1 //===- Function.cpp - Implement the Global object classes -----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the Function class for the IR library.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/Argument.h"
24 #include "llvm/IR/Attributes.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/Constant.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/GlobalValue.h"
30 #include "llvm/IR/InstIterator.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/SymbolTableListTraits.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Use.h"
42 #include "llvm/IR/User.h"
43 #include "llvm/IR/Value.h"
44 #include "llvm/IR/ValueSymbolTable.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/ErrorHandling.h"
56 using ProfileCount
= Function::ProfileCount
;
58 // Explicit instantiations of SymbolTableListTraits since some of the methods
59 // are not in the public header file...
60 template class llvm::SymbolTableListTraits
<BasicBlock
>;
62 //===----------------------------------------------------------------------===//
63 // Argument Implementation
64 //===----------------------------------------------------------------------===//
66 Argument::Argument(Type
*Ty
, const Twine
&Name
, Function
*Par
, unsigned ArgNo
)
67 : Value(Ty
, Value::ArgumentVal
), Parent(Par
), ArgNo(ArgNo
) {
71 void Argument::setParent(Function
*parent
) {
75 bool Argument::hasNonNullAttr() const {
76 if (!getType()->isPointerTy()) return false;
77 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull
))
79 else if (getDereferenceableBytes() > 0 &&
80 !NullPointerIsDefined(getParent(),
81 getType()->getPointerAddressSpace()))
86 bool Argument::hasByValAttr() const {
87 if (!getType()->isPointerTy()) return false;
88 return hasAttribute(Attribute::ByVal
);
91 bool Argument::hasSwiftSelfAttr() const {
92 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf
);
95 bool Argument::hasSwiftErrorAttr() const {
96 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError
);
99 bool Argument::hasInAllocaAttr() const {
100 if (!getType()->isPointerTy()) return false;
101 return hasAttribute(Attribute::InAlloca
);
104 bool Argument::hasByValOrInAllocaAttr() const {
105 if (!getType()->isPointerTy()) return false;
106 AttributeList Attrs
= getParent()->getAttributes();
107 return Attrs
.hasParamAttribute(getArgNo(), Attribute::ByVal
) ||
108 Attrs
.hasParamAttribute(getArgNo(), Attribute::InAlloca
);
111 unsigned Argument::getParamAlignment() const {
112 assert(getType()->isPointerTy() && "Only pointers have alignments");
113 return getParent()->getParamAlignment(getArgNo());
116 uint64_t Argument::getDereferenceableBytes() const {
117 assert(getType()->isPointerTy() &&
118 "Only pointers have dereferenceable bytes");
119 return getParent()->getParamDereferenceableBytes(getArgNo());
122 uint64_t Argument::getDereferenceableOrNullBytes() const {
123 assert(getType()->isPointerTy() &&
124 "Only pointers have dereferenceable bytes");
125 return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
128 bool Argument::hasNestAttr() const {
129 if (!getType()->isPointerTy()) return false;
130 return hasAttribute(Attribute::Nest
);
133 bool Argument::hasNoAliasAttr() const {
134 if (!getType()->isPointerTy()) return false;
135 return hasAttribute(Attribute::NoAlias
);
138 bool Argument::hasNoCaptureAttr() const {
139 if (!getType()->isPointerTy()) return false;
140 return hasAttribute(Attribute::NoCapture
);
143 bool Argument::hasStructRetAttr() const {
144 if (!getType()->isPointerTy()) return false;
145 return hasAttribute(Attribute::StructRet
);
148 bool Argument::hasInRegAttr() const {
149 return hasAttribute(Attribute::InReg
);
152 bool Argument::hasReturnedAttr() const {
153 return hasAttribute(Attribute::Returned
);
156 bool Argument::hasZExtAttr() const {
157 return hasAttribute(Attribute::ZExt
);
160 bool Argument::hasSExtAttr() const {
161 return hasAttribute(Attribute::SExt
);
164 bool Argument::onlyReadsMemory() const {
165 AttributeList Attrs
= getParent()->getAttributes();
166 return Attrs
.hasParamAttribute(getArgNo(), Attribute::ReadOnly
) ||
167 Attrs
.hasParamAttribute(getArgNo(), Attribute::ReadNone
);
170 void Argument::addAttrs(AttrBuilder
&B
) {
171 AttributeList AL
= getParent()->getAttributes();
172 AL
= AL
.addParamAttributes(Parent
->getContext(), getArgNo(), B
);
173 getParent()->setAttributes(AL
);
176 void Argument::addAttr(Attribute::AttrKind Kind
) {
177 getParent()->addParamAttr(getArgNo(), Kind
);
180 void Argument::addAttr(Attribute Attr
) {
181 getParent()->addParamAttr(getArgNo(), Attr
);
184 void Argument::removeAttr(Attribute::AttrKind Kind
) {
185 getParent()->removeParamAttr(getArgNo(), Kind
);
188 bool Argument::hasAttribute(Attribute::AttrKind Kind
) const {
189 return getParent()->hasParamAttribute(getArgNo(), Kind
);
192 //===----------------------------------------------------------------------===//
193 // Helper Methods in Function
194 //===----------------------------------------------------------------------===//
196 LLVMContext
&Function::getContext() const {
197 return getType()->getContext();
200 unsigned Function::getInstructionCount() const {
201 unsigned NumInstrs
= 0;
202 for (const BasicBlock
&BB
: BasicBlocks
)
203 NumInstrs
+= std::distance(BB
.instructionsWithoutDebug().begin(),
204 BB
.instructionsWithoutDebug().end());
208 Function
*Function::Create(FunctionType
*Ty
, LinkageTypes Linkage
,
209 const Twine
&N
, Module
&M
) {
210 return Create(Ty
, Linkage
, M
.getDataLayout().getProgramAddressSpace(), N
, &M
);
213 void Function::removeFromParent() {
214 getParent()->getFunctionList().remove(getIterator());
217 void Function::eraseFromParent() {
218 getParent()->getFunctionList().erase(getIterator());
221 //===----------------------------------------------------------------------===//
222 // Function Implementation
223 //===----------------------------------------------------------------------===//
225 static unsigned computeAddrSpace(unsigned AddrSpace
, Module
*M
) {
226 // If AS == -1 and we are passed a valid module pointer we place the function
227 // in the program address space. Otherwise we default to AS0.
