[LLVM][Alignment] Introduce Alignment In Attributes
[llvm-core.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
blob5c7b970a3a751d6e57d01491ecf9c46771ff7360
1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Bitcode writer implementation.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Bitcode/BitcodeWriter.h"
14 #include "ValueEnumerator.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/Bitstream/BitCodes.h"
28 #include "llvm/Bitstream/BitstreamWriter.h"
29 #include "llvm/Bitcode/LLVMBitCodes.h"
30 #include "llvm/Config/llvm-config.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CallSite.h"
34 #include "llvm/IR/Comdat.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalIFunc.h"
43 #include "llvm/IR/GlobalObject.h"
44 #include "llvm/IR/GlobalValue.h"
45 #include "llvm/IR/GlobalVariable.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Instruction.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/ModuleSummaryIndex.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/UseListOrder.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/IR/ValueSymbolTable.h"
59 #include "llvm/MC/StringTableBuilder.h"
60 #include "llvm/Object/IRSymtab.h"
61 #include "llvm/Support/AtomicOrdering.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Endian.h"
65 #include "llvm/Support/Error.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/SHA1.h"
69 #include "llvm/Support/TargetRegistry.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cstddef>
74 #include <cstdint>
75 #include <iterator>
76 #include <map>
77 #include <memory>
78 #include <string>
79 #include <utility>
80 #include <vector>
82 using namespace llvm;
84 static cl::opt<unsigned>
85 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25),
86 cl::desc("Number of metadatas above which we emit an index "
87 "to enable lazy-loading"));
89 cl::opt<bool> WriteRelBFToSummary(
90 "write-relbf-to-summary", cl::Hidden, cl::init(false),
91 cl::desc("Write relative block frequency to function summary "));
93 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold;
95 namespace {
97 /// These are manifest constants used by the bitcode writer. They do not need to
98 /// be kept in sync with the reader, but need to be consistent within this file.
99 enum {
100 // VALUE_SYMTAB_BLOCK abbrev id's.
101 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
102 VST_ENTRY_7_ABBREV,
103 VST_ENTRY_6_ABBREV,
104 VST_BBENTRY_6_ABBREV,
106 // CONSTANTS_BLOCK abbrev id's.
107 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
108 CONSTANTS_INTEGER_ABBREV,
109 CONSTANTS_CE_CAST_Abbrev,
110 CONSTANTS_NULL_Abbrev,
112 // FUNCTION_BLOCK abbrev id's.
113 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
114 FUNCTION_INST_UNOP_ABBREV,
115 FUNCTION_INST_UNOP_FLAGS_ABBREV,
116 FUNCTION_INST_BINOP_ABBREV,
117 FUNCTION_INST_BINOP_FLAGS_ABBREV,
118 FUNCTION_INST_CAST_ABBREV,
119 FUNCTION_INST_RET_VOID_ABBREV,
120 FUNCTION_INST_RET_VAL_ABBREV,
121 FUNCTION_INST_UNREACHABLE_ABBREV,
122 FUNCTION_INST_GEP_ABBREV,
125 /// Abstract class to manage the bitcode writing, subclassed for each bitcode
126 /// file type.
127 class BitcodeWriterBase {
128 protected:
129 /// The stream created and owned by the client.
130 BitstreamWriter &Stream;
132 StringTableBuilder &StrtabBuilder;
134 public:
135 /// Constructs a BitcodeWriterBase object that writes to the provided
136 /// \p Stream.
137 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder)
138 : Stream(Stream), StrtabBuilder(StrtabBuilder) {}
140 protected:
141 void writeBitcodeHeader();
142 void writeModuleVersion();
145 void BitcodeWriterBase::writeModuleVersion() {
146 // VERSION: [version#]
147 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2});
150 /// Base class to manage the module bitcode writing, currently subclassed for
151 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter.
152 class ModuleBitcodeWriterBase : public BitcodeWriterBase {
153 protected:
154 /// The Module to write to bitcode.
155 const Module &M;
157 /// Enumerates ids for all values in the module.
158 ValueEnumerator VE;
160 /// Optional per-module index to write for ThinLTO.
161 const ModuleSummaryIndex *Index;
163 /// Map that holds the correspondence between GUIDs in the summary index,
164 /// that came from indirect call profiles, and a value id generated by this
165 /// class to use in the VST and summary block records.
166 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
168 /// Tracks the last value id recorded in the GUIDToValueMap.
169 unsigned GlobalValueId;
171 /// Saves the offset of the VSTOffset record that must eventually be
172 /// backpatched with the offset of the actual VST.
173 uint64_t VSTOffsetPlaceholder = 0;
175 public:
176 /// Constructs a ModuleBitcodeWriterBase object for the given Module,
177 /// writing to the provided \p Buffer.
178 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder,
179 BitstreamWriter &Stream,
180 bool ShouldPreserveUseListOrder,
181 const ModuleSummaryIndex *Index)
182 : BitcodeWriterBase(Stream, StrtabBuilder), M(M),
183 VE(M, ShouldPreserveUseListOrder), Index(Index) {
184 // Assign ValueIds to any callee values in the index that came from
185 // indirect call profiles and were recorded as a GUID not a Value*
186 // (which would have been assigned an ID by the ValueEnumerator).
187 // The starting ValueId is just after the number of values in the
188 // ValueEnumerator, so that they can be emitted in the VST.
189 GlobalValueId = VE.getValues().size();
190 if (!Index)
191 return;
192 for (const auto &GUIDSummaryLists : *Index)
193 // Examine all summaries for this GUID.
194 for (auto &Summary : GUIDSummaryLists.second.SummaryList)
195 if (auto FS = dyn_cast<FunctionSummary>(Summary.get()))
196 // For each call in the function summary, see if the call
197 // is to a GUID (which means it is for an indirect call,
198 // otherwise we would have a Value for it). If so, synthesize
199 // a value id.
200 for (auto &CallEdge : FS->calls())
201 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue())
202 assignValueId(CallEdge.first.getGUID());
205 protected:
206 void writePerModuleGlobalValueSummary();
208 private:
209 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
210 GlobalValueSummary *Summary,
211 unsigned ValueID,
212 unsigned FSCallsAbbrev,
213 unsigned FSCallsProfileAbbrev,
214 const Function &F);
215 void writeModuleLevelReferences(const GlobalVariable &V,
216 SmallVector<uint64_t, 64> &NameVals,
217 unsigned FSModRefsAbbrev,
218 unsigned FSModVTableRefsAbbrev);
220 void assignValueId(GlobalValue::GUID ValGUID) {
221 GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
224 unsigned getValueId(GlobalValue::GUID ValGUID) {
225 const auto &VMI = GUIDToValueIdMap.find(ValGUID);
226 // Expect that any GUID value had a value Id assigned by an
227 // earlier call to assignValueId.
228 assert(VMI != GUIDToValueIdMap.end() &&
229 "GUID does not have assigned value Id");
230 return VMI->second;
233 // Helper to get the valueId for the type of value recorded in VI.
234 unsigned getValueId(ValueInfo VI) {
235 if (!VI.haveGVs() || !VI.getValue())
236 return getValueId(VI.getGUID());
237 return VE.getValueID(VI.getValue());
240 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
243 /// Class to manage the bitcode writing for a module.
244 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase {
245 /// Pointer to the buffer allocated by caller for bitcode writing.
246 const SmallVectorImpl<char> &Buffer;
248 /// True if a module hash record should be written.
249 bool GenerateHash;
251 /// If non-null, when GenerateHash is true, the resulting hash is written
252 /// into ModHash.
253 ModuleHash *ModHash;
255 SHA1 Hasher;
257 /// The start bit of the identification block.
258 uint64_t BitcodeStartBit;
260 public:
261 /// Constructs a ModuleBitcodeWriter object for the given Module,
262 /// writing to the provided \p Buffer.
263 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
264 StringTableBuilder &StrtabBuilder,
265 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder,
266 const ModuleSummaryIndex *Index, bool GenerateHash,
267 ModuleHash *ModHash = nullptr)
268 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
269 ShouldPreserveUseListOrder, Index),
270 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash),
271 BitcodeStartBit(Stream.GetCurrentBitNo()) {}
273 /// Emit the current module to the bitstream.
274 void write();
276 private:
277 uint64_t bitcodeStartBit() { return BitcodeStartBit; }
279 size_t addToStrtab(StringRef Str);
281 void writeAttributeGroupTable();
282 void writeAttributeTable();
283 void writeTypeTable();
284 void writeComdats();
285 void writeValueSymbolTableForwardDecl();
286 void writeModuleInfo();
287 void writeValueAsMetadata(const ValueAsMetadata *MD,
288 SmallVectorImpl<uint64_t> &Record);
289 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
290 unsigned Abbrev);
291 unsigned createDILocationAbbrev();
292 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
293 unsigned &Abbrev);
294 unsigned createGenericDINodeAbbrev();
295 void writeGenericDINode(const GenericDINode *N,
296 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
297 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
298 unsigned Abbrev);
299 void writeDIEnumerator(const DIEnumerator *N,
300 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
301 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
302 unsigned Abbrev);
303 void writeDIDerivedType(const DIDerivedType *N,
304 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
305 void writeDICompositeType(const DICompositeType *N,
306 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
307 void writeDISubroutineType(const DISubroutineType *N,
308 SmallVectorImpl<uint64_t> &Record,
309 unsigned Abbrev);
310 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
311 unsigned Abbrev);
312 void writeDICompileUnit(const DICompileUnit *N,
313 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
314 void writeDISubprogram(const DISubprogram *N,
315 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
316 void writeDILexicalBlock(const DILexicalBlock *N,
317 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
318 void writeDILexicalBlockFile(const DILexicalBlockFile *N,
319 SmallVectorImpl<uint64_t> &Record,
320 unsigned Abbrev);
321 void writeDICommonBlock(const DICommonBlock *N,
322 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
323 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
324 unsigned Abbrev);
325 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
326 unsigned Abbrev);
327 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
328 unsigned Abbrev);
329 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
330 unsigned Abbrev);
331 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
332 SmallVectorImpl<uint64_t> &Record,
333 unsigned Abbrev);
334 void writeDITemplateValueParameter(const DITemplateValueParameter *N,
335 SmallVectorImpl<uint64_t> &Record,
336 unsigned Abbrev);
337 void writeDIGlobalVariable(const DIGlobalVariable *N,
338 SmallVectorImpl<uint64_t> &Record,
339 unsigned Abbrev);
340 void writeDILocalVariable(const DILocalVariable *N,
341 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
342 void writeDILabel(const DILabel *N,
343 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
344 void writeDIExpression(const DIExpression *N,
345 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
346 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
347 SmallVectorImpl<uint64_t> &Record,
348 unsigned Abbrev);
349 void writeDIObjCProperty(const DIObjCProperty *N,
350 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
351 void writeDIImportedEntity(const DIImportedEntity *N,
352 SmallVectorImpl<uint64_t> &Record,
353 unsigned Abbrev);
354 unsigned createNamedMetadataAbbrev();
355 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
356 unsigned createMetadataStringsAbbrev();
357 void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
358 SmallVectorImpl<uint64_t> &Record);
359 void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
360 SmallVectorImpl<uint64_t> &Record,
361 std::vector<unsigned> *MDAbbrevs = nullptr,
362 std::vector<uint64_t> *IndexPos = nullptr);
363 void writeModuleMetadata();
364 void writeFunctionMetadata(const Function &F);
365 void writeFunctionMetadataAttachment(const Function &F);
366 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV);
367 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
368 const GlobalObject &GO);
369 void writeModuleMetadataKinds();
370 void writeOperandBundleTags();
371 void writeSyncScopeNames();
372 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
373 void writeModuleConstants();
374 bool pushValueAndType(const Value *V, unsigned InstID,
375 SmallVectorImpl<unsigned> &Vals);
376 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID);
377 void pushValue(const Value *V, unsigned InstID,
378 SmallVectorImpl<unsigned> &Vals);
379 void pushValueSigned(const Value *V, unsigned InstID,
380 SmallVectorImpl<uint64_t> &Vals);
381 void writeInstruction(const Instruction &I, unsigned InstID,
382 SmallVectorImpl<unsigned> &Vals);
383 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
384 void writeGlobalValueSymbolTable(
385 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
386 void writeUseList(UseListOrder &&Order);
387 void writeUseListBlock(const Function *F);
388 void
389 writeFunction(const Function &F,
390 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
391 void writeBlockInfo();
392 void writeModuleHash(size_t BlockStartPos);
394 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) {
395 return unsigned(SSID);
399 /// Class to manage the bitcode writing for a combined index.
400 class IndexBitcodeWriter : public BitcodeWriterBase {
401 /// The combined index to write to bitcode.
402 const ModuleSummaryIndex &Index;
404 /// When writing a subset of the index for distributed backends, client
405 /// provides a map of modules to the corresponding GUIDs/summaries to write.
406 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
408 /// Map that holds the correspondence between the GUID used in the combined
409 /// index and a value id generated by this class to use in references.
410 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
412 /// Tracks the last value id recorded in the GUIDToValueMap.
413 unsigned GlobalValueId = 0;
415 public:
416 /// Constructs a IndexBitcodeWriter object for the given combined index,
417 /// writing to the provided \p Buffer. When writing a subset of the index
418 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
419 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder,
420 const ModuleSummaryIndex &Index,
421 const std::map<std::string, GVSummaryMapTy>
422 *ModuleToSummariesForIndex = nullptr)
423 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index),
424 ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
425 // Assign unique value ids to all summaries to be written, for use
426 // in writing out the call graph edges. Save the mapping from GUID
427 // to the new global value id to use when writing those edges, which
428 // are currently saved in the index in terms of GUID.
429 forEachSummary([&](GVInfo I, bool) {
430 GUIDToValueIdMap[I.first] = ++GlobalValueId;
434 /// The below iterator returns the GUID and associated summary.
435 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>;
437 /// Calls the callback for each value GUID and summary to be written to
438 /// bitcode. This hides the details of whether they are being pulled from the
439 /// entire index or just those in a provided ModuleToSummariesForIndex map.
440 template<typename Functor>
441 void forEachSummary(Functor Callback) {
442 if (ModuleToSummariesForIndex) {
443 for (auto &M : *ModuleToSummariesForIndex)
444 for (auto &Summary : M.second) {
445 Callback(Summary, false);
446 // Ensure aliasee is handled, e.g. for assigning a valueId,
447 // even if we are not importing the aliasee directly (the
448 // imported alias will contain a copy of aliasee).
449 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond()))
450 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true);
452 } else {
453 for (auto &Summaries : Index)
454 for (auto &Summary : Summaries.second.SummaryList)
455 Callback({Summaries.first, Summary.get()}, false);
459 /// Calls the callback for each entry in the modulePaths StringMap that
460 /// should be written to the module path string table. This hides the details
461 /// of whether they are being pulled from the entire index or just those in a
462 /// provided ModuleToSummariesForIndex map.
463 template <typename Functor> void forEachModule(Functor Callback) {
464 if (ModuleToSummariesForIndex) {
465 for (const auto &M : *ModuleToSummariesForIndex) {
466 const auto &MPI = Index.modulePaths().find(M.first);
467 if (MPI == Index.modulePaths().end()) {
468 // This should only happen if the bitcode file was empty, in which
469 // case we shouldn't be importing (the ModuleToSummariesForIndex
470 // would only include the module we are writing and index for).
471 assert(ModuleToSummariesForIndex->size() == 1);
472 continue;
474 Callback(*MPI);
476 } else {
477 for (const auto &MPSE : Index.modulePaths())
478 Callback(MPSE);
482 /// Main entry point for writing a combined index to bitcode.
483 void write();
485 private:
486 void writeModStrings();
487 void writeCombinedGlobalValueSummary();
489 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) {
490 auto VMI = GUIDToValueIdMap.find(ValGUID);
491 if (VMI == GUIDToValueIdMap.end())
492 return None;
493 return VMI->second;
496 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
499 } // end anonymous namespace
501 static unsigned getEncodedCastOpcode(unsigned Opcode) {
502 switch (Opcode) {
503 default: llvm_unreachable("Unknown cast instruction!");
504 case Instruction::Trunc : return bitc::CAST_TRUNC;
505 case Instruction::ZExt : return bitc::CAST_ZEXT;
506 case Instruction::SExt : return bitc::CAST_SEXT;
507 case Instruction::FPToUI : return bitc::CAST_FPTOUI;
508 case Instruction::FPToSI : return bitc::CAST_FPTOSI;
509 case Instruction::UIToFP : return bitc::CAST_UITOFP;
510 case Instruction::SIToFP : return bitc::CAST_SITOFP;
511 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
512 case Instruction::FPExt : return bitc::CAST_FPEXT;
513 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
514 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
515 case Instruction::BitCast : return bitc::CAST_BITCAST;
516 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
520 static unsigned getEncodedUnaryOpcode(unsigned Opcode) {
521 switch (Opcode) {
522 default: llvm_unreachable("Unknown binary instruction!");
523 case Instruction::FNeg: return bitc::UNOP_NEG;
527 static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
528 switch (Opcode) {
529 default: llvm_unreachable("Unknown binary instruction!");
530 case Instruction::Add:
531 case Instruction::FAdd: return bitc::BINOP_ADD;
532 case Instruction::Sub:
533 case Instruction::FSub: return bitc::BINOP_SUB;
534 case Instruction::Mul:
535 case Instruction::FMul: return bitc::BINOP_MUL;
536 case Instruction::UDiv: return bitc::BINOP_UDIV;
537 case Instruction::FDiv:
538 case Instruction::SDiv: return bitc::BINOP_SDIV;
539 case Instruction::URem: return bitc::BINOP_UREM;
540 case Instruction::FRem:
541 case Instruction::SRem: return bitc::BINOP_SREM;
542 case Instruction::Shl: return bitc::BINOP_SHL;
543 case Instruction::LShr: return bitc::BINOP_LSHR;
544 case Instruction::AShr: return bitc::BINOP_ASHR;
545 case Instruction::And: return bitc::BINOP_AND;
546 case Instruction::Or: return bitc::BINOP_OR;
547 case Instruction::Xor: return bitc::BINOP_XOR;
551 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
552 switch (Op) {
553 default: llvm_unreachable("Unknown RMW operation!");
554 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
555 case AtomicRMWInst::Add: return bitc::RMW_ADD;
556 case AtomicRMWInst::Sub: return bitc::RMW_SUB;
557 case AtomicRMWInst::And: return bitc::RMW_AND;
558 case AtomicRMWInst::Nand: return bitc::RMW_NAND;
559 case AtomicRMWInst::Or: return bitc::RMW_OR;
560 case AtomicRMWInst::Xor: return bitc::RMW_XOR;
561 case AtomicRMWInst::Max: return bitc::RMW_MAX;
562 case AtomicRMWInst::Min: return bitc::RMW_MIN;
563 case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
564 case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
565 case AtomicRMWInst::FAdd: return bitc::RMW_FADD;
566 case AtomicRMWInst::FSub: return bitc::RMW_FSUB;
570 static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
571 switch (Ordering) {
572 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
573 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
574 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
575 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
576 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
577 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
578 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
580 llvm_unreachable("Invalid ordering");
583 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
584 StringRef Str, unsigned AbbrevToUse) {
585 SmallVector<unsigned, 64> Vals;
587 // Code: [strchar x N]
588 for (unsigned i = 0, e = Str.size(); i != e; ++i) {
589 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
590 AbbrevToUse = 0;
591 Vals.push_back(Str[i]);
594 // Emit the finished record.
