Another attempt to fix the build bot breaks after r360426
[llvm-core.git] / lib / CodeGen / SelectionDAG / SelectionDAG.cpp
blob3597c6d86c5c58203475021863556f309c7859ea
1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/CodeGen/ISDOpcodes.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineConstantPool.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/RuntimeLibcalls.h"
35 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
36 #include "llvm/CodeGen/SelectionDAGNodes.h"
37 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/CodeGen/ValueTypes.h"
42 #include "llvm/IR/Constant.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DataLayout.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/IR/DerivedTypes.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CodeGen.h"
55 #include "llvm/Support/Compiler.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/KnownBits.h"
59 #include "llvm/Support/MachineValueType.h"
60 #include "llvm/Support/ManagedStatic.h"
61 #include "llvm/Support/MathExtras.h"
62 #include "llvm/Support/Mutex.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Target/TargetMachine.h"
65 #include "llvm/Target/TargetOptions.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstdint>
69 #include <cstdlib>
70 #include <limits>
71 #include <set>
72 #include <string>
73 #include <utility>
74 #include <vector>
76 using namespace llvm;
78 /// makeVTList - Return an instance of the SDVTList struct initialized with the
79 /// specified members.
80 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
81 SDVTList Res = {VTs, NumVTs};
82 return Res;
85 // Default null implementations of the callbacks.
86 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
87 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
88 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
90 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
92 #define DEBUG_TYPE "selectiondag"
94 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
95 cl::Hidden, cl::init(true),
96 cl::desc("Gang up loads and stores generated by inlining of memcpy"));
98 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
99 cl::desc("Number limit for gluing ld/st of memcpy."),
100 cl::Hidden, cl::init(0));
102 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
103 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
106 //===----------------------------------------------------------------------===//
107 // ConstantFPSDNode Class
108 //===----------------------------------------------------------------------===//
110 /// isExactlyValue - We don't rely on operator== working on double values, as
111 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
112 /// As such, this method can be used to do an exact bit-for-bit comparison of
113 /// two floating point values.
114 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
115 return getValueAPF().bitwiseIsEqual(V);
118 bool ConstantFPSDNode::isValueValidForType(EVT VT,
119 const APFloat& Val) {
120 assert(VT.isFloatingPoint() && "Can only convert between FP types");
122 // convert modifies in place, so make a copy.
123 APFloat Val2 = APFloat(Val);
124 bool losesInfo;
125 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
126 APFloat::rmNearestTiesToEven,
127 &losesInfo);
128 return !losesInfo;
131 //===----------------------------------------------------------------------===//
132 // ISD Namespace
133 //===----------------------------------------------------------------------===//
135 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
136 auto *BV = dyn_cast<BuildVectorSDNode>(N);
137 if (!BV)
138 return false;
140 APInt SplatUndef;
141 unsigned SplatBitSize;
142 bool HasUndefs;
143 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
144 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
145 EltSize) &&
146 EltSize == SplatBitSize;
149 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
150 // specializations of the more general isConstantSplatVector()?
152 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
153 // Look through a bit convert.
154 while (N->getOpcode() == ISD::BITCAST)
155 N = N->getOperand(0).getNode();
157 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
159 unsigned i = 0, e = N->getNumOperands();
161 // Skip over all of the undef values.
162 while (i != e && N->getOperand(i).isUndef())
163 ++i;
165 // Do not accept an all-undef vector.
166 if (i == e) return false;
168 // Do not accept build_vectors that aren't all constants or which have non-~0
169 // elements. We have to be a bit careful here, as the type of the constant
170 // may not be the same as the type of the vector elements due to type
171 // legalization (the elements are promoted to a legal type for the target and
172 // a vector of a type may be legal when the base element type is not).
173 // We only want to check enough bits to cover the vector elements, because
174 // we care if the resultant vector is all ones, not whether the individual
175 // constants are.
176 SDValue NotZero = N->getOperand(i);
177 unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
178 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
179 if (CN->getAPIntValue().countTrailingOnes() < EltSize)
180 return false;
181 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
182 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
183 return false;
184 } else
185 return false;
187 // Okay, we have at least one ~0 value, check to see if the rest match or are
188 // undefs. Even with the above element type twiddling, this should be OK, as
189 // the same type legalization should have applied to all the elements.
190 for (++i; i != e; ++i)
191 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
192 return false;
193 return true;
196 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
197 // Look through a bit convert.
198 while (N->getOpcode() == ISD::BITCAST)
199 N = N->getOperand(0).getNode();
201 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
203 bool IsAllUndef = true;
204 for (const SDValue &Op : N->op_values()) {
205 if (Op.isUndef())
206 continue;
207 IsAllUndef = false;
208 // Do not accept build_vectors that aren't all constants or which have non-0
209 // elements. We have to be a bit careful here, as the type of the constant
210 // may not be the same as the type of the vector elements due to type
211 // legalization (the elements are promoted to a legal type for the target
212 // and a vector of a type may be legal when the base element type is not).
213 // We only want to check enough bits to cover the vector elements, because
214 // we care if the resultant vector is all zeros, not whether the individual
215 // constants are.
216 unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
217 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
218 if (CN->getAPIntValue().countTrailingZeros() < EltSize)
219 return false;
220 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
221 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
222 return false;
223 } else
224 return false;
227 // Do not accept an all-undef vector.
228 if (IsAllUndef)
229 return false;
230 return true;
233 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
234 if (N->getOpcode() != ISD::BUILD_VECTOR)
235 return false;
237 for (const SDValue &Op : N->op_values()) {
238 if (Op.isUndef())
239 continue;
240 if (!isa<ConstantSDNode>(Op))
241 return false;
243 return true;
246 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
247 if (N->getOpcode() != ISD::BUILD_VECTOR)
248 return false;
250 for (const SDValue &Op : N->op_values()) {
251 if (Op.isUndef())
252 continue;
253 if (!isa<ConstantFPSDNode>(Op))
254 return false;
256 return true;
259 bool ISD::allOperandsUndef(const SDNode *N) {
260 // Return false if the node has no operands.
261 // This is "logically inconsistent" with the definition of "all" but
262 // is probably the desired behavior.
263 if (N->getNumOperands() == 0)
264 return false;
265 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
268 bool ISD::matchUnaryPredicate(SDValue Op,
269 std::function<bool(ConstantSDNode *)> Match,
270 bool AllowUndefs) {
271 // FIXME: Add support for scalar UNDEF cases?
272 if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
273 return Match(Cst);
275 // FIXME: Add support for vector UNDEF cases?
276 if (ISD::BUILD_VECTOR != Op.getOpcode())
277 return false;
279 EVT SVT = Op.getValueType().getScalarType();
280 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
281 if (AllowUndefs && Op.getOperand(i).isUndef()) {
282 if (!Match(nullptr))
283 return false;
284 continue;
287 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
288 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
289 return false;
291 return true;
294 bool ISD::matchBinaryPredicate(
295 SDValue LHS, SDValue RHS,
296 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
297 bool AllowUndefs) {
298 if (LHS.getValueType() != RHS.getValueType())
299 return false;
301 // TODO: Add support for scalar UNDEF cases?
302 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
303 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
304 return Match(LHSCst, RHSCst);
306 // TODO: Add support for vector UNDEF cases?
307 if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
308 ISD::BUILD_VECTOR != RHS.getOpcode())
309 return false;
311 EVT SVT = LHS.getValueType().getScalarType();
312 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
313 SDValue LHSOp = LHS.getOperand(i);
314 SDValue RHSOp = RHS.getOperand(i);
315 bool LHSUndef = AllowUndefs && LHSOp.isUndef();
316 bool RHSUndef = AllowUndefs && RHSOp.isUndef();
317 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
318 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
319 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
320 return false;
321 if (LHSOp.getValueType() != SVT ||
322 LHSOp.getValueType() != RHSOp.getValueType())
323 return false;
324 if (!Match(LHSCst, RHSCst))
325 return false;
327 return true;
330 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
331 switch (ExtType) {
332 case ISD::EXTLOAD:
333 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
334 case ISD::SEXTLOAD:
335 return ISD::SIGN_EXTEND;
336 case ISD::ZEXTLOAD:
337 return ISD::ZERO_EXTEND;
338 default:
339 break;
342 llvm_unreachable("Invalid LoadExtType");
345 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
346 // To perform this operation, we just need to swap the L and G bits of the
347 // operation.
348 unsigned OldL = (Operation >> 2) & 1;
349 unsigned OldG = (Operation >> 1) & 1;
350 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
351 (OldL << 1) | // New G bit
352 (OldG << 2)); // New L bit.
355 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
356 unsigned Operation = Op;
357 if (isInteger)
358 Operation ^= 7; // Flip L, G, E bits, but not U.
359 else
360 Operation ^= 15; // Flip all of the condition bits.
362 if (Operation > ISD::SETTRUE2)
363 Operation &= ~8; // Don't let N and U bits get set.
365 return ISD::CondCode(Operation);
368 /// For an integer comparison, return 1 if the comparison is a signed operation
369 /// and 2 if the result is an unsigned comparison. Return zero if the operation
370 /// does not depend on the sign of the input (setne and seteq).
371 static int isSignedOp(ISD::CondCode Opcode) {
372 switch (Opcode) {
373 default: llvm_unreachable("Illegal integer setcc operation!");
374 case ISD::SETEQ:
375 case ISD::SETNE: return 0;
376 case ISD::SETLT:
377 case ISD::SETLE:
378 case ISD::SETGT:
379 case ISD::SETGE: return 1;
380 case ISD::SETULT:
381 case ISD::SETULE:
382 case ISD::SETUGT:
383 case ISD::SETUGE: return 2;
387 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
388 bool IsInteger) {
389 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
390 // Cannot fold a signed integer setcc with an unsigned integer setcc.
391 return ISD::SETCC_INVALID;
393 unsigned Op = Op1 | Op2; // Combine all of the condition bits.
395 // If the N and U bits get set, then the resultant comparison DOES suddenly
396 // care about orderedness, and it is true when ordered.
397 if (Op > ISD::SETTRUE2)
398 Op &= ~16; // Clear the U bit if the N bit is set.
400 // Canonicalize illegal integer setcc's.
401 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT
402 Op = ISD::SETNE;
404 return ISD::CondCode(Op);
407 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
408 bool IsInteger) {
409 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
410 // Cannot fold a signed setcc with an unsigned setcc.
411 return ISD::SETCC_INVALID;
413 // Combine all of the condition bits.
414 ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
416 // Canonicalize illegal integer setcc's.
417 if (IsInteger) {
418 switch (Result) {
419 default: break;
420 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT
421 case ISD::SETOEQ: // SETEQ & SETU[LG]E
422 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE
423 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE
424 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE
428 return Result;
431 //===----------------------------------------------------------------------===//
432 // SDNode Profile Support
433 //===----------------------------------------------------------------------===//
435 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
436 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
437 ID.AddInteger(OpC);
440 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
441 /// solely with their pointer.
442 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
443 ID.AddPointer(VTList.VTs);
446 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
447 static void AddNodeIDOperands(FoldingSetNodeID &ID,
448 ArrayRef<SDValue> Ops) {
449 for (auto& Op : Ops) {
450 ID.AddPointer(Op.getNode());
451 ID.AddInteger(Op.getResNo());
455 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
456 static void AddNodeIDOperands(FoldingSetNodeID &ID,
457 ArrayRef<SDUse> Ops) {
458 for (auto& Op : Ops) {
459 ID.AddPointer(Op.getNode());
460 ID.AddInteger(Op.getResNo());
464 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
465 SDVTList VTList, ArrayRef<SDValue> OpList) {
466 AddNodeIDOpcode(ID, OpC);
467 AddNodeIDValueTypes(ID, VTList);
468 AddNodeIDOperands(ID, OpList);
471 /// If this is an SDNode with special info, add this info to the NodeID data.
472 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
473 switch (N->getOpcode()) {
474 case ISD::TargetExternalSymbol:
475 case ISD::ExternalSymbol:
476 case ISD::MCSymbol:
477 llvm_unreachable("Should only be used on nodes with operands");
478 default: break; // Normal nodes don't need extra info.
479 case ISD::TargetConstant:
480 case ISD::Constant: {
481 const ConstantSDNode *C = cast<ConstantSDNode>(N);
482 ID.AddPointer(C->getConstantIntValue());
483 ID.AddBoolean(C->isOpaque());
484 break;
486 case ISD::TargetConstantFP:
487 case ISD::ConstantFP:
488 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
489 break;
490 case ISD::TargetGlobalAddress:
491 case ISD::GlobalAddress:
492 case ISD::TargetGlobalTLSAddress:
493 case ISD::GlobalTLSAddress: {
494 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
495 ID.AddPointer(GA->getGlobal());
496 ID.AddInteger(GA->getOffset());
497 ID.AddInteger(GA->getTargetFlags());
498 break;
500 case ISD::BasicBlock:
501 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
502 break;
503 case ISD::Register:
504 ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
505 break;
506 case ISD::RegisterMask:
507 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
508 break;
509 case ISD::SRCVALUE:
510 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
511 break;
512 case ISD::FrameIndex:
513 case ISD::TargetFrameIndex:
514 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
515 break;
516 case ISD::LIFETIME_START:
517 case ISD::LIFETIME_END:
518 if (cast<LifetimeSDNode>(N)->hasOffset()) {
519 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
520 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
522 break;
523 case ISD::JumpTable:
524 case ISD::TargetJumpTable:
525 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
526 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
527 break;
528 case ISD::ConstantPool:
529 case ISD::TargetConstantPool: {
530 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
531 ID.AddInteger(CP->getAlignment());
532 ID.AddInteger(CP->getOffset());
533 if (CP->isMachineConstantPoolEntry())
534 CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
535 else
536 ID.AddPointer(CP->getConstVal());
537 ID.AddInteger(CP->getTargetFlags());
538 break;
540 case ISD::TargetIndex: {
541 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
542 ID.AddInteger(TI->getIndex());
543 ID.AddInteger(TI->getOffset());
544 ID.AddInteger(TI->getTargetFlags());
545 break;
547 case ISD::LOAD: {
548 const LoadSDNode *LD = cast<LoadSDNode>(N);
549 ID.AddInteger(LD->getMemoryVT().getRawBits());
550 ID.AddInteger(LD->getRawSubclassData());
551 ID.AddInteger(LD->getPointerInfo().getAddrSpace());
552 break;
554 case ISD::STORE: {
555 const StoreSDNode *ST = cast<StoreSDNode>(N);
556 ID.AddInteger(ST->getMemoryVT().getRawBits());
557 ID.AddInteger(ST->getRawSubclassData());
558 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
559 break;
561 case ISD::MLOAD: {
562 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
563 ID.AddInteger(MLD->getMemoryVT().getRawBits());
564 ID.AddInteger(MLD->getRawSubclassData());
565 ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
566 break;
568 case ISD::MSTORE: {
569 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
570 ID.AddInteger(MST->getMemoryVT().getRawBits());
571 ID.AddInteger(MST->getRawSubclassData());
572 ID.AddInteger(MST->getPointerInfo().getAddrSpace());
573 break;
575 case ISD::MGATHER: {
576 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
577 ID.AddInteger(MG->getMemoryVT().getRawBits());
578 ID.AddInteger(MG->getRawSubclassData());
579 ID.AddInteger(MG->getPointerInfo().getAddrSpace());
580 break;
582 case ISD::MSCATTER: {
583 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
584 ID.AddInteger(MS->getMemoryVT().getRawBits());
585 ID.AddInteger(MS->getRawSubclassData());
586 ID.AddInteger(MS->getPointerInfo().getAddrSpace());
587 break;
589 case ISD::ATOMIC_CMP_SWAP:
590 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
591 case ISD::ATOMIC_SWAP:
592 case ISD::ATOMIC_LOAD_ADD:
593 case ISD::ATOMIC_LOAD_SUB:
594 case ISD::ATOMIC_LOAD_AND:
595 case ISD::ATOMIC_LOAD_CLR:
596 case ISD::ATOMIC_LOAD_OR:
597 case ISD::ATOMIC_LOAD_XOR:
598 case ISD::ATOMIC_LOAD_NAND:
599 case ISD::ATOMIC_LOAD_MIN:
600 case ISD::ATOMIC_LOAD_MAX:
601 case ISD::ATOMIC_LOAD_UMIN:
602 case ISD::ATOMIC_LOAD_UMAX:
603 case ISD::ATOMIC_LOAD:
604 case ISD::ATOMIC_STORE: {
605 const AtomicSDNode *AT = cast<AtomicSDNode>(N);
606 ID.AddInteger(AT->getMemoryVT().getRawBits());
607 ID.AddInteger(AT->getRawSubclassData());
608 ID.AddInteger(AT->getPointerInfo().getAddrSpace());
609 break;
611 case ISD::PREFETCH: {
612 const MemSDNode *PF = cast<MemSDNode>(N);
613 ID.AddInteger(PF->getPointerInfo().getAddrSpace());
614 break;
616 case ISD::VECTOR_SHUFFLE: {
617 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
618 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
619 i != e; ++i)
620 ID.AddInteger(SVN->getMaskElt(i));
621 break;
623 case ISD::TargetBlockAddress:
624 case ISD::BlockAddress: {
625 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
626 ID.AddPointer(BA->getBlockAddress());
627 ID.AddInteger(BA->getOffset());
628 ID.AddInteger(BA->getTargetFlags());
629 break;
631 } // end switch (N->getOpcode())
633 // Target specific memory nodes could also have address spaces to check.
634 if (N->isTargetMemoryOpcode())
635 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
638 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
639 /// data.
640 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
641 AddNodeIDOpcode(ID, N->getOpcode());
642 // Add the return value info.
643 AddNodeIDValueTypes(ID, N->getVTList());
644 // Add the operand info.
645 AddNodeIDOperands(ID, N->ops());
647 // Handle SDNode leafs with special info.
648 AddNodeIDCustom(ID, N);
651 //===----------------------------------------------------------------------===//
652 // SelectionDAG Class
653 //===----------------------------------------------------------------------===//
655 /// doNotCSE - Return true if CSE should not be performed for this node.
656 static bool doNotCSE(SDNode *N) {
657 if (N->getValueType(0) == MVT::Glue)
658 return true; // Never CSE anything that produces a flag.
660 switch (N->getOpcode()) {
661 default: break;
662 case ISD::HANDLENODE:
663 case ISD::EH_LABEL:
664 return true; // Never CSE these nodes.
667 // Check that remaining values produced are not flags.
668 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
669 if (N->getValueType(i) == MVT::Glue)
670 return true; // Never CSE anything that produces a flag.
672 return false;
675 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
676 /// SelectionDAG.
677 void SelectionDAG::RemoveDeadNodes() {
678 // Create a dummy node (which is not added to allnodes), that adds a reference
679 // to the root node, preventing it from being deleted.
680 HandleSDNode Dummy(getRoot());
682 SmallVector<SDNode*, 128> DeadNodes;
684 // Add all obviously-dead nodes to the DeadNodes worklist.
685 for (SDNode &Node : allnodes())
686 if (Node.use_empty())
687 DeadNodes.push_back(&Node);
689 RemoveDeadNodes(DeadNodes);
691 // If the root changed (e.g. it was a dead load, update the root).
692 setRoot(Dummy.getValue());
695 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
696 /// given list, and any nodes that become unreachable as a result.
697 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
699 // Process the worklist, deleting the nodes and adding their uses to the
700 // worklist.
701 while (!DeadNodes.empty()) {
702 SDNode *N = DeadNodes.pop_back_val();
703 // Skip to next node if we've already managed to delete the node. This could
704 // happen if replacing a node causes a node previously added to the node to
705 // be deleted.
706 if (N->getOpcode() == ISD::DELETED_NODE)
707 continue;
709 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
710 DUL->NodeDeleted(N, nullptr);
712 // Take the node out of the appropriate CSE map.
713 RemoveNodeFromCSEMaps(N);
715 // Next, brutally remove the operand list. This is safe to do, as there are
716 // no cycles in the graph.
717 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
718 SDUse &Use = *I++;
719 SDNode *Operand = Use.getNode();
720 Use.set(SDValue());
722 // Now that we removed this operand, see if there are no uses of it left.
723 if (Operand->use_empty())
724 DeadNodes.push_back(Operand);
727 DeallocateNode(N);
731 void SelectionDAG::RemoveDeadNode(SDNode *N){
732 SmallVector<SDNode*, 16> DeadNodes(1, N);
734 // Create a dummy node that adds a reference to the root node, preventing
735 // it from being deleted. (This matters if the root is an operand of the
736 // dead node.)
737 HandleSDNode Dummy(getRoot());
739 RemoveDeadNodes(DeadNodes);
742 void SelectionDAG::DeleteNode(SDNode *N) {
743 // First take this out of the appropriate CSE map.
744 RemoveNodeFromCSEMaps(N);
746 // Finally, remove uses due to operands of this node, remove from the
747 // AllNodes list, and delete the node.
748 DeleteNodeNotInCSEMaps(N);
751 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
752 assert(N->getIterator() != AllNodes.begin() &&
753 "Cannot delete the entry node!");
754 assert(N->use_empty() && "Cannot delete a node that is not dead!");
756 // Drop all of the operands and decrement used node's use counts.
757 N->DropOperands();
759 DeallocateNode(N);
762 void SDDbgInfo::erase(const SDNode *Node) {
763 DbgValMapType::iterator I = DbgValMap.find(Node);
764 if (I == DbgValMap.end())
765 return;
766 for (auto &Val: I->second)
767 Val->setIsInvalidated();
768 DbgValMap.erase(I);
771 void SelectionDAG::DeallocateNode(SDNode *N) {
772 // If we have operands, deallocate them.
773 removeOperands(N);
775 NodeAllocator.Deallocate(AllNodes.remove(N));
777 // Set the opcode to DELETED_NODE to help catch bugs when node
778 // memory is reallocated.
779 // FIXME: There are places in SDag that have grown a dependency on the opcode
780 // value in the released node.
781 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
782 N->NodeType = ISD::DELETED_NODE;
784 // If any of the SDDbgValue nodes refer to this SDNode, invalidate
785 // them and forget about that node.
786 DbgInfo->erase(N);
789 #ifndef NDEBUG
790 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid.
791 static void VerifySDNode(SDNode *N) {
792 switch (N->getOpcode()) {
793 default:
794 break;
795 case ISD::BUILD_PAIR: {
796 EVT VT = N->getValueType(0);
797 assert(N->getNumValues() == 1 && "Too many results!");
798 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
799 "Wrong return type!");
800 assert(N->getNumOperands() == 2 && "Wrong number of operands!");
801 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
802 "Mismatched operand types!");
803 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
804 "Wrong operand type!");
805 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
806 "Wrong return type size");
807 break;
809 case ISD::BUILD_VECTOR: {
810 assert(N->getNumValues() == 1 && "Too many results!");
811 assert(N->getValueType(0).isVector() && "Wrong return type!");
812 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
813 "Wrong number of operands!");
814 EVT EltVT = N->getValueType(0).getVectorElementType();
815 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
816 assert((I->getValueType() == EltVT ||
817 (EltVT.isInteger() && I->getValueType().isInteger() &&
818 EltVT.bitsLE(I->getValueType()))) &&
819 "Wrong operand type!");
820 assert(I->getValueType() == N->getOperand(0).getValueType() &&
821 "Operands must all have the same type");
823 break;
827 #endif // NDEBUG
829 /// Insert a newly allocated node into the DAG.
831 /// Handles insertion into the all nodes list and CSE map, as well as
832 /// verification and other common operations when a new node is allocated.
833 void SelectionDAG::InsertNode(SDNode *N) {
834 AllNodes.push_back(N);
835 #ifndef NDEBUG
836 N->PersistentId = NextPersistentId++;
837 VerifySDNode(N);
838 #endif
839 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
840 DUL->NodeInserted(N);
843 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
844 /// correspond to it. This is useful when we're about to delete or repurpose
845 /// the node. We don't want future request for structurally identical nodes
846 /// to return N anymore.
847 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
848 bool Erased = false;
849 switch (N->getOpcode()) {
850 case ISD::HANDLENODE: return false; // noop.
851 case ISD::CONDCODE:
852 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
853 "Cond code doesn't exist!");
854 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
855 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
856 break;
857 case ISD::ExternalSymbol:
858 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
859 break;
860 case ISD::TargetExternalSymbol: {
861 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
862 Erased = TargetExternalSymbols.erase(
863 std::pair<std::string,unsigned char>(ESN->getSymbol(),
864 ESN->getTargetFlags()));
865 break;
867 case ISD::MCSymbol: {
868 auto *MCSN = cast<MCSymbolSDNode>(N);
869 Erased = MCSymbols.erase(MCSN->getMCSymbol());
870 break;
872 case ISD::VALUETYPE: {
873 EVT VT = cast<VTSDNode>(N)->getVT();
874 if (VT.isExtended()) {
875 Erased = ExtendedValueTypeNodes.erase(VT);
876 } else {
877 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
878 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
880 break;
882 default:
883 // Remove it from the CSE Map.
884 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
885 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
886 Erased = CSEMap.RemoveNode(N);
887 break;
889 #ifndef NDEBUG
890 // Verify that the node was actually in one of the CSE maps, unless it has a
891 // flag result (which cannot be CSE'd) or is one of the special cases that are
892 // not subject to CSE.
893 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
894 !N->isMachineOpcode() && !doNotCSE(N)) {
895 N->dump(this);
896 dbgs() << "\n";
897 llvm_unreachable("Node is not in map!");
899 #endif
900 return Erased;
903 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
904 /// maps and modified in place. Add it back to the CSE maps, unless an identical
905 /// node already exists, in which case transfer all its users to the existing
906 /// node. This transfer can potentially trigger recursive merging.
907 void
908 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
909 // For node types that aren't CSE'd, just act as if no identical node
910 // already exists.
911 if (!doNotCSE(N)) {
912 SDNode *Existing = CSEMap.GetOrInsertNode(N);
913 if (Existing != N) {
914 // If there was already an existing matching node, use ReplaceAllUsesWith
915 // to replace the dead one with the existing one. This can cause
916 // recursive merging of other unrelated nodes down the line.
917 ReplaceAllUsesWith(N, Existing);
919 // N is now dead. Inform the listeners and delete it.
920 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
921 DUL->NodeDeleted(N, Existing);
922 DeleteNodeNotInCSEMaps(N);
923 return;
927 // If the node doesn't already exist, we updated it. Inform listeners.
928 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
929 DUL->NodeUpdated(N);
932 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
933 /// were replaced with those specified. If this node is never memoized,
934 /// return null, otherwise return a pointer to the slot it would take. If a
935 /// node already exists with these operands, the slot will be non-null.
936 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
937 void *&InsertPos) {
938 if (doNotCSE(N))
939 return nullptr;
941 SDValue Ops[] = { Op };
942 FoldingSetNodeID ID;
943 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
944 AddNodeIDCustom(ID, N);
945 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
946 if (Node)
947 Node->intersectFlagsWith(N->getFlags());
948 return Node;
951 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
952 /// were replaced with those specified. If this node is never memoized,
953 /// return null, otherwise return a pointer to the slot it would take. If a
954 /// node already exists with these operands, the slot will be non-null.
955 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
956 SDValue Op1, SDValue Op2,
957 void *&InsertPos) {
958 if (doNotCSE(N))
959 return nullptr;
961 SDValue Ops[] = { Op1, Op2 };
962 FoldingSetNodeID ID;
963 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
964 AddNodeIDCustom(ID, N);
965 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
966 if (Node)
967 Node->intersectFlagsWith(N->getFlags());
968 return Node;
971 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
972 /// were replaced with those specified. If this node is never memoized,
973 /// return null, otherwise return a pointer to the slot it would take. If a
974 /// node already exists with these operands, the slot will be non-null.
975 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
976 void *&InsertPos) {
977 if (doNotCSE(N))
978 return nullptr;
980 FoldingSetNodeID ID;
981 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
982 AddNodeIDCustom(ID, N);
983 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
984 if (Node)
985 Node->intersectFlagsWith(N->getFlags());
986 return Node;
989 unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
990 Type *Ty = VT == MVT::iPTR ?
991 PointerType::get(Type::getInt8Ty(*getContext()), 0) :
992 VT.getTypeForEVT(*getContext());
994 return getDataLayout().getABITypeAlignment(Ty);
997 // EntryNode could meaningfully have debug info if we can find it...
998 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
999 : TM(tm), OptLevel(OL),
1000 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1001 Root(getEntryNode()) {
1002 InsertNode(&EntryNode);
1003 DbgInfo = new SDDbgInfo();
1006 void SelectionDAG::init(MachineFunction &NewMF,
1007 OptimizationRemarkEmitter &NewORE,
1008 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1009 LegacyDivergenceAnalysis * Divergence) {
1010 MF = &NewMF;
1011 SDAGISelPass = PassPtr;
1012 ORE = &NewORE;
1013 TLI = getSubtarget().getTargetLowering();
1014 TSI = getSubtarget().getSelectionDAGInfo();
1015 LibInfo = LibraryInfo;
1016 Context = &MF->getFunction().getContext();
1017 DA = Divergence;
1020 SelectionDAG::~SelectionDAG() {
1021 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1022 allnodes_clear();
1023 OperandRecycler.clear(OperandAllocator);
1024 delete DbgInfo;
1027 void SelectionDAG::allnodes_clear() {
1028 assert(&*AllNodes.begin() == &EntryNode);
1029 AllNodes.remove(AllNodes.begin());
1030 while (!AllNodes.empty())
1031 DeallocateNode(&AllNodes.front());
1032 #ifndef NDEBUG
1033 NextPersistentId = 0;
1034 #endif
1037 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1038 void *&InsertPos) {
1039 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1040 if (N) {
1041 switch (N->getOpcode()) {
1042 default: break;
1043 case ISD::Constant:
1044 case ISD::ConstantFP:
1045 llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1046 "debug location. Use another overload.");
1049 return N;
1052 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1053 const SDLoc &DL, void *&InsertPos) {
1054 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1055 if (N) {
1056 switch (N->getOpcode()) {
1057 case ISD::Constant:
1058 case ISD::ConstantFP:
1059 // Erase debug location from the node if the node is used at several
1060 // different places. Do not propagate one location to all uses as it
1061 // will cause a worse single stepping debugging experience.
1062 if (N->getDebugLoc() != DL.getDebugLoc())
1063 N->setDebugLoc(DebugLoc());
1064 break;
1065 default:
1066 // When the node's point of use is located earlier in the instruction
1067 // sequence than its prior point of use, update its debug info to the
1068 // earlier location.
1069 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1070 N->setDebugLoc(DL.getDebugLoc());
1071 break;
1074 return N;
1077 void SelectionDAG::clear() {
1078 allnodes_clear();
1079 OperandRecycler.clear(OperandAllocator);
1080 OperandAllocator.Reset();
1081 CSEMap.clear();
1083 ExtendedValueTypeNodes.clear();
1084 ExternalSymbols.clear();
1085 TargetExternalSymbols.clear();
1086 MCSymbols.clear();
1087 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1088 static_cast<CondCodeSDNode*>(nullptr));
1089 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1090 static_cast<SDNode*>(nullptr));
1092 EntryNode.UseList = nullptr;
1093 InsertNode(&EntryNode);
1094 Root = getEntryNode();
1095 DbgInfo->clear();
1098 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1099 return VT.bitsGT(Op.getValueType())
1100 ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1101 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1104 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1105 return VT.bitsGT(Op.getValueType()) ?
1106 getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1107 getNode(ISD::TRUNCATE, DL, VT, Op);
1110 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1111 return VT.bitsGT(Op.getValueType()) ?
1112 getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1113 getNode(ISD::TRUNCATE, DL, VT, Op);
1116 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1117 return VT.bitsGT(Op.getValueType()) ?
1118 getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1119 getNode(ISD::TRUNCATE, DL, VT, Op);
1122 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1123 EVT OpVT) {
1124 if (VT.bitsLE(Op.getValueType()))
1125 return getNode(ISD::TRUNCATE, SL, VT, Op);
1127 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1128 return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1131 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1132 assert(!VT.isVector() &&
1133 "getZeroExtendInReg should use the vector element type instead of "
1134 "the vector type!");
1135 if (Op.getValueType().getScalarType() == VT) return Op;
1136 unsigned BitWidth = Op.getScalarValueSizeInBits();
1137 APInt Imm = APInt::getLowBitsSet(BitWidth,
1138 VT.getSizeInBits());
1139 return getNode(ISD::AND, DL, Op.getValueType(), Op,
1140 getConstant(Imm, DL, Op.getValueType()));
1143 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1144 // Only unsigned pointer semantics are supported right now. In the future this
1145 // might delegate to TLI to check pointer signedness.
1146 return getZExtOrTrunc(Op, DL, VT);
1149 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1150 // Only unsigned pointer semantics are supported right now. In the future this
1151 // might delegate to TLI to check pointer signedness.
1152 return getZeroExtendInReg(Op, DL, VT);
1155 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1156 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1157 EVT EltVT = VT.getScalarType();
1158 SDValue NegOne =
1159 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1160 return getNode(ISD::XOR, DL, VT, Val, NegOne);
1163 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1164 SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1165 return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1168 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1169 EVT OpVT) {
1170 if (!V)
1171 return getConstant(0, DL, VT);
1173 switch (TLI->getBooleanContents(OpVT)) {
1174 case TargetLowering::ZeroOrOneBooleanContent:
1175 case TargetLowering::UndefinedBooleanContent:
1176 return getConstant(1, DL, VT);
1177 case TargetLowering::ZeroOrNegativeOneBooleanContent:
1178 return getAllOnesConstant(DL, VT);
1180 llvm_unreachable("Unexpected boolean content enum!");
1183 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1184 bool isT, bool isO) {
1185 EVT EltVT = VT.getScalarType();
1186 assert((EltVT.getSizeInBits() >= 64 ||
1187 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1188 "getConstant with a uint64_t value that doesn't fit in the type!");
1189 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1192 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1193 bool isT, bool isO) {
1194 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1197 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1198 EVT VT, bool isT, bool isO) {
1199 assert(VT.isInteger() && "Cannot create FP integer constant!");
1201 EVT EltVT = VT.getScalarType();
1202 const ConstantInt *Elt = &Val;
1204 // In some cases the vector type is legal but the element type is illegal and
1205 // needs to be promoted, for example v8i8 on ARM. In this case, promote the
1206 // inserted value (the type does not need to match the vector element type).
1207 // Any extra bits introduced will be truncated away.
1208 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1209 TargetLowering::TypePromoteInteger) {
1210 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1211 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1212 Elt = ConstantInt::get(*getContext(), NewVal);
1214 // In other cases the element type is illegal and needs to be expanded, for
1215 // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1216 // the value into n parts and use a vector type with n-times the elements.
1217 // Then bitcast to the type requested.
1218 // Legalizing constants too early makes the DAGCombiner's job harder so we
1219 // only legalize if the DAG tells us we must produce legal types.
1220 else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1221 TLI->getTypeAction(*getContext(), EltVT) ==
1222 TargetLowering::TypeExpandInteger) {
1223 const APInt &NewVal = Elt->getValue();
1224 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1225 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1226 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1227 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1229 // Check the temporary vector is the correct size. If this fails then
1230 // getTypeToTransformTo() probably returned a type whose size (in bits)
1231 // isn't a power-of-2 factor of the requested type size.
1232 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1234 SmallVector<SDValue, 2> EltParts;
1235 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1236 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1237 .zextOrTrunc(ViaEltSizeInBits), DL,
1238 ViaEltVT, isT, isO));
1241 // EltParts is currently in little endian order. If we actually want
1242 // big-endian order then reverse it now.
1243 if (getDataLayout().isBigEndian())
1244 std::reverse(EltParts.begin(), EltParts.end());
1246 // The elements must be reversed when the element order is different
1247 // to the endianness of the elements (because the BITCAST is itself a
1248 // vector shuffle in this situation). However, we do not need any code to
1249 // perform this reversal because getConstant() is producing a vector
1250 // splat.
1251 // This situation occurs in MIPS MSA.
1253 SmallVector<SDValue, 8> Ops;
1254 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1255 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1257 SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1258 return V;
1261 assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1262 "APInt size does not match type size!");
1263 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1264 FoldingSetNodeID ID;
1265 AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1266 ID.AddPointer(Elt);
1267 ID.AddBoolean(isO);
1268 void *IP = nullptr;
1269 SDNode *N = nullptr;
1270 if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1271 if (!VT.isVector())
1272 return SDValue(N, 0);
1274 if (!N) {
1275 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1276 CSEMap.InsertNode(N, IP);
1277 InsertNode(N);
1278 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1281 SDValue Result(N, 0);
1282 if (VT.isVector())
1283 Result = getSplatBuildVector(VT, DL, Result);
1285 return Result;
1288 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1289 bool isTarget) {
1290 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1293 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1294 const SDLoc &DL, bool LegalTypes) {
1295 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1296 return getConstant(Val, DL, ShiftVT);
1299 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1300 bool isTarget) {
1301 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1304 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1305 EVT VT, bool isTarget) {
1306 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1308 EVT EltVT = VT.getScalarType();
1310 // Do the map lookup using the actual bit pattern for the floating point
1311 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1312 // we don't have issues with SNANs.
