Another attempt to fix the build bot breaks after r360426
[llvm-core.git] / lib / CodeGen / RegisterCoalescer.cpp
blobca53fe4f393b3a9e1db701bd5cec72c98b00eea5
1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the generic RegisterCoalescer interface which
10 // is used as the common interface used by all clients and
11 // implementations of register coalescing.
13 //===----------------------------------------------------------------------===//
15 #include "RegisterCoalescer.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/LiveRangeEdit.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegisterClassInfo.h"
37 #include "llvm/CodeGen/SlotIndexes.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetOpcodes.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/MC/LaneBitmask.h"
44 #include "llvm/MC/MCInstrDesc.h"
45 #include "llvm/MC/MCRegisterInfo.h"
46 #include "llvm/Pass.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Compiler.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <iterator>
55 #include <limits>
56 #include <tuple>
57 #include <utility>
58 #include <vector>
60 using namespace llvm;
62 #define DEBUG_TYPE "regalloc"
64 STATISTIC(numJoins , "Number of interval joins performed");
65 STATISTIC(numCrossRCs , "Number of cross class joins performed");
66 STATISTIC(numCommutes , "Number of instruction commuting performed");
67 STATISTIC(numExtends , "Number of copies extended");
68 STATISTIC(NumReMats , "Number of instructions re-materialized");
69 STATISTIC(NumInflated , "Number of register classes inflated");
70 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
71 STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved");
72 STATISTIC(NumShrinkToUses, "Number of shrinkToUses called");
74 static cl::opt<bool> EnableJoining("join-liveintervals",
75 cl::desc("Coalesce copies (default=true)"),
76 cl::init(true), cl::Hidden);
78 static cl::opt<bool> UseTerminalRule("terminal-rule",
79 cl::desc("Apply the terminal rule"),
80 cl::init(false), cl::Hidden);
82 /// Temporary flag to test critical edge unsplitting.
83 static cl::opt<bool>
84 EnableJoinSplits("join-splitedges",
85 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
87 /// Temporary flag to test global copy optimization.
88 static cl::opt<cl::boolOrDefault>
89 EnableGlobalCopies("join-globalcopies",
90 cl::desc("Coalesce copies that span blocks (default=subtarget)"),
91 cl::init(cl::BOU_UNSET), cl::Hidden);
93 static cl::opt<bool>
94 VerifyCoalescing("verify-coalescing",
95 cl::desc("Verify machine instrs before and after register coalescing"),
96 cl::Hidden);
98 static cl::opt<unsigned> LateRematUpdateThreshold(
99 "late-remat-update-threshold", cl::Hidden,
100 cl::desc("During rematerialization for a copy, if the def instruction has "
101 "many other copy uses to be rematerialized, delay the multiple "
102 "separate live interval update work and do them all at once after "
103 "all those rematerialization are done. It will save a lot of "
104 "repeated work. "),
105 cl::init(100));
107 static cl::opt<unsigned> LargeIntervalSizeThreshold(
108 "large-interval-size-threshold", cl::Hidden,
109 cl::desc("If the valnos size of an interval is larger than the threshold, "
110 "it is regarded as a large interval. "),
111 cl::init(100));
113 static cl::opt<unsigned> LargeIntervalFreqThreshold(
114 "large-interval-freq-threshold", cl::Hidden,
115 cl::desc("For a large interval, if it is coalesed with other live "
116 "intervals many times more than the threshold, stop its "
117 "coalescing to control the compile time. "),
118 cl::init(100));
120 namespace {
122 class RegisterCoalescer : public MachineFunctionPass,
123 private LiveRangeEdit::Delegate {
124 MachineFunction* MF;
125 MachineRegisterInfo* MRI;
126 const TargetRegisterInfo* TRI;
127 const TargetInstrInfo* TII;
128 LiveIntervals *LIS;
129 const MachineLoopInfo* Loops;
130 AliasAnalysis *AA;
131 RegisterClassInfo RegClassInfo;
133 /// A LaneMask to remember on which subregister live ranges we need to call
134 /// shrinkToUses() later.
135 LaneBitmask ShrinkMask;
137 /// True if the main range of the currently coalesced intervals should be
138 /// checked for smaller live intervals.
139 bool ShrinkMainRange;
141 /// True if the coalescer should aggressively coalesce global copies
142 /// in favor of keeping local copies.
143 bool JoinGlobalCopies;
145 /// True if the coalescer should aggressively coalesce fall-thru
146 /// blocks exclusively containing copies.
147 bool JoinSplitEdges;
149 /// Copy instructions yet to be coalesced.
150 SmallVector<MachineInstr*, 8> WorkList;
151 SmallVector<MachineInstr*, 8> LocalWorkList;
153 /// Set of instruction pointers that have been erased, and
154 /// that may be present in WorkList.
155 SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
157 /// Dead instructions that are about to be deleted.
158 SmallVector<MachineInstr*, 8> DeadDefs;
160 /// Virtual registers to be considered for register class inflation.
161 SmallVector<unsigned, 8> InflateRegs;
163 /// The collection of live intervals which should have been updated
164 /// immediately after rematerialiation but delayed until
165 /// lateLiveIntervalUpdate is called.
166 DenseSet<unsigned> ToBeUpdated;
168 /// Record how many times the large live interval with many valnos
169 /// has been tried to join with other live interval.
170 DenseMap<unsigned, unsigned long> LargeLIVisitCounter;
172 /// Recursively eliminate dead defs in DeadDefs.
173 void eliminateDeadDefs();
175 /// LiveRangeEdit callback for eliminateDeadDefs().
176 void LRE_WillEraseInstruction(MachineInstr *MI) override;
178 /// Coalesce the LocalWorkList.
179 void coalesceLocals();
181 /// Join compatible live intervals
182 void joinAllIntervals();
184 /// Coalesce copies in the specified MBB, putting
185 /// copies that cannot yet be coalesced into WorkList.
186 void copyCoalesceInMBB(MachineBasicBlock *MBB);
188 /// Tries to coalesce all copies in CurrList. Returns true if any progress
189 /// was made.
190 bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
192 /// If one def has many copy like uses, and those copy uses are all
193 /// rematerialized, the live interval update needed for those
194 /// rematerializations will be delayed and done all at once instead
195 /// of being done multiple times. This is to save compile cost because
196 /// live interval update is costly.
197 void lateLiveIntervalUpdate();
199 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the
200 /// src/dst of the copy instruction CopyMI. This returns true if the copy
201 /// was successfully coalesced away. If it is not currently possible to
202 /// coalesce this interval, but it may be possible if other things get
203 /// coalesced, then it returns true by reference in 'Again'.
204 bool joinCopy(MachineInstr *CopyMI, bool &Again);
206 /// Attempt to join these two intervals. On failure, this
207 /// returns false. The output "SrcInt" will not have been modified, so we
208 /// can use this information below to update aliases.
209 bool joinIntervals(CoalescerPair &CP);
211 /// Attempt joining two virtual registers. Return true on success.
212 bool joinVirtRegs(CoalescerPair &CP);
214 /// If a live interval has many valnos and is coalesced with other
215 /// live intervals many times, we regard such live interval as having
216 /// high compile time cost.
217 bool isHighCostLiveInterval(LiveInterval &LI);
219 /// Attempt joining with a reserved physreg.
220 bool joinReservedPhysReg(CoalescerPair &CP);
222 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI.
223 /// Subranges in @p LI which only partially interfere with the desired
224 /// LaneMask are split as necessary. @p LaneMask are the lanes that
225 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange
226 /// lanemasks already adjusted to the coalesced register.
227 void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge,
228 LaneBitmask LaneMask, CoalescerPair &CP);
230 /// Join the liveranges of two subregisters. Joins @p RRange into
231 /// @p LRange, @p RRange may be invalid afterwards.
232 void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
233 LaneBitmask LaneMask, const CoalescerPair &CP);
235 /// We found a non-trivially-coalescable copy. If the source value number is
236 /// defined by a copy from the destination reg see if we can merge these two
237 /// destination reg valno# into a single value number, eliminating a copy.
238 /// This returns true if an interval was modified.
239 bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
241 /// Return true if there are definitions of IntB
242 /// other than BValNo val# that can reach uses of AValno val# of IntA.
243 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
244 VNInfo *AValNo, VNInfo *BValNo);
246 /// We found a non-trivially-coalescable copy.
247 /// If the source value number is defined by a commutable instruction and
248 /// its other operand is coalesced to the copy dest register, see if we
249 /// can transform the copy into a noop by commuting the definition.
250 /// This returns a pair of two flags:
251 /// - the first element is true if an interval was modified,
252 /// - the second element is true if the destination interval needs
253 /// to be shrunk after deleting the copy.
254 std::pair<bool,bool> removeCopyByCommutingDef(const CoalescerPair &CP,
255 MachineInstr *CopyMI);
257 /// We found a copy which can be moved to its less frequent predecessor.
258 bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI);
260 /// If the source of a copy is defined by a
261 /// trivial computation, replace the copy by rematerialize the definition.
262 bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI,
263 bool &IsDefCopy);
265 /// Return true if a copy involving a physreg should be joined.
266 bool canJoinPhys(const CoalescerPair &CP);
268 /// Replace all defs and uses of SrcReg to DstReg and update the subregister
269 /// number if it is not zero. If DstReg is a physical register and the
270 /// existing subregister number of the def / use being updated is not zero,
271 /// make sure to set it to the correct physical subregister.
272 void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx);
274 /// If the given machine operand reads only undefined lanes add an undef
275 /// flag.
276 /// This can happen when undef uses were previously concealed by a copy
277 /// which we coalesced. Example:
278 /// %0:sub0<def,read-undef> = ...
279 /// %1 = COPY %0 <-- Coalescing COPY reveals undef
280 /// = use %1:sub1 <-- hidden undef use
281 void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
282 MachineOperand &MO, unsigned SubRegIdx);
284 /// Handle copies of undef values. If the undef value is an incoming
285 /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF.
286 /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise,
287 /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point).
288 MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI);
290 /// Check whether or not we should apply the terminal rule on the
291 /// destination (Dst) of \p Copy.
292 /// When the terminal rule applies, Copy is not profitable to
293 /// coalesce.
294 /// Dst is terminal if it has exactly one affinity (Dst, Src) and
295 /// at least one interference (Dst, Dst2). If Dst is terminal, the
296 /// terminal rule consists in checking that at least one of
297 /// interfering node, say Dst2, has an affinity of equal or greater
298 /// weight with Src.
299 /// In that case, Dst2 and Dst will not be able to be both coalesced
300 /// with Src. Since Dst2 exposes more coalescing opportunities than
301 /// Dst, we can drop \p Copy.
302 bool applyTerminalRule(const MachineInstr &Copy) const;
304 /// Wrapper method for \see LiveIntervals::shrinkToUses.
305 /// This method does the proper fixing of the live-ranges when the afore
306 /// mentioned method returns true.
307 void shrinkToUses(LiveInterval *LI,
308 SmallVectorImpl<MachineInstr * > *Dead = nullptr) {
309 NumShrinkToUses++;
310 if (LIS->shrinkToUses(LI, Dead)) {
311 /// Check whether or not \p LI is composed by multiple connected
312 /// components and if that is the case, fix that.
313 SmallVector<LiveInterval*, 8> SplitLIs;
314 LIS->splitSeparateComponents(*LI, SplitLIs);
318 /// Wrapper Method to do all the necessary work when an Instruction is
319 /// deleted.
320 /// Optimizations should use this to make sure that deleted instructions
321 /// are always accounted for.
322 void deleteInstr(MachineInstr* MI) {
323 ErasedInstrs.insert(MI);
324 LIS->RemoveMachineInstrFromMaps(*MI);
325 MI->eraseFromParent();
328 public:
329 static char ID; ///< Class identification, replacement for typeinfo
331 RegisterCoalescer() : MachineFunctionPass(ID) {
332 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
335 void getAnalysisUsage(AnalysisUsage &AU) const override;
337 void releaseMemory() override;
339 /// This is the pass entry point.
340 bool runOnMachineFunction(MachineFunction&) override;
342 /// Implement the dump method.
343 void print(raw_ostream &O, const Module* = nullptr) const override;
346 } // end anonymous namespace
348 char RegisterCoalescer::ID = 0;
350 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
352 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
353 "Simple Register Coalescing", false, false)
354 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
355 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
356 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
357 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
358 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
359 "Simple Register Coalescing", false, false)
361 static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI,
362 unsigned &Src, unsigned &Dst,
363 unsigned &SrcSub, unsigned &DstSub) {
364 if (MI->isCopy()) {
365 Dst = MI->getOperand(0).getReg();
366 DstSub = MI->getOperand(0).getSubReg();
367 Src = MI->getOperand(1).getReg();
368 SrcSub = MI->getOperand(1).getSubReg();
369 } else if (MI->isSubregToReg()) {
370 Dst = MI->getOperand(0).getReg();
371 DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
372 MI->getOperand(3).getImm());
373 Src = MI->getOperand(2).getReg();
374 SrcSub = MI->getOperand(2).getSubReg();
375 } else
376 return false;
377 return true;
380 /// Return true if this block should be vacated by the coalescer to eliminate
381 /// branches. The important cases to handle in the coalescer are critical edges
382 /// split during phi elimination which contain only copies. Simple blocks that
383 /// contain non-branches should also be vacated, but this can be handled by an
384 /// earlier pass similar to early if-conversion.
385 static bool isSplitEdge(const MachineBasicBlock *MBB) {
386 if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
387 return false;
389 for (const auto &MI : *MBB) {
390 if (!MI.isCopyLike() && !MI.isUnconditionalBranch())
391 return false;
393 return true;
396 bool CoalescerPair::setRegisters(const MachineInstr *MI) {
397 SrcReg = DstReg = 0;
398 SrcIdx = DstIdx = 0;
399 NewRC = nullptr;
400 Flipped = CrossClass = false;
402 unsigned Src, Dst, SrcSub, DstSub;
403 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
404 return false;
405 Partial = SrcSub || DstSub;
407 // If one register is a physreg, it must be Dst.
408 if (TargetRegisterInfo::isPhysicalRegister(Src)) {
409 if (TargetRegisterInfo::isPhysicalRegister(Dst))
410 return false;
411 std::swap(Src, Dst);
412 std::swap(SrcSub, DstSub);
413 Flipped = true;
416 const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
418 if (TargetRegisterInfo::isPhysicalRegister(Dst)) {
419 // Eliminate DstSub on a physreg.
420 if (DstSub) {
421 Dst = TRI.getSubReg(Dst, DstSub);
422 if (!Dst) return false;
423 DstSub = 0;
426 // Eliminate SrcSub by picking a corresponding Dst superregister.
427 if (SrcSub) {
428 Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
429 if (!Dst) return false;
430 } else if (!MRI.getRegClass(Src)->contains(Dst)) {
431 return false;
433 } else {
434 // Both registers are virtual.
435 const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
436 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
438 // Both registers have subreg indices.
439 if (SrcSub && DstSub) {
440 // Copies between different sub-registers are never coalescable.
441 if (Src == Dst && SrcSub != DstSub)
442 return false;
444 NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
445 SrcIdx, DstIdx);
446 if (!NewRC)
447 return false;
448 } else if (DstSub) {
449 // SrcReg will be merged with a sub-register of DstReg.
450 SrcIdx = DstSub;
451 NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
452 } else if (SrcSub) {
453 // DstReg will be merged with a sub-register of SrcReg.
454 DstIdx = SrcSub;
455 NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
456 } else {
457 // This is a straight copy without sub-registers.
458 NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
461 // The combined constraint may be impossible to satisfy.
462 if (!NewRC)
463 return false;
465 // Prefer SrcReg to be a sub-register of DstReg.
466 // FIXME: Coalescer should support subregs symmetrically.
467 if (DstIdx && !SrcIdx) {
468 std::swap(Src, Dst);
469 std::swap(SrcIdx, DstIdx);
470 Flipped = !Flipped;
473 CrossClass = NewRC != DstRC || NewRC != SrcRC;
475 // Check our invariants
476 assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual");
477 assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&
478 "Cannot have a physical SubIdx");
479 SrcReg = Src;
480 DstReg = Dst;
481 return true;
484 bool CoalescerPair::flip() {
485 if (TargetRegisterInfo::isPhysicalRegister(DstReg))
486 return false;
487 std::swap(SrcReg, DstReg);
488 std::swap(SrcIdx, DstIdx);
489 Flipped = !Flipped;
490 return true;
493 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
494 if (!MI)
495 return false;
496 unsigned Src, Dst, SrcSub, DstSub;
497 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
498 return false;
500 // Find the virtual register that is SrcReg.
