Another attempt to fix the build bot breaks after r360426
[llvm-core.git] / lib / Linker / IRMover.cpp
blobb21b8f33ab42fd37495e9574972326a46b588676
1 //===- lib/Linker/IRMover.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Linker/IRMover.h"
10 #include "LinkDiagnosticInfo.h"
11 #include "llvm/ADT/SetVector.h"
12 #include "llvm/ADT/SmallString.h"
13 #include "llvm/ADT/Triple.h"
14 #include "llvm/IR/Constants.h"
15 #include "llvm/IR/DebugInfo.h"
16 #include "llvm/IR/DiagnosticPrinter.h"
17 #include "llvm/IR/GVMaterializer.h"
18 #include "llvm/IR/Intrinsics.h"
19 #include "llvm/IR/TypeFinder.h"
20 #include "llvm/Support/Error.h"
21 #include "llvm/Transforms/Utils/Cloning.h"
22 #include <utility>
23 using namespace llvm;
25 //===----------------------------------------------------------------------===//
26 // TypeMap implementation.
27 //===----------------------------------------------------------------------===//
29 namespace {
30 class TypeMapTy : public ValueMapTypeRemapper {
31 /// This is a mapping from a source type to a destination type to use.
32 DenseMap<Type *, Type *> MappedTypes;
34 /// When checking to see if two subgraphs are isomorphic, we speculatively
35 /// add types to MappedTypes, but keep track of them here in case we need to
36 /// roll back.
37 SmallVector<Type *, 16> SpeculativeTypes;
39 SmallVector<StructType *, 16> SpeculativeDstOpaqueTypes;
41 /// This is a list of non-opaque structs in the source module that are mapped
42 /// to an opaque struct in the destination module.
43 SmallVector<StructType *, 16> SrcDefinitionsToResolve;
45 /// This is the set of opaque types in the destination modules who are
46 /// getting a body from the source module.
47 SmallPtrSet<StructType *, 16> DstResolvedOpaqueTypes;
49 public:
50 TypeMapTy(IRMover::IdentifiedStructTypeSet &DstStructTypesSet)
51 : DstStructTypesSet(DstStructTypesSet) {}
53 IRMover::IdentifiedStructTypeSet &DstStructTypesSet;
54 /// Indicate that the specified type in the destination module is conceptually
55 /// equivalent to the specified type in the source module.
56 void addTypeMapping(Type *DstTy, Type *SrcTy);
58 /// Produce a body for an opaque type in the dest module from a type
59 /// definition in the source module.
60 void linkDefinedTypeBodies();
62 /// Return the mapped type to use for the specified input type from the
63 /// source module.
64 Type *get(Type *SrcTy);
65 Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited);
67 void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes);
69 FunctionType *get(FunctionType *T) {
70 return cast<FunctionType>(get((Type *)T));
73 private:
74 Type *remapType(Type *SrcTy) override { return get(SrcTy); }
76 bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
80 void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
81 assert(SpeculativeTypes.empty());
82 assert(SpeculativeDstOpaqueTypes.empty());
84 // Check to see if these types are recursively isomorphic and establish a
85 // mapping between them if so.
86 if (!areTypesIsomorphic(DstTy, SrcTy)) {
87 // Oops, they aren't isomorphic. Just discard this request by rolling out
88 // any speculative mappings we've established.
89 for (Type *Ty : SpeculativeTypes)
90 MappedTypes.erase(Ty);
92 SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() -
93 SpeculativeDstOpaqueTypes.size());
94 for (StructType *Ty : SpeculativeDstOpaqueTypes)
95 DstResolvedOpaqueTypes.erase(Ty);
96 } else {
97 // SrcTy and DstTy are recursively ismorphic. We clear names of SrcTy
98 // and all its descendants to lower amount of renaming in LLVM context
99 // Renaming occurs because we load all source modules to the same context
100 // and declaration with existing name gets renamed (i.e Foo -> Foo.42).
101 // As a result we may get several different types in the destination
102 // module, which are in fact the same.
103 for (Type *Ty : SpeculativeTypes)
104 if (auto *STy = dyn_cast<StructType>(Ty))
105 if (STy->hasName())
106 STy->setName("");
108 SpeculativeTypes.clear();
109 SpeculativeDstOpaqueTypes.clear();
112 /// Recursively walk this pair of types, returning true if they are isomorphic,
113 /// false if they are not.
114 bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
115 // Two types with differing kinds are clearly not isomorphic.
116 if (DstTy->getTypeID() != SrcTy->getTypeID())
117 return false;
119 // If we have an entry in the MappedTypes table, then we have our answer.
120 Type *&Entry = MappedTypes[SrcTy];
121 if (Entry)
122 return Entry == DstTy;
124 // Two identical types are clearly isomorphic. Remember this
125 // non-speculatively.
126 if (DstTy == SrcTy) {
127 Entry = DstTy;
128 return true;
131 // Okay, we have two types with identical kinds that we haven't seen before.
133 // If this is an opaque struct type, special case it.
134 if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
135 // Mapping an opaque type to any struct, just keep the dest struct.
136 if (SSTy->isOpaque()) {
137 Entry = DstTy;
138 SpeculativeTypes.push_back(SrcTy);
139 return true;
142 // Mapping a non-opaque source type to an opaque dest. If this is the first
143 // type that we're mapping onto this destination type then we succeed. Keep
144 // the dest, but fill it in later. If this is the second (different) type
145 // that we're trying to map onto the same opaque type then we fail.
146 if (cast<StructType>(DstTy)->isOpaque()) {
147 // We can only map one source type onto the opaque destination type.
148 if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second)
149 return false;
150 SrcDefinitionsToResolve.push_back(SSTy);
151 SpeculativeTypes.push_back(SrcTy);
152 SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy));
153 Entry = DstTy;
154 return true;
158 // If the number of subtypes disagree between the two types, then we fail.
159 if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
160 return false;
162 // Fail if any of the extra properties (e.g. array size) of the type disagree.
163 if (isa<IntegerType>(DstTy))
164 return false; // bitwidth disagrees.
165 if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
166 if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
167 return false;
168 } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
169 if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
170 return false;
171 } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
172 StructType *SSTy = cast<StructType>(SrcTy);
173 if (DSTy->isLiteral() != SSTy->isLiteral() ||
174 DSTy->isPacked() != SSTy->isPacked())
175 return false;
176 } else if (auto *DSeqTy = dyn_cast<SequentialType>(DstTy)) {
177 if (DSeqTy->getNumElements() !=
178 cast<SequentialType>(SrcTy)->getNumElements())
179 return false;
182 // Otherwise, we speculate that these two types will line up and recursively
183 // check the subelements.
184 Entry = DstTy;
185 SpeculativeTypes.push_back(SrcTy);
187 for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I)
188 if (!areTypesIsomorphic(DstTy->getContainedType(I),
189 SrcTy->getContainedType(I)))
190 return false;
192 // If everything seems to have lined up, then everything is great.
193 return true;
196 void TypeMapTy::linkDefinedTypeBodies() {
197 SmallVector<Type *, 16> Elements;
198 for (StructType *SrcSTy : SrcDefinitionsToResolve) {
199 StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
200 assert(DstSTy->isOpaque());
202 // Map the body of the source type over to a new body for the dest type.