595 Stream.EmitRecord(Code, Vals, AbbrevToUse);
598 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
599 switch (Kind) {
600 case Attribute::Alignment:
601 return bitc::ATTR_KIND_ALIGNMENT;
602 case Attribute::AllocSize:
603 return bitc::ATTR_KIND_ALLOC_SIZE;
604 case Attribute::AlwaysInline:
605 return bitc::ATTR_KIND_ALWAYS_INLINE;
606 case Attribute::ArgMemOnly:
607 return bitc::ATTR_KIND_ARGMEMONLY;
608 case Attribute::Builtin:
609 return bitc::ATTR_KIND_BUILTIN;
610 case Attribute::ByVal:
611 return bitc::ATTR_KIND_BY_VAL;
612 case Attribute::Convergent:
613 return bitc::ATTR_KIND_CONVERGENT;
614 case Attribute::InAlloca:
615 return bitc::ATTR_KIND_IN_ALLOCA;
616 case Attribute::Cold:
617 return bitc::ATTR_KIND_COLD;
618 case Attribute::InaccessibleMemOnly:
619 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY;
620 case Attribute::InaccessibleMemOrArgMemOnly:
621 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY;
622 case Attribute::InlineHint:
623 return bitc::ATTR_KIND_INLINE_HINT;
624 case Attribute::InReg:
625 return bitc::ATTR_KIND_IN_REG;
626 case Attribute::JumpTable:
627 return bitc::ATTR_KIND_JUMP_TABLE;
628 case Attribute::MinSize:
629 return bitc::ATTR_KIND_MIN_SIZE;
630 case Attribute::Naked:
631 return bitc::ATTR_KIND_NAKED;
632 case Attribute::Nest:
633 return bitc::ATTR_KIND_NEST;
634 case Attribute::NoAlias:
635 return bitc::ATTR_KIND_NO_ALIAS;
636 case Attribute::NoBuiltin:
637 return bitc::ATTR_KIND_NO_BUILTIN;
638 case Attribute::NoCapture:
639 return bitc::ATTR_KIND_NO_CAPTURE;
640 case Attribute::NoDuplicate:
641 return bitc::ATTR_KIND_NO_DUPLICATE;
642 case Attribute::NoFree:
643 return bitc::ATTR_KIND_NOFREE;
644 case Attribute::NoImplicitFloat:
645 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
646 case Attribute::NoInline:
647 return bitc::ATTR_KIND_NO_INLINE;
648 case Attribute::NoRecurse:
649 return bitc::ATTR_KIND_NO_RECURSE;
650 case Attribute::NonLazyBind:
651 return bitc::ATTR_KIND_NON_LAZY_BIND;
652 case Attribute::NonNull:
653 return bitc::ATTR_KIND_NON_NULL;
654 case Attribute::Dereferenceable:
655 return bitc::ATTR_KIND_DEREFERENCEABLE;
656 case Attribute::DereferenceableOrNull:
657 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
658 case Attribute::NoRedZone:
659 return bitc::ATTR_KIND_NO_RED_ZONE;
660 case Attribute::NoReturn:
661 return bitc::ATTR_KIND_NO_RETURN;
662 case Attribute::NoSync:
663 return bitc::ATTR_KIND_NOSYNC;
664 case Attribute::NoCfCheck:
665 return bitc::ATTR_KIND_NOCF_CHECK;
666 case Attribute::NoUnwind:
667 return bitc::ATTR_KIND_NO_UNWIND;
668 case Attribute::OptForFuzzing:
669 return bitc::ATTR_KIND_OPT_FOR_FUZZING;
670 case Attribute::OptimizeForSize:
671 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
672 case Attribute::OptimizeNone:
673 return bitc::ATTR_KIND_OPTIMIZE_NONE;
674 case Attribute::ReadNone:
675 return bitc::ATTR_KIND_READ_NONE;
676 case Attribute::ReadOnly:
677 return bitc::ATTR_KIND_READ_ONLY;
678 case Attribute::Returned:
679 return bitc::ATTR_KIND_RETURNED;
680 case Attribute::ReturnsTwice:
681 return bitc::ATTR_KIND_RETURNS_TWICE;
682 case Attribute::SExt:
683 return bitc::ATTR_KIND_S_EXT;
684 case Attribute::Speculatable:
685 return bitc::ATTR_KIND_SPECULATABLE;
686 case Attribute::StackAlignment:
687 return bitc::ATTR_KIND_STACK_ALIGNMENT;
688 case Attribute::StackProtect:
689 return bitc::ATTR_KIND_STACK_PROTECT;
690 case Attribute::StackProtectReq:
691 return bitc::ATTR_KIND_STACK_PROTECT_REQ;
692 case Attribute::StackProtectStrong:
693 return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
694 case Attribute::SafeStack:
695 return bitc::ATTR_KIND_SAFESTACK;
696 case Attribute::ShadowCallStack:
697 return bitc::ATTR_KIND_SHADOWCALLSTACK;
698 case Attribute::StrictFP:
699 return bitc::ATTR_KIND_STRICT_FP;
700 case Attribute::StructRet:
701 return bitc::ATTR_KIND_STRUCT_RET;
702 case Attribute::SanitizeAddress:
703 return bitc::ATTR_KIND_SANITIZE_ADDRESS;
704 case Attribute::SanitizeHWAddress:
705 return bitc::ATTR_KIND_SANITIZE_HWADDRESS;
706 case Attribute::SanitizeThread:
707 return bitc::ATTR_KIND_SANITIZE_THREAD;
708 case Attribute::SanitizeMemory:
709 return bitc::ATTR_KIND_SANITIZE_MEMORY;
710 case Attribute::SpeculativeLoadHardening:
711 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING;
712 case Attribute::SwiftError:
713 return bitc::ATTR_KIND_SWIFT_ERROR;
714 case Attribute::SwiftSelf:
715 return bitc::ATTR_KIND_SWIFT_SELF;
716 case Attribute::UWTable:
717 return bitc::ATTR_KIND_UW_TABLE;
718 case Attribute::WillReturn:
719 return bitc::ATTR_KIND_WILLRETURN;
720 case Attribute::WriteOnly:
721 return bitc::ATTR_KIND_WRITEONLY;
722 case Attribute::ZExt:
723 return bitc::ATTR_KIND_Z_EXT;
724 case Attribute::ImmArg:
725 return bitc::ATTR_KIND_IMMARG;
726 case Attribute::SanitizeMemTag:
727 return bitc::ATTR_KIND_SANITIZE_MEMTAG;
728 case Attribute::EndAttrKinds:
729 llvm_unreachable("Can not encode end-attribute kinds marker.");
730 case Attribute::None:
731 llvm_unreachable("Can not encode none-attribute.");
734 llvm_unreachable("Trying to encode unknown attribute");
737 void ModuleBitcodeWriter::writeAttributeGroupTable() {
738 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
739 VE.getAttributeGroups();
740 if (AttrGrps.empty()) return;
742 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
744 SmallVector<uint64_t, 64> Record;
745 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
746 unsigned AttrListIndex = Pair.first;
747 AttributeSet AS = Pair.second;
748 Record.push_back(VE.getAttributeGroupID(Pair));
749 Record.push_back(AttrListIndex);
751 for (Attribute Attr : AS) {
752 if (Attr.isEnumAttribute()) {
753 Record.push_back(0);
754 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
755 } else if (Attr.isIntAttribute()) {
756 Record.push_back(1);
757 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
758 Record.push_back(Attr.getValueAsInt());
759 } else if (Attr.isStringAttribute()) {
760 StringRef Kind = Attr.getKindAsString();
761 StringRef Val = Attr.getValueAsString();
763 Record.push_back(Val.empty() ? 3 : 4);
764 Record.append(Kind.begin(), Kind.end());
765 Record.push_back(0);
766 if (!Val.empty()) {
767 Record.append(Val.begin(), Val.end());
768 Record.push_back(0);
770 } else {
771 assert(Attr.isTypeAttribute());
772 Type *Ty = Attr.getValueAsType();
773 Record.push_back(Ty ? 6 : 5);
774 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
775 if (Ty)
776 Record.push_back(VE.getTypeID(Attr.getValueAsType()));
780 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
781 Record.clear();
784 Stream.ExitBlock();
787 void ModuleBitcodeWriter::writeAttributeTable() {
788 const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
789 if (Attrs.empty()) return;
791 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
793 SmallVector<uint64_t, 64> Record;
794 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
795 AttributeList AL = Attrs[i];
796 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) {
797 AttributeSet AS = AL.getAttributes(i);
798 if (AS.hasAttributes())
799 Record.push_back(VE.getAttributeGroupID({i, AS}));
802 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
803 Record.clear();
806 Stream.ExitBlock();
809 /// WriteTypeTable - Write out the type table for a module.
810 void ModuleBitcodeWriter::writeTypeTable() {
811 const ValueEnumerator::TypeList &TypeList = VE.getTypes();
813 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
814 SmallVector<uint64_t, 64> TypeVals;
816 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
818 // Abbrev for TYPE_CODE_POINTER.
819 auto Abbv = std::make_shared<BitCodeAbbrev>();
820 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
822 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
823 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
825 // Abbrev for TYPE_CODE_FUNCTION.
826 Abbv = std::make_shared<BitCodeAbbrev>();
827 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
828 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
829 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
830 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
831 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
833 // Abbrev for TYPE_CODE_STRUCT_ANON.
834 Abbv = std::make_shared<BitCodeAbbrev>();
835 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
836 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
837 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
838 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
839 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
841 // Abbrev for TYPE_CODE_STRUCT_NAME.
842 Abbv = std::make_shared<BitCodeAbbrev>();
843 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
844 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
845 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
846 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
848 // Abbrev for TYPE_CODE_STRUCT_NAMED.
849 Abbv = std::make_shared<BitCodeAbbrev>();
850 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
851 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
852 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
853 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
854 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
856 // Abbrev for TYPE_CODE_ARRAY.
857 Abbv = std::make_shared<BitCodeAbbrev>();
858 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
859 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
860 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
861 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
863 // Emit an entry count so the reader can reserve space.
864 TypeVals.push_back(TypeList.size());
865 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
866 TypeVals.clear();
868 // Loop over all of the types, emitting each in turn.
869 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
870 Type *T = TypeList[i];
871 int AbbrevToUse = 0;
872 unsigned Code = 0;
874 switch (T->getTypeID()) {
875 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
876 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break;
877 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
878 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
879 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
880 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
881 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
882 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
883 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
884 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break;
885 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break;
886 case Type::IntegerTyID:
887 // INTEGER: [width]
888 Code = bitc::TYPE_CODE_INTEGER;
889 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
890 break;
891 case Type::PointerTyID: {
892 PointerType *PTy = cast<PointerType>(T);
893 // POINTER: [pointee type, address space]
894 Code = bitc::TYPE_CODE_POINTER;
895 TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
896 unsigned AddressSpace = PTy->getAddressSpace();
897 TypeVals.push_back(AddressSpace);
898 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
899 break;
901 case Type::FunctionTyID: {
902 FunctionType *FT = cast<FunctionType>(T);
903 // FUNCTION: [isvararg, retty, paramty x N]
904 Code = bitc::TYPE_CODE_FUNCTION;
905 TypeVals.push_back(FT->isVarArg());
906 TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
907 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
908 TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
909 AbbrevToUse = FunctionAbbrev;
910 break;
912 case Type::StructTyID: {
913 StructType *ST = cast<StructType>(T);
914 // STRUCT: [ispacked, eltty x N]
915 TypeVals.push_back(ST->isPacked());
916 // Output all of the element types.
917 for (StructType::element_iterator I = ST->element_begin(),
918 E = ST->element_end(); I != E; ++I)
919 TypeVals.push_back(VE.getTypeID(*I));
921 if (ST->isLiteral()) {
922 Code = bitc::TYPE_CODE_STRUCT_ANON;
923 AbbrevToUse = StructAnonAbbrev;
924 } else {
925 if (ST->isOpaque()) {
926 Code = bitc::TYPE_CODE_OPAQUE;
927 } else {
928 Code = bitc::TYPE_CODE_STRUCT_NAMED;
929 AbbrevToUse = StructNamedAbbrev;
932 // Emit the name if it is present.
933 if (!ST->getName().empty())
934 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
935 StructNameAbbrev);
937 break;
939 case Type::ArrayTyID: {
940 ArrayType *AT = cast<ArrayType>(T);
941 // ARRAY: [numelts, eltty]
942 Code = bitc::TYPE_CODE_ARRAY;
943 TypeVals.push_back(AT->getNumElements());
944 TypeVals.push_back(VE.getTypeID(AT->getElementType()));
945 AbbrevToUse = ArrayAbbrev;
946 break;
948 case Type::VectorTyID: {
949 VectorType *VT = cast<VectorType>(T);
950 // VECTOR [numelts, eltty] or
951 // [numelts, eltty, scalable]
952 Code = bitc::TYPE_CODE_VECTOR;
953 TypeVals.push_back(VT->getNumElements());
954 TypeVals.push_back(VE.getTypeID(VT->getElementType()));
955 if (VT->isScalable())
956 TypeVals.push_back(VT->isScalable());
957 break;
961 // Emit the finished record.
962 Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
963 TypeVals.clear();
966 Stream.ExitBlock();
969 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
970 switch (Linkage) {
971 case GlobalValue::ExternalLinkage:
972 return 0;
973 case GlobalValue::WeakAnyLinkage:
974 return 16;
975 case GlobalValue::AppendingLinkage:
976 return 2;
977 case GlobalValue::InternalLinkage:
978 return 3;
979 case GlobalValue::LinkOnceAnyLinkage:
980 return 18;
981 case GlobalValue::ExternalWeakLinkage:
982 return 7;
983 case GlobalValue::CommonLinkage:
984 return 8;
985 case GlobalValue::PrivateLinkage:
986 return 9;
987 case GlobalValue::WeakODRLinkage:
988 return 17;
989 case GlobalValue::LinkOnceODRLinkage:
990 return 19;
991 case GlobalValue::AvailableExternallyLinkage:
992 return 12;
994 llvm_unreachable("Invalid linkage");
997 static unsigned getEncodedLinkage(const GlobalValue &GV) {
998 return getEncodedLinkage(GV.getLinkage());
1001 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) {
1002 uint64_t RawFlags = 0;
1003 RawFlags |= Flags.ReadNone;
1004 RawFlags |= (Flags.ReadOnly << 1);
1005 RawFlags |= (Flags.NoRecurse << 2);
1006 RawFlags |= (Flags.ReturnDoesNotAlias << 3);
1007 RawFlags |= (Flags.NoInline << 4);
1008 return RawFlags;
1011 // Decode the flags for GlobalValue in the summary
1012 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) {
1013 uint64_t RawFlags = 0;
1015 RawFlags |= Flags.NotEligibleToImport; // bool
1016 RawFlags |= (Flags.Live << 1);
1017 RawFlags |= (Flags.DSOLocal << 2);
1018 RawFlags |= (Flags.CanAutoHide << 3);
1020 // Linkage don't need to be remapped at that time for the summary. Any future
1021 // change to the getEncodedLinkage() function will need to be taken into
1022 // account here as well.