501 if (Dst == SrcReg) {
502 std::swap(Src, Dst);
503 std::swap(SrcSub, DstSub);
504 } else if (Src != SrcReg) {
505 return false;
508 // Now check that Dst matches DstReg.
509 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
510 if (!TargetRegisterInfo::isPhysicalRegister(Dst))
511 return false;
512 assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
513 // DstSub could be set for a physreg from INSERT_SUBREG.
514 if (DstSub)
515 Dst = TRI.getSubReg(Dst, DstSub);
516 // Full copy of Src.
517 if (!SrcSub)
518 return DstReg == Dst;
519 // This is a partial register copy. Check that the parts match.
520 return TRI.getSubReg(DstReg, SrcSub) == Dst;
521 } else {
522 // DstReg is virtual.
523 if (DstReg != Dst)
524 return false;
525 // Registers match, do the subregisters line up?
526 return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
527 TRI.composeSubRegIndices(DstIdx, DstSub);
531 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
532 AU.setPreservesCFG();
533 AU.addRequired<AAResultsWrapperPass>();
534 AU.addRequired<LiveIntervals>();
535 AU.addPreserved<LiveIntervals>();
536 AU.addPreserved<SlotIndexes>();
537 AU.addRequired<MachineLoopInfo>();
538 AU.addPreserved<MachineLoopInfo>();
539 AU.addPreservedID(MachineDominatorsID);
540 MachineFunctionPass::getAnalysisUsage(AU);
543 void RegisterCoalescer::eliminateDeadDefs() {
544 SmallVector<unsigned, 8> NewRegs;
545 LiveRangeEdit(nullptr, NewRegs, *MF, *LIS,
546 nullptr, this).eliminateDeadDefs(DeadDefs);
549 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
550 // MI may be in WorkList. Make sure we don't visit it.
551 ErasedInstrs.insert(MI);
554 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
555 MachineInstr *CopyMI) {
556 assert(!CP.isPartial() && "This doesn't work for partial copies.");
557 assert(!CP.isPhys() && "This doesn't work for physreg copies.");
559 LiveInterval &IntA =
560 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
561 LiveInterval &IntB =
562 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
563 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
565 // We have a non-trivially-coalescable copy with IntA being the source and
566 // IntB being the dest, thus this defines a value number in IntB. If the
567 // source value number (in IntA) is defined by a copy from B, see if we can
568 // merge these two pieces of B into a single value number, eliminating a copy.
569 // For example:
571 // A3 = B0
572 // ...
573 // B1 = A3 <- this copy
575 // In this case, B0 can be extended to where the B1 copy lives, allowing the
576 // B1 value number to be replaced with B0 (which simplifies the B
577 // liveinterval).
579 // BValNo is a value number in B that is defined by a copy from A. 'B1' in
580 // the example above.
581 LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx);
582 if (BS == IntB.end()) return false;
583 VNInfo *BValNo = BS->valno;
585 // Get the location that B is defined at. Two options: either this value has
586 // an unknown definition point or it is defined at CopyIdx. If unknown, we
587 // can't process it.
588 if (BValNo->def != CopyIdx) return false;
590 // AValNo is the value number in A that defines the copy, A3 in the example.
591 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
592 LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx);
593 // The live segment might not exist after fun with physreg coalescing.
594 if (AS == IntA.end()) return false;
595 VNInfo *AValNo = AS->valno;
597 // If AValNo is defined as a copy from IntB, we can potentially process this.
598 // Get the instruction that defines this value number.
599 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
600 // Don't allow any partial copies, even if isCoalescable() allows them.
601 if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
602 return false;
604 // Get the Segment in IntB that this value number starts with.
605 LiveInterval::iterator ValS =
606 IntB.FindSegmentContaining(AValNo->def.getPrevSlot());
607 if (ValS == IntB.end())
608 return false;
610 // Make sure that the end of the live segment is inside the same block as
611 // CopyMI.
612 MachineInstr *ValSEndInst =
613 LIS->getInstructionFromIndex(ValS->end.getPrevSlot());
614 if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent())
615 return false;
617 // Okay, we now know that ValS ends in the same block that the CopyMI
618 // live-range starts. If there are no intervening live segments between them
619 // in IntB, we can merge them.
620 if (ValS+1 != BS) return false;
622 LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg, TRI));
624 SlotIndex FillerStart = ValS->end, FillerEnd = BS->start;
625 // We are about to delete CopyMI, so need to remove it as the 'instruction
626 // that defines this value #'. Update the valnum with the new defining
627 // instruction #.
628 BValNo->def = FillerStart;
630 // Okay, we can merge them. We need to insert a new liverange:
631 // [ValS.end, BS.begin) of either value number, then we merge the
632 // two value numbers.
633 IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo));
635 // Okay, merge "B1" into the same value number as "B0".
636 if (BValNo != ValS->valno)
637 IntB.MergeValueNumberInto(BValNo, ValS->valno);
639 // Do the same for the subregister segments.
640 for (LiveInterval::SubRange &S : IntB.subranges()) {
641 // Check for SubRange Segments of the form [1234r,1234d:0) which can be
642 // removed to prevent creating bogus SubRange Segments.
643 LiveInterval::iterator SS = S.FindSegmentContaining(CopyIdx);
644 if (SS != S.end() && SlotIndex::isSameInstr(SS->start, SS->end)) {
645 S.removeSegment(*SS, true);
646 continue;
648 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
649 S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo));
650 VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot());
651 if (SubBValNo != SubValSNo)
652 S.MergeValueNumberInto(SubBValNo, SubValSNo);
655 LLVM_DEBUG(dbgs() << " result = " << IntB << '\n');
657 // If the source instruction was killing the source register before the
658 // merge, unset the isKill marker given the live range has been extended.
659 int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true);
660 if (UIdx != -1) {
661 ValSEndInst->getOperand(UIdx).setIsKill(false);
664 // Rewrite the copy.
665 CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI);
666 // If the copy instruction was killing the destination register or any
667 // subrange before the merge trim the live range.
668 bool RecomputeLiveRange = AS->end == CopyIdx;
669 if (!RecomputeLiveRange) {
670 for (LiveInterval::SubRange &S : IntA.subranges()) {
671 LiveInterval::iterator SS = S.FindSegmentContaining(CopyUseIdx);
672 if (SS != S.end() && SS->end == CopyIdx) {
673 RecomputeLiveRange = true;
674 break;
678 if (RecomputeLiveRange)
679 shrinkToUses(&IntA);
681 ++numExtends;
682 return true;
685 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
686 LiveInterval &IntB,
687 VNInfo *AValNo,
688 VNInfo *BValNo) {
689 // If AValNo has PHI kills, conservatively assume that IntB defs can reach
690 // the PHI values.
691 if (LIS->hasPHIKill(IntA, AValNo))
692 return true;
694 for (LiveRange::Segment &ASeg : IntA.segments) {
695 if (ASeg.valno != AValNo) continue;
696 LiveInterval::iterator BI = llvm::upper_bound(IntB, ASeg.start);
697 if (BI != IntB.begin())
698 --BI;
699 for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) {
700 if (BI->valno == BValNo)
701 continue;
702 if (BI->start <= ASeg.start && BI->end > ASeg.start)
703 return true;
704 if (BI->start > ASeg.start && BI->start < ASeg.end)
705 return true;
708 return false;
711 /// Copy segments with value number @p SrcValNo from liverange @p Src to live
712 /// range @Dst and use value number @p DstValNo there.
713 static std::pair<bool,bool>
714 addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src,
715 const VNInfo *SrcValNo) {
716 bool Changed = false;
717 bool MergedWithDead = false;
718 for (const LiveRange::Segment &S : Src.segments) {
719 if (S.valno != SrcValNo)
720 continue;
721 // This is adding a segment from Src that ends in a copy that is about
722 // to be removed. This segment is going to be merged with a pre-existing
723 // segment in Dst. This works, except in cases when the corresponding
724 // segment in Dst is dead. For example: adding [192r,208r:1) from Src
725 // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst.
726 // Recognized such cases, so that the segments can be shrunk.
727 LiveRange::Segment Added = LiveRange::Segment(S.start, S.end, DstValNo);
728 LiveRange::Segment &Merged = *Dst.addSegment(Added);
729 if (Merged.end.isDead())
730 MergedWithDead = true;
731 Changed = true;
733 return std::make_pair(Changed, MergedWithDead);
736 std::pair<bool,bool>
737 RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
738 MachineInstr *CopyMI) {
739 assert(!CP.isPhys());
741 LiveInterval &IntA =
742 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
743 LiveInterval &IntB =
744 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
746 // We found a non-trivially-coalescable copy with IntA being the source and
747 // IntB being the dest, thus this defines a value number in IntB. If the
748 // source value number (in IntA) is defined by a commutable instruction and
749 // its other operand is coalesced to the copy dest register, see if we can
750 // transform the copy into a noop by commuting the definition. For example,
752 // A3 = op A2 killed B0
753 // ...
754 // B1 = A3 <- this copy
755 // ...
756 // = op A3 <- more uses
758 // ==>
760 // B2 = op B0 killed A2
761 // ...
762 // B1 = B2 <- now an identity copy
763 // ...
764 // = op B2 <- more uses
766 // BValNo is a value number in B that is defined by a copy from A. 'B1' in
767 // the example above.
768 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
769 VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
770 assert(BValNo != nullptr && BValNo->def == CopyIdx);
772 // AValNo is the value number in A that defines the copy, A3 in the example.
773 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
774 assert(AValNo && !AValNo->isUnused() && "COPY source not live");
775 if (AValNo->isPHIDef())
776 return { false, false };
777 MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
778 if (!DefMI)
779 return { false, false };
780 if (!DefMI->isCommutable())
781 return { false, false };
782 // If DefMI is a two-address instruction then commuting it will change the
783 // destination register.
784 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
785 assert(DefIdx != -1);
786 unsigned UseOpIdx;
787 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
788 return { false, false };
790 // FIXME: The code below tries to commute 'UseOpIdx' operand with some other
791 // commutable operand which is expressed by 'CommuteAnyOperandIndex'value
792 // passed to the method. That _other_ operand is chosen by
793 // the findCommutedOpIndices() method.
795 // That is obviously an area for improvement in case of instructions having
796 // more than 2 operands. For example, if some instruction has 3 commutable
797 // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3,
798 // op#2<->op#3) of commute transformation should be considered/tried here.
799 unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex;
800 if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx))
801 return { false, false };
803 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
804 unsigned NewReg = NewDstMO.getReg();
805 if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill())
806 return { false, false };
808 // Make sure there are no other definitions of IntB that would reach the
809 // uses which the new definition can reach.
810 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
811 return { false, false };
813 // If some of the uses of IntA.reg is already coalesced away, return false.
814 // It's not possible to determine whether it's safe to perform the coalescing.
815 for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) {
816 MachineInstr *UseMI = MO.getParent();
817 unsigned OpNo = &MO - &UseMI->getOperand(0);
818 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI);
819 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
820 if (US == IntA.end() || US->valno != AValNo)
821 continue;
822 // If this use is tied to a def, we can't rewrite the register.
823 if (UseMI->isRegTiedToDefOperand(OpNo))
824 return { false, false };
827 LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
828 << *DefMI);
830 // At this point we have decided that it is legal to do this
831 // transformation. Start by commuting the instruction.
832 MachineBasicBlock *MBB = DefMI->getParent();
833 MachineInstr *NewMI =
834 TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx);
835 if (!NewMI)
836 return { false, false };
837 if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
838 TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
839 !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
840 return { false, false };
841 if (NewMI != DefMI) {
842 LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI);
843 MachineBasicBlock::iterator Pos = DefMI;
844 MBB->insert(Pos, NewMI);
845 MBB->erase(DefMI);
848 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
849 // A = or A, B
850 // ...
851 // B = A
852 // ...
853 // C = killed A
854 // ...
855 // = B
857 // Update uses of IntA of the specific Val# with IntB.
858 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
859 UE = MRI->use_end();
860 UI != UE; /* ++UI is below because of possible MI removal */) {
861 MachineOperand &UseMO = *UI;
862 ++UI;
863 if (UseMO.isUndef())
864 continue;
865 MachineInstr *UseMI = UseMO.getParent();
866 if (UseMI->isDebugValue()) {
867 // FIXME These don't have an instruction index. Not clear we have enough
868 // info to decide whether to do this replacement or not. For now do it.
869 UseMO.setReg(NewReg);
870 continue;
872 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true);
873 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
874 assert(US != IntA.end() && "Use must be live");
875 if (US->valno != AValNo)
876 continue;
877 // Kill flags are no longer accurate. They are recomputed after RA.
878 UseMO.setIsKill(false);
879 if (TargetRegisterInfo::isPhysicalRegister(NewReg))
880 UseMO.substPhysReg(NewReg, *TRI);
881 else
882 UseMO.setReg(NewReg);
883 if (UseMI == CopyMI)
884 continue;
885 if (!UseMI->isCopy())
886 continue;
887 if (UseMI->getOperand(0).getReg() != IntB.reg ||
888 UseMI->getOperand(0).getSubReg())
889 continue;
891 // This copy will become a noop. If it's defining a new val#, merge it into
892 // BValNo.
893 SlotIndex DefIdx = UseIdx.getRegSlot();
894 VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
895 if (!DVNI)
896 continue;
897 LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
898 assert(DVNI->def == DefIdx);
899 BValNo = IntB.MergeValueNumberInto(DVNI, BValNo);
900 for (LiveInterval::SubRange &S : IntB.subranges()) {
901 VNInfo *SubDVNI = S.getVNInfoAt(DefIdx);
902 if (!SubDVNI)
903 continue;
904 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
905 assert(SubBValNo->def == CopyIdx);
906 S.MergeValueNumberInto(SubDVNI, SubBValNo);
909 deleteInstr(UseMI);
912 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
913 // is updated.
914 bool ShrinkB = false;
915 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
916 if (IntA.hasSubRanges() || IntB.hasSubRanges()) {
917 if (!IntA.hasSubRanges()) {
918 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg);
919 IntA.createSubRangeFrom(Allocator, Mask, IntA);
920 } else if (!IntB.hasSubRanges()) {
921 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntB.reg);
922 IntB.createSubRangeFrom(Allocator, Mask, IntB);
924 SlotIndex AIdx = CopyIdx.getRegSlot(true);
925 LaneBitmask MaskA;
926 const SlotIndexes &Indexes = *LIS->getSlotIndexes();
927 for (LiveInterval::SubRange &SA : IntA.subranges()) {
928 VNInfo *ASubValNo = SA.getVNInfoAt(AIdx);
929 assert(ASubValNo != nullptr);
930 MaskA |= SA.LaneMask;
932 IntB.refineSubRanges(
933 Allocator, SA.LaneMask,
934 [&Allocator, &SA, CopyIdx, ASubValNo,
935 &ShrinkB](LiveInterval::SubRange &SR) {
936 VNInfo *BSubValNo = SR.empty() ? SR.getNextValue(CopyIdx, Allocator)
937 : SR.getVNInfoAt(CopyIdx);
938 assert(BSubValNo != nullptr);
939 auto P = addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo);
940 ShrinkB |= P.second;
941 if (P.first)
942 BSubValNo->def = ASubValNo->def;
944 Indexes, *TRI);
946 // Go over all subranges of IntB that have not been covered by IntA,
947 // and delete the segments starting at CopyIdx. This can happen if
948 // IntA has undef lanes that are defined in IntB.
949 for (LiveInterval::SubRange &SB : IntB.subranges()) {
950 if ((SB.LaneMask & MaskA).any())
951 continue;
952 if (LiveRange::Segment *S = SB.getSegmentContaining(CopyIdx))
953 if (S->start.getBaseIndex() == CopyIdx.getBaseIndex())
954 SB.removeSegment(*S, true);
958 BValNo->def = AValNo->def;
959 auto P = addSegmentsWithValNo(IntB, BValNo, IntA, AValNo);
960 ShrinkB |= P.second;
961 LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
963 LIS->removeVRegDefAt(IntA, AValNo->def);
965 LLVM_DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n');
966 ++numCommutes;
967 return { true, ShrinkB };
970 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a
971 /// predecessor of BB2, and if B is not redefined on the way from A = B
972 /// in BB2 to B = A in BB2, B = A in BB2 is partially redundant if the
973 /// execution goes through the path from BB0 to BB2. We may move B = A
974 /// to the predecessor without such reversed copy.
