Another attempt to fix the build bot breaks after r360426
[llvm-core.git] / lib / ProfileData / InstrProf.cpp
blob582049eabfb4237f06e6617ef7ade19d0d9801d0
1 //===- InstrProf.cpp - Instrumented profiling format support --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for clang's instrumentation based PGO and
10 // coverage.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/ProfileData/InstrProf.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/Triple.h"
21 #include "llvm/IR/Constant.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/GlobalValue.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/Instruction.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/IR/MDBuilder.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/IR/Type.h"
32 #include "llvm/ProfileData/InstrProfReader.h"
33 #include "llvm/Support/Casting.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Compiler.h"
36 #include "llvm/Support/Compression.h"
37 #include "llvm/Support/Endian.h"
38 #include "llvm/Support/Error.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/LEB128.h"
41 #include "llvm/Support/ManagedStatic.h"
42 #include "llvm/Support/MathExtras.h"
43 #include "llvm/Support/Path.h"
44 #include "llvm/Support/SwapByteOrder.h"
45 #include <algorithm>
46 #include <cassert>
47 #include <cstddef>
48 #include <cstdint>
49 #include <cstring>
50 #include <memory>
51 #include <string>
52 #include <system_error>
53 #include <utility>
54 #include <vector>
56 using namespace llvm;
58 static cl::opt<bool> StaticFuncFullModulePrefix(
59 "static-func-full-module-prefix", cl::init(true), cl::Hidden,
60 cl::desc("Use full module build paths in the profile counter names for "
61 "static functions."));
63 // This option is tailored to users that have different top-level directory in
64 // profile-gen and profile-use compilation. Users need to specific the number
65 // of levels to strip. A value larger than the number of directories in the
66 // source file will strip all the directory names and only leave the basename.
68 // Note current ThinLTO module importing for the indirect-calls assumes
69 // the source directory name not being stripped. A non-zero option value here
70 // can potentially prevent some inter-module indirect-call-promotions.
71 static cl::opt<unsigned> StaticFuncStripDirNamePrefix(
72 "static-func-strip-dirname-prefix", cl::init(0), cl::Hidden,
73 cl::desc("Strip specified level of directory name from source path in "
74 "the profile counter name for static functions."));
76 static std::string getInstrProfErrString(instrprof_error Err) {
77 switch (Err) {
78 case instrprof_error::success:
79 return "Success";
80 case instrprof_error::eof:
81 return "End of File";
82 case instrprof_error::unrecognized_format:
83 return "Unrecognized instrumentation profile encoding format";
84 case instrprof_error::bad_magic:
85 return "Invalid instrumentation profile data (bad magic)";
86 case instrprof_error::bad_header:
87 return "Invalid instrumentation profile data (file header is corrupt)";
88 case instrprof_error::unsupported_version:
89 return "Unsupported instrumentation profile format version";
90 case instrprof_error::unsupported_hash_type:
91 return "Unsupported instrumentation profile hash type";
92 case instrprof_error::too_large:
93 return "Too much profile data";
94 case instrprof_error::truncated:
95 return "Truncated profile data";
96 case instrprof_error::malformed:
97 return "Malformed instrumentation profile data";
98 case instrprof_error::unknown_function:
99 return "No profile data available for function";
100 case instrprof_error::hash_mismatch:
101 return "Function control flow change detected (hash mismatch)";
102 case instrprof_error::count_mismatch:
103 return "Function basic block count change detected (counter mismatch)";
104 case instrprof_error::counter_overflow:
105 return "Counter overflow";
106 case instrprof_error::value_site_count_mismatch:
107 return "Function value site count change detected (counter mismatch)";
108 case instrprof_error::compress_failed:
109 return "Failed to compress data (zlib)";
110 case instrprof_error::uncompress_failed:
111 return "Failed to uncompress data (zlib)";
112 case instrprof_error::empty_raw_profile:
113 return "Empty raw profile file";
114 case instrprof_error::zlib_unavailable:
115 return "Profile uses zlib compression but the profile reader was built without zlib support";
117 llvm_unreachable("A value of instrprof_error has no message.");
120 namespace {
122 // FIXME: This class is only here to support the transition to llvm::Error. It
123 // will be removed once this transition is complete. Clients should prefer to
124 // deal with the Error value directly, rather than converting to error_code.
125 class InstrProfErrorCategoryType : public std::error_category {
126 const char *name() const noexcept override { return "llvm.instrprof"; }
128 std::string message(int IE) const override {
129 return getInstrProfErrString(static_cast<instrprof_error>(IE));
133 } // end anonymous namespace
135 static ManagedStatic<InstrProfErrorCategoryType> ErrorCategory;
137 const std::error_category &llvm::instrprof_category() {
138 return *ErrorCategory;
141 namespace {
143 const char *InstrProfSectNameCommon[] = {
144 #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \
145 SectNameCommon,
146 #include "llvm/ProfileData/InstrProfData.inc"
149 const char *InstrProfSectNameCoff[] = {
150 #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \
151 SectNameCoff,
152 #include "llvm/ProfileData/InstrProfData.inc"
155 const char *InstrProfSectNamePrefix[] = {
156 #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \
157 Prefix,
158 #include "llvm/ProfileData/InstrProfData.inc"
161 } // namespace
163 namespace llvm {
165 std::string getInstrProfSectionName(InstrProfSectKind IPSK,
166 Triple::ObjectFormatType OF,
167 bool AddSegmentInfo) {
168 std::string SectName;
170 if (OF == Triple::MachO && AddSegmentInfo)
171 SectName = InstrProfSectNamePrefix[IPSK];
173 if (OF == Triple::COFF)
174 SectName += InstrProfSectNameCoff[IPSK];
175 else
176 SectName += InstrProfSectNameCommon[IPSK];
178 if (OF == Triple::MachO && IPSK == IPSK_data && AddSegmentInfo)
179 SectName += ",regular,live_support";
181 return SectName;
184 void SoftInstrProfErrors::addError(instrprof_error IE) {
185 if (IE == instrprof_error::success)
186 return;
188 if (FirstError == instrprof_error::success)
189 FirstError = IE;
191 switch (IE) {
192 case instrprof_error::hash_mismatch:
193 ++NumHashMismatches;
194 break;
195 case instrprof_error::count_mismatch:
196 ++NumCountMismatches;
197 break;
198 case instrprof_error::counter_overflow:
199 ++NumCounterOverflows;
200 break;
201 case instrprof_error::value_site_count_mismatch:
202 ++NumValueSiteCountMismatches;
203 break;
204 default:
205 llvm_unreachable("Not a soft error");
209 std::string InstrProfError::message() const {
210 return getInstrProfErrString(Err);
213 char InstrProfError::ID = 0;
215 std::string getPGOFuncName(StringRef RawFuncName,
216 GlobalValue::LinkageTypes Linkage,
217 StringRef FileName,
218 uint64_t Version LLVM_ATTRIBUTE_UNUSED) {
219 return GlobalValue::getGlobalIdentifier(RawFuncName, Linkage, FileName);
222 // Strip NumPrefix level of directory name from PathNameStr. If the number of
223 // directory separators is less than NumPrefix, strip all the directories and
224 // leave base file name only.