1023 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
1025 return RawFlags;
1028 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) {
1029 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1);
1030 return RawFlags;
1033 static unsigned getEncodedVisibility(const GlobalValue &GV) {
1034 switch (GV.getVisibility()) {
1035 case GlobalValue::DefaultVisibility: return 0;
1036 case GlobalValue::HiddenVisibility: return 1;
1037 case GlobalValue::ProtectedVisibility: return 2;
1039 llvm_unreachable("Invalid visibility");
1042 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
1043 switch (GV.getDLLStorageClass()) {
1044 case GlobalValue::DefaultStorageClass: return 0;
1045 case GlobalValue::DLLImportStorageClass: return 1;
1046 case GlobalValue::DLLExportStorageClass: return 2;
1048 llvm_unreachable("Invalid DLL storage class");
1051 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
1052 switch (GV.getThreadLocalMode()) {
1053 case GlobalVariable::NotThreadLocal: return 0;
1054 case GlobalVariable::GeneralDynamicTLSModel: return 1;
1055 case GlobalVariable::LocalDynamicTLSModel: return 2;
1056 case GlobalVariable::InitialExecTLSModel: return 3;
1057 case GlobalVariable::LocalExecTLSModel: return 4;
1059 llvm_unreachable("Invalid TLS model");
1062 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
1063 switch (C.getSelectionKind()) {
1064 case Comdat::Any:
1065 return bitc::COMDAT_SELECTION_KIND_ANY;
1066 case Comdat::ExactMatch:
1067 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
1068 case Comdat::Largest:
1069 return bitc::COMDAT_SELECTION_KIND_LARGEST;
1070 case Comdat::NoDuplicates:
1071 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
1072 case Comdat::SameSize:
1073 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
1075 llvm_unreachable("Invalid selection kind");
1078 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
1079 switch (GV.getUnnamedAddr()) {
1080 case GlobalValue::UnnamedAddr::None: return 0;
1081 case GlobalValue::UnnamedAddr::Local: return 2;
1082 case GlobalValue::UnnamedAddr::Global: return 1;
1084 llvm_unreachable("Invalid unnamed_addr");
1087 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) {
1088 if (GenerateHash)
1089 Hasher.update(Str);
1090 return StrtabBuilder.add(Str);
1093 void ModuleBitcodeWriter::writeComdats() {
1094 SmallVector<unsigned, 64> Vals;
1095 for (const Comdat *C : VE.getComdats()) {
1096 // COMDAT: [strtab offset, strtab size, selection_kind]
1097 Vals.push_back(addToStrtab(C->getName()));
1098 Vals.push_back(C->getName().size());
1099 Vals.push_back(getEncodedComdatSelectionKind(*C));
1100 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1101 Vals.clear();
1105 /// Write a record that will eventually hold the word offset of the
1106 /// module-level VST. For now the offset is 0, which will be backpatched
1107 /// after the real VST is written. Saves the bit offset to backpatch.
1108 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
1109 // Write a placeholder value in for the offset of the real VST,
1110 // which is written after the function blocks so that it can include
1111 // the offset of each function. The placeholder offset will be
1112 // updated when the real VST is written.
1113 auto Abbv = std::make_shared<BitCodeAbbrev>();
1114 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
1115 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1116 // hold the real VST offset. Must use fixed instead of VBR as we don't
1117 // know how many VBR chunks to reserve ahead of time.
1118 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1119 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1121 // Emit the placeholder
1122 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1123 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
1125 // Compute and save the bit offset to the placeholder, which will be
1126 // patched when the real VST is written. We can simply subtract the 32-bit
1127 // fixed size from the current bit number to get the location to backpatch.
1128 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1131 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
1133 /// Determine the encoding to use for the given string name and length.
1134 static StringEncoding getStringEncoding(StringRef Str) {
1135 bool isChar6 = true;
1136 for (char C : Str) {
1137 if (isChar6)
1138 isChar6 = BitCodeAbbrevOp::isChar6(C);
1139 if ((unsigned char)C & 128)
1140 // don't bother scanning the rest.
1141 return SE_Fixed8;
1143 if (isChar6)
1144 return SE_Char6;
1145 return SE_Fixed7;
1148 /// Emit top-level description of module, including target triple, inline asm,
1149 /// descriptors for global variables, and function prototype info.
1150 /// Returns the bit offset to backpatch with the location of the real VST.
1151 void ModuleBitcodeWriter::writeModuleInfo() {
1152 // Emit various pieces of data attached to a module.
1153 if (!M.getTargetTriple().empty())
1154 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1155 0 /*TODO*/);
1156 const std::string &DL = M.getDataLayoutStr();
1157 if (!DL.empty())
1158 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1159 if (!M.getModuleInlineAsm().empty())
1160 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1161 0 /*TODO*/);
1163 // Emit information about sections and GC, computing how many there are. Also
1164 // compute the maximum alignment value.
1165 std::map<std::string, unsigned> SectionMap;
1166 std::map<std::string, unsigned> GCMap;
1167 unsigned MaxAlignment = 0;
1168 unsigned MaxGlobalType = 0;
1169 for (const GlobalValue &GV : M.globals()) {
1170 MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
1171 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1172 if (GV.hasSection()) {
1173 // Give section names unique ID's.
1174 unsigned &Entry = SectionMap[GV.getSection()];
1175 if (!Entry) {
1176 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
1177 0 /*TODO*/);
1178 Entry = SectionMap.size();
1182 for (const Function &F : M) {
1183 MaxAlignment = std::max(MaxAlignment, F.getAlignment());
1184 if (F.hasSection()) {
1185 // Give section names unique ID's.
1186 unsigned &Entry = SectionMap[F.getSection()];
1187 if (!Entry) {
1188 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1189 0 /*TODO*/);
1190 Entry = SectionMap.size();
1193 if (F.hasGC()) {
1194 // Same for GC names.
1195 unsigned &Entry = GCMap[F.getGC()];
1196 if (!Entry) {
1197 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1198 0 /*TODO*/);
1199 Entry = GCMap.size();
1204 // Emit abbrev for globals, now that we know # sections and max alignment.
1205 unsigned SimpleGVarAbbrev = 0;
1206 if (!M.global_empty()) {
1207 // Add an abbrev for common globals with no visibility or thread localness.
1208 auto Abbv = std::make_shared<BitCodeAbbrev>();
1209 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1210 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1211 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1213 Log2_32_Ceil(MaxGlobalType+1)));
1214 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2
1215 //| explicitType << 1
1216 //| constant
1217 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
1218 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1219 if (MaxAlignment == 0) // Alignment.
1220 Abbv->Add(BitCodeAbbrevOp(0));
1221 else {
1222 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
1223 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1224 Log2_32_Ceil(MaxEncAlignment+1)));
1226 if (SectionMap.empty()) // Section.
1227 Abbv->Add(BitCodeAbbrevOp(0));
1228 else
1229 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1230 Log2_32_Ceil(SectionMap.size()+1)));
1231 // Don't bother emitting vis + thread local.
1232 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1235 SmallVector<unsigned, 64> Vals;
1236 // Emit the module's source file name.
1238 StringEncoding Bits = getStringEncoding(M.getSourceFileName());
1239 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
1240 if (Bits == SE_Char6)
1241 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1242 else if (Bits == SE_Fixed7)
1243 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1245 // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1246 auto Abbv = std::make_shared<BitCodeAbbrev>();
1247 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
1248 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1249 Abbv->Add(AbbrevOpToUse);
1250 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1252 for (const auto P : M.getSourceFileName())
1253 Vals.push_back((unsigned char)P);
1255 // Emit the finished record.
1256 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
1257 Vals.clear();
1260 // Emit the global variable information.
1261 for (const GlobalVariable &GV : M.globals()) {
1262 unsigned AbbrevToUse = 0;
1264 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
1265 // linkage, alignment, section, visibility, threadlocal,
1266 // unnamed_addr, externally_initialized, dllstorageclass,
1267 // comdat, attributes, DSO_Local]
1268 Vals.push_back(addToStrtab(GV.getName()));
1269 Vals.push_back(GV.getName().size());
1270 Vals.push_back(VE.getTypeID(GV.getValueType()));
1271 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1272 Vals.push_back(GV.isDeclaration() ? 0 :
1273 (VE.getValueID(GV.getInitializer()) + 1));
1274 Vals.push_back(getEncodedLinkage(GV));
1275 Vals.push_back(Log2_32(GV.getAlignment())+1);
1276 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
1277 if (GV.isThreadLocal() ||
1278 GV.getVisibility() != GlobalValue::DefaultVisibility ||
1279 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1280 GV.isExternallyInitialized() ||
1281 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1282 GV.hasComdat() ||
1283 GV.hasAttributes() ||
1284 GV.isDSOLocal() ||
1285 GV.hasPartition()) {
1286 Vals.push_back(getEncodedVisibility(GV));
1287 Vals.push_back(getEncodedThreadLocalMode(GV));
1288 Vals.push_back(getEncodedUnnamedAddr(GV));
1289 Vals.push_back(GV.isExternallyInitialized());
1290 Vals.push_back(getEncodedDLLStorageClass(GV));
1291 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1293 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex);
1294 Vals.push_back(VE.getAttributeListID(AL));
1296 Vals.push_back(GV.isDSOLocal());
1297 Vals.push_back(addToStrtab(GV.getPartition()));
1298 Vals.push_back(GV.getPartition().size());
1299 } else {
1300 AbbrevToUse = SimpleGVarAbbrev;
1303 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1304 Vals.clear();
1307 // Emit the function proto information.
1308 for (const Function &F : M) {
1309 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto,
1310 // linkage, paramattrs, alignment, section, visibility, gc,
1311 // unnamed_addr, prologuedata, dllstorageclass, comdat,
1312 // prefixdata, personalityfn, DSO_Local, addrspace]
1313 Vals.push_back(addToStrtab(F.getName()));
1314 Vals.push_back(F.getName().size());
1315 Vals.push_back(VE.getTypeID(F.getFunctionType()));
1316 Vals.push_back(F.getCallingConv());
1317 Vals.push_back(F.isDeclaration());
1318 Vals.push_back(getEncodedLinkage(F));
1319 Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1320 Vals.push_back(Log2_32(F.getAlignment())+1);
1321 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
1322 Vals.push_back(getEncodedVisibility(F));
1323 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1324 Vals.push_back(getEncodedUnnamedAddr(F));
1325 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
1326 : 0);
1327 Vals.push_back(getEncodedDLLStorageClass(F));
1328 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1329 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1330 : 0);
1331 Vals.push_back(
1332 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1334 Vals.push_back(F.isDSOLocal());
1335 Vals.push_back(F.getAddressSpace());
1336 Vals.push_back(addToStrtab(F.getPartition()));
1337 Vals.push_back(F.getPartition().size());
1339 unsigned AbbrevToUse = 0;
1340 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1341 Vals.clear();
1344 // Emit the alias information.
1345 for (const GlobalAlias &A : M.aliases()) {
1346 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
1347 // visibility, dllstorageclass, threadlocal, unnamed_addr,
1348 // DSO_Local]
1349 Vals.push_back(addToStrtab(A.getName()));
1350 Vals.push_back(A.getName().size());
1351 Vals.push_back(VE.getTypeID(A.getValueType()));
1352 Vals.push_back(A.getType()->getAddressSpace());
1353 Vals.push_back(VE.getValueID(A.getAliasee()));
1354 Vals.push_back(getEncodedLinkage(A));
1355 Vals.push_back(getEncodedVisibility(A));
1356 Vals.push_back(getEncodedDLLStorageClass(A));
1357 Vals.push_back(getEncodedThreadLocalMode(A));
1358 Vals.push_back(getEncodedUnnamedAddr(A));
1359 Vals.push_back(A.isDSOLocal());
1360 Vals.push_back(addToStrtab(A.getPartition()));
1361 Vals.push_back(A.getPartition().size());
1363 unsigned AbbrevToUse = 0;
1364 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
1365 Vals.clear();
1368 // Emit the ifunc information.
1369 for (const GlobalIFunc &I : M.ifuncs()) {
1370 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
1371 // val#, linkage, visibility, DSO_Local]
1372 Vals.push_back(addToStrtab(I.getName()));
1373 Vals.push_back(I.getName().size());
1374 Vals.push_back(VE.getTypeID(I.getValueType()));
1375 Vals.push_back(I.getType()->getAddressSpace());
1376 Vals.push_back(VE.getValueID(I.getResolver()));
1377 Vals.push_back(getEncodedLinkage(I));
1378 Vals.push_back(getEncodedVisibility(I));
1379 Vals.push_back(I.isDSOLocal());
1380 Vals.push_back(addToStrtab(I.getPartition()));
1381 Vals.push_back(I.getPartition().size());
1382 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
1383 Vals.clear();
1386 writeValueSymbolTableForwardDecl();
1389 static uint64_t getOptimizationFlags(const Value *V) {
1390 uint64_t Flags = 0;
1392 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
1393 if (OBO->hasNoSignedWrap())
1394 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1395 if (OBO->hasNoUnsignedWrap())
1396 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1397 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
1398 if (PEO->isExact())
1399 Flags |= 1 << bitc::PEO_EXACT;
1400 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
1401 if (FPMO->hasAllowReassoc())
1402 Flags |= bitc::AllowReassoc;
1403 if (FPMO->hasNoNaNs())
1404 Flags |= bitc::NoNaNs;
1405 if (FPMO->hasNoInfs())
1406 Flags |= bitc::NoInfs;
1407 if (FPMO->hasNoSignedZeros())
1408 Flags |= bitc::NoSignedZeros;
1409 if (FPMO->hasAllowReciprocal())
1410 Flags |= bitc::AllowReciprocal;
1411 if (FPMO->hasAllowContract())
1412 Flags |= bitc::AllowContract;
1413 if (FPMO->hasApproxFunc())
1414 Flags |= bitc::ApproxFunc;
1417 return Flags;
1420 void ModuleBitcodeWriter::writeValueAsMetadata(
1421 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1422 // Mimic an MDNode with a value as one operand.
1423 Value *V = MD->getValue();
1424 Record.push_back(VE.getTypeID(V->getType()));
1425 Record.push_back(VE.getValueID(V));
1426 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1427 Record.clear();
1430 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
1431 SmallVectorImpl<uint64_t> &Record,
1432 unsigned Abbrev) {
1433 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1434 Metadata *MD = N->getOperand(i);
1435 assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1436 "Unexpected function-local metadata");
1437 Record.push_back(VE.getMetadataOrNullID(MD));
1439 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1440 : bitc::METADATA_NODE,
1441 Record, Abbrev);
1442 Record.clear();
1445 unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1446 // Assume the column is usually under 128, and always output the inlined-at
1447 // location (it's never more expensive than building an array size 1).
1448 auto Abbv = std::make_shared<BitCodeAbbrev>();
1449 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1452 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1456 return Stream.EmitAbbrev(std::move(Abbv));
1459 void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
1460 SmallVectorImpl<uint64_t> &Record,
1461 unsigned &Abbrev) {
1462 if (!Abbrev)
1463 Abbrev = createDILocationAbbrev();
1465 Record.push_back(N->isDistinct());
1466 Record.push_back(N->getLine());
1467 Record.push_back(N->getColumn());
1468 Record.push_back(VE.getMetadataID(N->getScope()));
1469 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1470 Record.push_back(N->isImplicitCode());
1472 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1473 Record.clear();
1476 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1477 // Assume the column is usually under 128, and always output the inlined-at
1478 // location (it's never more expensive than building an array size 1).
1479 auto Abbv = std::make_shared<BitCodeAbbrev>();
1480 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1481 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1482 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1483 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1484 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1485 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1486 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1487 return Stream.EmitAbbrev(std::move(Abbv));
1490 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
1491 SmallVectorImpl<uint64_t> &Record,
1492 unsigned &Abbrev) {
1493 if (!Abbrev)
1494 Abbrev = createGenericDINodeAbbrev();
1496 Record.push_back(N->isDistinct());
1497 Record.push_back(N->getTag());
1498 Record.push_back(0); // Per-tag version field; unused for now.
1500 for (auto &I : N->operands())
1501 Record.push_back(VE.getMetadataOrNullID(I));
1503 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
1504 Record.clear();
1507 static uint64_t rotateSign(int64_t I) {
1508 uint64_t U = I;
1509 return I < 0 ? ~(U << 1) : U << 1;
1512 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
1513 SmallVectorImpl<uint64_t> &Record,
1514 unsigned Abbrev) {
1515 const uint64_t Version = 1 << 1;
1516 Record.push_back((uint64_t)N->isDistinct() | Version);
1517 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1518 Record.push_back(rotateSign(N->getLowerBound()));
1520 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1521 Record.clear();
1524 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1525 SmallVectorImpl<uint64_t> &Record,
1526 unsigned Abbrev) {
1527 Record.push_back((N->isUnsigned() << 1) | N->isDistinct());
1528 Record.push_back(rotateSign(N->getValue()));
1529 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1531 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1532 Record.clear();
1535 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1536 SmallVectorImpl<uint64_t> &Record,
1537 unsigned Abbrev) {
1538 Record.push_back(N->isDistinct());
1539 Record.push_back(N->getTag());
1540 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1541 Record.push_back(N->getSizeInBits());
1542 Record.push_back(N->getAlignInBits());
1543 Record.push_back(N->getEncoding());
1544 Record.push_back(N->getFlags());
1546 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1547 Record.clear();
1550 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1551 SmallVectorImpl<uint64_t> &Record,
1552 unsigned Abbrev) {
1553 Record.push_back(N->isDistinct());
1554 Record.push_back(N->getTag());
1555 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1556 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1557 Record.push_back(N->getLine());
1558 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1559 Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1560 Record.push_back(N->getSizeInBits());
1561 Record.push_back(N->getAlignInBits());
1562 Record.push_back(N->getOffsetInBits());
1563 Record.push_back(N->getFlags());
1564 Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1566 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
1567 // that there is no DWARF address space associated with DIDerivedType.
