Another attempt to fix the build bot breaks after r360426
[llvm-core.git] / lib / IR / Function.cpp
blobb00deb677b31d0af43a4d43066593b0a687106b8
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/Argument.h"
24 #include "llvm/IR/Attributes.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/Constant.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/GlobalValue.h"
30 #include "llvm/IR/InstIterator.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/SymbolTableListTraits.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Use.h"
42 #include "llvm/IR/User.h"
43 #include "llvm/IR/Value.h"
44 #include "llvm/IR/ValueSymbolTable.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstddef>
51 #include <cstdint>
52 #include <cstring>
53 #include <string>
55 using namespace llvm;
56 using ProfileCount = Function::ProfileCount;
58 // Explicit instantiations of SymbolTableListTraits since some of the methods
59 // are not in the public header file...
60 template class llvm::SymbolTableListTraits<BasicBlock>;
62 //===----------------------------------------------------------------------===//
63 // Argument Implementation
64 //===----------------------------------------------------------------------===//
66 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
67 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
68 setName(Name);
71 void Argument::setParent(Function *parent) {
72 Parent = parent;
75 bool Argument::hasNonNullAttr() const {
76 if (!getType()->isPointerTy()) return false;
77 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull))
78 return true;
79 else if (getDereferenceableBytes() > 0 &&
80 !NullPointerIsDefined(getParent(),
81 getType()->getPointerAddressSpace()))
82 return true;
83 return false;
86 bool Argument::hasByValAttr() const {
87 if (!getType()->isPointerTy()) return false;
88 return hasAttribute(Attribute::ByVal);
91 bool Argument::hasSwiftSelfAttr() const {
92 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
95 bool Argument::hasSwiftErrorAttr() const {
96 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
99 bool Argument::hasInAllocaAttr() const {
100 if (!getType()->isPointerTy()) return false;
101 return hasAttribute(Attribute::InAlloca);
104 bool Argument::hasByValOrInAllocaAttr() const {
105 if (!getType()->isPointerTy()) return false;
106 AttributeList Attrs = getParent()->getAttributes();
107 return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
108 Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca);
111 unsigned Argument::getParamAlignment() const {
112 assert(getType()->isPointerTy() && "Only pointers have alignments");
113 return getParent()->getParamAlignment(getArgNo());
116 uint64_t Argument::getDereferenceableBytes() const {
117 assert(getType()->isPointerTy() &&
118 "Only pointers have dereferenceable bytes");
119 return getParent()->getParamDereferenceableBytes(getArgNo());
122 uint64_t Argument::getDereferenceableOrNullBytes() const {
123 assert(getType()->isPointerTy() &&
124 "Only pointers have dereferenceable bytes");
125 return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
128 bool Argument::hasNestAttr() const {
129 if (!getType()->isPointerTy()) return false;
130 return hasAttribute(Attribute::Nest);
133 bool Argument::hasNoAliasAttr() const {
134 if (!getType()->isPointerTy()) return false;
135 return hasAttribute(Attribute::NoAlias);
138 bool Argument::hasNoCaptureAttr() const {
139 if (!getType()->isPointerTy()) return false;
140 return hasAttribute(Attribute::NoCapture);
143 bool Argument::hasStructRetAttr() const {
144 if (!getType()->isPointerTy()) return false;
145 return hasAttribute(Attribute::StructRet);
148 bool Argument::hasInRegAttr() const {
149 return hasAttribute(Attribute::InReg);
152 bool Argument::hasReturnedAttr() const {
153 return hasAttribute(Attribute::Returned);
156 bool Argument::hasZExtAttr() const {
157 return hasAttribute(Attribute::ZExt);
160 bool Argument::hasSExtAttr() const {
161 return hasAttribute(Attribute::SExt);
164 bool Argument::onlyReadsMemory() const {
165 AttributeList Attrs = getParent()->getAttributes();
166 return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) ||
167 Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone);
170 void Argument::addAttrs(AttrBuilder &B) {
171 AttributeList AL = getParent()->getAttributes();
172 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
173 getParent()->setAttributes(AL);
176 void Argument::addAttr(Attribute::AttrKind Kind) {
177 getParent()->addParamAttr(getArgNo(), Kind);
180 void Argument::addAttr(Attribute Attr) {
181 getParent()->addParamAttr(getArgNo(), Attr);
184 void Argument::removeAttr(Attribute::AttrKind Kind) {
185 getParent()->removeParamAttr(getArgNo(), Kind);
188 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
189 return getParent()->hasParamAttribute(getArgNo(), Kind);
192 //===----------------------------------------------------------------------===//
193 // Helper Methods in Function
194 //===----------------------------------------------------------------------===//
196 LLVMContext &Function::getContext() const {
197 return getType()->getContext();
200 unsigned Function::getInstructionCount() const {
201 unsigned NumInstrs = 0;
202 for (const BasicBlock &BB : BasicBlocks)
203 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
204 BB.instructionsWithoutDebug().end());
205 return NumInstrs;
208 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
209 const Twine &N, Module &M) {
210 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
213 void Function::removeFromParent() {
214 getParent()->getFunctionList().remove(getIterator());
217 void Function::eraseFromParent() {
218 getParent()->getFunctionList().erase(getIterator());
221 //===----------------------------------------------------------------------===//
222 // Function Implementation
223 //===----------------------------------------------------------------------===//
225 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
226 // If AS == -1 and we are passed a valid module pointer we place the function
227 // in the program address space. Otherwise we default to AS0.
