registers than available");
644 else
645 MI.emitError("ran out of registers during register allocation");
646 definePhysReg(MI, *AllocationOrder.begin(), regFree);
647 assignVirtToPhysReg(LR, *AllocationOrder.begin());
648 return;
651 definePhysReg(MI, BestReg, regFree);
652 assignVirtToPhysReg(LR, BestReg);
655 void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) {
656 assert(MO.isUndef() && "expected undef use");
657 unsigned VirtReg = MO.getReg();
658 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Expected virtreg");
660 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
661 MCPhysReg PhysReg;
662 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
663 PhysReg = LRI->PhysReg;
664 } else {
665 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
666 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
667 assert(!AllocationOrder.empty() && "Allocation order must not be empty");
668 PhysReg = AllocationOrder[0];
671 unsigned SubRegIdx = MO.getSubReg();
672 if (SubRegIdx != 0) {
673 PhysReg = TRI->getSubReg(PhysReg, SubRegIdx);
674 MO.setSubReg(0);
676 MO.setReg(PhysReg);
677 MO.setIsRenamable(true);
680 /// Allocates a register for VirtReg and mark it as dirty.
681 MCPhysReg RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum,
682 unsigned VirtReg, unsigned Hint) {
683 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
684 "Not a virtual register");
685 LiveRegMap::iterator LRI;
686 bool New;
687 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
688 if (!LRI->PhysReg) {
689 // If there is no hint, peek at the only use of this register.
690 if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) &&
691 MRI->hasOneNonDBGUse(VirtReg)) {
692 const MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(VirtReg);
693 // It's a copy, use the destination register as a hint.
694 if (UseMI.isCopyLike())
695 Hint = UseMI.getOperand(0).getReg();
697 allocVirtReg(MI, *LRI, Hint);
698 } else if (LRI->LastUse) {
699 // Redefining a live register - kill at the last use, unless it is this
700 // instruction defining VirtReg multiple times.
701 if (LRI->LastUse != &MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse())
702 addKillFlag(*LRI);
704 assert(LRI->PhysReg && "Register not assigned");
705 LRI->LastUse = &MI;
706 LRI->LastOpNum = OpNum;
707 LRI->Dirty = true;
708 markRegUsedInInstr(LRI->PhysReg);
709 return LRI->PhysReg;
712 /// Make sure VirtReg is available in a physreg and return it.
713 RegAllocFast::LiveReg &RegAllocFast::reloadVirtReg(MachineInstr &MI,
714 unsigned OpNum,
715 unsigned VirtReg,
716 unsigned Hint) {
717 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
718 "Not a virtual register");
719 LiveRegMap::iterator LRI;
720 bool New;
721 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
722 MachineOperand &MO = MI.getOperand(OpNum);
723 if (!LRI->PhysReg) {
724 allocVirtReg(MI, *LRI, Hint);
725 reload(MI, VirtReg, LRI->PhysReg);
726 } else if (LRI->Dirty) {
727 if (isLastUseOfLocalReg(MO)) {
728 LLVM_DEBUG(dbgs() << "Killing last use: " << MO << '\n');
729 if (MO.isUse())
730 MO.setIsKill();
731 else
732 MO.setIsDead();
733 } else if (MO.isKill()) {
734 LLVM_DEBUG(dbgs() << "Clearing dubious kill: " << MO << '\n');
735 MO.setIsKill(false);
736 } else if (MO.isDead()) {
737 LLVM_DEBUG(dbgs() << "Clearing dubious dead: " << MO << '\n');
738 MO.setIsDead(false);
740 } else if (MO.isKill()) {
741 // We must remove kill flags from uses of reloaded registers because the
742 // register would be killed immediately, and there might be a second use:
743 // %foo = OR killed %x, %x
744 // This would cause a second reload of %x into a different register.
745 LLVM_DEBUG(dbgs() << "Clearing clean kill: " << MO << '\n');
746 MO.setIsKill(false);
747 } else if (MO.isDead()) {
748 LLVM_DEBUG(dbgs() << "Clearing clean dead: " << MO << '\n');
749 MO.setIsDead(false);
751 assert(LRI->PhysReg && "Register not assigned");
752 LRI->LastUse = &MI;
753 LRI->LastOpNum = OpNum;
754 markRegUsedInInstr(LRI->PhysReg);
755 return *LRI;
758 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This
759 /// may invalidate any operand pointers. Return true if the operand kills its
760 /// register.