1568 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1569 Record.push_back(*DWARFAddressSpace + 1);
1570 else
1571 Record.push_back(0);
1573 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1574 Record.clear();
1577 void ModuleBitcodeWriter::writeDICompositeType(
1578 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
1579 unsigned Abbrev) {
1580 const unsigned IsNotUsedInOldTypeRef = 0x2;
1581 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
1582 Record.push_back(N->getTag());
1583 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1584 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1585 Record.push_back(N->getLine());
1586 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1587 Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1588 Record.push_back(N->getSizeInBits());
1589 Record.push_back(N->getAlignInBits());
1590 Record.push_back(N->getOffsetInBits());
1591 Record.push_back(N->getFlags());
1592 Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1593 Record.push_back(N->getRuntimeLang());
1594 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1595 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1596 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1597 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator()));
1599 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1600 Record.clear();
1603 void ModuleBitcodeWriter::writeDISubroutineType(
1604 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
1605 unsigned Abbrev) {
1606 const unsigned HasNoOldTypeRefs = 0x2;
1607 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
1608 Record.push_back(N->getFlags());
1609 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1610 Record.push_back(N->getCC());
1612 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1613 Record.clear();
1616 void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
1617 SmallVectorImpl<uint64_t> &Record,
1618 unsigned Abbrev) {
1619 Record.push_back(N->isDistinct());
1620 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1621 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1622 if (N->getRawChecksum()) {
1623 Record.push_back(N->getRawChecksum()->Kind);
1624 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value));
1625 } else {
1626 // Maintain backwards compatibility with the old internal representation of
1627 // CSK_None in ChecksumKind by writing nulls here when Checksum is None.
1628 Record.push_back(0);
1629 Record.push_back(VE.getMetadataOrNullID(nullptr));
1631 auto Source = N->getRawSource();
1632 if (Source)
1633 Record.push_back(VE.getMetadataOrNullID(*Source));
1635 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1636 Record.clear();
1639 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1640 SmallVectorImpl<uint64_t> &Record,
1641 unsigned Abbrev) {
1642 assert(N->isDistinct() && "Expected distinct compile units");
1643 Record.push_back(/* IsDistinct */ true);
1644 Record.push_back(N->getSourceLanguage());
1645 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1646 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1647 Record.push_back(N->isOptimized());
1648 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1649 Record.push_back(N->getRuntimeVersion());
1650 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1651 Record.push_back(N->getEmissionKind());
1652 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1653 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1654 Record.push_back(/* subprograms */ 0);
1655 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1656 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1657 Record.push_back(N->getDWOId());
1658 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1659 Record.push_back(N->getSplitDebugInlining());
1660 Record.push_back(N->getDebugInfoForProfiling());
1661 Record.push_back((unsigned)N->getNameTableKind());
1663 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1664 Record.clear();
1667 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1668 SmallVectorImpl<uint64_t> &Record,
1669 unsigned Abbrev) {
1670 const uint64_t HasUnitFlag = 1 << 1;
1671 const uint64_t HasSPFlagsFlag = 1 << 2;
1672 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag);
1673 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1674 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1675 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1676 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1677 Record.push_back(N->getLine());
1678 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1679 Record.push_back(N->getScopeLine());
1680 Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1681 Record.push_back(N->getSPFlags());
1682 Record.push_back(N->getVirtualIndex());
1683 Record.push_back(N->getFlags());
1684 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1685 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1686 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1687 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
1688 Record.push_back(N->getThisAdjustment());
1689 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get()));
1691 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1692 Record.clear();
1695 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1696 SmallVectorImpl<uint64_t> &Record,
1697 unsigned Abbrev) {
1698 Record.push_back(N->isDistinct());
1699 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1700 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1701 Record.push_back(N->getLine());
1702 Record.push_back(N->getColumn());
1704 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1705 Record.clear();
1708 void ModuleBitcodeWriter::writeDILexicalBlockFile(
1709 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1710 unsigned Abbrev) {
1711 Record.push_back(N->isDistinct());
1712 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1713 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1714 Record.push_back(N->getDiscriminator());
1716 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1717 Record.clear();
1720 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N,
1721 SmallVectorImpl<uint64_t> &Record,
1722 unsigned Abbrev) {
1723 Record.push_back(N->isDistinct());
1724 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1725 Record.push_back(VE.getMetadataOrNullID(N->getDecl()));
1726 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1727 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1728 Record.push_back(N->getLineNo());
1730 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev);
1731 Record.clear();
1734 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
1735 SmallVectorImpl<uint64_t> &Record,
1736 unsigned Abbrev) {
1737 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1);
1738 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1739 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1741 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1742 Record.clear();
1745 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
1746 SmallVectorImpl<uint64_t> &Record,
1747 unsigned Abbrev) {
1748 Record.push_back(N->isDistinct());
1749 Record.push_back(N->getMacinfoType());
1750 Record.push_back(N->getLine());
1751 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1752 Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
1754 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
1755 Record.clear();
1758 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
1759 SmallVectorImpl<uint64_t> &Record,
1760 unsigned Abbrev) {
1761 Record.push_back(N->isDistinct());
1762 Record.push_back(N->getMacinfoType());
1763 Record.push_back(N->getLine());
1764 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1765 Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1767 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
1768 Record.clear();
1771 void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
1772 SmallVectorImpl<uint64_t> &Record,
1773 unsigned Abbrev) {
1774 Record.push_back(N->isDistinct());
1775 for (auto &I : N->operands())
1776 Record.push_back(VE.getMetadataOrNullID(I));
1778 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1779 Record.clear();
1782 void ModuleBitcodeWriter::writeDITemplateTypeParameter(
1783 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
1784 unsigned Abbrev) {
1785 Record.push_back(N->isDistinct());
1786 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1787 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1789 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1790 Record.clear();
1793 void ModuleBitcodeWriter::writeDITemplateValueParameter(
1794 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
1795 unsigned Abbrev) {
1796 Record.push_back(N->isDistinct());
1797 Record.push_back(N->getTag());
1798 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1799 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1800 Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1802 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1803 Record.clear();
1806 void ModuleBitcodeWriter::writeDIGlobalVariable(
1807 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
1808 unsigned Abbrev) {
1809 const uint64_t Version = 2 << 1;
1810 Record.push_back((uint64_t)N->isDistinct() | Version);
1811 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1812 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1813 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1814 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1815 Record.push_back(N->getLine());
1816 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1817 Record.push_back(N->isLocalToUnit());
1818 Record.push_back(N->isDefinition());
1819 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1820 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams()));
1821 Record.push_back(N->getAlignInBits());
1823 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1824 Record.clear();
1827 void ModuleBitcodeWriter::writeDILocalVariable(
1828 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
1829 unsigned Abbrev) {
1830 // In order to support all possible bitcode formats in BitcodeReader we need
1831 // to distinguish the following cases:
1832 // 1) Record has no artificial tag (Record[1]),
1833 // has no obsolete inlinedAt field (Record[9]).
1834 // In this case Record size will be 8, HasAlignment flag is false.
1835 // 2) Record has artificial tag (Record[1]),
1836 // has no obsolete inlignedAt field (Record[9]).
1837 // In this case Record size will be 9, HasAlignment flag is false.
1838 // 3) Record has both artificial tag (Record[1]) and
1839 // obsolete inlignedAt field (Record[9]).
1840 // In this case Record size will be 10, HasAlignment flag is false.
1841 // 4) Record has neither artificial tag, nor inlignedAt field, but
1842 // HasAlignment flag is true and Record[8] contains alignment value.
1843 const uint64_t HasAlignmentFlag = 1 << 1;
1844 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag);
1845 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1846 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1847 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1848 Record.push_back(N->getLine());
1849 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1850 Record.push_back(N->getArg());
1851 Record.push_back(N->getFlags());
1852 Record.push_back(N->getAlignInBits());
1854 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1855 Record.clear();
1858 void ModuleBitcodeWriter::writeDILabel(
1859 const DILabel *N, SmallVectorImpl<uint64_t> &Record,
1860 unsigned Abbrev) {
1861 Record.push_back((uint64_t)N->isDistinct());
1862 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1863 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1864 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1865 Record.push_back(N->getLine());
1867 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev);
1868 Record.clear();
1871 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
1872 SmallVectorImpl<uint64_t> &Record,
1873 unsigned Abbrev) {
1874 Record.reserve(N->getElements().size() + 1);
1875 const uint64_t Version = 3 << 1;
1876 Record.push_back((uint64_t)N->isDistinct() | Version);
1877 Record.append(N->elements_begin(), N->elements_end());
1879 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1880 Record.clear();
1883 void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
1884 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record,
1885 unsigned Abbrev) {
1886 Record.push_back(N->isDistinct());
1887 Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
1888 Record.push_back(VE.getMetadataOrNullID(N->getExpression()));
1890 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev);
1891 Record.clear();
1894 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
1895 SmallVectorImpl<uint64_t> &Record,
1896 unsigned Abbrev) {
1897 Record.push_back(N->isDistinct());
1898 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1899 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1900 Record.push_back(N->getLine());
1901 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
1902 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
1903 Record.push_back(N->getAttributes());
1904 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1906 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
1907 Record.clear();
1910 void ModuleBitcodeWriter::writeDIImportedEntity(
1911 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
1912 unsigned Abbrev) {
1913 Record.push_back(N->isDistinct());
1914 Record.push_back(N->getTag());
1915 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1916 Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1917 Record.push_back(N->getLine());
1918 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1919 Record.push_back(VE.getMetadataOrNullID(N->getRawFile()));
1921 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1922 Record.clear();
1925 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
1926 auto Abbv = std::make_shared<BitCodeAbbrev>();
1927 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1928 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1929 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1930 return Stream.EmitAbbrev(std::move(Abbv));
1933 void ModuleBitcodeWriter::writeNamedMetadata(
1934 SmallVectorImpl<uint64_t> &Record) {
1935 if (M.named_metadata_empty())
1936 return;
1938 unsigned Abbrev = createNamedMetadataAbbrev();
1939 for (const NamedMDNode &NMD : M.named_metadata()) {
1940 // Write name.
1941 StringRef Str = NMD.getName();
1942 Record.append(Str.bytes_begin(), Str.bytes_end());
1943 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
1944 Record.clear();
1946 // Write named metadata operands.
1947 for (const MDNode *N : NMD.operands())
1948 Record.push_back(VE.getMetadataID(N));
1949 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1950 Record.clear();
1954 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
1955 auto Abbv = std::make_shared<BitCodeAbbrev>();
1956 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
1957 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
1958 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
1959 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
1960 return Stream.EmitAbbrev(std::move(Abbv));
1963 /// Write out a record for MDString.
1965 /// All the metadata strings in a metadata block are emitted in a single
1966 /// record. The sizes and strings themselves are shoved into a blob.
1967 void ModuleBitcodeWriter::writeMetadataStrings(
1968 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
1969 if (Strings.empty())
1970 return;
1972 // Start the record with the number of strings.
1973 Record.push_back(bitc::METADATA_STRINGS);
1974 Record.push_back(Strings.size());
1976 // Emit the sizes of the strings in the blob.
1977 SmallString<256> Blob;
1979 BitstreamWriter W(Blob);
1980 for (const Metadata *MD : Strings)
1981 W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
1982 W.FlushToWord();
1985 // Add the offset to the strings to the record.
1986 Record.push_back(Blob.size());
1988 // Add the strings to the blob.
1989 for (const Metadata *MD : Strings)
1990 Blob.append(cast<MDString>(MD)->getString());
1992 // Emit the final record.
1993 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
1994 Record.clear();
1997 // Generates an enum to use as an index in the Abbrev array of Metadata record.
1998 enum MetadataAbbrev : unsigned {
1999 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
2000 #include "llvm/IR/Metadata.def"
2001 LastPlusOne
2004 void ModuleBitcodeWriter::writeMetadataRecords(
2005 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record,
2006 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) {
2007 if (MDs.empty())
2008 return;
2010 // Initialize MDNode abbreviations.
2011 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
2012 #include "llvm/IR/Metadata.def"
2014 for (const Metadata *MD : MDs) {
2015 if (IndexPos)
2016 IndexPos->push_back(Stream.GetCurrentBitNo());
2017 if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2018 assert(N->isResolved() && "Expected forward references to be resolved");
2020 switch (N->getMetadataID()) {
2021 default:
2022 llvm_unreachable("Invalid MDNode subclass");
2023 #define HANDLE_MDNODE_LEAF(CLASS) \
2024 case Metadata::CLASS##Kind: \
2025 if (MDAbbrevs) \
2026 write##CLASS(cast<CLASS>(N), Record, \
2027 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \
2028 else \
2029 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \
2030 continue;
2031 #include "llvm/IR/Metadata.def"
2034 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
2038 void ModuleBitcodeWriter::writeModuleMetadata() {
2039 if (!VE.hasMDs() && M.named_metadata_empty())
2040 return;
2042 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
2043 SmallVector<uint64_t, 64> Record;
2045 // Emit all abbrevs upfront, so that the reader can jump in the middle of the
2046 // block and load any metadata.
2047 std::vector<unsigned> MDAbbrevs;
2049 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
2050 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
2051 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
2052 createGenericDINodeAbbrev();
2054 auto Abbv = std::make_shared<BitCodeAbbrev>();
2055 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET));
2056 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2057 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2058 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2060 Abbv = std::make_shared<BitCodeAbbrev>();
2061 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX));
2062 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2063 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2064 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2066 // Emit MDStrings together upfront.
2067 writeMetadataStrings(VE.getMDStrings(), Record);
2069 // We only emit an index for the metadata record if we have more than a given
2070 // (naive) threshold of metadatas, otherwise it is not worth it.
2071 if (VE.getNonMDStrings().size() > IndexThreshold) {
2072 // Write a placeholder value in for the offset of the metadata index,
2073 // which is written after the records, so that it can include
2074 // the offset of each entry. The placeholder offset will be
2075 // updated after all records are emitted.
2076 uint64_t Vals[] = {0, 0};
2077 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev);
2080 // Compute and save the bit offset to the current position, which will be
2081 // patched when we emit the index later. We can simply subtract the 64-bit
2082 // fixed size from the current bit number to get the location to backpatch.
2083 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo();
2085 // This index will contain the bitpos for each individual record.
2086 std::vector<uint64_t> IndexPos;
2087 IndexPos.reserve(VE.getNonMDStrings().size());
2089 // Write all the records
2090 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
2092 if (VE.getNonMDStrings().size() > IndexThreshold) {
2093 // Now that we have emitted all the records we will emit the index. But
2094 // first
2095 // backpatch the forward reference so that the reader can skip the records
2096 // efficiently.
2097 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64,
2098 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos);
2100 // Delta encode the index.
2101 uint64_t PreviousValue = IndexOffsetRecordBitPos;
2102 for (auto &Elt : IndexPos) {
2103 auto EltDelta = Elt - PreviousValue;
2104 PreviousValue = Elt;
2105 Elt = EltDelta;
2107 // Emit the index record.
2108 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev);
2109 IndexPos.clear();
2112 // Write the named metadata now.
2113 writeNamedMetadata(Record);
2115 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
2116 SmallVector<uint64_t, 4> Record;
2117 Record.push_back(VE.getValueID(&GO));
2118 pushGlobalMetadataAttachment(Record, GO);
2119 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
2121 for (const Function &F : M)
2122 if (F.isDeclaration() && F.hasMetadata())
2123 AddDeclAttachedMetadata(F);
2124 // FIXME: Only store metadata for declarations here, and move data for global
2125 // variable definitions to a separate block (PR28134).
2126 for (const GlobalVariable &GV : M.globals())
2127 if (GV.hasMetadata())
2128 AddDeclAttachedMetadata(GV);
2130 Stream.ExitBlock();
2133 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
2134 if (!VE.hasMDs())
2135 return;
2137 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
2138 SmallVector<uint64_t, 64> Record;
2139 writeMetadataStrings(VE.getMDStrings(), Record);
2140 writeMetadataRecords(VE.getNonMDStrings(), Record);
2141 Stream.ExitBlock();
2144 void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
2145 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
2146 // [n x [id, mdnode]]
2147 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2148 GO.getAllMetadata(MDs);
2149 for (const auto &I : MDs) {
2150 Record.push_back(I.first);
2151 Record.push_back(VE.getMetadataID(I.second));
2155 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
2156 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
2158 SmallVector<uint64_t, 64> Record;
2160 if (F.hasMetadata()) {
2161 pushGlobalMetadataAttachment(Record, F);
2162 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2163 Record.clear();
2166 // Write metadata attachments
2167 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
2168 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2169 for (const BasicBlock &BB : F)
2170 for (const Instruction &I : BB) {
2171 MDs.clear();
2172 I.getAllMetadataOtherThanDebugLoc(MDs);
2174 // If no metadata, ignore instruction.