228 if (AddrSpace == static_cast<unsigned>(-1))
229 return M ? M->getDataLayout().getProgramAddressSpace() : 0;
230 return AddrSpace;
233 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
234 const Twine &name, Module *ParentModule)
235 : GlobalObject(Ty, Value::FunctionVal,
236 OperandTraits<Function>::op_begin(this), 0, Linkage, name,
237 computeAddrSpace(AddrSpace, ParentModule)),
238 NumArgs(Ty->getNumParams()) {
239 assert(FunctionType::isValidReturnType(getReturnType()) &&
240 "invalid return type");
241 setGlobalObjectSubClassData(0);
243 // We only need a symbol table for a function if the context keeps value names
244 if (!getContext().shouldDiscardValueNames())
245 SymTab = make_unique<ValueSymbolTable>();
247 // If the function has arguments, mark them as lazily built.
248 if (Ty->getNumParams())
249 setValueSubclassData(1); // Set the "has lazy arguments" bit.
251 if (ParentModule)
252 ParentModule->getFunctionList().push_back(this);
254 HasLLVMReservedName = getName().startswith("llvm.");
255 // Ensure intrinsics have the right parameter attributes.
256 // Note, the IntID field will have been set in Value::setName if this function
257 // name is a valid intrinsic ID.
258 if (IntID)
259 setAttributes(Intrinsic::getAttributes(getContext(), IntID));
262 Function::~Function() {
263 dropAllReferences(); // After this it is safe to delete instructions.
265 // Delete all of the method arguments and unlink from symbol table...
266 if (Arguments)
267 clearArguments();
269 // Remove the function from the on-the-side GC table.
270 clearGC();
273 void Function::BuildLazyArguments() const {
274 // Create the arguments vector, all arguments start out unnamed.
275 auto *FT = getFunctionType();
276 if (NumArgs > 0) {
277 Arguments = std::allocator<Argument>().allocate(NumArgs);
278 for (unsigned i = 0, e = NumArgs; i != e; ++i) {
279 Type *ArgTy = FT->getParamType(i);
280 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
281 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
285 // Clear the lazy arguments bit.
286 unsigned SDC = getSubclassDataFromValue();
287 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0));
288 assert(!hasLazyArguments());
291 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
292 return MutableArrayRef<Argument>(Args, Count);
295 void Function::clearArguments() {
296 for (Argument &A : makeArgArray(Arguments, NumArgs)) {
297 A.setName("");
298 A.~Argument();
300 std::allocator<Argument>().deallocate(Arguments, NumArgs);
301 Arguments = nullptr;
304 void Function::stealArgumentListFrom(Function &Src) {
305 assert(isDeclaration() && "Expected no references to current arguments");
307 // Drop the current arguments, if any, and set the lazy argument bit.
308 if (!hasLazyArguments()) {
309 assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
310 [](const Argument &A) { return A.use_empty(); }) &&
311 "Expected arguments to be unused in declaration");
312 clearArguments();
313 setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
316 // Nothing to steal if Src has lazy arguments.
317 if (Src.hasLazyArguments())
318 return;
320 // Steal arguments from Src, and fix the lazy argument bits.
321 assert(arg_size() == Src.arg_size());
322 Arguments = Src.Arguments;
323 Src.Arguments = nullptr;
324 for (Argument &A : makeArgArray(Arguments, NumArgs)) {
325 // FIXME: This does the work of transferNodesFromList inefficiently.
326 SmallString<128> Name;
327 if (A.hasName())
328 Name = A.getName();
329 if (!Name.empty())
330 A.setName("");
331 A.setParent(this);
332 if (!Name.empty())
333 A.setName(Name);
336 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
337 assert(!hasLazyArguments());
338 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
341 // dropAllReferences() - This function causes all the subinstructions to "let
342 // go" of all references that they are maintaining. This allows one to
343 // 'delete' a whole class at a time, even though there may be circular
344 // references... first all references are dropped, and all use counts go to
345 // zero. Then everything is deleted for real. Note that no operations are
346 // valid on an object that has "dropped all references", except operator
347 // delete.
349 void Function::dropAllReferences() {
350 setIsMaterializable(false);
352 for (BasicBlock &BB : *this)
353 BB.dropAllReferences();
355 // Delete all basic blocks. They are now unused, except possibly by
356 // blockaddresses, but BasicBlock's destructor takes care of those.
357 while (!BasicBlocks.empty())
358 BasicBlocks.begin()->eraseFromParent();
360 // Drop uses of any optional data (real or placeholder).
361 if (getNumOperands()) {
362 User::dropAllReferences();
363 setNumHungOffUseOperands(0);
364 setValueSubclassData(getSubclassDataFromValue() & ~0xe);
367 // Metadata is stored in a side-table.