975 /// So we will transform the program from:
976 /// BB0:
977 /// A = B; BB1:
978 /// ... ...
979 /// / \ /
980 /// BB2:
981 /// ...
982 /// B = A;
984 /// to:
986 /// BB0: BB1:
987 /// A = B; ...
988 /// ... B = A;
989 /// / \ /
990 /// BB2:
991 /// ...
993 /// A special case is when BB0 and BB2 are the same BB which is the only
994 /// BB in a loop:
995 /// BB1:
996 /// ...
997 /// BB0/BB2: ----
998 /// B = A; |
999 /// ... |
1000 /// A = B; |
1001 /// |-------
1002 /// |
1003 /// We may hoist B = A from BB0/BB2 to BB1.
1005 /// The major preconditions for correctness to remove such partial
1006 /// redundancy include:
1007 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of
1008 /// the PHI is defined by the reversed copy A = B in BB0.
1009 /// 2. No B is referenced from the start of BB2 to B = A.
1010 /// 3. No B is defined from A = B to the end of BB0.
1011 /// 4. BB1 has only one successor.
1013 /// 2 and 4 implicitly ensure B is not live at the end of BB1.
1014 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a
1015 /// colder place, which not only prevent endless loop, but also make sure
1016 /// the movement of copy is beneficial.
1017 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP,
1018 MachineInstr &CopyMI) {
1019 assert(!CP.isPhys());
1020 if (!CopyMI.isFullCopy())
1021 return false;
1023 MachineBasicBlock &MBB = *CopyMI.getParent();
1024 if (MBB.isEHPad())
1025 return false;
1027 if (MBB.pred_size() != 2)
1028 return false;
1030 LiveInterval &IntA =
1031 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
1032 LiveInterval &IntB =
1033 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
1035 // A is defined by PHI at the entry of MBB.
1036 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
1037 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx);
1038 assert(AValNo && !AValNo->isUnused() && "COPY source not live");
1039 if (!AValNo->isPHIDef())
1040 return false;
1042 // No B is referenced before CopyMI in MBB.
1043 if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx))
1044 return false;
1046 // MBB has two predecessors: one contains A = B so no copy will be inserted
1047 // for it. The other one will have a copy moved from MBB.
1048 bool FoundReverseCopy = false;
1049 MachineBasicBlock *CopyLeftBB = nullptr;
1050 for (MachineBasicBlock *Pred : MBB.predecessors()) {
1051 VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred));
1052 MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def);
1053 if (!DefMI || !DefMI->isFullCopy()) {
1054 CopyLeftBB = Pred;
1055 continue;
1057 // Check DefMI is a reverse copy and it is in BB Pred.
1058 if (DefMI->getOperand(0).getReg() != IntA.reg ||
1059 DefMI->getOperand(1).getReg() != IntB.reg ||
1060 DefMI->getParent() != Pred) {
1061 CopyLeftBB = Pred;
1062 continue;
1064 // If there is any other def of B after DefMI and before the end of Pred,
1065 // we need to keep the copy of B = A at the end of Pred if we remove
1066 // B = A from MBB.
1067 bool ValB_Changed = false;
1068 for (auto VNI : IntB.valnos) {
1069 if (VNI->isUnused())
1070 continue;
1071 if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) {
1072 ValB_Changed = true;
1073 break;
1076 if (ValB_Changed) {
1077 CopyLeftBB = Pred;
1078 continue;
1080 FoundReverseCopy = true;
1083 // If no reverse copy is found in predecessors, nothing to do.
1084 if (!FoundReverseCopy)
1085 return false;
1087 // If CopyLeftBB is nullptr, it means every predecessor of MBB contains
1088 // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated.
1089 // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and
1090 // update IntA/IntB.
1092 // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so
1093 // MBB is hotter than CopyLeftBB.
1094 if (CopyLeftBB && CopyLeftBB->succ_size() > 1)
1095 return false;
1097 // Now (almost sure it's) ok to move copy.
1098 if (CopyLeftBB) {
1099 // Position in CopyLeftBB where we should insert new copy.
1100 auto InsPos = CopyLeftBB->getFirstTerminator();
1102 // Make sure that B isn't referenced in the terminators (if any) at the end
1103 // of the predecessor since we're about to insert a new definition of B
1104 // before them.
1105 if (InsPos != CopyLeftBB->end()) {
1106 SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true);
1107 if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB)))
1108 return false;
1111 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to "
1112 << printMBBReference(*CopyLeftBB) << '\t' << CopyMI);
1114 // Insert new copy to CopyLeftBB.
1115 MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(),
1116 TII->get(TargetOpcode::COPY), IntB.reg)
1117 .addReg(IntA.reg);
1118 SlotIndex NewCopyIdx =
1119 LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot();
1120 IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1121 for (LiveInterval::SubRange &SR : IntB.subranges())
1122 SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1124 // If the newly created Instruction has an address of an instruction that was
1125 // deleted before (object recycled by the allocator) it needs to be removed from
1126 // the deleted list.
1127 ErasedInstrs.erase(NewCopyMI);
1128 } else {
1129 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from "
1130 << printMBBReference(MBB) << '\t' << CopyMI);
1133 // Remove CopyMI.
1134 // Note: This is fine to remove the copy before updating the live-ranges.
1135 // While updating the live-ranges, we only look at slot indices and
1136 // never go back to the instruction.
1137 // Mark instructions as deleted.
1138 deleteInstr(&CopyMI);
1140 // Update the liveness.
1141 SmallVector<SlotIndex, 8> EndPoints;
1142 VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead();
1143 LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(),
1144 &EndPoints);
1145 BValNo->markUnused();
1146 // Extend IntB to the EndPoints of its original live interval.
1147 LIS->extendToIndices(IntB, EndPoints);
1149 // Now, do the same for its subranges.
1150 for (LiveInterval::SubRange &SR : IntB.subranges()) {
1151 EndPoints.clear();
1152 VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead();
1153 assert(BValNo && "All sublanes should be live");
1154 LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints);
1155 BValNo->markUnused();
1156 // We can have a situation where the result of the original copy is live,
1157 // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes
1158 // the copy appear as an endpoint from pruneValue(), but we don't want it
1159 // to because the copy has been removed. We can go ahead and remove that
1160 // endpoint; there is no other situation here that there could be a use at
1161 // the same place as we know that the copy is a full copy.
1162 for (unsigned I = 0; I != EndPoints.size(); ) {
1163 if (SlotIndex::isSameInstr(EndPoints[I], CopyIdx)) {
1164 EndPoints[I] = EndPoints.back();
1165 EndPoints.pop_back();
1166 continue;
1168 ++I;
1170 LIS->extendToIndices(SR, EndPoints);
1172 // If any dead defs were extended, truncate them.
1173 shrinkToUses(&IntB);
1175 // Finally, update the live-range of IntA.
1176 shrinkToUses(&IntA);
1177 return true;
1180 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just
1181 /// defining a subregister.
1182 static bool definesFullReg(const MachineInstr &MI, unsigned Reg) {
1183 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) &&
1184 "This code cannot handle physreg aliasing");
1185 for (const MachineOperand &Op : MI.operands()) {
1186 if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
1187 continue;
1188 // Return true if we define the full register or don't care about the value
1189 // inside other subregisters.
1190 if (Op.getSubReg() == 0 || Op.isUndef())
1191 return true;
1193 return false;
1196 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP,
1197 MachineInstr *CopyMI,
1198 bool &IsDefCopy) {
1199 IsDefCopy = false;
1200 unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
1201 unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
1202 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
1203 unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
1204 if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
1205 return false;
1207 LiveInterval &SrcInt = LIS->getInterval(SrcReg);
1208 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1209 VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn();
1210 if (!ValNo)
1211 return false;
1212 if (ValNo->isPHIDef() || ValNo->isUnused())
1213 return false;
1214 MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
1215 if (!DefMI)
1216 return false;
1217 if (DefMI->isCopyLike()) {
1218 IsDefCopy = true;
1219 return false;
1221 if (!TII->isAsCheapAsAMove(*DefMI))
1222 return false;
1223 if (!TII->isTriviallyReMaterializable(*DefMI, AA))
1224 return false;
1225 if (!definesFullReg(*DefMI, SrcReg))
1226 return false;
1227 bool SawStore = false;
1228 if (!DefMI->isSafeToMove(AA, SawStore))
1229 return false;
1230 const MCInstrDesc &MCID = DefMI->getDesc();
1231 if (MCID.getNumDefs() != 1)
1232 return false;
1233 // Only support subregister destinations when the def is read-undef.
1234 MachineOperand &DstOperand = CopyMI->getOperand(0);
1235 unsigned CopyDstReg = DstOperand.getReg();
1236 if (DstOperand.getSubReg() && !DstOperand.isUndef())
1237 return false;
1239 // If both SrcIdx and DstIdx are set, correct rematerialization would widen
1240 // the register substantially (beyond both source and dest size). This is bad
1241 // for performance since it can cascade through a function, introducing many
1242 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers
1243 // around after a few subreg copies).
1244 if (SrcIdx && DstIdx)
1245 return false;
1247 const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF);
1248 if (!DefMI->isImplicitDef()) {
1249 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
1250 unsigned NewDstReg = DstReg;
1252 unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(),
1253 DefMI->getOperand(0).getSubReg());
1254 if (NewDstIdx)
1255 NewDstReg = TRI->getSubReg(DstReg, NewDstIdx);
1257 // Finally, make sure that the physical subregister that will be
1258 // constructed later is permitted for the instruction.
1259 if (!DefRC->contains(NewDstReg))
1260 return false;
1261 } else {
1262 // Theoretically, some stack frame reference could exist. Just make sure
1263 // it hasn't actually happened.
1264 assert(TargetRegisterInfo::isVirtualRegister(DstReg) &&
1265 "Only expect to deal with virtual or physical registers");
1269 DebugLoc DL = CopyMI->getDebugLoc();
1270 MachineBasicBlock *MBB = CopyMI->getParent();
1271 MachineBasicBlock::iterator MII =
1272 std::next(MachineBasicBlock::iterator(CopyMI));
1273 TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI);
1274 MachineInstr &NewMI = *std::prev(MII);
1275 NewMI.setDebugLoc(DL);
1277 // In a situation like the following:
1278 // %0:subreg = instr ; DefMI, subreg = DstIdx
1279 // %1 = copy %0:subreg ; CopyMI, SrcIdx = 0
1280 // instead of widening %1 to the register class of %0 simply do:
1281 // %1 = instr
1282 const TargetRegisterClass *NewRC = CP.getNewRC();
1283 if (DstIdx != 0) {
1284 MachineOperand &DefMO = NewMI.getOperand(0);
1285 if (DefMO.getSubReg() == DstIdx) {
1286 assert(SrcIdx == 0 && CP.isFlipped()
1287 && "Shouldn't have SrcIdx+DstIdx at this point");
1288 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
1289 const TargetRegisterClass *CommonRC =
1290 TRI->getCommonSubClass(DefRC, DstRC);
1291 if (CommonRC != nullptr) {
1292 NewRC = CommonRC;
1293 DstIdx = 0;
1294 DefMO.setSubReg(0);
1295 DefMO.setIsUndef(false); // Only subregs can have def+undef.
1300 // CopyMI may have implicit operands, save them so that we can transfer them
1301 // over to the newly materialized instruction after CopyMI is removed.
1302 SmallVector<MachineOperand, 4> ImplicitOps;
1303 ImplicitOps.reserve(CopyMI->getNumOperands() -
1304 CopyMI->getDesc().getNumOperands());
1305 for (unsigned I = CopyMI->getDesc().getNumOperands(),
1306 E = CopyMI->getNumOperands();
1307 I != E; ++I) {
1308 MachineOperand &MO = CopyMI->getOperand(I);
1309 if (MO.isReg()) {
1310 assert(MO.isImplicit() && "No explicit operands after implicit operands.");
1311 // Discard VReg implicit defs.
1312 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
1313 ImplicitOps.push_back(MO);
1317 LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI);
1318 CopyMI->eraseFromParent();
1319 ErasedInstrs.insert(CopyMI);
1321 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
1322 // We need to remember these so we can add intervals once we insert
1323 // NewMI into SlotIndexes.
1324 SmallVector<unsigned, 4> NewMIImplDefs;
1325 for (unsigned i = NewMI.getDesc().getNumOperands(),
1326 e = NewMI.getNumOperands();
1327 i != e; ++i) {
1328 MachineOperand &MO = NewMI.getOperand(i);
1329 if (MO.isReg() && MO.isDef()) {
1330 assert(MO.isImplicit() && MO.isDead() &&
1331 TargetRegisterInfo::isPhysicalRegister(MO.getReg()));
1332 NewMIImplDefs.push_back(MO.getReg());
1336 if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
1337 unsigned NewIdx = NewMI.getOperand(0).getSubReg();
1339 if (DefRC != nullptr) {
1340 if (NewIdx)
1341 NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx);
1342 else
1343 NewRC = TRI->getCommonSubClass(NewRC, DefRC);
1344 assert(NewRC && "subreg chosen for remat incompatible with instruction");
1346 // Remap subranges to new lanemask and change register class.
1347 LiveInterval &DstInt = LIS->getInterval(DstReg);
1348 for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1349 SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask);
1351 MRI->setRegClass(DstReg, NewRC);
1353 // Update machine operands and add flags.
1354 updateRegDefsUses(DstReg, DstReg, DstIdx);
1355 NewMI.getOperand(0).setSubReg(NewIdx);
1356 // updateRegDefUses can add an "undef" flag to the definition, since
1357 // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make
1358 // sure that "undef" is not set.
1359 if (NewIdx == 0)
1360 NewMI.getOperand(0).setIsUndef(false);
1361 // Add dead subregister definitions if we are defining the whole register
1362 // but only part of it is live.
1363 // This could happen if the rematerialization instruction is rematerializing
1364 // more than actually is used in the register.
1365 // An example would be:
1366 // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs
1367 // ; Copying only part of the register here, but the rest is undef.
1368 // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit
1369 // ==>
1370 // ; Materialize all the constants but only using one
1371 // %2 = LOAD_CONSTANTS 5, 8
1373 // at this point for the part that wasn't defined before we could have
1374 // subranges missing the definition.
1375 if (NewIdx == 0 && DstInt.hasSubRanges()) {
1376 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1377 SlotIndex DefIndex =
1378 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
1379 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg);
1380 VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator();
1381 for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1382 if (!SR.liveAt(DefIndex))
1383 SR.createDeadDef(DefIndex, Alloc);
1384 MaxMask &= ~SR.LaneMask;
1386 if (MaxMask.any()) {
1387 LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask);
1388 SR->createDeadDef(DefIndex, Alloc);
1392 // Make sure that the subrange for resultant undef is removed
1393 // For example:
1394 // %1:sub1<def,read-undef> = LOAD CONSTANT 1
1395 // %2 = COPY %1
1396 // ==>
1397 // %2:sub1<def, read-undef> = LOAD CONSTANT 1
1398 // ; Correct but need to remove the subrange for %2:sub0
1399 // ; as it is now undef
1400 if (NewIdx != 0 && DstInt.hasSubRanges()) {
1401 // The affected subregister segments can be removed.
1402 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1403 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx);
1404 bool UpdatedSubRanges = false;
1405 for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1406 if ((SR.LaneMask & DstMask).none()) {
1407 LLVM_DEBUG(dbgs()
1408 << "Removing undefined SubRange "
1409 << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n");
1410 // VNI is in ValNo - remove any segments in this SubRange that have this ValNo
1411 if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) {
1412 SR.removeValNo(RmValNo);
1413 UpdatedSubRanges = true;
1417 if (UpdatedSubRanges)
1418 DstInt.removeEmptySubRanges();
1420 } else if (NewMI.getOperand(0).getReg() != CopyDstReg) {
1421 // The New instruction may be defining a sub-register of what's actually
1422 // been asked for. If so it must implicitly define the whole thing.