225 static StringRef stripDirPrefix(StringRef PathNameStr, uint32_t NumPrefix) {
226 uint32_t Count = NumPrefix;
227 uint32_t Pos = 0, LastPos = 0;
228 for (auto & CI : PathNameStr) {
229 ++Pos;
230 if (llvm::sys::path::is_separator(CI)) {
231 LastPos = Pos;
232 --Count;
234 if (Count == 0)
235 break;
237 return PathNameStr.substr(LastPos);
240 // Return the PGOFuncName. This function has some special handling when called
241 // in LTO optimization. The following only applies when calling in LTO passes
242 // (when \c InLTO is true): LTO's internalization privatizes many global linkage
243 // symbols. This happens after value profile annotation, but those internal
244 // linkage functions should not have a source prefix.
245 // Additionally, for ThinLTO mode, exported internal functions are promoted
246 // and renamed. We need to ensure that the original internal PGO name is
247 // used when computing the GUID that is compared against the profiled GUIDs.
248 // To differentiate compiler generated internal symbols from original ones,
249 // PGOFuncName meta data are created and attached to the original internal
250 // symbols in the value profile annotation step
251 // (PGOUseFunc::annotateIndirectCallSites). If a symbol does not have the meta
252 // data, its original linkage must be non-internal.
253 std::string getPGOFuncName(const Function &F, bool InLTO, uint64_t Version) {
254 if (!InLTO) {
255 StringRef FileName(F.getParent()->getSourceFileName());
256 uint32_t StripLevel = StaticFuncFullModulePrefix ? 0 : (uint32_t)-1;
257 if (StripLevel < StaticFuncStripDirNamePrefix)
258 StripLevel = StaticFuncStripDirNamePrefix;
259 if (StripLevel)
260 FileName = stripDirPrefix(FileName, StripLevel);
261 return getPGOFuncName(F.getName(), F.getLinkage(), FileName, Version);
264 // In LTO mode (when InLTO is true), first check if there is a meta data.
265 if (MDNode *MD = getPGOFuncNameMetadata(F)) {
266 StringRef S = cast<MDString>(MD->getOperand(0))->getString();
267 return S.str();
270 // If there is no meta data, the function must be a global before the value
271 // profile annotation pass. Its current linkage may be internal if it is
272 // internalized in LTO mode.
273 return getPGOFuncName(F.getName(), GlobalValue::ExternalLinkage, "");
276 StringRef getFuncNameWithoutPrefix(StringRef PGOFuncName, StringRef FileName) {
277 if (FileName.empty())
278 return PGOFuncName;
279 // Drop the file name including ':'. See also getPGOFuncName.
280 if (PGOFuncName.startswith(FileName))
281 PGOFuncName = PGOFuncName.drop_front(FileName.size() + 1);
282 return PGOFuncName;
285 // \p FuncName is the string used as profile lookup key for the function. A
286 // symbol is created to hold the name. Return the legalized symbol name.
287 std::string getPGOFuncNameVarName(StringRef FuncName,
288 GlobalValue::LinkageTypes Linkage) {
289 std::string VarName = getInstrProfNameVarPrefix();
290 VarName += FuncName;
292 if (!GlobalValue::isLocalLinkage(Linkage))
293 return VarName;
295 // Now fix up illegal chars in local VarName that may upset the assembler.
296 const char *InvalidChars = "-:<>/\"'";
297 size_t found = VarName.find_first_of(InvalidChars);
298 while (found != std::string::npos) {
299 VarName[found] = '_';
300 found = VarName.find_first_of(InvalidChars, found + 1);
302 return VarName;
305 GlobalVariable *createPGOFuncNameVar(Module &M,
306 GlobalValue::LinkageTypes Linkage,
307 StringRef PGOFuncName) {
308 // We generally want to match the function's linkage, but available_externally
309 // and extern_weak both have the wrong semantics, and anything that doesn't
310 // need to link across compilation units doesn't need to be visible at all.
311 if (Linkage == GlobalValue::ExternalWeakLinkage)
312 Linkage = GlobalValue::LinkOnceAnyLinkage;
313 else if (Linkage == GlobalValue::AvailableExternallyLinkage)
314 Linkage = GlobalValue::LinkOnceODRLinkage;
315 else if (Linkage == GlobalValue::InternalLinkage ||
316 Linkage == GlobalValue::ExternalLinkage)
317 Linkage = GlobalValue::PrivateLinkage;
319 auto *Value =
320 ConstantDataArray::getString(M.getContext(), PGOFuncName, false);
321 auto FuncNameVar =
322 new GlobalVariable(M, Value->getType(), true, Linkage, Value,
323 getPGOFuncNameVarName(PGOFuncName, Linkage));
325 // Hide the symbol so that we correctly get a copy for each executable.
326 if (!GlobalValue::isLocalLinkage(FuncNameVar->getLinkage()))
327 FuncNameVar->setVisibility(GlobalValue::HiddenVisibility);
329 return FuncNameVar;
332 GlobalVariable *createPGOFuncNameVar(Function &F, StringRef PGOFuncName) {
333 return createPGOFuncNameVar(*F.getParent(), F.getLinkage(), PGOFuncName);
336 Error InstrProfSymtab::create(Module &M, bool InLTO) {
337 for (Function &F : M) {
338 // Function may not have a name: like using asm("") to overwrite the name.
339 // Ignore in this case.
340 if (!F.hasName())
341 continue;
342 const std::string &PGOFuncName = getPGOFuncName(F, InLTO);
343 if (Error E = addFuncName(PGOFuncName))
344 return E;
345 MD5FuncMap.emplace_back(Function::getGUID(PGOFuncName), &F);
346 // In ThinLTO, local function may have been promoted to global and have
347 // suffix added to the function name. We need to add the stripped function
348 // name to the symbol table so that we can find a match from profile.