368 clearMetadata();
371 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
372 AttributeList PAL = getAttributes();
373 PAL = PAL.addAttribute(getContext(), i, Kind);
374 setAttributes(PAL);
377 void Function::addAttribute(unsigned i, Attribute Attr) {
378 AttributeList PAL = getAttributes();
379 PAL = PAL.addAttribute(getContext(), i, Attr);
380 setAttributes(PAL);
383 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) {
384 AttributeList PAL = getAttributes();
385 PAL = PAL.addAttributes(getContext(), i, Attrs);
386 setAttributes(PAL);
389 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
390 AttributeList PAL = getAttributes();
391 PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
392 setAttributes(PAL);
395 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
396 AttributeList PAL = getAttributes();
397 PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
398 setAttributes(PAL);
401 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
402 AttributeList PAL = getAttributes();
403 PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs);
404 setAttributes(PAL);
407 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
408 AttributeList PAL = getAttributes();
409 PAL = PAL.removeAttribute(getContext(), i, Kind);
410 setAttributes(PAL);
413 void Function::removeAttribute(unsigned i, StringRef Kind) {
414 AttributeList PAL = getAttributes();
415 PAL = PAL.removeAttribute(getContext(), i, Kind);
416 setAttributes(PAL);
419 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) {
420 AttributeList PAL = getAttributes();
421 PAL = PAL.removeAttributes(getContext(), i, Attrs);
422 setAttributes(PAL);
425 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
426 AttributeList PAL = getAttributes();
427 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
428 setAttributes(PAL);
431 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
432 AttributeList PAL = getAttributes();
433 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
434 setAttributes(PAL);
437 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
438 AttributeList PAL = getAttributes();
439 PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs);
440 setAttributes(PAL);
443 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
444 AttributeList PAL = getAttributes();
445 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
446 setAttributes(PAL);
449 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
450 AttributeList PAL = getAttributes();
451 PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
452 setAttributes(PAL);
455 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
456 AttributeList PAL = getAttributes();
457 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
458 setAttributes(PAL);
461 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
462 uint64_t Bytes) {
463 AttributeList PAL = getAttributes();
464 PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes);
465 setAttributes(PAL);
468 const std::string &Function::getGC() const {
469 assert(hasGC() && "Function has no collector");
470 return getContext().getGC(*this);
473 void Function::setGC(std::string Str) {
474 setValueSubclassDataBit(14, !Str.empty());
475 getContext().setGC(*this, std::move(Str));
478 void Function::clearGC() {
479 if (!hasGC())
480 return;
481 getContext().deleteGC(*this);
482 setValueSubclassDataBit(14, false);
485 /// Copy all additional attributes (those not needed to create a Function) from
486 /// the Function Src to this one.
487 void Function::copyAttributesFrom(const Function *Src) {
488 GlobalObject::copyAttributesFrom(Src);
489 setCallingConv(Src->getCallingConv());
490 setAttributes(Src->getAttributes());
491 if (Src->hasGC())
492 setGC(Src->getGC());
493 else
494 clearGC();
495 if (Src->hasPersonalityFn())
496 setPersonalityFn(Src->getPersonalityFn());
497 if (Src->hasPrefixData())
498 setPrefixData(Src->getPrefixData());
499 if (Src->hasPrologueData())
500 setPrologueData(Src->getPrologueData());
503 /// Table of string intrinsic names indexed by enum value.
504 static const char * const IntrinsicNameTable[] = {
505 "not_intrinsic",
506 #define GET_INTRINSIC_NAME_TABLE
507 #include "llvm/IR/IntrinsicImpl.inc"
508 #undef GET_INTRINSIC_NAME_TABLE
511 /// Table of per-target intrinsic name tables.
512 #define GET_INTRINSIC_TARGET_DATA
513 #include "llvm/IR/IntrinsicImpl.inc"
514 #undef GET_INTRINSIC_TARGET_DATA
516 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
517 /// target as \c Name, or the generic table if \c Name is not target specific.
519 /// Returns the relevant slice of \c IntrinsicNameTable
520 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
521 assert(Name.startswith("llvm."));
523 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
524 // Drop "llvm." and take the first dotted component. That will be the target
525 // if this is target specific.
526 StringRef Target = Name.drop_front(5).split('.').first;
527 auto It = std::lower_bound(Targets.begin(), Targets.end(), Target,
528 [](const IntrinsicTargetInfo &TI,
529 StringRef Target) { return TI.Name < Target; });
530 // We've either found the target or just fall back to the generic set, which
531 // is always first.
532 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
533 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
536 /// This does the actual lookup of an intrinsic ID which
537 /// matches the given function name.
538 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
539 ArrayRef<const char *> NameTable = findTargetSubtable(Name);
540 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
541 if (Idx == -1)
542 return Intrinsic::not_intrinsic;
544 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
545 // an index into a sub-table.
546 int Adjust = NameTable.data() - IntrinsicNameTable;
547 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
549 // If the intrinsic is not overloaded, require an exact match. If it is
550 // overloaded, require either exact or prefix match.
551 const auto MatchSize = strlen(NameTable[Idx]);
552 assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
553 bool IsExactMatch = Name.size() == MatchSize;
554 return IsExactMatch || isOverloaded(ID) ? ID : Intrinsic::not_intrinsic;
557 void Function::recalculateIntrinsicID() {
558 StringRef Name = getName();
559 if (!Name.startswith("llvm.")) {
560 HasLLVMReservedName = false;
561 IntID = Intrinsic::not_intrinsic;
562 return;
564 HasLLVMReservedName = true;
565 IntID = lookupIntrinsicID(Name);
568 /// Returns a stable mangling for the type specified for use in the name
569 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling
570 /// of named types is simply their name. Manglings for unnamed types consist
571 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
572 /// combined with the mangling of their component types. A vararg function
573 /// type will have a suffix of 'vararg'. Since function types can contain
574 /// other function types, we close a function type mangling with suffix 'f'
575 /// which can't be confused with it's prefix. This ensures we don't have
576 /// collisions between two unrelated function types. Otherwise, you might
577 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.)
579 static std::string getMangledTypeStr(Type* Ty) {
580 std::string Result;
581 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
582 Result += "p" + utostr(PTyp->getAddressSpace()) +
583 getMangledTypeStr(PTyp->getElementType());
584 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
585 Result += "a" + utostr(ATyp->getNumElements()) +
586 getMangledTypeStr(ATyp->getElementType());
587 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
588 if (!STyp->isLiteral()) {
589 Result += "s_";
590 Result += STyp->getName();
591 } else {
592 Result += "sl_";
593 for (auto Elem : STyp->elements())
594 Result += getMangledTypeStr(Elem);
596 // Ensure nested structs are distinguishable.