228 if (AddrSpace
== static_cast<unsigned>(-1))
229 return M
? M
->getDataLayout().getProgramAddressSpace() : 0;
233 Function::Function(FunctionType
*Ty
, LinkageTypes Linkage
, unsigned AddrSpace
,
234 const Twine
&name
, Module
*ParentModule
)
235 : GlobalObject(Ty
, Value::FunctionVal
,
236 OperandTraits
<Function
>::op_begin(this), 0, Linkage
, name
,
237 computeAddrSpace(AddrSpace
, ParentModule
)),
238 NumArgs(Ty
->getNumParams()) {
239 assert(FunctionType::isValidReturnType(getReturnType()) &&
240 "invalid return type");
241 setGlobalObjectSubClassData(0);
243 // We only need a symbol table for a function if the context keeps value names
244 if (!getContext().shouldDiscardValueNames())
245 SymTab
= make_unique
<ValueSymbolTable
>();
247 // If the function has arguments, mark them as lazily built.
248 if (Ty
->getNumParams())
249 setValueSubclassData(1); // Set the "has lazy arguments" bit.
252 ParentModule
->getFunctionList().push_back(this);
254 HasLLVMReservedName
= getName().startswith("llvm.");
255 // Ensure intrinsics have the right parameter attributes.
256 // Note, the IntID field will have been set in Value::setName if this function
257 // name is a valid intrinsic ID.
259 setAttributes(Intrinsic::getAttributes(getContext(), IntID
));
262 Function::~Function() {
263 dropAllReferences(); // After this it is safe to delete instructions.
265 // Delete all of the method arguments and unlink from symbol table...
269 // Remove the function from the on-the-side GC table.
273 void Function::BuildLazyArguments() const {
274 // Create the arguments vector, all arguments start out unnamed.
275 auto *FT
= getFunctionType();
277 Arguments
= std::allocator
<Argument
>().allocate(NumArgs
);
278 for (unsigned i
= 0, e
= NumArgs
; i
!= e
; ++i
) {
279 Type
*ArgTy
= FT
->getParamType(i
);
280 assert(!ArgTy
->isVoidTy() && "Cannot have void typed arguments!");
281 new (Arguments
+ i
) Argument(ArgTy
, "", const_cast<Function
*>(this), i
);
285 // Clear the lazy arguments bit.
286 unsigned SDC
= getSubclassDataFromValue();
287 const_cast<Function
*>(this)->setValueSubclassData(SDC
&= ~(1<<0));
288 assert(!hasLazyArguments());
291 static MutableArrayRef
<Argument
> makeArgArray(Argument
*Args
, size_t Count
) {
292 return MutableArrayRef
<Argument
>(Args
, Count
);
295 void Function::clearArguments() {
296 for (Argument
&A
: makeArgArray(Arguments
, NumArgs
)) {
300 std::allocator
<Argument
>().deallocate(Arguments
, NumArgs
);
304 void Function::stealArgumentListFrom(Function
&Src
) {
305 assert(isDeclaration() && "Expected no references to current arguments");
307 // Drop the current arguments, if any, and set the lazy argument bit.
308 if (!hasLazyArguments()) {
309 assert(llvm::all_of(makeArgArray(Arguments
, NumArgs
),
310 [](const Argument
&A
) { return A
.use_empty(); }) &&
311 "Expected arguments to be unused in declaration");
313 setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
316 // Nothing to steal if Src has lazy arguments.
317 if (Src
.hasLazyArguments())
320 // Steal arguments from Src, and fix the lazy argument bits.
321 assert(arg_size() == Src
.arg_size());
322 Arguments
= Src
.Arguments
;
323 Src
.Arguments
= nullptr;
324 for (Argument
&A
: makeArgArray(Arguments
, NumArgs
)) {
325 // FIXME: This does the work of transferNodesFromList inefficiently.
326 SmallString
<128> Name
;
336 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
337 assert(!hasLazyArguments());
338 Src
.setValueSubclassData(Src
.getSubclassDataFromValue() | (1 << 0));
341 // dropAllReferences() - This function causes all the subinstructions to "let
342 // go" of all references that they are maintaining. This allows one to
343 // 'delete' a whole class at a time, even though there may be circular
344 // references... first all references are dropped, and all use counts go to
345 // zero. Then everything is deleted for real. Note that no operations are
346 // valid on an object that has "dropped all references", except operator
349 void Function::dropAllReferences() {
350 setIsMaterializable(false);
352 for (BasicBlock
&BB
: *this)
353 BB
.dropAllReferences();
355 // Delete all basic blocks. They are now unused, except possibly by
356 // blockaddresses, but BasicBlock's destructor takes care of those.
357 while (!BasicBlocks
.empty())
358 BasicBlocks
.begin()->eraseFromParent();
360 // Drop uses of any optional data (real or placeholder).
361 if (getNumOperands()) {
362 User::dropAllReferences();
363 setNumHungOffUseOperands(0);
364 setValueSubclassData(getSubclassDataFromValue() & ~0xe);
367 // Metadata is stored in a side-table.