1423 assert(TargetRegisterInfo::isPhysicalRegister(DstReg) &&
1424 "Only expect virtual or physical registers in remat");
1425 NewMI.getOperand(0).setIsDead(true);
1426 NewMI.addOperand(MachineOperand::CreateReg(
1427 CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/));
1428 // Record small dead def live-ranges for all the subregisters
1429 // of the destination register.
1430 // Otherwise, variables that live through may miss some
1431 // interferences, thus creating invalid allocation.
1432 // E.g., i386 code:
1433 // %1 = somedef ; %1 GR8
1434 // %2 = remat ; %2 GR32
1435 // CL = COPY %2.sub_8bit
1436 // = somedef %1 ; %1 GR8
1437 // =>
1438 // %1 = somedef ; %1 GR8
1439 // dead ECX = remat ; implicit-def CL
1440 // = somedef %1 ; %1 GR8
1441 // %1 will see the interferences with CL but not with CH since
1442 // no live-ranges would have been created for ECX.
1443 // Fix that!
1444 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1445 for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI);
1446 Units.isValid(); ++Units)
1447 if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1448 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1451 if (NewMI.getOperand(0).getSubReg())
1452 NewMI.getOperand(0).setIsUndef();
1454 // Transfer over implicit operands to the rematerialized instruction.
1455 for (MachineOperand &MO : ImplicitOps)
1456 NewMI.addOperand(MO);
1458 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1459 for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
1460 unsigned Reg = NewMIImplDefs[i];
1461 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1462 if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1463 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1466 LLVM_DEBUG(dbgs() << "Remat: " << NewMI);
1467 ++NumReMats;
1469 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs
1470 // to describe DstReg instead.
1471 if (MRI->use_nodbg_empty(SrcReg)) {
1472 for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) {
1473 MachineInstr *UseMI = UseMO.getParent();
1474 if (UseMI->isDebugValue()) {
1475 if (TargetRegisterInfo::isPhysicalRegister(DstReg))
1476 UseMO.substPhysReg(DstReg, *TRI);
1477 else
1478 UseMO.setReg(DstReg);
1479 // Move the debug value directly after the def of the rematerialized
1480 // value in DstReg.
1481 MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI);
1482 LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI);
1487 if (ToBeUpdated.count(SrcReg))
1488 return true;
1490 unsigned NumCopyUses = 0;
1491 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
1492 if (UseMO.getParent()->isCopyLike())
1493 NumCopyUses++;
1495 if (NumCopyUses < LateRematUpdateThreshold) {
1496 // The source interval can become smaller because we removed a use.
1497 shrinkToUses(&SrcInt, &DeadDefs);
1498 if (!DeadDefs.empty())
1499 eliminateDeadDefs();
1500 } else {
1501 ToBeUpdated.insert(SrcReg);
1503 return true;
1506 MachineInstr *RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) {
1507 // ProcessImplicitDefs may leave some copies of <undef> values, it only
1508 // removes local variables. When we have a copy like:
1510 // %1 = COPY undef %2
1512 // We delete the copy and remove the corresponding value number from %1.
1513 // Any uses of that value number are marked as <undef>.
1515 // Note that we do not query CoalescerPair here but redo isMoveInstr as the
1516 // CoalescerPair may have a new register class with adjusted subreg indices
1517 // at this point.
1518 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
1519 isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx);
1521 SlotIndex Idx = LIS->getInstructionIndex(*CopyMI);
1522 const LiveInterval &SrcLI = LIS->getInterval(SrcReg);
1523 // CopyMI is undef iff SrcReg is not live before the instruction.
1524 if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) {
1525 LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx);
1526 for (const LiveInterval::SubRange &SR : SrcLI.subranges()) {
1527 if ((SR.LaneMask & SrcMask).none())
1528 continue;
1529 if (SR.liveAt(Idx))
1530 return nullptr;
1532 } else if (SrcLI.liveAt(Idx))
1533 return nullptr;
1535 // If the undef copy defines a live-out value (i.e. an input to a PHI def),
1536 // then replace it with an IMPLICIT_DEF.
1537 LiveInterval &DstLI = LIS->getInterval(DstReg);
1538 SlotIndex RegIndex = Idx.getRegSlot();
1539 LiveRange::Segment *Seg = DstLI.getSegmentContaining(RegIndex);
1540 assert(Seg != nullptr && "No segment for defining instruction");
1541 if (VNInfo *V = DstLI.getVNInfoAt(Seg->end)) {
1542 if (V->isPHIDef()) {
1543 CopyMI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1544 for (unsigned i = CopyMI->getNumOperands(); i != 0; --i) {
1545 MachineOperand &MO = CopyMI->getOperand(i-1);
1546 if (MO.isReg() && MO.isUse())
1547 CopyMI->RemoveOperand(i-1);
1549 LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an "
1550 "implicit def\n");
1551 return CopyMI;
1555 // Remove any DstReg segments starting at the instruction.
1556 LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n");
1558 // Remove value or merge with previous one in case of a subregister def.
1559 if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) {
1560 VNInfo *VNI = DstLI.getVNInfoAt(RegIndex);
1561 DstLI.MergeValueNumberInto(VNI, PrevVNI);
1563 // The affected subregister segments can be removed.
1564 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx);
1565 for (LiveInterval::SubRange &SR : DstLI.subranges()) {
1566 if ((SR.LaneMask & DstMask).none())
1567 continue;
1569 VNInfo *SVNI = SR.getVNInfoAt(RegIndex);
1570 assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex));
1571 SR.removeValNo(SVNI);
1573 DstLI.removeEmptySubRanges();
1574 } else
1575 LIS->removeVRegDefAt(DstLI, RegIndex);
1577 // Mark uses as undef.
1578 for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) {
1579 if (MO.isDef() /*|| MO.isUndef()*/)
1580 continue;
1581 const MachineInstr &MI = *MO.getParent();
1582 SlotIndex UseIdx = LIS->getInstructionIndex(MI);
1583 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
1584 bool isLive;
1585 if (!UseMask.all() && DstLI.hasSubRanges()) {
1586 isLive = false;
1587 for (const LiveInterval::SubRange &SR : DstLI.subranges()) {
1588 if ((SR.LaneMask & UseMask).none())
1589 continue;
1590 if (SR.liveAt(UseIdx)) {
1591 isLive = true;
1592 break;
1595 } else
1596 isLive = DstLI.liveAt(UseIdx);
1597 if (isLive)
1598 continue;
1599 MO.setIsUndef(true);
1600 LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI);
1603 // A def of a subregister may be a use of the other subregisters, so
1604 // deleting a def of a subregister may also remove uses. Since CopyMI
1605 // is still part of the function (but about to be erased), mark all
1606 // defs of DstReg in it as <undef>, so that shrinkToUses would
1607 // ignore them.
1608 for (MachineOperand &MO : CopyMI->operands())
1609 if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg)
1610 MO.setIsUndef(true);
1611 LIS->shrinkToUses(&DstLI);
1613 return CopyMI;
1616 void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
1617 MachineOperand &MO, unsigned SubRegIdx) {
1618 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx);
1619 if (MO.isDef())
1620 Mask = ~Mask;
1621 bool IsUndef = true;
1622 for (const LiveInterval::SubRange &S : Int.subranges()) {
1623 if ((S.LaneMask & Mask).none())
1624 continue;
1625 if (S.liveAt(UseIdx)) {
1626 IsUndef = false;
1627 break;
1630 if (IsUndef) {
1631 MO.setIsUndef(true);
1632 // We found out some subregister use is actually reading an undefined
1633 // value. In some cases the whole vreg has become undefined at this
1634 // point so we have to potentially shrink the main range if the
1635 // use was ending a live segment there.
1636 LiveQueryResult Q = Int.Query(UseIdx);
1637 if (Q.valueOut() == nullptr)
1638 ShrinkMainRange = true;
1642 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg,
1643 unsigned DstReg,
1644 unsigned SubIdx) {
1645 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
1646 LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg);
1648 if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) {
1649 for (MachineOperand &MO : MRI->reg_operands(DstReg)) {
1650 unsigned SubReg = MO.getSubReg();
1651 if (SubReg == 0 || MO.isUndef())
1652 continue;
1653 MachineInstr &MI = *MO.getParent();
1654 if (MI.isDebugValue())
1655 continue;
1656 SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true);
1657 addUndefFlag(*DstInt, UseIdx, MO, SubReg);
1661 SmallPtrSet<MachineInstr*, 8> Visited;
1662 for (MachineRegisterInfo::reg_instr_iterator
1663 I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end();
1664 I != E; ) {
1665 MachineInstr *UseMI = &*(I++);
1667 // Each instruction can only be rewritten once because sub-register
1668 // composition is not always idempotent. When SrcReg != DstReg, rewriting
1669 // the UseMI operands removes them from the SrcReg use-def chain, but when
1670 // SrcReg is DstReg we could encounter UseMI twice if it has multiple
1671 // operands mentioning the virtual register.
1672 if (SrcReg == DstReg && !Visited.insert(UseMI).second)
1673 continue;
1675 SmallVector<unsigned,8> Ops;
1676 bool Reads, Writes;
1677 std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
1679 // If SrcReg wasn't read, it may still be the case that DstReg is live-in
1680 // because SrcReg is a sub-register.
1681 if (DstInt && !Reads && SubIdx && !UseMI->isDebugValue())
1682 Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI));
1684 // Replace SrcReg with DstReg in all UseMI operands.
1685 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1686 MachineOperand &MO = UseMI->getOperand(Ops[i]);
1688 // Adjust <undef> flags in case of sub-register joins. We don't want to
1689 // turn a full def into a read-modify-write sub-register def and vice
1690 // versa.
1691 if (SubIdx && MO.isDef())
1692 MO.setIsUndef(!Reads);
1694 // A subreg use of a partially undef (super) register may be a complete
1695 // undef use now and then has to be marked that way.
1696 if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) {
1697 if (!DstInt->hasSubRanges()) {
1698 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
1699 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(DstInt->reg);
1700 DstInt->createSubRangeFrom(Allocator, Mask, *DstInt);
1702 SlotIndex MIIdx = UseMI->isDebugValue()
1703 ? LIS->getSlotIndexes()->getIndexBefore(*UseMI)
1704 : LIS->getInstructionIndex(*UseMI);
1705 SlotIndex UseIdx = MIIdx.getRegSlot(true);
1706 addUndefFlag(*DstInt, UseIdx, MO, SubIdx);
1709 if (DstIsPhys)
1710 MO.substPhysReg(DstReg, *TRI);
1711 else
1712 MO.substVirtReg(DstReg, SubIdx, *TRI);
1715 LLVM_DEBUG({
1716 dbgs() << "\t\tupdated: ";
1717 if (!UseMI->isDebugValue())
1718 dbgs() << LIS->getInstructionIndex(*UseMI) << "\t";
1719 dbgs() << *UseMI;
1724 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
1725 // Always join simple intervals that are defined by a single copy from a
1726 // reserved register. This doesn't increase register pressure, so it is
1727 // always beneficial.
1728 if (!MRI->isReserved(CP.getDstReg())) {
1729 LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
1730 return false;
1733 LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
1734 if (JoinVInt.containsOneValue())
1735 return true;
1737 LLVM_DEBUG(
1738 dbgs() << "\tCannot join complex intervals into reserved register.\n");
1739 return false;
1742 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
1743 Again = false;
1744 LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI);
1746 CoalescerPair CP(*TRI);
1747 if (!CP.setRegisters(CopyMI)) {
1748 LLVM_DEBUG(dbgs() << "\tNot coalescable.\n");
1749 return false;
1752 if (CP.getNewRC()) {
1753 auto SrcRC = MRI->getRegClass(CP.getSrcReg());
1754 auto DstRC = MRI->getRegClass(CP.getDstReg());
1755 unsigned SrcIdx = CP.getSrcIdx();
1756 unsigned DstIdx = CP.getDstIdx();
1757 if (CP.isFlipped()) {
1758 std::swap(SrcIdx, DstIdx);
1759 std::swap(SrcRC, DstRC);
1761 if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx,
1762 CP.getNewRC(), *LIS)) {
1763 LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n");
1764 return false;
1768 // Dead code elimination. This really should be handled by MachineDCE, but
1769 // sometimes dead copies slip through, and we can't generate invalid live
1770 // ranges.
1771 if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
1772 LLVM_DEBUG(dbgs() << "\tCopy is dead.\n");
1773 DeadDefs.push_back(CopyMI);
1774 eliminateDeadDefs();
1775 return true;
1778 // Eliminate undefs.
1779 if (!CP.isPhys()) {
1780 // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce.
1781 if (MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) {
1782 if (UndefMI->isImplicitDef())
1783 return false;
1784 deleteInstr(CopyMI);
1785 return false; // Not coalescable.
1789 // Coalesced copies are normally removed immediately, but transformations
1790 // like removeCopyByCommutingDef() can inadvertently create identity copies.
1791 // When that happens, just join the values and remove the copy.
1792 if (CP.getSrcReg() == CP.getDstReg()) {
1793 LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
1794 LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
1795 const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1796 LiveQueryResult LRQ = LI.Query(CopyIdx);
1797 if (VNInfo *DefVNI = LRQ.valueDefined()) {
1798 VNInfo *ReadVNI = LRQ.valueIn();
1799 assert(ReadVNI && "No value before copy and no <undef> flag.");
1800 assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
1801 LI.MergeValueNumberInto(DefVNI, ReadVNI);
1803 // Process subregister liveranges.
1804 for (LiveInterval::SubRange &S : LI.subranges()) {
1805 LiveQueryResult SLRQ = S.Query(CopyIdx);
1806 if (VNInfo *SDefVNI = SLRQ.valueDefined()) {
1807 VNInfo *SReadVNI = SLRQ.valueIn();
1808 S.MergeValueNumberInto(SDefVNI, SReadVNI);
1811 LLVM_DEBUG(dbgs() << "\tMerged values: " << LI << '\n');
1813 deleteInstr(CopyMI);
1814 return true;
1817 // Enforce policies.
1818 if (CP.isPhys()) {
1819 LLVM_DEBUG(dbgs() << "\tConsidering merging "
1820 << printReg(CP.getSrcReg(), TRI) << " with "
1821 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n');
1822 if (!canJoinPhys(CP)) {
1823 // Before giving up coalescing, if definition of source is defined by
1824 // trivial computation, try rematerializing it.
1825 bool IsDefCopy;
1826 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1827 return true;
1828 if (IsDefCopy)
1829 Again = true; // May be possible to coalesce later.
1830 return false;
1832 } else {
1833 // When possible, let DstReg be the larger interval.
1834 if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() >
1835 LIS->getInterval(CP.getDstReg()).size())
1836 CP.flip();
1838 LLVM_DEBUG({
1839 dbgs() << "\tConsidering merging to "
1840 << TRI->getRegClassName(CP.getNewRC()) << " with ";
1841 if (CP.getDstIdx() && CP.getSrcIdx())
1842 dbgs() << printReg(CP.getDstReg()) << " in "
1843 << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
1844 << printReg(CP.getSrcReg()) << " in "
1845 << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
1846 else
1847 dbgs() << printReg(CP.getSrcReg(), TRI) << " in "
1848 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
1852 ShrinkMask = LaneBitmask::getNone();
1853 ShrinkMainRange = false;
1855 // Okay, attempt to join these two intervals. On failure, this returns false.
1856 // Otherwise, if one of the intervals being joined is a physreg, this method
1857 // always canonicalizes DstInt to be it. The output "SrcInt" will not have
1858 // been modified, so we can use this information below to update aliases.
1859 if (!joinIntervals(CP)) {
1860 // Coalescing failed.
1862 // If definition of source is defined by trivial computation, try
1863 // rematerializing it.
1864 bool IsDefCopy;
1865 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1866 return true;
1868 // If we can eliminate the copy without merging the live segments, do so
1869 // now.
1870 if (!CP.isPartial() && !CP.isPhys()) {
1871 bool Changed = adjustCopiesBackFrom(CP, CopyMI);
1872 bool Shrink = false;
1873 if (!Changed)
1874 std::tie(Changed, Shrink) = removeCopyByCommutingDef(CP, CopyMI);
1875 if (Changed) {
1876 deleteInstr(CopyMI);
1877 if (Shrink) {
1878 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
1879 LiveInterval &DstLI = LIS->getInterval(DstReg);
1880 shrinkToUses(&DstLI);
1881 LLVM_DEBUG(dbgs() << "\t\tshrunk: " << DstLI << '\n');
1883 LLVM_DEBUG(dbgs() << "\tTrivial!\n");
1884 return true;
1888 // Try and see if we can partially eliminate the copy by moving the copy to
1889 // its predecessor.