597 Result += "s";
598 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
599 Result += "f_" + getMangledTypeStr(FT->getReturnType());
600 for (size_t i = 0; i < FT->getNumParams(); i++)
601 Result += getMangledTypeStr(FT->getParamType(i));
602 if (FT->isVarArg())
603 Result += "vararg";
604 // Ensure nested function types are distinguishable.
605 Result += "f";
606 } else if (isa<VectorType>(Ty)) {
607 Result += "v" + utostr(Ty->getVectorNumElements()) +
608 getMangledTypeStr(Ty->getVectorElementType());
609 } else if (Ty) {
610 switch (Ty->getTypeID()) {
611 default: llvm_unreachable("Unhandled type");
612 case Type::VoidTyID: Result += "isVoid"; break;
613 case Type::MetadataTyID: Result += "Metadata"; break;
614 case Type::HalfTyID: Result += "f16"; break;
615 case Type::FloatTyID: Result += "f32"; break;
616 case Type::DoubleTyID: Result += "f64"; break;
617 case Type::X86_FP80TyID: Result += "f80"; break;
618 case Type::FP128TyID: Result += "f128"; break;
619 case Type::PPC_FP128TyID: Result += "ppcf128"; break;
620 case Type::X86_MMXTyID: Result += "x86mmx"; break;
621 case Type::IntegerTyID:
622 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
623 break;
626 return Result;
629 StringRef Intrinsic::getName(ID id) {
630 assert(id < num_intrinsics && "Invalid intrinsic ID!");
631 assert(!isOverloaded(id) &&
632 "This version of getName does not support overloading");
633 return IntrinsicNameTable[id];
636 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
637 assert(id < num_intrinsics && "Invalid intrinsic ID!");
638 std::string Result(IntrinsicNameTable[id]);
639 for (Type *Ty : Tys) {
640 Result += "." + getMangledTypeStr(Ty);
642 return Result;
645 /// IIT_Info - These are enumerators that describe the entries returned by the
646 /// getIntrinsicInfoTableEntries function.
648 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
649 enum IIT_Info {
650 // Common values should be encoded with 0-15.
651 IIT_Done = 0,
652 IIT_I1 = 1,
653 IIT_I8 = 2,
654 IIT_I16 = 3,
655 IIT_I32 = 4,
656 IIT_I64 = 5,
657 IIT_F16 = 6,
658 IIT_F32 = 7,
659 IIT_F64 = 8,
660 IIT_V2 = 9,
661 IIT_V4 = 10,
662 IIT_V8 = 11,
663 IIT_V16 = 12,
664 IIT_V32 = 13,
665 IIT_PTR = 14,
666 IIT_ARG = 15,
668 // Values from 16+ are only encodable with the inefficient encoding.
669 IIT_V64 = 16,
670 IIT_MMX = 17,
671 IIT_TOKEN = 18,
672 IIT_METADATA = 19,
673 IIT_EMPTYSTRUCT = 20,
674 IIT_STRUCT2 = 21,
675 IIT_STRUCT3 = 22,
676 IIT_STRUCT4 = 23,
677 IIT_STRUCT5 = 24,
678 IIT_EXTEND_ARG = 25,
679 IIT_TRUNC_ARG = 26,
680 IIT_ANYPTR = 27,
681 IIT_V1 = 28,
682 IIT_VARARG = 29,
683 IIT_HALF_VEC_ARG = 30,
684 IIT_SAME_VEC_WIDTH_ARG = 31,
685 IIT_PTR_TO_ARG = 32,
686 IIT_PTR_TO_ELT = 33,
687 IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
688 IIT_I128 = 35,
689 IIT_V512 = 36,
690 IIT_V1024 = 37,
691 IIT_STRUCT6 = 38,
692 IIT_STRUCT7 = 39,
693 IIT_STRUCT8 = 40,
694 IIT_F128 = 41
697 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
698 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
699 using namespace Intrinsic;
701 IIT_Info Info = IIT_Info(Infos[NextElt++]);
702 unsigned StructElts = 2;
704 switch (Info) {
705 case IIT_Done:
706 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
707 return;
708 case IIT_VARARG:
709 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
710 return;
711 case IIT_MMX:
712 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
713 return;
714 case IIT_TOKEN:
715 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
716 return;
717 case IIT_METADATA:
718 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
719 return;
720 case IIT_F16:
721 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
722 return;
723 case IIT_F32:
724 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
725 return;
726 case IIT_F64:
727 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
728 return;
729 case IIT_F128:
730 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
731 return;
732 case IIT_I1:
733 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
734 return;
735 case IIT_I8:
736 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
737 return;
738 case IIT_I16:
739 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
740 return;
741 case IIT_I32:
742 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
743 return;
744 case IIT_I64:
745 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
746 return;
747 case IIT_I128:
748 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
749 return;
750 case IIT_V1:
751 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1));
752 DecodeIITType(NextElt, Infos, OutputTable);
753 return;
754 case IIT_V2:
755 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2));
756 DecodeIITType(NextElt, Infos, OutputTable);
757 return;
758 case IIT_V4:
759 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4));
760 DecodeIITType(NextElt, Infos, OutputTable);
761 return;
762 case IIT_V8:
763 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8));
764 DecodeIITType(NextElt, Infos, OutputTable);
765 return;
766 case IIT_V16:
767 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16));
768 DecodeIITType(NextElt, Infos, OutputTable);
769 return;
770 case IIT_V32:
771 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32));
772 DecodeIITType(NextElt, Infos, OutputTable);
773 return;
774 case IIT_V64:
775 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64));
776 DecodeIITType(NextElt, Infos, OutputTable);
777 return;
778 case IIT_V512:
779 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512));
780 DecodeIITType(NextElt, Infos, OutputTable);
781 return;
782 case IIT_V1024:
783 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024));
784 DecodeIITType(NextElt, Infos, OutputTable);