371 void Function::addAttribute(unsigned i
, Attribute::AttrKind Kind
) {
372 AttributeList PAL
= getAttributes();
373 PAL
= PAL
.addAttribute(getContext(), i
, Kind
);
377 void Function::addAttribute(unsigned i
, Attribute Attr
) {
378 AttributeList PAL
= getAttributes();
379 PAL
= PAL
.addAttribute(getContext(), i
, Attr
);
383 void Function::addAttributes(unsigned i
, const AttrBuilder
&Attrs
) {
384 AttributeList PAL
= getAttributes();
385 PAL
= PAL
.addAttributes(getContext(), i
, Attrs
);
389 void Function::addParamAttr(unsigned ArgNo
, Attribute::AttrKind Kind
) {
390 AttributeList PAL
= getAttributes();
391 PAL
= PAL
.addParamAttribute(getContext(), ArgNo
, Kind
);
395 void Function::addParamAttr(unsigned ArgNo
, Attribute Attr
) {
396 AttributeList PAL
= getAttributes();
397 PAL
= PAL
.addParamAttribute(getContext(), ArgNo
, Attr
);
401 void Function::addParamAttrs(unsigned ArgNo
, const AttrBuilder
&Attrs
) {
402 AttributeList PAL
= getAttributes();
403 PAL
= PAL
.addParamAttributes(getContext(), ArgNo
, Attrs
);
407 void Function::removeAttribute(unsigned i
, Attribute::AttrKind Kind
) {
408 AttributeList PAL
= getAttributes();
409 PAL
= PAL
.removeAttribute(getContext(), i
, Kind
);
413 void Function::removeAttribute(unsigned i
, StringRef Kind
) {
414 AttributeList PAL
= getAttributes();
415 PAL
= PAL
.removeAttribute(getContext(), i
, Kind
);
419 void Function::removeAttributes(unsigned i
, const AttrBuilder
&Attrs
) {
420 AttributeList PAL
= getAttributes();
421 PAL
= PAL
.removeAttributes(getContext(), i
, Attrs
);
425 void Function::removeParamAttr(unsigned ArgNo
, Attribute::AttrKind Kind
) {
426 AttributeList PAL
= getAttributes();
427 PAL
= PAL
.removeParamAttribute(getContext(), ArgNo
, Kind
);
431 void Function::removeParamAttr(unsigned ArgNo
, StringRef Kind
) {
432 AttributeList PAL
= getAttributes();
433 PAL
= PAL
.removeParamAttribute(getContext(), ArgNo
, Kind
);
437 void Function::removeParamAttrs(unsigned ArgNo
, const AttrBuilder
&Attrs
) {
438 AttributeList PAL
= getAttributes();
439 PAL
= PAL
.removeParamAttributes(getContext(), ArgNo
, Attrs
);
443 void Function::addDereferenceableAttr(unsigned i
, uint64_t Bytes
) {
444 AttributeList PAL
= getAttributes();
445 PAL
= PAL
.addDereferenceableAttr(getContext(), i
, Bytes
);
449 void Function::addDereferenceableParamAttr(unsigned ArgNo
, uint64_t Bytes
) {
450 AttributeList PAL
= getAttributes();
451 PAL
= PAL
.addDereferenceableParamAttr(getContext(), ArgNo
, Bytes
);
455 void Function::addDereferenceableOrNullAttr(unsigned i
, uint64_t Bytes
) {
456 AttributeList PAL
= getAttributes();
457 PAL
= PAL
.addDereferenceableOrNullAttr(getContext(), i
, Bytes
);
461 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo
,
463 AttributeList PAL
= getAttributes();
464 PAL
= PAL
.addDereferenceableOrNullParamAttr(getContext(), ArgNo
, Bytes
);
468 const std::string
&Function::getGC() const {
469 assert(hasGC() && "Function has no collector");
470 return getContext().getGC(*this);
473 void Function::setGC(std::string Str
) {
474 setValueSubclassDataBit(14, !Str
.empty());
475 getContext().setGC(*this, std::move(Str
));
478 void Function::clearGC() {
481 getContext().deleteGC(*this);
482 setValueSubclassDataBit(14, false);
485 /// Copy all additional attributes (those not needed to create a Function) from
486 /// the Function Src to this one.
487 void Function::copyAttributesFrom(const Function
*Src
) {
488 GlobalObject::copyAttributesFrom(Src
);
489 setCallingConv(Src
->getCallingConv());
490 setAttributes(Src
->getAttributes());
495 if (Src
->hasPersonalityFn())
496 setPersonalityFn(Src
->getPersonalityFn());
497 if (Src
->hasPrefixData())
498 setPrefixData(Src
->getPrefixData());
499 if (Src
->hasPrologueData())
500 setPrologueData(Src
->getPrologueData());
503 /// Table of string intrinsic names indexed by enum value.
504 static const char * const IntrinsicNameTable
[] = {
506 #define GET_INTRINSIC_NAME_TABLE
507 #include "llvm/IR/IntrinsicImpl.inc"
508 #undef GET_INTRINSIC_NAME_TABLE
511 /// Table of per-target intrinsic name tables.
512 #define GET_INTRINSIC_TARGET_DATA
513 #include "llvm/IR/IntrinsicImpl.inc"
514 #undef GET_INTRINSIC_TARGET_DATA
516 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
517 /// target as \c Name, or the generic table if \c Name is not target specific.
519 /// Returns the relevant slice of \c IntrinsicNameTable
520 static ArrayRef
<const char *> findTargetSubtable(StringRef Name
) {
521 assert(Name
.startswith("llvm."));
523 ArrayRef
<IntrinsicTargetInfo
> Targets(TargetInfos
);
524 // Drop "llvm." and take the first dotted component. That will be the target
525 // if this is target specific.
526 StringRef Target
= Name
.drop_front(5).split('.').first
;
527 auto It
= std::lower_bound(Targets
.begin(), Targets
.end(), Target
,
528 [](const IntrinsicTargetInfo
&TI
,
529 StringRef Target
) { return TI
.Name
< Target
; });
530 // We've either found the target or just fall back to the generic set, which
532 const auto &TI
= It
!= Targets
.end() && It
->Name
== Target
? *It
: Targets
[0];
533 return makeArrayRef(&IntrinsicNameTable
[1] + TI
.Offset
, TI
.Count
);
536 /// This does the actual lookup of an intrinsic ID which
537 /// matches the given function name.
538 Intrinsic::ID
Function::lookupIntrinsicID(StringRef Name
) {
539 ArrayRef
<const char *> NameTable
= findTargetSubtable(Name
);
540 int Idx
= Intrinsic::lookupLLVMIntrinsicByName(NameTable
, Name
);
542 return Intrinsic::not_intrinsic
;
544 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
545 // an index into a sub-table.
546 int Adjust
= NameTable
.data() - IntrinsicNameTable
;
547 Intrinsic::ID ID
= static_cast<Intrinsic::ID
>(Idx
+ Adjust
);
549 // If the intrinsic is not overloaded, require an exact match. If it is
550 // overloaded, require either exact or prefix match.
551 const auto MatchSize
= strlen(NameTable
[Idx
]);
552 assert(Name
.size() >= MatchSize
&& "Expected either exact or prefix match");
553 bool IsExactMatch
= Name
.size() == MatchSize
;
554 return IsExactMatch
|| isOverloaded(ID
) ? ID
: Intrinsic::not_intrinsic
;
557 void Function::recalculateIntrinsicID() {
558 StringRef Name
= getName();
559 if (!Name
.startswith("llvm.")) {
560 HasLLVMReservedName
= false;
561 IntID
= Intrinsic::not_intrinsic
;
564 HasLLVMReservedName
= true;
565 IntID
= lookupIntrinsicID(Name
);
568 /// Returns a stable mangling for the type specified for use in the name
569 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling
570 /// of named types is simply their name. Manglings for unnamed types consist
571 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
572 /// combined with the mangling of their component types. A vararg function
573 /// type will have a suffix of 'vararg'. Since function types can contain
574 /// other function types, we close a function type mangling with suffix 'f'
575 /// which can't be confused with it's prefix. This ensures we don't have
576 /// collisions between two unrelated function types. Otherwise, you might
577 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.)