761 bool RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO,
762 MCPhysReg PhysReg) {
763 bool Dead = MO.isDead();
764 if (!MO.getSubReg()) {
765 MO.setReg(PhysReg);
766 MO.setIsRenamable(true);
767 return MO.isKill() || Dead;
770 // Handle subregister index.
771 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0);
772 MO.setIsRenamable(true);
773 MO.setSubReg(0);
775 // A kill flag implies killing the full register. Add corresponding super
776 // register kill.
777 if (MO.isKill()) {
778 MI.addRegisterKilled(PhysReg, TRI, true);
779 return true;
782 // A <def,read-undef> of a sub-register requires an implicit def of the full
783 // register.
784 if (MO.isDef() && MO.isUndef())
785 MI.addRegisterDefined(PhysReg, TRI);
787 return Dead;
790 // Handles special instruction operand like early clobbers and tied ops when
791 // there are additional physreg defines.
792 void RegAllocFast::handleThroughOperands(MachineInstr &MI,
793 SmallVectorImpl<unsigned> &VirtDead) {
794 LLVM_DEBUG(dbgs() << "Scanning for through registers:");
795 SmallSet<unsigned, 8> ThroughRegs;
796 for (const MachineOperand &MO : MI.operands()) {
797 if (!MO.isReg()) continue;
798 unsigned Reg = MO.getReg();
799 if (!TargetRegisterInfo::isVirtualRegister(Reg))
800 continue;
801 if (MO.isEarlyClobber() || (MO.isUse() && MO.isTied()) ||
802 (MO.getSubReg() && MI.readsVirtualRegister(Reg))) {
803 if (ThroughRegs.insert(Reg).second)
804 LLVM_DEBUG(dbgs() << ' ' << printReg(Reg));
808 // If any physreg defines collide with preallocated through registers,
809 // we must spill and reallocate.
810 LLVM_DEBUG(dbgs() << "\nChecking for physdef collisions.\n");
811 for (const MachineOperand &MO : MI.operands()) {
812 if (!MO.isReg() || !MO.isDef()) continue;
813 unsigned Reg = MO.getReg();
814 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
815 markRegUsedInInstr(Reg);
816 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
817 if (ThroughRegs.count(PhysRegState[*AI]))
818 definePhysReg(MI, *AI, regFree);
822 SmallVector<unsigned, 8> PartialDefs;
823 LLVM_DEBUG(dbgs() << "Allocating tied uses.\n");
824 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
825 MachineOperand &MO = MI.getOperand(I);
826 if (!MO.isReg()) continue;
827 unsigned Reg = MO.getReg();
828 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
829 if (MO.isUse()) {
830 if (!MO.isTied()) continue;
831 LLVM_DEBUG(dbgs() << "Operand " << I << "(" << MO
832 << ") is tied to operand " << MI.findTiedOperandIdx(I)
833 << ".\n");
834 LiveReg &LR = reloadVirtReg(MI, I, Reg, 0);
835 MCPhysReg PhysReg = LR.PhysReg;
836 setPhysReg(MI, MO, PhysReg);
837 // Note: we don't update the def operand yet. That would cause the normal
838 // def-scan to attempt spilling.
839 } else if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) {
840 LLVM_DEBUG(dbgs() << "Partial redefine: " << MO << '\n');
841 // Reload the register, but don't assign to the operand just yet.
842 // That would confuse the later phys-def processing pass.
843 LiveReg &LR = reloadVirtReg(MI, I, Reg, 0);
844 PartialDefs.push_back(LR.PhysReg);
848 LLVM_DEBUG(dbgs() << "Allocating early clobbers.\n");
849 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
850 const MachineOperand &MO = MI.getOperand(I);
851 if (!MO.isReg()) continue;
852 unsigned Reg = MO.getReg();
853 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
854 if (!MO.isEarlyClobber())
855 continue;
856 // Note: defineVirtReg may invalidate MO.
857 MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, 0);
858 if (setPhysReg(MI, MI.getOperand(I), PhysReg))
859 VirtDead.push_back(Reg);
862 // Restore UsedInInstr to a state usable for allocating normal virtual uses.
863 UsedInInstr.clear();
864 for (const MachineOperand &MO : MI.operands()) {
865 if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue;
866 unsigned Reg = MO.getReg();
867 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
868 LLVM_DEBUG(dbgs() << "\tSetting " << printReg(Reg, TRI)
869 << " as used in instr\n");
870 markRegUsedInInstr(Reg);
873 // Also mark PartialDefs as used to avoid reallocation.