785 return;
786 case IIT_PTR:
787 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
788 DecodeIITType(NextElt, Infos, OutputTable);
789 return;
790 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype]
791 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
792 Infos[NextElt++]));
793 DecodeIITType(NextElt, Infos, OutputTable);
794 return;
796 case IIT_ARG: {
797 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
798 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
799 return;
801 case IIT_EXTEND_ARG: {
802 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
803 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
804 ArgInfo));
805 return;
807 case IIT_TRUNC_ARG: {
808 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
809 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
810 ArgInfo));
811 return;
813 case IIT_HALF_VEC_ARG: {
814 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
815 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
816 ArgInfo));
817 return;
819 case IIT_SAME_VEC_WIDTH_ARG: {
820 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
821 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
822 ArgInfo));
823 return;
825 case IIT_PTR_TO_ARG: {
826 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
827 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
828 ArgInfo));
829 return;
831 case IIT_PTR_TO_ELT: {
832 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
833 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
834 return;
836 case IIT_VEC_OF_ANYPTRS_TO_ELT: {
837 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
838 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
839 OutputTable.push_back(
840 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
841 return;
843 case IIT_EMPTYSTRUCT:
844 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
845 return;
846 case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
847 case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
848 case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
849 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
850 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
851 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
852 case IIT_STRUCT2: {
853 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
855 for (unsigned i = 0; i != StructElts; ++i)
856 DecodeIITType(NextElt, Infos, OutputTable);
857 return;
860 llvm_unreachable("unhandled");
863 #define GET_INTRINSIC_GENERATOR_GLOBAL
864 #include "llvm/IR/IntrinsicImpl.inc"
865 #undef GET_INTRINSIC_GENERATOR_GLOBAL
867 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
868 SmallVectorImpl<IITDescriptor> &T){
869 // Check to see if the intrinsic's type was expressible by the table.
870 unsigned TableVal = IIT_Table[id-1];
872 // Decode the TableVal into an array of IITValues.
873 SmallVector<unsigned char, 8> IITValues;
874 ArrayRef<unsigned char> IITEntries;
875 unsigned NextElt = 0;
876 if ((TableVal >> 31) != 0) {
877 // This is an offset into the IIT_LongEncodingTable.
878 IITEntries = IIT_LongEncodingTable;
880 // Strip sentinel bit.
881 NextElt = (TableVal << 1) >> 1;
882 } else {
883 // Decode the TableVal into an array of IITValues. If the entry was encoded
884 // into a single word in the table itself, decode it now.
885 do {
886 IITValues.push_back(TableVal & 0xF);
887 TableVal >>= 4;
888 } while (TableVal);
890 IITEntries = IITValues;
891 NextElt = 0;
894 // Okay, decode the table into the output vector of IITDescriptors.
895 DecodeIITType(NextElt, IITEntries, T);
896 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
897 DecodeIITType(NextElt, IITEntries, T);
900 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
901 ArrayRef<Type*> Tys, LLVMContext &Context) {
902 using namespace Intrinsic;
904 IITDescriptor D = Infos.front();
905 Infos = Infos.slice(1);
907 switch (D.Kind) {
908 case IITDescriptor::Void: return Type::getVoidTy(Context);
909 case IITDescriptor::VarArg: return Type::getVoidTy(Context);
910 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
911 case IITDescriptor::Token: return Type::getTokenTy(Context);
912 case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
913 case IITDescriptor::Half: return Type::getHalfTy(Context);
914 case IITDescriptor::Float: return Type::getFloatTy(Context);
915 case IITDescriptor::Double: return Type::getDoubleTy(Context);
916 case IITDescriptor::Quad: return Type::getFP128Ty(Context);
918 case IITDescriptor::Integer:
919 return IntegerType::get(Context, D.Integer_Width);
920 case IITDescriptor::Vector:
921 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width);
922 case IITDescriptor::Pointer:
923 return PointerType::get(DecodeFixedType(Infos, Tys, Context),
924 D.Pointer_AddressSpace);
925 case IITDescriptor::Struct: {
926 SmallVector<Type *, 8> Elts;
927 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
928 Elts.push_back(DecodeFixedType(Infos, Tys, Context));
929 return StructType::get(Context, Elts);
931 case IITDescriptor::Argument:
932 return Tys[D.getArgumentNumber()];
933 case IITDescriptor::ExtendArgument: {
934 Type *Ty = Tys[D.getArgumentNumber()];
935 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
936 return VectorType::getExtendedElementVectorType(VTy);
938 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
940 case IITDescriptor::TruncArgument: {
941 Type *Ty = Tys[D.getArgumentNumber()];
942 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
943 return VectorType::getTruncatedElementVectorType(VTy);
945 IntegerType *ITy = cast<IntegerType>(Ty);
946 assert(ITy->getBitWidth() % 2 == 0);
947 return IntegerType::get(Context, ITy->getBitWidth() / 2);
949 case IITDescriptor::HalfVecArgument:
950 return VectorType::getHalfElementsVectorType(cast<VectorType>(
951 Tys[D.getArgumentNumber()]));
952 case IITDescriptor::SameVecWidthArgument: {
953 Type *EltTy = DecodeFixedType(Infos, Tys, Context);
954 Type *Ty = Tys[D.getArgumentNumber()];
955 if (auto *VTy = dyn_cast<VectorType>(Ty))
956 return VectorType::get(EltTy, VTy->getNumElements());
957 return EltTy;
959 case IITDescriptor::PtrToArgument: {
960 Type *Ty = Tys[D.getArgumentNumber()];
961 return PointerType::getUnqual(Ty);
963 case IITDescriptor::PtrToElt: {
964 Type *Ty = Tys[D.getArgumentNumber()];
965 VectorType *VTy = dyn_cast<VectorType>(Ty);
966 if (!VTy)
967 llvm_unreachable("Expected an argument of Vector Type");
968 Type *EltTy = VTy->getVectorElementType();
969 return PointerType::getUnqual(EltTy);
971 case IITDescriptor::VecOfAnyPtrsToElt:
972 // Return the overloaded type (which determines the pointers address space)
973 return Tys[D.getOverloadArgNumber()];
975 llvm_unreachable("unhandled");
978 FunctionType *Intrinsic::getType(LLVMContext &Context,
979 ID id, ArrayRef<Type*> Tys) {
980 SmallVector<IITDescriptor, 8> Table;
981 getIntrinsicInfoTableEntries(id, Table);
983 ArrayRef<IITDescriptor> TableRef = Table;
984 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
986 SmallVector<Type*, 8> ArgTys;
987 while (!TableRef.empty())
988 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
990 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
991 // If we see void type as the type of the last argument, it is vararg intrinsic
992 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
993 ArgTys.pop_back();
994 return FunctionType::get(ResultTy, ArgTys, true);
996 return FunctionType::get(ResultTy, ArgTys, false);
999 bool Intrinsic::isOverloaded(ID id) {
1000 #define GET_INTRINSIC_OVERLOAD_TABLE
1001 #include "llvm/IR/IntrinsicImpl.inc"
1002 #undef GET_INTRINSIC_OVERLOAD_TABLE
1005 bool Intrinsic::isLeaf(ID id) {
1006 switch (id) {
1007 default:
1008 return true;
1010 case Intrinsic::experimental_gc_statepoint:
1011 case Intrinsic::experimental_patchpoint_void:
1012 case Intrinsic::experimental_patchpoint_i64:
1013 return false;
1017 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1018 #define GET_INTRINSIC_ATTRIBUTES
1019 #include "llvm/IR/IntrinsicImpl.inc"
1020 #undef GET_INTRINSIC_ATTRIBUTES
1022 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1023 // There can never be multiple globals with the same name of different types,
1024 // because intrinsics must be a specific type.
1025 return cast<Function>(
1026 M->getOrInsertFunction(getName(id, Tys),
1027 getType(M->getContext(), id, Tys))
1028 .getCallee());
1031 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1032 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1033 #include "llvm/IR/IntrinsicImpl.inc"
1034 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1036 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1037 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1038 #include "llvm/IR/IntrinsicImpl.inc"
1039 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1041 bool Intrinsic::matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1042 SmallVectorImpl<Type*> &ArgTys) {
1043 using namespace Intrinsic;
1045 // If we ran out of descriptors, there are too many arguments.
1046 if (Infos.empty()) return true;
1047 IITDescriptor D = Infos.front();
1048 Infos = Infos.slice(1);
1050 switch (D.Kind) {
1051 case IITDescriptor::Void: return !Ty->isVoidTy();
1052 case IITDescriptor::VarArg: return true;
1053 case IITDescriptor::MMX: return !Ty->isX86_MMXTy();
1054 case IITDescriptor::Token: return !Ty->isTokenTy();
1055 case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1056 case IITDescriptor::Half: return !Ty->isHalfTy();
1057 case IITDescriptor::Float: return !Ty->isFloatTy();
1058 case IITDescriptor::Double: return !Ty->isDoubleTy();
1059 case IITDescriptor::Quad: return !Ty->isFP128Ty();
1060 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1061 case IITDescriptor::Vector: {
1062 VectorType *VT = dyn_cast<VectorType>(Ty);
1063 return !VT || VT->getNumElements() != D.Vector_Width ||
1064 matchIntrinsicType(VT->getElementType(), Infos, ArgTys);
1066 case IITDescriptor::Pointer: {
1067 PointerType *PT = dyn_cast<PointerType>(Ty);
1068 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
1069 matchIntrinsicType(PT->getElementType(), Infos, ArgTys);
1072 case IITDescriptor::Struct: {
1073 StructType *ST = dyn_cast<StructType>(Ty);
1074 if (!ST || ST->getNumElements() != D.Struct_NumElements)
1075 return true;
1077 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1078 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys))
1079 return true;
1080 return false;
1083 case IITDescriptor::Argument:
1084 // Two cases here - If this is the second occurrence of an argument, verify
1085 // that the later instance matches the previous instance.
1086 if (D.getArgumentNumber() < ArgTys.size())
1087 return Ty != ArgTys[D.getArgumentNumber()];
1089 // Otherwise, if this is the first instance of an argument, record it and
1090 // verify the "Any" kind.
1091 assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
1092 ArgTys.push_back(Ty);
1094 switch (D.getArgumentKind()) {
1095 case IITDescriptor::AK_Any: return false; // Success
1096 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1097 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy();
1098 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty);
1099 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1101 llvm_unreachable("all argument kinds not covered");
1103 case IITDescriptor::ExtendArgument: {
1104 // This may only be used when referring to a previous vector argument.