579 static std::string
getMangledTypeStr(Type
* Ty
) {
581 if (PointerType
* PTyp
= dyn_cast
<PointerType
>(Ty
)) {
582 Result
+= "p" + utostr(PTyp
->getAddressSpace()) +
583 getMangledTypeStr(PTyp
->getElementType());
584 } else if (ArrayType
* ATyp
= dyn_cast
<ArrayType
>(Ty
)) {
585 Result
+= "a" + utostr(ATyp
->getNumElements()) +
586 getMangledTypeStr(ATyp
->getElementType());
587 } else if (StructType
*STyp
= dyn_cast
<StructType
>(Ty
)) {
588 if (!STyp
->isLiteral()) {
590 Result
+= STyp
->getName();
593 for (auto Elem
: STyp
->elements())
594 Result
+= getMangledTypeStr(Elem
);
596 // Ensure nested structs are distinguishable.
598 } else if (FunctionType
*FT
= dyn_cast
<FunctionType
>(Ty
)) {
599 Result
+= "f_" + getMangledTypeStr(FT
->getReturnType());
600 for (size_t i
= 0; i
< FT
->getNumParams(); i
++)
601 Result
+= getMangledTypeStr(FT
->getParamType(i
));
604 // Ensure nested function types are distinguishable.
606 } else if (isa
<VectorType
>(Ty
)) {
607 Result
+= "v" + utostr(Ty
->getVectorNumElements()) +
608 getMangledTypeStr(Ty
->getVectorElementType());
610 switch (Ty
->getTypeID()) {
611 default: llvm_unreachable("Unhandled type");
612 case Type::VoidTyID
: Result
+= "isVoid"; break;
613 case Type::MetadataTyID
: Result
+= "Metadata"; break;
614 case Type::HalfTyID
: Result
+= "f16"; break;
615 case Type::FloatTyID
: Result
+= "f32"; break;
616 case Type::DoubleTyID
: Result
+= "f64"; break;
617 case Type::X86_FP80TyID
: Result
+= "f80"; break;
618 case Type::FP128TyID
: Result
+= "f128"; break;
619 case Type::PPC_FP128TyID
: Result
+= "ppcf128"; break;
620 case Type::X86_MMXTyID
: Result
+= "x86mmx"; break;
621 case Type::IntegerTyID
:
622 Result
+= "i" + utostr(cast
<IntegerType
>(Ty
)->getBitWidth());
629 StringRef
Intrinsic::getName(ID id
) {
630 assert(id
< num_intrinsics
&& "Invalid intrinsic ID!");
631 assert(!isOverloaded(id
) &&
632 "This version of getName does not support overloading");
633 return IntrinsicNameTable
[id
];
636 std::string
Intrinsic::getName(ID id
, ArrayRef
<Type
*> Tys
) {
637 assert(id
< num_intrinsics
&& "Invalid intrinsic ID!");
638 std::string
Result(IntrinsicNameTable
[id
]);
639 for (Type
*Ty
: Tys
) {
640 Result
+= "." + getMangledTypeStr(Ty
);
645 /// IIT_Info - These are enumerators that describe the entries returned by the
646 /// getIntrinsicInfoTableEntries function.
648 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
650 // Common values should be encoded with 0-15.
668 // Values from 16+ are only encodable with the inefficient encoding.
673 IIT_EMPTYSTRUCT
= 20,
683 IIT_HALF_VEC_ARG
= 30,
684 IIT_SAME_VEC_WIDTH_ARG
= 31,
687 IIT_VEC_OF_ANYPTRS_TO_ELT
= 34,
697 static void DecodeIITType(unsigned &NextElt
, ArrayRef
<unsigned char> Infos
,
698 SmallVectorImpl
<Intrinsic::IITDescriptor
> &OutputTable
) {
699 using namespace Intrinsic
;
701 IIT_Info Info
= IIT_Info(Infos
[NextElt
++]);
702 unsigned StructElts
= 2;
706 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Void
, 0));
709 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::VarArg
, 0));
712 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::MMX
, 0));
715 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Token
, 0));
718 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Metadata
, 0));
721 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Half
, 0));
724 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Float
, 0));
727 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Double
, 0));
730 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Quad
, 0));
733 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Integer
, 1));
736 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Integer
, 8));
739 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Integer
,16));
742 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Integer
, 32));
745 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Integer
, 64));
748 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Integer
, 128));
751 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Vector
, 1));
752 DecodeIITType(NextElt
, Infos
, OutputTable
);
755 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Vector
, 2));
756 DecodeIITType(NextElt
, Infos
, OutputTable
);
759 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Vector
, 4));
760 DecodeIITType(NextElt
, Infos
, OutputTable
);
763 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Vector
, 8));
764 DecodeIITType(NextElt
, Infos
, OutputTable
);
767 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Vector
, 16));
768 DecodeIITType(NextElt
, Infos
, OutputTable
);
771 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Vector
, 32));
772 DecodeIITType(NextElt
, Infos
, OutputTable
);
775 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Vector
, 64));
776 DecodeIITType(NextElt
, Infos
, OutputTable
);
779 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Vector
, 512));
780 DecodeIITType(NextElt
, Infos
, OutputTable
);
783 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Vector
, 1024));
784 DecodeIITType(NextElt
, Infos
, OutputTable
);
787 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Pointer
, 0));
788 DecodeIITType(NextElt
, Infos
, OutputTable
);
790 case IIT_ANYPTR
: { // [ANYPTR addrspace, subtype]
791 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Pointer
,
793 DecodeIITType(NextElt
, Infos
, OutputTable
);
797 unsigned ArgInfo
= (NextElt
== Infos
.size() ? 0 : Infos
[NextElt
++]);
798 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Argument
, ArgInfo
));
801 case IIT_EXTEND_ARG