1313 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1314 FoldingSetNodeID ID;
1315 AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1316 ID.AddPointer(&V);
1317 void *IP = nullptr;
1318 SDNode *N = nullptr;
1319 if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1320 if (!VT.isVector())
1321 return SDValue(N, 0);
1323 if (!N) {
1324 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1325 CSEMap.InsertNode(N, IP);
1326 InsertNode(N);
1329 SDValue Result(N, 0);
1330 if (VT.isVector())
1331 Result = getSplatBuildVector(VT, DL, Result);
1332 NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1333 return Result;
1336 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1337 bool isTarget) {
1338 EVT EltVT = VT.getScalarType();
1339 if (EltVT == MVT::f32)
1340 return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1341 else if (EltVT == MVT::f64)
1342 return getConstantFP(APFloat(Val), DL, VT, isTarget);
1343 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1344 EltVT == MVT::f16) {
1345 bool Ignored;
1346 APFloat APF = APFloat(Val);
1347 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1348 &Ignored);
1349 return getConstantFP(APF, DL, VT, isTarget);
1350 } else
1351 llvm_unreachable("Unsupported type in getConstantFP");
1354 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1355 EVT VT, int64_t Offset, bool isTargetGA,
1356 unsigned char TargetFlags) {
1357 assert((TargetFlags == 0 || isTargetGA) &&
1358 "Cannot set target flags on target-independent globals");
1360 // Truncate (with sign-extension) the offset value to the pointer size.
1361 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1362 if (BitWidth < 64)
1363 Offset = SignExtend64(Offset, BitWidth);
1365 unsigned Opc;
1366 if (GV->isThreadLocal())
1367 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1368 else
1369 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1371 FoldingSetNodeID ID;
1372 AddNodeIDNode(ID, Opc, getVTList(VT), None);
1373 ID.AddPointer(GV);
1374 ID.AddInteger(Offset);
1375 ID.AddInteger(TargetFlags);
1376 void *IP = nullptr;
1377 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1378 return SDValue(E, 0);
1380 auto *N = newSDNode<GlobalAddressSDNode>(
1381 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1382 CSEMap.InsertNode(N, IP);
1383 InsertNode(N);
1384 return SDValue(N, 0);
1387 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1388 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1389 FoldingSetNodeID ID;
1390 AddNodeIDNode(ID, Opc, getVTList(VT), None);
1391 ID.AddInteger(FI);
1392 void *IP = nullptr;
1393 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1394 return SDValue(E, 0);
1396 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1397 CSEMap.InsertNode(N, IP);
1398 InsertNode(N);
1399 return SDValue(N, 0);
1402 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1403 unsigned char TargetFlags) {
1404 assert((TargetFlags == 0 || isTarget) &&
1405 "Cannot set target flags on target-independent jump tables");
1406 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1407 FoldingSetNodeID ID;
1408 AddNodeIDNode(ID, Opc, getVTList(VT), None);
1409 ID.AddInteger(JTI);
1410 ID.AddInteger(TargetFlags);
1411 void *IP = nullptr;
1412 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1413 return SDValue(E, 0);
1415 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1416 CSEMap.InsertNode(N, IP);
1417 InsertNode(N);
1418 return SDValue(N, 0);
1421 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1422 unsigned Alignment, int Offset,
1423 bool isTarget,
1424 unsigned char TargetFlags) {
1425 assert((TargetFlags == 0 || isTarget) &&
1426 "Cannot set target flags on target-independent globals");
1427 if (Alignment == 0)
1428 Alignment = MF->getFunction().hasOptSize()
1429 ? getDataLayout().getABITypeAlignment(C->getType())
1430 : getDataLayout().getPrefTypeAlignment(C->getType());
1431 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1432 FoldingSetNodeID ID;
1433 AddNodeIDNode(ID, Opc, getVTList(VT), None);
1434 ID.AddInteger(Alignment);
1435 ID.AddInteger(Offset);
1436 ID.AddPointer(C);
1437 ID.AddInteger(TargetFlags);
1438 void *IP = nullptr;
1439 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1440 return SDValue(E, 0);
1442 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1443 TargetFlags);
1444 CSEMap.InsertNode(N, IP);
1445 InsertNode(N);
1446 return SDValue(N, 0);
1449 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1450 unsigned Alignment, int Offset,
1451 bool isTarget,
1452 unsigned char TargetFlags) {
1453 assert((TargetFlags == 0 || isTarget) &&
1454 "Cannot set target flags on target-independent globals");
1455 if (Alignment == 0)
1456 Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
1457 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1458 FoldingSetNodeID ID;
1459 AddNodeIDNode(ID, Opc, getVTList(VT), None);
1460 ID.AddInteger(Alignment);
1461 ID.AddInteger(Offset);
1462 C->addSelectionDAGCSEId(ID);
1463 ID.AddInteger(TargetFlags);
1464 void *IP = nullptr;
1465 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1466 return SDValue(E, 0);
1468 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1469 TargetFlags);
1470 CSEMap.InsertNode(N, IP);
1471 InsertNode(N);
1472 return SDValue(N, 0);
1475 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1476 unsigned char TargetFlags) {
1477 FoldingSetNodeID ID;
1478 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1479 ID.AddInteger(Index);
1480 ID.AddInteger(Offset);
1481 ID.AddInteger(TargetFlags);
1482 void *IP = nullptr;
1483 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1484 return SDValue(E, 0);
1486 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1487 CSEMap.InsertNode(N, IP);
1488 InsertNode(N);
1489 return SDValue(N, 0);
1492 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1493 FoldingSetNodeID ID;
1494 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1495 ID.AddPointer(MBB);
1496 void *IP = nullptr;
1497 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1498 return SDValue(E, 0);
1500 auto *N = newSDNode<BasicBlockSDNode>(MBB);
1501 CSEMap.InsertNode(N, IP);
1502 InsertNode(N);
1503 return SDValue(N, 0);
1506 SDValue SelectionDAG::getValueType(EVT VT) {
1507 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1508 ValueTypeNodes.size())
1509 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1511 SDNode *&N = VT.isExtended() ?
1512 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1514 if (N) return SDValue(N, 0);
1515 N = newSDNode<VTSDNode>(VT);
1516 InsertNode(N);
1517 return SDValue(N, 0);
1520 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1521 SDNode *&N = ExternalSymbols[Sym];
1522 if (N) return SDValue(N, 0);
1523 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1524 InsertNode(N);
1525 return SDValue(N, 0);
1528 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1529 SDNode *&N = MCSymbols[Sym];
1530 if (N)
1531 return SDValue(N, 0);
1532 N = newSDNode<MCSymbolSDNode>(Sym, VT);
1533 InsertNode(N);
1534 return SDValue(N, 0);
1537 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1538 unsigned char TargetFlags) {
1539 SDNode *&N =
1540 TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1541 TargetFlags)];
1542 if (N) return SDValue(N, 0);
1543 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1544 InsertNode(N);
1545 return SDValue(N, 0);
1548 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1549 if ((unsigned)Cond >= CondCodeNodes.size())
1550 CondCodeNodes.resize(Cond+1);
1552 if (!CondCodeNodes[Cond]) {
1553 auto *N = newSDNode<CondCodeSDNode>(Cond);
1554 CondCodeNodes[Cond] = N;
1555 InsertNode(N);
1558 return SDValue(CondCodeNodes[Cond], 0);
1561 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1562 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1563 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1564 std::swap(N1, N2);
1565 ShuffleVectorSDNode::commuteMask(M);
1568 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1569 SDValue N2, ArrayRef<int> Mask) {
1570 assert(VT.getVectorNumElements() == Mask.size() &&
1571 "Must have the same number of vector elements as mask elements!");
1572 assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1573 "Invalid VECTOR_SHUFFLE");
1575 // Canonicalize shuffle undef, undef -> undef
1576 if (N1.isUndef() && N2.isUndef())
1577 return getUNDEF(VT);
1579 // Validate that all indices in Mask are within the range of the elements
1580 // input to the shuffle.
1581 int NElts = Mask.size();
1582 assert(llvm::all_of(Mask,
1583 [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1584 "Index out of range");
1586 // Copy the mask so we can do any needed cleanup.
1587 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1589 // Canonicalize shuffle v, v -> v, undef
1590 if (N1 == N2) {
1591 N2 = getUNDEF(VT);
1592 for (int i = 0; i != NElts; ++i)
1593 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1596 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
1597 if (N1.isUndef())
1598 commuteShuffle(N1, N2, MaskVec);
1600 if (TLI->hasVectorBlend()) {
1601 // If shuffling a splat, try to blend the splat instead. We do this here so
1602 // that even when this arises during lowering we don't have to re-handle it.
1603 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1604 BitVector UndefElements;
1605 SDValue Splat = BV->getSplatValue(&UndefElements);
1606 if (!Splat)
1607 return;
1609 for (int i = 0; i < NElts; ++i) {
1610 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1611 continue;
1613 // If this input comes from undef, mark it as such.
1614 if (UndefElements[MaskVec[i] - Offset]) {
1615 MaskVec[i] = -1;
1616 continue;
1619 // If we can blend a non-undef lane, use that instead.
1620 if (!UndefElements[i])
1621 MaskVec[i] = i + Offset;
1624 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1625 BlendSplat(N1BV, 0);
1626 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1627 BlendSplat(N2BV, NElts);
1630 // Canonicalize all index into lhs, -> shuffle lhs, undef
1631 // Canonicalize all index into rhs, -> shuffle rhs, undef
1632 bool AllLHS = true, AllRHS = true;
1633 bool N2Undef = N2.isUndef();
1634 for (int i = 0; i != NElts; ++i) {
1635 if (MaskVec[i] >= NElts) {
1636 if (N2Undef)
1637 MaskVec[i] = -1;
1638 else
1639 AllLHS = false;
1640 } else if (MaskVec[i] >= 0) {
1641 AllRHS = false;
1644 if (AllLHS && AllRHS)
1645 return getUNDEF(VT);
1646 if (AllLHS && !N2Undef)
1647 N2 = getUNDEF(VT);
1648 if (AllRHS) {
1649 N1 = getUNDEF(VT);
1650 commuteShuffle(N1, N2, MaskVec);
1652 // Reset our undef status after accounting for the mask.
1653 N2Undef = N2.isUndef();
1654 // Re-check whether both sides ended up undef.
1655 if (N1.isUndef() && N2Undef)
1656 return getUNDEF(VT);
1658 // If Identity shuffle return that node.
1659 bool Identity = true, AllSame = true;
1660 for (int i = 0; i != NElts; ++i) {
1661 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1662 if (MaskVec[i] != MaskVec[0]) AllSame = false;
1664 if (Identity && NElts)
1665 return N1;
1667 // Shuffling a constant splat doesn't change the result.
1668 if (N2Undef) {
1669 SDValue V = N1;
1671 // Look through any bitcasts. We check that these don't change the number
1672 // (and size) of elements and just changes their types.
1673 while (V.getOpcode() == ISD::BITCAST)
1674 V = V->getOperand(0);
1676 // A splat should always show up as a build vector node.
1677 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1678 BitVector UndefElements;
1679 SDValue Splat = BV->getSplatValue(&UndefElements);
1680 // If this is a splat of an undef, shuffling it is also undef.
1681 if (Splat && Splat.isUndef())
1682 return getUNDEF(VT);
1684 bool SameNumElts =
1685 V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1687 // We only have a splat which can skip shuffles if there is a splatted
1688 // value and no undef lanes rearranged by the shuffle.
1689 if (Splat && UndefElements.none()) {
1690 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1691 // number of elements match or the value splatted is a zero constant.
1692 if (SameNumElts)
1693 return N1;
1694 if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1695 if (C->isNullValue())
1696 return N1;
1699 // If the shuffle itself creates a splat, build the vector directly.
1700 if (AllSame && SameNumElts) {
1701 EVT BuildVT = BV->getValueType(0);
1702 const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1703 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1705 // We may have jumped through bitcasts, so the type of the
1706 // BUILD_VECTOR may not match the type of the shuffle.
1707 if (BuildVT != VT)
1708 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1709 return NewBV;
1714 FoldingSetNodeID ID;
1715 SDValue Ops[2] = { N1, N2 };
1716 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1717 for (int i = 0; i != NElts; ++i)
1718 ID.AddInteger(MaskVec[i]);
1720 void* IP = nullptr;
1721 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1722 return SDValue(E, 0);
1724 // Allocate the mask array for the node out of the BumpPtrAllocator, since
1725 // SDNode doesn't have access to it. This memory will be "leaked" when
1726 // the node is deallocated, but recovered when the NodeAllocator is released.
1727 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1728 llvm::copy(MaskVec, MaskAlloc);
1730 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1731 dl.getDebugLoc(), MaskAlloc);
1732 createOperands(N, Ops);
1734 CSEMap.InsertNode(N, IP);
1735 InsertNode(N);
1736 SDValue V = SDValue(N, 0);
1737 NewSDValueDbgMsg(V, "Creating new node: ", this);
1738 return V;
1741 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1742 EVT VT = SV.getValueType(0);
1743 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1744 ShuffleVectorSDNode::commuteMask(MaskVec);
1746 SDValue Op0 = SV.getOperand(0);
1747 SDValue Op1 = SV.getOperand(1);
1748 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1751 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1752 FoldingSetNodeID ID;
1753 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1754 ID.AddInteger(RegNo);
1755 void *IP = nullptr;
1756 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1757 return SDValue(E, 0);
1759 auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1760 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1761 CSEMap.InsertNode(N, IP);
1762 InsertNode(N);
1763 return SDValue(N, 0);
1766 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1767 FoldingSetNodeID ID;
1768 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1769 ID.AddPointer(RegMask);
1770 void *IP = nullptr;
1771 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1772 return SDValue(E, 0);
1774 auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1775 CSEMap.InsertNode(N, IP);
1776 InsertNode(N);
1777 return SDValue(N, 0);
1780 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1781 MCSymbol *Label) {
1782 return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1785 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1786 SDValue Root, MCSymbol *Label) {
1787 FoldingSetNodeID ID;
1788 SDValue Ops[] = { Root };
1789 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1790 ID.AddPointer(Label);
1791 void *IP = nullptr;
1792 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1793 return SDValue(E, 0);
1795 auto *N = newSDNode<LabelSDNode>(dl.getIROrder(), dl.getDebugLoc(), Label);
1796 createOperands(N, Ops);
1798 CSEMap.InsertNode(N, IP);
1799 InsertNode(N);
1800 return SDValue(N, 0);
1803 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1804 int64_t Offset,
1805 bool isTarget,
1806 unsigned char TargetFlags) {
1807 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1809 FoldingSetNodeID ID;
1810 AddNodeIDNode(ID, Opc, getVTList(VT), None);
1811 ID.AddPointer(BA);
1812 ID.AddInteger(Offset);
1813 ID.AddInteger(TargetFlags);
1814 void *IP = nullptr;
1815 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1816 return SDValue(E, 0);
1818 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1819 CSEMap.InsertNode(N, IP);
1820 InsertNode(N);
1821 return SDValue(N, 0);
1824 SDValue SelectionDAG::getSrcValue(const Value *V) {
1825 assert((!V || V->getType()->isPointerTy()) &&
1826 "SrcValue is not a pointer?");
1828 FoldingSetNodeID ID;
1829 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1830 ID.AddPointer(V);
1832 void *IP = nullptr;
1833 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1834 return SDValue(E, 0);
1836 auto *N = newSDNode<SrcValueSDNode>(V);
1837 CSEMap.InsertNode(N, IP);
1838 InsertNode(N);
1839 return SDValue(N, 0);
1842 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1843 FoldingSetNodeID ID;
1844 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1845 ID.AddPointer(MD);
1847 void *IP = nullptr;
1848 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1849 return SDValue(E, 0);
1851 auto *N = newSDNode<MDNodeSDNode>(MD);
1852 CSEMap.InsertNode(N, IP);
1853 InsertNode(N);
1854 return SDValue(N, 0);
1857 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1858 if (VT == V.getValueType())
1859 return V;
1861 return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1864 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1865 unsigned SrcAS, unsigned DestAS) {
1866 SDValue Ops[] = {Ptr};
1867 FoldingSetNodeID ID;
1868 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1869 ID.AddInteger(SrcAS);
1870 ID.AddInteger(DestAS);
1872 void *IP = nullptr;
1873 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1874 return SDValue(E, 0);
1876 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1877 VT, SrcAS, DestAS);
1878 createOperands(N, Ops);
1880 CSEMap.InsertNode(N, IP);
1881 InsertNode(N);
1882 return SDValue(N, 0);
1885 /// getShiftAmountOperand - Return the specified value casted to
1886 /// the target's desired shift amount type.
1887 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1888 EVT OpTy = Op.getValueType();
1889 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1890 if (OpTy == ShTy || OpTy.isVector()) return Op;
1892 return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1895 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1896 SDLoc dl(Node);
1897 const TargetLowering &TLI = getTargetLoweringInfo();
1898 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1899 EVT VT = Node->getValueType(0);
1900 SDValue Tmp1 = Node->getOperand(0);
1901 SDValue Tmp2 = Node->getOperand(1);
1902 unsigned Align = Node->getConstantOperandVal(3);
1904 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1905 Tmp2, MachinePointerInfo(V));
1906 SDValue VAList = VAListLoad;
1908 if (Align > TLI.getMinStackArgumentAlignment()) {
1909 assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
1911 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1912 getConstant(Align - 1, dl, VAList.getValueType()));
1914 VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList,
1915 getConstant(-(int64_t)Align, dl, VAList.getValueType()));
1918 // Increment the pointer, VAList, to the next vaarg
1919 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1920 getConstant(getDataLayout().getTypeAllocSize(
1921 VT.getTypeForEVT(*getContext())),
1922 dl, VAList.getValueType()));
1923 // Store the incremented VAList to the legalized pointer
1924 Tmp1 =
1925 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
1926 // Load the actual argument out of the pointer VAList
1927 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
1930 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
1931 SDLoc dl(Node);
1932 const TargetLowering &TLI = getTargetLoweringInfo();
1933 // This defaults to loading a pointer from the input and storing it to the
1934 // output, returning the chain.
1935 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
1936 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
1937 SDValue Tmp1 =
1938 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
1939 Node->getOperand(2), MachinePointerInfo(VS));
1940 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
1941 MachinePointerInfo(VD));
1944 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1945 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1946 unsigned ByteSize = VT.getStoreSize();
1947 Type *Ty = VT.getTypeForEVT(*getContext());
1948 unsigned StackAlign =
1949 std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign);
1951 int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
1952 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1955 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1956 unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
1957 Type *Ty1 = VT1.getTypeForEVT(*getContext());
1958 Type *Ty2 = VT2.getTypeForEVT(*getContext());
1959 const DataLayout &DL = getDataLayout();
1960 unsigned Align =
1961 std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2));
1963 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1964 int FrameIdx = MFI.CreateStackObject(Bytes, Align, false);
1965 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1968 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
1969 ISD::CondCode Cond, const SDLoc &dl) {
1970 EVT OpVT = N1.getValueType();
1972 // These setcc operations always fold.
1973 switch (Cond) {
1974 default: break;
1975 case ISD::SETFALSE:
1976 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
1977 case ISD::SETTRUE:
1978 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
1980 case ISD::SETOEQ:
1981 case ISD::SETOGT:
1982 case ISD::SETOGE:
1983 case ISD::SETOLT:
1984 case ISD::SETOLE:
1985 case ISD::SETONE:
1986 case ISD::SETO:
1987 case ISD::SETUO:
1988 case ISD::SETUEQ:
1989 case ISD::SETUNE:
1990 assert(!OpVT.isInteger() && "Illegal setcc for integer!");
1991 break;
1994 if (OpVT.isInteger()) {
1995 // For EQ and NE, we can always pick a value for the undef to make the
1996 // predicate pass or fail, so we can return undef.
1997 // Matches behavior in llvm::ConstantFoldCompareInstruction.
1998 // icmp eq/ne X, undef -> undef.
1999 if ((N1.isUndef() || N2.isUndef()) &&
2000 (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2001 return getUNDEF(VT);
2003 // If both operands are undef, we can return undef for int comparison.
2004 // icmp undef, undef -> undef.
2005 if (N1.isUndef() && N2.isUndef())
2006 return getUNDEF(VT);
2008 // icmp X, X -> true/false
2009 // icmp X, undef -> true/false because undef could be X.
2010 if (N1 == N2)
2011 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2014 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2015 const APInt &C2 = N2C->getAPIntValue();
2016 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2017 const APInt &C1 = N1C->getAPIntValue();
2019 switch (Cond) {
2020 default: llvm_unreachable("Unknown integer setcc!");
2021 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT);
2022 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT);
2023 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2024 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2025 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2026 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2027 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2028 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2029 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2030 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2035 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2036 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2038 if (N1CFP && N2CFP) {
2039 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2040 switch (Cond) {
2041 default: break;
2042 case ISD::SETEQ: if (R==APFloat::cmpUnordered)
2043 return getUNDEF(VT);
2044 LLVM_FALLTHROUGH;
2045 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2046 OpVT);
2047 case ISD::SETNE: if (R==APFloat::cmpUnordered)
2048 return getUNDEF(VT);
2049 LLVM_FALLTHROUGH;
2050 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2051 R==APFloat::cmpLessThan, dl, VT,
2052 OpVT);
2053 case ISD::SETLT: if (R==APFloat::cmpUnordered)
2054 return getUNDEF(VT);
2055 LLVM_FALLTHROUGH;
2056 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2057 OpVT);
2058 case ISD::SETGT: if (R==APFloat::cmpUnordered)
2059 return getUNDEF(VT);
2060 LLVM_FALLTHROUGH;
2061 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2062 VT, OpVT);
2063 case ISD::SETLE: if (R==APFloat::cmpUnordered)
2064 return getUNDEF(VT);
2065 LLVM_FALLTHROUGH;
2066 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2067 R==APFloat::cmpEqual, dl, VT,
2068 OpVT);
2069 case ISD::SETGE: if (R==APFloat::cmpUnordered)
2070 return getUNDEF(VT);
2071 LLVM_FALLTHROUGH;
2072 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2073 R==APFloat::cmpEqual, dl, VT, OpVT);
2074 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2075 OpVT);
2076 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2077 OpVT);
2078 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2079 R==APFloat::cmpEqual, dl, VT,
2080 OpVT);
2081 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2082 OpVT);
2083 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2084 R==APFloat::cmpLessThan, dl, VT,
2085 OpVT);
2086 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2087 R==APFloat::cmpUnordered, dl, VT,
2088 OpVT);
2089 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2090 VT, OpVT);
2091 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2092 OpVT);
2094 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2095 // Ensure that the constant occurs on the RHS.
2096 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2097 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2098 return SDValue();
2099 return getSetCC(dl, VT, N2, N1, SwappedCond);
2100 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2101 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2102 // If an operand is known to be a nan (or undef that could be a nan), we can
2103 // fold it.
2104 // Choosing NaN for the undef will always make unordered comparison succeed
2105 // and ordered comparison fails.
2106 // Matches behavior in llvm::ConstantFoldCompareInstruction.
2107 switch (ISD::getUnorderedFlavor(Cond)) {
2108 default:
2109 llvm_unreachable("Unknown flavor!");
2110 case 0: // Known false.
2111 return getBoolConstant(false, dl, VT, OpVT);
2112 case 1: // Known true.
2113 return getBoolConstant(true, dl, VT, OpVT);
2114 case 2: // Undefined.
2115 return getUNDEF(VT);
2119 // Could not fold it.
2120 return SDValue();
2123 /// See if the specified operand can be simplified with the knowledge that only
2124 /// the bits specified by Mask are used.
2125 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &Mask) {
2126 switch (V.getOpcode()) {
2127 default:
2128 break;
2129 case ISD::Constant: {
2130 const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode());
2131 assert(CV && "Const value should be ConstSDNode.");
2132 const APInt &CVal = CV->getAPIntValue();
2133 APInt NewVal = CVal & Mask;
2134 if (NewVal != CVal)
2135 return getConstant(NewVal, SDLoc(V), V.getValueType());
2136 break;
2138 case ISD::OR:
2139 case ISD::XOR:
2140 // If the LHS or RHS don't contribute bits to the or, drop them.
2141 if (MaskedValueIsZero(V.getOperand(0), Mask))
2142 return V.getOperand(1);
2143 if (MaskedValueIsZero(V.getOperand(1), Mask))
2144 return V.getOperand(0);
2145 break;
2146 case ISD::SRL:
2147 // Only look at single-use SRLs.
2148 if (!V.getNode()->hasOneUse())
2149 break;
2150 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2151 // See if we can recursively simplify the LHS.
2152 unsigned Amt = RHSC->getZExtValue();
2154 // Watch out for shift count overflow though.
2155 if (Amt >= Mask.getBitWidth())
2156 break;
2157 APInt NewMask = Mask << Amt;
2158 if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask))
2159 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2160 V.getOperand(1));
2162 break;
2163 case ISD::AND: {
2164 // X & -1 -> X (ignoring bits which aren't demanded).
2165 // Also handle the case where masked out bits in X are known to be zero.
2166 if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) {
2167 const APInt &AndVal = RHSC->getAPIntValue();
2168 if (Mask.isSubsetOf(AndVal) ||
2169 Mask.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero | AndVal))
2170 return V.getOperand(0);
2172 break;
2174 case ISD::ANY_EXTEND: {
2175 SDValue Src = V.getOperand(0);
2176 unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
2177 // Being conservative here - only peek through if we only demand bits in the
2178 // non-extended source (even though the extended bits are technically undef).
2179 if (Mask.getActiveBits() > SrcBitWidth)
2180 break;
2181 APInt SrcMask = Mask.trunc(SrcBitWidth);
2182 if (SDValue DemandedSrc = GetDemandedBits(Src, SrcMask))
2183 return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc);
2184 break;
2186 case ISD::SIGN_EXTEND_INREG:
2187 EVT ExVT = cast<VTSDNode>(V.getOperand(1))->getVT();
2188 unsigned ExVTBits = ExVT.getScalarSizeInBits();
2190 // If none of the extended bits are demanded, eliminate the sextinreg.
2191 if (Mask.getActiveBits() <= ExVTBits)
2192 return V.getOperand(0);
2194 break;
2196 return SDValue();
2199 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
2200 /// use this predicate to simplify operations downstream.
2201 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2202 unsigned BitWidth = Op.getScalarValueSizeInBits();
2203 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2206 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
2207 /// this predicate to simplify operations downstream. Mask is known to be zero
2208 /// for bits that V cannot have.
2209 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
2210 unsigned Depth) const {
2211 return Mask.isSubsetOf(computeKnownBits(Op, Depth).Zero);
2214 /// isSplatValue - Return true if the vector V has the same value
2215 /// across all DemandedElts.
2216 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2217 APInt &UndefElts) {
2218 if (!DemandedElts)
2219 return false; // No demanded elts, better to assume we don't know anything.
2221 EVT VT = V.getValueType();
2222 assert(VT.isVector() && "Vector type expected");
2224 unsigned NumElts = VT.getVectorNumElements();
2225 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2226 UndefElts = APInt::getNullValue(NumElts);
2228 switch (V.getOpcode()) {
2229 case ISD::BUILD_VECTOR: {
2230 SDValue Scl;
2231 for (unsigned i = 0; i != NumElts; ++i) {
2232 SDValue Op = V.getOperand(i);
2233 if (Op.isUndef()) {
2234 UndefElts.setBit(i);
2235 continue;
2237 if (!DemandedElts[i])
2238 continue;
2239 if (Scl && Scl != Op)
2240 return false;
2241 Scl = Op;
2243 return true;
2245 case ISD::VECTOR_SHUFFLE: {
2246 // Check if this is a shuffle node doing a splat.
2247 // TODO: Do we need to handle shuffle(splat, undef, mask)?
2248 int SplatIndex = -1;
2249 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2250 for (int i = 0; i != (int)NumElts; ++i) {
2251 int M = Mask[i];
2252 if (M < 0) {
2253 UndefElts.setBit(i);
2254 continue;
2256 if (!DemandedElts[i])
2257 continue;
2258 if (0 <= SplatIndex && SplatIndex != M)
2259 return false;
2260 SplatIndex = M;
2262 return true;
2264 case ISD::EXTRACT_SUBVECTOR: {
2265 SDValue Src = V.getOperand(0);
2266 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(V.getOperand(1));
2267 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2268 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2269 // Offset the demanded elts by the subvector index.
2270 uint64_t Idx = SubIdx->getZExtValue();
2271 APInt UndefSrcElts;
2272 APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2273 if (isSplatValue(Src, DemandedSrc, UndefSrcElts)) {
2274 UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2275 return true;
2278 break;
2280 case ISD::ADD:
2281 case ISD::SUB:
2282 case ISD::AND: {
2283 APInt UndefLHS, UndefRHS;
2284 SDValue LHS = V.getOperand(0);
2285 SDValue RHS = V.getOperand(1);
2286 if (isSplatValue(LHS, DemandedElts, UndefLHS) &&
2287 isSplatValue(RHS, DemandedElts, UndefRHS)) {
2288 UndefElts = UndefLHS | UndefRHS;
2289 return true;
2291 break;
2295 return false;
2298 /// Helper wrapper to main isSplatValue function.
2299 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2300 EVT VT = V.getValueType();
2301 assert(VT.isVector() && "Vector type expected");
2302 unsigned NumElts = VT.getVectorNumElements();
2304 APInt UndefElts;
2305 APInt DemandedElts = APInt::getAllOnesValue(NumElts);
2306 return isSplatValue(V, DemandedElts, UndefElts) &&
2307 (AllowUndefs || !UndefElts);
2310 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2311 V = peekThroughExtractSubvectors(V);
2313 EVT VT = V.getValueType();
2314 unsigned Opcode = V.getOpcode();
2315 switch (Opcode) {
2316 default: {
2317 APInt UndefElts;
2318 APInt DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2319 if (isSplatValue(V, DemandedElts, UndefElts)) {
2320 // Handle case where all demanded elements are UNDEF.
2321 if (DemandedElts.isSubsetOf(UndefElts)) {
2322 SplatIdx = 0;
2323 return getUNDEF(VT);
2325 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2326 return V;
2328 break;
2330 case ISD::VECTOR_SHUFFLE: {
2331 // Check if this is a shuffle node doing a splat.
2332 // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2333 // getTargetVShiftNode currently struggles without the splat source.
2334 auto *SVN = cast<ShuffleVectorSDNode>(V);
2335 if (!SVN->isSplat())
2336 break;
2337 int Idx = SVN->getSplatIndex();
2338 int NumElts = V.getValueType().getVectorNumElements();
2339 SplatIdx = Idx % NumElts;
2340 return V.getOperand(Idx / NumElts);
2344 return SDValue();
2347 SDValue SelectionDAG::getSplatValue(SDValue V) {
2348 int SplatIdx;
2349 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx))
2350 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V),
2351 SrcVector.getValueType().getScalarType(), SrcVector,
2352 getIntPtrConstant(SplatIdx, SDLoc(V)));
2353 return SDValue();
2356 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that
2357 /// is less than the element bit-width of the shift node, return it.
2358 static const APInt *getValidShiftAmountConstant(SDValue V) {
2359 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) {
2360 // Shifting more than the bitwidth is not valid.
2361 const APInt &ShAmt = SA->getAPIntValue();
2362 if (ShAmt.ult(V.getScalarValueSizeInBits()))
2363 return &ShAmt;
2365 return nullptr;
2368 /// Determine which bits of Op are known to be either zero or one and return
2369 /// them in Known. For vectors, the known bits are those that are shared by
2370 /// every vector element.
2371 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2372 EVT VT = Op.getValueType();
2373 APInt DemandedElts = VT.isVector()
2374 ? APInt::getAllOnesValue(VT.getVectorNumElements())
2375 : APInt(1, 1);
2376 return computeKnownBits(Op, DemandedElts, Depth);
2379 /// Determine which bits of Op are known to be either zero or one and return
2380 /// them in Known. The DemandedElts argument allows us to only collect the known
2381 /// bits that are shared by the requested vector elements.
2382 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2383 unsigned Depth) const {
2384 unsigned BitWidth = Op.getScalarValueSizeInBits();
2386 KnownBits Known(BitWidth); // Don't know anything.
2388 if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2389 // We know all of the bits for a constant!
2390 Known.One = C->getAPIntValue();
2391 Known.Zero = ~Known.One;
2392 return Known;
2394 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2395 // We know all of the bits for a constant fp!
2396 Known.One = C->getValueAPF().bitcastToAPInt();
2397 Known.Zero = ~Known.One;
2398 return Known;
2401 if (Depth == 6)
2402 return Known; // Limit search depth.
2404 KnownBits Known2;
2405 unsigned NumElts = DemandedElts.getBitWidth();
2406 assert((!Op.getValueType().isVector() ||
2407 NumElts == Op.getValueType().getVectorNumElements()) &&
2408 "Unexpected vector size");
2410 if (!DemandedElts)
2411 return Known; // No demanded elts, better to assume we don't know anything.
2413 unsigned Opcode = Op.getOpcode();
2414 switch (Opcode) {
2415 case ISD::BUILD_VECTOR:
2416 // Collect the known bits that are shared by every demanded vector element.
2417 Known.Zero.setAllBits(); Known.One.setAllBits();
2418 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2419 if (!DemandedElts[i])
2420 continue;
2422 SDValue SrcOp = Op.getOperand(i);
2423 Known2 = computeKnownBits(SrcOp, Depth + 1);
2425 // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2426 if (SrcOp.getValueSizeInBits() != BitWidth) {
2427 assert(SrcOp.getValueSizeInBits() > BitWidth &&
2428 "Expected BUILD_VECTOR implicit truncation");
2429 Known2 = Known2.trunc(BitWidth);
2432 // Known bits are the values that are shared by every demanded element.
2433 Known.One &= Known2.One;
2434 Known.Zero &= Known2.Zero;
2436 // If we don't know any bits, early out.
2437 if (Known.isUnknown())
2438 break;
2440 break;
2441 case ISD::VECTOR_SHUFFLE: {
2442 // Collect the known bits that are shared by every vector element referenced
2443 // by the shuffle.
2444 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2445 Known.Zero.setAllBits(); Known.One.setAllBits();
2446 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2447 assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2448 for (unsigned i = 0; i != NumElts; ++i) {
2449 if (!DemandedElts[i])
2450 continue;
2452 int M = SVN->getMaskElt(i);
2453 if (M < 0) {
2454 // For UNDEF elements, we don't know anything about the common state of
2455 // the shuffle result.
2456 Known.resetAll();
2457 DemandedLHS.clearAllBits();
2458 DemandedRHS.clearAllBits();
2459 break;
2462 if ((unsigned)M < NumElts)
2463 DemandedLHS.setBit((unsigned)M % NumElts);
2464 else
2465 DemandedRHS.setBit((unsigned)M % NumElts);
2467 // Known bits are the values that are shared by every demanded element.
2468 if (!!DemandedLHS) {
2469 SDValue LHS = Op.getOperand(0);
2470 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2471 Known.One &= Known2.One;
2472 Known.Zero &= Known2.Zero;
2474 // If we don't know any bits, early out.
2475 if (Known.isUnknown())
2476 break;
2477 if (!!DemandedRHS) {
2478 SDValue RHS = Op.getOperand(1);
2479 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2480 Known.One &= Known2.One;
2481 Known.Zero &= Known2.Zero;
2483 break;
2485 case ISD::CONCAT_VECTORS: {
2486 // Split DemandedElts and test each of the demanded subvectors.
2487 Known.Zero.setAllBits(); Known.One.setAllBits();
2488 EVT SubVectorVT = Op.getOperand(0).getValueType();
2489 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2490 unsigned NumSubVectors = Op.getNumOperands();
2491 for (unsigned i = 0; i != NumSubVectors; ++i) {
2492 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2493 DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2494 if (!!DemandedSub) {
2495 SDValue Sub = Op.getOperand(i);
2496 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2497 Known.One &= Known2.One;
2498 Known.Zero &= Known2.Zero;
2500 // If we don't know any bits, early out.
2501 if (Known.isUnknown())
2502 break;
2504 break;
2506 case ISD::INSERT_SUBVECTOR: {
2507 // If we know the element index, demand any elements from the subvector and
2508 // the remainder from the src its inserted into, otherwise demand them all.
2509 SDValue Src = Op.getOperand(0);
2510 SDValue Sub = Op.getOperand(1);
2511 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2512 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2513 if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
2514 Known.One.setAllBits();
2515 Known.Zero.setAllBits();
2516 uint64_t Idx = SubIdx->getZExtValue();
2517 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2518 if (!!DemandedSubElts) {
2519 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2520 if (Known.isUnknown())
2521 break; // early-out.
2523 APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
2524 APInt DemandedSrcElts = DemandedElts & ~SubMask;
2525 if (!!DemandedSrcElts) {
2526 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2527 Known.One &= Known2.One;
2528 Known.Zero &= Known2.Zero;
2530 } else {
2531 Known = computeKnownBits(Sub, Depth + 1);
2532 if (Known.isUnknown())
2533 break; // early-out.