2175 if (MDs.empty()) continue;
2177 Record.push_back(VE.getInstructionID(&I));
2179 for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
2180 Record.push_back(MDs[i].first);
2181 Record.push_back(VE.getMetadataID(MDs[i].second));
2183 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2184 Record.clear();
2187 Stream.ExitBlock();
2190 void ModuleBitcodeWriter::writeModuleMetadataKinds() {
2191 SmallVector<uint64_t, 64> Record;
2193 // Write metadata kinds
2194 // METADATA_KIND - [n x [id, name]]
2195 SmallVector<StringRef, 8> Names;
2196 M.getMDKindNames(Names);
2198 if (Names.empty()) return;
2200 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
2202 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
2203 Record.push_back(MDKindID);
2204 StringRef KName = Names[MDKindID];
2205 Record.append(KName.begin(), KName.end());
2207 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
2208 Record.clear();
2211 Stream.ExitBlock();
2214 void ModuleBitcodeWriter::writeOperandBundleTags() {
2215 // Write metadata kinds
2217 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
2219 // OPERAND_BUNDLE_TAG - [strchr x N]
2221 SmallVector<StringRef, 8> Tags;
2222 M.getOperandBundleTags(Tags);
2224 if (Tags.empty())
2225 return;
2227 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
2229 SmallVector<uint64_t, 64> Record;
2231 for (auto Tag : Tags) {
2232 Record.append(Tag.begin(), Tag.end());
2234 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
2235 Record.clear();
2238 Stream.ExitBlock();
2241 void ModuleBitcodeWriter::writeSyncScopeNames() {
2242 SmallVector<StringRef, 8> SSNs;
2243 M.getContext().getSyncScopeNames(SSNs);
2244 if (SSNs.empty())
2245 return;
2247 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2);
2249 SmallVector<uint64_t, 64> Record;
2250 for (auto SSN : SSNs) {
2251 Record.append(SSN.begin(), SSN.end());
2252 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0);
2253 Record.clear();
2256 Stream.ExitBlock();
2259 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
2260 if ((int64_t)V >= 0)
2261 Vals.push_back(V << 1);
2262 else
2263 Vals.push_back((-V << 1) | 1);
2266 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
2267 bool isGlobal) {
2268 if (FirstVal == LastVal) return;
2270 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
2272 unsigned AggregateAbbrev = 0;
2273 unsigned String8Abbrev = 0;
2274 unsigned CString7Abbrev = 0;
2275 unsigned CString6Abbrev = 0;
2276 // If this is a constant pool for the module, emit module-specific abbrevs.
2277 if (isGlobal) {
2278 // Abbrev for CST_CODE_AGGREGATE.
2279 auto Abbv = std::make_shared<BitCodeAbbrev>();
2280 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
2281 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2282 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
2283 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2285 // Abbrev for CST_CODE_STRING.
2286 Abbv = std::make_shared<BitCodeAbbrev>();
2287 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
2288 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2289 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2290 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2291 // Abbrev for CST_CODE_CSTRING.
2292 Abbv = std::make_shared<BitCodeAbbrev>();
2293 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2294 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2295 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2296 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2297 // Abbrev for CST_CODE_CSTRING.
2298 Abbv = std::make_shared<BitCodeAbbrev>();
2299 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2300 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2301 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2302 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2305 SmallVector<uint64_t, 64> Record;
2307 const ValueEnumerator::ValueList &Vals = VE.getValues();
2308 Type *LastTy = nullptr;
2309 for (unsigned i = FirstVal; i != LastVal; ++i) {
2310 const Value *V = Vals[i].first;
2311 // If we need to switch types, do so now.
2312 if (V->getType() != LastTy) {
2313 LastTy = V->getType();
2314 Record.push_back(VE.getTypeID(LastTy));
2315 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
2316 CONSTANTS_SETTYPE_ABBREV);
2317 Record.clear();
2320 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2321 Record.push_back(unsigned(IA->hasSideEffects()) |
2322 unsigned(IA->isAlignStack()) << 1 |
2323 unsigned(IA->getDialect()&1) << 2);
2325 // Add the asm string.
2326 const std::string &AsmStr = IA->getAsmString();
2327 Record.push_back(AsmStr.size());
2328 Record.append(AsmStr.begin(), AsmStr.end());
2330 // Add the constraint string.
2331 const std::string &ConstraintStr = IA->getConstraintString();
2332 Record.push_back(ConstraintStr.size());
2333 Record.append(ConstraintStr.begin(), ConstraintStr.end());
2334 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
2335 Record.clear();
2336 continue;
2338 const Constant *C = cast<Constant>(V);
2339 unsigned Code = -1U;
2340 unsigned AbbrevToUse = 0;
2341 if (C->isNullValue()) {
2342 Code = bitc::CST_CODE_NULL;
2343 } else if (isa<UndefValue>(C)) {
2344 Code = bitc::CST_CODE_UNDEF;
2345 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2346 if (IV->getBitWidth() <= 64) {
2347 uint64_t V = IV->getSExtValue();
2348 emitSignedInt64(Record, V);
2349 Code = bitc::CST_CODE_INTEGER;
2350 AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2351 } else { // Wide integers, > 64 bits in size.
2352 // We have an arbitrary precision integer value to write whose
2353 // bit width is > 64. However, in canonical unsigned integer
2354 // format it is likely that the high bits are going to be zero.
2355 // So, we only write the number of active words.
2356 unsigned NWords = IV->getValue().getActiveWords();
2357 const uint64_t *RawWords = IV->getValue().getRawData();
2358 for (unsigned i = 0; i != NWords; ++i) {
2359 emitSignedInt64(Record, RawWords[i]);
2361 Code = bitc::CST_CODE_WIDE_INTEGER;
2363 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2364 Code = bitc::CST_CODE_FLOAT;
2365 Type *Ty = CFP->getType();
2366 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
2367 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2368 } else if (Ty->isX86_FP80Ty()) {
2369 // api needed to prevent premature destruction
2370 // bits are not in the same order as a normal i80 APInt, compensate.
2371 APInt api = CFP->getValueAPF().bitcastToAPInt();
2372 const uint64_t *p = api.getRawData();
2373 Record.push_back((p[1] << 48) | (p[0] >> 16));
2374 Record.push_back(p[0] & 0xffffLL);
2375 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2376 APInt api = CFP->getValueAPF().bitcastToAPInt();
2377 const uint64_t *p = api.getRawData();
2378 Record.push_back(p[0]);
2379 Record.push_back(p[1]);
2380 } else {
2381 assert(0 && "Unknown FP type!");
2383 } else if (isa<ConstantDataSequential>(C) &&
2384 cast<ConstantDataSequential>(C)->isString()) {
2385 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2386 // Emit constant strings specially.
2387 unsigned NumElts = Str->getNumElements();
2388 // If this is a null-terminated string, use the denser CSTRING encoding.
2389 if (Str->isCString()) {
2390 Code = bitc::CST_CODE_CSTRING;
2391 --NumElts; // Don't encode the null, which isn't allowed by char6.
2392 } else {
2393 Code = bitc::CST_CODE_STRING;
2394 AbbrevToUse = String8Abbrev;
2396 bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2397 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2398 for (unsigned i = 0; i != NumElts; ++i) {
2399 unsigned char V = Str->getElementAsInteger(i);
2400 Record.push_back(V);
2401 isCStr7 &= (V & 128) == 0;
2402 if (isCStrChar6)
2403 isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2406 if (isCStrChar6)
2407 AbbrevToUse = CString6Abbrev;
2408 else if (isCStr7)
2409 AbbrevToUse = CString7Abbrev;
2410 } else if (const ConstantDataSequential *CDS =
2411 dyn_cast<ConstantDataSequential>(C)) {
2412 Code = bitc::CST_CODE_DATA;
2413 Type *EltTy = CDS->getType()->getElementType();
2414 if (isa<IntegerType>(EltTy)) {
2415 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2416 Record.push_back(CDS->getElementAsInteger(i));
2417 } else {
2418 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2419 Record.push_back(
2420 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2422 } else if (isa<ConstantAggregate>(C)) {
2423 Code = bitc::CST_CODE_AGGREGATE;
2424 for (const Value *Op : C->operands())
2425 Record.push_back(VE.getValueID(Op));
2426 AbbrevToUse = AggregateAbbrev;
2427 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2428 switch (CE->getOpcode()) {
2429 default:
2430 if (Instruction::isCast(CE->getOpcode())) {
2431 Code = bitc::CST_CODE_CE_CAST;
2432 Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2433 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2434 Record.push_back(VE.getValueID(C->getOperand(0)));
2435 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2436 } else {
2437 assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2438 Code = bitc::CST_CODE_CE_BINOP;
2439 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2440 Record.push_back(VE.getValueID(C->getOperand(0)));
2441 Record.push_back(VE.getValueID(C->getOperand(1)));
2442 uint64_t Flags = getOptimizationFlags(CE);
2443 if (Flags != 0)
2444 Record.push_back(Flags);
2446 break;
2447 case Instruction::FNeg: {
2448 assert(CE->getNumOperands() == 1 && "Unknown constant expr!");
2449 Code = bitc::CST_CODE_CE_UNOP;
2450 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode()));
2451 Record.push_back(VE.getValueID(C->getOperand(0)));
2452 uint64_t Flags = getOptimizationFlags(CE);
2453 if (Flags != 0)
2454 Record.push_back(Flags);
2455 break;
2457 case Instruction::GetElementPtr: {
2458 Code = bitc::CST_CODE_CE_GEP;
2459 const auto *GO = cast<GEPOperator>(C);
2460 Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2461 if (Optional<unsigned> Idx = GO->getInRangeIndex()) {
2462 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX;
2463 Record.push_back((*Idx << 1) | GO->isInBounds());
2464 } else if (GO->isInBounds())
2465 Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2466 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2467 Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
2468 Record.push_back(VE.getValueID(C->getOperand(i)));
2470 break;
2472 case Instruction::Select:
2473 Code = bitc::CST_CODE_CE_SELECT;
2474 Record.push_back(VE.getValueID(C->getOperand(0)));
2475 Record.push_back(VE.getValueID(C->getOperand(1)));
2476 Record.push_back(VE.getValueID(C->getOperand(2)));
2477 break;
2478 case Instruction::ExtractElement:
2479 Code = bitc::CST_CODE_CE_EXTRACTELT;
2480 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2481 Record.push_back(VE.getValueID(C->getOperand(0)));
2482 Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2483 Record.push_back(VE.getValueID(C->getOperand(1)));
2484 break;
2485 case Instruction::InsertElement:
2486 Code = bitc::CST_CODE_CE_INSERTELT;
2487 Record.push_back(VE.getValueID(C->getOperand(0)));
2488 Record.push_back(VE.getValueID(C->getOperand(1)));
2489 Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2490 Record.push_back(VE.getValueID(C->getOperand(2)));
2491 break;
2492 case Instruction::ShuffleVector:
2493 // If the return type and argument types are the same, this is a
2494 // standard shufflevector instruction. If the types are different,
2495 // then the shuffle is widening or truncating the input vectors, and
2496 // the argument type must also be encoded.
2497 if (C->getType() == C->getOperand(0)->getType()) {
2498 Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2499 } else {
2500 Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2501 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2503 Record.push_back(VE.getValueID(C->getOperand(0)));
2504 Record.push_back(VE.getValueID(C->getOperand(1)));
2505 Record.push_back(VE.getValueID(C->getOperand(2)));
2506 break;
2507 case Instruction::ICmp:
2508 case Instruction::FCmp:
2509 Code = bitc::CST_CODE_CE_CMP;
2510 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2511 Record.push_back(VE.getValueID(C->getOperand(0)));
2512 Record.push_back(VE.getValueID(C->getOperand(1)));
2513 Record.push_back(CE->getPredicate());
2514 break;
2516 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2517 Code = bitc::CST_CODE_BLOCKADDRESS;
2518 Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2519 Record.push_back(VE.getValueID(BA->getFunction()));
2520 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2521 } else {
2522 #ifndef NDEBUG
2523 C->dump();
2524 #endif
2525 llvm_unreachable("Unknown constant!");
2527 Stream.EmitRecord(Code, Record, AbbrevToUse);
2528 Record.clear();
2531 Stream.ExitBlock();
2534 void ModuleBitcodeWriter::writeModuleConstants() {
2535 const ValueEnumerator::ValueList &Vals = VE.getValues();
2537 // Find the first constant to emit, which is the first non-globalvalue value.
2538 // We know globalvalues have been emitted by WriteModuleInfo.
2539 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2540 if (!isa<GlobalValue>(Vals[i].first)) {
2541 writeConstants(i, Vals.size(), true);
2542 return;
2547 /// pushValueAndType - The file has to encode both the value and type id for
2548 /// many values, because we need to know what type to create for forward
2549 /// references. However, most operands are not forward references, so this type
2550 /// field is not needed.
2552 /// This function adds V's value ID to Vals. If the value ID is higher than the
2553 /// instruction ID, then it is a forward reference, and it also includes the
2554 /// type ID. The value ID that is written is encoded relative to the InstID.
2555 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2556 SmallVectorImpl<unsigned> &Vals) {
2557 unsigned ValID = VE.getValueID(V);
2558 // Make encoding relative to the InstID.
2559 Vals.push_back(InstID - ValID);
2560 if (ValID >= InstID) {
2561 Vals.push_back(VE.getTypeID(V->getType()));
2562 return true;
2564 return false;
2567 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS,
2568 unsigned InstID) {
2569 SmallVector<unsigned, 64> Record;
2570 LLVMContext &C = CS.getInstruction()->getContext();
2572 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2573 const auto &Bundle = CS.getOperandBundleAt(i);
2574 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
2576 for (auto &Input : Bundle.Inputs)
2577 pushValueAndType(Input, InstID, Record);
2579 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
2580 Record.clear();
2584 /// pushValue - Like pushValueAndType, but where the type of the value is
2585 /// omitted (perhaps it was already encoded in an earlier operand).
2586 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2587 SmallVectorImpl<unsigned> &Vals) {
2588 unsigned ValID = VE.getValueID(V);
2589 Vals.push_back(InstID - ValID);
2592 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2593 SmallVectorImpl<uint64_t> &Vals) {
2594 unsigned ValID = VE.getValueID(V);
2595 int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2596 emitSignedInt64(Vals, diff);
2599 /// WriteInstruction - Emit an instruction to the specified stream.
2600 void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
2601 unsigned InstID,
2602 SmallVectorImpl<unsigned> &Vals) {
2603 unsigned Code = 0;
2604 unsigned AbbrevToUse = 0;
2605 VE.setInstructionID(&I);
2606 switch (I.getOpcode()) {
2607 default:
2608 if (Instruction::isCast(I.getOpcode())) {
2609 Code = bitc::FUNC_CODE_INST_CAST;
2610 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2611 AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
2612 Vals.push_back(VE.getTypeID(I.getType()));
2613 Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2614 } else {
2615 assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2616 Code = bitc::FUNC_CODE_INST_BINOP;
2617 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2618 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
2619 pushValue(I.getOperand(1), InstID, Vals);
2620 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2621 uint64_t Flags = getOptimizationFlags(&I);
2622 if (Flags != 0) {
2623 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
2624 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
2625 Vals.push_back(Flags);
2628 break;
2629 case Instruction::FNeg: {
2630 Code = bitc::FUNC_CODE_INST_UNOP;
2631 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2632 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV;
2633 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode()));
2634 uint64_t Flags = getOptimizationFlags(&I);
2635 if (Flags != 0) {
2636 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV)
2637 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV;
2638 Vals.push_back(Flags);
2640 break;
2642 case Instruction::GetElementPtr: {
2643 Code = bitc::FUNC_CODE_INST_GEP;
2644 AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
2645 auto &GEPInst = cast<GetElementPtrInst>(I);
2646 Vals.push_back(GEPInst.isInBounds());
2647 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
2648 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2649 pushValueAndType(I.getOperand(i), InstID, Vals);
2650 break;
2652 case Instruction::ExtractValue: {
2653 Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2654 pushValueAndType(I.getOperand(0), InstID, Vals);
2655 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2656 Vals.append(EVI->idx_begin(), EVI->idx_end());
2657 break;
2659 case Instruction::InsertValue: {
2660 Code = bitc::FUNC_CODE_INST_INSERTVAL;
2661 pushValueAndType(I.getOperand(0), InstID, Vals);
2662 pushValueAndType(I.getOperand(1), InstID, Vals);
2663 const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2664 Vals.append(IVI->idx_begin(), IVI->idx_end());
2665 break;
2667 case Instruction::Select: {
2668 Code = bitc::FUNC_CODE_INST_VSELECT;
2669 pushValueAndType(I.getOperand(1), InstID, Vals);
2670 pushValue(I.getOperand(2), InstID, Vals);
2671 pushValueAndType(I.getOperand(0), InstID, Vals);
2672 uint64_t Flags = getOptimizationFlags(&I);
2673 if (Flags != 0)
2674 Vals.push_back(Flags);
2675 break;
2677 case Instruction::ExtractElement:
2678 Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2679 pushValueAndType(I.getOperand(0), InstID, Vals);
2680 pushValueAndType(I.getOperand(1), InstID, Vals);
2681 break;
2682 case Instruction::InsertElement:
2683 Code = bitc::FUNC_CODE_INST_INSERTELT;
2684 pushValueAndType(I.getOperand(0), InstID, Vals);
2685 pushValue(I.getOperand(1), InstID, Vals);
2686 pushValueAndType(I.getOperand(2), InstID, Vals);
2687 break;
2688 case Instruction::ShuffleVector:
2689 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2690 pushValueAndType(I.getOperand(0), InstID, Vals);
2691 pushValue(I.getOperand(1), InstID, Vals);
2692 pushValue(I.getOperand(2), InstID, Vals);
2693 break;
2694 case Instruction::ICmp:
2695 case Instruction::FCmp: {
2696 // compare returning Int1Ty or vector of Int1Ty
2697 Code = bitc::FUNC_CODE_INST_CMP2;
2698 pushValueAndType(I.getOperand(0), InstID, Vals);
2699 pushValue(I.getOperand(1), InstID, Vals);
2700 Vals.push_back(cast<CmpInst>(I).getPredicate());
2701 uint64_t Flags = getOptimizationFlags(&I);
2702 if (Flags != 0)
2703 Vals.push_back(Flags);
2704 break;
2707 case Instruction::Ret:
2709 Code = bitc::FUNC_CODE_INST_RET;
2710 unsigned NumOperands = I.getNumOperands();
2711 if (NumOperands == 0)
2712 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
2713 else if (NumOperands == 1) {
2714 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2715 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
2716 } else {
2717 for (unsigned i = 0, e = NumOperands; i != e; ++i)
2718 pushValueAndType(I.getOperand(i), InstID, Vals);
2721 break;
2722 case Instruction::Br:
2724 Code = bitc::FUNC_CODE_INST_BR;
2725 const BranchInst &II = cast<BranchInst>(I);
2726 Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2727 if (II.isConditional()) {
2728 Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2729 pushValue(II.getCondition(), InstID, Vals);
2732 break;
2733 case Instruction::Switch:
2735 Code = bitc::FUNC_CODE_INST_SWITCH;
2736 const SwitchInst &SI = cast<SwitchInst>(I);
2737 Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
2738 pushValue(SI.getCondition(), InstID, Vals);
2739 Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2740 for (auto Case : SI.cases()) {
2741 Vals.push_back(VE.getValueID(Case.getCaseValue()));
2742 Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2745 break;
2746 case Instruction::IndirectBr:
2747 Code = bitc::FUNC_CODE_INST_INDIRECTBR;
2748 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2749 // Encode the address operand as relative, but not the basic blocks.