349 if (InLTO) {
350 auto pos = PGOFuncName.find('.');
351 if (pos != std::string::npos) {
352 const std::string &OtherFuncName = PGOFuncName.substr(0, pos);
353 if (Error E = addFuncName(OtherFuncName))
354 return E;
355 MD5FuncMap.emplace_back(Function::getGUID(OtherFuncName), &F);
359 Sorted = false;
360 finalizeSymtab();
361 return Error::success();
364 uint64_t InstrProfSymtab::getFunctionHashFromAddress(uint64_t Address) {
365 finalizeSymtab();
366 auto Result =
367 std::lower_bound(AddrToMD5Map.begin(), AddrToMD5Map.end(), Address,
368 [](const std::pair<uint64_t, uint64_t> &LHS,
369 uint64_t RHS) { return LHS.first < RHS; });
370 // Raw function pointer collected by value profiler may be from
371 // external functions that are not instrumented. They won't have
372 // mapping data to be used by the deserializer. Force the value to
373 // be 0 in this case.
374 if (Result != AddrToMD5Map.end() && Result->first == Address)
375 return (uint64_t)Result->second;
376 return 0;
379 Error collectPGOFuncNameStrings(ArrayRef<std::string> NameStrs,
380 bool doCompression, std::string &Result) {
381 assert(!NameStrs.empty() && "No name data to emit");
383 uint8_t Header[16], *P = Header;
384 std::string UncompressedNameStrings =
385 join(NameStrs.begin(), NameStrs.end(), getInstrProfNameSeparator());
387 assert(StringRef(UncompressedNameStrings)
388 .count(getInstrProfNameSeparator()) == (NameStrs.size() - 1) &&
389 "PGO name is invalid (contains separator token)");
391 unsigned EncLen = encodeULEB128(UncompressedNameStrings.length(), P);
392 P += EncLen;
394 auto WriteStringToResult = [&](size_t CompressedLen, StringRef InputStr) {
395 EncLen = encodeULEB128(CompressedLen, P);
396 P += EncLen;
397 char *HeaderStr = reinterpret_cast<char *>(&Header[0]);
398 unsigned HeaderLen = P - &Header[0];
399 Result.append(HeaderStr, HeaderLen);
400 Result += InputStr;
401 return Error::success();
404 if (!doCompression) {
405 return WriteStringToResult(0, UncompressedNameStrings);
408 SmallString<128> CompressedNameStrings;
409 Error E = zlib::compress(StringRef(UncompressedNameStrings),
410 CompressedNameStrings, zlib::BestSizeCompression);
411 if (E) {
412 consumeError(std::move(E));
413 return make_error<InstrProfError>(instrprof_error::compress_failed);
416 return WriteStringToResult(CompressedNameStrings.size(),
417 CompressedNameStrings);
420 StringRef getPGOFuncNameVarInitializer(GlobalVariable *NameVar) {
421 auto *Arr = cast<ConstantDataArray>(NameVar->getInitializer());
422 StringRef NameStr =
423 Arr->isCString() ? Arr->getAsCString() : Arr->getAsString();
424 return NameStr;
427 Error collectPGOFuncNameStrings(ArrayRef<GlobalVariable *> NameVars,
428 std::string &Result, bool doCompression) {
429 std::vector<std::string> NameStrs;
430 for (auto *NameVar : NameVars) {
431 NameStrs.push_back(getPGOFuncNameVarInitializer(NameVar));
433 return collectPGOFuncNameStrings(
434 NameStrs, zlib::isAvailable() && doCompression, Result);
437 Error readPGOFuncNameStrings(StringRef NameStrings, InstrProfSymtab &Symtab) {
438 const uint8_t *P = NameStrings.bytes_begin();
439 const uint8_t *EndP = NameStrings.bytes_end();
440 while (P < EndP) {
441 uint32_t N;
442 uint64_t UncompressedSize = decodeULEB128(P, &N);
443 P += N;
444 uint64_t CompressedSize = decodeULEB128(P, &N);
445 P += N;
446 bool isCompressed = (CompressedSize != 0);
447 SmallString<128> UncompressedNameStrings;
448 StringRef NameStrings;
449 if (isCompressed) {
450 if (!llvm::zlib::isAvailable())
451 return make_error<InstrProfError>(instrprof_error::zlib_unavailable);
453 StringRef CompressedNameStrings(reinterpret_cast<const char *>(P),
454 CompressedSize);
455 if (Error E =
456 zlib::uncompress(CompressedNameStrings, UncompressedNameStrings,
457 UncompressedSize)) {
458 consumeError(std::move(E));
459 return make_error<InstrProfError>(instrprof_error::uncompress_failed);
461 P += CompressedSize;
462 NameStrings = StringRef(UncompressedNameStrings.data(),
463 UncompressedNameStrings.size());
464 } else {
465 NameStrings =
466 StringRef(reinterpret_cast<const char *>(P), UncompressedSize);
467 P += UncompressedSize;
469 // Now parse the name strings.
470 SmallVector<StringRef, 0> Names;
471 NameStrings.split(Names, getInstrProfNameSeparator());
472 for (StringRef &Name : Names)
473 if (Error E = Symtab.addFuncName(Name))
474 return E;
476 while (P < EndP && *P == 0)
477 P++;
479 return Error::success();
482 void InstrProfRecord::accumuateCounts(CountSumOrPercent &Sum) const {
483 uint64_t FuncSum = 0;
484 Sum.NumEntries += Counts.size();
485 for (size_t F = 0, E = Counts.size(); F < E; ++F)
486 FuncSum += Counts[F];
487 Sum.CountSum += FuncSum;
489 for (uint32_t VK = IPVK_First; VK <= IPVK_Last; ++VK) {
490 uint64_t KindSum = 0;
491 uint32_t NumValueSites = getNumValueSites(VK);
492 for (size_t I = 0; I < NumValueSites; ++I) {
493 uint32_t NV = getNumValueDataForSite(VK, I);
494 std::unique_ptr<InstrProfValueData[]> VD = getValueForSite(VK, I);
495 for (uint32_t V = 0; V < NV; V++)
496 KindSum += VD[V].Count;
498 Sum.ValueCounts[VK] += KindSum;
502 void InstrProfValueSiteRecord::overlap(InstrProfValueSiteRecord &Input,
503 uint32_t ValueKind,
504 OverlapStats &Overlap,
505 OverlapStats &FuncLevelOverlap) {
506 this->sortByTargetValues();
507 Input.sortByTargetValues();
508 double Score = 0.0f, FuncLevelScore = 0.0f;
509 auto I = ValueData.begin();
510 auto IE = ValueData.end();
511 auto J = Input.ValueData.begin();
512 auto JE = Input.ValueData.end();
513 while (I != IE && J != JE) {
514 if (I->Value == J->Value) {
515 Score += OverlapStats::score(I->Count, J->Count,
516 Overlap.Base.ValueCounts[ValueKind],
517 Overlap.Test.ValueCounts[ValueKind]);
518 FuncLevelScore += OverlapStats::score(
519 I->Count, J->Count, FuncLevelOverlap.Base.ValueCounts[ValueKind],
520 FuncLevelOverlap.Test.ValueCounts[ValueKind]);
521 ++I;
522 } else if (I->Value < J->Value) {
523 ++I;
524 continue;
526 ++J;
528 Overlap.Overlap.ValueCounts[ValueKind] += Score;
529 FuncLevelOverlap.Overlap.ValueCounts[ValueKind] += FuncLevelScore;
532 // Return false on mismatch.