1890 if (!CP.isPartial() && !CP.isPhys())
1891 if (removePartialRedundancy(CP, *CopyMI))
1892 return true;
1894 // Otherwise, we are unable to join the intervals.
1895 LLVM_DEBUG(dbgs() << "\tInterference!\n");
1896 Again = true; // May be possible to coalesce later.
1897 return false;
1900 // Coalescing to a virtual register that is of a sub-register class of the
1901 // other. Make sure the resulting register is set to the right register class.
1902 if (CP.isCrossClass()) {
1903 ++numCrossRCs;
1904 MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
1907 // Removing sub-register copies can ease the register class constraints.
1908 // Make sure we attempt to inflate the register class of DstReg.
1909 if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
1910 InflateRegs.push_back(CP.getDstReg());
1912 // CopyMI has been erased by joinIntervals at this point. Remove it from
1913 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
1914 // to the work list. This keeps ErasedInstrs from growing needlessly.
1915 ErasedInstrs.erase(CopyMI);
1917 // Rewrite all SrcReg operands to DstReg.
1918 // Also update DstReg operands to include DstIdx if it is set.
1919 if (CP.getDstIdx())
1920 updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
1921 updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
1923 // Shrink subregister ranges if necessary.
1924 if (ShrinkMask.any()) {
1925 LiveInterval &LI = LIS->getInterval(CP.getDstReg());
1926 for (LiveInterval::SubRange &S : LI.subranges()) {
1927 if ((S.LaneMask & ShrinkMask).none())
1928 continue;
1929 LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask)
1930 << ")\n");
1931 LIS->shrinkToUses(S, LI.reg);
1933 LI.removeEmptySubRanges();
1936 // CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live
1937 // interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval
1938 // is not up-to-date, need to update the merged live interval here.
1939 if (ToBeUpdated.count(CP.getSrcReg()))
1940 ShrinkMainRange = true;
1942 if (ShrinkMainRange) {
1943 LiveInterval &LI = LIS->getInterval(CP.getDstReg());
1944 shrinkToUses(&LI);
1947 // SrcReg is guaranteed to be the register whose live interval that is
1948 // being merged.
1949 LIS->removeInterval(CP.getSrcReg());
1951 // Update regalloc hint.
1952 TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
1954 LLVM_DEBUG({
1955 dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx())
1956 << " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
1957 dbgs() << "\tResult = ";
1958 if (CP.isPhys())
1959 dbgs() << printReg(CP.getDstReg(), TRI);
1960 else
1961 dbgs() << LIS->getInterval(CP.getDstReg());
1962 dbgs() << '\n';
1965 ++numJoins;
1966 return true;
1969 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
1970 unsigned DstReg = CP.getDstReg();
1971 unsigned SrcReg = CP.getSrcReg();
1972 assert(CP.isPhys() && "Must be a physreg copy");
1973 assert(MRI->isReserved(DstReg) && "Not a reserved register");
1974 LiveInterval &RHS = LIS->getInterval(SrcReg);
1975 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n');
1977 assert(RHS.containsOneValue() && "Invalid join with reserved register");
1979 // Optimization for reserved registers like ESP. We can only merge with a
1980 // reserved physreg if RHS has a single value that is a copy of DstReg.
1981 // The live range of the reserved register will look like a set of dead defs
1982 // - we don't properly track the live range of reserved registers.
1984 // Deny any overlapping intervals. This depends on all the reserved
1985 // register live ranges to look like dead defs.
1986 if (!MRI->isConstantPhysReg(DstReg)) {
1987 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
1988 // Abort if not all the regunits are reserved.
1989 for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) {
1990 if (!MRI->isReserved(*RI))
1991 return false;
1993 if (RHS.overlaps(LIS->getRegUnit(*UI))) {
1994 LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI, TRI)
1995 << '\n');
1996 return false;
2000 // We must also check for overlaps with regmask clobbers.
2001 BitVector RegMaskUsable;
2002 if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) &&
2003 !RegMaskUsable.test(DstReg)) {
2004 LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n");
2005 return false;
2009 // Skip any value computations, we are not adding new values to the
2010 // reserved register. Also skip merging the live ranges, the reserved
2011 // register live range doesn't need to be accurate as long as all the
2012 // defs are there.
2014 // Delete the identity copy.
2015 MachineInstr *CopyMI;
2016 if (CP.isFlipped()) {
2017 // Physreg is copied into vreg
2018 // %y = COPY %physreg_x
2019 // ... //< no other def of %x here
2020 // use %y
2021 // =>
2022 // ...
2023 // use %x
2024 CopyMI = MRI->getVRegDef(SrcReg);
2025 } else {
2026 // VReg is copied into physreg:
2027 // %y = def
2028 // ... //< no other def or use of %y here
2029 // %y = COPY %physreg_x
2030 // =>
2031 // %y = def
2032 // ...
2033 if (!MRI->hasOneNonDBGUse(SrcReg)) {
2034 LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n");
2035 return false;
2038 if (!LIS->intervalIsInOneMBB(RHS)) {
2039 LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n");
2040 return false;
2043 MachineInstr &DestMI = *MRI->getVRegDef(SrcReg);
2044 CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg);
2045 SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
2046 SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot();
2048 if (!MRI->isConstantPhysReg(DstReg)) {
2049 // We checked above that there are no interfering defs of the physical
2050 // register. However, for this case, where we intend to move up the def of
2051 // the physical register, we also need to check for interfering uses.
2052 SlotIndexes *Indexes = LIS->getSlotIndexes();
2053 for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx);
2054 SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) {
2055 MachineInstr *MI = LIS->getInstructionFromIndex(SI);
2056 if (MI->readsRegister(DstReg, TRI)) {
2057 LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI);
2058 return false;
2063 // We're going to remove the copy which defines a physical reserved
2064 // register, so remove its valno, etc.
2065 LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of "
2066 << printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n");
2068 LIS->removePhysRegDefAt(DstReg, CopyRegIdx);
2069 // Create a new dead def at the new def location.
2070 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
2071 LiveRange &LR = LIS->getRegUnit(*UI);
2072 LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator());
2076 deleteInstr(CopyMI);
2078 // We don't track kills for reserved registers.
2079 MRI->clearKillFlags(CP.getSrcReg());
2081 return true;
2084 //===----------------------------------------------------------------------===//
2085 // Interference checking and interval joining
2086 //===----------------------------------------------------------------------===//
2088 // In the easiest case, the two live ranges being joined are disjoint, and
2089 // there is no interference to consider. It is quite common, though, to have
2090 // overlapping live ranges, and we need to check if the interference can be
2091 // resolved.
2093 // The live range of a single SSA value forms a sub-tree of the dominator tree.
2094 // This means that two SSA values overlap if and only if the def of one value
2095 // is contained in the live range of the other value. As a special case, the
2096 // overlapping values can be defined at the same index.
2098 // The interference from an overlapping def can be resolved in these cases:
2100 // 1. Coalescable copies. The value is defined by a copy that would become an
2101 // identity copy after joining SrcReg and DstReg. The copy instruction will
2102 // be removed, and the value will be merged with the source value.
2104 // There can be several copies back and forth, causing many values to be
2105 // merged into one. We compute a list of ultimate values in the joined live
2106 // range as well as a mappings from the old value numbers.
2108 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
2109 // predecessors have a live out value. It doesn't cause real interference,
2110 // and can be merged into the value it overlaps. Like a coalescable copy, it
2111 // can be erased after joining.
2113 // 3. Copy of external value. The overlapping def may be a copy of a value that
2114 // is already in the other register. This is like a coalescable copy, but
2115 // the live range of the source register must be trimmed after erasing the
2116 // copy instruction:
2118 // %src = COPY %ext
2119 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext.
2121 // 4. Clobbering undefined lanes. Vector registers are sometimes built by
2122 // defining one lane at a time:
2124 // %dst:ssub0<def,read-undef> = FOO
2125 // %src = BAR
2126 // %dst:ssub1 = COPY %src
2128 // The live range of %src overlaps the %dst value defined by FOO, but
2129 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
2130 // which was undef anyway.
2132 // The value mapping is more complicated in this case. The final live range
2133 // will have different value numbers for both FOO and BAR, but there is no
2134 // simple mapping from old to new values. It may even be necessary to add
2135 // new PHI values.
2137 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
2138 // is live, but never read. This can happen because we don't compute
2139 // individual live ranges per lane.
2141 // %dst = FOO
2142 // %src = BAR
2143 // %dst:ssub1 = COPY %src
2145 // This kind of interference is only resolved locally. If the clobbered
2146 // lane value escapes the block, the join is aborted.
2148 namespace {
2150 /// Track information about values in a single virtual register about to be
2151 /// joined. Objects of this class are always created in pairs - one for each
2152 /// side of the CoalescerPair (or one for each lane of a side of the coalescer
2153 /// pair)
2154 class JoinVals {
2155 /// Live range we work on.
2156 LiveRange &LR;
2158 /// (Main) register we work on.
2159 const unsigned Reg;
2161 /// Reg (and therefore the values in this liverange) will end up as
2162 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or
2163 /// CP.SrcIdx.
2164 const unsigned SubIdx;
2166 /// The LaneMask that this liverange will occupy the coalesced register. May
2167 /// be smaller than the lanemask produced by SubIdx when merging subranges.
2168 const LaneBitmask LaneMask;
2170 /// This is true when joining sub register ranges, false when joining main
2171 /// ranges.
2172 const bool SubRangeJoin;
2174 /// Whether the current LiveInterval tracks subregister liveness.
2175 const bool TrackSubRegLiveness;
2177 /// Values that will be present in the final live range.
2178 SmallVectorImpl<VNInfo*> &NewVNInfo;
2180 const CoalescerPair &CP;
2181 LiveIntervals *LIS;
2182 SlotIndexes *Indexes;
2183 const TargetRegisterInfo *TRI;
2185 /// Value number assignments. Maps value numbers in LI to entries in
2186 /// NewVNInfo. This is suitable for passing to LiveInterval::join().
2187 SmallVector<int, 8> Assignments;
2189 /// Conflict resolution for overlapping values.
2190 enum ConflictResolution {
2191 /// No overlap, simply keep this value.
2192 CR_Keep,
2194 /// Merge this value into OtherVNI and erase the defining instruction.
2195 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external
2196 /// values.
2197 CR_Erase,
2199 /// Merge this value into OtherVNI but keep the defining instruction.
2200 /// This is for the special case where OtherVNI is defined by the same
2201 /// instruction.
2202 CR_Merge,
2204 /// Keep this value, and have it replace OtherVNI where possible. This
2205 /// complicates value mapping since OtherVNI maps to two different values
2206 /// before and after this def.
2207 /// Used when clobbering undefined or dead lanes.
2208 CR_Replace,
2210 /// Unresolved conflict. Visit later when all values have been mapped.
2211 CR_Unresolved,
2213 /// Unresolvable conflict. Abort the join.
2214 CR_Impossible
2217 /// Per-value info for LI. The lane bit masks are all relative to the final
2218 /// joined register, so they can be compared directly between SrcReg and
2219 /// DstReg.
2220 struct Val {
2221 ConflictResolution Resolution = CR_Keep;
2223 /// Lanes written by this def, 0 for unanalyzed values.
2224 LaneBitmask WriteLanes;
2226 /// Lanes with defined values in this register. Other lanes are undef and
2227 /// safe to clobber.
2228 LaneBitmask ValidLanes;
2230 /// Value in LI being redefined by this def.
2231 VNInfo *RedefVNI = nullptr;
2233 /// Value in the other live range that overlaps this def, if any.
2234 VNInfo *OtherVNI = nullptr;
2236 /// Is this value an IMPLICIT_DEF that can be erased?
2238 /// IMPLICIT_DEF values should only exist at the end of a basic block that
2239 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
2240 /// safely erased if they are overlapping a live value in the other live
2241 /// interval.
2243 /// Weird control flow graphs and incomplete PHI handling in
2244 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
2245 /// longer live ranges. Such IMPLICIT_DEF values should be treated like
2246 /// normal values.
2247 bool ErasableImplicitDef = false;
2249 /// True when the live range of this value will be pruned because of an
2250 /// overlapping CR_Replace value in the other live range.
2251 bool Pruned = false;
2253 /// True once Pruned above has been computed.
2254 bool PrunedComputed = false;
2256 /// True if this value is determined to be identical to OtherVNI
2257 /// (in valuesIdentical). This is used with CR_Erase where the erased
2258 /// copy is redundant, i.e. the source value is already the same as
2259 /// the destination. In such cases the subranges need to be updated
2260 /// properly. See comment at pruneSubRegValues for more info.
2261 bool Identical = false;
2263 Val() = default;
2265 bool isAnalyzed() const { return WriteLanes.any(); }
2268 /// One entry per value number in LI.
2269 SmallVector<Val, 8> Vals;
2271 /// Compute the bitmask of lanes actually written by DefMI.
2272 /// Set Redef if there are any partial register definitions that depend on the
2273 /// previous value of the register.
2274 LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const;
2276 /// Find the ultimate value that VNI was copied from.
2277 std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const;
2279 bool valuesIdentical(VNInfo *Value0, VNInfo *Value1, const JoinVals &Other) const;
2281 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
2282 /// Return a conflict resolution when possible, but leave the hard cases as
2283 /// CR_Unresolved.
2284 /// Recursively calls computeAssignment() on this and Other, guaranteeing that
2285 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
2286 /// The recursion always goes upwards in the dominator tree, making loops
2287 /// impossible.
2288 ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
2290 /// Compute the value assignment for ValNo in RI.
2291 /// This may be called recursively by analyzeValue(), but never for a ValNo on
2292 /// the stack.
2293 void computeAssignment(unsigned ValNo, JoinVals &Other);
2295 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute
2296 /// the extent of the tainted lanes in the block.
2298 /// Multiple values in Other.LR can be affected since partial redefinitions
2299 /// can preserve previously tainted lanes.
2301 /// 1 %dst = VLOAD <-- Define all lanes in %dst
2302 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0
2303 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0
2304 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
2306 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
2307 /// entry to TaintedVals.
2309 /// Returns false if the tainted lanes extend beyond the basic block.
2310 bool
2311 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2312 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent);
2314 /// Return true if MI uses any of the given Lanes from Reg.
2315 /// This does not include partial redefinitions of Reg.
2316 bool usesLanes(const MachineInstr &MI, unsigned, unsigned, LaneBitmask) const;
2318 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will
2319 /// be pruned:
2321 /// %dst = COPY %src
2322 /// %src = COPY %dst <-- This value to be pruned.
2323 /// %dst = COPY %src <-- This value is a copy of a pruned value.
2324 bool isPrunedValue(unsigned ValNo, JoinVals &Other);
2326 public:
2327 JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, LaneBitmask LaneMask,
2328 SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp,
2329 LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin,
2330 bool TrackSubRegLiveness)
2331 : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask),
2332 SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness),
2333 NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()),
2334 TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums()) {}
2336 /// Analyze defs in LR and compute a value mapping in NewVNInfo.
2337 /// Returns false if any conflicts were impossible to resolve.
2338 bool mapValues(JoinVals &Other);
2340 /// Try to resolve conflicts that require all values to be mapped.
2341 /// Returns false if any conflicts were impossible to resolve.
2342 bool resolveConflicts(JoinVals &Other);
2344 /// Prune the live range of values in Other.LR where they would conflict with
2345 /// CR_Replace values in LR. Collect end points for restoring the live range
2346 /// after joining.
2347 void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints,
2348 bool changeInstrs);
2350 /// Removes subranges starting at copies that get removed. This sometimes
2351 /// happens when undefined subranges are copied around. These ranges contain
2352 /// no useful information and can be removed.
2353 void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask);
2355 /// Pruning values in subranges can lead to removing segments in these
2356 /// subranges started by IMPLICIT_DEFs. The corresponding segments in
2357 /// the main range also need to be removed. This function will mark
2358 /// the corresponding values in the main range as pruned, so that
2359 /// eraseInstrs can do the final cleanup.