2750 pushValue(I.getOperand(0), InstID, Vals);
2751 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2752 Vals.push_back(VE.getValueID(I.getOperand(i)));
2753 break;
2755 case Instruction::Invoke: {
2756 const InvokeInst *II = cast<InvokeInst>(&I);
2757 const Value *Callee = II->getCalledValue();
2758 FunctionType *FTy = II->getFunctionType();
2760 if (II->hasOperandBundles())
2761 writeOperandBundles(II, InstID);
2763 Code = bitc::FUNC_CODE_INST_INVOKE;
2765 Vals.push_back(VE.getAttributeListID(II->getAttributes()));
2766 Vals.push_back(II->getCallingConv() | 1 << 13);
2767 Vals.push_back(VE.getValueID(II->getNormalDest()));
2768 Vals.push_back(VE.getValueID(II->getUnwindDest()));
2769 Vals.push_back(VE.getTypeID(FTy));
2770 pushValueAndType(Callee, InstID, Vals);
2772 // Emit value #'s for the fixed parameters.
2773 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2774 pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2776 // Emit type/value pairs for varargs params.
2777 if (FTy->isVarArg()) {
2778 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands();
2779 i != e; ++i)
2780 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2782 break;
2784 case Instruction::Resume:
2785 Code = bitc::FUNC_CODE_INST_RESUME;
2786 pushValueAndType(I.getOperand(0), InstID, Vals);
2787 break;
2788 case Instruction::CleanupRet: {
2789 Code = bitc::FUNC_CODE_INST_CLEANUPRET;
2790 const auto &CRI = cast<CleanupReturnInst>(I);
2791 pushValue(CRI.getCleanupPad(), InstID, Vals);
2792 if (CRI.hasUnwindDest())
2793 Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
2794 break;
2796 case Instruction::CatchRet: {
2797 Code = bitc::FUNC_CODE_INST_CATCHRET;
2798 const auto &CRI = cast<CatchReturnInst>(I);
2799 pushValue(CRI.getCatchPad(), InstID, Vals);
2800 Vals.push_back(VE.getValueID(CRI.getSuccessor()));
2801 break;
2803 case Instruction::CleanupPad:
2804 case Instruction::CatchPad: {
2805 const auto &FuncletPad = cast<FuncletPadInst>(I);
2806 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
2807 : bitc::FUNC_CODE_INST_CLEANUPPAD;
2808 pushValue(FuncletPad.getParentPad(), InstID, Vals);
2810 unsigned NumArgOperands = FuncletPad.getNumArgOperands();
2811 Vals.push_back(NumArgOperands);
2812 for (unsigned Op = 0; Op != NumArgOperands; ++Op)
2813 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
2814 break;
2816 case Instruction::CatchSwitch: {
2817 Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
2818 const auto &CatchSwitch = cast<CatchSwitchInst>(I);
2820 pushValue(CatchSwitch.getParentPad(), InstID, Vals);
2822 unsigned NumHandlers = CatchSwitch.getNumHandlers();
2823 Vals.push_back(NumHandlers);
2824 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
2825 Vals.push_back(VE.getValueID(CatchPadBB));
2827 if (CatchSwitch.hasUnwindDest())
2828 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
2829 break;
2831 case Instruction::CallBr: {
2832 const CallBrInst *CBI = cast<CallBrInst>(&I);
2833 const Value *Callee = CBI->getCalledValue();
2834 FunctionType *FTy = CBI->getFunctionType();
2836 if (CBI->hasOperandBundles())
2837 writeOperandBundles(CBI, InstID);
2839 Code = bitc::FUNC_CODE_INST_CALLBR;
2841 Vals.push_back(VE.getAttributeListID(CBI->getAttributes()));
2843 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV |
2844 1 << bitc::CALL_EXPLICIT_TYPE);
2846 Vals.push_back(VE.getValueID(CBI->getDefaultDest()));
2847 Vals.push_back(CBI->getNumIndirectDests());
2848 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
2849 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i)));
2851 Vals.push_back(VE.getTypeID(FTy));
2852 pushValueAndType(Callee, InstID, Vals);
2854 // Emit value #'s for the fixed parameters.
2855 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2856 pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2858 // Emit type/value pairs for varargs params.
2859 if (FTy->isVarArg()) {
2860 for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands();
2861 i != e; ++i)
2862 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2864 break;
2866 case Instruction::Unreachable:
2867 Code = bitc::FUNC_CODE_INST_UNREACHABLE;
2868 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
2869 break;
2871 case Instruction::PHI: {
2872 const PHINode &PN = cast<PHINode>(I);
2873 Code = bitc::FUNC_CODE_INST_PHI;
2874 // With the newer instruction encoding, forward references could give
2875 // negative valued IDs. This is most common for PHIs, so we use
2876 // signed VBRs.
2877 SmallVector<uint64_t, 128> Vals64;
2878 Vals64.push_back(VE.getTypeID(PN.getType()));
2879 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
2880 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
2881 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
2883 // Emit a Vals64 vector and exit.
2884 Stream.EmitRecord(Code, Vals64, AbbrevToUse);
2885 Vals64.clear();
2886 return;
2889 case Instruction::LandingPad: {
2890 const LandingPadInst &LP = cast<LandingPadInst>(I);
2891 Code = bitc::FUNC_CODE_INST_LANDINGPAD;
2892 Vals.push_back(VE.getTypeID(LP.getType()));
2893 Vals.push_back(LP.isCleanup());
2894 Vals.push_back(LP.getNumClauses());
2895 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
2896 if (LP.isCatch(I))
2897 Vals.push_back(LandingPadInst::Catch);
2898 else
2899 Vals.push_back(LandingPadInst::Filter);
2900 pushValueAndType(LP.getClause(I), InstID, Vals);
2902 break;
2905 case Instruction::Alloca: {
2906 Code = bitc::FUNC_CODE_INST_ALLOCA;
2907 const AllocaInst &AI = cast<AllocaInst>(I);
2908 Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
2909 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2910 Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
2911 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
2912 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
2913 "not enough bits for maximum alignment");
2914 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
2915 AlignRecord |= AI.isUsedWithInAlloca() << 5;
2916 AlignRecord |= 1 << 6;
2917 AlignRecord |= AI.isSwiftError() << 7;
2918 Vals.push_back(AlignRecord);
2919 break;
2922 case Instruction::Load:
2923 if (cast<LoadInst>(I).isAtomic()) {
2924 Code = bitc::FUNC_CODE_INST_LOADATOMIC;
2925 pushValueAndType(I.getOperand(0), InstID, Vals);
2926 } else {
2927 Code = bitc::FUNC_CODE_INST_LOAD;
2928 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
2929 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
2931 Vals.push_back(VE.getTypeID(I.getType()));
2932 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
2933 Vals.push_back(cast<LoadInst>(I).isVolatile());
2934 if (cast<LoadInst>(I).isAtomic()) {
2935 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
2936 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
2938 break;
2939 case Instruction::Store:
2940 if (cast<StoreInst>(I).isAtomic())
2941 Code = bitc::FUNC_CODE_INST_STOREATOMIC;
2942 else
2943 Code = bitc::FUNC_CODE_INST_STORE;
2944 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
2945 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
2946 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
2947 Vals.push_back(cast<StoreInst>(I).isVolatile());
2948 if (cast<StoreInst>(I).isAtomic()) {
2949 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
2950 Vals.push_back(
2951 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
2953 break;
2954 case Instruction::AtomicCmpXchg:
2955 Code = bitc::FUNC_CODE_INST_CMPXCHG;
2956 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2957 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
2958 pushValue(I.getOperand(2), InstID, Vals); // newval.
2959 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
2960 Vals.push_back(
2961 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
2962 Vals.push_back(
2963 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
2964 Vals.push_back(
2965 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
2966 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
2967 break;
2968 case Instruction::AtomicRMW:
2969 Code = bitc::FUNC_CODE_INST_ATOMICRMW;
2970 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2971 pushValue(I.getOperand(1), InstID, Vals); // val.
2972 Vals.push_back(
2973 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
2974 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
2975 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
2976 Vals.push_back(
2977 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
2978 break;
2979 case Instruction::Fence:
2980 Code = bitc::FUNC_CODE_INST_FENCE;
2981 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
2982 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
2983 break;
2984 case Instruction::Call: {
2985 const CallInst &CI = cast<CallInst>(I);
2986 FunctionType *FTy = CI.getFunctionType();
2988 if (CI.hasOperandBundles())
2989 writeOperandBundles(&CI, InstID);
2991 Code = bitc::FUNC_CODE_INST_CALL;
2993 Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
2995 unsigned Flags = getOptimizationFlags(&I);
2996 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
2997 unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
2998 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
2999 1 << bitc::CALL_EXPLICIT_TYPE |
3000 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
3001 unsigned(Flags != 0) << bitc::CALL_FMF);
3002 if (Flags != 0)
3003 Vals.push_back(Flags);
3005 Vals.push_back(VE.getTypeID(FTy));
3006 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee
3008 // Emit value #'s for the fixed parameters.
3009 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3010 // Check for labels (can happen with asm labels).
3011 if (FTy->getParamType(i)->isLabelTy())
3012 Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
3013 else
3014 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
3017 // Emit type/value pairs for varargs params.
3018 if (FTy->isVarArg()) {
3019 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
3020 i != e; ++i)
3021 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
3023 break;
3025 case Instruction::VAArg:
3026 Code = bitc::FUNC_CODE_INST_VAARG;
3027 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
3028 pushValue(I.getOperand(0), InstID, Vals); // valist.
3029 Vals.push_back(VE.getTypeID(I.getType())); // restype.
3030 break;
3033 Stream.EmitRecord(Code, Vals, AbbrevToUse);
3034 Vals.clear();
3037 /// Write a GlobalValue VST to the module. The purpose of this data structure is
3038 /// to allow clients to efficiently find the function body.
3039 void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
3040 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3041 // Get the offset of the VST we are writing, and backpatch it into
3042 // the VST forward declaration record.
3043 uint64_t VSTOffset = Stream.GetCurrentBitNo();
3044 // The BitcodeStartBit was the stream offset of the identification block.
3045 VSTOffset -= bitcodeStartBit();
3046 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
3047 // Note that we add 1 here because the offset is relative to one word
3048 // before the start of the identification block, which was historically
3049 // always the start of the regular bitcode header.
3050 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1);
3052 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3054 auto Abbv = std::make_shared<BitCodeAbbrev>();
3055 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
3056 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
3057 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
3058 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3060 for (const Function &F : M) {
3061 uint64_t Record[2];
3063 if (F.isDeclaration())
3064 continue;
3066 Record[0] = VE.getValueID(&F);
3068 // Save the word offset of the function (from the start of the
3069 // actual bitcode written to the stream).
3070 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit();
3071 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
3072 // Note that we add 1 here because the offset is relative to one word
3073 // before the start of the identification block, which was historically
3074 // always the start of the regular bitcode header.
3075 Record[1] = BitcodeIndex / 32 + 1;
3077 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev);
3080 Stream.ExitBlock();
3083 /// Emit names for arguments, instructions and basic blocks in a function.
3084 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
3085 const ValueSymbolTable &VST) {
3086 if (VST.empty())
3087 return;
3089 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3091 // FIXME: Set up the abbrev, we know how many values there are!
3092 // FIXME: We know if the type names can use 7-bit ascii.
3093 SmallVector<uint64_t, 64> NameVals;
3095 for (const ValueName &Name : VST) {
3096 // Figure out the encoding to use for the name.
3097 StringEncoding Bits = getStringEncoding(Name.getKey());
3099 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
3100 NameVals.push_back(VE.getValueID(Name.getValue()));
3102 // VST_CODE_ENTRY: [valueid, namechar x N]
3103 // VST_CODE_BBENTRY: [bbid, namechar x N]
3104 unsigned Code;
3105 if (isa<BasicBlock>(Name.getValue())) {
3106 Code = bitc::VST_CODE_BBENTRY;
3107 if (Bits == SE_Char6)
3108 AbbrevToUse = VST_BBENTRY_6_ABBREV;
3109 } else {
3110 Code = bitc::VST_CODE_ENTRY;
3111 if (Bits == SE_Char6)
3112 AbbrevToUse = VST_ENTRY_6_ABBREV;
3113 else if (Bits == SE_Fixed7)
3114 AbbrevToUse = VST_ENTRY_7_ABBREV;
3117 for (const auto P : Name.getKey())
3118 NameVals.push_back((unsigned char)P);
3120 // Emit the finished record.
3121 Stream.EmitRecord(Code, NameVals, AbbrevToUse);
3122 NameVals.clear();
3125 Stream.ExitBlock();
3128 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
3129 assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
3130 unsigned Code;
3131 if (isa<BasicBlock>(Order.V))
3132 Code = bitc::USELIST_CODE_BB;
3133 else
3134 Code = bitc::USELIST_CODE_DEFAULT;
3136 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
3137 Record.push_back(VE.getValueID(Order.V));
3138 Stream.EmitRecord(Code, Record);
3141 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
3142 assert(VE.shouldPreserveUseListOrder() &&
3143 "Expected to be preserving use-list order");
3145 auto hasMore = [&]() {
3146 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
3148 if (!hasMore())
3149 // Nothing to do.
3150 return;
3152 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
3153 while (hasMore()) {
3154 writeUseList(std::move(VE.UseListOrders.back()));
3155 VE.UseListOrders.pop_back();
3157 Stream.ExitBlock();
3160 /// Emit a function body to the module stream.
3161 void ModuleBitcodeWriter::writeFunction(
3162 const Function &F,
3163 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3164 // Save the bitcode index of the start of this function block for recording
3165 // in the VST.
3166 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
3168 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
3169 VE.incorporateFunction(F);
3171 SmallVector<unsigned, 64> Vals;
3173 // Emit the number of basic blocks, so the reader can create them ahead of
3174 // time.
3175 Vals.push_back(VE.getBasicBlocks().size());
3176 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
3177 Vals.clear();
3179 // If there are function-local constants, emit them now.
3180 unsigned CstStart, CstEnd;
3181 VE.getFunctionConstantRange(CstStart, CstEnd);
3182 writeConstants(CstStart, CstEnd, false);
3184 // If there is function-local metadata, emit it now.
3185 writeFunctionMetadata(F);
3187 // Keep a running idea of what the instruction ID is.
3188 unsigned InstID = CstEnd;
3190 bool NeedsMetadataAttachment = F.hasMetadata();
3192 DILocation *LastDL = nullptr;
3193 // Finally, emit all the instructions, in order.
3194 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
3195 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
3196 I != E; ++I) {
3197 writeInstruction(*I, InstID, Vals);
3199 if (!I->getType()->isVoidTy())
3200 ++InstID;
3202 // If the instruction has metadata, write a metadata attachment later.
3203 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
3205 // If the instruction has a debug location, emit it.
3206 DILocation *DL = I->getDebugLoc();
3207 if (!DL)
3208 continue;
3210 if (DL == LastDL) {
3211 // Just repeat the same debug loc as last time.
3212 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
3213 continue;
3216 Vals.push_back(DL->getLine());
3217 Vals.push_back(DL->getColumn());
3218 Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
3219 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
3220 Vals.push_back(DL->isImplicitCode());
3221 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
3222 Vals.clear();
3224 LastDL = DL;
3227 // Emit names for all the instructions etc.
3228 if (auto *Symtab = F.getValueSymbolTable())
3229 writeFunctionLevelValueSymbolTable(*Symtab);
3231 if (NeedsMetadataAttachment)
3232 writeFunctionMetadataAttachment(F);
3233 if (VE.shouldPreserveUseListOrder())
3234 writeUseListBlock(&F);
3235 VE.purgeFunction();
3236 Stream.ExitBlock();
3239 // Emit blockinfo, which defines the standard abbreviations etc.
3240 void ModuleBitcodeWriter::writeBlockInfo() {
3241 // We only want to emit block info records for blocks that have multiple
3242 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
3243 // Other blocks can define their abbrevs inline.
3244 Stream.EnterBlockInfoBlock();
3246 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
3247 auto Abbv = std::make_shared<BitCodeAbbrev>();
3248 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3249 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3250 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3251 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3252 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3253 VST_ENTRY_8_ABBREV)
3254 llvm_unreachable("Unexpected abbrev ordering!");
3257 { // 7-bit fixed width VST_CODE_ENTRY strings.
3258 auto Abbv = std::make_shared<BitCodeAbbrev>();
3259 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3260 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3261 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3262 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3263 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3264 VST_ENTRY_7_ABBREV)
3265 llvm_unreachable("Unexpected abbrev ordering!");
3267 { // 6-bit char6 VST_CODE_ENTRY strings.