2534 Known2 = computeKnownBits(Src, Depth + 1);
2535 Known.One &= Known2.One;
2536 Known.Zero &= Known2.Zero;
2538 break;
2540 case ISD::EXTRACT_SUBVECTOR: {
2541 // If we know the element index, just demand that subvector elements,
2542 // otherwise demand them all.
2543 SDValue Src = Op.getOperand(0);
2544 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2545 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2546 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2547 // Offset the demanded elts by the subvector index.
2548 uint64_t Idx = SubIdx->getZExtValue();
2549 APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2550 Known = computeKnownBits(Src, DemandedSrc, Depth + 1);
2551 } else {
2552 Known = computeKnownBits(Src, Depth + 1);
2554 break;
2556 case ISD::SCALAR_TO_VECTOR: {
2557 // We know about scalar_to_vector as much as we know about it source,
2558 // which becomes the first element of otherwise unknown vector.
2559 if (DemandedElts != 1)
2560 break;
2562 SDValue N0 = Op.getOperand(0);
2563 Known = computeKnownBits(N0, Depth + 1);
2564 if (N0.getValueSizeInBits() != BitWidth)
2565 Known = Known.trunc(BitWidth);
2567 break;
2569 case ISD::BITCAST: {
2570 SDValue N0 = Op.getOperand(0);
2571 EVT SubVT = N0.getValueType();
2572 unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2574 // Ignore bitcasts from unsupported types.
2575 if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2576 break;
2578 // Fast handling of 'identity' bitcasts.
2579 if (BitWidth == SubBitWidth) {
2580 Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2581 break;
2584 bool IsLE = getDataLayout().isLittleEndian();
2586 // Bitcast 'small element' vector to 'large element' scalar/vector.
2587 if ((BitWidth % SubBitWidth) == 0) {
2588 assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2590 // Collect known bits for the (larger) output by collecting the known
2591 // bits from each set of sub elements and shift these into place.
2592 // We need to separately call computeKnownBits for each set of
2593 // sub elements as the knownbits for each is likely to be different.
2594 unsigned SubScale = BitWidth / SubBitWidth;
2595 APInt SubDemandedElts(NumElts * SubScale, 0);
2596 for (unsigned i = 0; i != NumElts; ++i)
2597 if (DemandedElts[i])
2598 SubDemandedElts.setBit(i * SubScale);
2600 for (unsigned i = 0; i != SubScale; ++i) {
2601 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2602 Depth + 1);
2603 unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2604 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2605 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2609 // Bitcast 'large element' scalar/vector to 'small element' vector.
2610 if ((SubBitWidth % BitWidth) == 0) {
2611 assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2613 // Collect known bits for the (smaller) output by collecting the known
2614 // bits from the overlapping larger input elements and extracting the
2615 // sub sections we actually care about.
2616 unsigned SubScale = SubBitWidth / BitWidth;
2617 APInt SubDemandedElts(NumElts / SubScale, 0);
2618 for (unsigned i = 0; i != NumElts; ++i)
2619 if (DemandedElts[i])
2620 SubDemandedElts.setBit(i / SubScale);
2622 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2624 Known.Zero.setAllBits(); Known.One.setAllBits();
2625 for (unsigned i = 0; i != NumElts; ++i)
2626 if (DemandedElts[i]) {
2627 unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2628 unsigned Offset = (Shifts % SubScale) * BitWidth;
2629 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2630 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2631 // If we don't know any bits, early out.
2632 if (Known.isUnknown())
2633 break;
2636 break;
2638 case ISD::AND:
2639 // If either the LHS or the RHS are Zero, the result is zero.
2640 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2641 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2643 // Output known-1 bits are only known if set in both the LHS & RHS.
2644 Known.One &= Known2.One;
2645 // Output known-0 are known to be clear if zero in either the LHS | RHS.
2646 Known.Zero |= Known2.Zero;
2647 break;
2648 case ISD::OR:
2649 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2650 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2652 // Output known-0 bits are only known if clear in both the LHS & RHS.
2653 Known.Zero &= Known2.Zero;
2654 // Output known-1 are known to be set if set in either the LHS | RHS.
2655 Known.One |= Known2.One;
2656 break;
2657 case ISD::XOR: {
2658 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2659 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2661 // Output known-0 bits are known if clear or set in both the LHS & RHS.
2662 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
2663 // Output known-1 are known to be set if set in only one of the LHS, RHS.
2664 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
2665 Known.Zero = KnownZeroOut;
2666 break;
2668 case ISD::MUL: {
2669 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2670 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2672 // If low bits are zero in either operand, output low known-0 bits.
2673 // Also compute a conservative estimate for high known-0 bits.
2674 // More trickiness is possible, but this is sufficient for the
2675 // interesting case of alignment computation.
2676 unsigned TrailZ = Known.countMinTrailingZeros() +
2677 Known2.countMinTrailingZeros();
2678 unsigned LeadZ = std::max(Known.countMinLeadingZeros() +
2679 Known2.countMinLeadingZeros(),
2680 BitWidth) - BitWidth;
2682 Known.resetAll();
2683 Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
2684 Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
2685 break;
2687 case ISD::UDIV: {
2688 // For the purposes of computing leading zeros we can conservatively
2689 // treat a udiv as a logical right shift by the power of 2 known to
2690 // be less than the denominator.
2691 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2692 unsigned LeadZ = Known2.countMinLeadingZeros();
2694 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2695 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
2696 if (RHSMaxLeadingZeros != BitWidth)
2697 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
2699 Known.Zero.setHighBits(LeadZ);
2700 break;
2702 case ISD::SELECT:
2703 case ISD::VSELECT:
2704 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2705 // If we don't know any bits, early out.
2706 if (Known.isUnknown())
2707 break;
2708 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
2710 // Only known if known in both the LHS and RHS.
2711 Known.One &= Known2.One;
2712 Known.Zero &= Known2.Zero;
2713 break;
2714 case ISD::SELECT_CC:
2715 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
2716 // If we don't know any bits, early out.
2717 if (Known.isUnknown())
2718 break;
2719 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2721 // Only known if known in both the LHS and RHS.
2722 Known.One &= Known2.One;
2723 Known.Zero &= Known2.Zero;
2724 break;
2725 case ISD::SMULO:
2726 case ISD::UMULO:
2727 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2728 if (Op.getResNo() != 1)
2729 break;
2730 // The boolean result conforms to getBooleanContents.
2731 // If we know the result of a setcc has the top bits zero, use this info.
2732 // We know that we have an integer-based boolean since these operations
2733 // are only available for integer.
2734 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2735 TargetLowering::ZeroOrOneBooleanContent &&
2736 BitWidth > 1)
2737 Known.Zero.setBitsFrom(1);
2738 break;
2739 case ISD::SETCC:
2740 // If we know the result of a setcc has the top bits zero, use this info.
2741 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2742 TargetLowering::ZeroOrOneBooleanContent &&
2743 BitWidth > 1)
2744 Known.Zero.setBitsFrom(1);
2745 break;
2746 case ISD::SHL:
2747 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2748 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2749 unsigned Shift = ShAmt->getZExtValue();
2750 Known.Zero <<= Shift;
2751 Known.One <<= Shift;
2752 // Low bits are known zero.
2753 Known.Zero.setLowBits(Shift);
2755 break;
2756 case ISD::SRL:
2757 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2758 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2759 unsigned Shift = ShAmt->getZExtValue();
2760 Known.Zero.lshrInPlace(Shift);
2761 Known.One.lshrInPlace(Shift);
2762 // High bits are known zero.
2763 Known.Zero.setHighBits(Shift);
2764 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(Op.getOperand(1))) {
2765 // If the shift amount is a vector of constants see if we can bound
2766 // the number of upper zero bits.
2767 unsigned ShiftAmountMin = BitWidth;
2768 for (unsigned i = 0; i != BV->getNumOperands(); ++i) {
2769 if (auto *C = dyn_cast<ConstantSDNode>(BV->getOperand(i))) {
2770 const APInt &ShAmt = C->getAPIntValue();
2771 if (ShAmt.ult(BitWidth)) {
2772 ShiftAmountMin = std::min<unsigned>(ShiftAmountMin,
2773 ShAmt.getZExtValue());
2774 continue;
2777 // Don't know anything.
2778 ShiftAmountMin = 0;
2779 break;
2782 Known.Zero.setHighBits(ShiftAmountMin);
2784 break;
2785 case ISD::SRA:
2786 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2787 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2788 unsigned Shift = ShAmt->getZExtValue();
2789 // Sign extend known zero/one bit (else is unknown).
2790 Known.Zero.ashrInPlace(Shift);
2791 Known.One.ashrInPlace(Shift);
2793 break;
2794 case ISD::FSHL:
2795 case ISD::FSHR:
2796 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
2797 unsigned Amt = C->getAPIntValue().urem(BitWidth);
2799 // For fshl, 0-shift returns the 1st arg.
2800 // For fshr, 0-shift returns the 2nd arg.
2801 if (Amt == 0) {
2802 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
2803 DemandedElts, Depth + 1);
2804 break;
2807 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
2808 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
2809 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2810 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2811 if (Opcode == ISD::FSHL) {
2812 Known.One <<= Amt;
2813 Known.Zero <<= Amt;
2814 Known2.One.lshrInPlace(BitWidth - Amt);
2815 Known2.Zero.lshrInPlace(BitWidth - Amt);
2816 } else {
2817 Known.One <<= BitWidth - Amt;
2818 Known.Zero <<= BitWidth - Amt;
2819 Known2.One.lshrInPlace(Amt);
2820 Known2.Zero.lshrInPlace(Amt);
2822 Known.One |= Known2.One;
2823 Known.Zero |= Known2.Zero;
2825 break;
2826 case ISD::SIGN_EXTEND_INREG: {
2827 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2828 unsigned EBits = EVT.getScalarSizeInBits();
2830 // Sign extension. Compute the demanded bits in the result that are not
2831 // present in the input.
2832 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
2834 APInt InSignMask = APInt::getSignMask(EBits);
2835 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
2837 // If the sign extended bits are demanded, we know that the sign
2838 // bit is demanded.
2839 InSignMask = InSignMask.zext(BitWidth);
2840 if (NewBits.getBoolValue())
2841 InputDemandedBits |= InSignMask;
2843 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2844 Known.One &= InputDemandedBits;
2845 Known.Zero &= InputDemandedBits;
2847 // If the sign bit of the input is known set or clear, then we know the
2848 // top bits of the result.
2849 if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear
2850 Known.Zero |= NewBits;
2851 Known.One &= ~NewBits;
2852 } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set
2853 Known.One |= NewBits;
2854 Known.Zero &= ~NewBits;
2855 } else { // Input sign bit unknown
2856 Known.Zero &= ~NewBits;
2857 Known.One &= ~NewBits;
2859 break;
2861 case ISD::CTTZ:
2862 case ISD::CTTZ_ZERO_UNDEF: {
2863 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2864 // If we have a known 1, its position is our upper bound.
2865 unsigned PossibleTZ = Known2.countMaxTrailingZeros();
2866 unsigned LowBits = Log2_32(PossibleTZ) + 1;
2867 Known.Zero.setBitsFrom(LowBits);
2868 break;
2870 case ISD::CTLZ:
2871 case ISD::CTLZ_ZERO_UNDEF: {
2872 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2873 // If we have a known 1, its position is our upper bound.
2874 unsigned PossibleLZ = Known2.countMaxLeadingZeros();
2875 unsigned LowBits = Log2_32(PossibleLZ) + 1;
2876 Known.Zero.setBitsFrom(LowBits);
2877 break;
2879 case ISD::CTPOP: {
2880 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2881 // If we know some of the bits are zero, they can't be one.
2882 unsigned PossibleOnes = Known2.countMaxPopulation();
2883 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
2884 break;
2886 case ISD::LOAD: {
2887 LoadSDNode *LD = cast<LoadSDNode>(Op);
2888 // If this is a ZEXTLoad and we are looking at the loaded value.
2889 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
2890 EVT VT = LD->getMemoryVT();
2891 unsigned MemBits = VT.getScalarSizeInBits();
2892 Known.Zero.setBitsFrom(MemBits);
2893 } else if (const MDNode *Ranges = LD->getRanges()) {
2894 if (LD->getExtensionType() == ISD::NON_EXTLOAD)
2895 computeKnownBitsFromRangeMetadata(*Ranges, Known);
2897 break;
2899 case ISD::ZERO_EXTEND_VECTOR_INREG: {
2900 EVT InVT = Op.getOperand(0).getValueType();
2901 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
2902 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
2903 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
2904 break;
2906 case ISD::ZERO_EXTEND: {
2907 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2908 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
2909 break;
2911 case ISD::SIGN_EXTEND_VECTOR_INREG: {
2912 EVT InVT = Op.getOperand(0).getValueType();
2913 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
2914 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
2915 // If the sign bit is known to be zero or one, then sext will extend
2916 // it to the top bits, else it will just zext.
2917 Known = Known.sext(BitWidth);
2918 break;
2920 case ISD::SIGN_EXTEND: {
2921 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2922 // If the sign bit is known to be zero or one, then sext will extend
2923 // it to the top bits, else it will just zext.
2924 Known = Known.sext(BitWidth);
2925 break;
2927 case ISD::ANY_EXTEND: {
2928 Known = computeKnownBits(Op.getOperand(0), Depth+1);
2929 Known = Known.zext(BitWidth, false /* ExtendedBitsAreKnownZero */);
2930 break;
2932 case ISD::TRUNCATE: {
2933 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2934 Known = Known.trunc(BitWidth);
2935 break;
2937 case ISD::AssertZext: {
2938 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2939 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
2940 Known = computeKnownBits(Op.getOperand(0), Depth+1);
2941 Known.Zero |= (~InMask);
2942 Known.One &= (~Known.Zero);
2943 break;
2945 case ISD::FGETSIGN:
2946 // All bits are zero except the low bit.
2947 Known.Zero.setBitsFrom(1);
2948 break;
2949 case ISD::USUBO:
2950 case ISD::SSUBO:
2951 if (Op.getResNo() == 1) {
2952 // If we know the result of a setcc has the top bits zero, use this info.
2953 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2954 TargetLowering::ZeroOrOneBooleanContent &&
2955 BitWidth > 1)
2956 Known.Zero.setBitsFrom(1);
2957 break;
2959 LLVM_FALLTHROUGH;
2960 case ISD::SUB:
2961 case ISD::SUBC: {
2962 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2963 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2964 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
2965 Known, Known2);
2966 break;
2968 case ISD::UADDO:
2969 case ISD::SADDO:
2970 case ISD::ADDCARRY:
2971 if (Op.getResNo() == 1) {
2972 // If we know the result of a setcc has the top bits zero, use this info.
2973 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2974 TargetLowering::ZeroOrOneBooleanContent &&
2975 BitWidth > 1)
2976 Known.Zero.setBitsFrom(1);
2977 break;
2979 LLVM_FALLTHROUGH;
2980 case ISD::ADD:
2981 case ISD::ADDC:
2982 case ISD::ADDE: {
2983 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
2985 // With ADDE and ADDCARRY, a carry bit may be added in.
2986 KnownBits Carry(1);
2987 if (Opcode == ISD::ADDE)
2988 // Can't track carry from glue, set carry to unknown.
2989 Carry.resetAll();
2990 else if (Opcode == ISD::ADDCARRY)
2991 // TODO: Compute known bits for the carry operand. Not sure if it is worth
2992 // the trouble (how often will we find a known carry bit). And I haven't
2993 // tested this very much yet, but something like this might work:
2994 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
2995 // Carry = Carry.zextOrTrunc(1, false);
2996 Carry.resetAll();
2997 else
2998 Carry.setAllZero();
3000 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3001 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3002 Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3003 break;
3005 case ISD::SREM:
3006 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3007 const APInt &RA = Rem->getAPIntValue().abs();
3008 if (RA.isPowerOf2()) {
3009 APInt LowBits = RA - 1;
3010 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3012 // The low bits of the first operand are unchanged by the srem.
3013 Known.Zero = Known2.Zero & LowBits;
3014 Known.One = Known2.One & LowBits;
3016 // If the first operand is non-negative or has all low bits zero, then
3017 // the upper bits are all zero.
3018 if (Known2.Zero[BitWidth-1] || ((Known2.Zero & LowBits) == LowBits))
3019 Known.Zero |= ~LowBits;
3021 // If the first operand is negative and not all low bits are zero, then
3022 // the upper bits are all one.
3023 if (Known2.One[BitWidth-1] && ((Known2.One & LowBits) != 0))
3024 Known.One |= ~LowBits;
3025 assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
3028 break;
3029 case ISD::UREM: {
3030 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3031 const APInt &RA = Rem->getAPIntValue();
3032 if (RA.isPowerOf2()) {
3033 APInt LowBits = (RA - 1);
3034 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3036 // The upper bits are all zero, the lower ones are unchanged.
3037 Known.Zero = Known2.Zero | ~LowBits;
3038 Known.One = Known2.One & LowBits;
3039 break;
3043 // Since the result is less than or equal to either operand, any leading
3044 // zero bits in either operand must also exist in the result.
3045 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3046 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3048 uint32_t Leaders =
3049 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
3050 Known.resetAll();
3051 Known.Zero.setHighBits(Leaders);
3052 break;
3054 case ISD::EXTRACT_ELEMENT: {
3055 Known = computeKnownBits(Op.getOperand(0), Depth+1);
3056 const unsigned Index = Op.getConstantOperandVal(1);
3057 const unsigned EltBitWidth = Op.getValueSizeInBits();
3059 // Remove low part of known bits mask
3060 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3061 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3063 // Remove high part of known bit mask
3064 Known = Known.trunc(EltBitWidth);
3065 break;
3067 case ISD::EXTRACT_VECTOR_ELT: {
3068 SDValue InVec = Op.getOperand(0);
3069 SDValue EltNo = Op.getOperand(1);
3070 EVT VecVT = InVec.getValueType();
3071 const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3072 const unsigned NumSrcElts = VecVT.getVectorNumElements();
3073 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3074 // anything about the extended bits.
3075 if (BitWidth > EltBitWidth)
3076 Known = Known.trunc(EltBitWidth);
3077 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3078 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) {
3079 // If we know the element index, just demand that vector element.
3080 unsigned Idx = ConstEltNo->getZExtValue();
3081 APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
3082 Known = computeKnownBits(InVec, DemandedElt, Depth + 1);
3083 } else {
3084 // Unknown element index, so ignore DemandedElts and demand them all.
3085 Known = computeKnownBits(InVec, Depth + 1);
3087 if (BitWidth > EltBitWidth)
3088 Known = Known.zext(BitWidth, false /* => any extend */);
3089 break;
3091 case ISD::INSERT_VECTOR_ELT: {
3092 SDValue InVec = Op.getOperand(0);
3093 SDValue InVal = Op.getOperand(1);
3094 SDValue EltNo = Op.getOperand(2);
3096 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3097 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3098 // If we know the element index, split the demand between the
3099 // source vector and the inserted element.
3100 Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth);
3101 unsigned EltIdx = CEltNo->getZExtValue();
3103 // If we demand the inserted element then add its common known bits.
3104 if (DemandedElts[EltIdx]) {
3105 Known2 = computeKnownBits(InVal, Depth + 1);
3106 Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
3107 Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
3110 // If we demand the source vector then add its common known bits, ensuring
3111 // that we don't demand the inserted element.
3112 APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx));
3113 if (!!VectorElts) {
3114 Known2 = computeKnownBits(InVec, VectorElts, Depth + 1);
3115 Known.One &= Known2.One;
3116 Known.Zero &= Known2.Zero;
3118 } else {
3119 // Unknown element index, so ignore DemandedElts and demand them all.
3120 Known = computeKnownBits(InVec, Depth + 1);
3121 Known2 = computeKnownBits(InVal, Depth + 1);
3122 Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
3123 Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
3125 break;
3127 case ISD::BITREVERSE: {
3128 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3129 Known.Zero = Known2.Zero.reverseBits();
3130 Known.One = Known2.One.reverseBits();
3131 break;
3133 case ISD::BSWAP: {
3134 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3135 Known.Zero = Known2.Zero.byteSwap();
3136 Known.One = Known2.One.byteSwap();
3137 break;
3139 case ISD::ABS: {
3140 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3142 // If the source's MSB is zero then we know the rest of the bits already.
3143 if (Known2.isNonNegative()) {
3144 Known.Zero = Known2.Zero;
3145 Known.One = Known2.One;
3146 break;
3149 // We only know that the absolute values's MSB will be zero iff there is
3150 // a set bit that isn't the sign bit (otherwise it could be INT_MIN).
3151 Known2.One.clearSignBit();
3152 if (Known2.One.getBoolValue()) {
3153 Known.Zero = APInt::getSignMask(BitWidth);
3154 break;
3156 break;
3158 case ISD::UMIN: {
3159 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3160 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3162 // UMIN - we know that the result will have the maximum of the
3163 // known zero leading bits of the inputs.
3164 unsigned LeadZero = Known.countMinLeadingZeros();
3165 LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros());
3167 Known.Zero &= Known2.Zero;
3168 Known.One &= Known2.One;
3169 Known.Zero.setHighBits(LeadZero);
3170 break;
3172 case ISD::UMAX: {
3173 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3174 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3176 // UMAX - we know that the result will have the maximum of the
3177 // known one leading bits of the inputs.
3178 unsigned LeadOne = Known.countMinLeadingOnes();
3179 LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes());
3181 Known.Zero &= Known2.Zero;
3182 Known.One &= Known2.One;
3183 Known.One.setHighBits(LeadOne);
3184 break;
3186 case ISD::SMIN:
3187 case ISD::SMAX: {
3188 // If we have a clamp pattern, we know that the number of sign bits will be
3189 // the minimum of the clamp min/max range.
3190 bool IsMax = (Opcode == ISD::SMAX);
3191 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3192 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3193 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3194 CstHigh =
3195 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3196 if (CstLow && CstHigh) {
3197 if (!IsMax)
3198 std::swap(CstLow, CstHigh);
3200 const APInt &ValueLow = CstLow->getAPIntValue();
3201 const APInt &ValueHigh = CstHigh->getAPIntValue();
3202 if (ValueLow.sle(ValueHigh)) {
3203 unsigned LowSignBits = ValueLow.getNumSignBits();
3204 unsigned HighSignBits = ValueHigh.getNumSignBits();
3205 unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3206 if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3207 Known.One.setHighBits(MinSignBits);
3208 break;
3210 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3211 Known.Zero.setHighBits(MinSignBits);
3212 break;
3217 // Fallback - just get the shared known bits of the operands.
3218 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3219 if (Known.isUnknown()) break; // Early-out
3220 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3221 Known.Zero &= Known2.Zero;
3222 Known.One &= Known2.One;
3223 break;
3225 case ISD::FrameIndex:
3226 case ISD::TargetFrameIndex:
3227 TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth);
3228 break;
3230 default:
3231 if (Opcode < ISD::BUILTIN_OP_END)
3232 break;
3233 LLVM_FALLTHROUGH;
3234 case ISD::INTRINSIC_WO_CHAIN:
3235 case ISD::INTRINSIC_W_CHAIN:
3236 case ISD::INTRINSIC_VOID:
3237 // Allow the target to implement this method for its nodes.
3238 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3239 break;
3242 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3243 return Known;
3246 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3247 SDValue N1) const {
3248 // X + 0 never overflow
3249 if (isNullConstant(N1))
3250 return OFK_Never;
3252 KnownBits N1Known = computeKnownBits(N1);
3253 if (N1Known.Zero.getBoolValue()) {
3254 KnownBits N0Known = computeKnownBits(N0);
3256 bool overflow;
3257 (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow);
3258 if (!overflow)
3259 return OFK_Never;
3262 // mulhi + 1 never overflow
3263 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3264 (~N1Known.Zero & 0x01) == ~N1Known.Zero)
3265 return OFK_Never;
3267 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3268 KnownBits N0Known = computeKnownBits(N0);
3270 if ((~N0Known.Zero & 0x01) == ~N0Known.Zero)
3271 return OFK_Never;
3274 return OFK_Sometime;
3277 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3278 EVT OpVT = Val.getValueType();
3279 unsigned BitWidth = OpVT.getScalarSizeInBits();
3281 // Is the constant a known power of 2?
3282 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3283 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3285 // A left-shift of a constant one will have exactly one bit set because
3286 // shifting the bit off the end is undefined.
3287 if (Val.getOpcode() == ISD::SHL) {
3288 auto *C = isConstOrConstSplat(Val.getOperand(0));
3289 if (C && C->getAPIntValue() == 1)
3290 return true;
3293 // Similarly, a logical right-shift of a constant sign-bit will have exactly
3294 // one bit set.
3295 if (Val.getOpcode() == ISD::SRL) {
3296 auto *C = isConstOrConstSplat(Val.getOperand(0));
3297 if (C && C->getAPIntValue().isSignMask())
3298 return true;
3301 // Are all operands of a build vector constant powers of two?
3302 if (Val.getOpcode() == ISD::BUILD_VECTOR)
3303 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3304 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3305 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3306 return false;
3308 return true;
3310 // More could be done here, though the above checks are enough
3311 // to handle some common cases.
3313 // Fall back to computeKnownBits to catch other known cases.
3314 KnownBits Known = computeKnownBits(Val);
3315 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3318 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3319 EVT VT = Op.getValueType();
3320 APInt DemandedElts = VT.isVector()
3321 ? APInt::getAllOnesValue(VT.getVectorNumElements())
3322 : APInt(1, 1);
3323 return ComputeNumSignBits(Op, DemandedElts, Depth);
3326 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3327 unsigned Depth) const {
3328 EVT VT = Op.getValueType();
3329 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3330 unsigned VTBits = VT.getScalarSizeInBits();
3331 unsigned NumElts = DemandedElts.getBitWidth();
3332 unsigned Tmp, Tmp2;
3333 unsigned FirstAnswer = 1;
3335 if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3336 const APInt &Val = C->getAPIntValue();
3337 return Val.getNumSignBits();
3340 if (Depth == 6)
3341 return 1; // Limit search depth.
3343 if (!DemandedElts)
3344 return 1; // No demanded elts, better to assume we don't know anything.
3346 unsigned Opcode = Op.getOpcode();
3347 switch (Opcode) {
3348 default: break;
3349 case ISD::AssertSext:
3350 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3351 return VTBits-Tmp+1;
3352 case ISD::AssertZext:
3353 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3354 return VTBits-Tmp;
3356 case ISD::BUILD_VECTOR:
3357 Tmp = VTBits;
3358 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3359 if (!DemandedElts[i])
3360 continue;
3362 SDValue SrcOp = Op.getOperand(i);
3363 Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1);
3365 // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3366 if (SrcOp.getValueSizeInBits() != VTBits) {
3367 assert(SrcOp.getValueSizeInBits() > VTBits &&
3368 "Expected BUILD_VECTOR implicit truncation");
3369 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3370 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3372 Tmp = std::min(Tmp, Tmp2);
3374 return Tmp;
3376 case ISD::VECTOR_SHUFFLE: {
3377 // Collect the minimum number of sign bits that are shared by every vector
3378 // element referenced by the shuffle.
3379 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3380 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3381 assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3382 for (unsigned i = 0; i != NumElts; ++i) {
3383 int M = SVN->getMaskElt(i);
3384 if (!DemandedElts[i])
3385 continue;
3386 // For UNDEF elements, we don't know anything about the common state of
3387 // the shuffle result.
3388 if (M < 0)
3389 return 1;
3390 if ((unsigned)M < NumElts)
3391 DemandedLHS.setBit((unsigned)M % NumElts);
3392 else
3393 DemandedRHS.setBit((unsigned)M % NumElts);
3395 Tmp = std::numeric_limits<unsigned>::max();
3396 if (!!DemandedLHS)
3397 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3398 if (!!DemandedRHS) {
3399 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3400 Tmp = std::min(Tmp, Tmp2);
3402 // If we don't know anything, early out and try computeKnownBits fall-back.
3403 if (Tmp == 1)
3404 break;
3405 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3406 return Tmp;
3409 case ISD::BITCAST: {
3410 SDValue N0 = Op.getOperand(0);
3411 EVT SrcVT = N0.getValueType();
3412 unsigned SrcBits = SrcVT.getScalarSizeInBits();
3414 // Ignore bitcasts from unsupported types..
3415 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3416 break;
3418 // Fast handling of 'identity' bitcasts.
3419 if (VTBits == SrcBits)
3420 return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3422 bool IsLE = getDataLayout().isLittleEndian();
3424 // Bitcast 'large element' scalar/vector to 'small element' vector.
3425 if ((SrcBits % VTBits) == 0) {
3426 assert(VT.isVector() && "Expected bitcast to vector");
3428 unsigned Scale = SrcBits / VTBits;
3429 APInt SrcDemandedElts(NumElts / Scale, 0);
3430 for (unsigned i = 0; i != NumElts; ++i)
3431 if (DemandedElts[i])
3432 SrcDemandedElts.setBit(i / Scale);
3434 // Fast case - sign splat can be simply split across the small elements.
3435 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3436 if (Tmp == SrcBits)
3437 return VTBits;
3439 // Slow case - determine how far the sign extends into each sub-element.
3440 Tmp2 = VTBits;
3441 for (unsigned i = 0; i != NumElts; ++i)
3442 if (DemandedElts[i]) {
3443 unsigned SubOffset = i % Scale;
3444 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3445 SubOffset = SubOffset * VTBits;
3446 if (Tmp <= SubOffset)
3447 return 1;
3448 Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3450 return Tmp2;
3452 break;
3455 case ISD::SIGN_EXTEND:
3456 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3457 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3458 case ISD::SIGN_EXTEND_INREG:
3459 // Max of the input and what this extends.
3460 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3461 Tmp = VTBits-Tmp+1;
3462 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3463 return std::max(Tmp, Tmp2);
3464 case ISD::SIGN_EXTEND_VECTOR_INREG: {
3465 SDValue Src = Op.getOperand(0);
3466 EVT SrcVT = Src.getValueType();
3467 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3468 Tmp = VTBits - SrcVT.getScalarSizeInBits();
3469 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3472 case ISD::SRA:
3473 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3474 // SRA X, C -> adds C sign bits.
3475 if (ConstantSDNode *C =
3476 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3477 APInt ShiftVal = C->getAPIntValue();
3478 ShiftVal += Tmp;
3479 Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue();
3481 return Tmp;
3482 case ISD::SHL:
3483 if (ConstantSDNode *C =
3484 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3485 // shl destroys sign bits.
3486 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3487 if (C->getAPIntValue().uge(VTBits) || // Bad shift.
3488 C->getAPIntValue().uge(Tmp)) break; // Shifted all sign bits out.
3489 return Tmp - C->getZExtValue();
3491 break;
3492 case ISD::AND:
3493 case ISD::OR:
3494 case ISD::XOR: // NOT is handled here.
3495 // Logical binary ops preserve the number of sign bits at the worst.
3496 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3497 if (Tmp != 1) {
3498 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3499 FirstAnswer = std::min(Tmp, Tmp2);
3500 // We computed what we know about the sign bits as our first
3501 // answer. Now proceed to the generic code that uses
3502 // computeKnownBits, and pick whichever answer is better.
3504 break;
3506 case ISD::SELECT:
3507 case ISD::VSELECT:
3508 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3509 if (Tmp == 1) return 1; // Early out.
3510 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3511 return std::min(Tmp, Tmp2);
3512 case ISD::SELECT_CC:
3513 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3514 if (Tmp == 1) return 1; // Early out.
3515 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3516 return std::min(Tmp, Tmp2);
3518 case ISD::SMIN:
3519 case ISD::SMAX: {
3520 // If we have a clamp pattern, we know that the number of sign bits will be
3521 // the minimum of the clamp min/max range.
3522 bool IsMax = (Opcode == ISD::SMAX);
3523 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3524 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3525 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3526 CstHigh =
3527 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3528 if (CstLow && CstHigh) {
3529 if (!IsMax)
3530 std::swap(CstLow, CstHigh);
3531 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3532 Tmp = CstLow->getAPIntValue().getNumSignBits();
3533 Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3534 return std::min(Tmp, Tmp2);
3538 // Fallback - just get the minimum number of sign bits of the operands.
3539 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3540 if (Tmp == 1)
3541 return 1; // Early out.
3542 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3543 return std::min(Tmp, Tmp2);
3545 case ISD::UMIN:
3546 case ISD::UMAX:
3547 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3548 if (Tmp == 1)
3549 return 1; // Early out.
3550 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3551 return std::min(Tmp, Tmp2);
3552 case ISD::SADDO:
3553 case ISD::UADDO:
3554 case ISD::SSUBO:
3555 case ISD::USUBO:
3556 case ISD::SMULO:
3557 case ISD::UMULO:
3558 if (Op.getResNo() != 1)
3559 break;
3560 // The boolean result conforms to getBooleanContents. Fall through.
3561 // If setcc returns 0/-1, all bits are sign bits.
3562 // We know that we have an integer-based boolean since these operations
3563 // are only available for integer.
3564 if (TLI->getBooleanContents(VT.isVector(), false) ==
3565 TargetLowering::ZeroOrNegativeOneBooleanContent)
3566 return VTBits;
3567 break;
3568 case ISD::SETCC:
3569 // If setcc returns 0/-1, all bits are sign bits.
3570 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3571 TargetLowering::ZeroOrNegativeOneBooleanContent)
3572 return VTBits;
3573 break;
3574 case ISD::ROTL:
3575 case ISD::ROTR:
3576 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3577 unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3579 // Handle rotate right by N like a rotate left by 32-N.
3580 if (Opcode == ISD::ROTR)
3581 RotAmt = (VTBits - RotAmt) % VTBits;
3583 // If we aren't rotating out all of the known-in sign bits, return the
3584 // number that are left. This handles rotl(sext(x), 1) for example.
3585 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3586 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3588 break;
3589 case ISD::ADD:
3590 case ISD::ADDC:
3591 // Add can have at most one carry bit. Thus we know that the output
3592 // is, at worst, one more bit than the inputs.
3593 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3594 if (Tmp == 1) return 1; // Early out.
3596 // Special case decrementing a value (ADD X, -1):
3597 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
3598 if (CRHS->isAllOnesValue()) {
3599 KnownBits Known = computeKnownBits(Op.getOperand(0), Depth+1);
3601 // If the input is known to be 0 or 1, the output is 0/-1, which is all
3602 // sign bits set.
3603 if ((Known.Zero | 1).isAllOnesValue())
3604 return VTBits;
3606 // If we are subtracting one from a positive number, there is no carry
3607 // out of the result.
3608 if (Known.isNonNegative())
3609 return Tmp;
3612 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3613 if (Tmp2 == 1) return 1;
3614 return std::min(Tmp, Tmp2)-1;
3616 case ISD::SUB:
3617 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3618 if (Tmp2 == 1) return 1;
3620 // Handle NEG.
3621 if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0)))
3622 if (CLHS->isNullValue()) {
3623 KnownBits Known = computeKnownBits(Op.getOperand(1), Depth+1);
3624 // If the input is known to be 0 or 1, the output is 0/-1, which is all
3625 // sign bits set.
3626 if ((Known.Zero | 1).isAllOnesValue())
3627 return VTBits;
3629 // If the input is known to be positive (the sign bit is known clear),
3630 // the output of the NEG has the same number of sign bits as the input.
3631 if (Known.isNonNegative())
3632 return Tmp2;
3634 // Otherwise, we treat this like a SUB.
3637 // Sub can have at most one carry bit. Thus we know that the output
3638 // is, at worst, one more bit than the inputs.
3639 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3640 if (Tmp == 1) return 1; // Early out.
3641 return std::min(Tmp, Tmp2)-1;
3642 case ISD::TRUNCATE: {
3643 // Check if the sign bits of source go down as far as the truncated value.
3644 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3645 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3646 if (NumSrcSignBits > (NumSrcBits - VTBits))
3647 return NumSrcSignBits - (NumSrcBits - VTBits);
3648 break;
3650 case ISD::EXTRACT_ELEMENT: {
3651 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3652 const int BitWidth = Op.getValueSizeInBits();
3653 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3655 // Get reverse index (starting from 1), Op1 value indexes elements from
3656 // little end. Sign starts at big end.
3657 const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3659 // If the sign portion ends in our element the subtraction gives correct
3660 // result. Otherwise it gives either negative or > bitwidth result
3661 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3663 case ISD::INSERT_VECTOR_ELT: {
3664 SDValue InVec = Op.getOperand(0);
3665 SDValue InVal = Op.getOperand(1);
3666 SDValue EltNo = Op.getOperand(2);
3668 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3669 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3670 // If we know the element index, split the demand between the
3671 // source vector and the inserted element.
3672 unsigned EltIdx = CEltNo->getZExtValue();
3674 // If we demand the inserted element then get its sign bits.
3675 Tmp = std::numeric_limits<unsigned>::max();
3676 if (DemandedElts[EltIdx]) {
3677 // TODO - handle implicit truncation of inserted elements.
