Another attempt to fix the build bot breaks after r360426
[llvm-core.git] / lib / IR / Instructions.cpp
blob9dc753e960c5b6a662c75dde285eb913c2166002
1 //===- Instructions.cpp - Implement the LLVM instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements all of the non-inline methods for the LLVM instruction
10 // classes.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/IR/Instructions.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/IR/Attributes.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/CallSite.h"
22 #include "llvm/IR/Constant.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/MDBuilder.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/Support/AtomicOrdering.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/MathExtras.h"
41 #include <algorithm>
42 #include <cassert>
43 #include <cstdint>
44 #include <vector>
46 using namespace llvm;
48 //===----------------------------------------------------------------------===//
49 // AllocaInst Class
50 //===----------------------------------------------------------------------===//
52 Optional<uint64_t>
53 AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const {
54 uint64_t Size = DL.getTypeAllocSizeInBits(getAllocatedType());
55 if (isArrayAllocation()) {
56 auto C = dyn_cast<ConstantInt>(getArraySize());
57 if (!C)
58 return None;
59 Size *= C->getZExtValue();
61 return Size;
64 //===----------------------------------------------------------------------===//
65 // CallSite Class
66 //===----------------------------------------------------------------------===//
68 User::op_iterator CallSite::getCallee() const {
69 return cast<CallBase>(getInstruction())->op_end() - 1;
72 //===----------------------------------------------------------------------===//
73 // SelectInst Class
74 //===----------------------------------------------------------------------===//
76 /// areInvalidOperands - Return a string if the specified operands are invalid
77 /// for a select operation, otherwise return null.
78 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
79 if (Op1->getType() != Op2->getType())
80 return "both values to select must have same type";
82 if (Op1->getType()->isTokenTy())
83 return "select values cannot have token type";
85 if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
86 // Vector select.
87 if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
88 return "vector select condition element type must be i1";
89 VectorType *ET = dyn_cast<VectorType>(Op1->getType());
90 if (!ET)
91 return "selected values for vector select must be vectors";
92 if (ET->getNumElements() != VT->getNumElements())
93 return "vector select requires selected vectors to have "
94 "the same vector length as select condition";
95 } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
96 return "select condition must be i1 or <n x i1>";
98 return nullptr;
101 //===----------------------------------------------------------------------===//
102 // PHINode Class
103 //===----------------------------------------------------------------------===//
105 PHINode::PHINode(const PHINode &PN)
106 : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
107 ReservedSpace(PN.getNumOperands()) {
108 allocHungoffUses(PN.getNumOperands());
109 std::copy(PN.op_begin(), PN.op_end(), op_begin());
110 std::copy(PN.block_begin(), PN.block_end(), block_begin());
111 SubclassOptionalData = PN.SubclassOptionalData;
114 // removeIncomingValue - Remove an incoming value. This is useful if a
115 // predecessor basic block is deleted.
116 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
117 Value *Removed = getIncomingValue(Idx);
119 // Move everything after this operand down.
121 // FIXME: we could just swap with the end of the list, then erase. However,
122 // clients might not expect this to happen. The code as it is thrashes the
123 // use/def lists, which is kinda lame.
124 std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
125 std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
127 // Nuke the last value.
128 Op<-1>().set(nullptr);
129 setNumHungOffUseOperands(getNumOperands() - 1);
131 // If the PHI node is dead, because it has zero entries, nuke it now.
132 if (getNumOperands() == 0 && DeletePHIIfEmpty) {
133 // If anyone is using this PHI, make them use a dummy value instead...
134 replaceAllUsesWith(UndefValue::get(getType()));
135 eraseFromParent();
137 return Removed;
140 /// growOperands - grow operands - This grows the operand list in response
141 /// to a push_back style of operation. This grows the number of ops by 1.5
142 /// times.
144 void PHINode::growOperands() {
145 unsigned e = getNumOperands();
146 unsigned NumOps = e + e / 2;
147 if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common.
149 ReservedSpace = NumOps;
150 growHungoffUses(ReservedSpace, /* IsPhi */ true);
153 /// hasConstantValue - If the specified PHI node always merges together the same
154 /// value, return the value, otherwise return null.
155 Value *PHINode::hasConstantValue() const {
156 // Exploit the fact that phi nodes always have at least one entry.
157 Value *ConstantValue = getIncomingValue(0);
158 for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
159 if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
160 if (ConstantValue != this)
161 return nullptr; // Incoming values not all the same.
162 // The case where the first value is this PHI.
163 ConstantValue = getIncomingValue(i);
165 if (ConstantValue == this)
166 return UndefValue::get(getType());
167 return ConstantValue;
170 /// hasConstantOrUndefValue - Whether the specified PHI node always merges
171 /// together the same value, assuming that undefs result in the same value as
172 /// non-undefs.
173 /// Unlike \ref hasConstantValue, this does not return a value because the
174 /// unique non-undef incoming value need not dominate the PHI node.
175 bool PHINode::hasConstantOrUndefValue() const {
176 Value *ConstantValue = nullptr;
177 for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) {
178 Value *Incoming = getIncomingValue(i);
179 if (Incoming != this && !isa<UndefValue>(Incoming)) {
180 if (ConstantValue && ConstantValue != Incoming)
181 return false;
182 ConstantValue = Incoming;
185 return true;
188 //===----------------------------------------------------------------------===//
189 // LandingPadInst Implementation
190 //===----------------------------------------------------------------------===//
192 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
193 const Twine &NameStr, Instruction *InsertBefore)
194 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
195 init(NumReservedValues, NameStr);
198 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
199 const Twine &NameStr, BasicBlock *InsertAtEnd)
200 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
201 init(NumReservedValues, NameStr);
204 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
205 : Instruction(LP.getType(), Instruction::LandingPad, nullptr,
206 LP.getNumOperands()),
207 ReservedSpace(LP.getNumOperands()) {
208 allocHungoffUses(LP.getNumOperands());
209 Use *OL = getOperandList();
210 const Use *InOL = LP.getOperandList();
211 for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
212 OL[I] = InOL[I];
214 setCleanup(LP.isCleanup());
217 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
218 const Twine &NameStr,
219 Instruction *InsertBefore) {
220 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
223 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
224 const Twine &NameStr,
225 BasicBlock *InsertAtEnd) {
226 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd);
229 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
230 ReservedSpace = NumReservedValues;
231 setNumHungOffUseOperands(0);
232 allocHungoffUses(ReservedSpace);
233 setName(NameStr);
234 setCleanup(false);
237 /// growOperands - grow operands - This grows the operand list in response to a
238 /// push_back style of operation. This grows the number of ops by 2 times.
239 void LandingPadInst::growOperands(unsigned Size) {
240 unsigned e = getNumOperands();
241 if (ReservedSpace >= e + Size) return;
242 ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
243 growHungoffUses(ReservedSpace);
246 void LandingPadInst::addClause(Constant *Val) {
247 unsigned OpNo = getNumOperands();
248 growOperands(1);
249 assert(OpNo < ReservedSpace && "Growing didn't work!");
250 setNumHungOffUseOperands(getNumOperands() + 1);
251 getOperandList()[OpNo] = Val;
254 //===----------------------------------------------------------------------===//
255 // CallBase Implementation
256 //===----------------------------------------------------------------------===//
258 Function *CallBase::getCaller() { return getParent()->getParent(); }
260 unsigned CallBase::getNumSubclassExtraOperandsDynamic() const {
261 assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!");
262 return cast<CallBrInst>(this)->getNumIndirectDests() + 1;
265 bool CallBase::isIndirectCall() const {
266 const Value *V = getCalledValue();
267 if (isa<Function>(V) || isa<Constant>(V))
268 return false;
269 if (const CallInst *CI = dyn_cast<CallInst>(this))
270 if (CI->isInlineAsm())
271 return false;
272 return true;
275 /// Tests if this call site must be tail call optimized. Only a CallInst can
276 /// be tail call optimized.
277 bool CallBase::isMustTailCall() const {
278 if (auto *CI = dyn_cast<CallInst>(this))
279 return CI->isMustTailCall();
280 return false;
283 /// Tests if this call site is marked as a tail call.
284 bool CallBase::isTailCall() const {
285 if (auto *CI = dyn_cast<CallInst>(this))
286 return CI->isTailCall();
287 return false;
290 Intrinsic::ID CallBase::getIntrinsicID() const {
291 if (auto *F = getCalledFunction())
292 return F->getIntrinsicID();
293 return Intrinsic::not_intrinsic;
296 bool CallBase::isReturnNonNull() const {
297 if (hasRetAttr(Attribute::NonNull))
298 return true;
300 if (getDereferenceableBytes(AttributeList::ReturnIndex) > 0 &&
301 !NullPointerIsDefined(getCaller(),
302 getType()->getPointerAddressSpace()))
303 return true;
305 return false;
308 Value *CallBase::getReturnedArgOperand() const {
309 unsigned Index;
311 if (Attrs.hasAttrSomewhere(Attribute::Returned, &Index) && Index)
312 return getArgOperand(Index - AttributeList::FirstArgIndex);
313 if (const Function *F = getCalledFunction())
314 if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) &&
315 Index)
316 return getArgOperand(Index - AttributeList::FirstArgIndex);
318 return nullptr;
321 bool CallBase::hasRetAttr(Attribute::AttrKind Kind) const {
322 if (Attrs.hasAttribute(AttributeList::ReturnIndex, Kind))
323 return true;
325 // Look at the callee, if available.
326 if (const Function *F = getCalledFunction())
327 return F->getAttributes().hasAttribute(AttributeList::ReturnIndex, Kind);
328 return false;
331 /// Determine whether the argument or parameter has the given attribute.
332 bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
333 assert(ArgNo < getNumArgOperands() && "Param index out of bounds!");
335 if (Attrs.hasParamAttribute(ArgNo, Kind))
336 return true;
337 if (const Function *F = getCalledFunction())
338 return F->getAttributes().hasParamAttribute(ArgNo, Kind);
339 return false;
342 bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const {
343 if (const Function *F = getCalledFunction())
344 return F->getAttributes().hasAttribute(AttributeList::FunctionIndex, Kind);
345 return false;
348 bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const {
349 if (const Function *F = getCalledFunction())
350 return F->getAttributes().hasAttribute(AttributeList::FunctionIndex, Kind);
351 return false;
354 CallBase::op_iterator
355 CallBase::populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,
356 const unsigned BeginIndex) {
357 auto It = op_begin() + BeginIndex;
358 for (auto &B : Bundles)
359 It = std::copy(B.input_begin(), B.input_end(), It);
361 auto *ContextImpl = getContext().pImpl;
362 auto BI = Bundles.begin();
363 unsigned CurrentIndex = BeginIndex;
365 for (auto &BOI : bundle_op_infos()) {
366 assert(BI != Bundles.end() && "Incorrect allocation?");
368 BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
369 BOI.Begin = CurrentIndex;
370 BOI.End = CurrentIndex + BI->input_size();
371 CurrentIndex = BOI.End;
372 BI++;
375 assert(BI == Bundles.end() && "Incorrect allocation?");
377 return It;
380 //===----------------------------------------------------------------------===//
381 // CallInst Implementation
382 //===----------------------------------------------------------------------===//
384 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
385 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
386 this->FTy = FTy;
387 assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&
388 "NumOperands not set up?");
389 setCalledOperand(Func);
391 #ifndef NDEBUG
392 assert((Args.size() == FTy->getNumParams() ||
393 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
394 "Calling a function with bad signature!");
396 for (unsigned i = 0; i != Args.size(); ++i)
397 assert((i >= FTy->getNumParams() ||
398 FTy->getParamType(i) == Args[i]->getType()) &&
399 "Calling a function with a bad signature!");
400 #endif
402 llvm::copy(Args, op_begin());
404 auto It = populateBundleOperandInfos(Bundles, Args.size());
405 (void)It;
406 assert(It + 1 == op_end() && "Should add up!");
408 setName(NameStr);
411 void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) {
412 this->FTy = FTy;
413 assert(getNumOperands() == 1 && "NumOperands not set up?");
414 setCalledOperand(Func);
416 assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
418 setName(NameStr);
421 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
422 Instruction *InsertBefore)
423 : CallBase(Ty->getReturnType(), Instruction::Call,
424 OperandTraits<CallBase>::op_end(this) - 1, 1, InsertBefore) {
425 init(Ty, Func, Name);
428 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
429 BasicBlock *InsertAtEnd)
430 : CallBase(Ty->getReturnType(), Instruction::Call,
431 OperandTraits<CallBase>::op_end(this) - 1, 1, InsertAtEnd) {
432 init(Ty, Func, Name);
435 CallInst::CallInst(const CallInst &CI)
436 : CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call,
437 OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(),
438 CI.getNumOperands()) {
439 setTailCallKind(CI.getTailCallKind());
440 setCallingConv(CI.getCallingConv());
442 std::copy(CI.op_begin(), CI.op_end(), op_begin());
443 std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(),
444 bundle_op_info_begin());
445 SubclassOptionalData = CI.SubclassOptionalData;
448 CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB,
449 Instruction *InsertPt) {
450 std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
452 auto *NewCI = CallInst::Create(CI->getFunctionType(), CI->getCalledValue(),
453 Args, OpB, CI->getName(), InsertPt);
454 NewCI->setTailCallKind(CI->getTailCallKind());
455 NewCI->setCallingConv(CI->getCallingConv());
456 NewCI->SubclassOptionalData = CI->SubclassOptionalData;
457 NewCI->setAttributes(CI->getAttributes());
458 NewCI->setDebugLoc(CI->getDebugLoc());
459 return NewCI;
462 // Update profile weight for call instruction by scaling it using the ratio
463 // of S/T. The meaning of "branch_weights" meta data for call instruction is
464 // transfered to represent call count.
465 void CallInst::updateProfWeight(uint64_t S, uint64_t T) {
466 auto *ProfileData = getMetadata(LLVMContext::MD_prof);
467 if (ProfileData == nullptr)
468 return;
470 auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
471 if (!ProfDataName || (!ProfDataName->getString().equals("branch_weights") &&
472 !ProfDataName->getString().equals("VP")))
473 return;
475 if (T == 0) {
476 LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in "
477 "div by 0. Ignoring. Likely the function "
478 << getParent()->getParent()->getName()
479 << " has 0 entry count, and contains call instructions "
480 "with non-zero prof info.");
481 return;
484 MDBuilder MDB(getContext());
485 SmallVector<Metadata *, 3> Vals;
486 Vals.push_back(ProfileData->getOperand(0));
487 APInt APS(128, S), APT(128, T);
488 if (ProfDataName->getString().equals("branch_weights") &&
489 ProfileData->getNumOperands() > 0) {
490 // Using APInt::div may be expensive, but most cases should fit 64 bits.
491 APInt Val(128, mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1))
492 ->getValue()
493 .getZExtValue());
494 Val *= APS;
495 Vals.push_back(MDB.createConstant(ConstantInt::get(
496 Type::getInt64Ty(getContext()), Val.udiv(APT).getLimitedValue())));
497 } else if (ProfDataName->getString().equals("VP"))
498 for (unsigned i = 1; i < ProfileData->getNumOperands(); i += 2) {
499 // The first value is the key of the value profile, which will not change.
500 Vals.push_back(ProfileData->getOperand(i));
501 // Using APInt::div may be expensive, but most cases should fit 64 bits.
502 APInt Val(128,
503 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i + 1))
504 ->getValue()
505 .getZExtValue());
506 Val *= APS;
507 Vals.push_back(MDB.createConstant(
508 ConstantInt::get(Type::getInt64Ty(getContext()),
509 Val.udiv(APT).getLimitedValue())));
511 setMetadata(LLVMContext::MD_prof, MDNode::get(getContext(), Vals));
514 /// IsConstantOne - Return true only if val is constant int 1
515 static bool IsConstantOne(Value *val) {
516 assert(val && "IsConstantOne does not work with nullptr val");
517 const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
518 return CVal && CVal->isOne();
521 static Instruction *createMalloc(Instruction *InsertBefore,
522 BasicBlock *InsertAtEnd, Type *IntPtrTy,
523 Type *AllocTy, Value *AllocSize,
524 Value *ArraySize,
525 ArrayRef<OperandBundleDef> OpB,
526 Function *MallocF, const Twine &Name) {
527 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
528 "createMalloc needs either InsertBefore or InsertAtEnd");
530 // malloc(type) becomes:
531 // bitcast (i8* malloc(typeSize)) to type*
532 // malloc(type, arraySize) becomes:
533 // bitcast (i8* malloc(typeSize*arraySize)) to type*
534 if (!ArraySize)
535 ArraySize = ConstantInt::get(IntPtrTy, 1);
536 else if (ArraySize->getType() != IntPtrTy) {
537 if (InsertBefore)
538 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
539 "", InsertBefore);
540 else
541 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
542 "", InsertAtEnd);
545 if (!IsConstantOne(ArraySize)) {
546 if (IsConstantOne(AllocSize)) {
547 AllocSize = ArraySize; // Operand * 1 = Operand
548 } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
549 Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
550 false /*ZExt*/);
551 // Malloc arg is constant product of type size and array size
552 AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
553 } else {
554 // Multiply type size by the array size...