: {
802 unsigned ArgInfo
= (NextElt
== Infos
.size() ? 0 : Infos
[NextElt
++]);
803 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument
,
807 case IIT_TRUNC_ARG
: {
808 unsigned ArgInfo
= (NextElt
== Infos
.size() ? 0 : Infos
[NextElt
++]);
809 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::TruncArgument
,
813 case IIT_HALF_VEC_ARG
: {
814 unsigned ArgInfo
= (NextElt
== Infos
.size() ? 0 : Infos
[NextElt
++]);
815 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument
,
819 case IIT_SAME_VEC_WIDTH_ARG
: {
820 unsigned ArgInfo
= (NextElt
== Infos
.size() ? 0 : Infos
[NextElt
++]);
821 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument
,
825 case IIT_PTR_TO_ARG
: {
826 unsigned ArgInfo
= (NextElt
== Infos
.size() ? 0 : Infos
[NextElt
++]);
827 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument
,
831 case IIT_PTR_TO_ELT
: {
832 unsigned ArgInfo
= (NextElt
== Infos
.size() ? 0 : Infos
[NextElt
++]);
833 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::PtrToElt
, ArgInfo
));
836 case IIT_VEC_OF_ANYPTRS_TO_ELT
: {
837 unsigned short ArgNo
= (NextElt
== Infos
.size() ? 0 : Infos
[NextElt
++]);
838 unsigned short RefNo
= (NextElt
== Infos
.size() ? 0 : Infos
[NextElt
++]);
839 OutputTable
.push_back(
840 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt
, ArgNo
, RefNo
));
843 case IIT_EMPTYSTRUCT
:
844 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Struct
, 0));
846 case IIT_STRUCT8
: ++StructElts
; LLVM_FALLTHROUGH
;
847 case IIT_STRUCT7
: ++StructElts
; LLVM_FALLTHROUGH
;
848 case IIT_STRUCT6
: ++StructElts
; LLVM_FALLTHROUGH
;
849 case IIT_STRUCT5
: ++StructElts
; LLVM_FALLTHROUGH
;
850 case IIT_STRUCT4
: ++StructElts
; LLVM_FALLTHROUGH
;
851 case IIT_STRUCT3
: ++StructElts
; LLVM_FALLTHROUGH
;
853 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Struct
,StructElts
));
855 for (unsigned i
= 0; i
!= StructElts
; ++i
)
856 DecodeIITType(NextElt
, Infos
, OutputTable
);
860 llvm_unreachable("unhandled");
863 #define GET_INTRINSIC_GENERATOR_GLOBAL
864 #include "llvm/IR/IntrinsicImpl.inc"
865 #undef GET_INTRINSIC_GENERATOR_GLOBAL
867 void Intrinsic::getIntrinsicInfoTableEntries(ID id
,
868 SmallVectorImpl
<IITDescriptor
> &T
){
869 // Check to see if the intrinsic's type was expressible by the table.
870 unsigned TableVal
= IIT_Table
[id
-1];
872 // Decode the TableVal into an array of IITValues.
873 SmallVector
<unsigned char, 8> IITValues
;
874 ArrayRef
<unsigned char> IITEntries
;
875 unsigned NextElt
= 0;
876 if ((TableVal
>> 31) != 0) {
877 // This is an offset into the IIT_LongEncodingTable.
878 IITEntries
= IIT_LongEncodingTable
;
880 // Strip sentinel bit.
881 NextElt
= (TableVal
<< 1) >> 1;
883 // Decode the TableVal into an array of IITValues. If the entry was encoded
884 // into a single word in the table itself, decode it now.
886 IITValues
.push_back(TableVal
& 0xF);
890 IITEntries
= IITValues
;
894 // Okay, decode the table into the output vector of IITDescriptors.
895 DecodeIITType(NextElt
, IITEntries
, T
);
896 while (NextElt
!= IITEntries
.size() && IITEntries
[NextElt
] != 0)
897 DecodeIITType(NextElt
, IITEntries
, T
);
900 static Type
*DecodeFixedType(ArrayRef
<Intrinsic::IITDescriptor
> &Infos
,
901 ArrayRef
<Type
*> Tys
, LLVMContext
&Context
) {
902 using namespace Intrinsic
;
904 IITDescriptor D
= Infos
.front();
905 Infos
= Infos
.slice(1);
908 case IITDescriptor::Void
: return Type::getVoidTy(Context
);
909 case IITDescriptor::VarArg
: return Type::getVoidTy(Context
);
910 case IITDescriptor::MMX
: return Type::getX86_MMXTy(Context
);
911 case IITDescriptor::Token
: return Type::getTokenTy(Context
);
912 case IITDescriptor::Metadata
: return Type::getMetadataTy(Context
);
913 case IITDescriptor::Half
: return Type::getHalfTy(Context
);
914 case IITDescriptor::Float
: return Type::getFloatTy(Context
);
915 case IITDescriptor::Double
: return Type::getDoubleTy(Context
);
916 case IITDescriptor::Quad
: return Type::getFP128Ty(Context
);
918 case IITDescriptor::Integer
:
919 return IntegerType::get(Context
, D
.Integer_Width
);
920 case IITDescriptor::Vector
:
921 return VectorType::get(DecodeFixedType(Infos
, Tys
, Context
),D
.Vector_Width
);
922 case IITDescriptor::Pointer
:
923 return PointerType::get(DecodeFixedType(Infos
, Tys
, Context
),
924 D
.Pointer_AddressSpace
);
925 case IITDescriptor::Struct
: {
926 SmallVector
<Type
*, 8> Elts
;
927 for (unsigned i
= 0, e
= D
.Struct_NumElements
; i
!= e
; ++i
)
928 Elts
.push_back(DecodeFixedType(Infos
, Tys
, Context
));
929 return StructType::get(Context
, Elts
);
931 case IITDescriptor::Argument
:
932 return Tys
[D
.getArgumentNumber()];
933 case IITDescriptor::ExtendArgument
: {
934 Type
*Ty
= Tys
[D
.getArgumentNumber()];
935 if (VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
936 return VectorType::getExtendedElementVectorType(VTy
);
938 return IntegerType::get(Context
, 2 * cast
<IntegerType
>(Ty
)->getBitWidth());
940 case IITDescriptor::TruncArgument
: {
941 Type
*Ty
= Tys
[D
.getArgumentNumber()];
942 if (VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
943 return VectorType::getTruncatedElementVectorType(VTy
);
945 IntegerType
*ITy
= cast
<IntegerType
>(Ty
);
946 assert(ITy
->getBitWidth() % 2 == 0);
947 return IntegerType::get(Context
, ITy
->getBitWidth() / 2);
949 case IITDescriptor::HalfVecArgument
:
950 return VectorType::getHalfElementsVectorType(cast
<VectorType
>(
951 Tys
[D
.getArgumentNumber()]));
952 case IITDescriptor::SameVecWidthArgument
: {
953 Type
*EltTy
= DecodeFixedType(Infos
, Tys
, Context
);
954 Type
*Ty