203 Elements.resize(SrcSTy->getNumElements());
204 for (unsigned I = 0, E = Elements.size(); I != E; ++I)
205 Elements[I] = get(SrcSTy->getElementType(I));
207 DstSTy->setBody(Elements, SrcSTy->isPacked());
208 DstStructTypesSet.switchToNonOpaque(DstSTy);
210 SrcDefinitionsToResolve.clear();
211 DstResolvedOpaqueTypes.clear();
214 void TypeMapTy::finishType(StructType *DTy, StructType *STy,
215 ArrayRef<Type *> ETypes) {
216 DTy->setBody(ETypes, STy->isPacked());
218 // Steal STy's name.
219 if (STy->hasName()) {
220 SmallString<16> TmpName = STy->getName();
221 STy->setName("");
222 DTy->setName(TmpName);
225 DstStructTypesSet.addNonOpaque(DTy);
228 Type *TypeMapTy::get(Type *Ty) {
229 SmallPtrSet<StructType *, 8> Visited;
230 return get(Ty, Visited);
233 Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) {
234 // If we already have an entry for this type, return it.
235 Type **Entry = &MappedTypes[Ty];
236 if (*Entry)
237 return *Entry;
239 // These are types that LLVM itself will unique.
240 bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral();
242 if (!IsUniqued) {
243 StructType *STy = cast<StructType>(Ty);
244 // This is actually a type from the destination module, this can be reached
245 // when this type is loaded in another module, added to DstStructTypesSet,
246 // and then we reach the same type in another module where it has not been
247 // added to MappedTypes. (PR37684)
248 if (STy->getContext().isODRUniquingDebugTypes() && !STy->isOpaque() &&
249 DstStructTypesSet.hasType(STy))
250 return *Entry = STy;
252 #ifndef NDEBUG
253 for (auto &Pair : MappedTypes) {
254 assert(!(Pair.first != Ty && Pair.second == Ty) &&
255 "mapping to a source type");
257 #endif
259 if (!Visited.insert(STy).second) {
260 StructType *DTy = StructType::create(Ty->getContext());
261 return *Entry = DTy;
265 // If this is not a recursive type, then just map all of the elements and
266 // then rebuild the type from inside out.
267 SmallVector<Type *, 4> ElementTypes;
269 // If there are no element types to map, then the type is itself. This is
270 // true for the anonymous {} struct, things like 'float', integers, etc.
271 if (Ty->getNumContainedTypes() == 0 && IsUniqued)
272 return *Entry = Ty;
274 // Remap all of the elements, keeping track of whether any of them change.
275 bool AnyChange = false;
276 ElementTypes.resize(Ty->getNumContainedTypes());
277 for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) {
278 ElementTypes[I] = get(Ty->getContainedType(I), Visited);
279 AnyChange |= ElementTypes[I] != Ty->getContainedType(I);
282 // If we found our type while recursively processing stuff, just use it.
283 Entry = &MappedTypes[Ty];
284 if (*Entry) {
285 if (auto *DTy = dyn_cast<StructType>(*Entry)) {
286 if (DTy->isOpaque()) {
287 auto *STy = cast<StructType>(Ty);
288 finishType(DTy, STy, ElementTypes);
291 return *Entry;
294 // If all of the element types mapped directly over and the type is not
295 // a named struct, then the type is usable as-is.
296 if (!AnyChange && IsUniqued)
297 return *Entry = Ty;
299 // Otherwise, rebuild a modified type.
300 switch (Ty->getTypeID()) {
301 default:
302 llvm_unreachable("unknown derived type to remap");
303 case Type::ArrayTyID:
304 return *Entry = ArrayType::get(ElementTypes[0],
305 cast<ArrayType>(Ty)->getNumElements());
306 case Type::VectorTyID:
307 return *Entry = VectorType::get(ElementTypes[0],
308 cast<VectorType>(Ty)->getNumElements());
309 case Type::PointerTyID:
310 return *Entry = PointerType::get(ElementTypes[0],
311 cast<PointerType>(Ty)->getAddressSpace());
312 case Type::FunctionTyID:
313 return *Entry = FunctionType::get(ElementTypes[0],
314 makeArrayRef(ElementTypes).slice(1),
315 cast<FunctionType>(Ty)->isVarArg());
316 case Type::StructTyID: {
317 auto *STy = cast<StructType>(Ty);
318 bool IsPacked = STy->isPacked();
319 if (IsUniqued)
320 return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked);
322 // If the type is opaque, we can just use it directly.
323 if (STy->isOpaque()) {
324 DstStructTypesSet.addOpaque(STy);
325 return *Entry = Ty;
328 if (StructType *OldT =
329 DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) {
330 STy->setName("");
331 return *Entry = OldT;
334 if (!AnyChange) {
335 DstStructTypesSet.addNonOpaque(STy);
336 return *Entry = Ty;
339 StructType *DTy = StructType::create(Ty->getContext());
340 finishType(DTy, STy, ElementTypes);
341 return *Entry = DTy;
346 LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity,
347 const Twine &Msg)
348 : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {}
349 void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
351 //===----------------------------------------------------------------------===//
352 // IRLinker implementation.
353 //===----------------------------------------------------------------------===//
355 namespace {
356 class IRLinker;
358 /// Creates prototypes for functions that are lazily linked on the fly. This
359 /// speeds up linking for modules with many/ lazily linked functions of which
360 /// few get used.
361 class GlobalValueMaterializer final : public ValueMaterializer {
362 IRLinker &TheIRLinker;
364 public:
365 GlobalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
366 Value *materialize(Value *V) override;
369 class LocalValueMaterializer final : public ValueMaterializer {
370 IRLinker &TheIRLinker;
372 public:
373 LocalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
374 Value *materialize(Value *V) override;
377 /// Type of the Metadata map in \a ValueToValueMapTy.
378 typedef DenseMap<const Metadata *, TrackingMDRef> MDMapT;
380 /// This is responsible for keeping track of the state used for moving data
381 /// from SrcM to DstM.
382 class IRLinker {
383 Module &DstM;
384 std::unique_ptr<Module> SrcM;
386 /// See IRMover::move().
387 std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor;
389 TypeMapTy TypeMap;
390 GlobalValueMaterializer GValMaterializer;
391 LocalValueMaterializer LValMaterializer;
393 /// A metadata map that's shared between IRLinker instances.
394 MDMapT &SharedMDs;
396 /// Mapping of values from what they used to be in Src, to what they are now
397 /// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead
398 /// due to the use of Value handles which the Linker doesn't actually need,
399 /// but this allows us to reuse the ValueMapper code.
400 ValueToValueMapTy ValueMap;
401 ValueToValueMapTy AliasValueMap;
403 DenseSet<GlobalValue *> ValuesToLink;
404 std::vector<GlobalValue *> Worklist;
405 std::vector<std::pair<GlobalValue *, Value*>> RAUWWorklist;
407 void maybeAdd(GlobalValue *GV) {
408 if (ValuesToLink.insert(GV).second)
409 Worklist.push_back(GV);
412 /// Whether we are importing globals for ThinLTO, as opposed to linking the
413 /// source module. If this flag is set, it means that we can rely on some
414 /// other object file to define any non-GlobalValue entities defined by the
415 /// source module. This currently causes us to not link retained types in
416 /// debug info metadata and module inline asm.
417 bool IsPerformingImport;
419 /// Set to true when all global value body linking is complete (including
420 /// lazy linking). Used to prevent metadata linking from creating new
421 /// references.