555 if (InsertBefore)
556 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
557 "mallocsize", InsertBefore);
558 else
559 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
560 "mallocsize", InsertAtEnd);
564 assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
565 // Create the call to Malloc.
566 BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
567 Module *M = BB->getParent()->getParent();
568 Type *BPTy = Type::getInt8PtrTy(BB->getContext());
569 FunctionCallee MallocFunc = MallocF;
570 if (!MallocFunc)
571 // prototype malloc as "void *malloc(size_t)"
572 MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy);
573 PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
574 CallInst *MCall = nullptr;
575 Instruction *Result = nullptr;
576 if (InsertBefore) {
577 MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall",
578 InsertBefore);
579 Result = MCall;
580 if (Result->getType() != AllocPtrType)
581 // Create a cast instruction to convert to the right type...
582 Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
583 } else {
584 MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall");
585 Result = MCall;
586 if (Result->getType() != AllocPtrType) {
587 InsertAtEnd->getInstList().push_back(MCall);
588 // Create a cast instruction to convert to the right type...
589 Result = new BitCastInst(MCall, AllocPtrType, Name);
592 MCall->setTailCall();
593 if (Function *F = dyn_cast<Function>(MallocFunc.getCallee())) {
594 MCall->setCallingConv(F->getCallingConv());
595 if (!F->returnDoesNotAlias())
596 F->setReturnDoesNotAlias();
598 assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
600 return Result;
603 /// CreateMalloc - Generate the IR for a call to malloc:
604 /// 1. Compute the malloc call's argument as the specified type's size,
605 /// possibly multiplied by the array size if the array size is not
606 /// constant 1.
607 /// 2. Call malloc with that argument.
608 /// 3. Bitcast the result of the malloc call to the specified type.
609 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
610 Type *IntPtrTy, Type *AllocTy,
611 Value *AllocSize, Value *ArraySize,
612 Function *MallocF,
613 const Twine &Name) {
614 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
615 ArraySize, None, MallocF, Name);
617 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
618 Type *IntPtrTy, Type *AllocTy,
619 Value *AllocSize, Value *ArraySize,
620 ArrayRef<OperandBundleDef> OpB,
621 Function *MallocF,
622 const Twine &Name) {
623 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
624 ArraySize, OpB, MallocF, Name);
627 /// CreateMalloc - Generate the IR for a call to malloc:
628 /// 1. Compute the malloc call's argument as the specified type's size,
629 /// possibly multiplied by the array size if the array size is not
630 /// constant 1.
631 /// 2. Call malloc with that argument.
632 /// 3. Bitcast the result of the malloc call to the specified type.
633 /// Note: This function does not add the bitcast to the basic block, that is the
634 /// responsibility of the caller.
635 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
636 Type *IntPtrTy, Type *AllocTy,
637 Value *AllocSize, Value *ArraySize,
638 Function *MallocF, const Twine &Name) {
639 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
640 ArraySize, None, MallocF, Name);
642 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
643 Type *IntPtrTy, Type *AllocTy,
644 Value *AllocSize, Value *ArraySize,
645 ArrayRef<OperandBundleDef> OpB,
646 Function *MallocF, const Twine &Name) {
647 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
648 ArraySize, OpB, MallocF, Name);
651 static Instruction *createFree(Value *Source,
652 ArrayRef<OperandBundleDef> Bundles,
653 Instruction *InsertBefore,
654 BasicBlock *InsertAtEnd) {
655 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
656 "createFree needs either InsertBefore or InsertAtEnd");
657 assert(Source->getType()->isPointerTy() &&
658 "Can not free something of nonpointer type!");
660 BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
661 Module *M = BB->getParent()->getParent();
663 Type *VoidTy = Type::getVoidTy(M->getContext());
664 Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
665 // prototype free as "void free(void*)"
666 FunctionCallee FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy);
667 CallInst *Result = nullptr;
668 Value *PtrCast = Source;
669 if (InsertBefore) {
670 if (Source->getType() != IntPtrTy)
671 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
672 Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore);
673 } else {
674 if (Source->getType() != IntPtrTy)
675 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
676 Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "");
678 Result->setTailCall();
679 if (Function *F = dyn_cast<Function>(FreeFunc.getCallee()))
680 Result->setCallingConv(F->getCallingConv());
682 return Result;
685 /// CreateFree - Generate the IR for a call to the builtin free function.
686 Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) {
687 return createFree(Source, None, InsertBefore, nullptr);
689 Instruction *CallInst::CreateFree(Value *Source,
690 ArrayRef<OperandBundleDef> Bundles,
691 Instruction *InsertBefore) {
692 return createFree(Source, Bundles, InsertBefore, nullptr);
695 /// CreateFree - Generate the IR for a call to the builtin free function.
696 /// Note: This function does not add the call to the basic block, that is the
697 /// responsibility of the caller.
698 Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) {
699 Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd);
700 assert(FreeCall && "CreateFree did not create a CallInst");
701 return FreeCall;
703 Instruction *CallInst::CreateFree(Value *Source,
704 ArrayRef<OperandBundleDef> Bundles,
705 BasicBlock *InsertAtEnd) {
706 Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd);
707 assert(FreeCall && "CreateFree did not create a CallInst");
708 return FreeCall;
711 //===----------------------------------------------------------------------===//
712 // InvokeInst Implementation
713 //===----------------------------------------------------------------------===//
715 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
716 BasicBlock *IfException, ArrayRef<Value *> Args,
717 ArrayRef<OperandBundleDef> Bundles,
718 const Twine &NameStr) {
719 this->FTy = FTy;
721 assert((int)getNumOperands() ==
722 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) &&
723 "NumOperands not set up?");
724 setNormalDest(IfNormal);
725 setUnwindDest(IfException);
726 setCalledOperand(Fn);
728 #ifndef NDEBUG
729 assert(((Args.size() == FTy->getNumParams()) ||
730 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
731 "Invoking a function with bad signature");
733 for (unsigned i = 0, e = Args.size(); i != e; i++)
734 assert((i >= FTy->getNumParams() ||
735 FTy->getParamType(i) == Args[i]->getType()) &&
736 "Invoking a function with a bad signature!");
737 #endif
739 llvm::copy(Args, op_begin());
741 auto It = populateBundleOperandInfos(Bundles, Args.size());
742 (void)It;
743 assert(It + 3 == op_end() && "Should add up!");
745 setName(NameStr);
748 InvokeInst::InvokeInst(const InvokeInst &II)
749 : CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke,
750 OperandTraits<CallBase>::op_end(this) - II.getNumOperands(),
751 II.getNumOperands()) {
752 setCallingConv(II.getCallingConv());
753 std::copy(II.op_begin(), II.op_end(), op_begin());
754 std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(),
755 bundle_op_info_begin());
756 SubclassOptionalData = II.SubclassOptionalData;
759 InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB,
760 Instruction *InsertPt) {
761 std::vector<Value *> Args(II->arg_begin(), II->arg_end());
763 auto *NewII = InvokeInst::Create(II->getFunctionType(), II->getCalledValue(),
764 II->getNormalDest(), II->getUnwindDest(),
765 Args, OpB, II->getName(), InsertPt);
766 NewII->setCallingConv(II->getCallingConv());
767 NewII->SubclassOptionalData = II->SubclassOptionalData;
768 NewII->setAttributes(II->getAttributes());
769 NewII->setDebugLoc(II->getDebugLoc());
770 return NewII;
774 LandingPadInst *InvokeInst::getLandingPadInst() const {
775 return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
778 //===----------------------------------------------------------------------===//
779 // CallBrInst Implementation
780 //===----------------------------------------------------------------------===//
782 void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough,
783 ArrayRef<BasicBlock *> IndirectDests,
784 ArrayRef<Value *> Args,
785 ArrayRef<OperandBundleDef> Bundles,
786 const Twine &NameStr) {
787 this->FTy = FTy;
789 assert((int)getNumOperands() ==
790 ComputeNumOperands(Args.size(), IndirectDests.size(),
791 CountBundleInputs(Bundles)) &&
792 "NumOperands not set up?");
793 NumIndirectDests = IndirectDests.size();
794 setDefaultDest(Fallthrough);
795 for (unsigned i = 0; i != NumIndirectDests; ++i)
796 setIndirectDest(i, IndirectDests[i]);
797 setCalledOperand(Fn);
799 #ifndef NDEBUG
800 assert(((Args.size() == FTy->getNumParams()) ||
801 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
802 "Calling a function with bad signature");
804 for (unsigned i = 0, e = Args.size(); i != e; i++)
805 assert((i >= FTy->getNumParams() ||
806 FTy->getParamType(i) == Args[i]->getType()) &&
807 "Calling a function with a bad signature!");
808 #endif
810 std::copy(Args.begin(), Args.end(), op_begin());
812 auto It = populateBundleOperandInfos(Bundles, Args.size());
813 (void)It;
814 assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!");
816 setName(NameStr);
819 CallBrInst::CallBrInst(const CallBrInst &CBI)
820 : CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr,
821 OperandTraits<CallBase>::op_end(this) - CBI.getNumOperands(),
822 CBI.getNumOperands()) {
823 setCallingConv(CBI.getCallingConv());
824 std::copy(CBI.op_begin(), CBI.op_end(), op_begin());
825 std::copy(CBI.bundle_op_info_begin(), CBI.bundle_op_info_end(),
826 bundle_op_info_begin());
827 SubclassOptionalData = CBI.SubclassOptionalData;
828 NumIndirectDests = CBI.NumIndirectDests;
831 CallBrInst *CallBrInst::Create(CallBrInst *CBI, ArrayRef<OperandBundleDef> OpB,
832 Instruction *InsertPt) {
833 std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end());
835 auto *NewCBI = CallBrInst::Create(CBI->getFunctionType(),
836 CBI->getCalledValue(),
837 CBI->getDefaultDest(),
838 CBI->getIndirectDests(),
839 Args, OpB, CBI->getName(), InsertPt);
840 NewCBI->setCallingConv(CBI->getCallingConv());
841 NewCBI->SubclassOptionalData = CBI->SubclassOptionalData;
842 NewCBI->setAttributes(CBI->getAttributes());
843 NewCBI->setDebugLoc(CBI->getDebugLoc());
844 NewCBI->NumIndirectDests = CBI->NumIndirectDests;
845 return NewCBI;
848 //===----------------------------------------------------------------------===//
849 // ReturnInst Implementation
850 //===----------------------------------------------------------------------===//
852 ReturnInst::ReturnInst(const ReturnInst &RI)
853 : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret,
854 OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(),
855 RI.getNumOperands()) {
856 if (RI.getNumOperands())
857 Op<0>() = RI.Op<0>();
858 SubclassOptionalData = RI.SubclassOptionalData;
861 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
862 : Instruction(Type::getVoidTy(C), Instruction::Ret,
863 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
864 InsertBefore) {
865 if (retVal)
866 Op<0>() = retVal;
869 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
870 : Instruction(Type::getVoidTy(C), Instruction::Ret,
871 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
872 InsertAtEnd) {
873 if (retVal)
874 Op<0>() = retVal;
877 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
878 : Instruction(Type::getVoidTy(Context), Instruction::Ret,
879 OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {}
881 //===----------------------------------------------------------------------===//
882 // ResumeInst Implementation
883 //===----------------------------------------------------------------------===//
885 ResumeInst::ResumeInst(const ResumeInst &RI)
886 : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume,
887 OperandTraits<ResumeInst>::op_begin(this), 1) {
888 Op<0>() = RI.Op<0>();
891 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
892 : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
893 OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
894 Op<0>() = Exn;
897 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
898 : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
899 OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
900 Op<0>() = Exn;
903 //===----------------------------------------------------------------------===//
904 // CleanupReturnInst Implementation
905 //===----------------------------------------------------------------------===//
907 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
908 : Instruction(CRI.getType(), Instruction::CleanupRet,
909 OperandTraits<CleanupReturnInst>::op_end(this) -
910 CRI.getNumOperands(),
911 CRI.getNumOperands()) {
912 setInstructionSubclassData(CRI.getSubclassDataFromInstruction());
913 Op<0>() = CRI.Op<0>();
914 if (CRI.hasUnwindDest())
915 Op<1>() = CRI.Op<1>();
918 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
919 if (UnwindBB)
920 setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
922 Op<0>() = CleanupPad;
923 if (UnwindBB)
924 Op<1>() = UnwindBB;
927 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
928 unsigned Values, Instruction *InsertBefore)
929 : Instruction(Type::getVoidTy(CleanupPad->getContext()),
930 Instruction::CleanupRet,
931 OperandTraits<CleanupReturnInst>::op_end(this) - Values,
932 Values, InsertBefore) {
933 init(CleanupPad, UnwindBB);
936 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
937 unsigned Values, BasicBlock *InsertAtEnd)
938 : Instruction(Type::getVoidTy(CleanupPad->getContext()),
939 Instruction::CleanupRet,
940 OperandTraits<CleanupReturnInst>::op_end(this) - Values,
941 Values, InsertAtEnd) {
942 init(CleanupPad, UnwindBB);
945 //===----------------------------------------------------------------------===//
946 // CatchReturnInst Implementation
947 //===----------------------------------------------------------------------===//
948 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
949 Op<0>() = CatchPad;
950 Op<1>() = BB;
953 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
954 : Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
955 OperandTraits<CatchReturnInst>::op_begin(this), 2) {
956 Op<0>() = CRI.Op<0>();
957 Op<1>() = CRI.Op<1>();
960 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
961 Instruction *InsertBefore)
962 : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
963 OperandTraits<CatchReturnInst>::op_begin(this), 2,
964 InsertBefore) {
965 init(CatchPad, BB);
968 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
969 BasicBlock *InsertAtEnd)
970 : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
971 OperandTraits<CatchReturnInst>::op_begin(this), 2,
972 InsertAtEnd) {
973 init(CatchPad, BB);
976 //===----------------------------------------------------------------------===//
977 // CatchSwitchInst Implementation
978 //===----------------------------------------------------------------------===//
980 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
981 unsigned NumReservedValues,
982 const Twine &NameStr,
983 Instruction *InsertBefore)
984 : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
985 InsertBefore) {
986 if (UnwindDest)
987 ++NumReservedValues;
988 init(ParentPad, UnwindDest, NumReservedValues + 1);
989 setName(NameStr);
992 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
993 unsigned NumReservedValues,
994 const Twine &NameStr, BasicBlock *InsertAtEnd)
995 : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
996 InsertAtEnd) {
997 if (UnwindDest)
998 ++NumReservedValues;
999 init(ParentPad, UnwindDest, NumReservedValues + 1);
1000 setName(NameStr);
1003 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
1004 : Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr,
1005 CSI.getNumOperands()) {
1006 init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
1007 setNumHungOffUseOperands(ReservedSpace);
1008 Use *OL = getOperandList();
1009 const Use *InOL = CSI.getOperandList();
1010 for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
1011 OL[I] = InOL[I];
1014 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
1015 unsigned NumReservedValues) {
1016 assert(ParentPad && NumReservedValues);
1018 ReservedSpace = NumReservedValues;
1019 setNumHungOffUseOperands(UnwindDest ? 2 : 1);
1020 allocHungoffUses(ReservedSpace);
1022 Op<0>() = ParentPad;
1023 if (UnwindDest) {
1024 setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
1025 setUnwindDest(UnwindDest);
1029 /// growOperands - grow operands - This grows the operand list in response to a
1030 /// push_back style of operation. This grows the number of ops by 2 times.