1105 if (D.getArgumentNumber() >= ArgTys.size())
1106 return true;
1108 Type *NewTy = ArgTys[D.getArgumentNumber()];
1109 if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1110 NewTy = VectorType::getExtendedElementVectorType(VTy);
1111 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1112 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1113 else
1114 return true;
1116 return Ty != NewTy;
1118 case IITDescriptor::TruncArgument: {
1119 // This may only be used when referring to a previous vector argument.
1120 if (D.getArgumentNumber() >= ArgTys.size())
1121 return true;
1123 Type *NewTy = ArgTys[D.getArgumentNumber()];
1124 if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1125 NewTy = VectorType::getTruncatedElementVectorType(VTy);
1126 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1127 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1128 else
1129 return true;
1131 return Ty != NewTy;
1133 case IITDescriptor::HalfVecArgument:
1134 // This may only be used when referring to a previous vector argument.
1135 return D.getArgumentNumber() >= ArgTys.size() ||
1136 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1137 VectorType::getHalfElementsVectorType(
1138 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1139 case IITDescriptor::SameVecWidthArgument: {
1140 if (D.getArgumentNumber() >= ArgTys.size())
1141 return true;
1142 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1143 auto *ThisArgType = dyn_cast<VectorType>(Ty);
1144 // Both must be vectors of the same number of elements or neither.
1145 if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1146 return true;
1147 Type *EltTy = Ty;
1148 if (ThisArgType) {
1149 if (ReferenceType->getVectorNumElements() !=
1150 ThisArgType->getVectorNumElements())
1151 return true;
1152 EltTy = ThisArgType->getVectorElementType();
1154 return matchIntrinsicType(EltTy, Infos, ArgTys);
1156 case IITDescriptor::PtrToArgument: {
1157 if (D.getArgumentNumber() >= ArgTys.size())
1158 return true;
1159 Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1160 PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1161 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1163 case IITDescriptor::PtrToElt: {
1164 if (D.getArgumentNumber() >= ArgTys.size())
1165 return true;
1166 VectorType * ReferenceType =
1167 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1168 PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1170 return (!ThisArgType || !ReferenceType ||
1171 ThisArgType->getElementType() != ReferenceType->getElementType());
1173 case IITDescriptor::VecOfAnyPtrsToElt: {
1174 unsigned RefArgNumber = D.getRefArgNumber();
1176 // This may only be used when referring to a previous argument.
1177 if (RefArgNumber >= ArgTys.size())
1178 return true;
1180 // Record the overloaded type
1181 assert(D.getOverloadArgNumber() == ArgTys.size() &&
1182 "Table consistency error");
1183 ArgTys.push_back(Ty);
1185 // Verify the overloaded type "matches" the Ref type.
1186 // i.e. Ty is a vector with the same width as Ref.
1187 // Composed of pointers to the same element type as Ref.
1188 VectorType *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1189 VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1190 if (!ThisArgVecTy || !ReferenceType ||
1191 (ReferenceType->getVectorNumElements() !=
1192 ThisArgVecTy->getVectorNumElements()))
1193 return true;
1194 PointerType *ThisArgEltTy =
1195 dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
1196 if (!ThisArgEltTy)
1197 return true;
1198 return ThisArgEltTy->getElementType() !=
1199 ReferenceType->getVectorElementType();
1202 llvm_unreachable("unhandled");
1205 bool
1206 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1207 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1208 // If there are no descriptors left, then it can't be a vararg.
1209 if (Infos.empty())
1210 return isVarArg;
1212 // There should be only one descriptor remaining at this point.
1213 if (Infos.size() != 1)
1214 return true;
1216 // Check and verify the descriptor.
1217 IITDescriptor D = Infos.front();
1218 Infos = Infos.slice(1);
1219 if (D.Kind == IITDescriptor::VarArg)
1220 return !isVarArg;
1222 return true;
1225 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) {
1226 Intrinsic::ID ID = F->getIntrinsicID();
1227 if (!ID)
1228 return None;
1230 FunctionType *FTy = F->getFunctionType();
1231 // Accumulate an array of overloaded types for the given intrinsic
1232 SmallVector<Type *, 4> ArgTys;
1234 SmallVector<Intrinsic::IITDescriptor, 8> Table;
1235 getIntrinsicInfoTableEntries(ID, Table);
1236 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1238 // If we encounter any problems matching the signature with the descriptor
1239 // just give up remangling. It's up to verifier to report the discrepancy.
1240 if (Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, ArgTys))
1241 return None;
1242 for (auto Ty : FTy->params())
1243 if (Intrinsic::matchIntrinsicType(Ty, TableRef, ArgTys))
1244 return None;
1245 if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef))
1246 return None;
1249 StringRef Name = F->getName();
1250 if (Name == Intrinsic::getName(ID, ArgTys))
1251 return None;
1253 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1254 NewDecl->setCallingConv(F->getCallingConv());
1255 assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature");
1256 return NewDecl;
1259 /// hasAddressTaken - returns true if there are any uses of this function
1260 /// other than direct calls or invokes to it.