422 bool DoneLinkingBodies = false;
424 /// The Error encountered during materialization. We use an Optional here to
425 /// avoid needing to manage an unconsumed success value.
426 Optional<Error> FoundError;
427 void setError(Error E) {
428 if (E)
429 FoundError = std::move(E);
432 /// Most of the errors produced by this module are inconvertible StringErrors.
433 /// This convenience function lets us return one of those more easily.
434 Error stringErr(const Twine &T) {
435 return make_error<StringError>(T, inconvertibleErrorCode());
438 /// Entry point for mapping values and alternate context for mapping aliases.
439 ValueMapper Mapper;
440 unsigned AliasMCID;
442 /// Handles cloning of a global values from the source module into
443 /// the destination module, including setting the attributes and visibility.
444 GlobalValue *copyGlobalValueProto(const GlobalValue *SGV, bool ForDefinition);
446 void emitWarning(const Twine &Message) {
447 SrcM->getContext().diagnose(LinkDiagnosticInfo(DS_Warning, Message));
450 /// Given a global in the source module, return the global in the
451 /// destination module that is being linked to, if any.
452 GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) {
453 // If the source has no name it can't link. If it has local linkage,
454 // there is no name match-up going on.
455 if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
456 return nullptr;
458 // Otherwise see if we have a match in the destination module's symtab.
459 GlobalValue *DGV = DstM.getNamedValue(SrcGV->getName());
460 if (!DGV)
461 return nullptr;
463 // If we found a global with the same name in the dest module, but it has
464 // internal linkage, we are really not doing any linkage here.
465 if (DGV->hasLocalLinkage())
466 return nullptr;
468 // Otherwise, we do in fact link to the destination global.
469 return DGV;
472 void computeTypeMapping();
474 Expected<Constant *> linkAppendingVarProto(GlobalVariable *DstGV,
475 const GlobalVariable *SrcGV);
477 /// Given the GlobaValue \p SGV in the source module, and the matching
478 /// GlobalValue \p DGV (if any), return true if the linker will pull \p SGV
479 /// into the destination module.
481 /// Note this code may call the client-provided \p AddLazyFor.
482 bool shouldLink(GlobalValue *DGV, GlobalValue &SGV);
483 Expected<Constant *> linkGlobalValueProto(GlobalValue *GV, bool ForAlias);
485 Error linkModuleFlagsMetadata();
487 void linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src);
488 Error linkFunctionBody(Function &Dst, Function &Src);
489 void linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src);
490 Error linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src);
492 /// Functions that take care of cloning a specific global value type
493 /// into the destination module.
494 GlobalVariable *copyGlobalVariableProto(const GlobalVariable *SGVar);
495 Function *copyFunctionProto(const Function *SF);
496 GlobalValue *copyGlobalAliasProto(const GlobalAlias *SGA);
498 /// Perform "replace all uses with" operations. These work items need to be
499 /// performed as part of materialization, but we postpone them to happen after
500 /// materialization is done. The materializer called by ValueMapper is not
501 /// expected to delete constants, as ValueMapper is holding pointers to some
502 /// of them, but constant destruction may be indirectly triggered by RAUW.
503 /// Hence, the need to move this out of the materialization call chain.
504 void flushRAUWWorklist();
506 /// When importing for ThinLTO, prevent importing of types listed on
507 /// the DICompileUnit that we don't need a copy of in the importing
508 /// module.
509 void prepareCompileUnitsForImport();
510 void linkNamedMDNodes();
512 public:
513 IRLinker(Module &DstM, MDMapT &SharedMDs,
514 IRMover::IdentifiedStructTypeSet &Set, std::unique_ptr<Module> SrcM,
515 ArrayRef<GlobalValue *> ValuesToLink,
516 std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor,
517 bool IsPerformingImport)
518 : DstM(DstM), SrcM(std::move(SrcM)), AddLazyFor(std::move(AddLazyFor)),
519 TypeMap(Set), GValMaterializer(*this), LValMaterializer(*this),
520 SharedMDs(SharedMDs), IsPerformingImport(IsPerformingImport),
521 Mapper(ValueMap, RF_MoveDistinctMDs | RF_IgnoreMissingLocals, &TypeMap,
522 &GValMaterializer),
523 AliasMCID(Mapper.registerAlternateMappingContext(AliasValueMap,
524 &LValMaterializer)) {
525 ValueMap.getMDMap() = std::move(SharedMDs);
526 for (GlobalValue *GV : ValuesToLink)
527 maybeAdd(GV);
528 if (IsPerformingImport)
529 prepareCompileUnitsForImport();
531 ~IRLinker() { SharedMDs = std::move(*ValueMap.getMDMap()); }
533 Error run();
534 Value *materialize(Value *V, bool ForAlias);
538 /// The LLVM SymbolTable class autorenames globals that conflict in the symbol
539 /// table. This is good for all clients except for us. Go through the trouble
540 /// to force this back.
541 static void forceRenaming(GlobalValue *GV, StringRef Name) {
542 // If the global doesn't force its name or if it already has the right name,
543 // there is nothing for us to do.
544 if (GV->hasLocalLinkage() || GV->getName() == Name)
545 return;
547 Module *M = GV->getParent();
549 // If there is a conflict, rename the conflict.
550 if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
551 GV->takeName(ConflictGV);
552 ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
553 assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
554 } else {
555 GV->setName(Name); // Force the name back
559 Value *GlobalValueMaterializer::materialize(Value *SGV) {
560 return TheIRLinker.materialize(SGV, false);
563 Value *LocalValueMaterializer::materialize(Value *SGV) {
564 return TheIRLinker.materialize(SGV, true);
567 Value *IRLinker::materialize(Value *V, bool ForAlias) {
568 auto *SGV = dyn_cast<GlobalValue>(V);
569 if (!SGV)
570 return nullptr;
572 Expected<Constant *> NewProto = linkGlobalValueProto(SGV, ForAlias);
573 if (!NewProto) {
574 setError(NewProto.takeError());
575 return nullptr;
577 if (!*NewProto)
578 return nullptr;
580 GlobalValue *New = dyn_cast<GlobalValue>(*NewProto);
581 if (!New)
582 return *NewProto;
584 // If we already created the body, just return.
585 if (auto *F = dyn_cast<Function>(New)) {
586 if (!F->isDeclaration())
587 return New;
588 } else if (auto *V = dyn_cast<GlobalVariable>(New)) {
589 if (V->hasInitializer() || V->hasAppendingLinkage())
590 return New;
591 } else {
592 auto *A = cast<GlobalAlias>(New);
593 if (A->getAliasee())
594 return New;
597 // When linking a global for an alias, it will always be linked. However we
598 // need to check if it was not already scheduled to satisfy a reference from a
599 // regular global value initializer. We know if it has been schedule if the
600 // "New" GlobalValue that is mapped here for the alias is the same as the one
601 // already mapped. If there is an entry in the ValueMap but the value is
602 // different, it means that the value already had a definition in the
603 // destination module (linkonce for instance), but we need a new definition
604 // for the alias ("New" will be different.
605 if (ForAlias && ValueMap.lookup(SGV) == New)
606 return New;
608 if (ForAlias || shouldLink(New, *SGV))
609 setError(linkGlobalValueBody(*New, *SGV));
611 return New;
614 /// Loop through the global variables in the src module and merge them into the
615 /// dest module.