533 void InstrProfRecord::overlapValueProfData(uint32_t ValueKind,
534 InstrProfRecord &Other,
535 OverlapStats &Overlap,
536 OverlapStats &FuncLevelOverlap) {
537 uint32_t ThisNumValueSites = getNumValueSites(ValueKind);
538 assert(ThisNumValueSites == Other.getNumValueSites(ValueKind));
539 if (!ThisNumValueSites)
540 return;
542 std::vector<InstrProfValueSiteRecord> &ThisSiteRecords =
543 getOrCreateValueSitesForKind(ValueKind);
544 MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords =
545 Other.getValueSitesForKind(ValueKind);
546 for (uint32_t I = 0; I < ThisNumValueSites; I++)
547 ThisSiteRecords[I].overlap(OtherSiteRecords[I], ValueKind, Overlap,
548 FuncLevelOverlap);
551 void InstrProfRecord::overlap(InstrProfRecord &Other, OverlapStats &Overlap,
552 OverlapStats &FuncLevelOverlap,
553 uint64_t ValueCutoff) {
554 // FuncLevel CountSum for other should already computed and nonzero.
555 assert(FuncLevelOverlap.Test.CountSum >= 1.0f);
556 accumuateCounts(FuncLevelOverlap.Base);
557 bool Mismatch = (Counts.size() != Other.Counts.size());
559 // Check if the value profiles mismatch.
560 if (!Mismatch) {
561 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) {
562 uint32_t ThisNumValueSites = getNumValueSites(Kind);
563 uint32_t OtherNumValueSites = Other.getNumValueSites(Kind);
564 if (ThisNumValueSites != OtherNumValueSites) {
565 Mismatch = true;
566 break;
570 if (Mismatch) {
571 Overlap.addOneMismatch(FuncLevelOverlap.Test);
572 return;
575 // Compute overlap for value counts.
576 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
577 overlapValueProfData(Kind, Other, Overlap, FuncLevelOverlap);
579 double Score = 0.0;
580 uint64_t MaxCount = 0;
581 // Compute overlap for edge counts.
582 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) {
583 Score += OverlapStats::score(Counts[I], Other.Counts[I],
584 Overlap.Base.CountSum, Overlap.Test.CountSum);
585 MaxCount = std::max(Other.Counts[I], MaxCount);
587 Overlap.Overlap.CountSum += Score;
588 Overlap.Overlap.NumEntries += 1;
590 if (MaxCount >= ValueCutoff) {
591 double FuncScore = 0.0;
592 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I)
593 FuncScore += OverlapStats::score(Counts[I], Other.Counts[I],
594 FuncLevelOverlap.Base.CountSum,
595 FuncLevelOverlap.Test.CountSum);
596 FuncLevelOverlap.Overlap.CountSum = FuncScore;
597 FuncLevelOverlap.Overlap.NumEntries = Other.Counts.size();
598 FuncLevelOverlap.Valid = true;
602 void InstrProfValueSiteRecord::merge(InstrProfValueSiteRecord &Input,
603 uint64_t Weight,
604 function_ref<void(instrprof_error)> Warn) {
605 this->sortByTargetValues();
606 Input.sortByTargetValues();
607 auto I = ValueData.begin();
608 auto IE = ValueData.end();
609 for (auto J = Input.ValueData.begin(), JE = Input.ValueData.end(); J != JE;
610 ++J) {
611 while (I != IE && I->Value < J->Value)
612 ++I;
613 if (I != IE && I->Value == J->Value) {
614 bool Overflowed;
615 I->Count = SaturatingMultiplyAdd(J->Count, Weight, I->Count, &Overflowed);
616 if (Overflowed)
617 Warn(instrprof_error::counter_overflow);
618 ++I;
619 continue;
621 ValueData.insert(I, *J);
625 void InstrProfValueSiteRecord::scale(uint64_t Weight,
626 function_ref<void(instrprof_error)> Warn) {
627 for (auto I = ValueData.begin(), IE = ValueData.end(); I != IE; ++I) {
628 bool Overflowed;
629 I->Count = SaturatingMultiply(I->Count, Weight, &Overflowed);
630 if (Overflowed)
631 Warn(instrprof_error::counter_overflow);
635 // Merge Value Profile data from Src record to this record for ValueKind.
636 // Scale merged value counts by \p Weight.
637 void InstrProfRecord::mergeValueProfData(
638 uint32_t ValueKind, InstrProfRecord &Src, uint64_t Weight,
639 function_ref<void(instrprof_error)> Warn) {
640 uint32_t ThisNumValueSites = getNumValueSites(ValueKind);
641 uint32_t OtherNumValueSites = Src.getNumValueSites(ValueKind);
642 if (ThisNumValueSites != OtherNumValueSites) {
643 Warn(instrprof_error::value_site_count_mismatch);
644 return;
646 if (!ThisNumValueSites)
647 return;
648 std::vector<InstrProfValueSiteRecord> &ThisSiteRecords =
649 getOrCreateValueSitesForKind(ValueKind);
650 MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords =
651 Src.getValueSitesForKind(ValueKind);
652 for (uint32_t I = 0; I < ThisNumValueSites; I++)
653 ThisSiteRecords[I].merge(OtherSiteRecords[I], Weight, Warn);
656 void InstrProfRecord::merge(InstrProfRecord &Other, uint64_t Weight,
657 function_ref<void(instrprof_error)> Warn) {
658 // If the number of counters doesn't match we either have bad data
659 // or a hash collision.