1031 void CatchSwitchInst::growOperands(unsigned Size) {
1032 unsigned NumOperands = getNumOperands();
1033 assert(NumOperands >= 1);
1034 if (ReservedSpace >= NumOperands + Size)
1035 return;
1036 ReservedSpace = (NumOperands + Size / 2) * 2;
1037 growHungoffUses(ReservedSpace);
1040 void CatchSwitchInst::addHandler(BasicBlock *Handler) {
1041 unsigned OpNo = getNumOperands();
1042 growOperands(1);
1043 assert(OpNo < ReservedSpace && "Growing didn't work!");
1044 setNumHungOffUseOperands(getNumOperands() + 1);
1045 getOperandList()[OpNo] = Handler;
1048 void CatchSwitchInst::removeHandler(handler_iterator HI) {
1049 // Move all subsequent handlers up one.
1050 Use *EndDst = op_end() - 1;
1051 for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
1052 *CurDst = *(CurDst + 1);
1053 // Null out the last handler use.
1054 *EndDst = nullptr;
1056 setNumHungOffUseOperands(getNumOperands() - 1);
1059 //===----------------------------------------------------------------------===//
1060 // FuncletPadInst Implementation
1061 //===----------------------------------------------------------------------===//
1062 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
1063 const Twine &NameStr) {
1064 assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?");
1065 llvm::copy(Args, op_begin());
1066 setParentPad(ParentPad);
1067 setName(NameStr);
1070 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI)
1071 : Instruction(FPI.getType(), FPI.getOpcode(),
1072 OperandTraits<FuncletPadInst>::op_end(this) -
1073 FPI.getNumOperands(),
1074 FPI.getNumOperands()) {
1075 std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
1076 setParentPad(FPI.getParentPad());
1079 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1080 ArrayRef<Value *> Args, unsigned Values,
1081 const Twine &NameStr, Instruction *InsertBefore)
1082 : Instruction(ParentPad->getType(), Op,
1083 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1084 InsertBefore) {
1085 init(ParentPad, Args, NameStr);
1088 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1089 ArrayRef<Value *> Args, unsigned Values,
1090 const Twine &NameStr, BasicBlock *InsertAtEnd)
1091 : Instruction(ParentPad->getType(), Op,
1092 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1093 InsertAtEnd) {
1094 init(ParentPad, Args, NameStr);
1097 //===----------------------------------------------------------------------===//
1098 // UnreachableInst Implementation
1099 //===----------------------------------------------------------------------===//
1101 UnreachableInst::UnreachableInst(LLVMContext &Context,
1102 Instruction *InsertBefore)
1103 : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1104 0, InsertBefore) {}
1105 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
1106 : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1107 0, InsertAtEnd) {}
1109 //===----------------------------------------------------------------------===//
1110 // BranchInst Implementation
1111 //===----------------------------------------------------------------------===//
1113 void BranchInst::AssertOK() {
1114 if (isConditional())
1115 assert(getCondition()->getType()->isIntegerTy(1) &&
1116 "May only branch on boolean predicates!");
1119 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
1120 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1121 OperandTraits<BranchInst>::op_end(this) - 1, 1,
1122 InsertBefore) {
1123 assert(IfTrue && "Branch destination may not be null!");
1124 Op<-1>() = IfTrue;
1127 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1128 Instruction *InsertBefore)
1129 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1130 OperandTraits<BranchInst>::op_end(this) - 3, 3,
1131 InsertBefore) {
1132 Op<-1>() = IfTrue;
1133 Op<-2>() = IfFalse;
1134 Op<-3>() = Cond;
1135 #ifndef NDEBUG
1136 AssertOK();
1137 #endif
1140 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
1141 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1142 OperandTraits<BranchInst>::op_end(this) - 1, 1, InsertAtEnd) {
1143 assert(IfTrue && "Branch destination may not be null!");
1144 Op<-1>() = IfTrue;
1147 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1148 BasicBlock *InsertAtEnd)
1149 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1150 OperandTraits<BranchInst>::op_end(this) - 3, 3, InsertAtEnd) {
1151 Op<-1>() = IfTrue;
1152 Op<-2>() = IfFalse;
1153 Op<-3>() = Cond;
1154 #ifndef NDEBUG
1155 AssertOK();
1156 #endif
1159 BranchInst::BranchInst(const BranchInst &BI)
1160 : Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br,
1161 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
1162 BI.getNumOperands()) {
1163 Op<-1>() = BI.Op<-1>();
1164 if (BI.getNumOperands() != 1) {
1165 assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
1166 Op<-3>() = BI.Op<-3>();
1167 Op<-2>() = BI.Op<-2>();
1169 SubclassOptionalData = BI.SubclassOptionalData;
1172 void BranchInst::swapSuccessors() {
1173 assert(isConditional() &&
1174 "Cannot swap successors of an unconditional branch");
1175 Op<-1>().swap(Op<-2>());
1177 // Update profile metadata if present and it matches our structural
1178 // expectations.
1179 swapProfMetadata();
1182 //===----------------------------------------------------------------------===//
1183 // AllocaInst Implementation
1184 //===----------------------------------------------------------------------===//
1186 static Value *getAISize(LLVMContext &Context, Value *Amt) {
1187 if (!Amt)
1188 Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
1189 else {
1190 assert(!isa<BasicBlock>(Amt) &&
1191 "Passed basic block into allocation size parameter! Use other ctor");
1192 assert(Amt->getType()->isIntegerTy() &&
1193 "Allocation array size is not an integer!");
1195 return Amt;
1198 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1199 Instruction *InsertBefore)
1200 : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {}
1202 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1203 BasicBlock *InsertAtEnd)
1204 : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {}
1206 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1207 const Twine &Name, Instruction *InsertBefore)
1208 : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/0, Name, InsertBefore) {}
1210 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1211 const Twine &Name, BasicBlock *InsertAtEnd)
1212 : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/0, Name, InsertAtEnd) {}
1214 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1215 unsigned Align, const Twine &Name,
1216 Instruction *InsertBefore)
1217 : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1218 getAISize(Ty->getContext(), ArraySize), InsertBefore),
1219 AllocatedType(Ty) {
1220 setAlignment(Align);
1221 assert(!Ty->isVoidTy() && "Cannot allocate void!");
1222 setName(Name);
1225 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1226 unsigned Align, const Twine &Name,
1227 BasicBlock *InsertAtEnd)
1228 : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1229 getAISize(Ty->getContext(), ArraySize), InsertAtEnd),
1230 AllocatedType(Ty) {
1231 setAlignment(Align);
1232 assert(!Ty->isVoidTy() && "Cannot allocate void!");
1233 setName(Name);
1236 void AllocaInst::setAlignment(unsigned Align) {
1237 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1238 assert(Align <= MaximumAlignment &&
1239 "Alignment is greater than MaximumAlignment!");
1240 setInstructionSubclassData((getSubclassDataFromInstruction() & ~31) |
1241 (Log2_32(Align) + 1));
1242 assert(getAlignment() == Align && "Alignment representation error!");
1245 bool AllocaInst::isArrayAllocation() const {
1246 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
1247 return !CI->isOne();
1248 return true;
1251 /// isStaticAlloca - Return true if this alloca is in the entry block of the
1252 /// function and is a constant size. If so, the code generator will fold it
1253 /// into the prolog/epilog code, so it is basically free.
1254 bool AllocaInst::isStaticAlloca() const {
1255 // Must be constant size.
1256 if (!isa<ConstantInt>(getArraySize())) return false;
1258 // Must be in the entry block.
1259 const BasicBlock *Parent = getParent();
1260 return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
1263 //===----------------------------------------------------------------------===//
1264 // LoadInst Implementation
1265 //===----------------------------------------------------------------------===//
1267 void LoadInst::AssertOK() {
1268 assert(getOperand(0)->getType()->isPointerTy() &&
1269 "Ptr must have pointer type.");
1270 assert(!(isAtomic() && getAlignment() == 0) &&
1271 "Alignment required for atomic load");
1274 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1275 Instruction *InsertBef)
1276 : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {}
1278 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1279 BasicBlock *InsertAE)
1280 : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertAE) {}
1282 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1283 Instruction *InsertBef)
1284 : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/0, InsertBef) {}
1286 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1287 BasicBlock *InsertAE)
1288 : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/0, InsertAE) {}
1290 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1291 unsigned Align, Instruction *InsertBef)
1292 : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1293 SyncScope::System, InsertBef) {}
1295 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1296 unsigned Align, BasicBlock *InsertAE)
1297 : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1298 SyncScope::System, InsertAE) {}
1300 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1301 unsigned Align, AtomicOrdering Order,
1302 SyncScope::ID SSID, Instruction *InsertBef)
1303 : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1304 assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1305 setVolatile(isVolatile);
1306 setAlignment(Align);
1307 setAtomic(Order, SSID);
1308 AssertOK();
1309 setName(Name);
1312 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1313 unsigned Align, AtomicOrdering Order, SyncScope::ID SSID,
1314 BasicBlock *InsertAE)
1315 : UnaryInstruction(Ty, Load, Ptr, InsertAE) {
1316 assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1317 setVolatile(isVolatile);
1318 setAlignment(Align);
1319 setAtomic(Order, SSID);
1320 AssertOK();
1321 setName(Name);
1324 void LoadInst::setAlignment(unsigned Align) {
1325 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1326 assert(Align <= MaximumAlignment &&
1327 "Alignment is greater than MaximumAlignment!");
1328 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1329 ((Log2_32(Align)+1)<<1));
1330 assert(getAlignment() == Align && "Alignment representation error!");
1333 //===----------------------------------------------------------------------===//
1334 // StoreInst Implementation
1335 //===----------------------------------------------------------------------===//
1337 void StoreInst::AssertOK() {
1338 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1339 assert(getOperand(1)->getType()->isPointerTy() &&
1340 "Ptr must have pointer type!");
1341 assert(getOperand(0)->getType() ==
1342 cast<PointerType>(getOperand(1)->getType())->getElementType()
1343 && "Ptr must be a pointer to Val type!");
1344 assert(!(isAtomic() && getAlignment() == 0) &&
1345 "Alignment required for atomic store");
1348 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1349 : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
1351 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1352 : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {}
1354 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1355 Instruction *InsertBefore)
1356 : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertBefore) {}
1358 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1359 BasicBlock *InsertAtEnd)
1360 : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertAtEnd) {}
1362 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
1363 Instruction *InsertBefore)
1364 : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1365 SyncScope::System, InsertBefore) {}
1367 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
1368 BasicBlock *InsertAtEnd)
1369 : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1370 SyncScope::System, InsertAtEnd) {}
1372 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1373 unsigned Align, AtomicOrdering Order,
1374 SyncScope::ID SSID,
1375 Instruction *InsertBefore)
1376 : Instruction(Type::getVoidTy(val->getContext()), Store,
1377 OperandTraits<StoreInst>::op_begin(this),
1378 OperandTraits<StoreInst>::operands(this),
1379 InsertBefore) {
1380 Op<0>() = val;
1381 Op<1>() = addr;
1382 setVolatile(isVolatile);
1383 setAlignment(Align);
1384 setAtomic(Order, SSID);
1385 AssertOK();
1388 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1389 unsigned Align, AtomicOrdering Order,
1390 SyncScope::ID SSID,
1391 BasicBlock *InsertAtEnd)
1392 : Instruction(Type::getVoidTy(val->getContext()), Store,
1393 OperandTraits<StoreInst>::op_begin(this),
1394 OperandTraits<StoreInst>::operands(this),
1395 InsertAtEnd) {
1396 Op<0>() = val;
1397 Op<1>() = addr;
1398 setVolatile(isVolatile);
1399 setAlignment(Align);
1400 setAtomic(Order, SSID);
1401 AssertOK();
1404 void StoreInst::setAlignment(unsigned Align) {
1405 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1406 assert(Align <= MaximumAlignment &&
1407 "Alignment is greater than MaximumAlignment!");
1408 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1409 ((Log2_32(Align)+1) << 1));
1410 assert(getAlignment() == Align && "Alignment representation error!");
1413 //===----------------------------------------------------------------------===//
1414 // AtomicCmpXchgInst Implementation
1415 //===----------------------------------------------------------------------===//
1417 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1418 AtomicOrdering SuccessOrdering,
1419 AtomicOrdering FailureOrdering,
1420 SyncScope::ID SSID) {
1421 Op<0>() = Ptr;
1422 Op<1>() = Cmp;
1423 Op<2>() = NewVal;
1424 setSuccessOrdering(SuccessOrdering);
1425 setFailureOrdering(FailureOrdering);
1426 setSyncScopeID(SSID);
1428 assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1429 "All operands must be non-null!");
1430 assert(getOperand(0)->getType()->isPointerTy() &&
1431 "Ptr must have pointer type!");
1432 assert(getOperand(1)->getType() ==
1433 cast<PointerType>(getOperand(0)->getType())->getElementType()
1434 && "Ptr must be a pointer to Cmp type!");
1435 assert(getOperand(2)->getType() ==
1436 cast<PointerType>(getOperand(0)->getType())->getElementType()
1437 && "Ptr must be a pointer to NewVal type!");
1438 assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
1439 "AtomicCmpXchg instructions must be atomic!");
1440 assert(FailureOrdering != AtomicOrdering::NotAtomic &&
1441 "AtomicCmpXchg instructions must be atomic!");
1442 assert(!isStrongerThan(FailureOrdering, SuccessOrdering) &&
1443 "AtomicCmpXchg failure argument shall be no stronger than the success "
1444 "argument");
1445 assert(FailureOrdering != AtomicOrdering::Release &&
1446 FailureOrdering != AtomicOrdering::AcquireRelease &&
1447 "AtomicCmpXchg failure ordering cannot include release semantics");
1450 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1451 AtomicOrdering SuccessOrdering,
1452 AtomicOrdering FailureOrdering,
1453 SyncScope::ID SSID,
1454 Instruction *InsertBefore)
1455 : Instruction(
1456 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1457 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1458 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1459 Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID);
1462 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1463 AtomicOrdering SuccessOrdering,
1464 AtomicOrdering FailureOrdering,
1465 SyncScope::ID SSID,
1466 BasicBlock *InsertAtEnd)
1467 : Instruction(
1468 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1469 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1470 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
1471 Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID);
1474 //===----------------------------------------------------------------------===//
1475 // AtomicRMWInst Implementation
1476 //===----------------------------------------------------------------------===//
1478 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1479 AtomicOrdering Ordering,
1480 SyncScope::ID SSID) {
1481 Op<0>() = Ptr;
1482 Op<1>() = Val;
1483 setOperation(Operation);
1484 setOrdering(Ordering);
1485 setSyncScopeID(SSID);
1487 assert(getOperand(0) && getOperand(1) &&
1488 "All operands must be non-null!");
1489 assert(getOperand(0)->getType()->isPointerTy() &&
1490 "Ptr must have pointer type!");
1491 assert(getOperand(1)->getType() ==
1492 cast<PointerType>(getOperand(0)->getType())->getElementType()
1493 && "Ptr must be a pointer to Val type!");
1494 assert(Ordering != AtomicOrdering::NotAtomic &&
1495 "AtomicRMW instructions must be atomic!");
1498 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1499 AtomicOrdering Ordering,
1500 SyncScope::ID SSID,
1501 Instruction *InsertBefore)
1502 : Instruction(Val->getType(), AtomicRMW,
1503 OperandTraits<AtomicRMWInst>::op_begin(this),
1504 OperandTraits<AtomicRMWInst>::operands(this),
1505 InsertBefore) {
1506 Init(Operation, Ptr, Val, Ordering, SSID);
1509 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1510 AtomicOrdering Ordering,
1511 SyncScope::ID SSID,
1512 BasicBlock *InsertAtEnd)
1513 : Instruction(Val->getType(), AtomicRMW,
1514 OperandTraits<AtomicRMWInst>::op_begin(this),
1515 OperandTraits<AtomicRMWInst>::operands(this),
1516 InsertAtEnd) {
1517 Init(Operation, Ptr, Val, Ordering, SSID);
1520 StringRef AtomicRMWInst::getOperationName(BinOp Op) {
1521 switch (Op) {
1522 case AtomicRMWInst::Xchg:
1523 return "xchg";
1524 case AtomicRMWInst::Add:
1525 return "add";
1526 case AtomicRMWInst::Sub:
1527 return "sub";
1528 case AtomicRMWInst::And:
1529 return "and";
1530 case AtomicRMWInst::Nand:
1531 return "nand";
1532 case AtomicRMWInst::Or:
1533 return "or";
1534 case AtomicRMWInst::Xor:
1535 return "xor";
1536 case AtomicRMWInst::Max:
1537 return "max";
1538 case AtomicRMWInst::Min:
1539 return "min";
1540 case AtomicRMWInst::UMax:
1541 return "umax";
1542 case AtomicRMWInst::UMin:
1543 return "umin";
1544 case AtomicRMWInst::FAdd:
1545 return "fadd";
1546 case AtomicRMWInst::FSub:
1547 return "fsub";
1548 case AtomicRMWInst::BAD_BINOP:
1549 return "<invalid operation>";
1552 llvm_unreachable("invalid atomicrmw operation");
1555 //===----------------------------------------------------------------------===//
1556 // FenceInst Implementation
1557 //===----------------------------------------------------------------------===//
1559 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1560 SyncScope::ID SSID,
1561 Instruction *InsertBefore)
1562 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1563 setOrdering(Ordering);
1564 setSyncScopeID(SSID);
1567 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1568 SyncScope::ID SSID,
1569 BasicBlock *InsertAtEnd)
1570 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
1571 setOrdering(Ordering);
1572 setSyncScopeID(SSID);
1575 //===----------------------------------------------------------------------===//
1576 // GetElementPtrInst Implementation
1577 //===----------------------------------------------------------------------===//
1579 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1580 const Twine &Name) {
1581 assert(getNumOperands() == 1 + IdxList.size() &&
1582 "NumOperands not initialized?");
1583 Op<0>() = Ptr;
1584 llvm::copy(IdxList, op_begin() + 1);
1585 setName(Name);
1588 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1589 : Instruction(GEPI.getType(), GetElementPtr,
1590 OperandTraits<GetElementPtrInst>::op_end(this) -
1591 GEPI.getNumOperands(),
1592 GEPI.getNumOperands()),
1593 SourceElementType(GEPI.SourceElementType),
1594 ResultElementType(GEPI.ResultElementType) {
1595 std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1596 SubclassOptionalData = GEPI.SubclassOptionalData;
1599 /// getIndexedType - Returns the type of the element that would be accessed with
1600 /// a gep instruction with the specified parameters.