616 GlobalVariable *IRLinker::copyGlobalVariableProto(const GlobalVariable *SGVar) {
617 // No linking to be performed or linking from the source: simply create an
618 // identical version of the symbol over in the dest module... the
619 // initializer will be filled in later by LinkGlobalInits.
620 GlobalVariable *NewDGV =
621 new GlobalVariable(DstM, TypeMap.get(SGVar->getValueType()),
622 SGVar->isConstant(), GlobalValue::ExternalLinkage,
623 /*init*/ nullptr, SGVar->getName(),
624 /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(),
625 SGVar->getType()->getAddressSpace());
626 NewDGV->setAlignment(SGVar->getAlignment());
627 NewDGV->copyAttributesFrom(SGVar);
628 return NewDGV;
631 /// Link the function in the source module into the destination module if
632 /// needed, setting up mapping information.
633 Function *IRLinker::copyFunctionProto(const Function *SF) {
634 // If there is no linkage to be performed or we are linking from the source,
635 // bring SF over.
636 auto *F =
637 Function::Create(TypeMap.get(SF->getFunctionType()),
638 GlobalValue::ExternalLinkage, SF->getName(), &DstM);
639 F->copyAttributesFrom(SF);
640 return F;
643 /// Set up prototypes for any aliases that come over from the source module.
644 GlobalValue *IRLinker::copyGlobalAliasProto(const GlobalAlias *SGA) {
645 // If there is no linkage to be performed or we're linking from the source,
646 // bring over SGA.
647 auto *Ty = TypeMap.get(SGA->getValueType());
648 auto *GA =
649 GlobalAlias::create(Ty, SGA->getType()->getPointerAddressSpace(),
650 GlobalValue::ExternalLinkage, SGA->getName(), &DstM);
651 GA->copyAttributesFrom(SGA);
652 return GA;
655 GlobalValue *IRLinker::copyGlobalValueProto(const GlobalValue *SGV,
656 bool ForDefinition) {
657 GlobalValue *NewGV;
658 if (auto *SGVar = dyn_cast<GlobalVariable>(SGV)) {
659 NewGV = copyGlobalVariableProto(SGVar);
660 } else if (auto *SF = dyn_cast<Function>(SGV)) {
661 NewGV = copyFunctionProto(SF);
662 } else {
663 if (ForDefinition)
664 NewGV = copyGlobalAliasProto(cast<GlobalAlias>(SGV));
665 else if (SGV->getValueType()->isFunctionTy())
666 NewGV =
667 Function::Create(cast<FunctionType>(TypeMap.get(SGV->getValueType())),
668 GlobalValue::ExternalLinkage, SGV->getName(), &DstM);
669 else
670 NewGV = new GlobalVariable(
671 DstM, TypeMap.get(SGV->getValueType()),
672 /*isConstant*/ false, GlobalValue::ExternalLinkage,
673 /*init*/ nullptr, SGV->getName(),
674 /*insertbefore*/ nullptr, SGV->getThreadLocalMode(),
675 SGV->getType()->getAddressSpace());
678 if (ForDefinition)
679 NewGV->setLinkage(SGV->getLinkage());
680 else if (SGV->hasExternalWeakLinkage())
681 NewGV->setLinkage(GlobalValue::ExternalWeakLinkage);
683 if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) {
684 // Metadata for global variables and function declarations is copied eagerly.
685 if (isa<GlobalVariable>(SGV) || SGV->isDeclaration())
686 NewGO->copyMetadata(cast<GlobalObject>(SGV), 0);
689 // Remove these copied constants in case this stays a declaration, since
690 // they point to the source module. If the def is linked the values will
691 // be mapped in during linkFunctionBody.
692 if (auto *NewF = dyn_cast<Function>(NewGV)) {
693 NewF->setPersonalityFn(nullptr);
694 NewF->setPrefixData(nullptr);
695 NewF->setPrologueData(nullptr);
698 return NewGV;
701 static StringRef getTypeNamePrefix(StringRef Name) {
702 size_t DotPos = Name.rfind('.');
703 return (DotPos == 0 || DotPos == StringRef::npos || Name.back() == '.' ||
704 !isdigit(static_cast<unsigned char>(Name[DotPos + 1])))
705 ? Name
706 : Name.substr(0, DotPos);
709 /// Loop over all of the linked values to compute type mappings. For example,
710 /// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct
711 /// types 'Foo' but one got renamed when the module was loaded into the same
712 /// LLVMContext.
713 void IRLinker::computeTypeMapping() {
714 for (GlobalValue &SGV : SrcM->globals()) {
715 GlobalValue *DGV = getLinkedToGlobal(&SGV);
716 if (!DGV)
717 continue;
719 if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) {
720 TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
721 continue;
724 // Unify the element type of appending arrays.
725 ArrayType *DAT = cast<ArrayType>(DGV->getValueType());
726 ArrayType *SAT = cast<ArrayType>(SGV.getValueType());
727 TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
730 for (GlobalValue &SGV : *SrcM)
731 if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
732 TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
734 for (GlobalValue &SGV : SrcM->aliases())
735 if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
736 TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
738 // Incorporate types by name, scanning all the types in the source module.
739 // At this point, the destination module may have a type "%foo = { i32 }" for
740 // example. When the source module got loaded into the same LLVMContext, if
741 // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
742 std::vector<StructType *> Types = SrcM->getIdentifiedStructTypes();
743 for (StructType *ST : Types) {
744 if (!ST->hasName())
745 continue;
747 if (TypeMap.DstStructTypesSet.hasType(ST)) {
748 // This is actually a type from the destination module.
749 // getIdentifiedStructTypes() can have found it by walking debug info
750 // metadata nodes, some of which get linked by name when ODR Type Uniquing
751 // is enabled on the Context, from the source to the destination module.
752 continue;
755 auto STTypePrefix = getTypeNamePrefix(ST->getName());
756 if (STTypePrefix.size()== ST->getName().size())
757 continue;
759 // Check to see if the destination module has a struct with the prefix name.
760 StructType *DST = DstM.getTypeByName(STTypePrefix);
761 if (!DST)
762 continue;
764 // Don't use it if this actually came from the source module. They're in
765 // the same LLVMContext after all. Also don't use it unless the type is
766 // actually used in the destination module. This can happen in situations
767 // like this:
769 // Module A Module B
770 // -------- --------
771 // %Z = type { %A } %B = type { %C.1 }
772 // %A = type { %B.1, [7 x i8] } %C.1 = type { i8* }
773 // %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] }
774 // %C = type { i8* } %B.3 = type { %C.1 }
776 // When we link Module B with Module A, the '%B' in Module B is
777 // used. However, that would then use '%C.1'. But when we process '%C.1',
778 // we prefer to take the '%C' version. So we are then left with both
779 // '%C.1' and '%C' being used for the same types. This leads to some
780 // variables using one type and some using the other.
781 if (TypeMap.DstStructTypesSet.hasType(DST))
782 TypeMap.addTypeMapping(DST, ST);
785 // Now that we have discovered all of the type equivalences, get a body for
786 // any 'opaque' types in the dest module that are now resolved.