3268 auto Abbv = std::make_shared<BitCodeAbbrev>();
3269 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3270 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3271 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3272 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3273 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3274 VST_ENTRY_6_ABBREV)
3275 llvm_unreachable("Unexpected abbrev ordering!");
3277 { // 6-bit char6 VST_CODE_BBENTRY strings.
3278 auto Abbv = std::make_shared<BitCodeAbbrev>();
3279 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
3280 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3281 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3282 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3283 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3284 VST_BBENTRY_6_ABBREV)
3285 llvm_unreachable("Unexpected abbrev ordering!");
3288 { // SETTYPE abbrev for CONSTANTS_BLOCK.
3289 auto Abbv = std::make_shared<BitCodeAbbrev>();
3290 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
3291 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
3292 VE.computeBitsRequiredForTypeIndicies()));
3293 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3294 CONSTANTS_SETTYPE_ABBREV)
3295 llvm_unreachable("Unexpected abbrev ordering!");
3298 { // INTEGER abbrev for CONSTANTS_BLOCK.
3299 auto Abbv = std::make_shared<BitCodeAbbrev>();
3300 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
3301 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3302 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3303 CONSTANTS_INTEGER_ABBREV)
3304 llvm_unreachable("Unexpected abbrev ordering!");
3307 { // CE_CAST abbrev for CONSTANTS_BLOCK.
3308 auto Abbv = std::make_shared<BitCodeAbbrev>();
3309 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
3310 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
3311 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
3312 VE.computeBitsRequiredForTypeIndicies()));
3313 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
3315 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3316 CONSTANTS_CE_CAST_Abbrev)
3317 llvm_unreachable("Unexpected abbrev ordering!");
3319 { // NULL abbrev for CONSTANTS_BLOCK.
3320 auto Abbv = std::make_shared<BitCodeAbbrev>();
3321 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
3322 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3323 CONSTANTS_NULL_Abbrev)
3324 llvm_unreachable("Unexpected abbrev ordering!");
3327 // FIXME: This should only use space for first class types!
3329 { // INST_LOAD abbrev for FUNCTION_BLOCK.
3330 auto Abbv = std::make_shared<BitCodeAbbrev>();
3331 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
3332 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
3333 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3334 VE.computeBitsRequiredForTypeIndicies()));
3335 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
3336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
3337 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3338 FUNCTION_INST_LOAD_ABBREV)
3339 llvm_unreachable("Unexpected abbrev ordering!");
3341 { // INST_UNOP abbrev for FUNCTION_BLOCK.
3342 auto Abbv = std::make_shared<BitCodeAbbrev>();
3343 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3344 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3345 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3346 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3347 FUNCTION_INST_UNOP_ABBREV)
3348 llvm_unreachable("Unexpected abbrev ordering!");
3350 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK.
3351 auto Abbv = std::make_shared<BitCodeAbbrev>();
3352 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3356 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3357 FUNCTION_INST_UNOP_FLAGS_ABBREV)
3358 llvm_unreachable("Unexpected abbrev ordering!");
3360 { // INST_BINOP abbrev for FUNCTION_BLOCK.
3361 auto Abbv = std::make_shared<BitCodeAbbrev>();
3362 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3366 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3367 FUNCTION_INST_BINOP_ABBREV)
3368 llvm_unreachable("Unexpected abbrev ordering!");
3370 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3371 auto Abbv = std::make_shared<BitCodeAbbrev>();
3372 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3374 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3375 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3377 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3378 FUNCTION_INST_BINOP_FLAGS_ABBREV)
3379 llvm_unreachable("Unexpected abbrev ordering!");
3381 { // INST_CAST abbrev for FUNCTION_BLOCK.
3382 auto Abbv = std::make_shared<BitCodeAbbrev>();
3383 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3384 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
3385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3386 VE.computeBitsRequiredForTypeIndicies()));
3387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3388 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3389 FUNCTION_INST_CAST_ABBREV)
3390 llvm_unreachable("Unexpected abbrev ordering!");
3393 { // INST_RET abbrev for FUNCTION_BLOCK.
3394 auto Abbv = std::make_shared<BitCodeAbbrev>();
3395 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3396 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3397 FUNCTION_INST_RET_VOID_ABBREV)
3398 llvm_unreachable("Unexpected abbrev ordering!");
3400 { // INST_RET abbrev for FUNCTION_BLOCK.
3401 auto Abbv = std::make_shared<BitCodeAbbrev>();
3402 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3403 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
3404 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3405 FUNCTION_INST_RET_VAL_ABBREV)
3406 llvm_unreachable("Unexpected abbrev ordering!");
3408 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3409 auto Abbv = std::make_shared<BitCodeAbbrev>();
3410 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
3411 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3412 FUNCTION_INST_UNREACHABLE_ABBREV)
3413 llvm_unreachable("Unexpected abbrev ordering!");
3416 auto Abbv = std::make_shared<BitCodeAbbrev>();
3417 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
3418 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
3419 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3420 Log2_32_Ceil(VE.getTypes().size() + 1)));
3421 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3422 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3423 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3424 FUNCTION_INST_GEP_ABBREV)
3425 llvm_unreachable("Unexpected abbrev ordering!");
3428 Stream.ExitBlock();
3431 /// Write the module path strings, currently only used when generating
3432 /// a combined index file.
3433 void IndexBitcodeWriter::writeModStrings() {
3434 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
3436 // TODO: See which abbrev sizes we actually need to emit
3438 // 8-bit fixed-width MST_ENTRY strings.
3439 auto Abbv = std::make_shared<BitCodeAbbrev>();
3440 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3441 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3442 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3443 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3444 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv));
3446 // 7-bit fixed width MST_ENTRY strings.
3447 Abbv = std::make_shared<BitCodeAbbrev>();
3448 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3452 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv));
3454 // 6-bit char6 MST_ENTRY strings.
3455 Abbv = std::make_shared<BitCodeAbbrev>();
3456 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3460 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv));
3462 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3463 Abbv = std::make_shared<BitCodeAbbrev>();
3464 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
3465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3466 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3470 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv));
3472 SmallVector<unsigned, 64> Vals;
3473 forEachModule(
3474 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) {
3475 StringRef Key = MPSE.getKey();
3476 const auto &Value = MPSE.getValue();
3477 StringEncoding Bits = getStringEncoding(Key);
3478 unsigned AbbrevToUse = Abbrev8Bit;
3479 if (Bits == SE_Char6)
3480 AbbrevToUse = Abbrev6Bit;
3481 else if (Bits == SE_Fixed7)
3482 AbbrevToUse = Abbrev7Bit;
3484 Vals.push_back(Value.first);
3485 Vals.append(Key.begin(), Key.end());
3487 // Emit the finished record.
3488 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
3490 // Emit an optional hash for the module now
3491 const auto &Hash = Value.second;
3492 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) {
3493 Vals.assign(Hash.begin(), Hash.end());
3494 // Emit the hash record.
3495 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
3498 Vals.clear();
3500 Stream.ExitBlock();
3503 /// Write the function type metadata related records that need to appear before
3504 /// a function summary entry (whether per-module or combined).
3505 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream,
3506 FunctionSummary *FS) {
3507 if (!FS->type_tests().empty())
3508 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests());
3510 SmallVector<uint64_t, 64> Record;
3512 auto WriteVFuncIdVec = [&](uint64_t Ty,
3513 ArrayRef<FunctionSummary::VFuncId> VFs) {
3514 if (VFs.empty())
3515 return;
3516 Record.clear();
3517 for (auto &VF : VFs) {
3518 Record.push_back(VF.GUID);
3519 Record.push_back(VF.Offset);
3521 Stream.EmitRecord(Ty, Record);
3524 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS,
3525 FS->type_test_assume_vcalls());
3526 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS,
3527 FS->type_checked_load_vcalls());
3529 auto WriteConstVCallVec = [&](uint64_t Ty,
3530 ArrayRef<FunctionSummary::ConstVCall> VCs) {
3531 for (auto &VC : VCs) {
3532 Record.clear();
3533 Record.push_back(VC.VFunc.GUID);
3534 Record.push_back(VC.VFunc.Offset);
3535 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end());
3536 Stream.EmitRecord(Ty, Record);
3540 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL,
3541 FS->type_test_assume_const_vcalls());
3542 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL,
3543 FS->type_checked_load_const_vcalls());
3546 /// Collect type IDs from type tests used by function.
3547 static void
3548 getReferencedTypeIds(FunctionSummary *FS,
3549 std::set<GlobalValue::GUID> &ReferencedTypeIds) {
3550 if (!FS->type_tests().empty())
3551 for (auto &TT : FS->type_tests())
3552 ReferencedTypeIds.insert(TT);
3554 auto GetReferencedTypesFromVFuncIdVec =
3555 [&](ArrayRef<FunctionSummary::VFuncId> VFs) {
3556 for (auto &VF : VFs)
3557 ReferencedTypeIds.insert(VF.GUID);
3560 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls());
3561 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls());
3563 auto GetReferencedTypesFromConstVCallVec =
3564 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) {
3565 for (auto &VC : VCs)
3566 ReferencedTypeIds.insert(VC.VFunc.GUID);
3569 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls());
3570 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls());
3573 static void writeWholeProgramDevirtResolutionByArg(
3574 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args,
3575 const WholeProgramDevirtResolution::ByArg &ByArg) {
3576 NameVals.push_back(args.size());
3577 NameVals.insert(NameVals.end(), args.begin(), args.end());
3579 NameVals.push_back(ByArg.TheKind);
3580 NameVals.push_back(ByArg.Info);
3581 NameVals.push_back(ByArg.Byte);
3582 NameVals.push_back(ByArg.Bit);
3585 static void writeWholeProgramDevirtResolution(
3586 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
3587 uint64_t Id, const WholeProgramDevirtResolution &Wpd) {
3588 NameVals.push_back(Id);
3590 NameVals.push_back(Wpd.TheKind);
3591 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName));
3592 NameVals.push_back(Wpd.SingleImplName.size());
3594 NameVals.push_back(Wpd.ResByArg.size());
3595 for (auto &A : Wpd.ResByArg)
3596 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second);
3599 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
3600 StringTableBuilder &StrtabBuilder,
3601 const std::string &Id,
3602 const TypeIdSummary &Summary) {
3603 NameVals.push_back(StrtabBuilder.add(Id));
3604 NameVals.push_back(Id.size());
3606 NameVals.push_back(Summary.TTRes.TheKind);
3607 NameVals.push_back(Summary.TTRes.SizeM1BitWidth);
3608 NameVals.push_back(Summary.TTRes.AlignLog2);
3609 NameVals.push_back(Summary.TTRes.SizeM1);
3610 NameVals.push_back(Summary.TTRes.BitMask);
3611 NameVals.push_back(Summary.TTRes.InlineBits);
3613 for (auto &W : Summary.WPDRes)
3614 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first,
3615 W.second);
3618 static void writeTypeIdCompatibleVtableSummaryRecord(
3619 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
3620 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary,
3621 ValueEnumerator &VE) {
3622 NameVals.push_back(StrtabBuilder.add(Id));
3623 NameVals.push_back(Id.size());
3625 for (auto &P : Summary) {
3626 NameVals.push_back(P.AddressPointOffset);
3627 NameVals.push_back(VE.getValueID(P.VTableVI.getValue()));
3631 // Helper to emit a single function summary record.
3632 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
3633 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
3634 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
3635 const Function &F) {
3636 NameVals.push_back(ValueID);
3638 FunctionSummary *FS = cast<FunctionSummary>(Summary);
3639 writeFunctionTypeMetadataRecords(Stream, FS);
3641 auto SpecialRefCnts = FS->specialRefCounts();
3642 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3643 NameVals.push_back(FS->instCount());
3644 NameVals.push_back(getEncodedFFlags(FS->fflags()));
3645 NameVals.push_back(FS->refs().size());
3646 NameVals.push_back(SpecialRefCnts.first); // rorefcnt
3647 NameVals.push_back(SpecialRefCnts.second); // worefcnt
3649 for (auto &RI : FS->refs())
3650 NameVals.push_back(VE.getValueID(RI.getValue()));
3652 bool HasProfileData =
3653 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None;
3654 for (auto &ECI : FS->calls()) {
3655 NameVals.push_back(getValueId(ECI.first));
3656 if (HasProfileData)
3657 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness));
3658 else if (WriteRelBFToSummary)
3659 NameVals.push_back(ECI.second.RelBlockFreq);
3662 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3663 unsigned Code =
3664 (HasProfileData ? bitc::FS_PERMODULE_PROFILE
3665 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF
3666 : bitc::FS_PERMODULE));
3668 // Emit the finished record.
3669 Stream.EmitRecord(Code, NameVals, FSAbbrev);
3670 NameVals.clear();
3673 // Collect the global value references in the given variable's initializer,
3674 // and emit them in a summary record.
3675 void ModuleBitcodeWriterBase::writeModuleLevelReferences(
3676 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
3677 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) {
3678 auto VI = Index->getValueInfo(V.getGUID());
3679 if (!VI || VI.getSummaryList().empty()) {
3680 // Only declarations should not have a summary (a declaration might however
3681 // have a summary if the def was in module level asm).
3682 assert(V.isDeclaration());
3683 return;
3685 auto *Summary = VI.getSummaryList()[0].get();
3686 NameVals.push_back(VE.getValueID(&V));
3687 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
3688 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3689 NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
3691 auto VTableFuncs = VS->vTableFuncs();
3692 if (!VTableFuncs.empty())
3693 NameVals.push_back(VS->refs().size());
3695 unsigned SizeBeforeRefs = NameVals.size();
3696 for (auto &RI : VS->refs())
3697 NameVals.push_back(VE.getValueID(RI.getValue()));
3698 // Sort the refs for determinism output, the vector returned by FS->refs() has
3699 // been initialized from a DenseSet.
3700 llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end());
3702 if (VTableFuncs.empty())
3703 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
3704 FSModRefsAbbrev);
3705 else {
3706 // VTableFuncs pairs should already be sorted by offset.
3707 for (auto &P : VTableFuncs) {
3708 NameVals.push_back(VE.getValueID(P.FuncVI.getValue()));
3709 NameVals.push_back(P.VTableOffset);
3712 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals,
3713 FSModVTableRefsAbbrev);
3715 NameVals.clear();
3718 // Current version for the summary.
3719 // This is bumped whenever we introduce changes in the way some record are
3720 // interpreted, like flags for instance.
3721 static const uint64_t INDEX_VERSION = 7;
3723 /// Emit the per-module summary section alongside the rest of
3724 /// the module's bitcode.
3725 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
3726 // By default we compile with ThinLTO if the module has a summary, but the
3727 // client can request full LTO with a module flag.
3728 bool IsThinLTO = true;
3729 if (auto *MD =
3730 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
3731 IsThinLTO = MD->getZExtValue();
3732 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID
3733 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID,
3736 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3738 // Write the index flags.
3739 uint64_t Flags = 0;
3740 // Bits 1-3 are set only in the combined index, skip them.
3741 if (Index->enableSplitLTOUnit())
3742 Flags |= 0x8;
3743 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags});
3745 if (Index->begin() == Index->end()) {
3746 Stream.ExitBlock();
3747 return;
3750 for (const auto &GVI : valueIds()) {
3751 Stream.EmitRecord(bitc::FS_VALUE_GUID,
3752 ArrayRef<uint64_t>{GVI.second, GVI.first});
3755 // Abbrev for FS_PERMODULE_PROFILE.
3756 auto Abbv = std::make_shared<BitCodeAbbrev>();
3757 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
3758 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3759 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3760 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
3761 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
3762 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
3763 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt
3764 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt
3765 // numrefs x valueid, n x (valueid, hotness)
3766 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3767 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3768 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3770 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF.
3771 Abbv = std::make_shared<BitCodeAbbrev>();
3772 if (WriteRelBFToSummary)
3773 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF));
3774 else
3775 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
3776 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3777 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3778 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
3779 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
3780 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
3781 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt
3782 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt
3783 // numrefs x valueid, n x (valueid [, rel_block_freq])
3784 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3785 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3786 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3788 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
3789 Abbv = std::make_shared<BitCodeAbbrev>();
3790 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
3791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3792 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3793 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids
3794 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3795 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3797 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS.
3798 Abbv = std::make_shared<BitCodeAbbrev>();
3799 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS));
3800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3801 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3802 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
3803 // numrefs x valueid, n x (valueid , offset)
3804 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3805 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3806 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3808 // Abbrev for FS_ALIAS.
3809 Abbv = std::make_shared<BitCodeAbbrev>();
3810 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
3811 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3812 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3813 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3814 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3816 // Abbrev for FS_TYPE_ID_METADATA
3817 Abbv = std::make_shared<BitCodeAbbrev>();
3818 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA));
3819 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index
3820 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length
3821 // n x (valueid , offset)
3822 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3823 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3824 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3826 SmallVector<uint64_t, 64> NameVals;
3827 // Iterate over the list of functions instead of the Index to
3828 // ensure the ordering is stable.
3829 for (const Function &F : M) {
3830 // Summary emission does not support anonymous functions, they have to
3831 // renamed using the anonymous function renaming pass.
3832 if (!F.hasName())
3833 report_fatal_error("Unexpected anonymous function when writing summary");
3835 ValueInfo VI = Index->getValueInfo(F.getGUID());
3836 if (!VI || VI.getSummaryList().empty()) {
3837 // Only declarations should not have a summary (a declaration might
3838 // however have a summary if the def was in module level asm).
3839 assert(F.isDeclaration());
3840 continue;
3842 auto *Summary = VI.getSummaryList()[0].get();
3843 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F),
3844 FSCallsAbbrev, FSCallsProfileAbbrev, F);
3847 // Capture references from GlobalVariable initializers, which are outside
3848 // of a function scope.