1602 /// The Idxs pointer should point to a continuous piece of memory containing the
1603 /// indices, either as Value* or uint64_t.
1605 /// A null type is returned if the indices are invalid for the specified
1606 /// pointer type.
1608 template <typename IndexTy>
1609 static Type *getIndexedTypeInternal(Type *Agg, ArrayRef<IndexTy> IdxList) {
1610 // Handle the special case of the empty set index set, which is always valid.
1611 if (IdxList.empty())
1612 return Agg;
1614 // If there is at least one index, the top level type must be sized, otherwise
1615 // it cannot be 'stepped over'.
1616 if (!Agg->isSized())
1617 return nullptr;
1619 unsigned CurIdx = 1;
1620 for (; CurIdx != IdxList.size(); ++CurIdx) {
1621 CompositeType *CT = dyn_cast<CompositeType>(Agg);
1622 if (!CT || CT->isPointerTy()) return nullptr;
1623 IndexTy Index = IdxList[CurIdx];
1624 if (!CT->indexValid(Index)) return nullptr;
1625 Agg = CT->getTypeAtIndex(Index);
1627 return CurIdx == IdxList.size() ? Agg : nullptr;
1630 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) {
1631 return getIndexedTypeInternal(Ty, IdxList);
1634 Type *GetElementPtrInst::getIndexedType(Type *Ty,
1635 ArrayRef<Constant *> IdxList) {
1636 return getIndexedTypeInternal(Ty, IdxList);
1639 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) {
1640 return getIndexedTypeInternal(Ty, IdxList);
1643 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1644 /// zeros. If so, the result pointer and the first operand have the same
1645 /// value, just potentially different types.
1646 bool GetElementPtrInst::hasAllZeroIndices() const {
1647 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1648 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1649 if (!CI->isZero()) return false;
1650 } else {
1651 return false;
1654 return true;
1657 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1658 /// constant integers. If so, the result pointer and the first operand have
1659 /// a constant offset between them.
1660 bool GetElementPtrInst::hasAllConstantIndices() const {
1661 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1662 if (!isa<ConstantInt>(getOperand(i)))
1663 return false;
1665 return true;
1668 void GetElementPtrInst::setIsInBounds(bool B) {
1669 cast<GEPOperator>(this)->setIsInBounds(B);
1672 bool GetElementPtrInst::isInBounds() const {
1673 return cast<GEPOperator>(this)->isInBounds();
1676 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1677 APInt &Offset) const {
1678 // Delegate to the generic GEPOperator implementation.
1679 return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1682 //===----------------------------------------------------------------------===//
1683 // ExtractElementInst Implementation
1684 //===----------------------------------------------------------------------===//
1686 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1687 const Twine &Name,
1688 Instruction *InsertBef)
1689 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1690 ExtractElement,
1691 OperandTraits<ExtractElementInst>::op_begin(this),
1692 2, InsertBef) {
1693 assert(isValidOperands(Val, Index) &&
1694 "Invalid extractelement instruction operands!");
1695 Op<0>() = Val;
1696 Op<1>() = Index;
1697 setName(Name);
1700 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1701 const Twine &Name,
1702 BasicBlock *InsertAE)
1703 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1704 ExtractElement,
1705 OperandTraits<ExtractElementInst>::op_begin(this),
1706 2, InsertAE) {
1707 assert(isValidOperands(Val, Index) &&
1708 "Invalid extractelement instruction operands!");
1710 Op<0>() = Val;
1711 Op<1>() = Index;
1712 setName(Name);
1715 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1716 if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1717 return false;
1718 return true;
1721 //===----------------------------------------------------------------------===//
1722 // InsertElementInst Implementation
1723 //===----------------------------------------------------------------------===//
1725 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1726 const Twine &Name,
1727 Instruction *InsertBef)
1728 : Instruction(Vec->getType(), InsertElement,
1729 OperandTraits<InsertElementInst>::op_begin(this),
1730 3, InsertBef) {
1731 assert(isValidOperands(Vec, Elt, Index) &&
1732 "Invalid insertelement instruction operands!");
1733 Op<0>() = Vec;
1734 Op<1>() = Elt;
1735 Op<2>() = Index;
1736 setName(Name);
1739 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1740 const Twine &Name,
1741 BasicBlock *InsertAE)
1742 : Instruction(Vec->getType(), InsertElement,
1743 OperandTraits<InsertElementInst>::op_begin(this),
1744 3, InsertAE) {
1745 assert(isValidOperands(Vec, Elt, Index) &&
1746 "Invalid insertelement instruction operands!");
1748 Op<0>() = Vec;
1749 Op<1>() = Elt;
1750 Op<2>() = Index;
1751 setName(Name);
1754 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1755 const Value *Index) {
1756 if (!Vec->getType()->isVectorTy())
1757 return false; // First operand of insertelement must be vector type.
1759 if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1760 return false;// Second operand of insertelement must be vector element type.
1762 if (!Index->getType()->isIntegerTy())
1763 return false; // Third operand of insertelement must be i32.
1764 return true;
1767 //===----------------------------------------------------------------------===//
1768 // ShuffleVectorInst Implementation
1769 //===----------------------------------------------------------------------===//
1771 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1772 const Twine &Name,
1773 Instruction *InsertBefore)
1774 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1775 cast<VectorType>(Mask->getType())->getNumElements()),
1776 ShuffleVector,
1777 OperandTraits<ShuffleVectorInst>::op_begin(this),
1778 OperandTraits<ShuffleVectorInst>::operands(this),
1779 InsertBefore) {
1780 assert(isValidOperands(V1, V2, Mask) &&
1781 "Invalid shuffle vector instruction operands!");
1782 Op<0>() = V1;
1783 Op<1>() = V2;
1784 Op<2>() = Mask;
1785 setName(Name);
1788 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1789 const Twine &Name,
1790 BasicBlock *InsertAtEnd)
1791 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1792 cast<VectorType>(Mask->getType())->getNumElements()),
1793 ShuffleVector,
1794 OperandTraits<ShuffleVectorInst>::op_begin(this),
1795 OperandTraits<ShuffleVectorInst>::operands(this),
1796 InsertAtEnd) {
1797 assert(isValidOperands(V1, V2, Mask) &&
1798 "Invalid shuffle vector instruction operands!");
1800 Op<0>() = V1;
1801 Op<1>() = V2;
1802 Op<2>() = Mask;
1803 setName(Name);
1806 void ShuffleVectorInst::commute() {
1807 int NumOpElts = Op<0>()->getType()->getVectorNumElements();
1808 int NumMaskElts = getMask()->getType()->getVectorNumElements();
1809 SmallVector<Constant*, 16> NewMask(NumMaskElts);
1810 Type *Int32Ty = Type::getInt32Ty(getContext());
1811 for (int i = 0; i != NumMaskElts; ++i) {
1812 int MaskElt = getMaskValue(i);
1813 if (MaskElt == -1) {
1814 NewMask[i] = UndefValue::get(Int32Ty);
1815 continue;
1817 assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts && "Out-of-range mask");
1818 MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts;
1819 NewMask[i] = ConstantInt::get(Int32Ty, MaskElt);
1821 Op<2>() = ConstantVector::get(NewMask);
1822 Op<0>().swap(Op<1>());
1825 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1826 const Value *Mask) {
1827 // V1 and V2 must be vectors of the same type.
1828 if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1829 return false;
1831 // Mask must be vector of i32.
1832 auto *MaskTy = dyn_cast<VectorType>(Mask->getType());
1833 if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32))
1834 return false;
1836 // Check to see if Mask is valid.
1837 if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
1838 return true;
1840 if (const auto *MV = dyn_cast<ConstantVector>(Mask)) {
1841 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1842 for (Value *Op : MV->operands()) {
1843 if (auto *CI = dyn_cast<ConstantInt>(Op)) {
1844 if (CI->uge(V1Size*2))
1845 return false;
1846 } else if (!isa<UndefValue>(Op)) {
1847 return false;
1850 return true;
1853 if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1854 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1855 for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i)
1856 if (CDS->getElementAsInteger(i) >= V1Size*2)
1857 return false;
1858 return true;
1861 // The bitcode reader can create a place holder for a forward reference
1862 // used as the shuffle mask. When this occurs, the shuffle mask will
1863 // fall into this case and fail. To avoid this error, do this bit of
1864 // ugliness to allow such a mask pass.
1865 if (const auto *CE = dyn_cast<ConstantExpr>(Mask))
1866 if (CE->getOpcode() == Instruction::UserOp1)
1867 return true;
1869 return false;
1872 int ShuffleVectorInst::getMaskValue(const Constant *Mask, unsigned i) {
1873 assert(i < Mask->getType()->getVectorNumElements() && "Index out of range");
1874 if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask))
1875 return CDS->getElementAsInteger(i);
1876 Constant *C = Mask->getAggregateElement(i);
1877 if (isa<UndefValue>(C))
1878 return -1;
1879 return cast<ConstantInt>(C)->getZExtValue();
1882 void ShuffleVectorInst::getShuffleMask(const Constant *Mask,
1883 SmallVectorImpl<int> &Result) {
1884 unsigned NumElts = Mask->getType()->getVectorNumElements();
1886 if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1887 for (unsigned i = 0; i != NumElts; ++i)
1888 Result.push_back(CDS->getElementAsInteger(i));
1889 return;
1891 for (unsigned i = 0; i != NumElts; ++i) {
1892 Constant *C = Mask->getAggregateElement(i);
1893 Result.push_back(isa<UndefValue>(C) ? -1 :
1894 cast<ConstantInt>(C)->getZExtValue());
1898 static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
1899 assert(!Mask.empty() && "Shuffle mask must contain elements");
1900 bool UsesLHS = false;
1901 bool UsesRHS = false;
1902 for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
1903 if (Mask[i] == -1)
1904 continue;
1905 assert(Mask[i] >= 0 && Mask[i] < (NumOpElts * 2) &&
1906 "Out-of-bounds shuffle mask element");
1907 UsesLHS |= (Mask[i] < NumOpElts);
1908 UsesRHS |= (Mask[i] >= NumOpElts);
1909 if (UsesLHS && UsesRHS)
1910 return false;
1912 assert((UsesLHS ^ UsesRHS) && "Should have selected from exactly 1 source");
1913 return true;
1916 bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask) {
1917 // We don't have vector operand size information, so assume operands are the
1918 // same size as the mask.
1919 return isSingleSourceMaskImpl(Mask, Mask.size());
1922 static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
1923 if (!isSingleSourceMaskImpl(Mask, NumOpElts))
1924 return false;
1925 for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
1926 if (Mask[i] == -1)
1927 continue;
1928 if (Mask[i] != i && Mask[i] != (NumOpElts + i))
1929 return false;
1931 return true;
1934 bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask) {
1935 // We don't have vector operand size information, so assume operands are the
1936 // same size as the mask.
1937 return isIdentityMaskImpl(Mask, Mask.size());
1940 bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask) {
1941 if (!isSingleSourceMask(Mask))
1942 return false;
1943 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
1944 if (Mask[i] == -1)
1945 continue;
1946 if (Mask[i] != (NumElts - 1 - i) && Mask[i] != (NumElts + NumElts - 1 - i))
1947 return false;
1949 return true;
1952 bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask) {
1953 if (!isSingleSourceMask(Mask))
1954 return false;
1955 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
1956 if (Mask[i] == -1)
1957 continue;
1958 if (Mask[i] != 0 && Mask[i] != NumElts)
1959 return false;
1961 return true;
1964 bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask) {
1965 // Select is differentiated from identity. It requires using both sources.
1966 if (isSingleSourceMask(Mask))
1967 return false;
1968 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
1969 if (Mask[i] == -1)
1970 continue;
1971 if (Mask[i] != i && Mask[i] != (NumElts + i))
1972 return false;
1974 return true;
1977 bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask) {
1978 // Example masks that will return true:
1979 // v1 = <a, b, c, d>
1980 // v2 = <e, f, g, h>
1981 // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g>
1982 // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h>
1984 // 1. The number of elements in the mask must be a power-of-2 and at least 2.
1985 int NumElts = Mask.size();
1986 if (NumElts < 2 || !isPowerOf2_32(NumElts))
1987 return false;
1989 // 2. The first element of the mask must be either a 0 or a 1.
1990 if (Mask[0] != 0 && Mask[0] != 1)
1991 return false;
1993 // 3. The difference between the first 2 elements must be equal to the
1994 // number of elements in the mask.
1995 if ((Mask[1] - Mask[0]) != NumElts)
1996 return false;
1998 // 4. The difference between consecutive even-numbered and odd-numbered
1999 // elements must be equal to 2.
2000 for (int i = 2; i < NumElts; ++i) {
2001 int MaskEltVal = Mask[i];
2002 if (MaskEltVal == -1)
2003 return false;
2004 int MaskEltPrevVal = Mask[i - 2];
2005 if (MaskEltVal - MaskEltPrevVal != 2)
2006 return false;
2008 return true;
2011 bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef<int> Mask,
2012 int NumSrcElts, int &Index) {
2013 // Must extract from a single source.
2014 if (!isSingleSourceMaskImpl(Mask, NumSrcElts))
2015 return false;
2017 // Must be smaller (else this is an Identity shuffle).
2018 if (NumSrcElts <= (int)Mask.size())
2019 return false;
2021 // Find start of extraction, accounting that we may start with an UNDEF.
2022 int SubIndex = -1;
2023 for (int i = 0, e = Mask.size(); i != e; ++i) {
2024 int M = Mask[i];
2025 if (M < 0)
2026 continue;
2027 int Offset = (M % NumSrcElts) - i;
2028 if (0 <= SubIndex && SubIndex != Offset)
2029 return false;
2030 SubIndex = Offset;
2033 if (0 <= SubIndex) {
2034 Index = SubIndex;
2035 return true;
2037 return false;
2040 bool ShuffleVectorInst::isIdentityWithPadding() const {
2041 int NumOpElts = Op<0>()->getType()->getVectorNumElements();
2042 int NumMaskElts = getType()->getVectorNumElements();
2043 if (NumMaskElts <= NumOpElts)
2044 return false;
2046 // The first part of the mask must choose elements from exactly 1 source op.