787 TypeMap.linkDefinedTypeBodies();
790 static void getArrayElements(const Constant *C,
791 SmallVectorImpl<Constant *> &Dest) {
792 unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
794 for (unsigned i = 0; i != NumElements; ++i)
795 Dest.push_back(C->getAggregateElement(i));
798 /// If there were any appending global variables, link them together now.
799 Expected<Constant *>
800 IRLinker::linkAppendingVarProto(GlobalVariable *DstGV,
801 const GlobalVariable *SrcGV) {
802 Type *EltTy = cast<ArrayType>(TypeMap.get(SrcGV->getValueType()))
803 ->getElementType();
805 // FIXME: This upgrade is done during linking to support the C API. Once the
806 // old form is deprecated, we should move this upgrade to
807 // llvm::UpgradeGlobalVariable() and simplify the logic here and in
808 // Mapper::mapAppendingVariable() in ValueMapper.cpp.
809 StringRef Name = SrcGV->getName();
810 bool IsNewStructor = false;
811 bool IsOldStructor = false;
812 if (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") {
813 if (cast<StructType>(EltTy)->getNumElements() == 3)
814 IsNewStructor = true;
815 else
816 IsOldStructor = true;
819 PointerType *VoidPtrTy = Type::getInt8Ty(SrcGV->getContext())->getPointerTo();
820 if (IsOldStructor) {
821 auto &ST = *cast<StructType>(EltTy);
822 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
823 EltTy = StructType::get(SrcGV->getContext(), Tys, false);
826 uint64_t DstNumElements = 0;
827 if (DstGV) {
828 ArrayType *DstTy = cast<ArrayType>(DstGV->getValueType());
829 DstNumElements = DstTy->getNumElements();
831 if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
832 return stringErr(
833 "Linking globals named '" + SrcGV->getName() +
834 "': can only link appending global with another appending "
835 "global!");
837 // Check to see that they two arrays agree on type.
838 if (EltTy != DstTy->getElementType())
839 return stringErr("Appending variables with different element types!");
840 if (DstGV->isConstant() != SrcGV->isConstant())
841 return stringErr("Appending variables linked with different const'ness!");
843 if (DstGV->getAlignment() != SrcGV->getAlignment())
844 return stringErr(
845 "Appending variables with different alignment need to be linked!");
847 if (DstGV->getVisibility() != SrcGV->getVisibility())
848 return stringErr(
849 "Appending variables with different visibility need to be linked!");
851 if (DstGV->hasGlobalUnnamedAddr() != SrcGV->hasGlobalUnnamedAddr())
852 return stringErr(
853 "Appending variables with different unnamed_addr need to be linked!");
855 if (DstGV->getSection() != SrcGV->getSection())
856 return stringErr(
857 "Appending variables with different section name need to be linked!");
860 SmallVector<Constant *, 16> SrcElements;
861 getArrayElements(SrcGV->getInitializer(), SrcElements);
863 if (IsNewStructor) {
864 auto It = remove_if(SrcElements, [this](Constant *E) {
865 auto *Key =
866 dyn_cast<GlobalValue>(E->getAggregateElement(2)->stripPointerCasts());
867 if (!Key)
868 return false;
869 GlobalValue *DGV = getLinkedToGlobal(Key);
870 return !shouldLink(DGV, *Key);
872 SrcElements.erase(It, SrcElements.end());
874 uint64_t NewSize = DstNumElements + SrcElements.size();
875 ArrayType *NewType = ArrayType::get(EltTy, NewSize);
877 // Create the new global variable.
878 GlobalVariable *NG = new GlobalVariable(
879 DstM, NewType, SrcGV->isConstant(), SrcGV->getLinkage(),
880 /*init*/ nullptr, /*name*/ "", DstGV, SrcGV->getThreadLocalMode(),
881 SrcGV->getType()->getAddressSpace());
883 NG->copyAttributesFrom(SrcGV);
884 forceRenaming(NG, SrcGV->getName());
886 Constant *Ret = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
888 Mapper.scheduleMapAppendingVariable(*NG,
889 DstGV ? DstGV->getInitializer() : nullptr,
890 IsOldStructor, SrcElements);
892 // Replace any uses of the two global variables with uses of the new
893 // global.
894 if (DstGV) {
895 RAUWWorklist.push_back(
896 std::make_pair(DstGV, ConstantExpr::getBitCast(NG, DstGV->getType())));
899 return Ret;
902 bool IRLinker::shouldLink(GlobalValue *DGV, GlobalValue &SGV) {
903 if (ValuesToLink.count(&SGV) || SGV.hasLocalLinkage())
904 return true;
906 if (DGV && !DGV->isDeclarationForLinker())
907 return false;
909 if (SGV.isDeclaration() || DoneLinkingBodies)
910 return false;
912 // Callback to the client to give a chance to lazily add the Global to the
913 // list of value to link.
914 bool LazilyAdded = false;
915 AddLazyFor(SGV, [this, &LazilyAdded](GlobalValue &GV) {
916 maybeAdd(&GV);
917 LazilyAdded = true;
919 return LazilyAdded;
922 Expected<Constant *> IRLinker::linkGlobalValueProto(GlobalValue *SGV,
923 bool ForAlias) {
924 GlobalValue *DGV = getLinkedToGlobal(SGV);
926 bool ShouldLink = shouldLink(DGV, *SGV);
928 // just missing from map
929 if (ShouldLink) {
930 auto I = ValueMap.find(SGV);
931 if (I != ValueMap.end())
932 return cast<Constant>(I->second);
934 I = AliasValueMap.find(SGV);
935 if (I != AliasValueMap.end())
936 return cast<Constant>(I->second);
939 if (!ShouldLink && ForAlias)
940 DGV = nullptr;
942 // Handle the ultra special appending linkage case first.
943 assert(!DGV || SGV->hasAppendingLinkage() == DGV->hasAppendingLinkage());
944 if (SGV->hasAppendingLinkage())
945 return linkAppendingVarProto(cast_or_null<GlobalVariable>(DGV),
946 cast<GlobalVariable>(SGV));
948 GlobalValue *NewGV;
949 if (DGV && !ShouldLink) {
950 NewGV = DGV;
951 } else {
952 // If we are done linking global value bodies (i.e. we are performing
953 // metadata linking), don't link in the global value due to this
954 // reference, simply map it to null.
955 if (DoneLinkingBodies)
956 return nullptr;
958 NewGV = copyGlobalValueProto(SGV, ShouldLink || ForAlias);
959 if (ShouldLink || !ForAlias)
960 forceRenaming(NewGV, SGV->getName());
963 // Overloaded intrinsics have overloaded types names as part of their
964 // names. If we renamed overloaded types we should rename the intrinsic
965 // as well.
966 if (Function *F = dyn_cast<Function>(NewGV))
967 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F))
968 NewGV = Remangled.getValue();
970 if (ShouldLink || ForAlias) {
971 if (const Comdat *SC = SGV->getComdat()) {
972 if (auto *GO = dyn_cast<GlobalObject>(NewGV)) {
973 Comdat *DC = DstM.getOrInsertComdat(SC->getName());
974 DC->setSelectionKind(SC->getSelectionKind());
975 GO->setComdat(DC);
980 if (!ShouldLink && ForAlias)
981 NewGV->setLinkage(GlobalValue::InternalLinkage);
983 Constant *C = NewGV;
984 // Only create a bitcast if necessary. In particular, with
985 // DebugTypeODRUniquing we may reach metadata in the destination module
986 // containing a GV from the source module, in which case SGV will be
987 // the same as DGV and NewGV, and TypeMap.get() will assert since it
988 // assumes it is being invoked on a type in the source module.