= Tys
[D
.getArgumentNumber()];
955 if (auto *VTy
= dyn_cast
<VectorType
>(Ty
))
956 return VectorType::get(EltTy
, VTy
->getNumElements());
959 case IITDescriptor::PtrToArgument
: {
960 Type
*Ty
= Tys
[D
.getArgumentNumber()];
961 return PointerType::getUnqual(Ty
);
963 case IITDescriptor::PtrToElt
: {
964 Type
*Ty
= Tys
[D
.getArgumentNumber()];
965 VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
);
967 llvm_unreachable("Expected an argument of Vector Type");
968 Type
*EltTy
= VTy
->getVectorElementType();
969 return PointerType::getUnqual(EltTy
);
971 case IITDescriptor::VecOfAnyPtrsToElt
:
972 // Return the overloaded type (which determines the pointers address space)
973 return Tys
[D
.getOverloadArgNumber()];
975 llvm_unreachable("unhandled");
978 FunctionType
*Intrinsic::getType(LLVMContext
&Context
,
979 ID id
, ArrayRef
<Type
*> Tys
) {
980 SmallVector
<IITDescriptor
, 8> Table
;
981 getIntrinsicInfoTableEntries(id
, Table
);
983 ArrayRef
<IITDescriptor
> TableRef
= Table
;
984 Type
*ResultTy
= DecodeFixedType(TableRef
, Tys
, Context
);
986 SmallVector
<Type
*, 8> ArgTys
;
987 while (!TableRef
.empty())
988 ArgTys
.push_back(DecodeFixedType(TableRef
, Tys
, Context
));
990 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
991 // If we see void type as the type of the last argument, it is vararg intrinsic
992 if (!ArgTys
.empty() && ArgTys
.back()->isVoidTy()) {
994 return FunctionType::get(ResultTy
, ArgTys
, true);
996 return FunctionType::get(ResultTy
, ArgTys
, false);
999 bool Intrinsic::isOverloaded(ID id
) {
1000 #define GET_INTRINSIC_OVERLOAD_TABLE
1001 #include "llvm/IR/IntrinsicImpl.inc"
1002 #undef GET_INTRINSIC_OVERLOAD_TABLE
1005 bool Intrinsic::isLeaf(ID id
) {
1010 case Intrinsic::experimental_gc_statepoint
:
1011 case Intrinsic::experimental_patchpoint_void
:
1012 case Intrinsic::experimental_patchpoint_i64
:
1017 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1018 #define GET_INTRINSIC_ATTRIBUTES
1019 #include "llvm/IR/IntrinsicImpl.inc"
1020 #undef GET_INTRINSIC_ATTRIBUTES
1022 Function
*Intrinsic::getDeclaration(Module
*M
, ID id
, ArrayRef
<Type
*> Tys
) {
1023 // There can never be multiple globals with the same name of different types,
1024 // because intrinsics must be a specific type.
1025 return cast
<Function
>(
1026 M
->getOrInsertFunction(getName(id
, Tys
),
1027 getType(M
->getContext(), id
, Tys
))
1031 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1032 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1033 #include "llvm/IR/IntrinsicImpl.inc"
1034 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1036 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1037 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1038 #include "llvm/IR/IntrinsicImpl.inc"
1039 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1041 bool Intrinsic::matchIntrinsicType(Type
*Ty
, ArrayRef
<Intrinsic::IITDescriptor
> &Infos
,
1042 SmallVectorImpl
<Type
*> &ArgTys
) {
1043 using namespace Intrinsic
;
1045 // If we ran out of descriptors, there are too many arguments.
1046 if (Infos
.empty()) return true;
1047 IITDescriptor D
= Infos
.front();
1048 Infos
= Infos
.slice(1);
1051 case IITDescriptor::Void
: return !Ty
->isVoidTy();
1052 case IITDescriptor::VarArg
: return true;
1053 case IITDescriptor::MMX
: return !Ty
->isX86_MMXTy();
1054 case IITDescriptor::Token
: return !Ty
->isTokenTy();
1055 case IITDescriptor::Metadata
: return !Ty
->isMetadataTy();
1056 case IITDescriptor::Half
: return !Ty
->isHalfTy();
1057 case IITDescriptor::Float
: return !Ty
->isFloatTy();
1058 case IITDescriptor::Double
: return !Ty
->isDoubleTy();
1059 case IITDescriptor::Quad
: return !Ty
->isFP128Ty();
1060 case IITDescriptor::Integer
: return !Ty
->isIntegerTy(D
.Integer_Width
);
1061 case IITDescriptor::Vector
: {
1062 VectorType
*VT
= dyn_cast
<VectorType
>(Ty
);
1063 return !VT
|| VT
->getNumElements() != D
.Vector_Width
||
1064 matchIntrinsicType(VT
->getElementType(), Infos
, ArgTys
);
1066 case IITDescriptor::Pointer
: {
1067 PointerType
*PT
= dyn_cast
<PointerType
>(Ty
);
1068 return !PT
|| PT
->getAddressSpace() != D
.Pointer_AddressSpace
||
1069 matchIntrinsicType(PT
->getElementType(), Infos
, ArgTys
);
1072 case IITDescriptor::Struct
: {
1073 StructType
*ST
= dyn_cast
<StructType
>(Ty
);
1074 if (!ST
|| ST
->getNumElements() != D
.Struct_NumElements
)
1077 for (unsigned i
= 0, e
= D
.Struct_NumElements
; i
!= e
; ++i
)
1078 if (matchIntrinsicType(ST
->getElementType(i
), Infos
, ArgTys
))
1083 case IITDescriptor::Argument
:
1084 // Two cases here - If this is the second occurrence of an argument, verify
1085 // that the later instance matches the previous instance.
1086 if (D
.getArgumentNumber() < ArgTys
.size())
1087 return Ty
!= ArgTys
[D
.getArgumentNumber()];
1089 // Otherwise, if this is the first instance of an argument, record it and
1090 // verify the "Any" kind.
1091 assert(D
.getArgumentNumber() == ArgTys
.size() && "Table consistency error");
1092 ArgTys
.push_back(Ty
);
1094 switch (D
.getArgumentKind()) {
1095 case IITDescriptor::AK_Any
: return false; // Success
1096 case IITDescriptor::AK_AnyInteger
: return !Ty
->isIntOrIntVectorTy();
1097 case IITDescriptor::AK_AnyFloat
: return !Ty
->isFPOrFPVectorTy();
1098 case IITDescriptor::AK_AnyVector
: return !isa
<VectorType
>(Ty
);
1099 case IITDescriptor::AK_AnyPointer
: return !isa
<PointerType
>(Ty
);
1101 llvm_unreachable("all argument kinds not covered");
1103 case IITDescriptor::ExtendArgument
: {
1104 // This may only be used when referring to a previous vector argument.