874 for (unsigned PartialDef : PartialDefs)
875 markRegUsedInInstr(PartialDef);
878 #ifndef NDEBUG
879 void RegAllocFast::dumpState() {
880 for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) {
881 if (PhysRegState[Reg] == regDisabled) continue;
882 dbgs() << " " << printReg(Reg, TRI);
883 switch(PhysRegState[Reg]) {
884 case regFree:
885 break;
886 case regReserved:
887 dbgs() << "*";
888 break;
889 default: {
890 dbgs() << '=' << printReg(PhysRegState[Reg]);
891 LiveRegMap::iterator LRI = findLiveVirtReg(PhysRegState[Reg]);
892 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg &&
893 "Missing VirtReg entry");
894 if (LRI->Dirty)
895 dbgs() << "*";
896 assert(LRI->PhysReg == Reg && "Bad inverse map");
897 break;
901 dbgs() << '\n';
902 // Check that LiveVirtRegs is the inverse.
903 for (LiveRegMap::iterator i = LiveVirtRegs.begin(),
904 e = LiveVirtRegs.end(); i != e; ++i) {
905 if (!i->PhysReg)
906 continue;
907 assert(TargetRegisterInfo::isVirtualRegister(i->VirtReg) &&
908 "Bad map key");
909 assert(TargetRegisterInfo::isPhysicalRegister(i->PhysReg) &&
910 "Bad map value");
911 assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map");
914 #endif
916 void RegAllocFast::allocateInstruction(MachineInstr &MI) {
917 const MCInstrDesc &MCID = MI.getDesc();
919 // If this is a copy, we may be able to coalesce.
920 unsigned CopySrcReg = 0;
921 unsigned CopyDstReg = 0;
922 unsigned CopySrcSub = 0;
923 unsigned CopyDstSub = 0;
924 if (MI.isCopy()) {
925 CopyDstReg = MI.getOperand(0).getReg();
926 CopySrcReg = MI.getOperand(1).getReg();
927 CopyDstSub = MI.getOperand(0).getSubReg();
928 CopySrcSub = MI.getOperand(1).getSubReg();
931 // Track registers used by instruction.
932 UsedInInstr.clear();
934 // First scan.
935 // Mark physreg uses and early clobbers as used.
936 // Find the end of the virtreg operands
937 unsigned VirtOpEnd = 0;
938 bool hasTiedOps = false;
939 bool hasEarlyClobbers = false;
940 bool hasPartialRedefs = false;
941 bool hasPhysDefs = false;
942 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
943 MachineOperand &MO = MI.getOperand(i);
944 // Make sure MRI knows about registers clobbered by regmasks.
945 if (MO.isRegMask()) {
946 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
947 continue;
949 if (!MO.isReg()) continue;
950 unsigned Reg = MO.getReg();
951 if (!Reg) continue;
952 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
953 VirtOpEnd = i+1;
954 if (MO.isUse()) {
955 hasTiedOps = hasTiedOps ||
956 MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1;
957 } else {
958 if (MO.isEarlyClobber())
959 hasEarlyClobbers = true;
960 if (MO.getSubReg() && MI.readsVirtualRegister(Reg))
961 hasPartialRedefs = true;
963 continue;
965 if (!MRI->isAllocatable(Reg)) continue;
966 if (MO.isUse()) {
967 usePhysReg(MO);
968 } else if (MO.isEarlyClobber()) {
969 definePhysReg(MI, Reg,
970 (MO.isImplicit() || MO.isDead()) ? regFree : regReserved);
971 hasEarlyClobbers = true;
972 } else
973 hasPhysDefs = true;
976 // The instruction may have virtual register operands that must be allocated
977 // the same register at use-time and def-time: early clobbers and tied
978 // operands. If there are also physical defs, these registers must avoid
979 // both physical defs and uses, making them more constrained than normal
980 // operands.
981 // Similarly, if there are multiple defs and tied operands, we must make
982 // sure the same register is allocated to uses and defs.
983 // We didn't detect inline asm tied operands above, so just make this extra
984 // pass for all inline asm.
985 if (MI.isInlineAsm() || hasEarlyClobbers || hasPartialRedefs ||
986 (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) {
987 handleThroughOperands(MI, VirtDead);
988 // Don't attempt coalescing when we have funny stuff going on.
989 CopyDstReg = 0;
990 // Pretend we have early clobbers so the use operands get marked below.
991 // This is not necessary for the common case of a single tied use.
992 hasEarlyClobbers = true;
995 // Second scan.
996 // Allocate virtreg uses.