2360 /// The parameter @p LI must be the interval whose main range is the
2361 /// live range LR.
2362 void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange);
2364 /// Erase any machine instructions that have been coalesced away.
2365 /// Add erased instructions to ErasedInstrs.
2366 /// Add foreign virtual registers to ShrinkRegs if their live range ended at
2367 /// the erased instrs.
2368 void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
2369 SmallVectorImpl<unsigned> &ShrinkRegs,
2370 LiveInterval *LI = nullptr);
2372 /// Remove liverange defs at places where implicit defs will be removed.
2373 void removeImplicitDefs();
2375 /// Get the value assignments suitable for passing to LiveInterval::join.
2376 const int *getAssignments() const { return Assignments.data(); }
2379 } // end anonymous namespace
2381 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef)
2382 const {
2383 LaneBitmask L;
2384 for (const MachineOperand &MO : DefMI->operands()) {
2385 if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef())
2386 continue;
2387 L |= TRI->getSubRegIndexLaneMask(
2388 TRI->composeSubRegIndices(SubIdx, MO.getSubReg()));
2389 if (MO.readsReg())
2390 Redef = true;
2392 return L;
2395 std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain(
2396 const VNInfo *VNI) const {
2397 unsigned TrackReg = Reg;
2399 while (!VNI->isPHIDef()) {
2400 SlotIndex Def = VNI->def;
2401 MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
2402 assert(MI && "No defining instruction");
2403 if (!MI->isFullCopy())
2404 return std::make_pair(VNI, TrackReg);
2405 unsigned SrcReg = MI->getOperand(1).getReg();
2406 if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
2407 return std::make_pair(VNI, TrackReg);
2409 const LiveInterval &LI = LIS->getInterval(SrcReg);
2410 const VNInfo *ValueIn;
2411 // No subrange involved.
2412 if (!SubRangeJoin || !LI.hasSubRanges()) {
2413 LiveQueryResult LRQ = LI.Query(Def);
2414 ValueIn = LRQ.valueIn();
2415 } else {
2416 // Query subranges. Ensure that all matching ones take us to the same def
2417 // (allowing some of them to be undef).
2418 ValueIn = nullptr;
2419 for (const LiveInterval::SubRange &S : LI.subranges()) {
2420 // Transform lanemask to a mask in the joined live interval.
2421 LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask);
2422 if ((SMask & LaneMask).none())
2423 continue;
2424 LiveQueryResult LRQ = S.Query(Def);
2425 if (!ValueIn) {
2426 ValueIn = LRQ.valueIn();
2427 continue;
2429 if (LRQ.valueIn() && ValueIn != LRQ.valueIn())
2430 return std::make_pair(VNI, TrackReg);
2433 if (ValueIn == nullptr) {
2434 // Reaching an undefined value is legitimate, for example:
2436 // 1 undef %0.sub1 = ... ;; %0.sub0 == undef
2437 // 2 %1 = COPY %0 ;; %1 is defined here.
2438 // 3 %0 = COPY %1 ;; Now %0.sub0 has a definition,
2439 // ;; but it's equivalent to "undef".
2440 return std::make_pair(nullptr, SrcReg);
2442 VNI = ValueIn;
2443 TrackReg = SrcReg;
2445 return std::make_pair(VNI, TrackReg);
2448 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1,
2449 const JoinVals &Other) const {
2450 const VNInfo *Orig0;
2451 unsigned Reg0;
2452 std::tie(Orig0, Reg0) = followCopyChain(Value0);
2453 if (Orig0 == Value1 && Reg0 == Other.Reg)
2454 return true;
2456 const VNInfo *Orig1;
2457 unsigned Reg1;
2458 std::tie(Orig1, Reg1) = Other.followCopyChain(Value1);
2459 // If both values are undefined, and the source registers are the same
2460 // register, the values are identical. Filter out cases where only one
2461 // value is defined.
2462 if (Orig0 == nullptr || Orig1 == nullptr)
2463 return Orig0 == Orig1 && Reg0 == Reg1;
2465 // The values are equal if they are defined at the same place and use the
2466 // same register. Note that we cannot compare VNInfos directly as some of
2467 // them might be from a copy created in mergeSubRangeInto() while the other
2468 // is from the original LiveInterval.
2469 return Orig0->def == Orig1->def && Reg0 == Reg1;
2472 JoinVals::ConflictResolution
2473 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
2474 Val &V = Vals[ValNo];
2475 assert(!V.isAnalyzed() && "Value has already been analyzed!");
2476 VNInfo *VNI = LR.getValNumInfo(ValNo);
2477 if (VNI->isUnused()) {
2478 V.WriteLanes = LaneBitmask::getAll();
2479 return CR_Keep;
2482 // Get the instruction defining this value, compute the lanes written.
2483 const MachineInstr *DefMI = nullptr;
2484 if (VNI->isPHIDef()) {
2485 // Conservatively assume that all lanes in a PHI are valid.
2486 LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0)
2487 : TRI->getSubRegIndexLaneMask(SubIdx);
2488 V.ValidLanes = V.WriteLanes = Lanes;
2489 } else {
2490 DefMI = Indexes->getInstructionFromIndex(VNI->def);
2491 assert(DefMI != nullptr);
2492 if (SubRangeJoin) {
2493 // We don't care about the lanes when joining subregister ranges.
2494 V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0);
2495 if (DefMI->isImplicitDef()) {
2496 V.ValidLanes = LaneBitmask::getNone();
2497 V.ErasableImplicitDef = true;
2499 } else {
2500 bool Redef = false;
2501 V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
2503 // If this is a read-modify-write instruction, there may be more valid
2504 // lanes than the ones written by this instruction.
2505 // This only covers partial redef operands. DefMI may have normal use
2506 // operands reading the register. They don't contribute valid lanes.
2508 // This adds ssub1 to the set of valid lanes in %src:
2510 // %src:ssub1 = FOO
2512 // This leaves only ssub1 valid, making any other lanes undef:
2514 // %src:ssub1<def,read-undef> = FOO %src:ssub2
2516 // The <read-undef> flag on the def operand means that old lane values are
2517 // not important.
2518 if (Redef) {
2519 V.RedefVNI = LR.Query(VNI->def).valueIn();
2520 assert((TrackSubRegLiveness || V.RedefVNI) &&
2521 "Instruction is reading nonexistent value");
2522 if (V.RedefVNI != nullptr) {
2523 computeAssignment(V.RedefVNI->id, Other);
2524 V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
2528 // An IMPLICIT_DEF writes undef values.
2529 if (DefMI->isImplicitDef()) {
2530 // We normally expect IMPLICIT_DEF values to be live only until the end
2531 // of their block. If the value is really live longer and gets pruned in
2532 // another block, this flag is cleared again.
2534 // Clearing the valid lanes is deferred until it is sure this can be
2535 // erased.
2536 V.ErasableImplicitDef = true;
2541 // Find the value in Other that overlaps VNI->def, if any.
2542 LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def);
2544 // It is possible that both values are defined by the same instruction, or
2545 // the values are PHIs defined in the same block. When that happens, the two
2546 // values should be merged into one, but not into any preceding value.
2547 // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
2548 if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
2549 assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
2551 // One value stays, the other is merged. Keep the earlier one, or the first
2552 // one we see.
2553 if (OtherVNI->def < VNI->def)
2554 Other.computeAssignment(OtherVNI->id, *this);
2555 else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
2556 // This is an early-clobber def overlapping a live-in value in the other
2557 // register. Not mergeable.
2558 V.OtherVNI = OtherLRQ.valueIn();
2559 return CR_Impossible;
2561 V.OtherVNI = OtherVNI;
2562 Val &OtherV = Other.Vals[OtherVNI->id];
2563 // Keep this value, check for conflicts when analyzing OtherVNI.
2564 if (!OtherV.isAnalyzed())
2565 return CR_Keep;
2566 // Both sides have been analyzed now.
2567 // Allow overlapping PHI values. Any real interference would show up in a
2568 // predecessor, the PHI itself can't introduce any conflicts.
2569 if (VNI->isPHIDef())
2570 return CR_Merge;
2571 if ((V.ValidLanes & OtherV.ValidLanes).any())
2572 // Overlapping lanes can't be resolved.
2573 return CR_Impossible;
2574 else
2575 return CR_Merge;
2578 // No simultaneous def. Is Other live at the def?
2579 V.OtherVNI = OtherLRQ.valueIn();
2580 if (!V.OtherVNI)
2581 // No overlap, no conflict.
2582 return CR_Keep;
2584 assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
2586 // We have overlapping values, or possibly a kill of Other.
2587 // Recursively compute assignments up the dominator tree.
2588 Other.computeAssignment(V.OtherVNI->id, *this);
2589 Val &OtherV = Other.Vals[V.OtherVNI->id];
2591 if (OtherV.ErasableImplicitDef) {
2592 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
2593 // This shouldn't normally happen, but ProcessImplicitDefs can leave such
2594 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
2595 // technically.
2597 // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try
2598 // to erase the IMPLICIT_DEF instruction.
2599 if (DefMI &&
2600 DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
2601 LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
2602 << " extends into "
2603 << printMBBReference(*DefMI->getParent())
2604 << ", keeping it.\n");
2605 OtherV.ErasableImplicitDef = false;
2606 } else {
2607 // We deferred clearing these lanes in case we needed to save them
2608 OtherV.ValidLanes &= ~OtherV.WriteLanes;
2612 // Allow overlapping PHI values. Any real interference would show up in a
2613 // predecessor, the PHI itself can't introduce any conflicts.
2614 if (VNI->isPHIDef())
2615 return CR_Replace;
2617 // Check for simple erasable conflicts.
2618 if (DefMI->isImplicitDef()) {
2619 // We need the def for the subregister if there is nothing else live at the
2620 // subrange at this point.
2621 if (TrackSubRegLiveness
2622 && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)).none())
2623 return CR_Replace;
2624 return CR_Erase;
2627 // Include the non-conflict where DefMI is a coalescable copy that kills
2628 // OtherVNI. We still want the copy erased and value numbers merged.
2629 if (CP.isCoalescable(DefMI)) {
2630 // Some of the lanes copied from OtherVNI may be undef, making them undef
2631 // here too.
2632 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
2633 return CR_Erase;
2636 // This may not be a real conflict if DefMI simply kills Other and defines
2637 // VNI.
2638 if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
2639 return CR_Keep;
2641 // Handle the case where VNI and OtherVNI can be proven to be identical:
2643 // %other = COPY %ext
2644 // %this = COPY %ext <-- Erase this copy
2646 if (DefMI->isFullCopy() && !CP.isPartial() &&
2647 valuesIdentical(VNI, V.OtherVNI, Other)) {
2648 V.Identical = true;
2649 return CR_Erase;
2652 // The remaining checks apply to the lanes, which aren't tracked here. This
2653 // was already decided to be OK via the following CR_Replace condition.
2654 // CR_Replace.
2655 if (SubRangeJoin)
2656 return CR_Replace;
2658 // If the lanes written by this instruction were all undef in OtherVNI, it is
2659 // still safe to join the live ranges. This can't be done with a simple value
2660 // mapping, though - OtherVNI will map to multiple values:
2662 // 1 %dst:ssub0 = FOO <-- OtherVNI
2663 // 2 %src = BAR <-- VNI
2664 // 3 %dst:ssub1 = COPY killed %src <-- Eliminate this copy.
2665 // 4 BAZ killed %dst
2666 // 5 QUUX killed %src
2668 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
2669 // handles this complex value mapping.
2670 if ((V.WriteLanes & OtherV.ValidLanes).none())
2671 return CR_Replace;
2673 // If the other live range is killed by DefMI and the live ranges are still
2674 // overlapping, it must be because we're looking at an early clobber def:
2676 // %dst<def,early-clobber> = ASM killed %src
2678 // In this case, it is illegal to merge the two live ranges since the early
2679 // clobber def would clobber %src before it was read.
2680 if (OtherLRQ.isKill()) {
2681 // This case where the def doesn't overlap the kill is handled above.
2682 assert(VNI->def.isEarlyClobber() &&
2683 "Only early clobber defs can overlap a kill");
2684 return CR_Impossible;
2687 // VNI is clobbering live lanes in OtherVNI, but there is still the
2688 // possibility that no instructions actually read the clobbered lanes.
2689 // If we're clobbering all the lanes in OtherVNI, at least one must be read.
2690 // Otherwise Other.RI wouldn't be live here.
2691 if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none())
2692 return CR_Impossible;
2694 // We need to verify that no instructions are reading the clobbered lanes. To
2695 // save compile time, we'll only check that locally. Don't allow the tainted
2696 // value to escape the basic block.
2697 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2698 if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
2699 return CR_Impossible;
2701 // There are still some things that could go wrong besides clobbered lanes
2702 // being read, for example OtherVNI may be only partially redefined in MBB,
2703 // and some clobbered lanes could escape the block. Save this analysis for
2704 // resolveConflicts() when all values have been mapped. We need to know
2705 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
2706 // that now - the recursive analyzeValue() calls must go upwards in the
2707 // dominator tree.
2708 return CR_Unresolved;
2711 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
2712 Val &V = Vals[ValNo];
2713 if (V.isAnalyzed()) {
2714 // Recursion should always move up the dominator tree, so ValNo is not
2715 // supposed to reappear before it has been assigned.
2716 assert(Assignments[ValNo] != -1 && "Bad recursion?");
2717 return;
2719 switch ((V.Resolution = analyzeValue(ValNo, Other))) {
2720 case CR_Erase:
2721 case CR_Merge:
2722 // Merge this ValNo into OtherVNI.
2723 assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
2724 assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
2725 Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
2726 LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@'
2727 << LR.getValNumInfo(ValNo)->def << " into "
2728 << printReg(Other.Reg) << ':' << V.OtherVNI->id << '@'
2729 << V.OtherVNI->def << " --> @"
2730 << NewVNInfo[Assignments[ValNo]]->def << '\n');
2731 break;
2732 case CR_Replace:
2733 case CR_Unresolved: {
2734 // The other value is going to be pruned if this join is successful.
2735 assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
2736 Val &OtherV = Other.Vals[V.OtherVNI->id];
2737 // We cannot erase an IMPLICIT_DEF if we don't have valid values for all
2738 // its lanes.
2739 if (OtherV.ErasableImplicitDef &&
2740 TrackSubRegLiveness &&
2741 (OtherV.WriteLanes & ~V.ValidLanes).any()) {
2742 LLVM_DEBUG(dbgs() << "Cannot erase implicit_def with missing values\n");
2744 OtherV.ErasableImplicitDef = false;
2745 // The valid lanes written by the implicit_def were speculatively cleared
2746 // before, so make this more conservative. It may be better to track this,
2747 // I haven't found a testcase where it matters.
2748 OtherV.ValidLanes = LaneBitmask::getAll();
2751 OtherV.Pruned = true;
2752 LLVM_FALLTHROUGH;
2754 default:
2755 // This value number needs to go in the final joined live range.
2756 Assignments[ValNo] = NewVNInfo.size();
2757 NewVNInfo.push_back(LR.getValNumInfo(ValNo));
2758 break;
2762 bool JoinVals::mapValues(JoinVals &Other) {
2763 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2764 computeAssignment(i, Other);
2765 if (Vals[i].Resolution == CR_Impossible) {
2766 LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i
2767 << '@' << LR.getValNumInfo(i)->def << '\n');
2768 return false;
2771 return true;
2774 bool JoinVals::
2775 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2776 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) {
2777 VNInfo *VNI = LR.getValNumInfo(ValNo);
2778 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2779 SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
2781 // Scan Other.LR from VNI.def to MBBEnd.
2782 LiveInterval::iterator OtherI = Other.LR.find(VNI->def);
2783 assert(OtherI != Other.LR.end() && "No conflict?");
2784 do {
2785 // OtherI is pointing to a tainted value. Abort the join if the tainted
2786 // lanes escape the block.
2787 SlotIndex End = OtherI->end;
2788 if (End >= MBBEnd) {
2789 LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':'
2790 << OtherI->valno->id << '@' << OtherI->start << '\n');
2791 return false;
2793 LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':'
2794 << OtherI->valno->id << '@' << OtherI->start << " to "
2795 << End << '\n');
2796 // A dead def is not a problem.