660 if (Counts.size() != Other.Counts.size()) {
661 Warn(instrprof_error::count_mismatch);
662 return;
665 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) {
666 bool Overflowed;
667 Counts[I] =
668 SaturatingMultiplyAdd(Other.Counts[I], Weight, Counts[I], &Overflowed);
669 if (Overflowed)
670 Warn(instrprof_error::counter_overflow);
673 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
674 mergeValueProfData(Kind, Other, Weight, Warn);
677 void InstrProfRecord::scaleValueProfData(
678 uint32_t ValueKind, uint64_t Weight,
679 function_ref<void(instrprof_error)> Warn) {
680 for (auto &R : getValueSitesForKind(ValueKind))
681 R.scale(Weight, Warn);
684 void InstrProfRecord::scale(uint64_t Weight,
685 function_ref<void(instrprof_error)> Warn) {
686 for (auto &Count : this->Counts) {
687 bool Overflowed;
688 Count = SaturatingMultiply(Count, Weight, &Overflowed);
689 if (Overflowed)
690 Warn(instrprof_error::counter_overflow);
692 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
693 scaleValueProfData(Kind, Weight, Warn);
696 // Map indirect call target name hash to name string.
697 uint64_t InstrProfRecord::remapValue(uint64_t Value, uint32_t ValueKind,
698 InstrProfSymtab *SymTab) {
699 if (!SymTab)
700 return Value;
702 if (ValueKind == IPVK_IndirectCallTarget)
703 return SymTab->getFunctionHashFromAddress(Value);
705 return Value;
708 void InstrProfRecord::addValueData(uint32_t ValueKind, uint32_t Site,
709 InstrProfValueData *VData, uint32_t N,
710 InstrProfSymtab *ValueMap) {
711 for (uint32_t I = 0; I < N; I++) {
712 VData[I].Value = remapValue(VData[I].Value, ValueKind, ValueMap);
714 std::vector<InstrProfValueSiteRecord> &ValueSites =
715 getOrCreateValueSitesForKind(ValueKind);
716 if (N == 0)
717 ValueSites.emplace_back();
718 else
719 ValueSites.emplace_back(VData, VData + N);
722 #define INSTR_PROF_COMMON_API_IMPL
723 #include "llvm/ProfileData/InstrProfData.inc"
726 * ValueProfRecordClosure Interface implementation for InstrProfRecord
727 * class. These C wrappers are used as adaptors so that C++ code can be
728 * invoked as callbacks.
730 uint32_t getNumValueKindsInstrProf(const void *Record) {
731 return reinterpret_cast<const InstrProfRecord *>(Record)->getNumValueKinds();
734 uint32_t getNumValueSitesInstrProf(const void *Record, uint32_t VKind) {
735 return reinterpret_cast<const InstrProfRecord *>(Record)
736 ->getNumValueSites(VKind);
739 uint32_t getNumValueDataInstrProf(const void *Record, uint32_t VKind) {
740 return reinterpret_cast<const InstrProfRecord *>(Record)
741 ->getNumValueData(VKind);
744 uint32_t getNumValueDataForSiteInstrProf(const void *R, uint32_t VK,
745 uint32_t S) {
746 return reinterpret_cast<const InstrProfRecord *>(R)
747 ->getNumValueDataForSite(VK, S);
750 void getValueForSiteInstrProf(const void *R, InstrProfValueData *Dst,
751 uint32_t K, uint32_t S) {
752 reinterpret_cast<const InstrProfRecord *>(R)->getValueForSite(Dst, K, S);
755 ValueProfData *allocValueProfDataInstrProf(size_t TotalSizeInBytes) {
756 ValueProfData *VD =
757 (ValueProfData *)(new (::operator new(TotalSizeInBytes)) ValueProfData());
758 memset(VD, 0, TotalSizeInBytes);
759 return VD;
762 static ValueProfRecordClosure InstrProfRecordClosure = {
763 nullptr,
764 getNumValueKindsInstrProf,
765 getNumValueSitesInstrProf,
766 getNumValueDataInstrProf,
767 getNumValueDataForSiteInstrProf,
768 nullptr,
769 getValueForSiteInstrProf,
770 allocValueProfDataInstrProf};
772 // Wrapper implementation using the closure mechanism.
773 uint32_t ValueProfData::getSize(const InstrProfRecord &Record) {
774 auto Closure = InstrProfRecordClosure;
775 Closure.Record = &Record;
776 return getValueProfDataSize(&Closure);
779 // Wrapper implementation using the closure mechanism.
780 std::unique_ptr<ValueProfData>
781 ValueProfData::serializeFrom(const InstrProfRecord &Record) {
782 InstrProfRecordClosure.Record = &Record;
784 std::unique_ptr<ValueProfData> VPD(
785 serializeValueProfDataFrom(&InstrProfRecordClosure, nullptr));
786 return VPD;
789 void ValueProfRecord::deserializeTo(InstrProfRecord &Record,
790 InstrProfSymtab *SymTab) {
791 Record.reserveSites(Kind, NumValueSites);
793 InstrProfValueData *ValueData = getValueProfRecordValueData(this);
794 for (uint64_t VSite = 0; VSite < NumValueSites; ++VSite) {
795 uint8_t ValueDataCount = this->SiteCountArray[VSite];
796 Record.addValueData(Kind, VSite, ValueData, ValueDataCount, SymTab);
797 ValueData += ValueDataCount;
801 // For writing/serializing, Old is the host endianness, and New is
802 // byte order intended on disk. For Reading/deserialization, Old
803 // is the on-disk source endianness, and New is the host endianness.
804 void ValueProfRecord::swapBytes(support::endianness Old,
805 support::endianness New) {
806 using namespace support;
808 if (Old == New)
809 return;
811 if (getHostEndianness() != Old) {
812 sys::swapByteOrder<uint32_t>(NumValueSites);
813 sys::swapByteOrder<uint32_t>(Kind);
815 uint32_t ND = getValueProfRecordNumValueData(this);
816 InstrProfValueData *VD = getValueProfRecordValueData(this);
818 // No need to swap byte array: SiteCountArrray.