2047 SmallVector<int, 16> Mask = getShuffleMask();
2048 if (!isIdentityMaskImpl(Mask, NumOpElts))
2049 return false;
2051 // All extending must be with undef elements.
2052 for (int i = NumOpElts; i < NumMaskElts; ++i)
2053 if (Mask[i] != -1)
2054 return false;
2056 return true;
2059 bool ShuffleVectorInst::isIdentityWithExtract() const {
2060 int NumOpElts = Op<0>()->getType()->getVectorNumElements();
2061 int NumMaskElts = getType()->getVectorNumElements();
2062 if (NumMaskElts >= NumOpElts)
2063 return false;
2065 return isIdentityMaskImpl(getShuffleMask(), NumOpElts);
2068 bool ShuffleVectorInst::isConcat() const {
2069 // Vector concatenation is differentiated from identity with padding.
2070 if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>()))
2071 return false;
2073 int NumOpElts = Op<0>()->getType()->getVectorNumElements();
2074 int NumMaskElts = getType()->getVectorNumElements();
2075 if (NumMaskElts != NumOpElts * 2)
2076 return false;
2078 // Use the mask length rather than the operands' vector lengths here. We
2079 // already know that the shuffle returns a vector twice as long as the inputs,
2080 // and neither of the inputs are undef vectors. If the mask picks consecutive
2081 // elements from both inputs, then this is a concatenation of the inputs.
2082 return isIdentityMaskImpl(getShuffleMask(), NumMaskElts);
2085 //===----------------------------------------------------------------------===//
2086 // InsertValueInst Class
2087 //===----------------------------------------------------------------------===//
2089 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2090 const Twine &Name) {
2091 assert(getNumOperands() == 2 && "NumOperands not initialized?");
2093 // There's no fundamental reason why we require at least one index
2094 // (other than weirdness with &*IdxBegin being invalid; see
2095 // getelementptr's init routine for example). But there's no
2096 // present need to support it.
2097 assert(!Idxs.empty() && "InsertValueInst must have at least one index");
2099 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
2100 Val->getType() && "Inserted value must match indexed type!");
2101 Op<0>() = Agg;
2102 Op<1>() = Val;
2104 Indices.append(Idxs.begin(), Idxs.end());
2105 setName(Name);
2108 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
2109 : Instruction(IVI.getType(), InsertValue,
2110 OperandTraits<InsertValueInst>::op_begin(this), 2),
2111 Indices(IVI.Indices) {
2112 Op<0>() = IVI.getOperand(0);
2113 Op<1>() = IVI.getOperand(1);
2114 SubclassOptionalData = IVI.SubclassOptionalData;
2117 //===----------------------------------------------------------------------===//
2118 // ExtractValueInst Class
2119 //===----------------------------------------------------------------------===//
2121 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
2122 assert(getNumOperands() == 1 && "NumOperands not initialized?");
2124 // There's no fundamental reason why we require at least one index.
2125 // But there's no present need to support it.
2126 assert(!Idxs.empty() && "ExtractValueInst must have at least one index");
2128 Indices.append(Idxs.begin(), Idxs.end());
2129 setName(Name);
2132 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
2133 : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
2134 Indices(EVI.Indices) {
2135 SubclassOptionalData = EVI.SubclassOptionalData;
2138 // getIndexedType - Returns the type of the element that would be extracted
2139 // with an extractvalue instruction with the specified parameters.
2141 // A null type is returned if the indices are invalid for the specified
2142 // pointer type.
2144 Type *ExtractValueInst::getIndexedType(Type *Agg,
2145 ArrayRef<unsigned> Idxs) {
2146 for (unsigned Index : Idxs) {
2147 // We can't use CompositeType::indexValid(Index) here.
2148 // indexValid() always returns true for arrays because getelementptr allows
2149 // out-of-bounds indices. Since we don't allow those for extractvalue and
2150 // insertvalue we need to check array indexing manually.
2151 // Since the only other types we can index into are struct types it's just
2152 // as easy to check those manually as well.
2153 if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
2154 if (Index >= AT->getNumElements())
2155 return nullptr;
2156 } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
2157 if (Index >= ST->getNumElements())
2158 return nullptr;
2159 } else {
2160 // Not a valid type to index into.
2161 return nullptr;
2164 Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
2166 return const_cast<Type*>(Agg);
2169 //===----------------------------------------------------------------------===//
2170 // UnaryOperator Class
2171 //===----------------------------------------------------------------------===//
2173 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2174 Type *Ty, const Twine &Name,
2175 Instruction *InsertBefore)
2176 : UnaryInstruction(Ty, iType, S, InsertBefore) {
2177 Op<0>() = S;
2178 setName(Name);
2179 AssertOK();
2182 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2183 Type *Ty, const Twine &Name,
2184 BasicBlock *InsertAtEnd)
2185 : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
2186 Op<0>() = S;
2187 setName(Name);
2188 AssertOK();
2191 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2192 const Twine &Name,
2193 Instruction *InsertBefore) {
2194 return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore);
2197 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2198 const Twine &Name,
2199 BasicBlock *InsertAtEnd) {
2200 UnaryOperator *Res = Create(Op, S, Name);
2201 InsertAtEnd->getInstList().push_back(Res);
2202 return Res;
2205 void UnaryOperator::AssertOK() {
2206 Value *LHS = getOperand(0);
2207 (void)LHS; // Silence warnings.
2208 #ifndef NDEBUG
2209 switch (getOpcode()) {
2210 case FNeg:
2211 assert(getType() == LHS->getType() &&
2212 "Unary operation should return same type as operand!");
2213 assert(getType()->isFPOrFPVectorTy() &&
2214 "Tried to create a floating-point operation on a "
2215 "non-floating-point type!");
2216 break;
2217 default: llvm_unreachable("Invalid opcode provided");
2219 #endif
2222 //===----------------------------------------------------------------------===//
2223 // BinaryOperator Class
2224 //===----------------------------------------------------------------------===//
2226 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2227 Type *Ty, const Twine &Name,
2228 Instruction *InsertBefore)
2229 : Instruction(Ty, iType,
2230 OperandTraits<BinaryOperator>::op_begin(this),
2231 OperandTraits<BinaryOperator>::operands(this),
2232 InsertBefore) {
2233 Op<0>() = S1;
2234 Op<1>() = S2;
2235 setName(Name);
2236 AssertOK();
2239 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2240 Type *Ty, const Twine &Name,
2241 BasicBlock *InsertAtEnd)
2242 : Instruction(Ty, iType,
2243 OperandTraits<BinaryOperator>::op_begin(this),
2244 OperandTraits<BinaryOperator>::operands(this),
2245 InsertAtEnd) {
2246 Op<0>() = S1;
2247 Op<1>() = S2;
2248 setName(Name);
2249 AssertOK();
2252 void BinaryOperator::AssertOK() {
2253 Value *LHS = getOperand(0), *RHS = getOperand(1);
2254 (void)LHS; (void)RHS; // Silence warnings.
2255 assert(LHS->getType() == RHS->getType() &&
2256 "Binary operator operand types must match!");
2257 #ifndef NDEBUG
2258 switch (getOpcode()) {
2259 case Add: case Sub:
2260 case Mul:
2261 assert(getType() == LHS->getType() &&
2262 "Arithmetic operation should return same type as operands!");
2263 assert(getType()->isIntOrIntVectorTy() &&
2264 "Tried to create an integer operation on a non-integer type!");
2265 break;
2266 case FAdd: case FSub:
2267 case FMul:
2268 assert(getType() == LHS->getType() &&
2269 "Arithmetic operation should return same type as operands!");
2270 assert(getType()->isFPOrFPVectorTy() &&
2271 "Tried to create a floating-point operation on a "
2272 "non-floating-point type!");
2273 break;
2274 case UDiv:
2275 case SDiv:
2276 assert(getType() == LHS->getType() &&
2277 "Arithmetic operation should return same type as operands!");
2278 assert(getType()->isIntOrIntVectorTy() &&
2279 "Incorrect operand type (not integer) for S/UDIV");
2280 break;
2281 case FDiv:
2282 assert(getType() == LHS->getType() &&
2283 "Arithmetic operation should return same type as operands!");
2284 assert(getType()->isFPOrFPVectorTy() &&
2285 "Incorrect operand type (not floating point) for FDIV");
2286 break;
2287 case URem:
2288 case SRem:
2289 assert(getType() == LHS->getType() &&
2290 "Arithmetic operation should return same type as operands!");
2291 assert(getType()->isIntOrIntVectorTy() &&
2292 "Incorrect operand type (not integer) for S/UREM");
2293 break;
2294 case FRem:
2295 assert(getType() == LHS->getType() &&
2296 "Arithmetic operation should return same type as operands!");
2297 assert(getType()->isFPOrFPVectorTy() &&
2298 "Incorrect operand type (not floating point) for FREM");
2299 break;
2300 case Shl:
2301 case LShr:
2302 case AShr:
2303 assert(getType() == LHS->getType() &&
2304 "Shift operation should return same type as operands!");
2305 assert(getType()->isIntOrIntVectorTy() &&
2306 "Tried to create a shift operation on a non-integral type!");
2307 break;
2308 case And: case Or:
2309 case Xor:
2310 assert(getType() == LHS->getType() &&
2311 "Logical operation should return same type as operands!");
2312 assert(getType()->isIntOrIntVectorTy() &&
2313 "Tried to create a logical operation on a non-integral type!");
2314 break;
2315 default: llvm_unreachable("Invalid opcode provided");
2317 #endif
2320 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2321 const Twine &Name,
2322 Instruction *InsertBefore) {
2323 assert(S1->getType() == S2->getType() &&
2324 "Cannot create binary operator with two operands of differing type!");
2325 return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
2328 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2329 const Twine &Name,
2330 BasicBlock *InsertAtEnd) {
2331 BinaryOperator *Res = Create(Op, S1, S2, Name);
2332 InsertAtEnd->getInstList().push_back(Res);
2333 return Res;
2336 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2337 Instruction *InsertBefore) {
2338 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2339 return new BinaryOperator(Instruction::Sub,
2340 zero, Op,
2341 Op->getType(), Name, InsertBefore);
2344 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2345 BasicBlock *InsertAtEnd) {
2346 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2347 return new BinaryOperator(Instruction::Sub,
2348 zero, Op,
2349 Op->getType(), Name, InsertAtEnd);
2352 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2353 Instruction *InsertBefore) {
2354 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2355 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
2358 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2359 BasicBlock *InsertAtEnd) {
2360 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2361 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
2364 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2365 Instruction *InsertBefore) {
2366 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2367 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
2370 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2371 BasicBlock *InsertAtEnd) {
2372 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2373 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
2376 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
2377 Instruction *InsertBefore) {
2378 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2379 return new BinaryOperator(Instruction::FSub, zero, Op,
2380 Op->getType(), Name, InsertBefore);
2383 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
2384 BasicBlock *InsertAtEnd) {
2385 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2386 return new BinaryOperator(Instruction::FSub, zero, Op,
2387 Op->getType(), Name, InsertAtEnd);
2390 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2391 Instruction *InsertBefore) {
2392 Constant *C = Constant::getAllOnesValue(Op->getType());
2393 return new BinaryOperator(Instruction::Xor, Op, C,
2394 Op->getType(), Name, InsertBefore);
2397 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2398 BasicBlock *InsertAtEnd) {
2399 Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
2400 return new BinaryOperator(Instruction::Xor, Op, AllOnes,
2401 Op->getType(), Name, InsertAtEnd);
2404 // Exchange the two operands to this instruction. This instruction is safe to
2405 // use on any binary instruction and does not modify the semantics of the
2406 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
2407 // is changed.
2408 bool BinaryOperator::swapOperands() {
2409 if (!isCommutative())
2410 return true; // Can't commute operands
2411 Op<0>().swap(Op<1>());
2412 return false;
2415 //===----------------------------------------------------------------------===//
2416 // FPMathOperator Class
2417 //===----------------------------------------------------------------------===//
2419 float FPMathOperator::getFPAccuracy() const {
2420 const MDNode *MD =
2421 cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2422 if (!MD)
2423 return 0.0;
2424 ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
2425 return Accuracy->getValueAPF().convertToFloat();
2428 //===----------------------------------------------------------------------===//
2429 // CastInst Class
2430 //===----------------------------------------------------------------------===//
2432 // Just determine if this cast only deals with integral->integral conversion.
2433 bool CastInst::isIntegerCast() const {
2434 switch (getOpcode()) {
2435 default: return false;
2436 case Instruction::ZExt:
2437 case Instruction::SExt:
2438 case Instruction::Trunc:
2439 return true;
2440 case Instruction::BitCast:
2441 return getOperand(0)->getType()->isIntegerTy() &&
2442 getType()->isIntegerTy();
2446 bool CastInst::isLosslessCast() const {
2447 // Only BitCast can be lossless, exit fast if we're not BitCast
2448 if (getOpcode() != Instruction::BitCast)
2449 return false;
2451 // Identity cast is always lossless
2452 Type *SrcTy = getOperand(0)->getType();
2453 Type *DstTy = getType();
2454 if (SrcTy == DstTy)
2455 return true;
2457 // Pointer to pointer is always lossless.
2458 if (SrcTy->isPointerTy())
2459 return DstTy->isPointerTy();
2460 return false; // Other types have no identity values
2463 /// This function determines if the CastInst does not require any bits to be
2464 /// changed in order to effect the cast. Essentially, it identifies cases where
2465 /// no code gen is necessary for the cast, hence the name no-op cast. For
2466 /// example, the following are all no-op casts:
2467 /// # bitcast i32* %x to i8*
2468 /// # bitcast <2 x i32> %x to <4 x i16>
2469 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only
2470 /// Determine if the described cast is a no-op.
2471 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2472 Type *SrcTy,
2473 Type *DestTy,
2474 const DataLayout &DL) {
2475 switch (Opcode) {
2476 default: llvm_unreachable("Invalid CastOp");
2477 case Instruction::Trunc:
2478 case Instruction::ZExt:
2479 case Instruction::SExt:
2480 case Instruction::FPTrunc:
2481 case Instruction::FPExt:
2482 case Instruction::UIToFP:
2483 case Instruction::SIToFP:
2484 case Instruction::FPToUI:
2485 case Instruction::FPToSI:
2486 case Instruction::AddrSpaceCast:
2487 // TODO: Target informations may give a more accurate answer here.
2488 return false;
2489 case Instruction::BitCast:
2490 return true; // BitCast never modifies bits.
2491 case Instruction::PtrToInt:
2492 return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
2493 DestTy->getScalarSizeInBits();
2494 case Instruction::IntToPtr:
2495 return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
2496 SrcTy->getScalarSizeInBits();
2500 bool CastInst::isNoopCast(const DataLayout &DL) const {
2501 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL);
2504 /// This function determines if a pair of casts can be eliminated and what
2505 /// opcode should be used in the elimination. This assumes that there are two
2506 /// instructions like this:
2507 /// * %F = firstOpcode SrcTy %x to MidTy
2508 /// * %S = secondOpcode MidTy %F to DstTy
2509 /// The function returns a resultOpcode so these two casts can be replaced with:
2510 /// * %Replacement = resultOpcode %SrcTy %x to DstTy
2511 /// If no such cast is permitted, the function returns 0.
2512 unsigned CastInst::isEliminableCastPair(
2513 Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2514 Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2515 Type *DstIntPtrTy) {
2516 // Define the 144 possibilities for these two cast instructions. The values
2517 // in this matrix determine what to do in a given situation and select the
2518 // case in the switch below. The rows correspond to firstOp, the columns
2519 // correspond to secondOp. In looking at the table below, keep in mind
2520 // the following cast properties:
2522 // Size Compare Source Destination
2523 // Operator Src ? Size Type Sign Type Sign
2524 // -------- ------------ ------------------- ---------------------
2525 // TRUNC > Integer Any Integral Any
2526 // ZEXT < Integral Unsigned Integer Any
2527 // SEXT < Integral Signed Integer Any
2528 // FPTOUI n/a FloatPt n/a Integral Unsigned
2529 // FPTOSI n/a FloatPt n/a Integral Signed
2530 // UITOFP n/a Integral Unsigned FloatPt n/a
2531 // SITOFP n/a Integral Signed FloatPt n/a
2532 // FPTRUNC > FloatPt n/a FloatPt n/a
2533 // FPEXT < FloatPt n/a FloatPt n/a
2534 // PTRTOINT n/a Pointer n/a Integral Unsigned
2535 // INTTOPTR n/a Integral Unsigned Pointer n/a
2536 // BITCAST = FirstClass n/a FirstClass n/a
2537 // ADDRSPCST n/a Pointer n/a Pointer n/a
2539 // NOTE: some transforms are safe, but we consider them to be non-profitable.