2797 if (End.isDead())
2798 break;
2799 TaintExtent.push_back(std::make_pair(End, TaintedLanes));
2801 // Check for another def in the MBB.
2802 if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd)
2803 break;
2805 // Lanes written by the new def are no longer tainted.
2806 const Val &OV = Other.Vals[OtherI->valno->id];
2807 TaintedLanes &= ~OV.WriteLanes;
2808 if (!OV.RedefVNI)
2809 break;
2810 } while (TaintedLanes.any());
2811 return true;
2814 bool JoinVals::usesLanes(const MachineInstr &MI, unsigned Reg, unsigned SubIdx,
2815 LaneBitmask Lanes) const {
2816 if (MI.isDebugInstr())
2817 return false;
2818 for (const MachineOperand &MO : MI.operands()) {
2819 if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg)
2820 continue;
2821 if (!MO.readsReg())
2822 continue;
2823 unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg());
2824 if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any())
2825 return true;
2827 return false;
2830 bool JoinVals::resolveConflicts(JoinVals &Other) {
2831 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2832 Val &V = Vals[i];
2833 assert(V.Resolution != CR_Impossible && "Unresolvable conflict");
2834 if (V.Resolution != CR_Unresolved)
2835 continue;
2836 LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@'
2837 << LR.getValNumInfo(i)->def << '\n');
2838 if (SubRangeJoin)
2839 return false;
2841 ++NumLaneConflicts;
2842 assert(V.OtherVNI && "Inconsistent conflict resolution.");
2843 VNInfo *VNI = LR.getValNumInfo(i);
2844 const Val &OtherV = Other.Vals[V.OtherVNI->id];
2846 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
2847 // join, those lanes will be tainted with a wrong value. Get the extent of
2848 // the tainted lanes.
2849 LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
2850 SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent;
2851 if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
2852 // Tainted lanes would extend beyond the basic block.
2853 return false;
2855 assert(!TaintExtent.empty() && "There should be at least one conflict.");
2857 // Now look at the instructions from VNI->def to TaintExtent (inclusive).
2858 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2859 MachineBasicBlock::iterator MI = MBB->begin();
2860 if (!VNI->isPHIDef()) {
2861 MI = Indexes->getInstructionFromIndex(VNI->def);
2862 // No need to check the instruction defining VNI for reads.
2863 ++MI;
2865 assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
2866 "Interference ends on VNI->def. Should have been handled earlier");
2867 MachineInstr *LastMI =
2868 Indexes->getInstructionFromIndex(TaintExtent.front().first);
2869 assert(LastMI && "Range must end at a proper instruction");
2870 unsigned TaintNum = 0;
2871 while (true) {
2872 assert(MI != MBB->end() && "Bad LastMI");
2873 if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) {
2874 LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
2875 return false;
2877 // LastMI is the last instruction to use the current value.
2878 if (&*MI == LastMI) {
2879 if (++TaintNum == TaintExtent.size())
2880 break;
2881 LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
2882 assert(LastMI && "Range must end at a proper instruction");
2883 TaintedLanes = TaintExtent[TaintNum].second;
2885 ++MI;
2888 // The tainted lanes are unused.
2889 V.Resolution = CR_Replace;
2890 ++NumLaneResolves;
2892 return true;
2895 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
2896 Val &V = Vals[ValNo];
2897 if (V.Pruned || V.PrunedComputed)
2898 return V.Pruned;
2900 if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
2901 return V.Pruned;
2903 // Follow copies up the dominator tree and check if any intermediate value
2904 // has been pruned.
2905 V.PrunedComputed = true;
2906 V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
2907 return V.Pruned;
2910 void JoinVals::pruneValues(JoinVals &Other,
2911 SmallVectorImpl<SlotIndex> &EndPoints,
2912 bool changeInstrs) {
2913 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2914 SlotIndex Def = LR.getValNumInfo(i)->def;
2915 switch (Vals[i].Resolution) {
2916 case CR_Keep:
2917 break;
2918 case CR_Replace: {
2919 // This value takes precedence over the value in Other.LR.
2920 LIS->pruneValue(Other.LR, Def, &EndPoints);
2921 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
2922 // instructions are only inserted to provide a live-out value for PHI
2923 // predecessors, so the instruction should simply go away once its value
2924 // has been replaced.
2925 Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
2926 bool EraseImpDef = OtherV.ErasableImplicitDef &&
2927 OtherV.Resolution == CR_Keep;
2928 if (!Def.isBlock()) {
2929 if (changeInstrs) {
2930 // Remove <def,read-undef> flags. This def is now a partial redef.
2931 // Also remove dead flags since the joined live range will
2932 // continue past this instruction.
2933 for (MachineOperand &MO :
2934 Indexes->getInstructionFromIndex(Def)->operands()) {
2935 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) {
2936 if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef)
2937 MO.setIsUndef(false);
2938 MO.setIsDead(false);
2942 // This value will reach instructions below, but we need to make sure
2943 // the live range also reaches the instruction at Def.
2944 if (!EraseImpDef)
2945 EndPoints.push_back(Def);
2947 LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def
2948 << ": " << Other.LR << '\n');
2949 break;
2951 case CR_Erase:
2952 case CR_Merge:
2953 if (isPrunedValue(i, Other)) {
2954 // This value is ultimately a copy of a pruned value in LR or Other.LR.
2955 // We can no longer trust the value mapping computed by
2956 // computeAssignment(), the value that was originally copied could have
2957 // been replaced.
2958 LIS->pruneValue(LR, Def, &EndPoints);
2959 LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at "
2960 << Def << ": " << LR << '\n');
2962 break;
2963 case CR_Unresolved:
2964 case CR_Impossible:
2965 llvm_unreachable("Unresolved conflicts");
2970 /// Consider the following situation when coalescing the copy between
2971 /// %31 and %45 at 800. (The vertical lines represent live range segments.)
2973 /// Main range Subrange 0004 (sub2)
2974 /// %31 %45 %31 %45
2975 /// 544 %45 = COPY %28 + +
2976 /// | v1 | v1
2977 /// 560B bb.1: + +
2978 /// 624 = %45.sub2 | v2 | v2
2979 /// 800 %31 = COPY %45 + + + +
2980 /// | v0 | v0
2981 /// 816 %31.sub1 = ... + |
2982 /// 880 %30 = COPY %31 | v1 +
2983 /// 928 %45 = COPY %30 | + +
2984 /// | | v0 | v0 <--+
2985 /// 992B ; backedge -> bb.1 | + + |
2986 /// 1040 = %31.sub0 + |
2987 /// This value must remain
2988 /// live-out!
2990 /// Assuming that %31 is coalesced into %45, the copy at 928 becomes
2991 /// redundant, since it copies the value from %45 back into it. The
2992 /// conflict resolution for the main range determines that %45.v0 is
2993 /// to be erased, which is ok since %31.v1 is identical to it.
2994 /// The problem happens with the subrange for sub2: it has to be live
2995 /// on exit from the block, but since 928 was actually a point of
2996 /// definition of %45.sub2, %45.sub2 was not live immediately prior
2997 /// to that definition. As a result, when 928 was erased, the value v0
2998 /// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an
2999 /// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2,
3000 /// providing an incorrect value to the use at 624.
3002 /// Since the main-range values %31.v1 and %45.v0 were proved to be
3003 /// identical, the corresponding values in subranges must also be the
3004 /// same. A redundant copy is removed because it's not needed, and not
3005 /// because it copied an undefined value, so any liveness that originated
3006 /// from that copy cannot disappear. When pruning a value that started
3007 /// at the removed copy, the corresponding identical value must be
3008 /// extended to replace it.
3009 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) {
3010 // Look for values being erased.
3011 bool DidPrune = false;
3012 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3013 Val &V = Vals[i];
3014 // We should trigger in all cases in which eraseInstrs() does something.
3015 // match what eraseInstrs() is doing, print a message so
3016 if (V.Resolution != CR_Erase &&
3017 (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned))
3018 continue;
3020 // Check subranges at the point where the copy will be removed.
3021 SlotIndex Def = LR.getValNumInfo(i)->def;
3022 SlotIndex OtherDef;
3023 if (V.Identical)
3024 OtherDef = V.OtherVNI->def;
3026 // Print message so mismatches with eraseInstrs() can be diagnosed.
3027 LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def
3028 << '\n');
3029 for (LiveInterval::SubRange &S : LI.subranges()) {
3030 LiveQueryResult Q = S.Query(Def);
3032 // If a subrange starts at the copy then an undefined value has been
3033 // copied and we must remove that subrange value as well.
3034 VNInfo *ValueOut = Q.valueOutOrDead();
3035 if (ValueOut != nullptr && Q.valueIn() == nullptr) {
3036 LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask)
3037 << " at " << Def << "\n");
3038 SmallVector<SlotIndex,8> EndPoints;
3039 LIS->pruneValue(S, Def, &EndPoints);
3040 DidPrune = true;
3041 // Mark value number as unused.
3042 ValueOut->markUnused();
3044 if (V.Identical && S.Query(OtherDef).valueOut()) {
3045 // If V is identical to V.OtherVNI (and S was live at OtherDef),
3046 // then we can't simply prune V from S. V needs to be replaced
3047 // with V.OtherVNI.
3048 LIS->extendToIndices(S, EndPoints);
3050 continue;
3052 // If a subrange ends at the copy, then a value was copied but only
3053 // partially used later. Shrink the subregister range appropriately.
3054 if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) {
3055 LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane "
3056 << PrintLaneMask(S.LaneMask) << " at " << Def
3057 << "\n");
3058 ShrinkMask |= S.LaneMask;
3062 if (DidPrune)
3063 LI.removeEmptySubRanges();
3066 /// Check if any of the subranges of @p LI contain a definition at @p Def.
3067 static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) {
3068 for (LiveInterval::SubRange &SR : LI.subranges()) {
3069 if (VNInfo *VNI = SR.Query(Def).valueOutOrDead())
3070 if (VNI->def == Def)
3071 return true;
3073 return false;
3076 void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) {
3077 assert(&static_cast<LiveRange&>(LI) == &LR);
3079 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3080 if (Vals[i].Resolution != CR_Keep)
3081 continue;
3082 VNInfo *VNI = LR.getValNumInfo(i);
3083 if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def))
3084 continue;
3085 Vals[i].Pruned = true;
3086 ShrinkMainRange = true;
3090 void JoinVals::removeImplicitDefs() {
3091 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3092 Val &V = Vals[i];
3093 if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)
3094 continue;
3096 VNInfo *VNI = LR.getValNumInfo(i);
3097 VNI->markUnused();
3098 LR.removeValNo(VNI);
3102 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
3103 SmallVectorImpl<unsigned> &ShrinkRegs,
3104 LiveInterval *LI) {
3105 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3106 // Get the def location before markUnused() below invalidates it.
3107 SlotIndex Def = LR.getValNumInfo(i)->def;
3108 switch (Vals[i].Resolution) {
3109 case CR_Keep: {
3110 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
3111 // longer. The IMPLICIT_DEF instructions are only inserted by
3112 // PHIElimination to guarantee that all PHI predecessors have a value.
3113 if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
3114 break;
3115 // Remove value number i from LR.
3116 // For intervals with subranges, removing a segment from the main range
3117 // may require extending the previous segment: for each definition of
3118 // a subregister, there will be a corresponding def in the main range.
3119 // That def may fall in the middle of a segment from another subrange.
3120 // In such cases, removing this def from the main range must be
3121 // complemented by extending the main range to account for the liveness
3122 // of the other subrange.
3123 VNInfo *VNI = LR.getValNumInfo(i);
3124 SlotIndex Def = VNI->def;
3125 // The new end point of the main range segment to be extended.
3126 SlotIndex NewEnd;
3127 if (LI != nullptr) {
3128 LiveRange::iterator I = LR.FindSegmentContaining(Def);
3129 assert(I != LR.end());
3130 // Do not extend beyond the end of the segment being removed.
3131 // The segment may have been pruned in preparation for joining
3132 // live ranges.
3133 NewEnd = I->end;
3136 LR.removeValNo(VNI);
3137 // Note that this VNInfo is reused and still referenced in NewVNInfo,
3138 // make it appear like an unused value number.
3139 VNI->markUnused();
3141 if (LI != nullptr && LI->hasSubRanges()) {
3142 assert(static_cast<LiveRange*>(LI) == &LR);
3143 // Determine the end point based on the subrange information:
3144 // minimum of (earliest def of next segment,
3145 // latest end point of containing segment)
3146 SlotIndex ED, LE;
3147 for (LiveInterval::SubRange &SR : LI->subranges()) {
3148 LiveRange::iterator I = SR.find(Def);
3149 if (I == SR.end())
3150 continue;
3151 if (I->start > Def)
3152 ED = ED.isValid() ? std::min(ED, I->start) : I->start;
3153 else
3154 LE = LE.isValid() ? std::max(LE, I->end) : I->end;
3156 if (LE.isValid())
3157 NewEnd = std::min(NewEnd, LE);
3158 if (ED.isValid())
3159 NewEnd = std::min(NewEnd, ED);
3161 // We only want to do the extension if there was a subrange that
3162 // was live across Def.
3163 if (LE.isValid()) {
3164 LiveRange::iterator S = LR.find(Def);
3165 if (S != LR.begin())
3166 std::prev(S)->end = NewEnd;
3169 LLVM_DEBUG({
3170 dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n';
3171 if (LI != nullptr)
3172 dbgs() << "\t\t LHS = " << *LI << '\n';
3174 LLVM_FALLTHROUGH;
3177 case CR_Erase: {
3178 MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
3179 assert(MI && "No instruction to erase");
3180 if (MI->isCopy()) {
3181 unsigned Reg = MI->getOperand(1).getReg();
3182 if (TargetRegisterInfo::isVirtualRegister(Reg) &&
3183 Reg != CP.getSrcReg() && Reg != CP.getDstReg())
3184 ShrinkRegs.push_back(Reg);
3186 ErasedInstrs.insert(MI);
3187 LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
3188 LIS->RemoveMachineInstrFromMaps(*MI);
3189 MI->eraseFromParent();
3190 break;
3192 default:
3193 break;
3198 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
3199 LaneBitmask LaneMask,
3200 const CoalescerPair &CP) {
3201 SmallVector<VNInfo*, 16> NewVNInfo;
3202 JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask,
3203 NewVNInfo, CP, LIS, TRI, true, true);
3204 JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask,
3205 NewVNInfo, CP, LIS, TRI, true, true);
3207 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs())
3208 // We should be able to resolve all conflicts here as we could successfully do
3209 // it on the mainrange already. There is however a problem when multiple
3210 // ranges get mapped to the "overflow" lane mask bit which creates unexpected
3211 // interferences.
3212 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) {
3213 // We already determined that it is legal to merge the intervals, so this
3214 // should never fail.
3215 llvm_unreachable("*** Couldn't join subrange!\n");
3217 if (!LHSVals.resolveConflicts(RHSVals) ||
3218 !RHSVals.resolveConflicts(LHSVals)) {
3219 // We already determined that it is legal to merge the intervals, so this
3220 // should never fail.
3221 llvm_unreachable("*** Couldn't join subrange!\n");
3224 // The merging algorithm in LiveInterval::join() can't handle conflicting
3225 // value mappings, so we need to remove any live ranges that overlap a
3226 // CR_Replace resolution. Collect a set of end points that can be used to
3227 // restore the live range after joining.
3228 SmallVector<SlotIndex, 8> EndPoints;
3229 LHSVals.pruneValues(RHSVals, EndPoints, false);
3230 RHSVals.pruneValues(LHSVals, EndPoints, false);
3232 LHSVals.removeImplicitDefs();
3233 RHSVals.removeImplicitDefs();
3235 LRange.verify();
3236 RRange.verify();
3238 // Join RRange into LHS.
3239 LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(),
3240 NewVNInfo);
3242 LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask)
3243 << ' ' << LRange << "\n");
3244 if (EndPoints.empty())
3245 return;
3247 // Recompute the parts of the live range we had to remove because of
3248 // CR_Replace conflicts.