989 if (DGV && NewGV != SGV) {
990 C = ConstantExpr::getPointerBitCastOrAddrSpaceCast(
991 NewGV, TypeMap.get(SGV->getType()));
994 if (DGV && NewGV != DGV) {
995 // Schedule "replace all uses with" to happen after materializing is
996 // done. It is not safe to do it now, since ValueMapper may be holding
997 // pointers to constants that will get deleted if RAUW runs.
998 RAUWWorklist.push_back(std::make_pair(
999 DGV,
1000 ConstantExpr::getPointerBitCastOrAddrSpaceCast(NewGV, DGV->getType())));
1003 return C;
1006 /// Update the initializers in the Dest module now that all globals that may be
1007 /// referenced are in Dest.
1008 void IRLinker::linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src) {
1009 // Figure out what the initializer looks like in the dest module.
1010 Mapper.scheduleMapGlobalInitializer(Dst, *Src.getInitializer());
1013 /// Copy the source function over into the dest function and fix up references
1014 /// to values. At this point we know that Dest is an external function, and
1015 /// that Src is not.
1016 Error IRLinker::linkFunctionBody(Function &Dst, Function &Src) {
1017 assert(Dst.isDeclaration() && !Src.isDeclaration());
1019 // Materialize if needed.
1020 if (Error Err = Src.materialize())
1021 return Err;
1023 // Link in the operands without remapping.
1024 if (Src.hasPrefixData())
1025 Dst.setPrefixData(Src.getPrefixData());
1026 if (Src.hasPrologueData())
1027 Dst.setPrologueData(Src.getPrologueData());
1028 if (Src.hasPersonalityFn())
1029 Dst.setPersonalityFn(Src.getPersonalityFn());
1031 // Copy over the metadata attachments without remapping.
1032 Dst.copyMetadata(&Src, 0);
1034 // Steal arguments and splice the body of Src into Dst.
1035 Dst.stealArgumentListFrom(Src);
1036 Dst.getBasicBlockList().splice(Dst.end(), Src.getBasicBlockList());
1038 // Everything has been moved over. Remap it.
1039 Mapper.scheduleRemapFunction(Dst);
1040 return Error::success();
1043 void IRLinker::linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src) {
1044 Mapper.scheduleMapGlobalAliasee(Dst, *Src.getAliasee(), AliasMCID);
1047 Error IRLinker::linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src) {
1048 if (auto *F = dyn_cast<Function>(&Src))
1049 return linkFunctionBody(cast<Function>(Dst), *F);
1050 if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) {
1051 linkGlobalVariable(cast<GlobalVariable>(Dst), *GVar);
1052 return Error::success();
1054 linkAliasBody(cast<GlobalAlias>(Dst), cast<GlobalAlias>(Src));
1055 return Error::success();
1058 void IRLinker::flushRAUWWorklist() {
1059 for (const auto Elem : RAUWWorklist) {
1060 GlobalValue *Old;
1061 Value *New;
1062 std::tie(Old, New) = Elem;
1064 Old->replaceAllUsesWith(New);
1065 Old->eraseFromParent();
1067 RAUWWorklist.clear();
1070 void IRLinker::prepareCompileUnitsForImport() {
1071 NamedMDNode *SrcCompileUnits = SrcM->getNamedMetadata("llvm.dbg.cu");
1072 if (!SrcCompileUnits)
1073 return;
1074 // When importing for ThinLTO, prevent importing of types listed on
1075 // the DICompileUnit that we don't need a copy of in the importing
1076 // module. They will be emitted by the originating module.
1077 for (unsigned I = 0, E = SrcCompileUnits->getNumOperands(); I != E; ++I) {
1078 auto *CU = cast<DICompileUnit>(SrcCompileUnits->getOperand(I));
1079 assert(CU && "Expected valid compile unit");
1080 // Enums, macros, and retained types don't need to be listed on the
1081 // imported DICompileUnit. This means they will only be imported
1082 // if reached from the mapped IR. Do this by setting their value map
1083 // entries to nullptr, which will automatically prevent their importing
1084 // when reached from the DICompileUnit during metadata mapping.
1085 ValueMap.MD()[CU->getRawEnumTypes()].reset(nullptr);
1086 ValueMap.MD()[CU->getRawMacros()].reset(nullptr);
1087 ValueMap.MD()[CU->getRawRetainedTypes()].reset(nullptr);
1088 // The original definition (or at least its debug info - if the variable is
1089 // internalized an optimized away) will remain in the source module, so
1090 // there's no need to import them.
1091 // If LLVM ever does more advanced optimizations on global variables
1092 // (removing/localizing write operations, for instance) that can track
1093 // through debug info, this decision may need to be revisited - but do so
1094 // with care when it comes to debug info size. Emitting small CUs containing
1095 // only a few imported entities into every destination module may be very
1096 // size inefficient.
1097 ValueMap.MD()[CU->getRawGlobalVariables()].reset(nullptr);
1099 // Imported entities only need to be mapped in if they have local
1100 // scope, as those might correspond to an imported entity inside a
1101 // function being imported (any locally scoped imported entities that
1102 // don't end up referenced by an imported function will not be emitted
1103 // into the object). Imported entities not in a local scope
1104 // (e.g. on the namespace) only need to be emitted by the originating
1105 // module. Create a list of the locally scoped imported entities, and
1106 // replace the source CUs imported entity list with the new list, so
1107 // only those are mapped in.
1108 // FIXME: Locally-scoped imported entities could be moved to the
1109 // functions they are local to instead of listing them on the CU, and
1110 // we would naturally only link in those needed by function importing.
1111 SmallVector<TrackingMDNodeRef, 4> AllImportedModules;
1112 bool ReplaceImportedEntities = false;
1113 for (auto *IE : CU->getImportedEntities()) {
1114 DIScope *Scope = IE->getScope();
1115 assert(Scope && "Invalid Scope encoding!");
1116 if (isa<DILocalScope>(Scope))
1117 AllImportedModules.emplace_back(IE);
1118 else
1119 ReplaceImportedEntities = true;
1121 if (ReplaceImportedEntities) {
1122 if (!AllImportedModules.empty())
1123 CU->replaceImportedEntities(MDTuple::get(
1124 CU->getContext(),
1125 SmallVector<Metadata *, 16>(AllImportedModules.begin(),
1126 AllImportedModules.end())));
1127 else
1128 // If there were no local scope imported entities, we can map
1129 // the whole list to nullptr.
1130 ValueMap.MD()[CU->getRawImportedEntities()].reset(nullptr);
1135 /// Insert all of the named MDNodes in Src into the Dest module.
1136 void IRLinker::linkNamedMDNodes() {
1137 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1138 for (const NamedMDNode &NMD : SrcM->named_metadata()) {
1139 // Don't link module flags here. Do them separately.
1140 if (&NMD == SrcModFlags)
1141 continue;
1142 NamedMDNode *DestNMD = DstM.getOrInsertNamedMetadata(NMD.getName());
1143 // Add Src elements into Dest node.
1144 for (const MDNode *Op : NMD.operands())
1145 DestNMD->addOperand(Mapper.mapMDNode(*Op));
1149 /// Merge the linker flags in Src into the Dest module.