2540 // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2541 // into "fptoui double to i64", but this loses information about the range
2542 // of the produced value (we no longer know the top-part is all zeros).
2543 // Further this conversion is often much more expensive for typical hardware,
2544 // and causes issues when building libgcc. We disallow fptosi+sext for the
2545 // same reason.
2546 const unsigned numCastOps =
2547 Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2548 static const uint8_t CastResults[numCastOps][numCastOps] = {
2549 // T F F U S F F P I B A -+
2550 // R Z S P P I I T P 2 N T S |
2551 // U E E 2 2 2 2 R E I T C C +- secondOp
2552 // N X X U S F F N X N 2 V V |
2553 // C T T I I P P C T T P T T -+
2554 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc -+
2555 { 8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt |
2556 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt |
2557 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI |
2558 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI |
2559 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP +- firstOp
2560 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP |
2561 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc |
2562 { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt |
2563 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt |
2564 { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr |
2565 { 5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast |
2566 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2569 // TODO: This logic could be encoded into the table above and handled in the
2570 // switch below.
2571 // If either of the casts are a bitcast from scalar to vector, disallow the
2572 // merging. However, any pair of bitcasts are allowed.
2573 bool IsFirstBitcast = (firstOp == Instruction::BitCast);
2574 bool IsSecondBitcast = (secondOp == Instruction::BitCast);
2575 bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
2577 // Check if any of the casts convert scalars <-> vectors.
2578 if ((IsFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2579 (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2580 if (!AreBothBitcasts)
2581 return 0;
2583 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2584 [secondOp-Instruction::CastOpsBegin];
2585 switch (ElimCase) {
2586 case 0:
2587 // Categorically disallowed.
2588 return 0;
2589 case 1:
2590 // Allowed, use first cast's opcode.
2591 return firstOp;
2592 case 2:
2593 // Allowed, use second cast's opcode.
2594 return secondOp;
2595 case 3:
2596 // No-op cast in second op implies firstOp as long as the DestTy
2597 // is integer and we are not converting between a vector and a
2598 // non-vector type.
2599 if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2600 return firstOp;
2601 return 0;
2602 case 4:
2603 // No-op cast in second op implies firstOp as long as the DestTy
2604 // is floating point.
2605 if (DstTy->isFloatingPointTy())
2606 return firstOp;
2607 return 0;
2608 case 5:
2609 // No-op cast in first op implies secondOp as long as the SrcTy
2610 // is an integer.
2611 if (SrcTy->isIntegerTy())
2612 return secondOp;
2613 return 0;
2614 case 6:
2615 // No-op cast in first op implies secondOp as long as the SrcTy
2616 // is a floating point.
2617 if (SrcTy->isFloatingPointTy())
2618 return secondOp;
2619 return 0;
2620 case 7: {
2621 // Cannot simplify if address spaces are different!
2622 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2623 return 0;
2625 unsigned MidSize = MidTy->getScalarSizeInBits();
2626 // We can still fold this without knowing the actual sizes as long we
2627 // know that the intermediate pointer is the largest possible
2628 // pointer size.
2629 // FIXME: Is this always true?
2630 if (MidSize == 64)
2631 return Instruction::BitCast;
2633 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2634 if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2635 return 0;
2636 unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2637 if (MidSize >= PtrSize)
2638 return Instruction::BitCast;
2639 return 0;
2641 case 8: {
2642 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size
2643 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
2644 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
2645 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2646 unsigned DstSize = DstTy->getScalarSizeInBits();
2647 if (SrcSize == DstSize)
2648 return Instruction::BitCast;
2649 else if (SrcSize < DstSize)
2650 return firstOp;
2651 return secondOp;
2653 case 9:
2654 // zext, sext -> zext, because sext can't sign extend after zext
2655 return Instruction::ZExt;
2656 case 11: {
2657 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2658 if (!MidIntPtrTy)
2659 return 0;
2660 unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2661 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2662 unsigned DstSize = DstTy->getScalarSizeInBits();
2663 if (SrcSize <= PtrSize && SrcSize == DstSize)
2664 return Instruction::BitCast;
2665 return 0;
2667 case 12:
2668 // addrspacecast, addrspacecast -> bitcast, if SrcAS == DstAS
2669 // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2670 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2671 return Instruction::AddrSpaceCast;
2672 return Instruction::BitCast;
2673 case 13:
2674 // FIXME: this state can be merged with (1), but the following assert
2675 // is useful to check the correcteness of the sequence due to semantic
2676 // change of bitcast.
2677 assert(
2678 SrcTy->isPtrOrPtrVectorTy() &&
2679 MidTy->isPtrOrPtrVectorTy() &&
2680 DstTy->isPtrOrPtrVectorTy() &&
2681 SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
2682 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2683 "Illegal addrspacecast, bitcast sequence!");
2684 // Allowed, use first cast's opcode
2685 return firstOp;
2686 case 14:
2687 // bitcast, addrspacecast -> addrspacecast if the element type of
2688 // bitcast's source is the same as that of addrspacecast's destination.
2689 if (SrcTy->getScalarType()->getPointerElementType() ==
2690 DstTy->getScalarType()->getPointerElementType())
2691 return Instruction::AddrSpaceCast;
2692 return 0;
2693 case 15:
2694 // FIXME: this state can be merged with (1), but the following assert
2695 // is useful to check the correcteness of the sequence due to semantic
2696 // change of bitcast.
2697 assert(
2698 SrcTy->isIntOrIntVectorTy() &&
2699 MidTy->isPtrOrPtrVectorTy() &&
2700 DstTy->isPtrOrPtrVectorTy() &&
2701 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2702 "Illegal inttoptr, bitcast sequence!");
2703 // Allowed, use first cast's opcode
2704 return firstOp;
2705 case 16:
2706 // FIXME: this state can be merged with (2), but the following assert
2707 // is useful to check the correcteness of the sequence due to semantic
2708 // change of bitcast.
2709 assert(
2710 SrcTy->isPtrOrPtrVectorTy() &&
2711 MidTy->isPtrOrPtrVectorTy() &&
2712 DstTy->isIntOrIntVectorTy() &&
2713 SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
2714 "Illegal bitcast, ptrtoint sequence!");
2715 // Allowed, use second cast's opcode
2716 return secondOp;
2717 case 17:
2718 // (sitofp (zext x)) -> (uitofp x)
2719 return Instruction::UIToFP;
2720 case 99:
2721 // Cast combination can't happen (error in input). This is for all cases
2722 // where the MidTy is not the same for the two cast instructions.
2723 llvm_unreachable("Invalid Cast Combination");
2724 default:
2725 llvm_unreachable("Error in CastResults table!!!");
2729 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2730 const Twine &Name, Instruction *InsertBefore) {
2731 assert(castIsValid(op, S, Ty) && "Invalid cast!");
2732 // Construct and return the appropriate CastInst subclass
2733 switch (op) {
2734 case Trunc: return new TruncInst (S, Ty, Name, InsertBefore);
2735 case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore);
2736 case SExt: return new SExtInst (S, Ty, Name, InsertBefore);
2737 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore);
2738 case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore);
2739 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore);
2740 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore);
2741 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore);
2742 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore);
2743 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
2744 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
2745 case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore);
2746 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
2747 default: llvm_unreachable("Invalid opcode provided");
2751 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2752 const Twine &Name, BasicBlock *InsertAtEnd) {
2753 assert(castIsValid(op, S, Ty) && "Invalid cast!");
2754 // Construct and return the appropriate CastInst subclass
2755 switch (op) {
2756 case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd);
2757 case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd);
2758 case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd);
2759 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd);
2760 case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd);
2761 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd);
2762 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd);
2763 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd);
2764 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd);
2765 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
2766 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
2767 case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd);
2768 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
2769 default: llvm_unreachable("Invalid opcode provided");
2773 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2774 const Twine &Name,
2775 Instruction *InsertBefore) {
2776 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2777 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2778 return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2781 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2782 const Twine &Name,
2783 BasicBlock *InsertAtEnd) {
2784 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2785 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2786 return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2789 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2790 const Twine &Name,
2791 Instruction *InsertBefore) {
2792 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2793 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2794 return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2797 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2798 const Twine &Name,
2799 BasicBlock *InsertAtEnd) {
2800 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2801 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2802 return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2805 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2806 const Twine &Name,
2807 Instruction *InsertBefore) {
2808 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2809 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2810 return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2813 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2814 const Twine &Name,
2815 BasicBlock *InsertAtEnd) {
2816 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2817 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2818 return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2821 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2822 const Twine &Name,
2823 BasicBlock *InsertAtEnd) {
2824 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2825 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2826 "Invalid cast");
2827 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2828 assert((!Ty->isVectorTy() ||
2829 Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2830 "Invalid cast");
2832 if (Ty->isIntOrIntVectorTy())
2833 return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2835 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd);
2838 /// Create a BitCast or a PtrToInt cast instruction
2839 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2840 const Twine &Name,
2841 Instruction *InsertBefore) {
2842 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2843 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2844 "Invalid cast");
2845 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2846 assert((!Ty->isVectorTy() ||
2847 Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2848 "Invalid cast");
2850 if (Ty->isIntOrIntVectorTy())
2851 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2853 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
2856 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2857 Value *S, Type *Ty,
2858 const Twine &Name,
2859 BasicBlock *InsertAtEnd) {
2860 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2861 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2863 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2864 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
2866 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2869 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2870 Value *S, Type *Ty,
2871 const Twine &Name,
2872 Instruction *InsertBefore) {
2873 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2874 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2876 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2877 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
2879 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2882 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty,
2883 const Twine &Name,
2884 Instruction *InsertBefore) {
2885 if (S->getType()->isPointerTy() && Ty->isIntegerTy())
2886 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2887 if (S->getType()->isIntegerTy() && Ty->isPointerTy())
2888 return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
2890 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2893 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2894 bool isSigned, const Twine &Name,
2895 Instruction *InsertBefore) {
2896 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2897 "Invalid integer cast");
2898 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2899 unsigned DstBits = Ty->getScalarSizeInBits();
2900 Instruction::CastOps opcode =
2901 (SrcBits == DstBits ? Instruction::BitCast :
2902 (SrcBits > DstBits ? Instruction::Trunc :
2903 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2904 return Create(opcode, C, Ty, Name, InsertBefore);
2907 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2908 bool isSigned, const Twine &Name,
2909 BasicBlock *InsertAtEnd) {
2910 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2911 "Invalid cast");
2912 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2913 unsigned DstBits = Ty->getScalarSizeInBits();
2914 Instruction::CastOps opcode =
2915 (SrcBits == DstBits ? Instruction::BitCast :
2916 (SrcBits > DstBits ? Instruction::Trunc :
2917 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2918 return Create(opcode, C, Ty, Name, InsertAtEnd);
2921 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2922 const Twine &Name,
2923 Instruction *InsertBefore) {
2924 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2925 "Invalid cast");
2926 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2927 unsigned DstBits = Ty->getScalarSizeInBits();
2928 Instruction::CastOps opcode =
2929 (SrcBits == DstBits ? Instruction::BitCast :
2930 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2931 return Create(opcode, C, Ty, Name, InsertBefore);
2934 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2935 const Twine &Name,
2936 BasicBlock *InsertAtEnd) {
2937 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2938 "Invalid cast");
2939 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2940 unsigned DstBits = Ty->getScalarSizeInBits();
2941 Instruction::CastOps opcode =
2942 (SrcBits == DstBits ? Instruction::BitCast :
2943 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2944 return Create(opcode, C, Ty, Name, InsertAtEnd);
2947 // Check whether it is valid to call getCastOpcode for these types.
2948 // This routine must be kept in sync with getCastOpcode.
2949 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) {
2950 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2951 return false;
2953 if (SrcTy == DestTy)
2954 return true;
2956 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2957 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2958 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2959 // An element by element cast. Valid if casting the elements is valid.
2960 SrcTy = SrcVecTy->getElementType();
2961 DestTy = DestVecTy->getElementType();
2964 // Get the bit sizes, we'll need these
2965 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
2966 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2968 // Run through the possibilities ...
2969 if (DestTy->isIntegerTy()) { // Casting to integral
2970 if (SrcTy->isIntegerTy()) // Casting from integral
2971 return true;
2972 if (SrcTy->isFloatingPointTy()) // Casting from floating pt
2973 return true;
2974 if (SrcTy->isVectorTy()) // Casting from vector
2975 return DestBits == SrcBits;
2976 // Casting from something else
2977 return SrcTy->isPointerTy();
2979 if (DestTy->isFloatingPointTy()) { // Casting to floating pt
2980 if (SrcTy->isIntegerTy()) // Casting from integral
2981 return true;
2982 if (SrcTy->isFloatingPointTy()) // Casting from floating pt
2983 return true;
2984 if (SrcTy->isVectorTy()) // Casting from vector
2985 return DestBits == SrcBits;
2986 // Casting from something else
2987 return false;
2989 if (DestTy->isVectorTy()) // Casting to vector
2990 return DestBits == SrcBits;
2991 if (DestTy->isPointerTy()) { // Casting to pointer
2992 if (SrcTy->isPointerTy()) // Casting from pointer
2993 return true;
2994 return SrcTy->isIntegerTy(); // Casting from integral
2996 if (DestTy->isX86_MMXTy()) {
2997 if (SrcTy->isVectorTy())
2998 return DestBits == SrcBits; // 64-bit vector to MMX
2999 return false;
3000 } // Casting to something else
3001 return false;
3004 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
3005 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
3006 return false;
3008 if (SrcTy == DestTy)
3009 return true;
3011 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3012 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
3013 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
3014 // An element by element cast. Valid if casting the elements is valid.
3015 SrcTy = SrcVecTy->getElementType();
3016 DestTy = DestVecTy->getElementType();
3021 if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
3022 if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
3023 return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
3027 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
3028 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3030 // Could still have vectors of pointers if the number of elements doesn't
3031 // match
3032 if (SrcBits == 0 || DestBits == 0)
3033 return false;
3035 if (SrcBits != DestBits)
3036 return false;
3038 if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
3039 return false;
3041 return true;
3044 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy,
3045 const DataLayout &DL) {
3046 // ptrtoint and inttoptr are not allowed on non-integral pointers
3047 if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
3048 if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
3049 return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3050 !DL.isNonIntegralPointerType(PtrTy));
3051 if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
3052 if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
3053 return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3054 !DL.isNonIntegralPointerType(PtrTy));
3056 return isBitCastable(SrcTy, DestTy);
3059 // Provide a way to get a "cast" where the cast opcode is inferred from the
3060 // types and size of the operand. This, basically, is a parallel of the
3061 // logic in the castIsValid function below. This axiom should hold:
3062 // castIsValid( getCastOpcode(Val, Ty), Val, Ty)
3063 // should not assert in castIsValid. In other words, this produces a "correct"
3064 // casting opcode for the arguments passed to it.
3065 // This routine must be kept in sync with isCastable.
3066 Instruction::CastOps
3067 CastInst::getCastOpcode(
3068 const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
3069 Type *SrcTy = Src->getType();
3071 assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
3072 "Only first class types are castable!");
3074 if (SrcTy == DestTy)
3075 return BitCast;
3077 // FIXME: Check address space sizes here
3078 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
3079 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
3080 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
3081 // An element by element cast. Find the appropriate opcode based on the
3082 // element types.
3083 SrcTy = SrcVecTy->getElementType();
3084 DestTy = DestVecTy->getElementType();
3087 // Get the bit sizes, we'll need these
3088 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
3089 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3091 // Run through the possibilities ...