819 for (uint32_t I = 0; I < ND; I++) {
820 sys::swapByteOrder<uint64_t>(VD[I].Value);
821 sys::swapByteOrder<uint64_t>(VD[I].Count);
823 if (getHostEndianness() == Old) {
824 sys::swapByteOrder<uint32_t>(NumValueSites);
825 sys::swapByteOrder<uint32_t>(Kind);
829 void ValueProfData::deserializeTo(InstrProfRecord &Record,
830 InstrProfSymtab *SymTab) {
831 if (NumValueKinds == 0)
832 return;
834 ValueProfRecord *VR = getFirstValueProfRecord(this);
835 for (uint32_t K = 0; K < NumValueKinds; K++) {
836 VR->deserializeTo(Record, SymTab);
837 VR = getValueProfRecordNext(VR);
841 template <class T>
842 static T swapToHostOrder(const unsigned char *&D, support::endianness Orig) {
843 using namespace support;
845 if (Orig == little)
846 return endian::readNext<T, little, unaligned>(D);
847 else
848 return endian::readNext<T, big, unaligned>(D);
851 static std::unique_ptr<ValueProfData> allocValueProfData(uint32_t TotalSize) {
852 return std::unique_ptr<ValueProfData>(new (::operator new(TotalSize))
853 ValueProfData());
856 Error ValueProfData::checkIntegrity() {
857 if (NumValueKinds > IPVK_Last + 1)
858 return make_error<InstrProfError>(instrprof_error::malformed);
859 // Total size needs to be mulltiple of quadword size.
860 if (TotalSize % sizeof(uint64_t))
861 return make_error<InstrProfError>(instrprof_error::malformed);
863 ValueProfRecord *VR = getFirstValueProfRecord(this);
864 for (uint32_t K = 0; K < this->NumValueKinds; K++) {
865 if (VR->Kind > IPVK_Last)
866 return make_error<InstrProfError>(instrprof_error::malformed);
867 VR = getValueProfRecordNext(VR);
868 if ((char *)VR - (char *)this > (ptrdiff_t)TotalSize)
869 return make_error<InstrProfError>(instrprof_error::malformed);
871 return Error::success();
874 Expected<std::unique_ptr<ValueProfData>>
875 ValueProfData::getValueProfData(const unsigned char *D,
876 const unsigned char *const BufferEnd,
877 support::endianness Endianness) {
878 using namespace support;
880 if (D + sizeof(ValueProfData) > BufferEnd)
881 return make_error<InstrProfError>(instrprof_error::truncated);
883 const unsigned char *Header = D;
884 uint32_t TotalSize = swapToHostOrder<uint32_t>(Header, Endianness);
885 if (D + TotalSize > BufferEnd)
886 return make_error<InstrProfError>(instrprof_error::too_large);
888 std::unique_ptr<ValueProfData> VPD = allocValueProfData(TotalSize);
889 memcpy(VPD.get(), D, TotalSize);
890 // Byte swap.
891 VPD->swapBytesToHost(Endianness);
893 Error E = VPD->checkIntegrity();
894 if (E)
895 return std::move(E);
897 return std::move(VPD);
900 void ValueProfData::swapBytesToHost(support::endianness Endianness) {
901 using namespace support;
903 if (Endianness == getHostEndianness())
904 return;
906 sys::swapByteOrder<uint32_t>(TotalSize);
907 sys::swapByteOrder<uint32_t>(NumValueKinds);
909 ValueProfRecord *VR = getFirstValueProfRecord(this);
910 for (uint32_t K = 0; K < NumValueKinds; K++) {
911 VR->swapBytes(Endianness, getHostEndianness());
912 VR = getValueProfRecordNext(VR);
916 void ValueProfData::swapBytesFromHost(support::endianness Endianness) {
917 using namespace support;
919 if (Endianness == getHostEndianness())
920 return;
922 ValueProfRecord *VR = getFirstValueProfRecord(this);
923 for (uint32_t K = 0; K < NumValueKinds; K++) {
924 ValueProfRecord *NVR = getValueProfRecordNext(VR);
925 VR->swapBytes(getHostEndianness(), Endianness);
926 VR = NVR;
928 sys::swapByteOrder<uint32_t>(TotalSize);
929 sys::swapByteOrder<uint32_t>(NumValueKinds);
932 void annotateValueSite(Module &M, Instruction &Inst,
933 const InstrProfRecord &InstrProfR,
934 InstrProfValueKind ValueKind, uint32_t SiteIdx,
935 uint32_t MaxMDCount) {
936 uint32_t NV = InstrProfR.getNumValueDataForSite(ValueKind, SiteIdx);
937 if (!NV)
938 return;
940 uint64_t Sum = 0;
941 std::unique_ptr<InstrProfValueData[]> VD =
942 InstrProfR.getValueForSite(ValueKind, SiteIdx, &Sum);
944 ArrayRef<InstrProfValueData> VDs(VD.get(), NV);
945 annotateValueSite(M, Inst, VDs, Sum, ValueKind, MaxMDCount);
948 void annotateValueSite(Module &M, Instruction &Inst,
949 ArrayRef<InstrProfValueData> VDs,
950 uint64_t Sum, InstrProfValueKind ValueKind,
951 uint32_t MaxMDCount) {
952 LLVMContext &Ctx = M.getContext();
953 MDBuilder MDHelper(Ctx);
954 SmallVector<Metadata *, 3> Vals;
955 // Tag
956 Vals.push_back(MDHelper.createString("VP"));
957 // Value Kind
958 Vals.push_back(MDHelper.createConstant(
959 ConstantInt::get(Type::getInt32Ty(Ctx), ValueKind)));
960 // Total Count
961 Vals.push_back(
962 MDHelper.createConstant(ConstantInt::get(Type::getInt64Ty(Ctx), Sum)));
964 // Value Profile Data
965 uint32_t MDCount = MaxMDCount;
966 for (auto &VD : VDs) {
967 Vals.push_back(MDHelper.createConstant(
968 ConstantInt::get(Type::getInt64Ty(Ctx), VD.Value)));
969 Vals.push_back(MDHelper.createConstant(
970 ConstantInt::get(Type::getInt64Ty(Ctx), VD.Count)));
971 if (--MDCount == 0)
972 break;
974 Inst.setMetadata(LLVMContext::MD_prof, MDNode::get(Ctx, Vals));
977 bool getValueProfDataFromInst(const Instruction &Inst,
978 InstrProfValueKind ValueKind,
979 uint32_t MaxNumValueData,
980 InstrProfValueData ValueData[],
981 uint32_t &ActualNumValueData, uint64_t &TotalC) {
982 MDNode *MD = Inst.getMetadata(LLVMContext::MD_prof);
983 if (!MD)
984 return false;
986 unsigned NOps = MD->getNumOperands();
988 if (NOps < 5)
989 return false;
991 // Operand 0 is a string tag "VP":
992 MDString *Tag = cast<MDString>(MD->getOperand(0));
993 if (!Tag)
994 return false;
996 if (!Tag->getString().equals("VP"))
997 return false;
999 // Now check kind:
1000 ConstantInt *KindInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
1001 if (!KindInt)
1002 return false;
1003 if (KindInt->getZExtValue() != ValueKind)
1004 return false;
1006 // Get total count
1007 ConstantInt *TotalCInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
1008 if (!TotalCInt)
1009 return false;
1010 TotalC = TotalCInt->getZExtValue();
1012 ActualNumValueData = 0;
1014 for (unsigned I = 3; I < NOps; I += 2) {
1015 if (ActualNumValueData >= MaxNumValueData)
1016 break;
1017 ConstantInt *Value = mdconst::dyn_extract<ConstantInt>(MD->getOperand(I));
1018 ConstantInt *Count =
1019 mdconst::dyn_extract<ConstantInt>(MD->getOperand(I + 1));
1020 if (!Value || !Count)
1021 return false;
1022 ValueData[ActualNumValueData].Value = Value->getZExtValue();
1023 ValueData[ActualNumValueData].Count = Count->getZExtValue();
1024 ActualNumValueData++;
1026 return true;
1029 MDNode *getPGOFuncNameMetadata(const Function &F) {
1030 return F.getMetadata(getPGOFuncNameMetadataName());
1033 void createPGOFuncNameMetadata(Function &F, StringRef PGOFuncName) {
1034 // Only for internal linkage functions.