3678 if (InVal.getScalarValueSizeInBits() != VTBits)
3679 break;
3680 Tmp = ComputeNumSignBits(InVal, Depth + 1);
3683 // If we demand the source vector then get its sign bits, and determine
3684 // the minimum.
3685 APInt VectorElts = DemandedElts;
3686 VectorElts.clearBit(EltIdx);
3687 if (!!VectorElts) {
3688 Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1);
3689 Tmp = std::min(Tmp, Tmp2);
3691 } else {
3692 // Unknown element index, so ignore DemandedElts and demand them all.
3693 Tmp = ComputeNumSignBits(InVec, Depth + 1);
3694 Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3695 Tmp = std::min(Tmp, Tmp2);
3697 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3698 return Tmp;
3700 case ISD::EXTRACT_VECTOR_ELT: {
3701 SDValue InVec = Op.getOperand(0);
3702 SDValue EltNo = Op.getOperand(1);
3703 EVT VecVT = InVec.getValueType();
3704 const unsigned BitWidth = Op.getValueSizeInBits();
3705 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3706 const unsigned NumSrcElts = VecVT.getVectorNumElements();
3708 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3709 // anything about sign bits. But if the sizes match we can derive knowledge
3710 // about sign bits from the vector operand.
3711 if (BitWidth != EltBitWidth)
3712 break;
3714 // If we know the element index, just demand that vector element, else for
3715 // an unknown element index, ignore DemandedElts and demand them all.
3716 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3717 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3718 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3719 DemandedSrcElts =
3720 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3722 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3724 case ISD::EXTRACT_SUBVECTOR: {
3725 // If we know the element index, just demand that subvector elements,
3726 // otherwise demand them all.
3727 SDValue Src = Op.getOperand(0);
3728 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
3729 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3730 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
3731 // Offset the demanded elts by the subvector index.
3732 uint64_t Idx = SubIdx->getZExtValue();
3733 APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3734 return ComputeNumSignBits(Src, DemandedSrc, Depth + 1);
3736 return ComputeNumSignBits(Src, Depth + 1);
3738 case ISD::CONCAT_VECTORS: {
3739 // Determine the minimum number of sign bits across all demanded
3740 // elts of the input vectors. Early out if the result is already 1.
3741 Tmp = std::numeric_limits<unsigned>::max();
3742 EVT SubVectorVT = Op.getOperand(0).getValueType();
3743 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3744 unsigned NumSubVectors = Op.getNumOperands();
3745 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
3746 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
3747 DemandedSub = DemandedSub.trunc(NumSubVectorElts);
3748 if (!DemandedSub)
3749 continue;
3750 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
3751 Tmp = std::min(Tmp, Tmp2);
3753 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3754 return Tmp;
3756 case ISD::INSERT_SUBVECTOR: {
3757 // If we know the element index, demand any elements from the subvector and
3758 // the remainder from the src its inserted into, otherwise demand them all.
3759 SDValue Src = Op.getOperand(0);
3760 SDValue Sub = Op.getOperand(1);
3761 auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3762 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3763 if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
3764 Tmp = std::numeric_limits<unsigned>::max();
3765 uint64_t Idx = SubIdx->getZExtValue();
3766 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3767 if (!!DemandedSubElts) {
3768 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
3769 if (Tmp == 1) return 1; // early-out
3771 APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
3772 APInt DemandedSrcElts = DemandedElts & ~SubMask;
3773 if (!!DemandedSrcElts) {
3774 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
3775 Tmp = std::min(Tmp, Tmp2);
3777 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3778 return Tmp;
3781 // Not able to determine the index so just assume worst case.
3782 Tmp = ComputeNumSignBits(Sub, Depth + 1);
3783 if (Tmp == 1) return 1; // early-out
3784 Tmp2 = ComputeNumSignBits(Src, Depth + 1);
3785 Tmp = std::min(Tmp, Tmp2);
3786 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3787 return Tmp;
3791 // If we are looking at the loaded value of the SDNode.
3792 if (Op.getResNo() == 0) {
3793 // Handle LOADX separately here. EXTLOAD case will fallthrough.
3794 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
3795 unsigned ExtType = LD->getExtensionType();
3796 switch (ExtType) {
3797 default: break;
3798 case ISD::SEXTLOAD: // '17' bits known
3799 Tmp = LD->getMemoryVT().getScalarSizeInBits();
3800 return VTBits-Tmp+1;
3801 case ISD::ZEXTLOAD: // '16' bits known
3802 Tmp = LD->getMemoryVT().getScalarSizeInBits();
3803 return VTBits-Tmp;
3808 // Allow the target to implement this method for its nodes.
3809 if (Opcode >= ISD::BUILTIN_OP_END ||
3810 Opcode == ISD::INTRINSIC_WO_CHAIN ||
3811 Opcode == ISD::INTRINSIC_W_CHAIN ||
3812 Opcode == ISD::INTRINSIC_VOID) {
3813 unsigned NumBits =
3814 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
3815 if (NumBits > 1)
3816 FirstAnswer = std::max(FirstAnswer, NumBits);
3819 // Finally, if we can prove that the top bits of the result are 0's or 1's,
3820 // use this information.
3821 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
3823 APInt Mask;
3824 if (Known.isNonNegative()) { // sign bit is 0
3825 Mask = Known.Zero;
3826 } else if (Known.isNegative()) { // sign bit is 1;
3827 Mask = Known.One;
3828 } else {
3829 // Nothing known.
3830 return FirstAnswer;
3833 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
3834 // the number of identical bits in the top of the input value.
3835 Mask = ~Mask;
3836 Mask <<= Mask.getBitWidth()-VTBits;
3837 // Return # leading zeros. We use 'min' here in case Val was zero before
3838 // shifting. We don't want to return '64' as for an i32 "0".
3839 return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
3842 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
3843 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
3844 !isa<ConstantSDNode>(Op.getOperand(1)))
3845 return false;
3847 if (Op.getOpcode() == ISD::OR &&
3848 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
3849 return false;
3851 return true;
3854 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
3855 // If we're told that NaNs won't happen, assume they won't.
3856 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
3857 return true;
3859 if (Depth == 6)
3860 return false; // Limit search depth.
3862 // TODO: Handle vectors.
3863 // If the value is a constant, we can obviously see if it is a NaN or not.
3864 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
3865 return !C->getValueAPF().isNaN() ||
3866 (SNaN && !C->getValueAPF().isSignaling());
3869 unsigned Opcode = Op.getOpcode();
3870 switch (Opcode) {
3871 case ISD::FADD:
3872 case ISD::FSUB:
3873 case ISD::FMUL:
3874 case ISD::FDIV:
3875 case ISD::FREM:
3876 case ISD::FSIN:
3877 case ISD::FCOS: {
3878 if (SNaN)
3879 return true;
3880 // TODO: Need isKnownNeverInfinity
3881 return false;
3883 case ISD::FCANONICALIZE:
3884 case ISD::FEXP:
3885 case ISD::FEXP2:
3886 case ISD::FTRUNC:
3887 case ISD::FFLOOR:
3888 case ISD::FCEIL:
3889 case ISD::FROUND:
3890 case ISD::FRINT:
3891 case ISD::FNEARBYINT: {
3892 if (SNaN)
3893 return true;
3894 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
3896 case ISD::FABS:
3897 case ISD::FNEG:
3898 case ISD::FCOPYSIGN: {
3899 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
3901 case ISD::SELECT:
3902 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
3903 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
3904 case ISD::FP_EXTEND:
3905 case ISD::FP_ROUND: {
3906 if (SNaN)
3907 return true;
3908 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
3910 case ISD::SINT_TO_FP:
3911 case ISD::UINT_TO_FP:
3912 return true;
3913 case ISD::FMA:
3914 case ISD::FMAD: {
3915 if (SNaN)
3916 return true;
3917 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
3918 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
3919 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
3921 case ISD::FSQRT: // Need is known positive
3922 case ISD::FLOG:
3923 case ISD::FLOG2:
3924 case ISD::FLOG10:
3925 case ISD::FPOWI:
3926 case ISD::FPOW: {
3927 if (SNaN)
3928 return true;
3929 // TODO: Refine on operand
3930 return false;
3932 case ISD::FMINNUM:
3933 case ISD::FMAXNUM: {
3934 // Only one needs to be known not-nan, since it will be returned if the
3935 // other ends up being one.
3936 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
3937 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
3939 case ISD::FMINNUM_IEEE:
3940 case ISD::FMAXNUM_IEEE: {
3941 if (SNaN)
3942 return true;
3943 // This can return a NaN if either operand is an sNaN, or if both operands
3944 // are NaN.
3945 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
3946 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
3947 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
3948 isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
3950 case ISD::FMINIMUM:
3951 case ISD::FMAXIMUM: {
3952 // TODO: Does this quiet or return the origina NaN as-is?
3953 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
3954 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
3956 case ISD::EXTRACT_VECTOR_ELT: {
3957 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
3959 default:
3960 if (Opcode >= ISD::BUILTIN_OP_END ||
3961 Opcode == ISD::INTRINSIC_WO_CHAIN ||
3962 Opcode == ISD::INTRINSIC_W_CHAIN ||
3963 Opcode == ISD::INTRINSIC_VOID) {
3964 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
3967 return false;
3971 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
3972 assert(Op.getValueType().isFloatingPoint() &&
3973 "Floating point type expected");
3975 // If the value is a constant, we can obviously see if it is a zero or not.
3976 // TODO: Add BuildVector support.
3977 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
3978 return !C->isZero();
3979 return false;
3982 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
3983 assert(!Op.getValueType().isFloatingPoint() &&
3984 "Floating point types unsupported - use isKnownNeverZeroFloat");
3986 // If the value is a constant, we can obviously see if it is a zero or not.
3987 if (ISD::matchUnaryPredicate(
3988 Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
3989 return true;
3991 // TODO: Recognize more cases here.
3992 switch (Op.getOpcode()) {
3993 default: break;
3994 case ISD::OR:
3995 if (isKnownNeverZero(Op.getOperand(1)) ||
3996 isKnownNeverZero(Op.getOperand(0)))
3997 return true;
3998 break;
4001 return false;
4004 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4005 // Check the obvious case.
4006 if (A == B) return true;
4008 // For for negative and positive zero.
4009 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4010 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4011 if (CA->isZero() && CB->isZero()) return true;
4013 // Otherwise they may not be equal.
4014 return false;
4017 // FIXME: unify with llvm::haveNoCommonBitsSet.
4018 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4019 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4020 assert(A.getValueType() == B.getValueType() &&
4021 "Values must have the same type");
4022 return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
4025 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4026 ArrayRef<SDValue> Ops,
4027 SelectionDAG &DAG) {
4028 int NumOps = Ops.size();
4029 assert(NumOps != 0 && "Can't build an empty vector!");
4030 assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4031 "Incorrect element count in BUILD_VECTOR!");
4033 // BUILD_VECTOR of UNDEFs is UNDEF.
4034 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4035 return DAG.getUNDEF(VT);
4037 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4038 SDValue IdentitySrc;
4039 bool IsIdentity = true;
4040 for (int i = 0; i != NumOps; ++i) {
4041 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4042 Ops[i].getOperand(0).getValueType() != VT ||
4043 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4044 !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4045 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4046 IsIdentity = false;
4047 break;
4049 IdentitySrc = Ops[i].getOperand(0);
4051 if (IsIdentity)
4052 return IdentitySrc;
4054 return SDValue();
4057 static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4058 ArrayRef<SDValue> Ops,
4059 SelectionDAG &DAG) {
4060 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4061 assert(llvm::all_of(Ops,
4062 [Ops](SDValue Op) {
4063 return Ops[0].getValueType() == Op.getValueType();
4064 }) &&
4065 "Concatenation of vectors with inconsistent value types!");
4066 assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) ==
4067 VT.getVectorNumElements() &&
4068 "Incorrect element count in vector concatenation!");
4070 if (Ops.size() == 1)
4071 return Ops[0];
4073 // Concat of UNDEFs is UNDEF.
4074 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4075 return DAG.getUNDEF(VT);
4077 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4078 // simplified to one big BUILD_VECTOR.
4079 // FIXME: Add support for SCALAR_TO_VECTOR as well.
4080 EVT SVT = VT.getScalarType();
4081 SmallVector<SDValue, 16> Elts;
4082 for (SDValue Op : Ops) {
4083 EVT OpVT = Op.getValueType();
4084 if (Op.isUndef())
4085 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4086 else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4087 Elts.append(Op->op_begin(), Op->op_end());
4088 else
4089 return SDValue();
4092 // BUILD_VECTOR requires all inputs to be of the same type, find the
4093 // maximum type and extend them all.
4094 for (SDValue Op : Elts)
4095 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4097 if (SVT.bitsGT(VT.getScalarType()))
4098 for (SDValue &Op : Elts)
4099 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4100 ? DAG.getZExtOrTrunc(Op, DL, SVT)
4101 : DAG.getSExtOrTrunc(Op, DL, SVT);
4103 SDValue V = DAG.getBuildVector(VT, DL, Elts);
4104 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4105 return V;
4108 /// Gets or creates the specified node.
4109 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4110 FoldingSetNodeID ID;
4111 AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4112 void *IP = nullptr;
4113 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4114 return SDValue(E, 0);
4116 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4117 getVTList(VT));
4118 CSEMap.InsertNode(N, IP);
4120 InsertNode(N);
4121 SDValue V = SDValue(N, 0);
4122 NewSDValueDbgMsg(V, "Creating new node: ", this);
4123 return V;
4126 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4127 SDValue Operand, const SDNodeFlags Flags) {
4128 // Constant fold unary operations with an integer constant operand. Even
4129 // opaque constant will be folded, because the folding of unary operations
4130 // doesn't create new constants with different values. Nevertheless, the
4131 // opaque flag is preserved during folding to prevent future folding with
4132 // other constants.
4133 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4134 const APInt &Val = C->getAPIntValue();
4135 switch (Opcode) {
4136 default: break;
4137 case ISD::SIGN_EXTEND:
4138 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4139 C->isTargetOpcode(), C->isOpaque());
4140 case ISD::TRUNCATE:
4141 if (C->isOpaque())
4142 break;
4143 LLVM_FALLTHROUGH;
4144 case ISD::ANY_EXTEND:
4145 case ISD::ZERO_EXTEND:
4146 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4147 C->isTargetOpcode(), C->isOpaque());
4148 case ISD::UINT_TO_FP:
4149 case ISD::SINT_TO_FP: {
4150 APFloat apf(EVTToAPFloatSemantics(VT),
4151 APInt::getNullValue(VT.getSizeInBits()));
4152 (void)apf.convertFromAPInt(Val,
4153 Opcode==ISD::SINT_TO_FP,
4154 APFloat::rmNearestTiesToEven);
4155 return getConstantFP(apf, DL, VT);
4157 case ISD::BITCAST:
4158 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4159 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4160 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4161 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4162 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4163 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4164 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4165 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4166 break;
4167 case ISD::ABS:
4168 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4169 C->isOpaque());
4170 case ISD::BITREVERSE:
4171 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4172 C->isOpaque());
4173 case ISD::BSWAP:
4174 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4175 C->isOpaque());
4176 case ISD::CTPOP:
4177 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4178 C->isOpaque());
4179 case ISD::CTLZ:
4180 case ISD::CTLZ_ZERO_UNDEF:
4181 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4182 C->isOpaque());
4183 case ISD::CTTZ:
4184 case ISD::CTTZ_ZERO_UNDEF:
4185 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4186 C->isOpaque());
4187 case ISD::FP16_TO_FP: {
4188 bool Ignored;
4189 APFloat FPV(APFloat::IEEEhalf(),
4190 (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4192 // This can return overflow, underflow, or inexact; we don't care.
4193 // FIXME need to be more flexible about rounding mode.
4194 (void)FPV.convert(EVTToAPFloatSemantics(VT),
4195 APFloat::rmNearestTiesToEven, &Ignored);
4196 return getConstantFP(FPV, DL, VT);
4201 // Constant fold unary operations with a floating point constant operand.
4202 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4203 APFloat V = C->getValueAPF(); // make copy
4204 switch (Opcode) {
4205 case ISD::FNEG:
4206 V.changeSign();
4207 return getConstantFP(V, DL, VT);
4208 case ISD::FABS:
4209 V.clearSign();
4210 return getConstantFP(V, DL, VT);
4211 case ISD::FCEIL: {
4212 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4213 if (fs == APFloat::opOK || fs == APFloat::opInexact)
4214 return getConstantFP(V, DL, VT);
4215 break;
4217 case ISD::FTRUNC: {
4218 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4219 if (fs == APFloat::opOK || fs == APFloat::opInexact)
4220 return getConstantFP(V, DL, VT);
4221 break;
4223 case ISD::FFLOOR: {
4224 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4225 if (fs == APFloat::opOK || fs == APFloat::opInexact)
4226 return getConstantFP(V, DL, VT);
4227 break;
4229 case ISD::FP_EXTEND: {
4230 bool ignored;
4231 // This can return overflow, underflow, or inexact; we don't care.
4232 // FIXME need to be more flexible about rounding mode.
4233 (void)V.convert(EVTToAPFloatSemantics(VT),
4234 APFloat::rmNearestTiesToEven, &ignored);
4235 return getConstantFP(V, DL, VT);
4237 case ISD::FP_TO_SINT:
4238 case ISD::FP_TO_UINT: {
4239 bool ignored;
4240 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4241 // FIXME need to be more flexible about rounding mode.
4242 APFloat::opStatus s =
4243 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4244 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4245 break;
4246 return getConstant(IntVal, DL, VT);
4248 case ISD::BITCAST:
4249 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4250 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4251 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4252 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4253 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4254 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4255 break;
4256 case ISD::FP_TO_FP16: {
4257 bool Ignored;
4258 // This can return overflow, underflow, or inexact; we don't care.
4259 // FIXME need to be more flexible about rounding mode.
4260 (void)V.convert(APFloat::IEEEhalf(),
4261 APFloat::rmNearestTiesToEven, &Ignored);
4262 return getConstant(V.bitcastToAPInt(), DL, VT);
4267 // Constant fold unary operations with a vector integer or float operand.
4268 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4269 if (BV->isConstant()) {
4270 switch (Opcode) {
4271 default:
4272 // FIXME: Entirely reasonable to perform folding of other unary
4273 // operations here as the need arises.
4274 break;
4275 case ISD::FNEG:
4276 case ISD::FABS:
4277 case ISD::FCEIL:
4278 case ISD::FTRUNC:
4279 case ISD::FFLOOR:
4280 case ISD::FP_EXTEND:
4281 case ISD::FP_TO_SINT:
4282 case ISD::FP_TO_UINT:
4283 case ISD::TRUNCATE:
4284 case ISD::ANY_EXTEND:
4285 case ISD::ZERO_EXTEND:
4286 case ISD::SIGN_EXTEND:
4287 case ISD::UINT_TO_FP:
4288 case ISD::SINT_TO_FP:
4289 case ISD::ABS:
4290 case ISD::BITREVERSE:
4291 case ISD::BSWAP:
4292 case ISD::CTLZ:
4293 case ISD::CTLZ_ZERO_UNDEF:
4294 case ISD::CTTZ:
4295 case ISD::CTTZ_ZERO_UNDEF:
4296 case ISD::CTPOP: {
4297 SDValue Ops = { Operand };
4298 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4299 return Fold;
4305 unsigned OpOpcode = Operand.getNode()->getOpcode();
4306 switch (Opcode) {
4307 case ISD::TokenFactor:
4308 case ISD::MERGE_VALUES:
4309 case ISD::CONCAT_VECTORS:
4310 return Operand; // Factor, merge or concat of one node? No need.
4311 case ISD::BUILD_VECTOR: {
4312 // Attempt to simplify BUILD_VECTOR.
4313 SDValue Ops[] = {Operand};
4314 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4315 return V;
4316 break;
4318 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4319 case ISD::FP_EXTEND:
4320 assert(VT.isFloatingPoint() &&
4321 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4322 if (Operand.getValueType() == VT) return Operand; // noop conversion.
4323 assert((!VT.isVector() ||
4324 VT.getVectorNumElements() ==
4325 Operand.getValueType().getVectorNumElements()) &&
4326 "Vector element count mismatch!");
4327 assert(Operand.getValueType().bitsLT(VT) &&
4328 "Invalid fpext node, dst < src!");
4329 if (Operand.isUndef())
4330 return getUNDEF(VT);
4331 break;
4332 case ISD::SIGN_EXTEND:
4333 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4334 "Invalid SIGN_EXTEND!");
4335 assert(VT.isVector() == Operand.getValueType().isVector() &&
4336 "SIGN_EXTEND result type type should be vector iff the operand "
4337 "type is vector!");
4338 if (Operand.getValueType() == VT) return Operand; // noop extension
4339 assert((!VT.isVector() ||
4340 VT.getVectorNumElements() ==
4341 Operand.getValueType().getVectorNumElements()) &&
4342 "Vector element count mismatch!");
4343 assert(Operand.getValueType().bitsLT(VT) &&
4344 "Invalid sext node, dst < src!");
4345 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4346 return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4347 else if (OpOpcode == ISD::UNDEF)
4348 // sext(undef) = 0, because the top bits will all be the same.
4349 return getConstant(0, DL, VT);
4350 break;
4351 case ISD::ZERO_EXTEND:
4352 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4353 "Invalid ZERO_EXTEND!");
4354 assert(VT.isVector() == Operand.getValueType().isVector() &&
4355 "ZERO_EXTEND result type type should be vector iff the operand "
4356 "type is vector!");
4357 if (Operand.getValueType() == VT) return Operand; // noop extension
4358 assert((!VT.isVector() ||
4359 VT.getVectorNumElements() ==
4360 Operand.getValueType().getVectorNumElements()) &&
4361 "Vector element count mismatch!");
4362 assert(Operand.getValueType().bitsLT(VT) &&
4363 "Invalid zext node, dst < src!");
4364 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x)
4365 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4366 else if (OpOpcode == ISD::UNDEF)
4367 // zext(undef) = 0, because the top bits will be zero.
4368 return getConstant(0, DL, VT);
4369 break;
4370 case ISD::ANY_EXTEND:
4371 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4372 "Invalid ANY_EXTEND!");
4373 assert(VT.isVector() == Operand.getValueType().isVector() &&
4374 "ANY_EXTEND result type type should be vector iff the operand "
4375 "type is vector!");
4376 if (Operand.getValueType() == VT) return Operand; // noop extension
4377 assert((!VT.isVector() ||
4378 VT.getVectorNumElements() ==
4379 Operand.getValueType().getVectorNumElements()) &&
4380 "Vector element count mismatch!");
4381 assert(Operand.getValueType().bitsLT(VT) &&
4382 "Invalid anyext node, dst < src!");
4384 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4385 OpOpcode == ISD::ANY_EXTEND)
4386 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
4387 return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4388 else if (OpOpcode == ISD::UNDEF)
4389 return getUNDEF(VT);
4391 // (ext (trunc x)) -> x
4392 if (OpOpcode == ISD::TRUNCATE) {
4393 SDValue OpOp = Operand.getOperand(0);
4394 if (OpOp.getValueType() == VT) {
4395 transferDbgValues(Operand, OpOp);
4396 return OpOp;
4399 break;
4400 case ISD::TRUNCATE:
4401 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4402 "Invalid TRUNCATE!");
4403 assert(VT.isVector() == Operand.getValueType().isVector() &&
4404 "TRUNCATE result type type should be vector iff the operand "
4405 "type is vector!");
4406 if (Operand.getValueType() == VT) return Operand; // noop truncate
4407 assert((!VT.isVector() ||
4408 VT.getVectorNumElements() ==
4409 Operand.getValueType().getVectorNumElements()) &&
4410 "Vector element count mismatch!");
4411 assert(Operand.getValueType().bitsGT(VT) &&
4412 "Invalid truncate node, src < dst!");
4413 if (OpOpcode == ISD::TRUNCATE)
4414 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4415 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4416 OpOpcode == ISD::ANY_EXTEND) {
4417 // If the source is smaller than the dest, we still need an extend.
4418 if (Operand.getOperand(0).getValueType().getScalarType()
4419 .bitsLT(VT.getScalarType()))
4420 return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4421 if (Operand.getOperand(0).getValueType().bitsGT(VT))
4422 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4423 return Operand.getOperand(0);
4425 if (OpOpcode == ISD::UNDEF)
4426 return getUNDEF(VT);
4427 break;
4428 case ISD::ANY_EXTEND_VECTOR_INREG:
4429 case ISD::ZERO_EXTEND_VECTOR_INREG:
4430 case ISD::SIGN_EXTEND_VECTOR_INREG:
4431 assert(VT.isVector() && "This DAG node is restricted to vector types.");
4432 assert(Operand.getValueType().bitsLE(VT) &&
4433 "The input must be the same size or smaller than the result.");
4434 assert(VT.getVectorNumElements() <
4435 Operand.getValueType().getVectorNumElements() &&
4436 "The destination vector type must have fewer lanes than the input.");
4437 break;
4438 case ISD::ABS:
4439 assert(VT.isInteger() && VT == Operand.getValueType() &&
4440 "Invalid ABS!");
4441 if (OpOpcode == ISD::UNDEF)
4442 return getUNDEF(VT);
4443 break;
4444 case ISD::BSWAP:
4445 assert(VT.isInteger() && VT == Operand.getValueType() &&
4446 "Invalid BSWAP!");
4447 assert((VT.getScalarSizeInBits() % 16 == 0) &&
4448 "BSWAP types must be a multiple of 16 bits!");
4449 if (OpOpcode == ISD::UNDEF)
4450 return getUNDEF(VT);
4451 break;
4452 case ISD::BITREVERSE:
4453 assert(VT.isInteger() && VT == Operand.getValueType() &&
4454 "Invalid BITREVERSE!");
4455 if (OpOpcode == ISD::UNDEF)
4456 return getUNDEF(VT);
4457 break;
4458 case ISD::BITCAST:
4459 // Basic sanity checking.
4460 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4461 "Cannot BITCAST between types of different sizes!");
4462 if (VT == Operand.getValueType()) return Operand; // noop conversion.
4463 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x)
4464 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4465 if (OpOpcode == ISD::UNDEF)
4466 return getUNDEF(VT);
4467 break;
4468 case ISD::SCALAR_TO_VECTOR:
4469 assert(VT.isVector() && !Operand.getValueType().isVector() &&
4470 (VT.getVectorElementType() == Operand.getValueType() ||
4471 (VT.getVectorElementType().isInteger() &&
4472 Operand.getValueType().isInteger() &&
4473 VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4474 "Illegal SCALAR_TO_VECTOR node!");
4475 if (OpOpcode == ISD::UNDEF)
4476 return getUNDEF(VT);
4477 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4478 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4479 isa<ConstantSDNode>(Operand.getOperand(1)) &&
4480 Operand.getConstantOperandVal(1) == 0 &&
4481 Operand.getOperand(0).getValueType() == VT)
4482 return Operand.getOperand(0);
4483 break;
4484 case ISD::FNEG:
4485 // Negation of an unknown bag of bits is still completely undefined.
4486 if (OpOpcode == ISD::UNDEF)
4487 return getUNDEF(VT);
4489 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
4490 if ((getTarget().Options.UnsafeFPMath || Flags.hasNoSignedZeros()) &&
4491 OpOpcode == ISD::FSUB)
4492 return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1),
4493 Operand.getOperand(0), Flags);
4494 if (OpOpcode == ISD::FNEG) // --X -> X
4495 return Operand.getOperand(0);
4496 break;
4497 case ISD::FABS:
4498 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
4499 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4500 break;
4503 SDNode *N;
4504 SDVTList VTs = getVTList(VT);
4505 SDValue Ops[] = {Operand};
4506 if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4507 FoldingSetNodeID ID;
4508 AddNodeIDNode(ID, Opcode, VTs, Ops);
4509 void *IP = nullptr;
4510 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4511 E->intersectFlagsWith(Flags);
4512 return SDValue(E, 0);
4515 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4516 N->setFlags(Flags);
4517 createOperands(N, Ops);
4518 CSEMap.InsertNode(N, IP);
4519 } else {
4520 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4521 createOperands(N, Ops);
4524 InsertNode(N);
4525 SDValue V = SDValue(N, 0);
4526 NewSDValueDbgMsg(V, "Creating new node: ", this);
4527 return V;
4530 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1,
4531 const APInt &C2) {
4532 switch (Opcode) {
4533 case ISD::ADD: return std::make_pair(C1 + C2, true);
4534 case ISD::SUB: return std::make_pair(C1 - C2, true);
4535 case ISD::MUL: return std::make_pair(C1 * C2, true);
4536 case ISD::AND: return std::make_pair(C1 & C2, true);
4537 case ISD::OR: return std::make_pair(C1 | C2, true);
4538 case ISD::XOR: return std::make_pair(C1 ^ C2, true);
4539 case ISD::SHL: return std::make_pair(C1 << C2, true);
4540 case ISD::SRL: return std::make_pair(C1.lshr(C2), true);
4541 case ISD::SRA: return std::make_pair(C1.ashr(C2), true);
4542 case ISD::ROTL: return std::make_pair(C1.rotl(C2), true);
4543 case ISD::ROTR: return std::make_pair(C1.rotr(C2), true);
4544 case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true);
4545 case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true);
4546 case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true);
4547 case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true);
4548 case ISD::SADDSAT: return std::make_pair(C1.sadd_sat(C2), true);
4549 case ISD::UADDSAT: return std::make_pair(C1.uadd_sat(C2), true);
4550 case ISD::SSUBSAT: return std::make_pair(C1.ssub_sat(C2), true);
4551 case ISD::USUBSAT: return std::make_pair(C1.usub_sat(C2), true);
4552 case ISD::UDIV:
4553 if (!C2.getBoolValue())
4554 break;
4555 return std::make_pair(C1.udiv(C2), true);
4556 case ISD::UREM:
4557 if (!C2.getBoolValue())
4558 break;
4559 return std::make_pair(C1.urem(C2), true);
4560 case ISD::SDIV:
4561 if (!C2.getBoolValue())
4562 break;
4563 return std::make_pair(C1.sdiv(C2), true);
4564 case ISD::SREM:
4565 if (!C2.getBoolValue())
4566 break;
4567 return std::make_pair(C1.srem(C2), true);
4569 return std::make_pair(APInt(1, 0), false);
4572 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4573 EVT VT, const ConstantSDNode *C1,
4574 const ConstantSDNode *C2) {
4575 if (C1->isOpaque() || C2->isOpaque())
4576 return SDValue();
4578 std::pair<APInt, bool> Folded = FoldValue(Opcode, C1->getAPIntValue(),
4579 C2->getAPIntValue());
4580 if (!Folded.second)
4581 return SDValue();
4582 return getConstant(Folded.first, DL, VT);
4585 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4586 const GlobalAddressSDNode *GA,
4587 const SDNode *N2) {
4588 if (GA->getOpcode() != ISD::GlobalAddress)
4589 return SDValue();
4590 if (!TLI->isOffsetFoldingLegal(GA))
4591 return SDValue();
4592 auto *C2 = dyn_cast<ConstantSDNode>(N2);
4593 if (!C2)
4594 return SDValue();
4595 int64_t Offset = C2->getSExtValue();
4596 switch (Opcode) {
4597 case ISD::ADD: break;
4598 case ISD::SUB: Offset = -uint64_t(Offset); break;
4599 default: return SDValue();
4601 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
4602 GA->getOffset() + uint64_t(Offset));
4605 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4606 switch (Opcode) {
4607 case ISD::SDIV:
4608 case ISD::UDIV:
4609 case ISD::SREM:
4610 case ISD::UREM: {
4611 // If a divisor is zero/undef or any element of a divisor vector is
4612 // zero/undef, the whole op is undef.
4613 assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4614 SDValue Divisor = Ops[1];
4615 if (Divisor.isUndef() || isNullConstant(Divisor))
4616 return true;
4618 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4619 llvm::any_of(Divisor->op_values(),
4620 [](SDValue V) { return V.isUndef() ||
4621 isNullConstant(V); });
4622 // TODO: Handle signed overflow.
4624 // TODO: Handle oversized shifts.
4625 default:
4626 return false;
4630 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4631 EVT VT, SDNode *N1, SDNode *N2) {
4632 // If the opcode is a target-specific ISD node, there's nothing we can
4633 // do here and the operand rules may not line up with the below, so
4634 // bail early.
4635 if (Opcode >= ISD::BUILTIN_OP_END)
4636 return SDValue();
4638 if (isUndef(Opcode, {SDValue(N1, 0), SDValue(N2, 0)}))
4639 return getUNDEF(VT);
4641 // Handle the case of two scalars.
4642 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
4643 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
4644 SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, C1, C2);
4645 assert((!Folded || !VT.isVector()) &&
4646 "Can't fold vectors ops with scalar operands");
4647 return Folded;
4651 // fold (add Sym, c) -> Sym+c
4652 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
4653 return FoldSymbolOffset(Opcode, VT, GA, N2);
4654 if (TLI->isCommutativeBinOp(Opcode))
4655 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
4656 return FoldSymbolOffset(Opcode, VT, GA, N1);
4658 // For vectors, extract each constant element and fold them individually.
4659 // Either input may be an undef value.
4660 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
4661 if (!BV1 && !N1->isUndef())
4662 return SDValue();
4663 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
4664 if (!BV2 && !N2->isUndef())
4665 return SDValue();
4666 // If both operands are undef, that's handled the same way as scalars.
4667 if (!BV1 && !BV2)
4668 return SDValue();
4670 assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) &&
4671 "Vector binop with different number of elements in operands?");
4673 EVT SVT = VT.getScalarType();
4674 EVT LegalSVT = SVT;
4675 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4676 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4677 if (LegalSVT.bitsLT(SVT))
4678 return SDValue();
4680 SmallVector<SDValue, 4> Outputs;
4681 unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands();
4682 for (unsigned I = 0; I != NumOps; ++I) {
4683 SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT);
4684 SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT);
4685 if (SVT.isInteger()) {
4686 if (V1->getValueType(0).bitsGT(SVT))
4687 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
4688 if (V2->getValueType(0).bitsGT(SVT))
4689 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
4692 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
4693 return SDValue();
4695 // Fold one vector element.
4696 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
4697 if (LegalSVT != SVT)
4698 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4700 // Scalar folding only succeeded if the result is a constant or UNDEF.
4701 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4702 ScalarResult.getOpcode() != ISD::ConstantFP)
4703 return SDValue();
4704 Outputs.push_back(ScalarResult);
4707 assert(VT.getVectorNumElements() == Outputs.size() &&
4708 "Vector size mismatch!");
4710 // We may have a vector type but a scalar result. Create a splat.
4711 Outputs.resize(VT.getVectorNumElements(), Outputs.back());
4713 // Build a big vector out of the scalar elements we generated.
4714 return getBuildVector(VT, SDLoc(), Outputs);
4717 // TODO: Merge with FoldConstantArithmetic
4718 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
4719 const SDLoc &DL, EVT VT,
4720 ArrayRef<SDValue> Ops,
4721 const SDNodeFlags Flags) {
4722 // If the opcode is a target-specific ISD node, there's nothing we can
4723 // do here and the operand rules may not line up with the below, so
4724 // bail early.
4725 if (Opcode >= ISD::BUILTIN_OP_END)
4726 return SDValue();
4728 if (isUndef(Opcode, Ops))
4729 return getUNDEF(VT);
4731 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
4732 if (!VT.isVector())
4733 return SDValue();
4735 unsigned NumElts = VT.getVectorNumElements();
4737 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
4738 return !Op.getValueType().isVector() ||
4739 Op.getValueType().getVectorNumElements() == NumElts;
4742 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
4743 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
4744 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
4745 (BV && BV->isConstant());
4748 // All operands must be vector types with the same number of elements as
4749 // the result type and must be either UNDEF or a build vector of constant
4750 // or UNDEF scalars.
4751 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
4752 !llvm::all_of(Ops, IsScalarOrSameVectorSize))
4753 return SDValue();
4755 // If we are comparing vectors, then the result needs to be a i1 boolean
4756 // that is then sign-extended back to the legal result type.
4757 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
4759 // Find legal integer scalar type for constant promotion and
4760 // ensure that its scalar size is at least as large as source.
4761 EVT LegalSVT = VT.getScalarType();
4762 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4763 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4764 if (LegalSVT.bitsLT(VT.getScalarType()))
4765 return SDValue();
4768 // Constant fold each scalar lane separately.
4769 SmallVector<SDValue, 4> ScalarResults;
4770 for (unsigned i = 0; i != NumElts; i++) {
4771 SmallVector<SDValue, 4> ScalarOps;
4772 for (SDValue Op : Ops) {
4773 EVT InSVT = Op.getValueType().getScalarType();
4774 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
4775 if (!InBV) {
4776 // We've checked that this is UNDEF or a constant of some kind.
4777 if (Op.isUndef())
4778 ScalarOps.push_back(getUNDEF(InSVT));
4779 else
4780 ScalarOps.push_back(Op);
4781 continue;
4784 SDValue ScalarOp = InBV->getOperand(i);
4785 EVT ScalarVT = ScalarOp.getValueType();
4787 // Build vector (integer) scalar operands may need implicit
4788 // truncation - do this before constant folding.