997 bool HasUndefUse = false;
998 for (unsigned I = 0; I != VirtOpEnd; ++I) {
999 MachineOperand &MO = MI.getOperand(I);
1000 if (!MO.isReg()) continue;
1001 unsigned Reg = MO.getReg();
1002 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
1003 if (MO.isUse()) {
1004 if (MO.isUndef()) {
1005 HasUndefUse = true;
1006 // There is no need to allocate a register for an undef use.
1007 continue;
1009 LiveReg &LR = reloadVirtReg(MI, I, Reg, CopyDstReg);
1010 MCPhysReg PhysReg = LR.PhysReg;
1011 CopySrcReg = (CopySrcReg == Reg || CopySrcReg == PhysReg) ? PhysReg : 0;
1012 if (setPhysReg(MI, MO, PhysReg))
1013 killVirtReg(LR);
1017 // Allocate undef operands. This is a separate step because in a situation
1018 // like ` = OP undef %X, %X` both operands need the same register assign
1019 // so we should perform the normal assignment first.
1020 if (HasUndefUse) {
1021 for (MachineOperand &MO : MI.uses()) {
1022 if (!MO.isReg() || !MO.isUse())
1023 continue;
1024 unsigned Reg = MO.getReg();
1025 if (!TargetRegisterInfo::isVirtualRegister(Reg))
1026 continue;
1028 assert(MO.isUndef() && "Should only have undef virtreg uses left");
1029 allocVirtRegUndef(MO);
1033 // Track registers defined by instruction - early clobbers and tied uses at
1034 // this point.
1035 UsedInInstr.clear();
1036 if (hasEarlyClobbers) {
1037 for (const MachineOperand &MO : MI.operands()) {
1038 if (!MO.isReg()) continue;
1039 unsigned Reg = MO.getReg();
1040 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
1041 // Look for physreg defs and tied uses.
1042 if (!MO.isDef() && !MO.isTied()) continue;
1043 markRegUsedInInstr(Reg);
1047 unsigned DefOpEnd = MI.getNumOperands();
1048 if (MI.isCall()) {
1049 // Spill all virtregs before a call. This serves one purpose: If an
1050 // exception is thrown, the landing pad is going to expect to find
1051 // registers in their spill slots.
1052 // Note: although this is appealing to just consider all definitions
1053 // as call-clobbered, this is not correct because some of those
1054 // definitions may be used later on and we do not want to reuse
1055 // those for virtual registers in between.
1056 LLVM_DEBUG(dbgs() << " Spilling remaining registers before call.\n");
1057 spillAll(MI, /*OnlyLiveOut*/ false);
1060 // Third scan.
1061 // Mark all physreg defs as used before allocating virtreg defs.
1062 for (unsigned I = 0; I != DefOpEnd; ++I) {
1063 const MachineOperand &MO = MI.getOperand(I);
1064 if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber())
1065 continue;
1066 unsigned Reg = MO.getReg();
1068 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg) ||
1069 !MRI->isAllocatable(Reg))
1070 continue;
1071 definePhysReg(MI, Reg, MO.isDead() ? regFree : regReserved);
1074 // Fourth scan.
1075 // Allocate defs and collect dead defs.
1076 for (unsigned I = 0; I != DefOpEnd; ++I) {
1077 const MachineOperand &MO = MI.getOperand(I);
1078 if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber())
1079 continue;
1080 unsigned Reg = MO.getReg();
1082 // We have already dealt with phys regs in the previous scan.
1083 if (TargetRegisterInfo::isPhysicalRegister(Reg))
1084 continue;
1085 MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, CopySrcReg);
1086 if (setPhysReg(MI, MI.getOperand(I), PhysReg)) {
1087 VirtDead.push_back(Reg);
1088 CopyDstReg = 0; // cancel coalescing;
1089 } else
1090 CopyDstReg = (CopyDstReg == Reg || CopyDstReg == PhysReg) ? PhysReg : 0;
1093 // Kill dead defs after the scan to ensure that multiple defs of the same
1094 // register are allocated identically. We didn't need to do this for uses
1095 // because we are crerating our own kill flags, and they are always at the
1096 // last use.
1097 for (unsigned VirtReg : VirtDead)
1098 killVirtReg(VirtReg);
1099 VirtDead.clear();
1101 LLVM_DEBUG(dbgs() << "<< " << MI);
1102 if (CopyDstReg && CopyDstReg == CopySrcReg && CopyDstSub == CopySrcSub) {
1103 LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n");
1104 Coalesced.push_back(&MI);
1108 void RegAllocFast::handleDebugValue(MachineInstr &MI) {
1109 MachineOperand &MO = MI.getOperand(0);
1111 // Ignore DBG_VALUEs that aren't based on virtual registers. These are
1112 // mostly constants and frame indices.