3092 if (DestTy->isIntegerTy()) { // Casting to integral
3093 if (SrcTy->isIntegerTy()) { // Casting from integral
3094 if (DestBits < SrcBits)
3095 return Trunc; // int -> smaller int
3096 else if (DestBits > SrcBits) { // its an extension
3097 if (SrcIsSigned)
3098 return SExt; // signed -> SEXT
3099 else
3100 return ZExt; // unsigned -> ZEXT
3101 } else {
3102 return BitCast; // Same size, No-op cast
3104 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
3105 if (DestIsSigned)
3106 return FPToSI; // FP -> sint
3107 else
3108 return FPToUI; // FP -> uint
3109 } else if (SrcTy->isVectorTy()) {
3110 assert(DestBits == SrcBits &&
3111 "Casting vector to integer of different width");
3112 return BitCast; // Same size, no-op cast
3113 } else {
3114 assert(SrcTy->isPointerTy() &&
3115 "Casting from a value that is not first-class type");
3116 return PtrToInt; // ptr -> int
3118 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt
3119 if (SrcTy->isIntegerTy()) { // Casting from integral
3120 if (SrcIsSigned)
3121 return SIToFP; // sint -> FP
3122 else
3123 return UIToFP; // uint -> FP
3124 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
3125 if (DestBits < SrcBits) {
3126 return FPTrunc; // FP -> smaller FP
3127 } else if (DestBits > SrcBits) {
3128 return FPExt; // FP -> larger FP
3129 } else {
3130 return BitCast; // same size, no-op cast
3132 } else if (SrcTy->isVectorTy()) {
3133 assert(DestBits == SrcBits &&
3134 "Casting vector to floating point of different width");
3135 return BitCast; // same size, no-op cast
3137 llvm_unreachable("Casting pointer or non-first class to float");
3138 } else if (DestTy->isVectorTy()) {
3139 assert(DestBits == SrcBits &&
3140 "Illegal cast to vector (wrong type or size)");
3141 return BitCast;
3142 } else if (DestTy->isPointerTy()) {
3143 if (SrcTy->isPointerTy()) {
3144 if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
3145 return AddrSpaceCast;
3146 return BitCast; // ptr -> ptr
3147 } else if (SrcTy->isIntegerTy()) {
3148 return IntToPtr; // int -> ptr
3150 llvm_unreachable("Casting pointer to other than pointer or int");
3151 } else if (DestTy->isX86_MMXTy()) {
3152 if (SrcTy->isVectorTy()) {
3153 assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
3154 return BitCast; // 64-bit vector to MMX
3156 llvm_unreachable("Illegal cast to X86_MMX");
3158 llvm_unreachable("Casting to type that is not first-class");
3161 //===----------------------------------------------------------------------===//
3162 // CastInst SubClass Constructors
3163 //===----------------------------------------------------------------------===//
3165 /// Check that the construction parameters for a CastInst are correct. This
3166 /// could be broken out into the separate constructors but it is useful to have
3167 /// it in one place and to eliminate the redundant code for getting the sizes
3168 /// of the types involved.
3169 bool
3170 CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
3171 // Check for type sanity on the arguments
3172 Type *SrcTy = S->getType();
3174 if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
3175 SrcTy->isAggregateType() || DstTy->isAggregateType())
3176 return false;
3178 // Get the size of the types in bits, we'll need this later
3179 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3180 unsigned DstBitSize = DstTy->getScalarSizeInBits();
3182 // If these are vector types, get the lengths of the vectors (using zero for
3183 // scalar types means that checking that vector lengths match also checks that
3184 // scalars are not being converted to vectors or vectors to scalars).
3185 unsigned SrcLength = SrcTy->isVectorTy() ?
3186 cast<VectorType>(SrcTy)->getNumElements() : 0;
3187 unsigned DstLength = DstTy->isVectorTy() ?
3188 cast<VectorType>(DstTy)->getNumElements() : 0;
3190 // Switch on the opcode provided
3191 switch (op) {
3192 default: return false; // This is an input error
3193 case Instruction::Trunc:
3194 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3195 SrcLength == DstLength && SrcBitSize > DstBitSize;
3196 case Instruction::ZExt:
3197 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3198 SrcLength == DstLength && SrcBitSize < DstBitSize;
3199 case Instruction::SExt:
3200 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3201 SrcLength == DstLength && SrcBitSize < DstBitSize;
3202 case Instruction::FPTrunc:
3203 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3204 SrcLength == DstLength && SrcBitSize > DstBitSize;
3205 case Instruction::FPExt:
3206 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3207 SrcLength == DstLength && SrcBitSize < DstBitSize;
3208 case Instruction::UIToFP:
3209 case Instruction::SIToFP:
3210 return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
3211 SrcLength == DstLength;
3212 case Instruction::FPToUI:
3213 case Instruction::FPToSI:
3214 return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
3215 SrcLength == DstLength;
3216 case Instruction::PtrToInt:
3217 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
3218 return false;
3219 if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
3220 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
3221 return false;
3222 return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy();
3223 case Instruction::IntToPtr:
3224 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
3225 return false;
3226 if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
3227 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
3228 return false;
3229 return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy();
3230 case Instruction::BitCast: {
3231 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3232 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3234 // BitCast implies a no-op cast of type only. No bits change.
3235 // However, you can't cast pointers to anything but pointers.
3236 if (!SrcPtrTy != !DstPtrTy)
3237 return false;
3239 // For non-pointer cases, the cast is okay if the source and destination bit
3240 // widths are identical.
3241 if (!SrcPtrTy)
3242 return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
3244 // If both are pointers then the address spaces must match.
3245 if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
3246 return false;
3248 // A vector of pointers must have the same number of elements.
3249 VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy);
3250 VectorType *DstVecTy = dyn_cast<VectorType>(DstTy);
3251 if (SrcVecTy && DstVecTy)
3252 return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
3253 if (SrcVecTy)
3254 return SrcVecTy->getNumElements() == 1;
3255 if (DstVecTy)
3256 return DstVecTy->getNumElements() == 1;
3258 return true;
3260 case Instruction::AddrSpaceCast: {
3261 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3262 if (!SrcPtrTy)
3263 return false;
3265 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3266 if (!DstPtrTy)
3267 return false;
3269 if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
3270 return false;
3272 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3273 if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy))
3274 return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
3276 return false;
3279 return true;
3284 TruncInst::TruncInst(
3285 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3286 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
3287 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3290 TruncInst::TruncInst(
3291 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3292 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
3293 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3296 ZExtInst::ZExtInst(
3297 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3298 ) : CastInst(Ty, ZExt, S, Name, InsertBefore) {
3299 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3302 ZExtInst::ZExtInst(
3303 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3304 ) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
3305 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3307 SExtInst::SExtInst(
3308 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3309 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
3310 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3313 SExtInst::SExtInst(
3314 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3315 ) : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
3316 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3319 FPTruncInst::FPTruncInst(
3320 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3321 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
3322 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3325 FPTruncInst::FPTruncInst(
3326 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3327 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
3328 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3331 FPExtInst::FPExtInst(
3332 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3333 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
3334 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3337 FPExtInst::FPExtInst(
3338 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3339 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
3340 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3343 UIToFPInst::UIToFPInst(
3344 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3345 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
3346 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3349 UIToFPInst::UIToFPInst(
3350 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3351 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
3352 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3355 SIToFPInst::SIToFPInst(
3356 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3357 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
3358 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3361 SIToFPInst::SIToFPInst(
3362 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3363 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
3364 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3367 FPToUIInst::FPToUIInst(
3368 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3369 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
3370 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3373 FPToUIInst::FPToUIInst(
3374 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3375 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
3376 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3379 FPToSIInst::FPToSIInst(
3380 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3381 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
3382 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3385 FPToSIInst::FPToSIInst(
3386 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3387 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
3388 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3391 PtrToIntInst::PtrToIntInst(
3392 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3393 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3394 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3397 PtrToIntInst::PtrToIntInst(
3398 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3399 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
3400 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3403 IntToPtrInst::IntToPtrInst(
3404 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3405 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3406 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3409 IntToPtrInst::IntToPtrInst(
3410 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3411 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
3412 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3415 BitCastInst::BitCastInst(
3416 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3417 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
3418 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3421 BitCastInst::BitCastInst(
3422 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3423 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
3424 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3427 AddrSpaceCastInst::AddrSpaceCastInst(
3428 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3429 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3430 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3433 AddrSpaceCastInst::AddrSpaceCastInst(
3434 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3435 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
3436 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3439 //===----------------------------------------------------------------------===//
3440 // CmpInst Classes
3441 //===----------------------------------------------------------------------===//
3443 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3444 Value *RHS, const Twine &Name, Instruction *InsertBefore,
3445 Instruction *FlagsSource)
3446 : Instruction(ty, op,
3447 OperandTraits<CmpInst>::op_begin(this),
3448 OperandTraits<CmpInst>::operands(this),
3449 InsertBefore) {
3450 Op<0>() = LHS;
3451 Op<1>() = RHS;
3452 setPredicate((Predicate)predicate);
3453 setName(Name);
3454 if (FlagsSource)
3455 copyIRFlags(FlagsSource);
3458 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3459 Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd)
3460 : Instruction(ty, op,
3461 OperandTraits<CmpInst>::op_begin(this),
3462 OperandTraits<CmpInst>::operands(this),
3463 InsertAtEnd) {
3464 Op<0>() = LHS;
3465 Op<1>() = RHS;
3466 setPredicate((Predicate)predicate);
3467 setName(Name);
3470 CmpInst *
3471 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3472 const Twine &Name, Instruction *InsertBefore) {
3473 if (Op == Instruction::ICmp) {
3474 if (InsertBefore)
3475 return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3476 S1, S2, Name);
3477 else
3478 return new ICmpInst(CmpInst::Predicate(predicate),
3479 S1, S2, Name);
3482 if (InsertBefore)
3483 return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3484 S1, S2, Name);
3485 else
3486 return new FCmpInst(CmpInst::Predicate(predicate),
3487 S1, S2, Name);
3490 CmpInst *
3491 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3492 const Twine &Name, BasicBlock *InsertAtEnd) {
3493 if (Op == Instruction::ICmp) {
3494 return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3495 S1, S2, Name);
3497 return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3498 S1, S2, Name);
3501 void CmpInst::swapOperands() {
3502 if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3503 IC->swapOperands();
3504 else
3505 cast<FCmpInst>(this)->swapOperands();
3508 bool CmpInst::isCommutative() const {
3509 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3510 return IC->isCommutative();
3511 return cast<FCmpInst>(this)->isCommutative();
3514 bool CmpInst::isEquality() const {
3515 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3516 return IC->isEquality();
3517 return cast<FCmpInst>(this)->isEquality();
3520 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
3521 switch (pred) {
3522 default: llvm_unreachable("Unknown cmp predicate!");
3523 case ICMP_EQ: return ICMP_NE;
3524 case ICMP_NE: return ICMP_EQ;
3525 case ICMP_UGT: return ICMP_ULE;
3526 case ICMP_ULT: return ICMP_UGE;
3527 case ICMP_UGE: return ICMP_ULT;
3528 case ICMP_ULE: return ICMP_UGT;
3529 case ICMP_SGT: return ICMP_SLE;
3530 case ICMP_SLT: return ICMP_SGE;
3531 case ICMP_SGE: return ICMP_SLT;
3532 case ICMP_SLE: return ICMP_SGT;
3534 case FCMP_OEQ: return FCMP_UNE;
3535 case FCMP_ONE: return FCMP_UEQ;
3536 case FCMP_OGT: return FCMP_ULE;
3537 case FCMP_OLT: return FCMP_UGE;
3538 case FCMP_OGE: return FCMP_ULT;
3539 case FCMP_OLE: return FCMP_UGT;
3540 case FCMP_UEQ: return FCMP_ONE;
3541 case FCMP_UNE: return FCMP_OEQ;
3542 case FCMP_UGT: return FCMP_OLE;
3543 case FCMP_ULT: return FCMP_OGE;
3544 case FCMP_UGE: return FCMP_OLT;
3545 case FCMP_ULE: return FCMP_OGT;
3546 case FCMP_ORD: return FCMP_UNO;
3547 case FCMP_UNO: return FCMP_ORD;
3548 case FCMP_TRUE: return FCMP_FALSE;
3549 case FCMP_FALSE: return FCMP_TRUE;
3553 StringRef CmpInst::getPredicateName(Predicate Pred) {
3554 switch (Pred) {
3555 default: return "unknown";
3556 case FCmpInst::FCMP_FALSE: return "false";
3557 case FCmpInst::FCMP_OEQ: return "oeq";
3558 case FCmpInst::FCMP_OGT: return "ogt";
3559 case FCmpInst::FCMP_OGE: return "oge";
3560 case FCmpInst::FCMP_OLT: return "olt";
3561 case FCmpInst::FCMP_OLE: return "ole";
3562 case FCmpInst::FCMP_ONE: return "one";
3563 case FCmpInst::FCMP_ORD: return "ord";
3564 case FCmpInst::FCMP_UNO: return "uno";
3565 case FCmpInst::FCMP_UEQ: return "ueq";
3566 case FCmpInst::FCMP_UGT: return "ugt";
3567 case FCmpInst::FCMP_UGE: return "uge";
3568 case FCmpInst::FCMP_ULT: return "ult";
3569 case FCmpInst::FCMP_ULE: return "ule";
3570 case FCmpInst::FCMP_UNE: return "une";
3571 case FCmpInst::FCMP_TRUE: return "true";
3572 case ICmpInst::ICMP_EQ: return "eq";
3573 case ICmpInst::ICMP_NE: return "ne";
3574 case ICmpInst::ICMP_SGT: return "sgt";
3575 case ICmpInst::ICMP_SGE: return "sge";
3576 case ICmpInst::ICMP_SLT: return "slt";
3577 case ICmpInst::ICMP_SLE: return "sle";
3578 case ICmpInst::ICMP_UGT: return "ugt";
3579 case ICmpInst::ICMP_UGE: return "uge";
3580 case ICmpInst::ICMP_ULT: return "ult";
3581 case ICmpInst::ICMP_ULE: return "ule";
3585 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3586 switch (pred) {
3587 default: llvm_unreachable("Unknown icmp predicate!");
3588 case ICMP_EQ: case ICMP_NE:
3589 case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3590 return pred;
3591 case ICMP_UGT: return ICMP_SGT;
3592 case ICMP_ULT: return ICMP_SLT;
3593 case ICMP_UGE: return ICMP_SGE;
3594 case ICMP_ULE: return ICMP_SLE;
3598 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3599 switch (pred) {
3600 default: llvm_unreachable("Unknown icmp predicate!");
3601 case ICMP_EQ: case ICMP_NE:
3602 case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3603 return pred;
3604 case ICMP_SGT: return ICMP_UGT;
3605 case ICMP_SLT: return ICMP_ULT;
3606 case ICMP_SGE: return ICMP_UGE;
3607 case ICMP_SLE: return ICMP_ULE;
3611 CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) {
3612 switch (pred) {
3613 default: llvm_unreachable("Unknown or unsupported cmp predicate!");
3614 case ICMP_SGT: return ICMP_SGE;
3615 case ICMP_SLT: return ICMP_SLE;
3616 case ICMP_SGE: return ICMP_SGT;
3617 case ICMP_SLE: return ICMP_SLT;
3618 case ICMP_UGT: return ICMP_UGE;
3619 case ICMP_ULT: return ICMP_ULE;
3620 case ICMP_UGE: return ICMP_UGT;
3621 case ICMP_ULE: return ICMP_ULT;
3623 case FCMP_OGT: return FCMP_OGE;
3624 case FCMP_OLT: return FCMP_OLE;
3625 case FCMP_OGE: return FCMP_OGT;
3626 case FCMP_OLE: return FCMP_OLT;
3627 case FCMP_UGT: return FCMP_UGE;
3628 case FCMP_ULT: return FCMP_ULE;
3629 case FCMP_UGE: return FCMP_UGT;
3630 case FCMP_ULE: return FCMP_ULT;
3634 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3635 switch (pred) {
3636 default: llvm_unreachable("Unknown cmp predicate!");
3637 case ICMP_EQ: case ICMP_NE:
3638 return pred;
3639 case ICMP_SGT: return ICMP_SLT;
3640 case ICMP_SLT: return ICMP_SGT;
3641 case ICMP_SGE: return ICMP_SLE;
3642 case ICMP_SLE: return ICMP_SGE;
3643 case ICMP_UGT: return ICMP_ULT;
3644 case ICMP_ULT: return ICMP_UGT;
3645 case ICMP_UGE: return ICMP_ULE;
3646 case ICMP_ULE: return ICMP_UGE;
3648 case FCMP_FALSE: case FCMP_TRUE:
3649 case FCMP_OEQ: case FCMP_ONE:
3650 case FCMP_UEQ: case FCMP_UNE:
3651 case FCMP_ORD: case FCMP_UNO:
3652 return pred;
3653 case FCMP_OGT: return FCMP_OLT;
3654 case FCMP_OLT: return FCMP_OGT;
3655 case FCMP_OGE: return FCMP_OLE;
3656 case FCMP_OLE: return FCMP_OGE;
3657 case FCMP_UGT: return FCMP_ULT;
3658 case FCMP_ULT: return FCMP_UGT;
3659 case FCMP_UGE: return FCMP_ULE;
3660 case FCMP_ULE: return FCMP_UGE;
3664 CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) {
3665 switch (pred) {
3666 case ICMP_SGT: return ICMP_SGE;
3667 case ICMP_SLT: return ICMP_SLE;
3668 case ICMP_UGT: return ICMP_UGE;
3669 case ICMP_ULT: return ICMP_ULE;
3670 case FCMP_OGT: return FCMP_OGE;
3671 case FCMP_OLT: return FCMP_OLE;
3672 case FCMP_UGT: return FCMP_UGE;
3673 case FCMP_ULT: return FCMP_ULE;
3674 default: return pred;
3678 CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) {
3679 assert(CmpInst::isUnsigned(pred) && "Call only with signed predicates!");
3681 switch (pred) {
3682 default:
3683 llvm_unreachable("Unknown predicate!");
3684 case CmpInst::ICMP_ULT:
3685 return CmpInst::ICMP_SLT;
3686 case CmpInst::ICMP_ULE:
3687 return CmpInst::ICMP_SLE;
3688 case CmpInst::ICMP_UGT:
3689 return CmpInst::ICMP_SGT;
3690 case CmpInst::ICMP_UGE:
3691 return CmpInst::ICMP_SGE;
3695 bool CmpInst::isUnsigned(Predicate predicate) {
3696 switch (predicate) {
3697 default: return false;
3698 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
3699 case ICmpInst::ICMP_UGE: return true;
3703 bool CmpInst::isSigned(Predicate predicate) {
3704 switch (predicate) {
3705 default: return false;
3706 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
3707 case ICmpInst::ICMP_SGE: return true;
3711 bool CmpInst::isOrdered(Predicate predicate) {
3712 switch (predicate) {
3713 default: return false;
3714 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
3715 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
3716 case FCmpInst::FCMP_ORD: return true;
3720 bool CmpInst::isUnordered(Predicate predicate) {
3721 switch (predicate) {
3722 default: return false;
3723 case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
3724 case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
3725 case FCmpInst::FCMP_UNO: return true;
3729 bool CmpInst::isTrueWhenEqual(Predicate predicate) {
3730 switch(predicate) {
3731 default: return false;
3732 case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3733 case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3737 bool CmpInst::isFalseWhenEqual(Predicate predicate) {
3738 switch(predicate) {
3739 case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3740 case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3741 default: return false;
3745 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3746 // If the predicates match, then we know the first condition implies the
3747 // second is true.