4789 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
4790 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
4792 ScalarOps.push_back(ScalarOp);
4795 // Constant fold the scalar operands.
4796 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
4798 // Legalize the (integer) scalar constant if necessary.
4799 if (LegalSVT != SVT)
4800 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4802 // Scalar folding only succeeded if the result is a constant or UNDEF.
4803 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4804 ScalarResult.getOpcode() != ISD::ConstantFP)
4805 return SDValue();
4806 ScalarResults.push_back(ScalarResult);
4809 SDValue V = getBuildVector(VT, DL, ScalarResults);
4810 NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
4811 return V;
4814 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
4815 EVT VT, SDValue N1, SDValue N2) {
4816 // TODO: We don't do any constant folding for strict FP opcodes here, but we
4817 // should. That will require dealing with a potentially non-default
4818 // rounding mode, checking the "opStatus" return value from the APFloat
4819 // math calculations, and possibly other variations.
4820 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
4821 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
4822 if (N1CFP && N2CFP) {
4823 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
4824 switch (Opcode) {
4825 case ISD::FADD:
4826 C1.add(C2, APFloat::rmNearestTiesToEven);
4827 return getConstantFP(C1, DL, VT);
4828 case ISD::FSUB:
4829 C1.subtract(C2, APFloat::rmNearestTiesToEven);
4830 return getConstantFP(C1, DL, VT);
4831 case ISD::FMUL:
4832 C1.multiply(C2, APFloat::rmNearestTiesToEven);
4833 return getConstantFP(C1, DL, VT);
4834 case ISD::FDIV:
4835 C1.divide(C2, APFloat::rmNearestTiesToEven);
4836 return getConstantFP(C1, DL, VT);
4837 case ISD::FREM:
4838 C1.mod(C2);
4839 return getConstantFP(C1, DL, VT);
4840 case ISD::FCOPYSIGN:
4841 C1.copySign(C2);
4842 return getConstantFP(C1, DL, VT);
4843 default: break;
4846 if (N1CFP && Opcode == ISD::FP_ROUND) {
4847 APFloat C1 = N1CFP->getValueAPF(); // make copy
4848 bool Unused;
4849 // This can return overflow, underflow, or inexact; we don't care.
4850 // FIXME need to be more flexible about rounding mode.
4851 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
4852 &Unused);
4853 return getConstantFP(C1, DL, VT);
4856 switch (Opcode) {
4857 case ISD::FADD:
4858 case ISD::FSUB:
4859 case ISD::FMUL:
4860 case ISD::FDIV:
4861 case ISD::FREM:
4862 // If both operands are undef, the result is undef. If 1 operand is undef,
4863 // the result is NaN. This should match the behavior of the IR optimizer.
4864 if (N1.isUndef() && N2.isUndef())
4865 return getUNDEF(VT);
4866 if (N1.isUndef() || N2.isUndef())
4867 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
4869 return SDValue();
4872 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4873 SDValue N1, SDValue N2, const SDNodeFlags Flags) {
4874 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4875 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
4876 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
4877 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
4879 // Canonicalize constant to RHS if commutative.
4880 if (TLI->isCommutativeBinOp(Opcode)) {
4881 if (N1C && !N2C) {
4882 std::swap(N1C, N2C);
4883 std::swap(N1, N2);
4884 } else if (N1CFP && !N2CFP) {
4885 std::swap(N1CFP, N2CFP);
4886 std::swap(N1, N2);
4890 switch (Opcode) {
4891 default: break;
4892 case ISD::TokenFactor:
4893 assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
4894 N2.getValueType() == MVT::Other && "Invalid token factor!");
4895 // Fold trivial token factors.
4896 if (N1.getOpcode() == ISD::EntryToken) return N2;
4897 if (N2.getOpcode() == ISD::EntryToken) return N1;
4898 if (N1 == N2) return N1;
4899 break;
4900 case ISD::BUILD_VECTOR: {
4901 // Attempt to simplify BUILD_VECTOR.
4902 SDValue Ops[] = {N1, N2};
4903 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4904 return V;
4905 break;
4907 case ISD::CONCAT_VECTORS: {
4908 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
4909 SDValue Ops[] = {N1, N2};
4910 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
4911 return V;
4912 break;
4914 case ISD::AND:
4915 assert(VT.isInteger() && "This operator does not apply to FP types!");
4916 assert(N1.getValueType() == N2.getValueType() &&
4917 N1.getValueType() == VT && "Binary operator types must match!");
4918 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
4919 // worth handling here.
4920 if (N2C && N2C->isNullValue())
4921 return N2;
4922 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X
4923 return N1;
4924 break;
4925 case ISD::OR:
4926 case ISD::XOR:
4927 case ISD::ADD:
4928 case ISD::SUB:
4929 assert(VT.isInteger() && "This operator does not apply to FP types!");
4930 assert(N1.getValueType() == N2.getValueType() &&
4931 N1.getValueType() == VT && "Binary operator types must match!");
4932 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so
4933 // it's worth handling here.
4934 if (N2C && N2C->isNullValue())
4935 return N1;
4936 break;
4937 case ISD::UDIV:
4938 case ISD::UREM:
4939 case ISD::MULHU:
4940 case ISD::MULHS:
4941 case ISD::MUL:
4942 case ISD::SDIV:
4943 case ISD::SREM:
4944 case ISD::SMIN:
4945 case ISD::SMAX:
4946 case ISD::UMIN:
4947 case ISD::UMAX:
4948 case ISD::SADDSAT:
4949 case ISD::SSUBSAT:
4950 case ISD::UADDSAT:
4951 case ISD::USUBSAT:
4952 assert(VT.isInteger() && "This operator does not apply to FP types!");
4953 assert(N1.getValueType() == N2.getValueType() &&
4954 N1.getValueType() == VT && "Binary operator types must match!");
4955 break;
4956 case ISD::FADD:
4957 case ISD::FSUB:
4958 case ISD::FMUL:
4959 case ISD::FDIV:
4960 case ISD::FREM:
4961 assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
4962 assert(N1.getValueType() == N2.getValueType() &&
4963 N1.getValueType() == VT && "Binary operator types must match!");
4964 if (SDValue V = simplifyFPBinop(Opcode, N1, N2))
4965 return V;
4966 break;
4967 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
4968 assert(N1.getValueType() == VT &&
4969 N1.getValueType().isFloatingPoint() &&
4970 N2.getValueType().isFloatingPoint() &&
4971 "Invalid FCOPYSIGN!");
4972 break;
4973 case ISD::SHL:
4974 case ISD::SRA:
4975 case ISD::SRL:
4976 if (SDValue V = simplifyShift(N1, N2))
4977 return V;
4978 LLVM_FALLTHROUGH;
4979 case ISD::ROTL:
4980 case ISD::ROTR:
4981 assert(VT == N1.getValueType() &&
4982 "Shift operators return type must be the same as their first arg");
4983 assert(VT.isInteger() && N2.getValueType().isInteger() &&
4984 "Shifts only work on integers");
4985 assert((!VT.isVector() || VT == N2.getValueType()) &&
4986 "Vector shift amounts must be in the same as their first arg");
4987 // Verify that the shift amount VT is big enough to hold valid shift
4988 // amounts. This catches things like trying to shift an i1024 value by an
4989 // i8, which is easy to fall into in generic code that uses
4990 // TLI.getShiftAmount().
4991 assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) &&
4992 "Invalid use of small shift amount with oversized value!");
4994 // Always fold shifts of i1 values so the code generator doesn't need to
4995 // handle them. Since we know the size of the shift has to be less than the
4996 // size of the value, the shift/rotate count is guaranteed to be zero.
4997 if (VT == MVT::i1)
4998 return N1;
4999 if (N2C && N2C->isNullValue())
5000 return N1;
5001 break;
5002 case ISD::FP_ROUND_INREG: {
5003 EVT EVT = cast<VTSDNode>(N2)->getVT();
5004 assert(VT == N1.getValueType() && "Not an inreg round!");
5005 assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
5006 "Cannot FP_ROUND_INREG integer types");
5007 assert(EVT.isVector() == VT.isVector() &&
5008 "FP_ROUND_INREG type should be vector iff the operand "
5009 "type is vector!");
5010 assert((!EVT.isVector() ||
5011 EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
5012 "Vector element counts must match in FP_ROUND_INREG");
5013 assert(EVT.bitsLE(VT) && "Not rounding down!");
5014 (void)EVT;
5015 if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding.
5016 break;
5018 case ISD::FP_ROUND:
5019 assert(VT.isFloatingPoint() &&
5020 N1.getValueType().isFloatingPoint() &&
5021 VT.bitsLE(N1.getValueType()) &&
5022 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5023 "Invalid FP_ROUND!");
5024 if (N1.getValueType() == VT) return N1; // noop conversion.
5025 break;
5026 case ISD::AssertSext:
5027 case ISD::AssertZext: {
5028 EVT EVT = cast<VTSDNode>(N2)->getVT();
5029 assert(VT == N1.getValueType() && "Not an inreg extend!");
5030 assert(VT.isInteger() && EVT.isInteger() &&
5031 "Cannot *_EXTEND_INREG FP types");
5032 assert(!EVT.isVector() &&
5033 "AssertSExt/AssertZExt type should be the vector element type "
5034 "rather than the vector type!");
5035 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5036 if (VT.getScalarType() == EVT) return N1; // noop assertion.
5037 break;
5039 case ISD::SIGN_EXTEND_INREG: {
5040 EVT EVT = cast<VTSDNode>(N2)->getVT();
5041 assert(VT == N1.getValueType() && "Not an inreg extend!");
5042 assert(VT.isInteger() && EVT.isInteger() &&
5043 "Cannot *_EXTEND_INREG FP types");
5044 assert(EVT.isVector() == VT.isVector() &&
5045 "SIGN_EXTEND_INREG type should be vector iff the operand "
5046 "type is vector!");
5047 assert((!EVT.isVector() ||
5048 EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
5049 "Vector element counts must match in SIGN_EXTEND_INREG");
5050 assert(EVT.bitsLE(VT) && "Not extending!");
5051 if (EVT == VT) return N1; // Not actually extending
5053 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5054 unsigned FromBits = EVT.getScalarSizeInBits();
5055 Val <<= Val.getBitWidth() - FromBits;
5056 Val.ashrInPlace(Val.getBitWidth() - FromBits);
5057 return getConstant(Val, DL, ConstantVT);
5060 if (N1C) {
5061 const APInt &Val = N1C->getAPIntValue();
5062 return SignExtendInReg(Val, VT);
5064 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5065 SmallVector<SDValue, 8> Ops;
5066 llvm::EVT OpVT = N1.getOperand(0).getValueType();
5067 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5068 SDValue Op = N1.getOperand(i);
5069 if (Op.isUndef()) {
5070 Ops.push_back(getUNDEF(OpVT));
5071 continue;
5073 ConstantSDNode *C = cast<ConstantSDNode>(Op);
5074 APInt Val = C->getAPIntValue();
5075 Ops.push_back(SignExtendInReg(Val, OpVT));
5077 return getBuildVector(VT, DL, Ops);
5079 break;
5081 case ISD::EXTRACT_VECTOR_ELT:
5082 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5083 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5084 element type of the vector.");
5086 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
5087 if (N1.isUndef())
5088 return getUNDEF(VT);
5090 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF
5091 if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5092 return getUNDEF(VT);
5094 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5095 // expanding copies of large vectors from registers.
5096 if (N2C &&
5097 N1.getOpcode() == ISD::CONCAT_VECTORS &&
5098 N1.getNumOperands() > 0) {
5099 unsigned Factor =
5100 N1.getOperand(0).getValueType().getVectorNumElements();
5101 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5102 N1.getOperand(N2C->getZExtValue() / Factor),
5103 getConstant(N2C->getZExtValue() % Factor, DL,
5104 N2.getValueType()));
5107 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
5108 // expanding large vector constants.
5109 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
5110 SDValue Elt = N1.getOperand(N2C->getZExtValue());
5112 if (VT != Elt.getValueType())
5113 // If the vector element type is not legal, the BUILD_VECTOR operands
5114 // are promoted and implicitly truncated, and the result implicitly
5115 // extended. Make that explicit here.
5116 Elt = getAnyExtOrTrunc(Elt, DL, VT);
5118 return Elt;
5121 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5122 // operations are lowered to scalars.
5123 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5124 // If the indices are the same, return the inserted element else
5125 // if the indices are known different, extract the element from
5126 // the original vector.
5127 SDValue N1Op2 = N1.getOperand(2);
5128 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5130 if (N1Op2C && N2C) {
5131 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5132 if (VT == N1.getOperand(1).getValueType())
5133 return N1.getOperand(1);
5134 else
5135 return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5138 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5142 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5143 // when vector types are scalarized and v1iX is legal.
5144 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx)
5145 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5146 N1.getValueType().getVectorNumElements() == 1) {
5147 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5148 N1.getOperand(1));
5150 break;
5151 case ISD::EXTRACT_ELEMENT:
5152 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5153 assert(!N1.getValueType().isVector() && !VT.isVector() &&
5154 (N1.getValueType().isInteger() == VT.isInteger()) &&
5155 N1.getValueType() != VT &&
5156 "Wrong types for EXTRACT_ELEMENT!");
5158 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5159 // 64-bit integers into 32-bit parts. Instead of building the extract of
5160 // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5161 if (N1.getOpcode() == ISD::BUILD_PAIR)
5162 return N1.getOperand(N2C->getZExtValue());
5164 // EXTRACT_ELEMENT of a constant int is also very common.
5165 if (N1C) {
5166 unsigned ElementSize = VT.getSizeInBits();
5167 unsigned Shift = ElementSize * N2C->getZExtValue();
5168 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
5169 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
5171 break;
5172 case ISD::EXTRACT_SUBVECTOR:
5173 if (VT.isSimple() && N1.getValueType().isSimple()) {
5174 assert(VT.isVector() && N1.getValueType().isVector() &&
5175 "Extract subvector VTs must be a vectors!");
5176 assert(VT.getVectorElementType() ==
5177 N1.getValueType().getVectorElementType() &&
5178 "Extract subvector VTs must have the same element type!");
5179 assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
5180 "Extract subvector must be from larger vector to smaller vector!");
5182 if (N2C) {
5183 assert((VT.getVectorNumElements() + N2C->getZExtValue()
5184 <= N1.getValueType().getVectorNumElements())
5185 && "Extract subvector overflow!");
5188 // Trivial extraction.
5189 if (VT.getSimpleVT() == N1.getSimpleValueType())
5190 return N1;
5192 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5193 if (N1.isUndef())
5194 return getUNDEF(VT);
5196 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5197 // the concat have the same type as the extract.
5198 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
5199 N1.getNumOperands() > 0 &&
5200 VT == N1.getOperand(0).getValueType()) {
5201 unsigned Factor = VT.getVectorNumElements();
5202 return N1.getOperand(N2C->getZExtValue() / Factor);
5205 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5206 // during shuffle legalization.
5207 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5208 VT == N1.getOperand(1).getValueType())
5209 return N1.getOperand(1);
5211 break;
5214 // Perform trivial constant folding.
5215 if (SDValue SV =
5216 FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode()))
5217 return SV;
5219 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5220 return V;
5222 // Canonicalize an UNDEF to the RHS, even over a constant.
5223 if (N1.isUndef()) {
5224 if (TLI->isCommutativeBinOp(Opcode)) {
5225 std::swap(N1, N2);
5226 } else {
5227 switch (Opcode) {
5228 case ISD::FP_ROUND_INREG:
5229 case ISD::SIGN_EXTEND_INREG:
5230 case ISD::SUB:
5231 return getUNDEF(VT); // fold op(undef, arg2) -> undef
5232 case ISD::UDIV:
5233 case ISD::SDIV:
5234 case ISD::UREM:
5235 case ISD::SREM:
5236 case ISD::SSUBSAT:
5237 case ISD::USUBSAT:
5238 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0
5243 // Fold a bunch of operators when the RHS is undef.
5244 if (N2.isUndef()) {
5245 switch (Opcode) {
5246 case ISD::XOR:
5247 if (N1.isUndef())
5248 // Handle undef ^ undef -> 0 special case. This is a common
5249 // idiom (misuse).
5250 return getConstant(0, DL, VT);
5251 LLVM_FALLTHROUGH;
5252 case ISD::ADD:
5253 case ISD::SUB:
5254 case ISD::UDIV:
5255 case ISD::SDIV:
5256 case ISD::UREM:
5257 case ISD::SREM:
5258 return getUNDEF(VT); // fold op(arg1, undef) -> undef
5259 case ISD::MUL:
5260 case ISD::AND:
5261 case ISD::SSUBSAT:
5262 case ISD::USUBSAT:
5263 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0
5264 case ISD::OR:
5265 case ISD::SADDSAT:
5266 case ISD::UADDSAT:
5267 return getAllOnesConstant(DL, VT);
5271 // Memoize this node if possible.
5272 SDNode *N;
5273 SDVTList VTs = getVTList(VT);
5274 SDValue Ops[] = {N1, N2};
5275 if (VT != MVT::Glue) {
5276 FoldingSetNodeID ID;
5277 AddNodeIDNode(ID, Opcode, VTs, Ops);
5278 void *IP = nullptr;
5279 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5280 E->intersectFlagsWith(Flags);
5281 return SDValue(E, 0);
5284 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5285 N->setFlags(Flags);
5286 createOperands(N, Ops);
5287 CSEMap.InsertNode(N, IP);
5288 } else {
5289 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5290 createOperands(N, Ops);
5293 InsertNode(N);
5294 SDValue V = SDValue(N, 0);
5295 NewSDValueDbgMsg(V, "Creating new node: ", this);
5296 return V;
5299 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5300 SDValue N1, SDValue N2, SDValue N3,
5301 const SDNodeFlags Flags) {
5302 // Perform various simplifications.
5303 switch (Opcode) {
5304 case ISD::FMA: {
5305 assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5306 assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5307 N3.getValueType() == VT && "FMA types must match!");
5308 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5309 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5310 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5311 if (N1CFP && N2CFP && N3CFP) {
5312 APFloat V1 = N1CFP->getValueAPF();
5313 const APFloat &V2 = N2CFP->getValueAPF();
5314 const APFloat &V3 = N3CFP->getValueAPF();
5315 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5316 return getConstantFP(V1, DL, VT);
5318 break;
5320 case ISD::BUILD_VECTOR: {
5321 // Attempt to simplify BUILD_VECTOR.
5322 SDValue Ops[] = {N1, N2, N3};
5323 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5324 return V;
5325 break;
5327 case ISD::CONCAT_VECTORS: {
5328 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
5329 SDValue Ops[] = {N1, N2, N3};
5330 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
5331 return V;
5332 break;
5334 case ISD::SETCC: {
5335 assert(VT.isInteger() && "SETCC result type must be an integer!");
5336 assert(N1.getValueType() == N2.getValueType() &&
5337 "SETCC operands must have the same type!");
5338 assert(VT.isVector() == N1.getValueType().isVector() &&
5339 "SETCC type should be vector iff the operand type is vector!");
5340 assert((!VT.isVector() ||
5341 VT.getVectorNumElements() == N1.getValueType().getVectorNumElements()) &&
5342 "SETCC vector element counts must match!");
5343 // Use FoldSetCC to simplify SETCC's.
5344 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5345 return V;
5346 // Vector constant folding.
5347 SDValue Ops[] = {N1, N2, N3};
5348 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5349 NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5350 return V;
5352 break;
5354 case ISD::SELECT:
5355 case ISD::VSELECT:
5356 if (SDValue V = simplifySelect(N1, N2, N3))
5357 return V;
5358 break;
5359 case ISD::VECTOR_SHUFFLE:
5360 llvm_unreachable("should use getVectorShuffle constructor!");
5361 case ISD::INSERT_VECTOR_ELT: {
5362 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5363 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF
5364 if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5365 return getUNDEF(VT);
5366 break;
5368 case ISD::INSERT_SUBVECTOR: {
5369 SDValue Index = N3;
5370 if (VT.isSimple() && N1.getValueType().isSimple()
5371 && N2.getValueType().isSimple()) {
5372 assert(VT.isVector() && N1.getValueType().isVector() &&
5373 N2.getValueType().isVector() &&
5374 "Insert subvector VTs must be a vectors");
5375 assert(VT == N1.getValueType() &&
5376 "Dest and insert subvector source types must match!");
5377 assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
5378 "Insert subvector must be from smaller vector to larger vector!");
5379 if (isa<ConstantSDNode>(Index)) {
5380 assert((N2.getValueType().getVectorNumElements() +
5381 cast<ConstantSDNode>(Index)->getZExtValue()
5382 <= VT.getVectorNumElements())
5383 && "Insert subvector overflow!");
5386 // Trivial insertion.
5387 if (VT.getSimpleVT() == N2.getSimpleValueType())
5388 return N2;
5390 break;
5392 case ISD::BITCAST:
5393 // Fold bit_convert nodes from a type to themselves.
5394 if (N1.getValueType() == VT)
5395 return N1;
5396 break;
5399 // Memoize node if it doesn't produce a flag.
5400 SDNode *N;
5401 SDVTList VTs = getVTList(VT);
5402 SDValue Ops[] = {N1, N2, N3};
5403 if (VT != MVT::Glue) {
5404 FoldingSetNodeID ID;
5405 AddNodeIDNode(ID, Opcode, VTs, Ops);
5406 void *IP = nullptr;
5407 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5408 E->intersectFlagsWith(Flags);
5409 return SDValue(E, 0);
5412 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5413 N->setFlags(Flags);
5414 createOperands(N, Ops);
5415 CSEMap.InsertNode(N, IP);
5416 } else {
5417 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5418 createOperands(N, Ops);
5421 InsertNode(N);
5422 SDValue V = SDValue(N, 0);
5423 NewSDValueDbgMsg(V, "Creating new node: ", this);
5424 return V;
5427 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5428 SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5429 SDValue Ops[] = { N1, N2, N3, N4 };
5430 return getNode(Opcode, DL, VT, Ops);
5433 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5434 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5435 SDValue N5) {
5436 SDValue Ops[] = { N1, N2, N3, N4, N5 };
5437 return getNode(Opcode, DL, VT, Ops);
5440 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5441 /// the incoming stack arguments to be loaded from the stack.
5442 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
5443 SmallVector<SDValue, 8> ArgChains;
5445 // Include the original chain at the beginning of the list. When this is
5446 // used by target LowerCall hooks, this helps legalize find the
5447 // CALLSEQ_BEGIN node.
5448 ArgChains.push_back(Chain);
5450 // Add a chain value for each stack argument.
5451 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
5452 UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
5453 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5454 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5455 if (FI->getIndex() < 0)
5456 ArgChains.push_back(SDValue(L, 1));
5458 // Build a tokenfactor for all the chains.
5459 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5462 /// getMemsetValue - Vectorized representation of the memset value
5463 /// operand.
5464 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5465 const SDLoc &dl) {
5466 assert(!Value.isUndef());
5468 unsigned NumBits = VT.getScalarSizeInBits();
5469 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5470 assert(C->getAPIntValue().getBitWidth() == 8);
5471 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5472 if (VT.isInteger()) {
5473 bool IsOpaque = VT.getSizeInBits() > 64 ||
5474 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
5475 return DAG.getConstant(Val, dl, VT, false, IsOpaque);
5477 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5478 VT);
5481 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5482 EVT IntVT = VT.getScalarType();
5483 if (!IntVT.isInteger())
5484 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5486 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5487 if (NumBits > 8) {
5488 // Use a multiplication with 0x010101... to extend the input to the
5489 // required length.
5490 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5491 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5492 DAG.getConstant(Magic, dl, IntVT));
5495 if (VT != Value.getValueType() && !VT.isInteger())
5496 Value = DAG.getBitcast(VT.getScalarType(), Value);
5497 if (VT != Value.getValueType())
5498 Value = DAG.getSplatBuildVector(VT, dl, Value);
5500 return Value;
5503 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5504 /// used when a memcpy is turned into a memset when the source is a constant
5505 /// string ptr.
5506 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
5507 const TargetLowering &TLI,
5508 const ConstantDataArraySlice &Slice) {
5509 // Handle vector with all elements zero.
5510 if (Slice.Array == nullptr) {
5511 if (VT.isInteger())
5512 return DAG.getConstant(0, dl, VT);
5513 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
5514 return DAG.getConstantFP(0.0, dl, VT);
5515 else if (VT.isVector()) {
5516 unsigned NumElts = VT.getVectorNumElements();
5517 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5518 return DAG.getNode(ISD::BITCAST, dl, VT,
5519 DAG.getConstant(0, dl,
5520 EVT::getVectorVT(*DAG.getContext(),
5521 EltVT, NumElts)));
5522 } else
5523 llvm_unreachable("Expected type!");
5526 assert(!VT.isVector() && "Can't handle vector type here!");
5527 unsigned NumVTBits = VT.getSizeInBits();
5528 unsigned NumVTBytes = NumVTBits / 8;
5529 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
5531 APInt Val(NumVTBits, 0);
5532 if (DAG.getDataLayout().isLittleEndian()) {
5533 for (unsigned i = 0; i != NumBytes; ++i)
5534 Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
5535 } else {
5536 for (unsigned i = 0; i != NumBytes; ++i)
5537 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
5540 // If the "cost" of materializing the integer immediate is less than the cost
5541 // of a load, then it is cost effective to turn the load into the immediate.
5542 Type *Ty = VT.getTypeForEVT(*DAG.getContext());
5543 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
5544 return DAG.getConstant(Val, dl, VT);
5545 return SDValue(nullptr, 0);
5548 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset,
5549 const SDLoc &DL) {
5550 EVT VT = Base.getValueType();
5551 return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT));
5554 /// Returns true if memcpy source is constant data.
5555 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
5556 uint64_t SrcDelta = 0;
5557 GlobalAddressSDNode *G = nullptr;
5558 if (Src.getOpcode() == ISD::GlobalAddress)
5559 G = cast<GlobalAddressSDNode>(Src);
5560 else if (Src.getOpcode() == ISD::ADD &&
5561 Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
5562 Src.getOperand(1).getOpcode() == ISD::Constant) {
5563 G = cast<GlobalAddressSDNode>(Src.getOperand(0));
5564 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
5566 if (!G)
5567 return false;
5569 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
5570 SrcDelta + G->getOffset());
5573 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
5574 // On Darwin, -Os means optimize for size without hurting performance, so
5575 // only really optimize for size when -Oz (MinSize) is used.
5576 if (MF.getTarget().getTargetTriple().isOSDarwin())
5577 return MF.getFunction().hasMinSize();
5578 return MF.getFunction().hasOptSize();
5581 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
5582 SmallVector<SDValue, 32> &OutChains, unsigned From,
5583 unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
5584 SmallVector<SDValue, 16> &OutStoreChains) {
5585 assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
5586 assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
5587 SmallVector<SDValue, 16> GluedLoadChains;
5588 for (unsigned i = From; i < To; ++i) {
5589 OutChains.push_back(OutLoadChains[i]);
5590 GluedLoadChains.push_back(OutLoadChains[i]);
5593 // Chain for all loads.
5594 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
5595 GluedLoadChains);
5597 for (unsigned i = From; i < To; ++i) {
5598 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
5599 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
5600 ST->getBasePtr(), ST->getMemoryVT(),
5601 ST->getMemOperand());
5602 OutChains.push_back(NewStore);
5606 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5607 SDValue Chain, SDValue Dst, SDValue Src,
5608 uint64_t Size, unsigned Align,
5609 bool isVol, bool AlwaysInline,
5610 MachinePointerInfo DstPtrInfo,
5611 MachinePointerInfo SrcPtrInfo) {
5612 // Turn a memcpy of undef to nop.
5613 if (Src.isUndef())
5614 return Chain;
5616 // Expand memcpy to a series of load and store ops if the size operand falls
5617 // below a certain threshold.
5618 // TODO: In the AlwaysInline case, if the size is big then generate a loop
5619 // rather than maybe a humongous number of loads and stores.
5620 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5621 const DataLayout &DL = DAG.getDataLayout();
5622 LLVMContext &C = *DAG.getContext();
5623 std::vector<EVT> MemOps;
5624 bool DstAlignCanChange = false;
5625 MachineFunction &MF = DAG.getMachineFunction();
5626 MachineFrameInfo &MFI = MF.getFrameInfo();
5627 bool OptSize = shouldLowerMemFuncForSize(MF);
5628 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5629 if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5630 DstAlignCanChange = true;
5631 unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5632 if (Align > SrcAlign)
5633 SrcAlign = Align;
5634 ConstantDataArraySlice Slice;
5635 bool CopyFromConstant = isMemSrcFromConstant(Src, Slice);
5636 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
5637 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
5639 if (!TLI.findOptimalMemOpLowering(MemOps, Limit, Size,
5640 (DstAlignCanChange ? 0 : Align),
5641 (isZeroConstant ? 0 : SrcAlign),
5642 false, false, CopyFromConstant, true,
5643 DstPtrInfo.getAddrSpace(),
5644 SrcPtrInfo.getAddrSpace(),
5645 MF.getFunction().getAttributes()))
5646 return SDValue();
5648 if (DstAlignCanChange) {
5649 Type *Ty = MemOps[0].getTypeForEVT(C);
5650 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5652 // Don't promote to an alignment that would require dynamic stack
5653 // realignment.
5654 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
5655 if (!TRI->needsStackRealignment(MF))
5656 while (NewAlign > Align &&
5657 DL.exceedsNaturalStackAlignment(NewAlign))
5658 NewAlign /= 2;
5660 if (NewAlign > Align) {
5661 // Give the stack frame object a larger alignment if needed.
5662 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5663 MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5664 Align = NewAlign;
5668 MachineMemOperand::Flags MMOFlags =
5669 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5670 SmallVector<SDValue, 16> OutLoadChains;
5671 SmallVector<SDValue, 16> OutStoreChains;
5672 SmallVector<SDValue, 32> OutChains;
5673 unsigned NumMemOps = MemOps.size();
5674 uint64_t SrcOff = 0, DstOff = 0;
5675 for (unsigned i = 0; i != NumMemOps; ++i) {
5676 EVT VT = MemOps[i];
5677 unsigned VTSize = VT.getSizeInBits() / 8;
5678 SDValue Value, Store;
5680 if (VTSize > Size) {
5681 // Issuing an unaligned load / store pair that overlaps with the previous
5682 // pair. Adjust the offset accordingly.
5683 assert(i == NumMemOps-1 && i != 0);
5684 SrcOff -= VTSize - Size;
5685 DstOff -= VTSize - Size;
5688 if (CopyFromConstant &&
5689 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
5690 // It's unlikely a store of a vector immediate can be done in a single
5691 // instruction. It would require a load from a constantpool first.
5692 // We only handle zero vectors here.
5693 // FIXME: Handle other cases where store of vector immediate is done in
5694 // a single instruction.
5695 ConstantDataArraySlice SubSlice;
5696 if (SrcOff < Slice.Length) {
5697 SubSlice = Slice;
5698 SubSlice.move(SrcOff);
5699 } else {
5700 // This is an out-of-bounds access and hence UB. Pretend we read zero.
5701 SubSlice.Array = nullptr;
5702 SubSlice.Offset = 0;
5703 SubSlice.Length = VTSize;
5705 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
5706 if (Value.getNode()) {
5707 Store = DAG.getStore(Chain, dl, Value,
5708 DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5709 DstPtrInfo.getWithOffset(DstOff), Align,
5710 MMOFlags);
5711 OutChains.push_back(Store);
5715 if (!Store.getNode()) {
5716 // The type might not be legal for the target. This should only happen
5717 // if the type is smaller than a legal type, as on PPC, so the right
5718 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify
5719 // to Load/Store if NVT==VT.
5720 // FIXME does the case above also need this?
5721 EVT NVT = TLI.getTypeToTransformTo(C, VT);
5722 assert(NVT.bitsGE(VT));
5724 bool isDereferenceable =
5725 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
5726 MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
5727 if (isDereferenceable)
5728 SrcMMOFlags |= MachineMemOperand::MODereferenceable;
5730 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
5731 DAG.getMemBasePlusOffset(Src, SrcOff, dl),
5732 SrcPtrInfo.getWithOffset(SrcOff), VT,
5733 MinAlign(SrcAlign, SrcOff), SrcMMOFlags);
5734 OutLoadChains.push_back(Value.getValue(1));
5736 Store = DAG.getTruncStore(
5737 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5738 DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags);
5739 OutStoreChains.push_back(Store);
5741 SrcOff += VTSize;
5742 DstOff += VTSize;
5743 Size -= VTSize;
5746 unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
5747 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
5748 unsigned NumLdStInMemcpy = OutStoreChains.size();
5750 if (NumLdStInMemcpy) {
5751 // It may be that memcpy might be converted to memset if it's memcpy
5752 // of constants. In such a case, we won't have loads and stores, but
5753 // just stores. In the absence of loads, there is nothing to gang up.
5754 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
5755 // If target does not care, just leave as it.
5756 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
5757 OutChains.push_back(OutLoadChains[i]);
5758 OutChains.push_back(OutStoreChains[i]);
5760 } else {
5761 // Ld/St less than/equal limit set by target.
5762 if (NumLdStInMemcpy <= GluedLdStLimit) {
5763 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
5764 NumLdStInMemcpy, OutLoadChains,
5765 OutStoreChains);
5766 } else {
5767 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit;
5768 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
5769 unsigned GlueIter = 0;
5771 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
5772 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
5773 unsigned IndexTo = NumLdStInMemcpy - GlueIter;
5775 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
5776 OutLoadChains, OutStoreChains);
5777 GlueIter += GluedLdStLimit;
5780 // Residual ld/st.
5781 if (RemainingLdStInMemcpy) {
5782 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
5783 RemainingLdStInMemcpy, OutLoadChains,
5784 OutStoreChains);
5789 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5792 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5793 SDValue Chain, SDValue Dst, SDValue Src,
5794 uint64_t Size, unsigned Align,
5795 bool isVol, bool AlwaysInline,
5796 MachinePointerInfo DstPtrInfo,
5797 MachinePointerInfo SrcPtrInfo) {
5798 // Turn a memmove of undef to nop.
5799 if (Src.isUndef())
5800 return Chain;
5802 // Expand memmove to a series of load and store ops if the size operand falls
5803 // below a certain threshold.
5804 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5805 const DataLayout &DL = DAG.getDataLayout();
5806 LLVMContext &C = *DAG.getContext();
5807 std::vector<EVT> MemOps;
5808 bool DstAlignCanChange = false;
5809 MachineFunction &MF = DAG.getMachineFunction();
5810 MachineFrameInfo &MFI = MF.getFrameInfo();
5811 bool OptSize = shouldLowerMemFuncForSize(MF);
5812 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5813 if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5814 DstAlignCanChange = true;
5815 unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5816 if (Align > SrcAlign)
5817 SrcAlign = Align;
5818 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
5820 if (!TLI.findOptimalMemOpLowering(MemOps, Limit, Size,
5821 (DstAlignCanChange ? 0 : Align), SrcAlign,
5822 false, false, false, false,
5823 DstPtrInfo.getAddrSpace(),
5824 SrcPtrInfo.getAddrSpace(),
5825 MF.getFunction().getAttributes()))
5826 return SDValue();
5828 if (DstAlignCanChange) {
5829 Type *Ty = MemOps[0].getTypeForEVT(C);
5830 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5831 if (NewAlign > Align) {
5832 // Give the stack frame object a larger alignment if needed.
5833 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5834 MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5835 Align = NewAlign;
5839 MachineMemOperand::Flags MMOFlags =
5840 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5841 uint64_t SrcOff = 0, DstOff = 0;
5842 SmallVector<SDValue, 8> LoadValues;
5843 SmallVector<SDValue, 8> LoadChains;
5844 SmallVector<SDValue, 8> OutChains;
5845 unsigned NumMemOps = MemOps.size();
5846 for (unsigned i = 0; i < NumMemOps; i++) {
5847 EVT VT = MemOps[i];
5848 unsigned VTSize = VT.getSizeInBits() / 8;
5849 SDValue Value;
5851 bool isDereferenceable =
5852 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
5853 MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
5854 if (isDereferenceable)
5855 SrcMMOFlags |= MachineMemOperand::MODereferenceable;
5857 Value =
5858 DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
5859 SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags);
5860 LoadValues.push_back(Value);
5861 LoadChains.push_back(Value.getValue(1));
5862 SrcOff += VTSize;
5864 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
5865 OutChains.clear();
5866 for (unsigned i = 0; i < NumMemOps; i++) {
5867 EVT VT = MemOps[i];
5868 unsigned VTSize = VT.getSizeInBits() / 8;
5869 SDValue Store;
5871 Store = DAG.getStore(Chain, dl, LoadValues[i],
5872 DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5873 DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags);
5874 OutChains.push_back(Store);
5875 DstOff += VTSize;
5878 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5881 /// Lower the call to 'memset' intrinsic function into a series of store
5882 /// operations.
5884 /// \param DAG Selection DAG where lowered code is placed.
5885 /// \param dl Link to corresponding IR location.