1150 Error IRLinker::linkModuleFlagsMetadata() {
1151 // If the source module has no module flags, we are done.
1152 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1153 if (!SrcModFlags)
1154 return Error::success();
1156 // If the destination module doesn't have module flags yet, then just copy
1157 // over the source module's flags.
1158 NamedMDNode *DstModFlags = DstM.getOrInsertModuleFlagsMetadata();
1159 if (DstModFlags->getNumOperands() == 0) {
1160 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
1161 DstModFlags->addOperand(SrcModFlags->getOperand(I));
1163 return Error::success();
1166 // First build a map of the existing module flags and requirements.
1167 DenseMap<MDString *, std::pair<MDNode *, unsigned>> Flags;
1168 SmallSetVector<MDNode *, 16> Requirements;
1169 for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
1170 MDNode *Op = DstModFlags->getOperand(I);
1171 ConstantInt *Behavior = mdconst::extract<ConstantInt>(Op->getOperand(0));
1172 MDString *ID = cast<MDString>(Op->getOperand(1));
1174 if (Behavior->getZExtValue() == Module::Require) {
1175 Requirements.insert(cast<MDNode>(Op->getOperand(2)));
1176 } else {
1177 Flags[ID] = std::make_pair(Op, I);
1181 // Merge in the flags from the source module, and also collect its set of
1182 // requirements.
1183 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
1184 MDNode *SrcOp = SrcModFlags->getOperand(I);
1185 ConstantInt *SrcBehavior =
1186 mdconst::extract<ConstantInt>(SrcOp->getOperand(0));
1187 MDString *ID = cast<MDString>(SrcOp->getOperand(1));
1188 MDNode *DstOp;
1189 unsigned DstIndex;
1190 std::tie(DstOp, DstIndex) = Flags.lookup(ID);
1191 unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();
1193 // If this is a requirement, add it and continue.
1194 if (SrcBehaviorValue == Module::Require) {
1195 // If the destination module does not already have this requirement, add
1196 // it.
1197 if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
1198 DstModFlags->addOperand(SrcOp);
1200 continue;
1203 // If there is no existing flag with this ID, just add it.
1204 if (!DstOp) {
1205 Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands());
1206 DstModFlags->addOperand(SrcOp);
1207 continue;
1210 // Otherwise, perform a merge.
1211 ConstantInt *DstBehavior =
1212 mdconst::extract<ConstantInt>(DstOp->getOperand(0));
1213 unsigned DstBehaviorValue = DstBehavior->getZExtValue();
1215 auto overrideDstValue = [&]() {
1216 DstModFlags->setOperand(DstIndex, SrcOp);
1217 Flags[ID].first = SrcOp;
1220 // If either flag has override behavior, handle it first.
1221 if (DstBehaviorValue == Module::Override) {
1222 // Diagnose inconsistent flags which both have override behavior.
1223 if (SrcBehaviorValue == Module::Override &&
1224 SrcOp->getOperand(2) != DstOp->getOperand(2))
1225 return stringErr("linking module flags '" + ID->getString() +
1226 "': IDs have conflicting override values");
1227 continue;
1228 } else if (SrcBehaviorValue == Module::Override) {
1229 // Update the destination flag to that of the source.
1230 overrideDstValue();
1231 continue;
1234 // Diagnose inconsistent merge behavior types.
1235 if (SrcBehaviorValue != DstBehaviorValue)
1236 return stringErr("linking module flags '" + ID->getString() +
1237 "': IDs have conflicting behaviors");
1239 auto replaceDstValue = [&](MDNode *New) {
1240 Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New};
1241 MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps);
1242 DstModFlags->setOperand(DstIndex, Flag);
1243 Flags[ID].first = Flag;
1246 // Perform the merge for standard behavior types.
1247 switch (SrcBehaviorValue) {
1248 case Module::Require:
1249 case Module::Override:
1250 llvm_unreachable("not possible");
1251 case Module::Error: {
1252 // Emit an error if the values differ.
1253 if (SrcOp->getOperand(2) != DstOp->getOperand(2))
1254 return stringErr("linking module flags '" + ID->getString() +
1255 "': IDs have conflicting values");
1256 continue;
1258 case Module::Warning: {
1259 // Emit a warning if the values differ.
1260 if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1261 std::string str;
1262 raw_string_ostream(str)
1263 << "linking module flags '" << ID->getString()
1264 << "': IDs have conflicting values ('" << *SrcOp->getOperand(2)
1265 << "' from " << SrcM->getModuleIdentifier() << " with '"
1266 << *DstOp->getOperand(2) << "' from " << DstM.getModuleIdentifier()
1267 << ')';
1268 emitWarning(str);
1270 continue;
1272 case Module::Max: {
1273 ConstantInt *DstValue =
1274 mdconst::extract<ConstantInt>(DstOp->getOperand(2));
1275 ConstantInt *SrcValue =
1276 mdconst::extract<ConstantInt>(SrcOp->getOperand(2));
1277 if (SrcValue->getZExtValue() > DstValue->getZExtValue())
1278 overrideDstValue();
1279 break;
1281 case Module::Append: {
1282 MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
1283 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1284 SmallVector<Metadata *, 8> MDs;
1285 MDs.reserve(DstValue->getNumOperands() + SrcValue->getNumOperands());
1286 MDs.append(DstValue->op_begin(), DstValue->op_end());
1287 MDs.append(SrcValue->op_begin(), SrcValue->op_end());
1289 replaceDstValue(MDNode::get(DstM.getContext(), MDs));
1290 break;
1292 case Module::AppendUnique: {
1293 SmallSetVector<Metadata *, 16> Elts;
1294 MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
1295 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1296 Elts.insert(DstValue->op_begin(), DstValue->op_end());
1297 Elts.insert(SrcValue->op_begin(), SrcValue->op_end());
1299 replaceDstValue(MDNode::get(DstM.getContext(),
1300 makeArrayRef(Elts.begin(), Elts.end())));
1301 break;
1306 // Check all of the requirements.
1307 for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
1308 MDNode *Requirement = Requirements[I];
1309 MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1310 Metadata *ReqValue = Requirement->getOperand(1);
1312 MDNode *Op = Flags[Flag].first;
1313 if (!Op || Op->getOperand(2) != ReqValue)
1314 return stringErr("linking module flags '" + Flag->getString() +
1315 "': does not have the required value");
1317 return Error::success();
1320 /// Return InlineAsm adjusted with target-specific directives if required.
1321 /// For ARM and Thumb, we have to add directives to select the appropriate ISA
1322 /// to support mixing module-level inline assembly from ARM and Thumb modules.
1323 static std::string adjustInlineAsm(const std::string &InlineAsm,
1324 const Triple &Triple) {
1325 if (Triple.getArch() == Triple::thumb || Triple.getArch() == Triple::thumbeb)
1326 return ".text\n.balign 2\n.thumb\n" + InlineAsm;
1327 if (Triple.getArch() == Triple::arm || Triple.getArch() == Triple::armeb)
1328 return ".text\n.balign 4\n.arm\n" + InlineAsm;
1329 return InlineAsm;
1332 Error IRLinker::run() {
1333 // Ensure metadata materialized before value mapping.
1334 if (SrcM->getMaterializer())
1335 if (Error Err = SrcM->getMaterializer()->materializeMetadata())
1336 return Err;
1338 // Inherit the target data from the source module if the destination module
1339 // doesn't have one already.