3249 LLVM_DEBUG({
3250 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3251 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3252 dbgs() << EndPoints[i];
3253 if (i != n-1)
3254 dbgs() << ',';
3256 dbgs() << ": " << LRange << '\n';
3258 LIS->extendToIndices(LRange, EndPoints);
3261 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI,
3262 const LiveRange &ToMerge,
3263 LaneBitmask LaneMask,
3264 CoalescerPair &CP) {
3265 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3266 LI.refineSubRanges(
3267 Allocator, LaneMask,
3268 [this, &Allocator, &ToMerge, &CP](LiveInterval::SubRange &SR) {
3269 if (SR.empty()) {
3270 SR.assign(ToMerge, Allocator);
3271 } else {
3272 // joinSubRegRange() destroys the merged range, so we need a copy.
3273 LiveRange RangeCopy(ToMerge, Allocator);
3274 joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP);
3277 *LIS->getSlotIndexes(), *TRI);
3280 bool RegisterCoalescer::isHighCostLiveInterval(LiveInterval &LI) {
3281 if (LI.valnos.size() < LargeIntervalSizeThreshold)
3282 return false;
3283 auto &Counter = LargeLIVisitCounter[LI.reg];
3284 if (Counter < LargeIntervalFreqThreshold) {
3285 Counter++;
3286 return false;
3288 return true;
3291 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
3292 SmallVector<VNInfo*, 16> NewVNInfo;
3293 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
3294 LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
3295 bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC());
3296 JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(),
3297 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3298 JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(),
3299 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3301 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n');
3303 if (isHighCostLiveInterval(LHS) || isHighCostLiveInterval(RHS))
3304 return false;
3306 // First compute NewVNInfo and the simple value mappings.
3307 // Detect impossible conflicts early.
3308 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
3309 return false;
3311 // Some conflicts can only be resolved after all values have been mapped.
3312 if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
3313 return false;
3315 // All clear, the live ranges can be merged.
3316 if (RHS.hasSubRanges() || LHS.hasSubRanges()) {
3317 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3319 // Transform lanemasks from the LHS to masks in the coalesced register and
3320 // create initial subranges if necessary.
3321 unsigned DstIdx = CP.getDstIdx();
3322 if (!LHS.hasSubRanges()) {
3323 LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask()
3324 : TRI->getSubRegIndexLaneMask(DstIdx);
3325 // LHS must support subregs or we wouldn't be in this codepath.
3326 assert(Mask.any());
3327 LHS.createSubRangeFrom(Allocator, Mask, LHS);
3328 } else if (DstIdx != 0) {
3329 // Transform LHS lanemasks to new register class if necessary.
3330 for (LiveInterval::SubRange &R : LHS.subranges()) {
3331 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask);
3332 R.LaneMask = Mask;
3335 LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHS
3336 << '\n');
3338 // Determine lanemasks of RHS in the coalesced register and merge subranges.
3339 unsigned SrcIdx = CP.getSrcIdx();
3340 if (!RHS.hasSubRanges()) {
3341 LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask()
3342 : TRI->getSubRegIndexLaneMask(SrcIdx);
3343 mergeSubRangeInto(LHS, RHS, Mask, CP);
3344 } else {
3345 // Pair up subranges and merge.
3346 for (LiveInterval::SubRange &R : RHS.subranges()) {
3347 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask);
3348 mergeSubRangeInto(LHS, R, Mask, CP);
3351 LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n");
3353 // Pruning implicit defs from subranges may result in the main range
3354 // having stale segments.
3355 LHSVals.pruneMainSegments(LHS, ShrinkMainRange);
3357 LHSVals.pruneSubRegValues(LHS, ShrinkMask);
3358 RHSVals.pruneSubRegValues(LHS, ShrinkMask);
3361 // The merging algorithm in LiveInterval::join() can't handle conflicting
3362 // value mappings, so we need to remove any live ranges that overlap a
3363 // CR_Replace resolution. Collect a set of end points that can be used to
3364 // restore the live range after joining.
3365 SmallVector<SlotIndex, 8> EndPoints;
3366 LHSVals.pruneValues(RHSVals, EndPoints, true);
3367 RHSVals.pruneValues(LHSVals, EndPoints, true);
3369 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
3370 // registers to require trimming.
3371 SmallVector<unsigned, 8> ShrinkRegs;
3372 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS);
3373 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
3374 while (!ShrinkRegs.empty())
3375 shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
3377 // Join RHS into LHS.
3378 LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo);
3380 // Kill flags are going to be wrong if the live ranges were overlapping.
3381 // Eventually, we should simply clear all kill flags when computing live
3382 // ranges. They are reinserted after register allocation.
3383 MRI->clearKillFlags(LHS.reg);
3384 MRI->clearKillFlags(RHS.reg);
3386 if (!EndPoints.empty()) {
3387 // Recompute the parts of the live range we had to remove because of
3388 // CR_Replace conflicts.
3389 LLVM_DEBUG({
3390 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3391 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3392 dbgs() << EndPoints[i];
3393 if (i != n-1)
3394 dbgs() << ',';
3396 dbgs() << ": " << LHS << '\n';
3398 LIS->extendToIndices((LiveRange&)LHS, EndPoints);
3401 return true;
3404 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
3405 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
3408 namespace {
3410 /// Information concerning MBB coalescing priority.
3411 struct MBBPriorityInfo {
3412 MachineBasicBlock *MBB;
3413 unsigned Depth;
3414 bool IsSplit;
3416 MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
3417 : MBB(mbb), Depth(depth), IsSplit(issplit) {}
3420 } // end anonymous namespace
3422 /// C-style comparator that sorts first based on the loop depth of the basic
3423 /// block (the unsigned), and then on the MBB number.
3425 /// EnableGlobalCopies assumes that the primary sort key is loop depth.
3426 static int compareMBBPriority(const MBBPriorityInfo *LHS,
3427 const MBBPriorityInfo *RHS) {
3428 // Deeper loops first
3429 if (LHS->Depth != RHS->Depth)
3430 return LHS->Depth > RHS->Depth ? -1 : 1;
3432 // Try to unsplit critical edges next.
3433 if (LHS->IsSplit != RHS->IsSplit)
3434 return LHS->IsSplit ? -1 : 1;
3436 // Prefer blocks that are more connected in the CFG. This takes care of
3437 // the most difficult copies first while intervals are short.
3438 unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
3439 unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
3440 if (cl != cr)
3441 return cl > cr ? -1 : 1;
3443 // As a last resort, sort by block number.
3444 return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
3447 /// \returns true if the given copy uses or defines a local live range.
3448 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
3449 if (!Copy->isCopy())
3450 return false;
3452 if (Copy->getOperand(1).isUndef())
3453 return false;
3455 unsigned SrcReg = Copy->getOperand(1).getReg();
3456 unsigned DstReg = Copy->getOperand(0).getReg();
3457 if (TargetRegisterInfo::isPhysicalRegister(SrcReg)
3458 || TargetRegisterInfo::isPhysicalRegister(DstReg))
3459 return false;
3461 return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
3462 || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
3465 void RegisterCoalescer::lateLiveIntervalUpdate() {
3466 for (unsigned reg : ToBeUpdated) {
3467 if (!LIS->hasInterval(reg))
3468 continue;
3469 LiveInterval &LI = LIS->getInterval(reg);
3470 shrinkToUses(&LI, &DeadDefs);
3471 if (!DeadDefs.empty())
3472 eliminateDeadDefs();
3474 ToBeUpdated.clear();
3477 bool RegisterCoalescer::
3478 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
3479 bool Progress = false;
3480 for (unsigned i = 0, e = CurrList.size(); i != e; ++i) {
3481 if (!CurrList[i])
3482 continue;
3483 // Skip instruction pointers that have already been erased, for example by
3484 // dead code elimination.
3485 if (ErasedInstrs.count(CurrList[i])) {
3486 CurrList[i] = nullptr;
3487 continue;
3489 bool Again = false;
3490 bool Success = joinCopy(CurrList[i], Again);
3491 Progress |= Success;
3492 if (Success || !Again)
3493 CurrList[i] = nullptr;
3495 return Progress;
3498 /// Check if DstReg is a terminal node.
3499 /// I.e., it does not have any affinity other than \p Copy.
3500 static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy,
3501 const MachineRegisterInfo *MRI) {
3502 assert(Copy.isCopyLike());
3503 // Check if the destination of this copy as any other affinity.
3504 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg))
3505 if (&MI != &Copy && MI.isCopyLike())
3506 return false;
3507 return true;
3510 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const {
3511 assert(Copy.isCopyLike());
3512 if (!UseTerminalRule)
3513 return false;
3514 unsigned DstReg, DstSubReg, SrcReg, SrcSubReg;
3515 isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg);
3516 // Check if the destination of this copy has any other affinity.
3517 if (TargetRegisterInfo::isPhysicalRegister(DstReg) ||
3518 // If SrcReg is a physical register, the copy won't be coalesced.
3519 // Ignoring it may have other side effect (like missing
3520 // rematerialization). So keep it.
3521 TargetRegisterInfo::isPhysicalRegister(SrcReg) ||
3522 !isTerminalReg(DstReg, Copy, MRI))
3523 return false;
3525 // DstReg is a terminal node. Check if it interferes with any other
3526 // copy involving SrcReg.
3527 const MachineBasicBlock *OrigBB = Copy.getParent();
3528 const LiveInterval &DstLI = LIS->getInterval(DstReg);
3529 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) {
3530 // Technically we should check if the weight of the new copy is
3531 // interesting compared to the other one and update the weight
3532 // of the copies accordingly. However, this would only work if
3533 // we would gather all the copies first then coalesce, whereas
3534 // right now we interleave both actions.
3535 // For now, just consider the copies that are in the same block.
3536 if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB)
3537 continue;
3538 unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg;
3539 isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg,
3540 OtherSubReg);
3541 if (OtherReg == SrcReg)
3542 OtherReg = OtherSrcReg;
3543 // Check if OtherReg is a non-terminal.
3544 if (TargetRegisterInfo::isPhysicalRegister(OtherReg) ||
3545 isTerminalReg(OtherReg, MI, MRI))
3546 continue;
3547 // Check that OtherReg interfere with DstReg.
3548 if (LIS->getInterval(OtherReg).overlaps(DstLI)) {
3549 LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg)
3550 << '\n');
3551 return true;
3554 return false;
3557 void
3558 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
3559 LLVM_DEBUG(dbgs() << MBB->getName() << ":\n");
3561 // Collect all copy-like instructions in MBB. Don't start coalescing anything
3562 // yet, it might invalidate the iterator.
3563 const unsigned PrevSize = WorkList.size();
3564 if (JoinGlobalCopies) {
3565 SmallVector<MachineInstr*, 2> LocalTerminals;
3566 SmallVector<MachineInstr*, 2> GlobalTerminals;
3567 // Coalesce copies bottom-up to coalesce local defs before local uses. They
3568 // are not inherently easier to resolve, but slightly preferable until we
3569 // have local live range splitting. In particular this is required by
3570 // cmp+jmp macro fusion.
3571 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
3572 MII != E; ++MII) {
3573 if (!MII->isCopyLike())
3574 continue;
3575 bool ApplyTerminalRule = applyTerminalRule(*MII);
3576 if (isLocalCopy(&(*MII), LIS)) {
3577 if (ApplyTerminalRule)
3578 LocalTerminals.push_back(&(*MII));
3579 else
3580 LocalWorkList.push_back(&(*MII));
3581 } else {
3582 if (ApplyTerminalRule)
3583 GlobalTerminals.push_back(&(*MII));
3584 else
3585 WorkList.push_back(&(*MII));
3588 // Append the copies evicted by the terminal rule at the end of the list.
3589 LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end());
3590 WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end());
3592 else {
3593 SmallVector<MachineInstr*, 2> Terminals;
3594 for (MachineInstr &MII : *MBB)
3595 if (MII.isCopyLike()) {
3596 if (applyTerminalRule(MII))
3597 Terminals.push_back(&MII);
3598 else
3599 WorkList.push_back(&MII);
3601 // Append the copies evicted by the terminal rule at the end of the list.
3602 WorkList.append(Terminals.begin(), Terminals.end());
3604 // Try coalescing the collected copies immediately, and remove the nulls.
3605 // This prevents the WorkList from getting too large since most copies are
3606 // joinable on the first attempt.
3607 MutableArrayRef<MachineInstr*>
3608 CurrList(WorkList.begin() + PrevSize, WorkList.end());
3609 if (copyCoalesceWorkList(CurrList))
3610 WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
3611 nullptr), WorkList.end());
3614 void RegisterCoalescer::coalesceLocals() {
3615 copyCoalesceWorkList(LocalWorkList);
3616 for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
3617 if (LocalWorkList[j])
3618 WorkList.push_back(LocalWorkList[j]);
3620 LocalWorkList.clear();
3623 void RegisterCoalescer::joinAllIntervals() {
3624 LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
3625 assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
3627 std::vector<MBBPriorityInfo> MBBs;
3628 MBBs.reserve(MF->size());
3629 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) {
3630 MachineBasicBlock *MBB = &*I;
3631 MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB),
3632 JoinSplitEdges && isSplitEdge(MBB)));
3634 array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
3636 // Coalesce intervals in MBB priority order.
3637 unsigned CurrDepth = std::numeric_limits<unsigned>::max();
3638 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
3639 // Try coalescing the collected local copies for deeper loops.
3640 if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) {
3641 coalesceLocals();
3642 CurrDepth = MBBs[i].Depth;
3644 copyCoalesceInMBB(MBBs[i].MBB);
3646 lateLiveIntervalUpdate();
3647 coalesceLocals();
3649 // Joining intervals can allow other intervals to be joined. Iteratively join
3650 // until we make no progress.
3651 while (copyCoalesceWorkList(WorkList))
3652 /* empty */ ;
3653 lateLiveIntervalUpdate();
3656 void RegisterCoalescer::releaseMemory() {
3657 ErasedInstrs.clear();
3658 WorkList.clear();
3659 DeadDefs.clear();
3660 InflateRegs.clear();
3661 LargeLIVisitCounter.clear();
3664 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
3665 MF = &fn;
3666 MRI = &fn.getRegInfo();
3667 const TargetSubtargetInfo &STI = fn.getSubtarget();
3668 TRI = STI.getRegisterInfo();
3669 TII = STI.getInstrInfo();
3670 LIS = &getAnalysis<LiveIntervals>();
3671 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3672 Loops = &getAnalysis<MachineLoopInfo>();
3673 if (EnableGlobalCopies == cl::BOU_UNSET)
3674 JoinGlobalCopies = STI.enableJoinGlobalCopies();
3675 else
3676 JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
3678 // The MachineScheduler does not currently require JoinSplitEdges. This will
3679 // either be enabled unconditionally or replaced by a more general live range
3680 // splitting optimization.
3681 JoinSplitEdges = EnableJoinSplits;
3683 LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
3684 << "********** Function: " << MF->getName() << '\n');
3686 if (VerifyCoalescing)
3687 MF->verify(this, "Before register coalescing");
3689 RegClassInfo.runOnMachineFunction(fn);
3691 // Join (coalesce) intervals if requested.
3692 if (EnableJoining)
3693 joinAllIntervals();
3695 // After deleting a lot of copies, register classes may be less constrained.
3696 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
3697 // DPR inflation.
3698 array_pod_sort(InflateRegs.begin(), InflateRegs.end());
3699 InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
3700 InflateRegs.end());
3701 LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size()
3702 << " regs.\n");
3703 for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
3704 unsigned Reg = InflateRegs[i];
3705 if (MRI->reg_nodbg_empty(Reg))
3706 continue;
3707 if (MRI->recomputeRegClass(Reg)) {
3708 LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to "
3709 << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n');
3710 ++NumInflated;
3712 LiveInterval &LI = LIS->getInterval(Reg);
3713 if (LI.hasSubRanges()) {
3714 // If the inflated register class does not support subregisters anymore
3715 // remove the subranges.
3716 if (!MRI->shouldTrackSubRegLiveness(Reg)) {
3717 LI.clearSubRanges();
3718 } else {
3719 #ifndef NDEBUG
3720 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
3721 // If subranges are still supported, then the same subregs
3722 // should still be supported.
3723 for (LiveInterval::SubRange &S : LI.subranges()) {
3724 assert((S.LaneMask & ~MaxMask).none());
3726 #endif
3732 LLVM_DEBUG(dump());
3733 if (VerifyCoalescing)
3734 MF->verify(this, "After register coalescing");
3735 return true;
3738 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
3739 LIS->print(O, m);