5886 /// \param Chain Control flow dependency.
5887 /// \param Dst Pointer to destination memory location.
5888 /// \param Src Value of byte to write into the memory.
5889 /// \param Size Number of bytes to write.
5890 /// \param Align Alignment of the destination in bytes.
5891 /// \param isVol True if destination is volatile.
5892 /// \param DstPtrInfo IR information on the memory pointer.
5893 /// \returns New head in the control flow, if lowering was successful, empty
5894 /// SDValue otherwise.
5896 /// The function tries to replace 'llvm.memset' intrinsic with several store
5897 /// operations and value calculation code. This is usually profitable for small
5898 /// memory size.
5899 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
5900 SDValue Chain, SDValue Dst, SDValue Src,
5901 uint64_t Size, unsigned Align, bool isVol,
5902 MachinePointerInfo DstPtrInfo) {
5903 // Turn a memset of undef to nop.
5904 if (Src.isUndef())
5905 return Chain;
5907 // Expand memset to a series of load/store ops if the size operand
5908 // falls below a certain threshold.
5909 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5910 std::vector<EVT> MemOps;
5911 bool DstAlignCanChange = false;
5912 MachineFunction &MF = DAG.getMachineFunction();
5913 MachineFrameInfo &MFI = MF.getFrameInfo();
5914 bool OptSize = shouldLowerMemFuncForSize(MF);
5915 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5916 if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5917 DstAlignCanChange = true;
5918 bool IsZeroVal =
5919 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
5920 if (!TLI.findOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
5921 Size, (DstAlignCanChange ? 0 : Align), 0,
5922 true, IsZeroVal, false, true,
5923 DstPtrInfo.getAddrSpace(), ~0u,
5924 MF.getFunction().getAttributes()))
5925 return SDValue();
5927 if (DstAlignCanChange) {
5928 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
5929 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
5930 if (NewAlign > Align) {
5931 // Give the stack frame object a larger alignment if needed.
5932 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5933 MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5934 Align = NewAlign;
5938 SmallVector<SDValue, 8> OutChains;
5939 uint64_t DstOff = 0;
5940 unsigned NumMemOps = MemOps.size();
5942 // Find the largest store and generate the bit pattern for it.
5943 EVT LargestVT = MemOps[0];
5944 for (unsigned i = 1; i < NumMemOps; i++)
5945 if (MemOps[i].bitsGT(LargestVT))
5946 LargestVT = MemOps[i];
5947 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
5949 for (unsigned i = 0; i < NumMemOps; i++) {
5950 EVT VT = MemOps[i];
5951 unsigned VTSize = VT.getSizeInBits() / 8;
5952 if (VTSize > Size) {
5953 // Issuing an unaligned load / store pair that overlaps with the previous
5954 // pair. Adjust the offset accordingly.
5955 assert(i == NumMemOps-1 && i != 0);
5956 DstOff -= VTSize - Size;
5959 // If this store is smaller than the largest store see whether we can get
5960 // the smaller value for free with a truncate.
5961 SDValue Value = MemSetValue;
5962 if (VT.bitsLT(LargestVT)) {
5963 if (!LargestVT.isVector() && !VT.isVector() &&
5964 TLI.isTruncateFree(LargestVT, VT))
5965 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
5966 else
5967 Value = getMemsetValue(Src, VT, DAG, dl);
5969 assert(Value.getValueType() == VT && "Value with wrong type.");
5970 SDValue Store = DAG.getStore(
5971 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5972 DstPtrInfo.getWithOffset(DstOff), Align,
5973 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
5974 OutChains.push_back(Store);
5975 DstOff += VT.getSizeInBits() / 8;
5976 Size -= VTSize;
5979 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5982 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
5983 unsigned AS) {
5984 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
5985 // pointer operands can be losslessly bitcasted to pointers of address space 0
5986 if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
5987 report_fatal_error("cannot lower memory intrinsic in address space " +
5988 Twine(AS));
5992 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
5993 SDValue Src, SDValue Size, unsigned Align,
5994 bool isVol, bool AlwaysInline, bool isTailCall,
5995 MachinePointerInfo DstPtrInfo,
5996 MachinePointerInfo SrcPtrInfo) {
5997 assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
5999 // Check to see if we should lower the memcpy to loads and stores first.
6000 // For cases within the target-specified limits, this is the best choice.
6001 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6002 if (ConstantSize) {
6003 // Memcpy with size zero? Just return the original chain.
6004 if (ConstantSize->isNullValue())
6005 return Chain;
6007 SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6008 ConstantSize->getZExtValue(),Align,
6009 isVol, false, DstPtrInfo, SrcPtrInfo);
6010 if (Result.getNode())
6011 return Result;
6014 // Then check to see if we should lower the memcpy with target-specific
6015 // code. If the target chooses to do this, this is the next best.
6016 if (TSI) {
6017 SDValue Result = TSI->EmitTargetCodeForMemcpy(
6018 *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline,
6019 DstPtrInfo, SrcPtrInfo);
6020 if (Result.getNode())
6021 return Result;
6024 // If we really need inline code and the target declined to provide it,
6025 // use a (potentially long) sequence of loads and stores.
6026 if (AlwaysInline) {
6027 assert(ConstantSize && "AlwaysInline requires a constant size!");
6028 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6029 ConstantSize->getZExtValue(), Align, isVol,
6030 true, DstPtrInfo, SrcPtrInfo);
6033 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6034 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6036 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6037 // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6038 // respect volatile, so they may do things like read or write memory
6039 // beyond the given memory regions. But fixing this isn't easy, and most
6040 // people don't care.
6042 // Emit a library call.
6043 TargetLowering::ArgListTy Args;
6044 TargetLowering::ArgListEntry Entry;
6045 Entry.Ty = Type::getInt8PtrTy(*getContext());
6046 Entry.Node = Dst; Args.push_back(Entry);
6047 Entry.Node = Src; Args.push_back(Entry);
6049 Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6050 Entry.Node = Size; Args.push_back(Entry);
6051 // FIXME: pass in SDLoc
6052 TargetLowering::CallLoweringInfo CLI(*this);
6053 CLI.setDebugLoc(dl)
6054 .setChain(Chain)
6055 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6056 Dst.getValueType().getTypeForEVT(*getContext()),
6057 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6058 TLI->getPointerTy(getDataLayout())),
6059 std::move(Args))
6060 .setDiscardResult()
6061 .setTailCall(isTailCall);
6063 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6064 return CallResult.second;
6067 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6068 SDValue Dst, unsigned DstAlign,
6069 SDValue Src, unsigned SrcAlign,
6070 SDValue Size, Type *SizeTy,
6071 unsigned ElemSz, bool isTailCall,
6072 MachinePointerInfo DstPtrInfo,
6073 MachinePointerInfo SrcPtrInfo) {
6074 // Emit a library call.
6075 TargetLowering::ArgListTy Args;
6076 TargetLowering::ArgListEntry Entry;
6077 Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6078 Entry.Node = Dst;
6079 Args.push_back(Entry);
6081 Entry.Node = Src;
6082 Args.push_back(Entry);
6084 Entry.Ty = SizeTy;
6085 Entry.Node = Size;
6086 Args.push_back(Entry);
6088 RTLIB::Libcall LibraryCall =
6089 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6090 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6091 report_fatal_error("Unsupported element size");
6093 TargetLowering::CallLoweringInfo CLI(*this);
6094 CLI.setDebugLoc(dl)
6095 .setChain(Chain)
6096 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6097 Type::getVoidTy(*getContext()),
6098 getExternalSymbol(TLI->getLibcallName(LibraryCall),
6099 TLI->getPointerTy(getDataLayout())),
6100 std::move(Args))
6101 .setDiscardResult()
6102 .setTailCall(isTailCall);
6104 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6105 return CallResult.second;
6108 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6109 SDValue Src, SDValue Size, unsigned Align,
6110 bool isVol, bool isTailCall,
6111 MachinePointerInfo DstPtrInfo,
6112 MachinePointerInfo SrcPtrInfo) {
6113 assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6115 // Check to see if we should lower the memmove to loads and stores first.
6116 // For cases within the target-specified limits, this is the best choice.
6117 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6118 if (ConstantSize) {
6119 // Memmove with size zero? Just return the original chain.
6120 if (ConstantSize->isNullValue())
6121 return Chain;
6123 SDValue Result =
6124 getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
6125 ConstantSize->getZExtValue(), Align, isVol,
6126 false, DstPtrInfo, SrcPtrInfo);
6127 if (Result.getNode())
6128 return Result;
6131 // Then check to see if we should lower the memmove with target-specific
6132 // code. If the target chooses to do this, this is the next best.
6133 if (TSI) {
6134 SDValue Result = TSI->EmitTargetCodeForMemmove(
6135 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo);
6136 if (Result.getNode())
6137 return Result;
6140 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6141 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6143 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6144 // not be safe. See memcpy above for more details.
6146 // Emit a library call.
6147 TargetLowering::ArgListTy Args;
6148 TargetLowering::ArgListEntry Entry;
6149 Entry.Ty = Type::getInt8PtrTy(*getContext());
6150 Entry.Node = Dst; Args.push_back(Entry);
6151 Entry.Node = Src; Args.push_back(Entry);
6153 Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6154 Entry.Node = Size; Args.push_back(Entry);
6155 // FIXME: pass in SDLoc
6156 TargetLowering::CallLoweringInfo CLI(*this);
6157 CLI.setDebugLoc(dl)
6158 .setChain(Chain)
6159 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6160 Dst.getValueType().getTypeForEVT(*getContext()),
6161 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6162 TLI->getPointerTy(getDataLayout())),
6163 std::move(Args))
6164 .setDiscardResult()
6165 .setTailCall(isTailCall);
6167 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6168 return CallResult.second;
6171 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6172 SDValue Dst, unsigned DstAlign,
6173 SDValue Src, unsigned SrcAlign,
6174 SDValue Size, Type *SizeTy,
6175 unsigned ElemSz, bool isTailCall,
6176 MachinePointerInfo DstPtrInfo,
6177 MachinePointerInfo SrcPtrInfo) {
6178 // Emit a library call.
6179 TargetLowering::ArgListTy Args;
6180 TargetLowering::ArgListEntry Entry;
6181 Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6182 Entry.Node = Dst;
6183 Args.push_back(Entry);
6185 Entry.Node = Src;
6186 Args.push_back(Entry);
6188 Entry.Ty = SizeTy;
6189 Entry.Node = Size;
6190 Args.push_back(Entry);
6192 RTLIB::Libcall LibraryCall =
6193 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6194 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6195 report_fatal_error("Unsupported element size");
6197 TargetLowering::CallLoweringInfo CLI(*this);
6198 CLI.setDebugLoc(dl)
6199 .setChain(Chain)
6200 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6201 Type::getVoidTy(*getContext()),
6202 getExternalSymbol(TLI->getLibcallName(LibraryCall),
6203 TLI->getPointerTy(getDataLayout())),
6204 std::move(Args))
6205 .setDiscardResult()
6206 .setTailCall(isTailCall);
6208 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6209 return CallResult.second;
6212 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6213 SDValue Src, SDValue Size, unsigned Align,
6214 bool isVol, bool isTailCall,
6215 MachinePointerInfo DstPtrInfo) {
6216 assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6218 // Check to see if we should lower the memset to stores first.
6219 // For cases within the target-specified limits, this is the best choice.
6220 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6221 if (ConstantSize) {
6222 // Memset with size zero? Just return the original chain.
6223 if (ConstantSize->isNullValue())
6224 return Chain;
6226 SDValue Result =
6227 getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
6228 Align, isVol, DstPtrInfo);
6230 if (Result.getNode())
6231 return Result;
6234 // Then check to see if we should lower the memset with target-specific
6235 // code. If the target chooses to do this, this is the next best.
6236 if (TSI) {
6237 SDValue Result = TSI->EmitTargetCodeForMemset(
6238 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo);
6239 if (Result.getNode())
6240 return Result;
6243 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6245 // Emit a library call.
6246 TargetLowering::ArgListTy Args;
6247 TargetLowering::ArgListEntry Entry;
6248 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
6249 Args.push_back(Entry);
6250 Entry.Node = Src;
6251 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6252 Args.push_back(Entry);
6253 Entry.Node = Size;
6254 Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6255 Args.push_back(Entry);
6257 // FIXME: pass in SDLoc
6258 TargetLowering::CallLoweringInfo CLI(*this);
6259 CLI.setDebugLoc(dl)
6260 .setChain(Chain)
6261 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6262 Dst.getValueType().getTypeForEVT(*getContext()),
6263 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6264 TLI->getPointerTy(getDataLayout())),
6265 std::move(Args))
6266 .setDiscardResult()
6267 .setTailCall(isTailCall);
6269 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6270 return CallResult.second;
6273 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6274 SDValue Dst, unsigned DstAlign,
6275 SDValue Value, SDValue Size, Type *SizeTy,
6276 unsigned ElemSz, bool isTailCall,
6277 MachinePointerInfo DstPtrInfo) {
6278 // Emit a library call.
6279 TargetLowering::ArgListTy Args;
6280 TargetLowering::ArgListEntry Entry;
6281 Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6282 Entry.Node = Dst;
6283 Args.push_back(Entry);
6285 Entry.Ty = Type::getInt8Ty(*getContext());
6286 Entry.Node = Value;
6287 Args.push_back(Entry);
6289 Entry.Ty = SizeTy;
6290 Entry.Node = Size;
6291 Args.push_back(Entry);
6293 RTLIB::Libcall LibraryCall =
6294 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6295 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6296 report_fatal_error("Unsupported element size");
6298 TargetLowering::CallLoweringInfo CLI(*this);
6299 CLI.setDebugLoc(dl)
6300 .setChain(Chain)
6301 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6302 Type::getVoidTy(*getContext()),
6303 getExternalSymbol(TLI->getLibcallName(LibraryCall),
6304 TLI->getPointerTy(getDataLayout())),
6305 std::move(Args))
6306 .setDiscardResult()
6307 .setTailCall(isTailCall);
6309 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6310 return CallResult.second;
6313 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6314 SDVTList VTList, ArrayRef<SDValue> Ops,
6315 MachineMemOperand *MMO) {
6316 FoldingSetNodeID ID;
6317 ID.AddInteger(MemVT.getRawBits());
6318 AddNodeIDNode(ID, Opcode, VTList, Ops);
6319 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6320 void* IP = nullptr;
6321 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6322 cast<AtomicSDNode>(E)->refineAlignment(MMO);
6323 return SDValue(E, 0);
6326 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6327 VTList, MemVT, MMO);
6328 createOperands(N, Ops);
6330 CSEMap.InsertNode(N, IP);
6331 InsertNode(N);
6332 return SDValue(N, 0);
6335 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6336 EVT MemVT, SDVTList VTs, SDValue Chain,
6337 SDValue Ptr, SDValue Cmp, SDValue Swp,
6338 MachineMemOperand *MMO) {
6339 assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6340 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6341 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6343 SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6344 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6347 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6348 SDValue Chain, SDValue Ptr, SDValue Val,
6349 MachineMemOperand *MMO) {
6350 assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6351 Opcode == ISD::ATOMIC_LOAD_SUB ||
6352 Opcode == ISD::ATOMIC_LOAD_AND ||
6353 Opcode == ISD::ATOMIC_LOAD_CLR ||
6354 Opcode == ISD::ATOMIC_LOAD_OR ||
6355 Opcode == ISD::ATOMIC_LOAD_XOR ||
6356 Opcode == ISD::ATOMIC_LOAD_NAND ||
6357 Opcode == ISD::ATOMIC_LOAD_MIN ||
6358 Opcode == ISD::ATOMIC_LOAD_MAX ||
6359 Opcode == ISD::ATOMIC_LOAD_UMIN ||
6360 Opcode == ISD::ATOMIC_LOAD_UMAX ||
6361 Opcode == ISD::ATOMIC_LOAD_FADD ||
6362 Opcode == ISD::ATOMIC_LOAD_FSUB ||
6363 Opcode == ISD::ATOMIC_SWAP ||
6364 Opcode == ISD::ATOMIC_STORE) &&
6365 "Invalid Atomic Op");
6367 EVT VT = Val.getValueType();
6369 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6370 getVTList(VT, MVT::Other);
6371 SDValue Ops[] = {Chain, Ptr, Val};
6372 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6375 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6376 EVT VT, SDValue Chain, SDValue Ptr,
6377 MachineMemOperand *MMO) {
6378 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6380 SDVTList VTs = getVTList(VT, MVT::Other);
6381 SDValue Ops[] = {Chain, Ptr};
6382 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6385 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
6386 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6387 if (Ops.size() == 1)
6388 return Ops[0];
6390 SmallVector<EVT, 4> VTs;
6391 VTs.reserve(Ops.size());
6392 for (unsigned i = 0; i < Ops.size(); ++i)
6393 VTs.push_back(Ops[i].getValueType());
6394 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6397 SDValue SelectionDAG::getMemIntrinsicNode(
6398 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6399 EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align,
6400 MachineMemOperand::Flags Flags, unsigned Size) {
6401 if (Align == 0) // Ensure that codegen never sees alignment 0
6402 Align = getEVTAlignment(MemVT);
6404 if (!Size)
6405 Size = MemVT.getStoreSize();
6407 MachineFunction &MF = getMachineFunction();
6408 MachineMemOperand *MMO =
6409 MF.getMachineMemOperand(PtrInfo, Flags, Size, Align);
6411 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
6414 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
6415 SDVTList VTList,
6416 ArrayRef<SDValue> Ops, EVT MemVT,
6417 MachineMemOperand *MMO) {
6418 assert((Opcode == ISD::INTRINSIC_VOID ||
6419 Opcode == ISD::INTRINSIC_W_CHAIN ||
6420 Opcode == ISD::PREFETCH ||
6421 Opcode == ISD::LIFETIME_START ||
6422 Opcode == ISD::LIFETIME_END ||
6423 ((int)Opcode <= std::numeric_limits<int>::max() &&
6424 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
6425 "Opcode is not a memory-accessing opcode!");
6427 // Memoize the node unless it returns a flag.
6428 MemIntrinsicSDNode *N;
6429 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6430 FoldingSetNodeID ID;
6431 AddNodeIDNode(ID, Opcode, VTList, Ops);
6432 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
6433 Opcode, dl.getIROrder(), VTList, MemVT, MMO));
6434 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6435 void *IP = nullptr;
6436 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6437 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
6438 return SDValue(E, 0);
6441 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6442 VTList, MemVT, MMO);
6443 createOperands(N, Ops);
6445 CSEMap.InsertNode(N, IP);
6446 } else {
6447 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6448 VTList, MemVT, MMO);
6449 createOperands(N, Ops);
6451 InsertNode(N);
6452 return SDValue(N, 0);
6455 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
6456 SDValue Chain, int FrameIndex,
6457 int64_t Size, int64_t Offset) {
6458 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
6459 const auto VTs = getVTList(MVT::Other);
6460 SDValue Ops[2] = {
6461 Chain,
6462 getFrameIndex(FrameIndex,
6463 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
6464 true)};
6466 FoldingSetNodeID ID;
6467 AddNodeIDNode(ID, Opcode, VTs, Ops);
6468 ID.AddInteger(FrameIndex);
6469 ID.AddInteger(Size);
6470 ID.AddInteger(Offset);
6471 void *IP = nullptr;
6472 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6473 return SDValue(E, 0);
6475 LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
6476 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
6477 createOperands(N, Ops);
6478 CSEMap.InsertNode(N, IP);
6479 InsertNode(N);
6480 SDValue V(N, 0);
6481 NewSDValueDbgMsg(V, "Creating new node: ", this);
6482 return V;
6485 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6486 /// MachinePointerInfo record from it. This is particularly useful because the
6487 /// code generator has many cases where it doesn't bother passing in a
6488 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6489 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6490 SelectionDAG &DAG, SDValue Ptr,
6491 int64_t Offset = 0) {
6492 // If this is FI+Offset, we can model it.
6493 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
6494 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
6495 FI->getIndex(), Offset);
6497 // If this is (FI+Offset1)+Offset2, we can model it.
6498 if (Ptr.getOpcode() != ISD::ADD ||
6499 !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
6500 !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
6501 return Info;
6503 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6504 return MachinePointerInfo::getFixedStack(
6505 DAG.getMachineFunction(), FI,
6506 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
6509 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6510 /// MachinePointerInfo record from it. This is particularly useful because the
6511 /// code generator has many cases where it doesn't bother passing in a
6512 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6513 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6514 SelectionDAG &DAG, SDValue Ptr,
6515 SDValue OffsetOp) {
6516 // If the 'Offset' value isn't a constant, we can't handle this.
6517 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
6518 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
6519 if (OffsetOp.isUndef())
6520 return InferPointerInfo(Info, DAG, Ptr);
6521 return Info;
6524 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6525 EVT VT, const SDLoc &dl, SDValue Chain,
6526 SDValue Ptr, SDValue Offset,
6527 MachinePointerInfo PtrInfo, EVT MemVT,
6528 unsigned Alignment,
6529 MachineMemOperand::Flags MMOFlags,
6530 const AAMDNodes &AAInfo, const MDNode *Ranges) {
6531 assert(Chain.getValueType() == MVT::Other &&
6532 "Invalid chain type");
6533 if (Alignment == 0) // Ensure that codegen never sees alignment 0
6534 Alignment = getEVTAlignment(MemVT);
6536 MMOFlags |= MachineMemOperand::MOLoad;
6537 assert((MMOFlags & MachineMemOperand::MOStore) == 0);
6538 // If we don't have a PtrInfo, infer the trivial frame index case to simplify
6539 // clients.
6540 if (PtrInfo.V.isNull())
6541 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
6543 MachineFunction &MF = getMachineFunction();
6544 MachineMemOperand *MMO = MF.getMachineMemOperand(
6545 PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges);
6546 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
6549 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6550 EVT VT, const SDLoc &dl, SDValue Chain,
6551 SDValue Ptr, SDValue Offset, EVT MemVT,
6552 MachineMemOperand *MMO) {
6553 if (VT == MemVT) {
6554 ExtType = ISD::NON_EXTLOAD;
6555 } else if (ExtType == ISD::NON_EXTLOAD) {
6556 assert(VT == MemVT && "Non-extending load from different memory type!");
6557 } else {
6558 // Extending load.
6559 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
6560 "Should only be an extending load, not truncating!");
6561 assert(VT.isInteger() == MemVT.isInteger() &&
6562 "Cannot convert from FP to Int or Int -> FP!");
6563 assert(VT.isVector() == MemVT.isVector() &&
6564 "Cannot use an ext load to convert to or from a vector!");
6565 assert((!VT.isVector() ||
6566 VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
6567 "Cannot use an ext load to change the number of vector elements!");
6570 bool Indexed = AM != ISD::UNINDEXED;
6571 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
6573 SDVTList VTs = Indexed ?
6574 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
6575 SDValue Ops[] = { Chain, Ptr, Offset };
6576 FoldingSetNodeID ID;
6577 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
6578 ID.AddInteger(MemVT.getRawBits());
6579 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
6580 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
6581 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6582 void *IP = nullptr;
6583 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6584 cast<LoadSDNode>(E)->refineAlignment(MMO);
6585 return SDValue(E, 0);
6587 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6588 ExtType, MemVT, MMO);
6589 createOperands(N, Ops);
6591 CSEMap.InsertNode(N, IP);
6592 InsertNode(N);
6593 SDValue V(N, 0);
6594 NewSDValueDbgMsg(V, "Creating new node: ", this);
6595 return V;
6598 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6599 SDValue Ptr, MachinePointerInfo PtrInfo,
6600 unsigned Alignment,
6601 MachineMemOperand::Flags MMOFlags,
6602 const AAMDNodes &AAInfo, const MDNode *Ranges) {
6603 SDValue Undef = getUNDEF(Ptr.getValueType());
6604 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6605 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
6608 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6609 SDValue Ptr, MachineMemOperand *MMO) {
6610 SDValue Undef = getUNDEF(Ptr.getValueType());
6611 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6612 VT, MMO);
6615 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6616 EVT VT, SDValue Chain, SDValue Ptr,
6617 MachinePointerInfo PtrInfo, EVT MemVT,
6618 unsigned Alignment,
6619 MachineMemOperand::Flags MMOFlags,
6620 const AAMDNodes &AAInfo) {
6621 SDValue Undef = getUNDEF(Ptr.getValueType());
6622 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
6623 MemVT, Alignment, MMOFlags, AAInfo);
6626 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6627 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
6628 MachineMemOperand *MMO) {
6629 SDValue Undef = getUNDEF(Ptr.getValueType());
6630 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
6631 MemVT, MMO);
6634 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
6635 SDValue Base, SDValue Offset,
6636 ISD::MemIndexedMode AM) {
6637 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
6638 assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
6639 // Don't propagate the invariant or dereferenceable flags.
6640 auto MMOFlags =
6641 LD->getMemOperand()->getFlags() &
6642 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
6643 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
6644 LD->getChain(), Base, Offset, LD->getPointerInfo(),
6645 LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
6646 LD->getAAInfo());
6649 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6650 SDValue Ptr, MachinePointerInfo PtrInfo,
6651 unsigned Alignment,
6652 MachineMemOperand::Flags MMOFlags,
6653 const AAMDNodes &AAInfo) {
6654 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
6655 if (Alignment == 0) // Ensure that codegen never sees alignment 0
6656 Alignment = getEVTAlignment(Val.getValueType());
6658 MMOFlags |= MachineMemOperand::MOStore;
6659 assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6661 if (PtrInfo.V.isNull())
6662 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6664 MachineFunction &MF = getMachineFunction();
6665 MachineMemOperand *MMO = MF.getMachineMemOperand(
6666 PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo);
6667 return getStore(Chain, dl, Val, Ptr, MMO);
6670 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6671 SDValue Ptr, MachineMemOperand *MMO) {
6672 assert(Chain.getValueType() == MVT::Other &&
6673 "Invalid chain type");
6674 EVT VT = Val.getValueType();
6675 SDVTList VTs = getVTList(MVT::Other);
6676 SDValue Undef = getUNDEF(Ptr.getValueType());
6677 SDValue Ops[] = { Chain, Val, Ptr, Undef };
6678 FoldingSetNodeID ID;
6679 AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6680 ID.AddInteger(VT.getRawBits());
6681 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6682 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
6683 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6684 void *IP = nullptr;
6685 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6686 cast<StoreSDNode>(E)->refineAlignment(MMO);
6687 return SDValue(E, 0);
6689 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6690 ISD::UNINDEXED, false, VT, MMO);
6691 createOperands(N, Ops);
6693 CSEMap.InsertNode(N, IP);
6694 InsertNode(N);
6695 SDValue V(N, 0);
6696 NewSDValueDbgMsg(V, "Creating new node: ", this);
6697 return V;
6700 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6701 SDValue Ptr, MachinePointerInfo PtrInfo,
6702 EVT SVT, unsigned Alignment,
6703 MachineMemOperand::Flags MMOFlags,
6704 const AAMDNodes &AAInfo) {
6705 assert(Chain.getValueType() == MVT::Other &&
6706 "Invalid chain type");
6707 if (Alignment == 0) // Ensure that codegen never sees alignment 0
6708 Alignment = getEVTAlignment(SVT);
6710 MMOFlags |= MachineMemOperand::MOStore;
6711 assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6713 if (PtrInfo.V.isNull())
6714 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6716 MachineFunction &MF = getMachineFunction();
6717 MachineMemOperand *MMO = MF.getMachineMemOperand(
6718 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
6719 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
6722 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6723 SDValue Ptr, EVT SVT,
6724 MachineMemOperand *MMO) {
6725 EVT VT = Val.getValueType();
6727 assert(Chain.getValueType() == MVT::Other &&
6728 "Invalid chain type");
6729 if (VT == SVT)
6730 return getStore(Chain, dl, Val, Ptr, MMO);
6732 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
6733 "Should only be a truncating store, not extending!");
6734 assert(VT.isInteger() == SVT.isInteger() &&
6735 "Can't do FP-INT conversion!");
6736 assert(VT.isVector() == SVT.isVector() &&
6737 "Cannot use trunc store to convert to or from a vector!");
6738 assert((!VT.isVector() ||
6739 VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
6740 "Cannot use trunc store to change the number of vector elements!");
6742 SDVTList VTs = getVTList(MVT::Other);
6743 SDValue Undef = getUNDEF(Ptr.getValueType());
6744 SDValue Ops[] = { Chain, Val, Ptr, Undef };
6745 FoldingSetNodeID ID;
6746 AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6747 ID.AddInteger(SVT.getRawBits());
6748 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6749 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
6750 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6751 void *IP = nullptr;
6752 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6753 cast<StoreSDNode>(E)->refineAlignment(MMO);
6754 return SDValue(E, 0);
6756 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6757 ISD::UNINDEXED, true, SVT, MMO);
6758 createOperands(N, Ops);
6760 CSEMap.InsertNode(N, IP);
6761 InsertNode(N);
6762 SDValue V(N, 0);
6763 NewSDValueDbgMsg(V, "Creating new node: ", this);
6764 return V;
6767 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
6768 SDValue Base, SDValue Offset,
6769 ISD::MemIndexedMode AM) {
6770 StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
6771 assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
6772 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
6773 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
6774 FoldingSetNodeID ID;
6775 AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6776 ID.AddInteger(ST->getMemoryVT().getRawBits());
6777 ID.AddInteger(ST->getRawSubclassData());
6778 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
6779 void *IP = nullptr;
6780 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6781 return SDValue(E, 0);
6783 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6784 ST->isTruncatingStore(), ST->getMemoryVT(),
6785 ST->getMemOperand());
6786 createOperands(N, Ops);
6788 CSEMap.InsertNode(N, IP);
6789 InsertNode(N);
6790 SDValue V(N, 0);
6791 NewSDValueDbgMsg(V, "Creating new node: ", this);
6792 return V;
6795 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6796 SDValue Ptr, SDValue Mask, SDValue PassThru,
6797 EVT MemVT, MachineMemOperand *MMO,
6798 ISD::LoadExtType ExtTy, bool isExpanding) {
6799 SDVTList VTs = getVTList(VT, MVT::Other);
6800 SDValue Ops[] = { Chain, Ptr, Mask, PassThru };
6801 FoldingSetNodeID ID;
6802 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
6803 ID.AddInteger(VT.getRawBits());
6804 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
6805 dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO));
6806 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6807 void *IP = nullptr;
6808 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6809 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
6810 return SDValue(E, 0);
6812 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6813 ExtTy, isExpanding, MemVT, MMO);
6814 createOperands(N, Ops);
6816 CSEMap.InsertNode(N, IP);
6817 InsertNode(N);
6818 SDValue V(N, 0);
6819 NewSDValueDbgMsg(V, "Creating new node: ", this);
6820 return V;
6823 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
6824 SDValue Val, SDValue Ptr, SDValue Mask,
6825 EVT MemVT, MachineMemOperand *MMO,
6826 bool IsTruncating, bool IsCompressing) {
6827 assert(Chain.getValueType() == MVT::Other &&
6828 "Invalid chain type");
6829 EVT VT = Val.getValueType();
6830 SDVTList VTs = getVTList(MVT::Other);
6831 SDValue Ops[] = { Chain, Val, Ptr, Mask };
6832 FoldingSetNodeID ID;
6833 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
6834 ID.AddInteger(VT.getRawBits());
6835 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
6836 dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO));
6837 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6838 void *IP = nullptr;
6839 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6840 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
6841 return SDValue(E, 0);
6843 auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6844 IsTruncating, IsCompressing, MemVT, MMO);
6845 createOperands(N, Ops);
6847 CSEMap.InsertNode(N, IP);
6848 InsertNode(N);
6849 SDValue V(N, 0);
6850 NewSDValueDbgMsg(V, "Creating new node: ", this);
6851 return V;
6854 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
6855 ArrayRef<SDValue> Ops,
6856 MachineMemOperand *MMO) {
6857 assert(Ops.size() == 6 && "Incompatible number of operands");
6859 FoldingSetNodeID ID;
6860 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
6861 ID.AddInteger(VT.getRawBits());
6862 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
6863 dl.getIROrder(), VTs, VT, MMO));
6864 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6865 void *IP = nullptr;
6866 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6867 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
6868 return SDValue(E, 0);
6871 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
6872 VTs, VT, MMO);
6873 createOperands(N, Ops);
6875 assert(N->getPassThru().getValueType() == N->getValueType(0) &&
6876 "Incompatible type of the PassThru value in MaskedGatherSDNode");
6877 assert(N->getMask().getValueType().getVectorNumElements() ==
6878 N->getValueType(0).getVectorNumElements() &&
6879 "Vector width mismatch between mask and data");
6880 assert(N->getIndex().getValueType().getVectorNumElements() >=
6881 N->getValueType(0).getVectorNumElements() &&
6882 "Vector width mismatch between index and data");
6883 assert(isa<ConstantSDNode>(N->getScale()) &&
6884 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
6885 "Scale should be a constant power of 2");
6887 CSEMap.InsertNode(N, IP);
6888 InsertNode(N);
6889 SDValue V(N, 0);
6890 NewSDValueDbgMsg(V, "Creating new node: ", this);
6891 return V;
6894 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
6895 ArrayRef<SDValue> Ops,
6896 MachineMemOperand *MMO) {
6897 assert(Ops.size() == 6 && "Incompatible number of operands");
6899 FoldingSetNodeID ID;
6900 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
6901 ID.AddInteger(VT.getRawBits());
6902 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
6903 dl.getIROrder(), VTs, VT, MMO));
6904 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6905 void *IP = nullptr;
6906 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6907 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
6908 return SDValue(E, 0);
6910 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
6911 VTs, VT, MMO);
6912 createOperands(N, Ops);
6914 assert(N->getMask().getValueType().getVectorNumElements() ==
6915 N->getValue().getValueType().getVectorNumElements() &&
6916 "Vector width mismatch between mask and data");
6917 assert(N->getIndex().getValueType().getVectorNumElements() >=
6918 N->getValue().getValueType().getVectorNumElements() &&
6919 "Vector width mismatch between index and data");
6920 assert(isa<ConstantSDNode>(N->getScale()) &&
6921 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
6922 "Scale should be a constant power of 2");
6924 CSEMap.InsertNode(N, IP);
6925 InsertNode(N);
6926 SDValue V(N, 0);
6927 NewSDValueDbgMsg(V, "Creating new node: ", this);
6928 return V;
6931 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
6932 // select undef, T, F --> T (if T is a constant), otherwise F
6933 // select, ?, undef, F --> F
6934 // select, ?, T, undef --> T
6935 if (Cond.isUndef())
6936 return isConstantValueOfAnyType(T) ? T : F;
6937 if (T.isUndef())
6938 return F;
6939 if (F.isUndef())
6940 return T;
6942 // select true, T, F --> T
6943 // select false, T, F --> F
6944 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
6945 return CondC->isNullValue() ? F : T;
6947 // TODO: This should simplify VSELECT with constant condition using something
6948 // like this (but check boolean contents to be complete?):
6949 // if (ISD::isBuildVectorAllOnes(Cond.getNode()))
6950 // return T;
6951 // if (ISD::isBuildVectorAllZeros(Cond.getNode()))
6952 // return F;
6954 // select ?, T, T --> T
6955 if (T == F)
6956 return T;
6958 return SDValue();
6961 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
6962 // shift undef, Y --> 0 (can always assume that the undef value is 0)
6963 if (X.isUndef())
6964 return getConstant(0, SDLoc(X.getNode()), X.getValueType());
6965 // shift X, undef --> undef (because it may shift by the bitwidth)
6966 if (Y.isUndef())
6967 return getUNDEF(X.getValueType());
6969 // shift 0, Y --> 0
6970 // shift X, 0 --> X
6971 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
6972 return X;
6974 // shift X, C >= bitwidth(X) --> undef
6975 // All vector elements must be too big (or undef) to avoid partial undefs.
6976 auto isShiftTooBig = [X](ConstantSDNode *Val) {
6977 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
6979 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
6980 return getUNDEF(X.getValueType());
6982 return SDValue();
6985 // TODO: Use fast-math-flags to enable more simplifications.
6986 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y) {
6987 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
6988 if (!YC)
6989 return SDValue();
6991 // X + -0.0 --> X
6992 if (Opcode == ISD::FADD)
6993 if (YC->getValueAPF().isNegZero())
6994 return X;
6996 // X - +0.0 --> X
6997 if (Opcode == ISD::FSUB)
6998 if (YC->getValueAPF().isPosZero())
6999 return X;
7001 // X * 1.0 --> X
7002 // X / 1.0 --> X
7003 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
7004 if (YC->getValueAPF().isExactlyValue(1.0))
7005 return X;
7007 return SDValue();
7010 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7011 SDValue Ptr, SDValue SV, unsigned Align) {
7012 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7013 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7016 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7017 ArrayRef<SDUse> Ops) {
7018 switch (Ops.size()) {
7019 case 0: return getNode(Opcode, DL, VT);
7020 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7021 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7022 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7023 default: break;
7026 // Copy from an SDUse array into an SDValue array for use with
7027 // the regular getNode logic.