3748 if (Pred1 == Pred2)
3749 return true;
3751 switch (Pred1) {
3752 default:
3753 break;
3754 case ICMP_EQ:
3755 // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
3756 return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE ||
3757 Pred2 == ICMP_SLE;
3758 case ICMP_UGT: // A >u B implies A != B and A >=u B are true.
3759 return Pred2 == ICMP_NE || Pred2 == ICMP_UGE;
3760 case ICMP_ULT: // A <u B implies A != B and A <=u B are true.
3761 return Pred2 == ICMP_NE || Pred2 == ICMP_ULE;
3762 case ICMP_SGT: // A >s B implies A != B and A >=s B are true.
3763 return Pred2 == ICMP_NE || Pred2 == ICMP_SGE;
3764 case ICMP_SLT: // A <s B implies A != B and A <=s B are true.
3765 return Pred2 == ICMP_NE || Pred2 == ICMP_SLE;
3767 return false;
3770 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3771 return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2));
3774 //===----------------------------------------------------------------------===//
3775 // SwitchInst Implementation
3776 //===----------------------------------------------------------------------===//
3778 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
3779 assert(Value && Default && NumReserved);
3780 ReservedSpace = NumReserved;
3781 setNumHungOffUseOperands(2);
3782 allocHungoffUses(ReservedSpace);
3784 Op<0>() = Value;
3785 Op<1>() = Default;
3788 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3789 /// switch on and a default destination. The number of additional cases can
3790 /// be specified here to make memory allocation more efficient. This
3791 /// constructor can also autoinsert before another instruction.
3792 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3793 Instruction *InsertBefore)
3794 : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3795 nullptr, 0, InsertBefore) {
3796 init(Value, Default, 2+NumCases*2);
3799 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3800 /// switch on and a default destination. The number of additional cases can
3801 /// be specified here to make memory allocation more efficient. This
3802 /// constructor also autoinserts at the end of the specified BasicBlock.
3803 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3804 BasicBlock *InsertAtEnd)
3805 : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3806 nullptr, 0, InsertAtEnd) {
3807 init(Value, Default, 2+NumCases*2);
3810 SwitchInst::SwitchInst(const SwitchInst &SI)
3811 : Instruction(SI.getType(), Instruction::Switch, nullptr, 0) {
3812 init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
3813 setNumHungOffUseOperands(SI.getNumOperands());
3814 Use *OL = getOperandList();
3815 const Use *InOL = SI.getOperandList();
3816 for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
3817 OL[i] = InOL[i];
3818 OL[i+1] = InOL[i+1];
3820 SubclassOptionalData = SI.SubclassOptionalData;
3823 /// addCase - Add an entry to the switch instruction...
3825 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
3826 unsigned NewCaseIdx = getNumCases();
3827 unsigned OpNo = getNumOperands();
3828 if (OpNo+2 > ReservedSpace)
3829 growOperands(); // Get more space!
3830 // Initialize some new operands.
3831 assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
3832 setNumHungOffUseOperands(OpNo+2);
3833 CaseHandle Case(this, NewCaseIdx);
3834 Case.setValue(OnVal);
3835 Case.setSuccessor(Dest);
3838 /// removeCase - This method removes the specified case and its successor
3839 /// from the switch instruction.
3840 SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) {
3841 unsigned idx = I->getCaseIndex();
3843 assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
3845 unsigned NumOps = getNumOperands();
3846 Use *OL = getOperandList();
3848 // Overwrite this case with the end of the list.
3849 if (2 + (idx + 1) * 2 != NumOps) {
3850 OL[2 + idx * 2] = OL[NumOps - 2];
3851 OL[2 + idx * 2 + 1] = OL[NumOps - 1];
3854 // Nuke the last value.
3855 OL[NumOps-2].set(nullptr);
3856 OL[NumOps-2+1].set(nullptr);
3857 setNumHungOffUseOperands(NumOps-2);
3859 return CaseIt(this, idx);
3862 /// growOperands - grow operands - This grows the operand list in response
3863 /// to a push_back style of operation. This grows the number of ops by 3 times.
3865 void SwitchInst::growOperands() {
3866 unsigned e = getNumOperands();
3867 unsigned NumOps = e*3;
3869 ReservedSpace = NumOps;
3870 growHungoffUses(ReservedSpace);
3873 //===----------------------------------------------------------------------===//
3874 // IndirectBrInst Implementation
3875 //===----------------------------------------------------------------------===//
3877 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
3878 assert(Address && Address->getType()->isPointerTy() &&
3879 "Address of indirectbr must be a pointer");
3880 ReservedSpace = 1+NumDests;
3881 setNumHungOffUseOperands(1);
3882 allocHungoffUses(ReservedSpace);
3884 Op<0>() = Address;
3888 /// growOperands - grow operands - This grows the operand list in response
3889 /// to a push_back style of operation. This grows the number of ops by 2 times.
3891 void IndirectBrInst::growOperands() {
3892 unsigned e = getNumOperands();
3893 unsigned NumOps = e*2;
3895 ReservedSpace = NumOps;
3896 growHungoffUses(ReservedSpace);
3899 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3900 Instruction *InsertBefore)
3901 : Instruction(Type::getVoidTy(Address->getContext()),
3902 Instruction::IndirectBr, nullptr, 0, InsertBefore) {
3903 init(Address, NumCases);
3906 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3907 BasicBlock *InsertAtEnd)
3908 : Instruction(Type::getVoidTy(Address->getContext()),
3909 Instruction::IndirectBr, nullptr, 0, InsertAtEnd) {
3910 init(Address, NumCases);
3913 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
3914 : Instruction(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
3915 nullptr, IBI.getNumOperands()) {
3916 allocHungoffUses(IBI.getNumOperands());
3917 Use *OL = getOperandList();
3918 const Use *InOL = IBI.getOperandList();
3919 for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
3920 OL[i] = InOL[i];
3921 SubclassOptionalData = IBI.SubclassOptionalData;
3924 /// addDestination - Add a destination.
3926 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
3927 unsigned OpNo = getNumOperands();
3928 if (OpNo+1 > ReservedSpace)
3929 growOperands(); // Get more space!
3930 // Initialize some new operands.
3931 assert(OpNo < ReservedSpace && "Growing didn't work!");
3932 setNumHungOffUseOperands(OpNo+1);
3933 getOperandList()[OpNo] = DestBB;
3936 /// removeDestination - This method removes the specified successor from the
3937 /// indirectbr instruction.
3938 void IndirectBrInst::removeDestination(unsigned idx) {
3939 assert(idx < getNumOperands()-1 && "Successor index out of range!");
3941 unsigned NumOps = getNumOperands();
3942 Use *OL = getOperandList();
3944 // Replace this value with the last one.
3945 OL[idx+1] = OL[NumOps-1];
3947 // Nuke the last value.
3948 OL[NumOps-1].set(nullptr);
3949 setNumHungOffUseOperands(NumOps-1);
3952 //===----------------------------------------------------------------------===//
3953 // cloneImpl() implementations
3954 //===----------------------------------------------------------------------===//
3956 // Define these methods here so vtables don't get emitted into every translation
3957 // unit that uses these classes.
3959 GetElementPtrInst *GetElementPtrInst::cloneImpl() const {
3960 return new (getNumOperands()) GetElementPtrInst(*this);
3963 UnaryOperator *UnaryOperator::cloneImpl() const {
3964 return Create(getOpcode(), Op<0>());
3967 BinaryOperator *BinaryOperator::cloneImpl() const {
3968 return Create(getOpcode(), Op<0>(), Op<1>());
3971 FCmpInst *FCmpInst::cloneImpl() const {
3972 return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
3975 ICmpInst *ICmpInst::cloneImpl() const {
3976 return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
3979 ExtractValueInst *ExtractValueInst::cloneImpl() const {
3980 return new ExtractValueInst(*this);
3983 InsertValueInst *InsertValueInst::cloneImpl() const {
3984 return new InsertValueInst(*this);
3987 AllocaInst *AllocaInst::cloneImpl() const {
3988 AllocaInst *Result = new AllocaInst(getAllocatedType(),
3989 getType()->getAddressSpace(),
3990 (Value *)getOperand(0), getAlignment());
3991 Result->setUsedWithInAlloca(isUsedWithInAlloca());
3992 Result->setSwiftError(isSwiftError());
3993 return Result;
3996 LoadInst *LoadInst::cloneImpl() const {
3997 return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(),
3998 getAlignment(), getOrdering(), getSyncScopeID());
4001 StoreInst *StoreInst::cloneImpl() const {
4002 return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
4003 getAlignment(), getOrdering(), getSyncScopeID());
4007 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const {
4008 AtomicCmpXchgInst *Result =
4009 new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
4010 getSuccessOrdering(), getFailureOrdering(),
4011 getSyncScopeID());
4012 Result->setVolatile(isVolatile());
4013 Result->setWeak(isWeak());
4014 return Result;
4017 AtomicRMWInst *AtomicRMWInst::cloneImpl() const {
4018 AtomicRMWInst *Result =
4019 new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1),
4020 getOrdering(), getSyncScopeID());
4021 Result->setVolatile(isVolatile());
4022 return Result;
4025 FenceInst *FenceInst::cloneImpl() const {
4026 return new FenceInst(getContext(), getOrdering(), getSyncScopeID());
4029 TruncInst *TruncInst::cloneImpl() const {
4030 return new TruncInst(getOperand(0), getType());
4033 ZExtInst *ZExtInst::cloneImpl() const {
4034 return new ZExtInst(getOperand(0), getType());
4037 SExtInst *SExtInst::cloneImpl() const {
4038 return new SExtInst(getOperand(0), getType());
4041 FPTruncInst *FPTruncInst::cloneImpl() const {
4042 return new FPTruncInst(getOperand(0), getType());
4045 FPExtInst *FPExtInst::cloneImpl() const {
4046 return new FPExtInst(getOperand(0), getType());
4049 UIToFPInst *UIToFPInst::cloneImpl() const {
4050 return new UIToFPInst(getOperand(0), getType());
4053 SIToFPInst *SIToFPInst::cloneImpl() const {
4054 return new SIToFPInst(getOperand(0), getType());
4057 FPToUIInst *FPToUIInst::cloneImpl() const {
4058 return new FPToUIInst(getOperand(0), getType());
4061 FPToSIInst *FPToSIInst::cloneImpl() const {
4062 return new FPToSIInst(getOperand(0), getType());
4065 PtrToIntInst *PtrToIntInst::cloneImpl() const {
4066 return new PtrToIntInst(getOperand(0), getType());
4069 IntToPtrInst *IntToPtrInst::cloneImpl() const {
4070 return new IntToPtrInst(getOperand(0), getType());
4073 BitCastInst *BitCastInst::cloneImpl() const {
4074 return new BitCastInst(getOperand(0), getType());
4077 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const {
4078 return new AddrSpaceCastInst(getOperand(0), getType());
4081 CallInst *CallInst::cloneImpl() const {
4082 if (hasOperandBundles()) {
4083 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4084 return new(getNumOperands(), DescriptorBytes) CallInst(*this);
4086 return new(getNumOperands()) CallInst(*this);
4089 SelectInst *SelectInst::cloneImpl() const {
4090 return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
4093 VAArgInst *VAArgInst::cloneImpl() const {
4094 return new VAArgInst(getOperand(0), getType());
4097 ExtractElementInst *ExtractElementInst::cloneImpl() const {
4098 return ExtractElementInst::Create(getOperand(0), getOperand(1));
4101 InsertElementInst *InsertElementInst::cloneImpl() const {
4102 return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
4105 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const {
4106 return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2));
4109 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); }
4111 LandingPadInst *LandingPadInst::cloneImpl() const {
4112 return new LandingPadInst(*this);
4115 ReturnInst *ReturnInst::cloneImpl() const {
4116 return new(getNumOperands()) ReturnInst(*this);
4119 BranchInst *BranchInst::cloneImpl() const {
4120 return new(getNumOperands()) BranchInst(*this);
4123 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
4125 IndirectBrInst *IndirectBrInst::cloneImpl() const {
4126 return new IndirectBrInst(*this);
4129 InvokeInst *InvokeInst::cloneImpl() const {
4130 if (hasOperandBundles()) {
4131 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4132 return new(getNumOperands(), DescriptorBytes) InvokeInst(*this);
4134 return new(getNumOperands()) InvokeInst(*this);
4137 CallBrInst *CallBrInst::cloneImpl() const {
4138 if (hasOperandBundles()) {
4139 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4140 return new (getNumOperands(), DescriptorBytes) CallBrInst(*this);
4142 return new (getNumOperands()) CallBrInst(*this);
4145 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
4147 CleanupReturnInst *CleanupReturnInst::cloneImpl() const {
4148 return new (getNumOperands()) CleanupReturnInst(*this);
4151 CatchReturnInst *CatchReturnInst::cloneImpl() const {
4152 return new (getNumOperands()) CatchReturnInst(*this);
4155 CatchSwitchInst *CatchSwitchInst::cloneImpl() const {
4156 return new CatchSwitchInst(*this);
4159 FuncletPadInst *FuncletPadInst::cloneImpl() const {
4160 return new (getNumOperands()) FuncletPadInst(*this);
4163 UnreachableInst *UnreachableInst::cloneImpl() const {
4164 LLVMContext &Context = getContext();
4165 return new UnreachableInst(Context);