1261 bool Function::hasAddressTaken(const User* *PutOffender) const {
1262 for (const Use &U : uses()) {
1263 const User *FU = U.getUser();
1264 if (isa<BlockAddress>(FU))
1265 continue;
1266 const auto *Call = dyn_cast<CallBase>(FU);
1267 if (!Call) {
1268 if (PutOffender)
1269 *PutOffender = FU;
1270 return true;
1272 if (!Call->isCallee(&U)) {
1273 if (PutOffender)
1274 *PutOffender = FU;
1275 return true;
1278 return false;
1281 bool Function::isDefTriviallyDead() const {
1282 // Check the linkage
1283 if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1284 !hasAvailableExternallyLinkage())
1285 return false;
1287 // Check if the function is used by anything other than a blockaddress.
1288 for (const User *U : users())
1289 if (!isa<BlockAddress>(U))
1290 return false;
1292 return true;
1295 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1296 /// setjmp or other function that gcc recognizes as "returning twice".
1297 bool Function::callsFunctionThatReturnsTwice() const {
1298 for (const Instruction &I : instructions(this))
1299 if (const auto *Call = dyn_cast<CallBase>(&I))
1300 if (Call->hasFnAttr(Attribute::ReturnsTwice))
1301 return true;
1303 return false;
1306 Constant *Function::getPersonalityFn() const {
1307 assert(hasPersonalityFn() && getNumOperands());
1308 return cast<Constant>(Op<0>());
1311 void Function::setPersonalityFn(Constant *Fn) {
1312 setHungoffOperand<0>(Fn);
1313 setValueSubclassDataBit(3, Fn != nullptr);
1316 Constant *Function::getPrefixData() const {
1317 assert(hasPrefixData() && getNumOperands());
1318 return cast<Constant>(Op<1>());
1321 void Function::setPrefixData(Constant *PrefixData) {
1322 setHungoffOperand<1>(PrefixData);
1323 setValueSubclassDataBit(1, PrefixData != nullptr);
1326 Constant *Function::getPrologueData() const {
1327 assert(hasPrologueData() && getNumOperands());
1328 return cast<Constant>(Op<2>());
1331 void Function::setPrologueData(Constant *PrologueData) {
1332 setHungoffOperand<2>(PrologueData);
1333 setValueSubclassDataBit(2, PrologueData != nullptr);
1336 void Function::allocHungoffUselist() {
1337 // If we've already allocated a uselist, stop here.
1338 if (getNumOperands())
1339 return;
1341 allocHungoffUses(3, /*IsPhi=*/ false);
1342 setNumHungOffUseOperands(3);
1344 // Initialize the uselist with placeholder operands to allow traversal.
1345 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1346 Op<0>().set(CPN);
1347 Op<1>().set(CPN);
1348 Op<2>().set(CPN);
1351 template <int Idx>
1352 void Function::setHungoffOperand(Constant *C) {
1353 if (C) {
1354 allocHungoffUselist();
1355 Op<Idx>().set(C);
1356 } else if (getNumOperands()) {
1357 Op<Idx>().set(
1358 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1362 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1363 assert(Bit < 16 && "SubclassData contains only 16 bits");
1364 if (On)
1365 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1366 else
1367 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1370 void Function::setEntryCount(ProfileCount Count,
1371 const DenseSet<GlobalValue::GUID> *S) {
1372 assert(Count.hasValue());
1373 #if !defined(NDEBUG)
1374 auto PrevCount = getEntryCount();
1375 assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
1376 #endif
1377 MDBuilder MDB(getContext());
1378 setMetadata(
1379 LLVMContext::MD_prof,
1380 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1383 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1384 const DenseSet<GlobalValue::GUID> *Imports) {
1385 setEntryCount(ProfileCount(Count, Type), Imports);
1388 ProfileCount Function::getEntryCount(bool AllowSynthetic) const {
1389 MDNode *MD = getMetadata(LLVMContext::MD_prof);
1390 if (MD && MD->getOperand(0))
1391 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1392 if (MDS->getString().equals("function_entry_count")) {
1393 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1394 uint64_t Count = CI->getValue().getZExtValue();
1395 // A value of -1 is used for SamplePGO when there were no samples.
1396 // Treat this the same as unknown.
1397 if (Count == (uint64_t)-1)
1398 return ProfileCount::getInvalid();
1399 return ProfileCount(Count, PCT_Real);
1400 } else if (AllowSynthetic &&
1401 MDS->getString().equals("synthetic_function_entry_count")) {
1402 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1403 uint64_t Count = CI->getValue().getZExtValue();
1404 return ProfileCount(Count, PCT_Synthetic);
1407 return ProfileCount::getInvalid();
1410 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1411 DenseSet<GlobalValue::GUID> R;
1412 if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1413 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1414 if (MDS->getString().equals("function_entry_count"))
1415 for (unsigned i = 2; i < MD->getNumOperands(); i++)
1416 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1417 ->getValue()
1418 .getZExtValue());
1419 return R;
1422 void Function::setSectionPrefix(StringRef Prefix) {
1423 MDBuilder MDB(getContext());
1424 setMetadata(LLVMContext::MD_section_prefix,
1425 MDB.createFunctionSectionPrefix(Prefix));
1428 Optional<StringRef> Function::getSectionPrefix() const {
1429 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1430 assert(cast<MDString>(MD->getOperand(0))
1431 ->getString()
1432 .equals("function_section_prefix") &&
1433 "Metadata not match");
1434 return cast<MDString>(MD->getOperand(1))->getString();
1436 return None;
1439 bool Function::nullPointerIsDefined() const {
1440 return getFnAttribute("null-pointer-is-valid")
1441 .getValueAsString()
1442 .equals("true");
1445 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
1446 if (F && F->nullPointerIsDefined())
1447 return true;
1449 if (AS != 0)
1450 return true;
1452 return false;