7028 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7029 return getNode(Opcode, DL, VT, NewOps);
7032 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7033 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7034 unsigned NumOps = Ops.size();
7035 switch (NumOps) {
7036 case 0: return getNode(Opcode, DL, VT);
7037 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7038 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7039 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7040 default: break;
7043 switch (Opcode) {
7044 default: break;
7045 case ISD::BUILD_VECTOR:
7046 // Attempt to simplify BUILD_VECTOR.
7047 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7048 return V;
7049 break;
7050 case ISD::CONCAT_VECTORS:
7051 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
7052 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
7053 return V;
7054 break;
7055 case ISD::SELECT_CC:
7056 assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7057 assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7058 "LHS and RHS of condition must have same type!");
7059 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7060 "True and False arms of SelectCC must have same type!");
7061 assert(Ops[2].getValueType() == VT &&
7062 "select_cc node must be of same type as true and false value!");
7063 break;
7064 case ISD::BR_CC:
7065 assert(NumOps == 5 && "BR_CC takes 5 operands!");
7066 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7067 "LHS/RHS of comparison should match types!");
7068 break;
7071 // Memoize nodes.
7072 SDNode *N;
7073 SDVTList VTs = getVTList(VT);
7075 if (VT != MVT::Glue) {
7076 FoldingSetNodeID ID;
7077 AddNodeIDNode(ID, Opcode, VTs, Ops);
7078 void *IP = nullptr;
7080 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7081 return SDValue(E, 0);
7083 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7084 createOperands(N, Ops);
7086 CSEMap.InsertNode(N, IP);
7087 } else {
7088 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7089 createOperands(N, Ops);
7092 InsertNode(N);
7093 SDValue V(N, 0);
7094 NewSDValueDbgMsg(V, "Creating new node: ", this);
7095 return V;
7098 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7099 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7100 return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7103 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7104 ArrayRef<SDValue> Ops) {
7105 if (VTList.NumVTs == 1)
7106 return getNode(Opcode, DL, VTList.VTs[0], Ops);
7108 #if 0
7109 switch (Opcode) {
7110 // FIXME: figure out how to safely handle things like
7111 // int foo(int x) { return 1 << (x & 255); }
7112 // int bar() { return foo(256); }
7113 case ISD::SRA_PARTS:
7114 case ISD::SRL_PARTS:
7115 case ISD::SHL_PARTS:
7116 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7117 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7118 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7119 else if (N3.getOpcode() == ISD::AND)
7120 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7121 // If the and is only masking out bits that cannot effect the shift,
7122 // eliminate the and.
7123 unsigned NumBits = VT.getScalarSizeInBits()*2;
7124 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7125 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7127 break;
7129 #endif
7131 // Memoize the node unless it returns a flag.
7132 SDNode *N;
7133 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7134 FoldingSetNodeID ID;
7135 AddNodeIDNode(ID, Opcode, VTList, Ops);
7136 void *IP = nullptr;
7137 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7138 return SDValue(E, 0);
7140 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7141 createOperands(N, Ops);
7142 CSEMap.InsertNode(N, IP);
7143 } else {
7144 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7145 createOperands(N, Ops);
7147 InsertNode(N);
7148 SDValue V(N, 0);
7149 NewSDValueDbgMsg(V, "Creating new node: ", this);
7150 return V;
7153 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7154 SDVTList VTList) {
7155 return getNode(Opcode, DL, VTList, None);
7158 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7159 SDValue N1) {
7160 SDValue Ops[] = { N1 };
7161 return getNode(Opcode, DL, VTList, Ops);
7164 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7165 SDValue N1, SDValue N2) {
7166 SDValue Ops[] = { N1, N2 };
7167 return getNode(Opcode, DL, VTList, Ops);
7170 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7171 SDValue N1, SDValue N2, SDValue N3) {
7172 SDValue Ops[] = { N1, N2, N3 };
7173 return getNode(Opcode, DL, VTList, Ops);
7176 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7177 SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7178 SDValue Ops[] = { N1, N2, N3, N4 };
7179 return getNode(Opcode, DL, VTList, Ops);
7182 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7183 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7184 SDValue N5) {
7185 SDValue Ops[] = { N1, N2, N3, N4, N5 };
7186 return getNode(Opcode, DL, VTList, Ops);
7189 SDVTList SelectionDAG::getVTList(EVT VT) {
7190 return makeVTList(SDNode::getValueTypeList(VT), 1);
7193 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
7194 FoldingSetNodeID ID;
7195 ID.AddInteger(2U);
7196 ID.AddInteger(VT1.getRawBits());
7197 ID.AddInteger(VT2.getRawBits());
7199 void *IP = nullptr;
7200 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7201 if (!Result) {
7202 EVT *Array = Allocator.Allocate<EVT>(2);
7203 Array[0] = VT1;
7204 Array[1] = VT2;
7205 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
7206 VTListMap.InsertNode(Result, IP);
7208 return Result->getSDVTList();
7211 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
7212 FoldingSetNodeID ID;
7213 ID.AddInteger(3U);
7214 ID.AddInteger(VT1.getRawBits());
7215 ID.AddInteger(VT2.getRawBits());
7216 ID.AddInteger(VT3.getRawBits());
7218 void *IP = nullptr;
7219 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7220 if (!Result) {
7221 EVT *Array = Allocator.Allocate<EVT>(3);
7222 Array[0] = VT1;
7223 Array[1] = VT2;
7224 Array[2] = VT3;
7225 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
7226 VTListMap.InsertNode(Result, IP);
7228 return Result->getSDVTList();
7231 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
7232 FoldingSetNodeID ID;
7233 ID.AddInteger(4U);
7234 ID.AddInteger(VT1.getRawBits());
7235 ID.AddInteger(VT2.getRawBits());
7236 ID.AddInteger(VT3.getRawBits());
7237 ID.AddInteger(VT4.getRawBits());
7239 void *IP = nullptr;
7240 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7241 if (!Result) {
7242 EVT *Array = Allocator.Allocate<EVT>(4);
7243 Array[0] = VT1;
7244 Array[1] = VT2;
7245 Array[2] = VT3;
7246 Array[3] = VT4;
7247 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
7248 VTListMap.InsertNode(Result, IP);
7250 return Result->getSDVTList();
7253 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
7254 unsigned NumVTs = VTs.size();
7255 FoldingSetNodeID ID;
7256 ID.AddInteger(NumVTs);
7257 for (unsigned index = 0; index < NumVTs; index++) {
7258 ID.AddInteger(VTs[index].getRawBits());
7261 void *IP = nullptr;
7262 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7263 if (!Result) {
7264 EVT *Array = Allocator.Allocate<EVT>(NumVTs);
7265 llvm::copy(VTs, Array);
7266 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
7267 VTListMap.InsertNode(Result, IP);
7269 return Result->getSDVTList();
7273 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
7274 /// specified operands. If the resultant node already exists in the DAG,
7275 /// this does not modify the specified node, instead it returns the node that
7276 /// already exists. If the resultant node does not exist in the DAG, the
7277 /// input node is returned. As a degenerate case, if you specify the same
7278 /// input operands as the node already has, the input node is returned.
7279 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
7280 assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
7282 // Check to see if there is no change.
7283 if (Op == N->getOperand(0)) return N;
7285 // See if the modified node already exists.
7286 void *InsertPos = nullptr;
7287 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
7288 return Existing;
7290 // Nope it doesn't. Remove the node from its current place in the maps.
7291 if (InsertPos)
7292 if (!RemoveNodeFromCSEMaps(N))
7293 InsertPos = nullptr;
7295 // Now we update the operands.
7296 N->OperandList[0].set(Op);
7298 updateDivergence(N);
7299 // If this gets put into a CSE map, add it.
7300 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7301 return N;
7304 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
7305 assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
7307 // Check to see if there is no change.
7308 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
7309 return N; // No operands changed, just return the input node.
7311 // See if the modified node already exists.
7312 void *InsertPos = nullptr;
7313 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
7314 return Existing;
7316 // Nope it doesn't. Remove the node from its current place in the maps.
7317 if (InsertPos)
7318 if (!RemoveNodeFromCSEMaps(N))
7319 InsertPos = nullptr;
7321 // Now we update the operands.
7322 if (N->OperandList[0] != Op1)
7323 N->OperandList[0].set(Op1);
7324 if (N->OperandList[1] != Op2)
7325 N->OperandList[1].set(Op2);
7327 updateDivergence(N);
7328 // If this gets put into a CSE map, add it.
7329 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7330 return N;
7333 SDNode *SelectionDAG::
7334 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
7335 SDValue Ops[] = { Op1, Op2, Op3 };
7336 return UpdateNodeOperands(N, Ops);
7339 SDNode *SelectionDAG::
7340 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7341 SDValue Op3, SDValue Op4) {
7342 SDValue Ops[] = { Op1, Op2, Op3, Op4 };
7343 return UpdateNodeOperands(N, Ops);
7346 SDNode *SelectionDAG::
7347 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7348 SDValue Op3, SDValue Op4, SDValue Op5) {
7349 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
7350 return UpdateNodeOperands(N, Ops);
7353 SDNode *SelectionDAG::
7354 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
7355 unsigned NumOps = Ops.size();
7356 assert(N->getNumOperands() == NumOps &&
7357 "Update with wrong number of operands");
7359 // If no operands changed just return the input node.
7360 if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
7361 return N;
7363 // See if the modified node already exists.
7364 void *InsertPos = nullptr;
7365 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
7366 return Existing;
7368 // Nope it doesn't. Remove the node from its current place in the maps.
7369 if (InsertPos)
7370 if (!RemoveNodeFromCSEMaps(N))
7371 InsertPos = nullptr;
7373 // Now we update the operands.
7374 for (unsigned i = 0; i != NumOps; ++i)
7375 if (N->OperandList[i] != Ops[i])
7376 N->OperandList[i].set(Ops[i]);
7378 updateDivergence(N);
7379 // If this gets put into a CSE map, add it.
7380 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7381 return N;
7384 /// DropOperands - Release the operands and set this node to have
7385 /// zero operands.
7386 void SDNode::DropOperands() {
7387 // Unlike the code in MorphNodeTo that does this, we don't need to
7388 // watch for dead nodes here.
7389 for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
7390 SDUse &Use = *I++;
7391 Use.set(SDValue());
7395 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
7396 ArrayRef<MachineMemOperand *> NewMemRefs) {
7397 if (NewMemRefs.empty()) {
7398 N->clearMemRefs();
7399 return;
7402 // Check if we can avoid allocating by storing a single reference directly.
7403 if (NewMemRefs.size() == 1) {
7404 N->MemRefs = NewMemRefs[0];
7405 N->NumMemRefs = 1;
7406 return;
7409 MachineMemOperand **MemRefsBuffer =
7410 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
7411 llvm::copy(NewMemRefs, MemRefsBuffer);
7412 N->MemRefs = MemRefsBuffer;
7413 N->NumMemRefs = static_cast<int>(NewMemRefs.size());
7416 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
7417 /// machine opcode.
7419 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7420 EVT VT) {
7421 SDVTList VTs = getVTList(VT);
7422 return SelectNodeTo(N, MachineOpc, VTs, None);
7425 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7426 EVT VT, SDValue Op1) {
7427 SDVTList VTs = getVTList(VT);
7428 SDValue Ops[] = { Op1 };
7429 return SelectNodeTo(N, MachineOpc, VTs, Ops);
7432 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7433 EVT VT, SDValue Op1,
7434 SDValue Op2) {
7435 SDVTList VTs = getVTList(VT);
7436 SDValue Ops[] = { Op1, Op2 };
7437 return SelectNodeTo(N, MachineOpc, VTs, Ops);
7440 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7441 EVT VT, SDValue Op1,
7442 SDValue Op2, SDValue Op3) {
7443 SDVTList VTs = getVTList(VT);
7444 SDValue Ops[] = { Op1, Op2, Op3 };
7445 return SelectNodeTo(N, MachineOpc, VTs, Ops);
7448 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7449 EVT VT, ArrayRef<SDValue> Ops) {
7450 SDVTList VTs = getVTList(VT);
7451 return SelectNodeTo(N, MachineOpc, VTs, Ops);
7454 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7455 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
7456 SDVTList VTs = getVTList(VT1, VT2);
7457 return SelectNodeTo(N, MachineOpc, VTs, Ops);
7460 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7461 EVT VT1, EVT VT2) {
7462 SDVTList VTs = getVTList(VT1, VT2);
7463 return SelectNodeTo(N, MachineOpc, VTs, None);
7466 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7467 EVT VT1, EVT VT2, EVT VT3,
7468 ArrayRef<SDValue> Ops) {
7469 SDVTList VTs = getVTList(VT1, VT2, VT3);
7470 return SelectNodeTo(N, MachineOpc, VTs, Ops);
7473 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7474 EVT VT1, EVT VT2,
7475 SDValue Op1, SDValue Op2) {
7476 SDVTList VTs = getVTList(VT1, VT2);
7477 SDValue Ops[] = { Op1, Op2 };
7478 return SelectNodeTo(N, MachineOpc, VTs, Ops);
7481 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7482 SDVTList VTs,ArrayRef<SDValue> Ops) {
7483 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
7484 // Reset the NodeID to -1.
7485 New->setNodeId(-1);
7486 if (New != N) {
7487 ReplaceAllUsesWith(N, New);
7488 RemoveDeadNode(N);
7490 return New;
7493 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
7494 /// the line number information on the merged node since it is not possible to
7495 /// preserve the information that operation is associated with multiple lines.
7496 /// This will make the debugger working better at -O0, were there is a higher
7497 /// probability having other instructions associated with that line.
7499 /// For IROrder, we keep the smaller of the two
7500 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
7501 DebugLoc NLoc = N->getDebugLoc();
7502 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
7503 N->setDebugLoc(DebugLoc());
7505 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
7506 N->setIROrder(Order);
7507 return N;
7510 /// MorphNodeTo - This *mutates* the specified node to have the specified
7511 /// return type, opcode, and operands.
7513 /// Note that MorphNodeTo returns the resultant node. If there is already a
7514 /// node of the specified opcode and operands, it returns that node instead of
7515 /// the current one. Note that the SDLoc need not be the same.
7517 /// Using MorphNodeTo is faster than creating a new node and swapping it in
7518 /// with ReplaceAllUsesWith both because it often avoids allocating a new
7519 /// node, and because it doesn't require CSE recalculation for any of
7520 /// the node's users.
7522 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
7523 /// As a consequence it isn't appropriate to use from within the DAG combiner or
7524 /// the legalizer which maintain worklists that would need to be updated when
7525 /// deleting things.
7526 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
7527 SDVTList VTs, ArrayRef<SDValue> Ops) {
7528 // If an identical node already exists, use it.
7529 void *IP = nullptr;
7530 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
7531 FoldingSetNodeID ID;
7532 AddNodeIDNode(ID, Opc, VTs, Ops);
7533 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
7534 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
7537 if (!RemoveNodeFromCSEMaps(N))
7538 IP = nullptr;
7540 // Start the morphing.
7541 N->NodeType = Opc;
7542 N->ValueList = VTs.VTs;
7543 N->NumValues = VTs.NumVTs;
7545 // Clear the operands list, updating used nodes to remove this from their
7546 // use list. Keep track of any operands that become dead as a result.
7547 SmallPtrSet<SDNode*, 16> DeadNodeSet;
7548 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
7549 SDUse &Use = *I++;
7550 SDNode *Used = Use.getNode();
7551 Use.set(SDValue());
7552 if (Used->use_empty())
7553 DeadNodeSet.insert(Used);
7556 // For MachineNode, initialize the memory references information.
7557 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
7558 MN->clearMemRefs();
7560 // Swap for an appropriately sized array from the recycler.
7561 removeOperands(N);
7562 createOperands(N, Ops);
7564 // Delete any nodes that are still dead after adding the uses for the
7565 // new operands.
7566 if (!DeadNodeSet.empty()) {
7567 SmallVector<SDNode *, 16> DeadNodes;
7568 for (SDNode *N : DeadNodeSet)
7569 if (N->use_empty())
7570 DeadNodes.push_back(N);
7571 RemoveDeadNodes(DeadNodes);
7574 if (IP)
7575 CSEMap.InsertNode(N, IP); // Memoize the new node.
7576 return N;
7579 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
7580 unsigned OrigOpc = Node->getOpcode();
7581 unsigned NewOpc;
7582 bool IsUnary = false;
7583 bool IsTernary = false;
7584 switch (OrigOpc) {
7585 default:
7586 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
7587 case ISD::STRICT_FADD: NewOpc = ISD::FADD; break;
7588 case ISD::STRICT_FSUB: NewOpc = ISD::FSUB; break;
7589 case ISD::STRICT_FMUL: NewOpc = ISD::FMUL; break;
7590 case ISD::STRICT_FDIV: NewOpc = ISD::FDIV; break;
7591 case ISD::STRICT_FREM: NewOpc = ISD::FREM; break;
7592 case ISD::STRICT_FMA: NewOpc = ISD::FMA; IsTernary = true; break;
7593 case ISD::STRICT_FSQRT: NewOpc = ISD::FSQRT; IsUnary = true; break;
7594 case ISD::STRICT_FPOW: NewOpc = ISD::FPOW; break;
7595 case ISD::STRICT_FPOWI: NewOpc = ISD::FPOWI; break;
7596 case ISD::STRICT_FSIN: NewOpc = ISD::FSIN; IsUnary = true; break;
7597 case ISD::STRICT_FCOS: NewOpc = ISD::FCOS; IsUnary = true; break;
7598 case ISD::STRICT_FEXP: NewOpc = ISD::FEXP; IsUnary = true; break;
7599 case ISD::STRICT_FEXP2: NewOpc = ISD::FEXP2; IsUnary = true; break;
7600 case ISD::STRICT_FLOG: NewOpc = ISD::FLOG; IsUnary = true; break;
7601 case ISD::STRICT_FLOG10: NewOpc = ISD::FLOG10; IsUnary = true; break;
7602 case ISD::STRICT_FLOG2: NewOpc = ISD::FLOG2; IsUnary = true; break;
7603 case ISD::STRICT_FRINT: NewOpc = ISD::FRINT; IsUnary = true; break;
7604 case ISD::STRICT_FNEARBYINT:
7605 NewOpc = ISD::FNEARBYINT;
7606 IsUnary = true;
7607 break;
7608 case ISD::STRICT_FMAXNUM: NewOpc = ISD::FMAXNUM; break;
7609 case ISD::STRICT_FMINNUM: NewOpc = ISD::FMINNUM; break;
7610 case ISD::STRICT_FCEIL: NewOpc = ISD::FCEIL; IsUnary = true; break;
7611 case ISD::STRICT_FFLOOR: NewOpc = ISD::FFLOOR; IsUnary = true; break;
7612 case ISD::STRICT_FROUND: NewOpc = ISD::FROUND; IsUnary = true; break;
7613 case ISD::STRICT_FTRUNC: NewOpc = ISD::FTRUNC; IsUnary = true; break;
7616 // We're taking this node out of the chain, so we need to re-link things.
7617 SDValue InputChain = Node->getOperand(0);
7618 SDValue OutputChain = SDValue(Node, 1);
7619 ReplaceAllUsesOfValueWith(OutputChain, InputChain);
7621 SDVTList VTs = getVTList(Node->getOperand(1).getValueType());
7622 SDNode *Res = nullptr;
7623 if (IsUnary)
7624 Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1) });
7625 else if (IsTernary)
7626 Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1),
7627 Node->getOperand(2),
7628 Node->getOperand(3)});
7629 else
7630 Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1),
7631 Node->getOperand(2) });
7633 // MorphNodeTo can operate in two ways: if an existing node with the
7634 // specified operands exists, it can just return it. Otherwise, it
7635 // updates the node in place to have the requested operands.
7636 if (Res == Node) {
7637 // If we updated the node in place, reset the node ID. To the isel,
7638 // this should be just like a newly allocated machine node.
7639 Res->setNodeId(-1);
7640 } else {
7641 ReplaceAllUsesWith(Node, Res);
7642 RemoveDeadNode(Node);
7645 return Res;
7648 /// getMachineNode - These are used for target selectors to create a new node
7649 /// with specified return type(s), MachineInstr opcode, and operands.
7651 /// Note that getMachineNode returns the resultant node. If there is already a
7652 /// node of the specified opcode and operands, it returns that node instead of
7653 /// the current one.
7654 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7655 EVT VT) {
7656 SDVTList VTs = getVTList(VT);
7657 return getMachineNode(Opcode, dl, VTs, None);
7660 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7661 EVT VT, SDValue Op1) {
7662 SDVTList VTs = getVTList(VT);
7663 SDValue Ops[] = { Op1 };
7664 return getMachineNode(Opcode, dl, VTs, Ops);
7667 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7668 EVT VT, SDValue Op1, SDValue Op2) {
7669 SDVTList VTs = getVTList(VT);
7670 SDValue Ops[] = { Op1, Op2 };
7671 return getMachineNode(Opcode, dl, VTs, Ops);
7674 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7675 EVT VT, SDValue Op1, SDValue Op2,
7676 SDValue Op3) {
7677 SDVTList VTs = getVTList(VT);
7678 SDValue Ops[] = { Op1, Op2, Op3 };
7679 return getMachineNode(Opcode, dl, VTs, Ops);
7682 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7683 EVT VT, ArrayRef<SDValue> Ops) {
7684 SDVTList VTs = getVTList(VT);
7685 return getMachineNode(Opcode, dl, VTs, Ops);
7688 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7689 EVT VT1, EVT VT2, SDValue Op1,
7690 SDValue Op2) {
7691 SDVTList VTs = getVTList(VT1, VT2);
7692 SDValue Ops[] = { Op1, Op2 };
7693 return getMachineNode(Opcode, dl, VTs, Ops);
7696 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7697 EVT VT1, EVT VT2, SDValue Op1,
7698 SDValue Op2, SDValue Op3) {
7699 SDVTList VTs = getVTList(VT1, VT2);
7700 SDValue Ops[] = { Op1, Op2, Op3 };
7701 return getMachineNode(Opcode, dl, VTs, Ops);
7704 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7705 EVT VT1, EVT VT2,
7706 ArrayRef<SDValue> Ops) {
7707 SDVTList VTs = getVTList(VT1, VT2);
7708 return getMachineNode(Opcode, dl, VTs, Ops);
7711 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7712 EVT VT1, EVT VT2, EVT VT3,
7713 SDValue Op1, SDValue Op2) {
7714 SDVTList VTs = getVTList(VT1, VT2, VT3);
7715 SDValue Ops[] = { Op1, Op2 };
7716 return getMachineNode(Opcode, dl, VTs, Ops);
7719 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7720 EVT VT1, EVT VT2, EVT VT3,
7721 SDValue Op1, SDValue Op2,
7722 SDValue Op3) {
7723 SDVTList VTs = getVTList(VT1, VT2, VT3);
7724 SDValue Ops[] = { Op1, Op2, Op3 };
7725 return getMachineNode(Opcode, dl, VTs, Ops);
7728 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7729 EVT VT1, EVT VT2, EVT VT3,
7730 ArrayRef<SDValue> Ops) {
7731 SDVTList VTs = getVTList(VT1, VT2, VT3);
7732 return getMachineNode(Opcode, dl, VTs, Ops);
7735 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7736 ArrayRef<EVT> ResultTys,
7737 ArrayRef<SDValue> Ops) {
7738 SDVTList VTs = getVTList(ResultTys);
7739 return getMachineNode(Opcode, dl, VTs, Ops);
7742 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
7743 SDVTList VTs,
7744 ArrayRef<SDValue> Ops) {
7745 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
7746 MachineSDNode *N;
7747 void *IP = nullptr;
7749 if (DoCSE) {
7750 FoldingSetNodeID ID;
7751 AddNodeIDNode(ID, ~Opcode, VTs, Ops);
7752 IP = nullptr;
7753 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
7754 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
7758 // Allocate a new MachineSDNode.
7759 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7760 createOperands(N, Ops);
7762 if (DoCSE)
7763 CSEMap.InsertNode(N, IP);
7765 InsertNode(N);
7766 return N;
7769 /// getTargetExtractSubreg - A convenience function for creating
7770 /// TargetOpcode::EXTRACT_SUBREG nodes.
7771 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
7772 SDValue Operand) {
7773 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
7774 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
7775 VT, Operand, SRIdxVal);
7776 return SDValue(Subreg, 0);
7779 /// getTargetInsertSubreg - A convenience function for creating
7780 /// TargetOpcode::INSERT_SUBREG nodes.
7781 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
7782 SDValue Operand, SDValue Subreg) {
7783 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
7784 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
7785 VT, Operand, Subreg, SRIdxVal);
7786 return SDValue(Result, 0);
7789 /// getNodeIfExists - Get the specified node if it's already available, or
7790 /// else return NULL.
7791 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
7792 ArrayRef<SDValue> Ops,
7793 const SDNodeFlags Flags) {
7794 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
7795 FoldingSetNodeID ID;
7796 AddNodeIDNode(ID, Opcode, VTList, Ops);
7797 void *IP = nullptr;
7798 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
7799 E->intersectFlagsWith(Flags);
7800 return E;
7803 return nullptr;
7806 /// getDbgValue - Creates a SDDbgValue node.
7808 /// SDNode
7809 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
7810 SDNode *N, unsigned R, bool IsIndirect,
7811 const DebugLoc &DL, unsigned O) {
7812 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7813 "Expected inlined-at fields to agree");
7814 return new (DbgInfo->getAlloc())
7815 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
7818 /// Constant
7819 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
7820 DIExpression *Expr,
7821 const Value *C,
7822 const DebugLoc &DL, unsigned O) {
7823 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7824 "Expected inlined-at fields to agree");
7825 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
7828 /// FrameIndex
7829 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
7830 DIExpression *Expr, unsigned FI,
7831 bool IsIndirect,
7832 const DebugLoc &DL,
7833 unsigned O) {
7834 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7835 "Expected inlined-at fields to agree");
7836 return new (DbgInfo->getAlloc())
7837 SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
7840 /// VReg
7841 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
7842 DIExpression *Expr,
7843 unsigned VReg, bool IsIndirect,
7844 const DebugLoc &DL, unsigned O) {
7845 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7846 "Expected inlined-at fields to agree");
7847 return new (DbgInfo->getAlloc())
7848 SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
7851 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
7852 unsigned OffsetInBits, unsigned SizeInBits,
7853 bool InvalidateDbg) {
7854 SDNode *FromNode = From.getNode();
7855 SDNode *ToNode = To.getNode();
7856 assert(FromNode && ToNode && "Can't modify dbg values");
7858 // PR35338
7859 // TODO: assert(From != To && "Redundant dbg value transfer");
7860 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
7861 if (From == To || FromNode == ToNode)
7862 return;
7864 if (!FromNode->getHasDebugValue())
7865 return;
7867 SmallVector<SDDbgValue *, 2> ClonedDVs;
7868 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
7869 if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
7870 continue;
7872 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
7874 // Just transfer the dbg value attached to From.
7875 if (Dbg->getResNo() != From.getResNo())
7876 continue;
7878 DIVariable *Var = Dbg->getVariable();
7879 auto *Expr = Dbg->getExpression();
7880 // If a fragment is requested, update the expression.
7881 if (SizeInBits) {
7882 // When splitting a larger (e.g., sign-extended) value whose
7883 // lower bits are described with an SDDbgValue, do not attempt
7884 // to transfer the SDDbgValue to the upper bits.
7885 if (auto FI = Expr->getFragmentInfo())
7886 if (OffsetInBits + SizeInBits > FI->SizeInBits)
7887 continue;
7888 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
7889 SizeInBits);
7890 if (!Fragment)
7891 continue;
7892 Expr = *Fragment;
7894 // Clone the SDDbgValue and move it to To.
7895 SDDbgValue *Clone =
7896 getDbgValue(Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(),
7897 Dbg->getDebugLoc(), Dbg->getOrder());
7898 ClonedDVs.push_back(Clone);
7900 if (InvalidateDbg) {
7901 // Invalidate value and indicate the SDDbgValue should not be emitted.
7902 Dbg->setIsInvalidated();
7903 Dbg->setIsEmitted();
7907 for (SDDbgValue *Dbg : ClonedDVs)
7908 AddDbgValue(Dbg, ToNode, false);
7911 void SelectionDAG::salvageDebugInfo(SDNode &N) {
7912 if (!N.getHasDebugValue())
7913 return;
7915 SmallVector<SDDbgValue *, 2> ClonedDVs;
7916 for (auto DV : GetDbgValues(&N)) {
7917 if (DV->isInvalidated())
7918 continue;
7919 switch (N.getOpcode()) {
7920 default:
7921 break;
7922 case ISD::ADD:
7923 SDValue N0 = N.getOperand(0);
7924 SDValue N1 = N.getOperand(1);
7925 if (!isConstantIntBuildVectorOrConstantInt(N0) &&
7926 isConstantIntBuildVectorOrConstantInt(N1)) {
7927 uint64_t Offset = N.getConstantOperandVal(1);
7928 // Rewrite an ADD constant node into a DIExpression. Since we are
7929 // performing arithmetic to compute the variable's *value* in the
7930 // DIExpression, we need to mark the expression with a
7931 // DW_OP_stack_value.
7932 auto *DIExpr = DV->getExpression();
7933 DIExpr = DIExpression::prepend(DIExpr, DIExpression::NoDeref, Offset,
7934 DIExpression::NoDeref,
7935 DIExpression::WithStackValue);
7936 SDDbgValue *Clone =
7937 getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
7938 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
7939 ClonedDVs.push_back(Clone);
7940 DV->setIsInvalidated();
7941 DV->setIsEmitted();
7942 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
7943 N0.getNode()->dumprFull(this);
7944 dbgs() << " into " << *DIExpr << '\n');
7949 for (SDDbgValue *Dbg : ClonedDVs)
7950 AddDbgValue(Dbg, Dbg->getSDNode(), false);
7953 /// Creates a SDDbgLabel node.
7954 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
7955 const DebugLoc &DL, unsigned O) {
7956 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
7957 "Expected inlined-at fields to agree");
7958 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
7961 namespace {
7963 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
7964 /// pointed to by a use iterator is deleted, increment the use iterator
7965 /// so that it doesn't dangle.
7967 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
7968 SDNode::use_iterator &UI;
7969 SDNode::use_iterator &UE;
7971 void NodeDeleted(SDNode *N, SDNode *E) override {
7972 // Increment the iterator as needed.
7973 while (UI != UE && N == *UI)
7974 ++UI;
7977 public:
7978 RAUWUpdateListener(SelectionDAG &d,
7979 SDNode::use_iterator &ui,
7980 SDNode::use_iterator &ue)
7981 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
7984 } // end anonymous namespace
7986 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
7987 /// This can cause recursive merging of nodes in the DAG.
7989 /// This version assumes From has a single result value.
7991 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
7992 SDNode *From = FromN.getNode();
7993 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
7994 "Cannot replace with this method!");
7995 assert(From != To.getNode() && "Cannot replace uses of with self");
7997 // Preserve Debug Values
7998 transferDbgValues(FromN, To);
8000 // Iterate over all the existing uses of From. New uses will be added
8001 // to the beginning of the use list, which we avoid visiting.
8002 // This specifically avoids visiting uses of From that arise while the
8003 // replacement is happening, because any such uses would be the result
8004 // of CSE: If an existing node looks like From after one of its operands
8005 // is replaced by To, we don't want to replace of all its users with To
8006 // too. See PR3018 for more info.
8007 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8008 RAUWUpdateListener Listener(*this, UI, UE);
8009 while (UI != UE) {
8010 SDNode *User = *UI;
8012 // This node is about to morph, remove its old self from the CSE maps.
8013 RemoveNodeFromCSEMaps(User);
8015 // A user can appear in a use list multiple times, and when this
8016 // happens the uses are usually next to each other in the list.
8017 // To help reduce the number of CSE recomputations, process all
8018 // the uses of this user that we can find this way.
8019 do {
8020 SDUse &Use = UI.getUse();
8021 ++UI;
8022 Use.set(To);
8023 if (To->isDivergent() != From->isDivergent())
8024 updateDivergence(User);
8025 } while (UI != UE && *UI == User);
8026 // Now that we have modified User, add it back to the CSE maps. If it
8027 // already exists there, recursively merge the results together.
8028 AddModifiedNodeToCSEMaps(User);
8031 // If we just RAUW'd the root, take note.
8032 if (FromN == getRoot())
8033 setRoot(To);
8036 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8037 /// This can cause recursive merging of nodes in the DAG.
8039 /// This version assumes that for each value of From, there is a
8040 /// corresponding value in To in the same position with the same type.
8042 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8043 #ifndef NDEBUG
8044 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8045 assert((!From->hasAnyUseOfValue(i) ||
8046 From->getValueType(i) == To->getValueType(i)) &&
8047 "Cannot use this version of ReplaceAllUsesWith!");
8048 #endif
8050 // Handle the trivial case.
8051 if (From == To)
8052 return;
8054 // Preserve Debug Info. Only do this if there's a use.
8055 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8056 if (From->hasAnyUseOfValue(i)) {
8057 assert((i < To->getNumValues()) && "Invalid To location");
8058 transferDbgValues(SDValue(From, i), SDValue(To, i));
8061 // Iterate over just the existing users of From. See the comments in
8062 // the ReplaceAllUsesWith above.
8063 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8064 RAUWUpdateListener Listener(*this, UI, UE);
8065 while (UI != UE) {
8066 SDNode *User = *UI;
8068 // This node is about to morph, remove its old self from the CSE maps.
8069 RemoveNodeFromCSEMaps(User);
8071 // A user can appear in a use list multiple times, and when this
8072 // happens the uses are usually next to each other in the list.
8073 // To help reduce the number of CSE recomputations, process all
8074 // the uses of this user that we can find this way.
8075 do {
8076 SDUse &Use = UI.getUse();
8077 ++UI;
8078 Use.setNode(To);
8079 if (To->isDivergent() != From->isDivergent())
8080 updateDivergence(User);
8081 } while (UI != UE && *UI == User);
8083 // Now that we have modified User, add it back to the CSE maps. If it
8084 // already exists there, recursively merge the results together.
8085 AddModifiedNodeToCSEMaps(User);
8088 // If we just RAUW'd the root, take note.
8089 if (From == getRoot().getNode())
8090 setRoot(SDValue(To, getRoot().getResNo()));
8093 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8094 /// This can cause recursive merging of nodes in the DAG.
8096 /// This version can replace From with any result values. To must match the
8097 /// number and types of values returned by From.
8098 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
8099 if (From->getNumValues() == 1) // Handle the simple case efficiently.
8100 return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
8102 // Preserve Debug Info.
8103 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8104 transferDbgValues(SDValue(From, i), To[i]);
8106 // Iterate over just the existing users of From. See the comments in
8107 // the ReplaceAllUsesWith above.
8108 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8109 RAUWUpdateListener Listener(*this, UI, UE);
8110 while (UI != UE) {
8111 SDNode *User = *UI;
8113 // This node is about to morph, remove its old self from the CSE maps.
8114 RemoveNodeFromCSEMaps(User);
8116 // A user can appear in a use list multiple times, and when this happens the
8117 // uses are usually next to each other in the list. To help reduce the
8118 // number of CSE and divergence recomputations, process all the uses of this
8119 // user that we can find this way.
8120 bool To_IsDivergent = false;
8121 do {
8122 SDUse &Use = UI.getUse();
8123 const SDValue &ToOp = To[Use.getResNo()];
8124 ++UI;
8125 Use.set(ToOp);
8126 To_IsDivergent |= ToOp->isDivergent();
8127 } while (UI != UE && *UI == User);
8129 if (To_IsDivergent != From->isDivergent())
8130 updateDivergence(User);
8132 // Now that we have modified User, add it back to the CSE maps. If it
8133 // already exists there, recursively merge the results together.
8134 AddModifiedNodeToCSEMaps(User);
8137 // If we just RAUW'd the root, take note.
8138 if (From == getRoot().getNode())
8139 setRoot(SDValue(To[getRoot().getResNo()]));
8142 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
8143 /// uses of other values produced by From.getNode() alone. The Deleted
8144 /// vector is handled the same way as for ReplaceAllUsesWith.
8145 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
8146 // Handle the really simple, really trivial case efficiently.
8147 if (From == To) return;
8149 // Handle the simple, trivial, case efficiently.
8150 if (From.getNode()->getNumValues() == 1) {
8151 ReplaceAllUsesWith(From, To);
8152 return;
8155 // Preserve Debug Info.
8156 transferDbgValues(From, To);
8158 // Iterate over just the existing users of From. See the comments in
8159 // the ReplaceAllUsesWith above.
8160 SDNode::use_iterator UI = From.getNode()->use_begin(),
8161 UE = From.getNode()->use_end();
8162 RAUWUpdateListener Listener(*this, UI, UE);
8163 while (UI != UE) {
8164 SDNode *User = *UI;
8165 bool UserRemovedFromCSEMaps = false;
8167 // A user can appear in a use list multiple times, and when this
8168 // happens the uses are usually next to each other in the list.
8169 // To help reduce the number of CSE recomputations, process all
8170 // the uses of this user that we can find this way.