1035 if (PGOFuncName == F.getName())
1036 return;
1037 // Don't create duplicated meta-data.
1038 if (getPGOFuncNameMetadata(F))
1039 return;
1040 LLVMContext &C = F.getContext();
1041 MDNode *N = MDNode::get(C, MDString::get(C, PGOFuncName));
1042 F.setMetadata(getPGOFuncNameMetadataName(), N);
1045 bool needsComdatForCounter(const Function &F, const Module &M) {
1046 if (F.hasComdat())
1047 return true;
1049 if (!Triple(M.getTargetTriple()).supportsCOMDAT())
1050 return false;
1052 // See createPGOFuncNameVar for more details. To avoid link errors, profile
1053 // counters for function with available_externally linkage needs to be changed
1054 // to linkonce linkage. On ELF based systems, this leads to weak symbols to be
1055 // created. Without using comdat, duplicate entries won't be removed by the
1056 // linker leading to increased data segement size and raw profile size. Even
1057 // worse, since the referenced counter from profile per-function data object
1058 // will be resolved to the common strong definition, the profile counts for
1059 // available_externally functions will end up being duplicated in raw profile
1060 // data. This can result in distorted profile as the counts of those dups
1061 // will be accumulated by the profile merger.
1062 GlobalValue::LinkageTypes Linkage = F.getLinkage();
1063 if (Linkage != GlobalValue::ExternalWeakLinkage &&
1064 Linkage != GlobalValue::AvailableExternallyLinkage)
1065 return false;
1067 return true;
1070 // Check if INSTR_PROF_RAW_VERSION_VAR is defined.
1071 bool isIRPGOFlagSet(const Module *M) {
1072 auto IRInstrVar =
1073 M->getNamedGlobal(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR));
1074 if (!IRInstrVar || IRInstrVar->isDeclaration() ||
1075 IRInstrVar->hasLocalLinkage())
1076 return false;
1078 // Check if the flag is set.
1079 if (!IRInstrVar->hasInitializer())
1080 return false;
1082 const Constant *InitVal = IRInstrVar->getInitializer();
1083 if (!InitVal)
1084 return false;
1086 return (dyn_cast<ConstantInt>(InitVal)->getZExtValue() &
1087 VARIANT_MASK_IR_PROF) != 0;
1090 // Check if we can safely rename this Comdat function.
1091 bool canRenameComdatFunc(const Function &F, bool CheckAddressTaken) {
1092 if (F.getName().empty())
1093 return false;
1094 if (!needsComdatForCounter(F, *(F.getParent())))
1095 return false;
1096 // Unsafe to rename the address-taken function (which can be used in
1097 // function comparison).
1098 if (CheckAddressTaken && F.hasAddressTaken())
1099 return false;
1100 // Only safe to do if this function may be discarded if it is not used
1101 // in the compilation unit.
1102 if (!GlobalValue::isDiscardableIfUnused(F.getLinkage()))
1103 return false;
1105 // For AvailableExternallyLinkage functions.
1106 if (!F.hasComdat()) {
1107 assert(F.getLinkage() == GlobalValue::AvailableExternallyLinkage);
1108 return true;
1110 return true;
1113 // Parse the value profile options.
1114 void getMemOPSizeRangeFromOption(StringRef MemOPSizeRange, int64_t &RangeStart,
1115 int64_t &RangeLast) {
1116 static const int64_t DefaultMemOPSizeRangeStart = 0;
1117 static const int64_t DefaultMemOPSizeRangeLast = 8;
1118 RangeStart = DefaultMemOPSizeRangeStart;
1119 RangeLast = DefaultMemOPSizeRangeLast;
1121 if (!MemOPSizeRange.empty()) {
1122 auto Pos = MemOPSizeRange.find(':');
1123 if (Pos != std::string::npos) {
1124 if (Pos > 0)
1125 MemOPSizeRange.substr(0, Pos).getAsInteger(10, RangeStart);
1126 if (Pos < MemOPSizeRange.size() - 1)
1127 MemOPSizeRange.substr(Pos + 1).getAsInteger(10, RangeLast);
1128 } else
1129 MemOPSizeRange.getAsInteger(10, RangeLast);
1131 assert(RangeLast >= RangeStart);
1134 // Create a COMDAT variable INSTR_PROF_RAW_VERSION_VAR to make the runtime
1135 // aware this is an ir_level profile so it can set the version flag.