1105 if (D
.getArgumentNumber() >= ArgTys
.size())
1108 Type
*NewTy
= ArgTys
[D
.getArgumentNumber()];
1109 if (VectorType
*VTy
= dyn_cast
<VectorType
>(NewTy
))
1110 NewTy
= VectorType::getExtendedElementVectorType(VTy
);
1111 else if (IntegerType
*ITy
= dyn_cast
<IntegerType
>(NewTy
))
1112 NewTy
= IntegerType::get(ITy
->getContext(), 2 * ITy
->getBitWidth());
1118 case IITDescriptor::TruncArgument
: {
1119 // This may only be used when referring to a previous vector argument.
1120 if (D
.getArgumentNumber() >= ArgTys
.size())
1123 Type
*NewTy
= ArgTys
[D
.getArgumentNumber()];
1124 if (VectorType
*VTy
= dyn_cast
<VectorType
>(NewTy
))
1125 NewTy
= VectorType::getTruncatedElementVectorType(VTy
);
1126 else if (IntegerType
*ITy
= dyn_cast
<IntegerType
>(NewTy
))
1127 NewTy
= IntegerType::get(ITy
->getContext(), ITy
->getBitWidth() / 2);
1133 case IITDescriptor::HalfVecArgument
:
1134 // This may only be used when referring to a previous vector argument.
1135 return D
.getArgumentNumber() >= ArgTys
.size() ||
1136 !isa
<VectorType
>(ArgTys
[D
.getArgumentNumber()]) ||
1137 VectorType::getHalfElementsVectorType(
1138 cast
<VectorType
>(ArgTys
[D
.getArgumentNumber()])) != Ty
;
1139 case IITDescriptor::SameVecWidthArgument
: {
1140 if (D
.getArgumentNumber() >= ArgTys
.size())
1142 auto *ReferenceType
= dyn_cast
<VectorType
>(ArgTys
[D
.getArgumentNumber()]);
1143 auto *ThisArgType
= dyn_cast
<VectorType
>(Ty
);
1144 // Both must be vectors of the same number of elements or neither.
1145 if ((ReferenceType
!= nullptr) != (ThisArgType
!= nullptr))
1149 if (ReferenceType
->getVectorNumElements() !=
1150 ThisArgType
->getVectorNumElements())
1152 EltTy
= ThisArgType
->getVectorElementType();
1154 return matchIntrinsicType(EltTy
, Infos
, ArgTys
);
1156 case IITDescriptor::PtrToArgument
: {
1157 if (D
.getArgumentNumber() >= ArgTys
.size())
1159 Type
* ReferenceType
= ArgTys
[D
.getArgumentNumber()];
1160 PointerType
*ThisArgType
= dyn_cast
<PointerType
>(Ty
);
1161 return (!ThisArgType
|| ThisArgType
->getElementType() != ReferenceType
);
1163 case IITDescriptor::PtrToElt
: {
1164 if (D
.getArgumentNumber() >= ArgTys
.size())
1166 VectorType
* ReferenceType
=
1167 dyn_cast
<VectorType
> (ArgTys
[D
.getArgumentNumber()]);
1168 PointerType
*ThisArgType
= dyn_cast
<PointerType
>(Ty
);
1170 return (!ThisArgType
|| !ReferenceType
||
1171 ThisArgType
->getElementType() != ReferenceType
->getElementType());
1173 case IITDescriptor::VecOfAnyPtrsToElt
: {
1174 unsigned RefArgNumber
= D
.getRefArgNumber();
1176 // This may only be used when referring to a previous argument.
1177 if (RefArgNumber
>= ArgTys
.size())
1180 // Record the overloaded type
1181 assert(D
.getOverloadArgNumber() == ArgTys
.size() &&
1182 "Table consistency error");
1183 ArgTys
.push_back(Ty
);
1185 // Verify the overloaded type "matches" the Ref type.
1186 // i.e. Ty is a vector with the same width as Ref.
1187 // Composed of pointers to the same element type as Ref.
1188 VectorType
*ReferenceType
= dyn_cast
<VectorType
>(ArgTys
[RefArgNumber
]);
1189 VectorType
*ThisArgVecTy
= dyn_cast
<VectorType
>(Ty
);
1190 if (!ThisArgVecTy
|| !ReferenceType
||
1191 (ReferenceType
->getVectorNumElements() !=
1192 ThisArgVecTy
->getVectorNumElements()))
1194 PointerType
*ThisArgEltTy
=
1195 dyn_cast
<PointerType
>(ThisArgVecTy
->getVectorElementType());
1198 return ThisArgEltTy
->getElementType() !=
1199 ReferenceType
->getVectorElementType();
1202 llvm_unreachable("unhandled");
1206 Intrinsic::matchIntrinsicVarArg(bool isVarArg
,
1207 ArrayRef
<Intrinsic::IITDescriptor
> &Infos
) {
1208 // If there are no descriptors left, then it can't be a vararg.
1212 // There should be only one descriptor remaining at this point.
1213 if (Infos
.size() != 1)
1216 // Check and verify the descriptor.
1217 IITDescriptor D
= Infos
.front();
1218 Infos
= Infos
.slice(1);
1219 if (D
.Kind
== IITDescriptor::VarArg
)
1225 Optional
<Function
*> Intrinsic::remangleIntrinsicFunction(Function
*F
) {
1226 Intrinsic::ID ID
= F
->getIntrinsicID();
1230 FunctionType
*FTy
= F
->getFunctionType();
1231 // Accumulate an array of overloaded types for the given intrinsic
1232 SmallVector
<Type
*, 4> ArgTys
;
1234 SmallVector
<Intrinsic::IITDescriptor
, 8> Table
;
1235 getIntrinsicInfoTableEntries(ID
, Table
);
1236 ArrayRef
<Intrinsic::IITDescriptor
> TableRef
= Table
;
1238 // If we encounter any problems matching the signature with the descriptor
1239 // just give up remangling. It's up to verifier to report the discrepancy.
1240 if (Intrinsic::matchIntrinsicType(FTy
->getReturnType(), TableRef
, ArgTys
))
1242 for (auto Ty
: FTy
->params())
1243 if (Intrinsic::matchIntrinsicType(Ty
, TableRef
, ArgTys
))
1245 if (Intrinsic::matchIntrinsicVarArg(FTy
->isVarArg(), TableRef
))
1249 StringRef Name
= F
->getName();
1250 if (Name
== Intrinsic::getName(ID
, ArgTys
))
1253 auto NewDecl
= Intrinsic::getDeclaration(F
->getParent(), ID
, ArgTys
);
1254 NewDecl
->setCallingConv(F
->getCallingConv());
1255 assert(NewDecl
->getFunctionType() == FTy
&& "Shouldn't change the signature");
1259 /// hasAddressTaken - returns true if there are any uses of this function
1260 /// other than direct calls or invokes to it.