1340 if (DstM.getDataLayout().isDefault())
1341 DstM.setDataLayout(SrcM->getDataLayout());
1343 if (SrcM->getDataLayout() != DstM.getDataLayout()) {
1344 emitWarning("Linking two modules of different data layouts: '" +
1345 SrcM->getModuleIdentifier() + "' is '" +
1346 SrcM->getDataLayoutStr() + "' whereas '" +
1347 DstM.getModuleIdentifier() + "' is '" +
1348 DstM.getDataLayoutStr() + "'\n");
1351 // Copy the target triple from the source to dest if the dest's is empty.
1352 if (DstM.getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
1353 DstM.setTargetTriple(SrcM->getTargetTriple());
1355 Triple SrcTriple(SrcM->getTargetTriple()), DstTriple(DstM.getTargetTriple());
1357 if (!SrcM->getTargetTriple().empty()&&
1358 !SrcTriple.isCompatibleWith(DstTriple))
1359 emitWarning("Linking two modules of different target triples: " +
1360 SrcM->getModuleIdentifier() + "' is '" +
1361 SrcM->getTargetTriple() + "' whereas '" +
1362 DstM.getModuleIdentifier() + "' is '" + DstM.getTargetTriple() +
1363 "'\n");
1365 DstM.setTargetTriple(SrcTriple.merge(DstTriple));
1367 // Append the module inline asm string.
1368 if (!IsPerformingImport && !SrcM->getModuleInlineAsm().empty()) {
1369 std::string SrcModuleInlineAsm = adjustInlineAsm(SrcM->getModuleInlineAsm(),
1370 SrcTriple);
1371 if (DstM.getModuleInlineAsm().empty())
1372 DstM.setModuleInlineAsm(SrcModuleInlineAsm);
1373 else
1374 DstM.setModuleInlineAsm(DstM.getModuleInlineAsm() + "\n" +
1375 SrcModuleInlineAsm);
1378 // Loop over all of the linked values to compute type mappings.
1379 computeTypeMapping();
1381 std::reverse(Worklist.begin(), Worklist.end());
1382 while (!Worklist.empty()) {
1383 GlobalValue *GV = Worklist.back();
1384 Worklist.pop_back();
1386 // Already mapped.
1387 if (ValueMap.find(GV) != ValueMap.end() ||
1388 AliasValueMap.find(GV) != AliasValueMap.end())
1389 continue;
1391 assert(!GV->isDeclaration());
1392 Mapper.mapValue(*GV);
1393 if (FoundError)
1394 return std::move(*FoundError);
1395 flushRAUWWorklist();
1398 // Note that we are done linking global value bodies. This prevents
1399 // metadata linking from creating new references.
1400 DoneLinkingBodies = true;
1401 Mapper.addFlags(RF_NullMapMissingGlobalValues);
1403 // Remap all of the named MDNodes in Src into the DstM module. We do this
1404 // after linking GlobalValues so that MDNodes that reference GlobalValues
1405 // are properly remapped.
1406 linkNamedMDNodes();
1408 // Merge the module flags into the DstM module.
1409 return linkModuleFlagsMetadata();
1412 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P)
1413 : ETypes(E), IsPacked(P) {}
1415 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST)
1416 : ETypes(ST->elements()), IsPacked(ST->isPacked()) {}
1418 bool IRMover::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const {
1419 return IsPacked == That.IsPacked && ETypes == That.ETypes;
1422 bool IRMover::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const {
1423 return !this->operator==(That);
1426 StructType *IRMover::StructTypeKeyInfo::getEmptyKey() {
1427 return DenseMapInfo<StructType *>::getEmptyKey();
1430 StructType *IRMover::StructTypeKeyInfo::getTombstoneKey() {
1431 return DenseMapInfo<StructType *>::getTombstoneKey();
1434 unsigned IRMover::StructTypeKeyInfo::getHashValue(const KeyTy &Key) {
1435 return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()),
1436 Key.IsPacked);
1439 unsigned IRMover::StructTypeKeyInfo::getHashValue(const StructType *ST) {
1440 return getHashValue(KeyTy(ST));
1443 bool IRMover::StructTypeKeyInfo::isEqual(const KeyTy &LHS,
1444 const StructType *RHS) {
1445 if (RHS == getEmptyKey() || RHS == getTombstoneKey())
1446 return false;
1447 return LHS == KeyTy(RHS);
1450 bool IRMover::StructTypeKeyInfo::isEqual(const StructType *LHS,
1451 const StructType *RHS) {
1452 if (RHS == getEmptyKey() || RHS == getTombstoneKey())
1453 return LHS == RHS;
1454 return KeyTy(LHS) == KeyTy(RHS);
1457 void IRMover::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) {
1458 assert(!Ty->isOpaque());
1459 NonOpaqueStructTypes.insert(Ty);
1462 void IRMover::IdentifiedStructTypeSet::switchToNonOpaque(StructType *Ty) {
1463 assert(!Ty->isOpaque());
1464 NonOpaqueStructTypes.insert(Ty);
1465 bool Removed = OpaqueStructTypes.erase(Ty);
1466 (void)Removed;
1467 assert(Removed);
1470 void IRMover::IdentifiedStructTypeSet::addOpaque(StructType *Ty) {
1471 assert(Ty->isOpaque());
1472 OpaqueStructTypes.insert(Ty);
1475 StructType *
1476 IRMover::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes,
1477 bool IsPacked) {
1478 IRMover::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked);
1479 auto I = NonOpaqueStructTypes.find_as(Key);
1480 return I == NonOpaqueStructTypes.end() ? nullptr : *I;
1483 bool IRMover::IdentifiedStructTypeSet::hasType(StructType *Ty) {
1484 if (Ty->isOpaque())
1485 return OpaqueStructTypes.count(Ty);
1486 auto I = NonOpaqueStructTypes.find(Ty);
1487 return I == NonOpaqueStructTypes.end() ? false : *I == Ty;
1490 IRMover::IRMover(Module &M) : Composite(M) {
1491 TypeFinder StructTypes;
1492 StructTypes.run(M, /* OnlyNamed */ false);
1493 for (StructType *Ty : StructTypes) {
1494 if (Ty->isOpaque())
1495 IdentifiedStructTypes.addOpaque(Ty);
1496 else
1497 IdentifiedStructTypes.addNonOpaque(Ty);
1499 // Self-map metadatas in the destination module. This is needed when
1500 // DebugTypeODRUniquing is enabled on the LLVMContext, since metadata in the
1501 // destination module may be reached from the source module.
1502 for (auto *MD : StructTypes.getVisitedMetadata()) {
1503 SharedMDs[MD].reset(const_cast<MDNode *>(MD));
1507 Error IRMover::move(
1508 std::unique_ptr<Module> Src, ArrayRef<GlobalValue *> ValuesToLink,
1509 std::function<void(GlobalValue &, ValueAdder Add)> AddLazyFor,
1510 bool IsPerformingImport) {
1511 IRLinker TheIRLinker(Composite, SharedMDs, IdentifiedStructTypes,
1512 std::move(Src), ValuesToLink, std::move(AddLazyFor),
1513 IsPerformingImport);
1514 Error E = TheIRLinker.run();
1515 Composite.dropTriviallyDeadConstantArrays();
1516 return E;