8171 do {
8172 SDUse &Use = UI.getUse();
8174 // Skip uses of different values from the same node.
8175 if (Use.getResNo() != From.getResNo()) {
8176 ++UI;
8177 continue;
8180 // If this node hasn't been modified yet, it's still in the CSE maps,
8181 // so remove its old self from the CSE maps.
8182 if (!UserRemovedFromCSEMaps) {
8183 RemoveNodeFromCSEMaps(User);
8184 UserRemovedFromCSEMaps = true;
8187 ++UI;
8188 Use.set(To);
8189 if (To->isDivergent() != From->isDivergent())
8190 updateDivergence(User);
8191 } while (UI != UE && *UI == User);
8192 // We are iterating over all uses of the From node, so if a use
8193 // doesn't use the specific value, no changes are made.
8194 if (!UserRemovedFromCSEMaps)
8195 continue;
8197 // Now that we have modified User, add it back to the CSE maps. If it
8198 // already exists there, recursively merge the results together.
8199 AddModifiedNodeToCSEMaps(User);
8202 // If we just RAUW'd the root, take note.
8203 if (From == getRoot())
8204 setRoot(To);
8207 namespace {
8209 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
8210 /// to record information about a use.
8211 struct UseMemo {
8212 SDNode *User;
8213 unsigned Index;
8214 SDUse *Use;
8217 /// operator< - Sort Memos by User.
8218 bool operator<(const UseMemo &L, const UseMemo &R) {
8219 return (intptr_t)L.User < (intptr_t)R.User;
8222 } // end anonymous namespace
8224 void SelectionDAG::updateDivergence(SDNode * N)
8226 if (TLI->isSDNodeAlwaysUniform(N))
8227 return;
8228 bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
8229 for (auto &Op : N->ops()) {
8230 if (Op.Val.getValueType() != MVT::Other)
8231 IsDivergent |= Op.getNode()->isDivergent();
8233 if (N->SDNodeBits.IsDivergent != IsDivergent) {
8234 N->SDNodeBits.IsDivergent = IsDivergent;
8235 for (auto U : N->uses()) {
8236 updateDivergence(U);
8241 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
8242 DenseMap<SDNode *, unsigned> Degree;
8243 Order.reserve(AllNodes.size());
8244 for (auto &N : allnodes()) {
8245 unsigned NOps = N.getNumOperands();
8246 Degree[&N] = NOps;
8247 if (0 == NOps)
8248 Order.push_back(&N);
8250 for (size_t I = 0; I != Order.size(); ++I) {
8251 SDNode *N = Order[I];
8252 for (auto U : N->uses()) {
8253 unsigned &UnsortedOps = Degree[U];
8254 if (0 == --UnsortedOps)
8255 Order.push_back(U);
8260 #ifndef NDEBUG
8261 void SelectionDAG::VerifyDAGDiverence() {
8262 std::vector<SDNode *> TopoOrder;
8263 CreateTopologicalOrder(TopoOrder);
8264 const TargetLowering &TLI = getTargetLoweringInfo();
8265 DenseMap<const SDNode *, bool> DivergenceMap;
8266 for (auto &N : allnodes()) {
8267 DivergenceMap[&N] = false;
8269 for (auto N : TopoOrder) {
8270 bool IsDivergent = DivergenceMap[N];
8271 bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA);
8272 for (auto &Op : N->ops()) {
8273 if (Op.Val.getValueType() != MVT::Other)
8274 IsSDNodeDivergent |= DivergenceMap[Op.getNode()];
8276 if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) {
8277 DivergenceMap[N] = true;
8280 for (auto &N : allnodes()) {
8281 (void)N;
8282 assert(DivergenceMap[&N] == N.isDivergent() &&
8283 "Divergence bit inconsistency detected\n");
8286 #endif
8288 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
8289 /// uses of other values produced by From.getNode() alone. The same value
8290 /// may appear in both the From and To list. The Deleted vector is
8291 /// handled the same way as for ReplaceAllUsesWith.
8292 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
8293 const SDValue *To,
8294 unsigned Num){
8295 // Handle the simple, trivial case efficiently.
8296 if (Num == 1)
8297 return ReplaceAllUsesOfValueWith(*From, *To);
8299 transferDbgValues(*From, *To);
8301 // Read up all the uses and make records of them. This helps
8302 // processing new uses that are introduced during the
8303 // replacement process.
8304 SmallVector<UseMemo, 4> Uses;
8305 for (unsigned i = 0; i != Num; ++i) {
8306 unsigned FromResNo = From[i].getResNo();
8307 SDNode *FromNode = From[i].getNode();
8308 for (SDNode::use_iterator UI = FromNode->use_begin(),
8309 E = FromNode->use_end(); UI != E; ++UI) {
8310 SDUse &Use = UI.getUse();
8311 if (Use.getResNo() == FromResNo) {
8312 UseMemo Memo = { *UI, i, &Use };
8313 Uses.push_back(Memo);
8318 // Sort the uses, so that all the uses from a given User are together.
8319 llvm::sort(Uses);
8321 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
8322 UseIndex != UseIndexEnd; ) {
8323 // We know that this user uses some value of From. If it is the right
8324 // value, update it.
8325 SDNode *User = Uses[UseIndex].User;
8327 // This node is about to morph, remove its old self from the CSE maps.
8328 RemoveNodeFromCSEMaps(User);
8330 // The Uses array is sorted, so all the uses for a given User
8331 // are next to each other in the list.
8332 // To help reduce the number of CSE recomputations, process all
8333 // the uses of this user that we can find this way.
8334 do {
8335 unsigned i = Uses[UseIndex].Index;
8336 SDUse &Use = *Uses[UseIndex].Use;
8337 ++UseIndex;
8339 Use.set(To[i]);
8340 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
8342 // Now that we have modified User, add it back to the CSE maps. If it
8343 // already exists there, recursively merge the results together.
8344 AddModifiedNodeToCSEMaps(User);
8348 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
8349 /// based on their topological order. It returns the maximum id and a vector
8350 /// of the SDNodes* in assigned order by reference.
8351 unsigned SelectionDAG::AssignTopologicalOrder() {
8352 unsigned DAGSize = 0;
8354 // SortedPos tracks the progress of the algorithm. Nodes before it are
8355 // sorted, nodes after it are unsorted. When the algorithm completes
8356 // it is at the end of the list.
8357 allnodes_iterator SortedPos = allnodes_begin();
8359 // Visit all the nodes. Move nodes with no operands to the front of
8360 // the list immediately. Annotate nodes that do have operands with their
8361 // operand count. Before we do this, the Node Id fields of the nodes
8362 // may contain arbitrary values. After, the Node Id fields for nodes
8363 // before SortedPos will contain the topological sort index, and the
8364 // Node Id fields for nodes At SortedPos and after will contain the
8365 // count of outstanding operands.
8366 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
8367 SDNode *N = &*I++;
8368 checkForCycles(N, this);
8369 unsigned Degree = N->getNumOperands();
8370 if (Degree == 0) {
8371 // A node with no uses, add it to the result array immediately.
8372 N->setNodeId(DAGSize++);
8373 allnodes_iterator Q(N);
8374 if (Q != SortedPos)
8375 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
8376 assert(SortedPos != AllNodes.end() && "Overran node list");
8377 ++SortedPos;
8378 } else {
8379 // Temporarily use the Node Id as scratch space for the degree count.
8380 N->setNodeId(Degree);
8384 // Visit all the nodes. As we iterate, move nodes into sorted order,
8385 // such that by the time the end is reached all nodes will be sorted.
8386 for (SDNode &Node : allnodes()) {
8387 SDNode *N = &Node;
8388 checkForCycles(N, this);
8389 // N is in sorted position, so all its uses have one less operand
8390 // that needs to be sorted.
8391 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
8392 UI != UE; ++UI) {
8393 SDNode *P = *UI;
8394 unsigned Degree = P->getNodeId();
8395 assert(Degree != 0 && "Invalid node degree");
8396 --Degree;
8397 if (Degree == 0) {
8398 // All of P's operands are sorted, so P may sorted now.
8399 P->setNodeId(DAGSize++);
8400 if (P->getIterator() != SortedPos)
8401 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
8402 assert(SortedPos != AllNodes.end() && "Overran node list");
8403 ++SortedPos;
8404 } else {
8405 // Update P's outstanding operand count.
8406 P->setNodeId(Degree);
8409 if (Node.getIterator() == SortedPos) {
8410 #ifndef NDEBUG
8411 allnodes_iterator I(N);
8412 SDNode *S = &*++I;
8413 dbgs() << "Overran sorted position:\n";
8414 S->dumprFull(this); dbgs() << "\n";
8415 dbgs() << "Checking if this is due to cycles\n";
8416 checkForCycles(this, true);
8417 #endif
8418 llvm_unreachable(nullptr);
8422 assert(SortedPos == AllNodes.end() &&
8423 "Topological sort incomplete!");
8424 assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
8425 "First node in topological sort is not the entry token!");
8426 assert(AllNodes.front().getNodeId() == 0 &&
8427 "First node in topological sort has non-zero id!");
8428 assert(AllNodes.front().getNumOperands() == 0 &&
8429 "First node in topological sort has operands!");
8430 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
8431 "Last node in topologic sort has unexpected id!");
8432 assert(AllNodes.back().use_empty() &&
8433 "Last node in topologic sort has users!");
8434 assert(DAGSize == allnodes_size() && "Node count mismatch!");
8435 return DAGSize;
8438 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
8439 /// value is produced by SD.
8440 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
8441 if (SD) {
8442 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
8443 SD->setHasDebugValue(true);
8445 DbgInfo->add(DB, SD, isParameter);
8448 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
8449 DbgInfo->add(DB);
8452 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
8453 SDValue NewMemOp) {
8454 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
8455 // The new memory operation must have the same position as the old load in
8456 // terms of memory dependency. Create a TokenFactor for the old load and new
8457 // memory operation and update uses of the old load's output chain to use that
8458 // TokenFactor.
8459 SDValue OldChain = SDValue(OldLoad, 1);
8460 SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
8461 if (!OldLoad->hasAnyUseOfValue(1))
8462 return NewChain;
8464 SDValue TokenFactor =
8465 getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
8466 ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
8467 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
8468 return TokenFactor;
8471 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
8472 Function **OutFunction) {
8473 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
8475 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
8476 auto *Module = MF->getFunction().getParent();
8477 auto *Function = Module->getFunction(Symbol);
8479 if (OutFunction != nullptr)
8480 *OutFunction = Function;
8482 if (Function != nullptr) {
8483 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
8484 return getGlobalAddress(Function, SDLoc(Op), PtrTy);
8487 std::string ErrorStr;
8488 raw_string_ostream ErrorFormatter(ErrorStr);
8490 ErrorFormatter << "Undefined external symbol ";
8491 ErrorFormatter << '"' << Symbol << '"';
8492 ErrorFormatter.flush();
8494 report_fatal_error(ErrorStr);
8497 //===----------------------------------------------------------------------===//
8498 // SDNode Class
8499 //===----------------------------------------------------------------------===//
8501 bool llvm::isNullConstant(SDValue V) {
8502 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8503 return Const != nullptr && Const->isNullValue();
8506 bool llvm::isNullFPConstant(SDValue V) {
8507 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
8508 return Const != nullptr && Const->isZero() && !Const->isNegative();
8511 bool llvm::isAllOnesConstant(SDValue V) {
8512 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8513 return Const != nullptr && Const->isAllOnesValue();
8516 bool llvm::isOneConstant(SDValue V) {
8517 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8518 return Const != nullptr && Const->isOne();
8521 SDValue llvm::peekThroughBitcasts(SDValue V) {
8522 while (V.getOpcode() == ISD::BITCAST)
8523 V = V.getOperand(0);
8524 return V;
8527 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
8528 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
8529 V = V.getOperand(0);
8530 return V;
8533 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
8534 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
8535 V = V.getOperand(0);
8536 return V;
8539 bool llvm::isBitwiseNot(SDValue V) {
8540 if (V.getOpcode() != ISD::XOR)
8541 return false;
8542 ConstantSDNode *C = isConstOrConstSplat(peekThroughBitcasts(V.getOperand(1)));
8543 return C && C->isAllOnesValue();
8546 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs) {
8547 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8548 return CN;
8550 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8551 BitVector UndefElements;
8552 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
8554 // BuildVectors can truncate their operands. Ignore that case here.
8555 if (CN && (UndefElements.none() || AllowUndefs) &&
8556 CN->getValueType(0) == N.getValueType().getScalarType())
8557 return CN;
8560 return nullptr;
8563 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
8564 bool AllowUndefs) {
8565 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8566 return CN;
8568 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8569 BitVector UndefElements;
8570 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
8572 // BuildVectors can truncate their operands. Ignore that case here.
8573 if (CN && (UndefElements.none() || AllowUndefs) &&
8574 CN->getValueType(0) == N.getValueType().getScalarType())
8575 return CN;
8578 return nullptr;
8581 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
8582 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8583 return CN;
8585 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8586 BitVector UndefElements;
8587 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
8588 if (CN && (UndefElements.none() || AllowUndefs))
8589 return CN;
8592 return nullptr;
8595 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
8596 const APInt &DemandedElts,
8597 bool AllowUndefs) {
8598 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8599 return CN;
8601 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8602 BitVector UndefElements;
8603 ConstantFPSDNode *CN =
8604 BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
8605 if (CN && (UndefElements.none() || AllowUndefs))
8606 return CN;
8609 return nullptr;
8612 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
8613 // TODO: may want to use peekThroughBitcast() here.
8614 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
8615 return C && C->isNullValue();
8618 bool llvm::isOneOrOneSplat(SDValue N) {
8619 // TODO: may want to use peekThroughBitcast() here.
8620 unsigned BitWidth = N.getScalarValueSizeInBits();
8621 ConstantSDNode *C = isConstOrConstSplat(N);
8622 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
8625 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) {
8626 N = peekThroughBitcasts(N);
8627 unsigned BitWidth = N.getScalarValueSizeInBits();
8628 ConstantSDNode *C = isConstOrConstSplat(N);
8629 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
8632 HandleSDNode::~HandleSDNode() {
8633 DropOperands();
8636 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
8637 const DebugLoc &DL,
8638 const GlobalValue *GA, EVT VT,
8639 int64_t o, unsigned char TF)
8640 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
8641 TheGlobal = GA;
8644 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
8645 EVT VT, unsigned SrcAS,
8646 unsigned DestAS)
8647 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
8648 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
8650 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
8651 SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
8652 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
8653 MemSDNodeBits.IsVolatile = MMO->isVolatile();
8654 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
8655 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
8656 MemSDNodeBits.IsInvariant = MMO->isInvariant();
8658 // We check here that the size of the memory operand fits within the size of
8659 // the MMO. This is because the MMO might indicate only a possible address
8660 // range instead of specifying the affected memory addresses precisely.
8661 assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!");
8664 /// Profile - Gather unique data for the node.
8666 void SDNode::Profile(FoldingSetNodeID &ID) const {
8667 AddNodeIDNode(ID, this);
8670 namespace {
8672 struct EVTArray {
8673 std::vector<EVT> VTs;
8675 EVTArray() {
8676 VTs.reserve(MVT::LAST_VALUETYPE);
8677 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
8678 VTs.push_back(MVT((MVT::SimpleValueType)i));
8682 } // end anonymous namespace
8684 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
8685 static ManagedStatic<EVTArray> SimpleVTArray;
8686 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
8688 /// getValueTypeList - Return a pointer to the specified value type.
8690 const EVT *SDNode::getValueTypeList(EVT VT) {
8691 if (VT.isExtended()) {
8692 sys::SmartScopedLock<true> Lock(*VTMutex);
8693 return &(*EVTs->insert(VT).first);
8694 } else {
8695 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
8696 "Value type out of range!");
8697 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
8701 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
8702 /// indicated value. This method ignores uses of other values defined by this
8703 /// operation.
8704 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
8705 assert(Value < getNumValues() && "Bad value!");
8707 // TODO: Only iterate over uses of a given value of the node
8708 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
8709 if (UI.getUse().getResNo() == Value) {
8710 if (NUses == 0)
8711 return false;
8712 --NUses;
8716 // Found exactly the right number of uses?
8717 return NUses == 0;
8720 /// hasAnyUseOfValue - Return true if there are any use of the indicated
8721 /// value. This method ignores uses of other values defined by this operation.
8722 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
8723 assert(Value < getNumValues() && "Bad value!");
8725 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
8726 if (UI.getUse().getResNo() == Value)
8727 return true;
8729 return false;
8732 /// isOnlyUserOf - Return true if this node is the only use of N.
8733 bool SDNode::isOnlyUserOf(const SDNode *N) const {
8734 bool Seen = false;
8735 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
8736 SDNode *User = *I;
8737 if (User == this)
8738 Seen = true;
8739 else
8740 return false;
8743 return Seen;
8746 /// Return true if the only users of N are contained in Nodes.
8747 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
8748 bool Seen = false;
8749 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
8750 SDNode *User = *I;
8751 if (llvm::any_of(Nodes,
8752 [&User](const SDNode *Node) { return User == Node; }))
8753 Seen = true;
8754 else
8755 return false;
8758 return Seen;
8761 /// isOperand - Return true if this node is an operand of N.
8762 bool SDValue::isOperandOf(const SDNode *N) const {
8763 return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; });
8766 bool SDNode::isOperandOf(const SDNode *N) const {
8767 return any_of(N->op_values(),
8768 [this](SDValue Op) { return this == Op.getNode(); });
8771 /// reachesChainWithoutSideEffects - Return true if this operand (which must
8772 /// be a chain) reaches the specified operand without crossing any
8773 /// side-effecting instructions on any chain path. In practice, this looks
8774 /// through token factors and non-volatile loads. In order to remain efficient,
8775 /// this only looks a couple of nodes in, it does not do an exhaustive search.
8777 /// Note that we only need to examine chains when we're searching for
8778 /// side-effects; SelectionDAG requires that all side-effects are represented
8779 /// by chains, even if another operand would force a specific ordering. This
8780 /// constraint is necessary to allow transformations like splitting loads.
8781 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
8782 unsigned Depth) const {
8783 if (*this == Dest) return true;
8785 // Don't search too deeply, we just want to be able to see through
8786 // TokenFactor's etc.
8787 if (Depth == 0) return false;
8789 // If this is a token factor, all inputs to the TF happen in parallel.
8790 if (getOpcode() == ISD::TokenFactor) {
8791 // First, try a shallow search.
8792 if (is_contained((*this)->ops(), Dest)) {
8793 // We found the chain we want as an operand of this TokenFactor.
8794 // Essentially, we reach the chain without side-effects if we could
8795 // serialize the TokenFactor into a simple chain of operations with
8796 // Dest as the last operation. This is automatically true if the
8797 // chain has one use: there are no other ordering constraints.
8798 // If the chain has more than one use, we give up: some other
8799 // use of Dest might force a side-effect between Dest and the current
8800 // node.
8801 if (Dest.hasOneUse())
8802 return true;
8804 // Next, try a deep search: check whether every operand of the TokenFactor
8805 // reaches Dest.
8806 return llvm::all_of((*this)->ops(), [=](SDValue Op) {
8807 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
8811 // Loads don't have side effects, look through them.
8812 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
8813 if (!Ld->isVolatile())
8814 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
8816 return false;
8819 bool SDNode::hasPredecessor(const SDNode *N) const {
8820 SmallPtrSet<const SDNode *, 32> Visited;
8821 SmallVector<const SDNode *, 16> Worklist;
8822 Worklist.push_back(this);
8823 return hasPredecessorHelper(N, Visited, Worklist);
8826 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
8827 this->Flags.intersectWith(Flags);
8830 SDValue
8831 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
8832 ArrayRef<ISD::NodeType> CandidateBinOps) {
8833 // The pattern must end in an extract from index 0.
8834 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
8835 !isNullConstant(Extract->getOperand(1)))
8836 return SDValue();
8838 SDValue Op = Extract->getOperand(0);
8839 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
8841 // Match against one of the candidate binary ops.
8842 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
8843 return Op.getOpcode() == unsigned(BinOp);
8845 return SDValue();
8847 // At each stage, we're looking for something that looks like:
8848 // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
8849 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
8850 // i32 undef, i32 undef, i32 undef, i32 undef>
8851 // %a = binop <8 x i32> %op, %s
8852 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
8853 // we expect something like:
8854 // <4,5,6,7,u,u,u,u>
8855 // <2,3,u,u,u,u,u,u>
8856 // <1,u,u,u,u,u,u,u>
8857 unsigned CandidateBinOp = Op.getOpcode();
8858 for (unsigned i = 0; i < Stages; ++i) {
8859 if (Op.getOpcode() != CandidateBinOp)
8860 return SDValue();
8862 SDValue Op0 = Op.getOperand(0);
8863 SDValue Op1 = Op.getOperand(1);
8865 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
8866 if (Shuffle) {
8867 Op = Op1;
8868 } else {
8869 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
8870 Op = Op0;
8873 // The first operand of the shuffle should be the same as the other operand
8874 // of the binop.
8875 if (!Shuffle || Shuffle->getOperand(0) != Op)
8876 return SDValue();
8878 // Verify the shuffle has the expected (at this stage of the pyramid) mask.
8879 for (int Index = 0, MaskEnd = 1 << i; Index < MaskEnd; ++Index)
8880 if (Shuffle->getMaskElt(Index) != MaskEnd + Index)
8881 return SDValue();
8884 BinOp = (ISD::NodeType)CandidateBinOp;
8885 return Op;
8888 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
8889 assert(N->getNumValues() == 1 &&
8890 "Can't unroll a vector with multiple results!");
8892 EVT VT = N->getValueType(0);
8893 unsigned NE = VT.getVectorNumElements();
8894 EVT EltVT = VT.getVectorElementType();
8895 SDLoc dl(N);
8897 SmallVector<SDValue, 8> Scalars;
8898 SmallVector<SDValue, 4> Operands(N->getNumOperands());
8900 // If ResNE is 0, fully unroll the vector op.
8901 if (ResNE == 0)
8902 ResNE = NE;
8903 else if (NE > ResNE)
8904 NE = ResNE;
8906 unsigned i;
8907 for (i= 0; i != NE; ++i) {
8908 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
8909 SDValue Operand = N->getOperand(j);
8910 EVT OperandVT = Operand.getValueType();
8911 if (OperandVT.isVector()) {
8912 // A vector operand; extract a single element.
8913 EVT OperandEltVT = OperandVT.getVectorElementType();
8914 Operands[j] =
8915 getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand,
8916 getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout())));
8917 } else {
8918 // A scalar operand; just use it as is.
8919 Operands[j] = Operand;
8923 switch (N->getOpcode()) {
8924 default: {
8925 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
8926 N->getFlags()));
8927 break;
8929 case ISD::VSELECT:
8930 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
8931 break;
8932 case ISD::SHL:
8933 case ISD::SRA:
8934 case ISD::SRL:
8935 case ISD::ROTL:
8936 case ISD::ROTR:
8937 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
8938 getShiftAmountOperand(Operands[0].getValueType(),
8939 Operands[1])));
8940 break;
8941 case ISD::SIGN_EXTEND_INREG:
8942 case ISD::FP_ROUND_INREG: {
8943 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
8944 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
8945 Operands[0],
8946 getValueType(ExtVT)));
8951 for (; i < ResNE; ++i)
8952 Scalars.push_back(getUNDEF(EltVT));
8954 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
8955 return getBuildVector(VecVT, dl, Scalars);
8958 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
8959 SDNode *N, unsigned ResNE) {
8960 unsigned Opcode = N->getOpcode();
8961 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
8962 Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
8963 Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
8964 "Expected an overflow opcode");
8966 EVT ResVT = N->getValueType(0);
8967 EVT OvVT = N->getValueType(1);
8968 EVT ResEltVT = ResVT.getVectorElementType();
8969 EVT OvEltVT = OvVT.getVectorElementType();
8970 SDLoc dl(N);
8972 // If ResNE is 0, fully unroll the vector op.
8973 unsigned NE = ResVT.getVectorNumElements();
8974 if (ResNE == 0)
8975 ResNE = NE;
8976 else if (NE > ResNE)
8977 NE = ResNE;
8979 SmallVector<SDValue, 8> LHSScalars;
8980 SmallVector<SDValue, 8> RHSScalars;
8981 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
8982 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
8984 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
8985 SDVTList VTs = getVTList(ResEltVT, SVT);
8986 SmallVector<SDValue, 8> ResScalars;
8987 SmallVector<SDValue, 8> OvScalars;
8988 for (unsigned i = 0; i < NE; ++i) {
8989 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
8990 SDValue Ov =
8991 getSelect(dl, OvEltVT, Res.getValue(1),
8992 getBoolConstant(true, dl, OvEltVT, ResVT),
8993 getConstant(0, dl, OvEltVT));
8995 ResScalars.push_back(Res);
8996 OvScalars.push_back(Ov);
8999 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
9000 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
9002 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
9003 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
9004 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
9005 getBuildVector(NewOvVT, dl, OvScalars));
9008 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
9009 LoadSDNode *Base,
9010 unsigned Bytes,
9011 int Dist) const {
9012 if (LD->isVolatile() || Base->isVolatile())
9013 return false;
9014 if (LD->isIndexed() || Base->isIndexed())
9015 return false;
9016 if (LD->getChain() != Base->getChain())
9017 return false;
9018 EVT VT = LD->getValueType(0);
9019 if (VT.getSizeInBits() / 8 != Bytes)
9020 return false;
9022 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
9023 auto LocDecomp = BaseIndexOffset::match(LD, *this);
9025 int64_t Offset = 0;
9026 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
9027 return (Dist * Bytes == Offset);
9028 return false;
9031 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
9032 /// it cannot be inferred.
9033 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
9034 // If this is a GlobalAddress + cst, return the alignment.
9035 const GlobalValue *GV;
9036 int64_t GVOffset = 0;
9037 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
9038 unsigned IdxWidth = getDataLayout().getIndexTypeSizeInBits(GV->getType());
9039 KnownBits Known(IdxWidth);
9040 llvm::computeKnownBits(GV, Known, getDataLayout());
9041 unsigned AlignBits = Known.countMinTrailingZeros();
9042 unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
9043 if (Align)
9044 return MinAlign(Align, GVOffset);
9047 // If this is a direct reference to a stack slot, use information about the
9048 // stack slot's alignment.
9049 int FrameIdx = INT_MIN;
9050 int64_t FrameOffset = 0;
9051 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
9052 FrameIdx = FI->getIndex();
9053 } else if (isBaseWithConstantOffset(Ptr) &&
9054 isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
9055 // Handle FI+Cst
9056 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9057 FrameOffset = Ptr.getConstantOperandVal(1);
9060 if (FrameIdx != INT_MIN) {
9061 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
9062 unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
9063 FrameOffset);
9064 return FIInfoAlign;
9067 return 0;
9070 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
9071 /// which is split (or expanded) into two not necessarily identical pieces.
9072 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
9073 // Currently all types are split in half.
9074 EVT LoVT, HiVT;
9075 if (!VT.isVector())
9076 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
9077 else
9078 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
9080 return std::make_pair(LoVT, HiVT);
9083 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
9084 /// low/high part.
9085 std::pair<SDValue, SDValue>
9086 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
9087 const EVT &HiVT) {
9088 assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
9089 N.getValueType().getVectorNumElements() &&
9090 "More vector elements requested than available!");
9091 SDValue Lo, Hi;
9092 Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
9093 getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
9094 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
9095 getConstant(LoVT.getVectorNumElements(), DL,
9096 TLI->getVectorIdxTy(getDataLayout())));
9097 return std::make_pair(Lo, Hi);
9100 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
9101 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
9102 EVT VT = N.getValueType();
9103 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
9104 NextPowerOf2(VT.getVectorNumElements()));
9105 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
9106 getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
9109 void SelectionDAG::ExtractVectorElements(SDValue Op,
9110 SmallVectorImpl<SDValue> &Args,
9111 unsigned Start, unsigned Count) {
9112 EVT VT = Op.getValueType();
9113 if (Count == 0)
9114 Count = VT.getVectorNumElements();
9116 EVT EltVT = VT.getVectorElementType();
9117 EVT IdxTy = TLI->getVectorIdxTy(getDataLayout());
9118 SDLoc SL(Op);
9119 for (unsigned i = Start, e = Start + Count; i != e; ++i) {
9120 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
9121 Op, getConstant(i, SL, IdxTy)));
9125 // getAddressSpace - Return the address space this GlobalAddress belongs to.
9126 unsigned GlobalAddressSDNode::getAddressSpace() const {
9127 return getGlobal()->getType()->getAddressSpace();
9130 Type *ConstantPoolSDNode::getType() const {
9131 if (isMachineConstantPoolEntry())
9132 return Val.MachineCPVal->getType();
9133 return Val.ConstVal->getType();
9136 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
9137 unsigned &SplatBitSize,
9138 bool &HasAnyUndefs,
9139 unsigned MinSplatBits,
9140 bool IsBigEndian) const {
9141 EVT VT = getValueType(0);
9142 assert(VT.isVector() && "Expected a vector type");
9143 unsigned VecWidth = VT.getSizeInBits();
9144 if (MinSplatBits > VecWidth)
9145 return false;
9147 // FIXME: The widths are based on this node's type, but build vectors can
9148 // truncate their operands.
9149 SplatValue = APInt(VecWidth, 0);
9150 SplatUndef = APInt(VecWidth, 0);
9152 // Get the bits. Bits with undefined values (when the corresponding element
9153 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
9154 // in SplatValue. If any of the values are not constant, give up and return
9155 // false.
9156 unsigned int NumOps = getNumOperands();
9157 assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
9158 unsigned EltWidth = VT.getScalarSizeInBits();
9160 for (unsigned j = 0; j < NumOps; ++j) {
9161 unsigned i = IsBigEndian ? NumOps - 1 - j : j;
9162 SDValue OpVal = getOperand(i);
9163 unsigned BitPos = j * EltWidth;
9165 if (OpVal.isUndef())
9166 SplatUndef.setBits(BitPos, BitPos + EltWidth);
9167 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
9168 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
9169 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
9170 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
9171 else
9172 return false;
9175 // The build_vector is all constants or undefs. Find the smallest element
9176 // size that splats the vector.
9177 HasAnyUndefs = (SplatUndef != 0);
9179 // FIXME: This does not work for vectors with elements less than 8 bits.
9180 while (VecWidth > 8) {
9181 unsigned HalfSize = VecWidth / 2;
9182 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
9183 APInt LowValue = SplatValue.trunc(HalfSize);
9184 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
9185 APInt LowUndef = SplatUndef.trunc(HalfSize);
9187 // If the two halves do not match (ignoring undef bits), stop here.
9188 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
9189 MinSplatBits > HalfSize)
9190 break;
9192 SplatValue = HighValue | LowValue;
9193 SplatUndef = HighUndef & LowUndef;
9195 VecWidth = HalfSize;
9198 SplatBitSize = VecWidth;
9199 return true;
9202 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
9203 BitVector *UndefElements) const {
9204 if (UndefElements) {
9205 UndefElements->clear();
9206 UndefElements->resize(getNumOperands());
9208 assert(getNumOperands() == DemandedElts.getBitWidth() &&
9209 "Unexpected vector size");
9210 if (!DemandedElts)
9211 return SDValue();
9212 SDValue Splatted;
9213 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
9214 if (!DemandedElts[i])
9215 continue;
9216 SDValue Op = getOperand(i);
9217 if (Op.isUndef()) {
9218 if (UndefElements)
9219 (*UndefElements)[i] = true;
9220 } else if (!Splatted) {
9221 Splatted = Op;
9222 } else if (Splatted != Op) {
9223 return SDValue();
9227 if (!Splatted) {
9228 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
9229 assert(getOperand(FirstDemandedIdx).isUndef() &&
9230 "Can only have a splat without a constant for all undefs.");
9231 return getOperand(FirstDemandedIdx);
9234 return Splatted;
9237 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
9238 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
9239 return getSplatValue(DemandedElts, UndefElements);
9242 ConstantSDNode *
9243 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
9244 BitVector *UndefElements) const {
9245 return dyn_cast_or_null<ConstantSDNode>(
9246 getSplatValue(DemandedElts, UndefElements));
9249 ConstantSDNode *
9250 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
9251 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
9254 ConstantFPSDNode *
9255 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
9256 BitVector *UndefElements) const {
9257 return dyn_cast_or_null<ConstantFPSDNode>(
9258 getSplatValue(DemandedElts, UndefElements));
9261 ConstantFPSDNode *
9262 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
9263 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
9266 int32_t
9267 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
9268 uint32_t BitWidth) const {
9269 if (ConstantFPSDNode *CN =
9270 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
9271 bool IsExact;
9272 APSInt IntVal(BitWidth);
9273 const APFloat &APF = CN->getValueAPF();
9274 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
9275 APFloat::opOK ||
9276 !IsExact)
9277 return -1;
9279 return IntVal.exactLogBase2();
9281 return -1;
9284 bool BuildVectorSDNode::isConstant() const {
9285 for (const SDValue &Op : op_values()) {
9286 unsigned Opc = Op.getOpcode();
9287 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
9288 return false;
9290 return true;
9293 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
9294 // Find the first non-undef value in the shuffle mask.
9295 unsigned i, e;
9296 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
9297 /* search */;
9299 // If all elements are undefined, this shuffle can be considered a splat
9300 // (although it should eventually get simplified away completely).
9301 if (i == e)
9302 return true;
9304 // Make sure all remaining elements are either undef or the same as the first
9305 // non-undef value.
9306 for (int Idx = Mask[i]; i != e; ++i)
9307 if (Mask[i] >= 0 && Mask[i] != Idx)
9308 return false;
9309 return true;
9312 // Returns the SDNode if it is a constant integer BuildVector
9313 // or constant integer.
9314 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
9315 if (isa<ConstantSDNode>(N))
9316 return N.getNode();
9317 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
9318 return N.getNode();
9319 // Treat a GlobalAddress supporting constant offset folding as a
9320 // constant integer.
9321 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
9322 if (GA->getOpcode() == ISD::GlobalAddress &&
9323 TLI->isOffsetFoldingLegal(GA))
9324 return GA;
9325 return nullptr;
9328 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
9329 if (isa<ConstantFPSDNode>(N))
9330 return N.getNode();
9332 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
9333 return N.getNode();
9335 return nullptr;
9338 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
9339 assert(!Node->OperandList && "Node already has operands");
9340 assert(SDNode::getMaxNumOperands() >= Vals.size() &&
9341 "too many operands to fit into SDNode");
9342 SDUse *Ops = OperandRecycler.allocate(
9343 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
9345 bool IsDivergent = false;
9346 for (unsigned I = 0; I != Vals.size(); ++I) {
9347 Ops[I].setUser(Node);
9348 Ops[I].setInitial(Vals[I]);
9349 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
9350 IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent();
9352 Node->NumOperands = Vals.size();
9353 Node->OperandList = Ops;
9354 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
9355 if (!TLI->isSDNodeAlwaysUniform(Node))
9356 Node->SDNodeBits.IsDivergent = IsDivergent;
9357 checkForCycles(Node);
9360 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
9361 SmallVectorImpl<SDValue> &Vals) {
9362 size_t Limit = SDNode::getMaxNumOperands();
9363 while (Vals.size() > Limit) {
9364 unsigned SliceIdx = Vals.size() - Limit;
9365 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
9366 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
9367 Vals.erase(Vals.begin() + SliceIdx, Vals.end());
9368 Vals.emplace_back(NewTF);
9370 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
9373 #ifndef NDEBUG
9374 static void checkForCyclesHelper(const SDNode *N,
9375 SmallPtrSetImpl<const SDNode*> &Visited,
9376 SmallPtrSetImpl<const SDNode*> &Checked,
9377 const llvm::SelectionDAG *DAG) {
9378 // If this node has already been checked, don't check it again.
9379 if (Checked.count(N))
9380 return;
9382 // If a node has already been visited on this depth-first walk, reject it as
9383 // a cycle.
9384 if (!Visited.insert(N).second) {
9385 errs() << "Detected cycle in SelectionDAG\n";
9386 dbgs() << "Offending node:\n";
9387 N->dumprFull(DAG); dbgs() << "\n";
9388 abort();
9391 for (const SDValue &Op : N->op_values())
9392 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
9394 Checked.insert(N);
9395 Visited.erase(N);
9397 #endif
9399 void llvm::checkForCycles(const llvm::SDNode *N,
9400 const llvm::SelectionDAG *DAG,
9401 bool force) {
9402 #ifndef NDEBUG
9403 bool check = force;
9404 #ifdef EXPENSIVE_CHECKS
9405 check = true;
9406 #endif // EXPENSIVE_CHECKS
9407 if (check) {
9408 assert(N && "Checking nonexistent SDNode");
9409 SmallPtrSet<const SDNode*, 32> visited;
9410 SmallPtrSet<const SDNode*, 32> checked;
9411 checkForCyclesHelper(N, visited, checked, DAG);
9413 #endif // !NDEBUG
9416 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
9417 checkForCycles(DAG->getRoot().getNode(), DAG, force);