1261 bool Function::hasAddressTaken(const User
* *PutOffender
) const {
1262 for (const Use
&U
: uses()) {
1263 const User
*FU
= U
.getUser();
1264 if (isa
<BlockAddress
>(FU
))
1266 const auto *Call
= dyn_cast
<CallBase
>(FU
);
1272 if (!Call
->isCallee(&U
)) {
1281 bool Function::isDefTriviallyDead() const {
1282 // Check the linkage
1283 if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1284 !hasAvailableExternallyLinkage())
1287 // Check if the function is used by anything other than a blockaddress.
1288 for (const User
*U
: users())
1289 if (!isa
<BlockAddress
>(U
))
1295 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1296 /// setjmp or other function that gcc recognizes as "returning twice".
1297 bool Function::callsFunctionThatReturnsTwice() const {
1298 for (const Instruction
&I
: instructions(this))
1299 if (const auto *Call
= dyn_cast
<CallBase
>(&I
))
1300 if (Call
->hasFnAttr(Attribute::ReturnsTwice
))
1306 Constant
*Function::getPersonalityFn() const {
1307 assert(hasPersonalityFn() && getNumOperands());
1308 return cast
<Constant
>(Op
<0>());
1311 void Function::setPersonalityFn(Constant
*Fn
) {
1312 setHungoffOperand
<0>(Fn
);
1313 setValueSubclassDataBit(3, Fn
!= nullptr);
1316 Constant
*Function::getPrefixData() const {
1317 assert(hasPrefixData() && getNumOperands());
1318 return cast
<Constant
>(Op
<1>());
1321 void Function::setPrefixData(Constant
*PrefixData
) {
1322 setHungoffOperand
<1>(PrefixData
);
1323 setValueSubclassDataBit(1, PrefixData
!= nullptr);
1326 Constant
*Function::getPrologueData() const {
1327 assert(hasPrologueData() && getNumOperands());
1328 return cast
<Constant
>(Op
<2>());
1331 void Function::setPrologueData(Constant
*PrologueData
) {
1332 setHungoffOperand
<2>(PrologueData
);
1333 setValueSubclassDataBit(2, PrologueData
!= nullptr);
1336 void Function::allocHungoffUselist() {
1337 // If we've already allocated a uselist, stop here.
1338 if (getNumOperands())
1341 allocHungoffUses(3, /*IsPhi=*/ false);
1342 setNumHungOffUseOperands(3);
1344 // Initialize the uselist with placeholder operands to allow traversal.
1345 auto *CPN
= ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1352 void Function::setHungoffOperand(Constant
*C
) {
1354 allocHungoffUselist();
1356 } else if (getNumOperands()) {
1358 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1362 void Function::setValueSubclassDataBit(unsigned Bit
, bool On
) {
1363 assert(Bit
< 16 && "SubclassData contains only 16 bits");
1365 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit
));
1367 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit
));
1370 void Function::setEntryCount(ProfileCount Count
,
1371 const DenseSet
<GlobalValue::GUID
> *S
) {
1372 assert(Count
.hasValue());
1373 #if !defined(NDEBUG)
1374 auto PrevCount
= getEntryCount();
1375 assert(!PrevCount
.hasValue() || PrevCount
.getType() == Count
.getType());
1377 MDBuilder
MDB(getContext());
1379 LLVMContext::MD_prof
,
1380 MDB
.createFunctionEntryCount(Count
.getCount(), Count
.isSynthetic(), S
));
1383 void Function::setEntryCount(uint64_t Count
, Function::ProfileCountType Type
,
1384 const DenseSet
<GlobalValue::GUID
> *Imports
) {
1385 setEntryCount(ProfileCount(Count
, Type
), Imports
);
1388 ProfileCount
Function::getEntryCount(bool AllowSynthetic
) const {
1389 MDNode
*MD
= getMetadata(LLVMContext::MD_prof
);
1390 if (MD
&& MD
->getOperand(0))
1391 if (MDString
*MDS
= dyn_cast
<MDString
>(MD
->getOperand(0))) {
1392 if (MDS
->getString().equals("function_entry_count")) {
1393 ConstantInt
*CI
= mdconst::extract
<ConstantInt
>(MD
->getOperand(1));
1394 uint64_t Count
= CI
->getValue().getZExtValue();
1395 // A value of -1 is used for SamplePGO when there were no samples.
1396 // Treat this the same as unknown.
1397 if (Count
== (uint64_t)-1)
1398 return ProfileCount::getInvalid();
1399 return ProfileCount(Count
, PCT_Real
);
1400 } else if (AllowSynthetic
&&
1401 MDS
->getString().equals("synthetic_function_entry_count")) {
1402 ConstantInt
*CI
= mdconst::extract
<ConstantInt
>(MD
->getOperand(1));
1403 uint64_t Count
= CI
->getValue().getZExtValue();
1404 return ProfileCount(Count
, PCT_Synthetic
);
1407 return ProfileCount::getInvalid();
1410 DenseSet
<GlobalValue::GUID
> Function::getImportGUIDs() const {
1411 DenseSet
<GlobalValue::GUID
> R
;
1412 if (MDNode
*MD
= getMetadata(LLVMContext::MD_prof
))
1413 if (MDString
*MDS
= dyn_cast
<MDString
>(MD
->getOperand(0)))
1414 if (MDS
->getString().equals("function_entry_count"))
1415 for (unsigned i
= 2; i
< MD
->getNumOperands(); i
++)
1416 R
.insert(mdconst::extract
<ConstantInt
>(MD
->getOperand(i
))
1422 void Function::setSectionPrefix(StringRef Prefix
) {
1423 MDBuilder
MDB(getContext());
1424 setMetadata(LLVMContext::MD_section_prefix
,
1425 MDB
.createFunctionSectionPrefix(Prefix
));
1428 Optional
<StringRef
> Function::getSectionPrefix() const {
1429 if (MDNode
*MD
= getMetadata(LLVMContext::MD_section_prefix
)) {
1430 assert(cast
<MDString
>(MD
->getOperand(0))
1432 .equals("function_section_prefix") &&
1433 "Metadata not match");
1434 return cast
<MDString
>(MD
->getOperand(1))->getString();
1439 bool Function::nullPointerIsDefined() const {
1440 return getFnAttribute("null-pointer-is-valid")
1445 bool llvm::NullPointerIsDefined(const Function
*F
, unsigned AS
) {
1446 if (F
&& F
->nullPointerIsDefined())