1136 void createIRLevelProfileFlagVar(Module &M, bool IsCS) {
1137 const StringRef VarName(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR));
1138 Type *IntTy64 = Type::getInt64Ty(M.getContext());
1139 uint64_t ProfileVersion = (INSTR_PROF_RAW_VERSION | VARIANT_MASK_IR_PROF);
1140 if (IsCS)
1141 ProfileVersion |= VARIANT_MASK_CSIR_PROF;
1142 auto IRLevelVersionVariable = new GlobalVariable(
1143 M, IntTy64, true, GlobalValue::WeakAnyLinkage,
1144 Constant::getIntegerValue(IntTy64, APInt(64, ProfileVersion)), VarName);
1145 IRLevelVersionVariable->setVisibility(GlobalValue::DefaultVisibility);
1146 Triple TT(M.getTargetTriple());
1147 if (TT.supportsCOMDAT()) {
1148 IRLevelVersionVariable->setLinkage(GlobalValue::ExternalLinkage);
1149 IRLevelVersionVariable->setComdat(M.getOrInsertComdat(VarName));
1153 // Create the variable for the profile file name.
1154 void createProfileFileNameVar(Module &M, StringRef InstrProfileOutput) {
1155 if (InstrProfileOutput.empty())
1156 return;
1157 Constant *ProfileNameConst =
1158 ConstantDataArray::getString(M.getContext(), InstrProfileOutput, true);
1159 GlobalVariable *ProfileNameVar = new GlobalVariable(
1160 M, ProfileNameConst->getType(), true, GlobalValue::WeakAnyLinkage,
1161 ProfileNameConst, INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR));
1162 Triple TT(M.getTargetTriple());
1163 if (TT.supportsCOMDAT()) {
1164 ProfileNameVar->setLinkage(GlobalValue::ExternalLinkage);
1165 ProfileNameVar->setComdat(M.getOrInsertComdat(
1166 StringRef(INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR))));
1170 Error OverlapStats::accumuateCounts(const std::string &BaseFilename,
1171 const std::string &TestFilename,
1172 bool IsCS) {
1173 auto getProfileSum = [IsCS](const std::string &Filename,
1174 CountSumOrPercent &Sum) -> Error {
1175 auto ReaderOrErr = InstrProfReader::create(Filename);
1176 if (Error E = ReaderOrErr.takeError()) {
1177 return E;
1179 auto Reader = std::move(ReaderOrErr.get());
1180 Reader->accumuateCounts(Sum, IsCS);
1181 return Error::success();
1183 auto Ret = getProfileSum(BaseFilename, Base);
1184 if (Ret)
1185 return Ret;
1186 Ret = getProfileSum(TestFilename, Test);
1187 if (Ret)
1188 return Ret;
1189 this->BaseFilename = &BaseFilename;
1190 this->TestFilename = &TestFilename;
1191 Valid = true;
1192 return Error::success();
1195 void OverlapStats::addOneMismatch(const CountSumOrPercent &MismatchFunc) {
1196 Mismatch.NumEntries += 1;
1197 Mismatch.CountSum += MismatchFunc.CountSum / Test.CountSum;
1198 for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
1199 if (Test.ValueCounts[I] >= 1.0f)
1200 Mismatch.ValueCounts[I] +=
1201 MismatchFunc.ValueCounts[I] / Test.ValueCounts[I];
1205 void OverlapStats::addOneUnique(const CountSumOrPercent &UniqueFunc) {
1206 Unique.NumEntries += 1;
1207 Unique.CountSum += UniqueFunc.CountSum / Test.CountSum;
1208 for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
1209 if (Test.ValueCounts[I] >= 1.0f)
1210 Unique.ValueCounts[I] += UniqueFunc.ValueCounts[I] / Test.ValueCounts[I];
1214 void OverlapStats::dump(raw_fd_ostream &OS) const {
1215 if (!Valid)
1216 return;
1218 const char *EntryName =
1219 (Level == ProgramLevel ? "functions" : "edge counters");
1220 if (Level == ProgramLevel) {
1221 OS << "Profile overlap infomation for base_profile: " << *BaseFilename
1222 << " and test_profile: " << *TestFilename << "\nProgram level:\n";
1223 } else {
1224 OS << "Function level:\n"
1225 << " Function: " << FuncName << " (Hash=" << FuncHash << ")\n";
1228 OS << " # of " << EntryName << " overlap: " << Overlap.NumEntries << "\n";
1229 if (Mismatch.NumEntries)
1230 OS << " # of " << EntryName << " mismatch: " << Mismatch.NumEntries
1231 << "\n";
1232 if (Unique.NumEntries)
1233 OS << " # of " << EntryName
1234 << " only in test_profile: " << Unique.NumEntries << "\n";
1236 OS << " Edge profile overlap: " << format("%.3f%%", Overlap.CountSum * 100)
1237 << "\n";
1238 if (Mismatch.NumEntries)
1239 OS << " Mismatched count percentage (Edge): "
1240 << format("%.3f%%", Mismatch.CountSum * 100) << "\n";
1241 if (Unique.NumEntries)
1242 OS << " Percentage of Edge profile only in test_profile: "
1243 << format("%.3f%%", Unique.CountSum * 100) << "\n";
1244 OS << " Edge profile base count sum: " << format("%.0f", Base.CountSum)
1245 << "\n"
1246 << " Edge profile test count sum: " << format("%.0f", Test.CountSum)
1247 << "\n";
1249 for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
1250 if (Base.ValueCounts[I] < 1.0f && Test.ValueCounts[I] < 1.0f)
1251 continue;
1252 char ProfileKindName[20];
1253 switch (I) {
1254 case IPVK_IndirectCallTarget:
1255 strncpy(ProfileKindName, "IndirectCall", 19);
1256 break;
1257 case IPVK_MemOPSize:
1258 strncpy(ProfileKindName, "MemOP", 19);
1259 break;
1260 default:
1261 snprintf(ProfileKindName, 19, "VP[%d]", I);
1262 break;
1264 OS << " " << ProfileKindName
1265 << " profile overlap: " << format("%.3f%%", Overlap.ValueCounts[I] * 100)
1266 << "\n";
1267 if (Mismatch.NumEntries)
1268 OS << " Mismatched count percentage (" << ProfileKindName
1269 << "): " << format("%.3f%%", Mismatch.ValueCounts[I] * 100) << "\n";
1270 if (Unique.NumEntries)
1271 OS << " Percentage of " << ProfileKindName
1272 << " profile only in test_profile: "
1273 << format("%.3f%%", Unique.ValueCounts[I] * 100) << "\n";
1274 OS << " " << ProfileKindName
1275 << " profile base count sum: " << format("%.0f", Base.ValueCounts[I])
1276 << "\n"
1277 << " " << ProfileKindName
1278 << " profile test count sum: " << format("%.0f", Test.ValueCounts[I])
1279 << "\n";
1283 } // end namespace llvm