1113 if (!MO.isReg())
1114 return;
1115 unsigned Reg = MO.getReg();
1116 if (!TargetRegisterInfo::isVirtualRegister(Reg))
1117 return;
1119 // See if this virtual register has already been allocated to a physical
1120 // register or spilled to a stack slot.
1121 LiveRegMap::iterator LRI = findLiveVirtReg(Reg);
1122 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
1123 setPhysReg(MI, MO, LRI->PhysReg);
1124 } else {
1125 int SS = StackSlotForVirtReg[Reg];
1126 if (SS != -1) {
1127 // Modify DBG_VALUE now that the value is in a spill slot.
1128 updateDbgValueForSpill(MI, SS);
1129 LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << MI);
1130 return;
1133 // We can't allocate a physreg for a DebugValue, sorry!
1134 LLVM_DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE");
1135 MO.setReg(0);
1138 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so
1139 // that future spills of Reg will have DBG_VALUEs.
1140 LiveDbgValueMap[Reg].push_back(&MI);
1143 void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) {
1144 this->MBB = &MBB;
1145 LLVM_DEBUG(dbgs() << "\nAllocating " << MBB);
1147 PhysRegState.assign(TRI->getNumRegs(), regDisabled);
1148 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?");
1150 MachineBasicBlock::iterator MII = MBB.begin();
1152 // Add live-in registers as live.
1153 for (const MachineBasicBlock::RegisterMaskPair LI : MBB.liveins())
1154 if (MRI->isAllocatable(LI.PhysReg))
1155 definePhysReg(MII, LI.PhysReg, regReserved);
1157 VirtDead.clear();
1158 Coalesced.clear();
1160 // Otherwise, sequentially allocate each instruction in the MBB.
1161 for (MachineInstr &MI : MBB) {
1162 LLVM_DEBUG(
1163 dbgs() << "\n>> " << MI << "Regs:";
1164 dumpState()
1167 // Special handling for debug values. Note that they are not allowed to
1168 // affect codegen of the other instructions in any way.
1169 if (MI.isDebugValue()) {
1170 handleDebugValue(MI);
1171 continue;
1174 allocateInstruction(MI);
1177 // Spill all physical registers holding virtual registers now.
1178 LLVM_DEBUG(dbgs() << "Spilling live registers at end of block.\n");
1179 spillAll(MBB.getFirstTerminator(), /*OnlyLiveOut*/ true);
1181 // Erase all the coalesced copies. We are delaying it until now because
1182 // LiveVirtRegs might refer to the instrs.
1183 for (MachineInstr *MI : Coalesced)
1184 MBB.erase(MI);
1185 NumCoalesced += Coalesced.size();
1187 LLVM_DEBUG(MBB.dump());
1190 bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) {
1191 LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
1192 << "********** Function: " << MF.getName() << '\n');
1193 MRI = &MF.getRegInfo();
1194 const TargetSubtargetInfo &STI = MF.getSubtarget();
1195 TRI = STI.getRegisterInfo();
1196 TII = STI.getInstrInfo();
1197 MFI = &MF.getFrameInfo();
1198 MRI->freezeReservedRegs(MF);
1199 RegClassInfo.runOnMachineFunction(MF);
1200 UsedInInstr.clear();
1201 UsedInInstr.setUniverse(TRI->getNumRegUnits());
1203 // initialize the virtual->physical register map to have a 'null'
1204 // mapping for all virtual registers
1205 unsigned NumVirtRegs = MRI->getNumVirtRegs();
1206 StackSlotForVirtReg.resize(NumVirtRegs);
1207 LiveVirtRegs.setUniverse(NumVirtRegs);
1208 MayLiveAcrossBlocks.clear();
1209 MayLiveAcrossBlocks.resize(NumVirtRegs);
1211 // Loop over all of the basic blocks, eliminating virtual register references
1212 for (MachineBasicBlock &MBB : MF)
1213 allocateBasicBlock(MBB);
1215 // All machine operands and other references to virtual registers have been
1216 // replaced. Remove the virtual registers.
1217 MRI->clearVirtRegs();
1219 StackSlotForVirtReg.clear();
1220 LiveDbgValueMap.clear();
1221 return true;
1224 FunctionPass *llvm::createFastRegisterAllocator() {
1225 return new RegAllocFast();