3849 for (const GlobalVariable &G : M.globals())
3850 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev,
3851 FSModVTableRefsAbbrev);
3853 for (const GlobalAlias &A : M.aliases()) {
3854 auto *Aliasee = A.getBaseObject();
3855 if (!Aliasee->hasName())
3856 // Nameless function don't have an entry in the summary, skip it.
3857 continue;
3858 auto AliasId = VE.getValueID(&A);
3859 auto AliaseeId = VE.getValueID(Aliasee);
3860 NameVals.push_back(AliasId);
3861 auto *Summary = Index->getGlobalValueSummary(A);
3862 AliasSummary *AS = cast<AliasSummary>(Summary);
3863 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
3864 NameVals.push_back(AliaseeId);
3865 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
3866 NameVals.clear();
3869 for (auto &S : Index->typeIdCompatibleVtableMap()) {
3870 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first,
3871 S.second, VE);
3872 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals,
3873 TypeIdCompatibleVtableAbbrev);
3874 NameVals.clear();
3877 Stream.ExitBlock();
3880 /// Emit the combined summary section into the combined index file.
3881 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
3882 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3);
3883 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3885 // Write the index flags.
3886 uint64_t Flags = 0;
3887 if (Index.withGlobalValueDeadStripping())
3888 Flags |= 0x1;
3889 if (Index.skipModuleByDistributedBackend())
3890 Flags |= 0x2;
3891 if (Index.hasSyntheticEntryCounts())
3892 Flags |= 0x4;
3893 if (Index.enableSplitLTOUnit())
3894 Flags |= 0x8;
3895 if (Index.partiallySplitLTOUnits())
3896 Flags |= 0x10;
3897 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags});
3899 for (const auto &GVI : valueIds()) {
3900 Stream.EmitRecord(bitc::FS_VALUE_GUID,
3901 ArrayRef<uint64_t>{GVI.second, GVI.first});
3904 // Abbrev for FS_COMBINED.
3905 auto Abbv = std::make_shared<BitCodeAbbrev>();
3906 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
3907 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3908 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
3909 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3910 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
3911 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
3912 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount
3913 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
3914 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt
3915 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt
3916 // numrefs x valueid, n x (valueid)
3917 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3918 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3919 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3921 // Abbrev for FS_COMBINED_PROFILE.
3922 Abbv = std::make_shared<BitCodeAbbrev>();
3923 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
3924 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3925 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
3926 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3927 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
3928 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
3929 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount
3930 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
3931 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt
3932 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt
3933 // numrefs x valueid, n x (valueid, hotness)
3934 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3935 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3936 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3938 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
3939 Abbv = std::make_shared<BitCodeAbbrev>();
3940 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
3941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3942 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
3943 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3944 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids
3945 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3946 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3948 // Abbrev for FS_COMBINED_ALIAS.
3949 Abbv = std::make_shared<BitCodeAbbrev>();
3950 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
3951 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3952 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
3953 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3954 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3955 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3957 // The aliases are emitted as a post-pass, and will point to the value
3958 // id of the aliasee. Save them in a vector for post-processing.
3959 SmallVector<AliasSummary *, 64> Aliases;
3961 // Save the value id for each summary for alias emission.
3962 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
3964 SmallVector<uint64_t, 64> NameVals;
3966 // Set that will be populated during call to writeFunctionTypeMetadataRecords
3967 // with the type ids referenced by this index file.
3968 std::set<GlobalValue::GUID> ReferencedTypeIds;
3970 // For local linkage, we also emit the original name separately
3971 // immediately after the record.
3972 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
3973 if (!GlobalValue::isLocalLinkage(S.linkage()))
3974 return;
3975 NameVals.push_back(S.getOriginalName());
3976 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
3977 NameVals.clear();
3980 std::set<GlobalValue::GUID> DefOrUseGUIDs;
3981 forEachSummary([&](GVInfo I, bool IsAliasee) {
3982 GlobalValueSummary *S = I.second;
3983 assert(S);
3984 DefOrUseGUIDs.insert(I.first);
3985 for (const ValueInfo &VI : S->refs())
3986 DefOrUseGUIDs.insert(VI.getGUID());
3988 auto ValueId = getValueId(I.first);
3989 assert(ValueId);
3990 SummaryToValueIdMap[S] = *ValueId;
3992 // If this is invoked for an aliasee, we want to record the above
3993 // mapping, but then not emit a summary entry (if the aliasee is
3994 // to be imported, we will invoke this separately with IsAliasee=false).
3995 if (IsAliasee)
3996 return;
3998 if (auto *AS = dyn_cast<AliasSummary>(S)) {
3999 // Will process aliases as a post-pass because the reader wants all
4000 // global to be loaded first.
4001 Aliases.push_back(AS);
4002 return;
4005 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
4006 NameVals.push_back(*ValueId);
4007 NameVals.push_back(Index.getModuleId(VS->modulePath()));
4008 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
4009 NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
4010 for (auto &RI : VS->refs()) {
4011 auto RefValueId = getValueId(RI.getGUID());
4012 if (!RefValueId)
4013 continue;
4014 NameVals.push_back(*RefValueId);
4017 // Emit the finished record.
4018 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
4019 FSModRefsAbbrev);
4020 NameVals.clear();
4021 MaybeEmitOriginalName(*S);
4022 return;
4025 auto *FS = cast<FunctionSummary>(S);
4026 writeFunctionTypeMetadataRecords(Stream, FS);
4027 getReferencedTypeIds(FS, ReferencedTypeIds);
4029 NameVals.push_back(*ValueId);
4030 NameVals.push_back(Index.getModuleId(FS->modulePath()));
4031 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
4032 NameVals.push_back(FS->instCount());
4033 NameVals.push_back(getEncodedFFlags(FS->fflags()));
4034 NameVals.push_back(FS->entryCount());
4036 // Fill in below
4037 NameVals.push_back(0); // numrefs
4038 NameVals.push_back(0); // rorefcnt
4039 NameVals.push_back(0); // worefcnt
4041 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0;
4042 for (auto &RI : FS->refs()) {
4043 auto RefValueId = getValueId(RI.getGUID());
4044 if (!RefValueId)
4045 continue;
4046 NameVals.push_back(*RefValueId);
4047 if (RI.isReadOnly())
4048 RORefCnt++;
4049 else if (RI.isWriteOnly())
4050 WORefCnt++;
4051 Count++;
4053 NameVals[6] = Count;
4054 NameVals[7] = RORefCnt;
4055 NameVals[8] = WORefCnt;
4057 bool HasProfileData = false;
4058 for (auto &EI : FS->calls()) {
4059 HasProfileData |=
4060 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown;
4061 if (HasProfileData)
4062 break;
4065 for (auto &EI : FS->calls()) {
4066 // If this GUID doesn't have a value id, it doesn't have a function
4067 // summary and we don't need to record any calls to it.
4068 GlobalValue::GUID GUID = EI.first.getGUID();
4069 auto CallValueId = getValueId(GUID);
4070 if (!CallValueId) {
4071 // For SamplePGO, the indirect call targets for local functions will
4072 // have its original name annotated in profile. We try to find the
4073 // corresponding PGOFuncName as the GUID.
4074 GUID = Index.getGUIDFromOriginalID(GUID);
4075 if (GUID == 0)
4076 continue;
4077 CallValueId = getValueId(GUID);
4078 if (!CallValueId)
4079 continue;
4080 // The mapping from OriginalId to GUID may return a GUID
4081 // that corresponds to a static variable. Filter it out here.
4082 // This can happen when
4083 // 1) There is a call to a library function which does not have
4084 // a CallValidId;
4085 // 2) There is a static variable with the OriginalGUID identical
4086 // to the GUID of the library function in 1);
4087 // When this happens, the logic for SamplePGO kicks in and
4088 // the static variable in 2) will be found, which needs to be
4089 // filtered out.
4090 auto *GVSum = Index.getGlobalValueSummary(GUID, false);
4091 if (GVSum &&
4092 GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind)
4093 continue;
4095 NameVals.push_back(*CallValueId);
4096 if (HasProfileData)
4097 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness));
4100 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
4101 unsigned Code =
4102 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);
4104 // Emit the finished record.
4105 Stream.EmitRecord(Code, NameVals, FSAbbrev);
4106 NameVals.clear();
4107 MaybeEmitOriginalName(*S);
4110 for (auto *AS : Aliases) {
4111 auto AliasValueId = SummaryToValueIdMap[AS];
4112 assert(AliasValueId);
4113 NameVals.push_back(AliasValueId);
4114 NameVals.push_back(Index.getModuleId(AS->modulePath()));
4115 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
4116 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
4117 assert(AliaseeValueId);
4118 NameVals.push_back(AliaseeValueId);
4120 // Emit the finished record.
4121 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
4122 NameVals.clear();
4123 MaybeEmitOriginalName(*AS);
4125 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee()))
4126 getReferencedTypeIds(FS, ReferencedTypeIds);
4129 if (!Index.cfiFunctionDefs().empty()) {
4130 for (auto &S : Index.cfiFunctionDefs()) {
4131 if (DefOrUseGUIDs.count(
4132 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4133 NameVals.push_back(StrtabBuilder.add(S));
4134 NameVals.push_back(S.size());
4137 if (!NameVals.empty()) {
4138 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals);
4139 NameVals.clear();
4143 if (!Index.cfiFunctionDecls().empty()) {
4144 for (auto &S : Index.cfiFunctionDecls()) {
4145 if (DefOrUseGUIDs.count(
4146 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4147 NameVals.push_back(StrtabBuilder.add(S));
4148 NameVals.push_back(S.size());
4151 if (!NameVals.empty()) {
4152 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals);
4153 NameVals.clear();
4157 // Walk the GUIDs that were referenced, and write the
4158 // corresponding type id records.
4159 for (auto &T : ReferencedTypeIds) {
4160 auto TidIter = Index.typeIds().equal_range(T);
4161 for (auto It = TidIter.first; It != TidIter.second; ++It) {
4162 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first,
4163 It->second.second);
4164 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals);
4165 NameVals.clear();
4169 Stream.ExitBlock();
4172 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
4173 /// current llvm version, and a record for the epoch number.
4174 static void writeIdentificationBlock(BitstreamWriter &Stream) {
4175 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
4177 // Write the "user readable" string identifying the bitcode producer
4178 auto Abbv = std::make_shared<BitCodeAbbrev>();
4179 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
4180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
4182 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4183 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING,
4184 "LLVM" LLVM_VERSION_STRING, StringAbbrev);
4186 // Write the epoch version
4187 Abbv = std::make_shared<BitCodeAbbrev>();
4188 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
4189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
4190 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4191 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH};
4192 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
4193 Stream.ExitBlock();
4196 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
4197 // Emit the module's hash.
4198 // MODULE_CODE_HASH: [5*i32]
4199 if (GenerateHash) {
4200 uint32_t Vals[5];
4201 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
4202 Buffer.size() - BlockStartPos));
4203 StringRef Hash = Hasher.result();
4204 for (int Pos = 0; Pos < 20; Pos += 4) {
4205 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos);
4208 // Emit the finished record.
4209 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
4211 if (ModHash)
4212 // Save the written hash value.
4213 llvm::copy(Vals, std::begin(*ModHash));
4217 void ModuleBitcodeWriter::write() {
4218 writeIdentificationBlock(Stream);
4220 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4221 size_t BlockStartPos = Buffer.size();
4223 writeModuleVersion();
4225 // Emit blockinfo, which defines the standard abbreviations etc.
4226 writeBlockInfo();
4228 // Emit information describing all of the types in the module.
4229 writeTypeTable();
4231 // Emit information about attribute groups.
4232 writeAttributeGroupTable();
4234 // Emit information about parameter attributes.
4235 writeAttributeTable();
4237 writeComdats();
4239 // Emit top-level description of module, including target triple, inline asm,
4240 // descriptors for global variables, and function prototype info.
4241 writeModuleInfo();
4243 // Emit constants.
4244 writeModuleConstants();
4246 // Emit metadata kind names.
4247 writeModuleMetadataKinds();
4249 // Emit metadata.
4250 writeModuleMetadata();
4252 // Emit module-level use-lists.
4253 if (VE.shouldPreserveUseListOrder())
4254 writeUseListBlock(nullptr);
4256 writeOperandBundleTags();
4257 writeSyncScopeNames();
4259 // Emit function bodies.
4260 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
4261 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F)
4262 if (!F->isDeclaration())
4263 writeFunction(*F, FunctionToBitcodeIndex);
4265 // Need to write after the above call to WriteFunction which populates
4266 // the summary information in the index.
4267 if (Index)
4268 writePerModuleGlobalValueSummary();
4270 writeGlobalValueSymbolTable(FunctionToBitcodeIndex);
4272 writeModuleHash(BlockStartPos);
4274 Stream.ExitBlock();
4277 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
4278 uint32_t &Position) {
4279 support::endian::write32le(&Buffer[Position], Value);
4280 Position += 4;
4283 /// If generating a bc file on darwin, we have to emit a
4284 /// header and trailer to make it compatible with the system archiver. To do
4285 /// this we emit the following header, and then emit a trailer that pads the
4286 /// file out to be a multiple of 16 bytes.
4288 /// struct bc_header {
4289 /// uint32_t Magic; // 0x0B17C0DE
4290 /// uint32_t Version; // Version, currently always 0.
4291 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
4292 /// uint32_t BitcodeSize; // Size of traditional bitcode file.
4293 /// uint32_t CPUType; // CPU specifier.
4294 /// ... potentially more later ...
4295 /// };
4296 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
4297 const Triple &TT) {
4298 unsigned CPUType = ~0U;
4300 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
4301 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
4302 // number from /usr/include/mach/machine.h. It is ok to reproduce the
4303 // specific constants here because they are implicitly part of the Darwin ABI.
4304 enum {
4305 DARWIN_CPU_ARCH_ABI64 = 0x01000000,
4306 DARWIN_CPU_TYPE_X86 = 7,
4307 DARWIN_CPU_TYPE_ARM = 12,
4308 DARWIN_CPU_TYPE_POWERPC = 18
4311 Triple::ArchType Arch = TT.getArch();
4312 if (Arch == Triple::x86_64)
4313 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
4314 else if (Arch == Triple::x86)
4315 CPUType = DARWIN_CPU_TYPE_X86;
4316 else if (Arch == Triple::ppc)
4317 CPUType = DARWIN_CPU_TYPE_POWERPC;
4318 else if (Arch == Triple::ppc64)
4319 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
4320 else if (Arch == Triple::arm || Arch == Triple::thumb)
4321 CPUType = DARWIN_CPU_TYPE_ARM;
4323 // Traditional Bitcode starts after header.
4324 assert(Buffer.size() >= BWH_HeaderSize &&
4325 "Expected header size to be reserved");
4326 unsigned BCOffset = BWH_HeaderSize;
4327 unsigned BCSize = Buffer.size() - BWH_HeaderSize;
4329 // Write the magic and version.
4330 unsigned Position = 0;
4331 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
4332 writeInt32ToBuffer(0, Buffer, Position); // Version.
4333 writeInt32ToBuffer(BCOffset, Buffer, Position);
4334 writeInt32ToBuffer(BCSize, Buffer, Position);
4335 writeInt32ToBuffer(CPUType, Buffer, Position);
4337 // If the file is not a multiple of 16 bytes, insert dummy padding.
4338 while (Buffer.size() & 15)
4339 Buffer.push_back(0);
4342 /// Helper to write the header common to all bitcode files.
4343 static void writeBitcodeHeader(BitstreamWriter &Stream) {
4344 // Emit the file header.
4345 Stream.Emit((unsigned)'B', 8);
4346 Stream.Emit((unsigned)'C', 8);
4347 Stream.Emit(0x0, 4);
4348 Stream.Emit(0xC, 4);
4349 Stream.Emit(0xE, 4);
4350 Stream.Emit(0xD, 4);
4353 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer)
4354 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) {
4355 writeBitcodeHeader(*Stream);
4358 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
4360 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
4361 Stream->EnterSubblock(Block, 3);
4363 auto Abbv = std::make_shared<BitCodeAbbrev>();
4364 Abbv->Add(BitCodeAbbrevOp(Record));
4365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
4366 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
4368 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
4370 Stream->ExitBlock();
4373 void BitcodeWriter::writeSymtab() {
4374 assert(!WroteStrtab && !WroteSymtab);
4376 // If any module has module-level inline asm, we will require a registered asm
4377 // parser for the target so that we can create an accurate symbol table for
4378 // the module.
4379 for (Module *M : Mods) {
4380 if (M->getModuleInlineAsm().empty())
4381 continue;
4383 std::string Err;
4384 const Triple TT(M->getTargetTriple());
4385 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err);
4386 if (!T || !T->hasMCAsmParser())
4387 return;
4390 WroteSymtab = true;
4391 SmallVector<char, 0> Symtab;
4392 // The irsymtab::build function may be unable to create a symbol table if the
4393 // module is malformed (e.g. it contains an invalid alias). Writing a symbol
4394 // table is not required for correctness, but we still want to be able to
4395 // write malformed modules to bitcode files, so swallow the error.
4396 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
4397 consumeError(std::move(E));
4398 return;
4401 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
4402 {Symtab.data(), Symtab.size()});
4405 void BitcodeWriter::writeStrtab() {
4406 assert(!WroteStrtab);
4408 std::vector<char> Strtab;
4409 StrtabBuilder.finalizeInOrder();
4410 Strtab.resize(StrtabBuilder.getSize());
4411 StrtabBuilder.write((uint8_t *)Strtab.data());
4413 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
4414 {Strtab.data(), Strtab.size()});
4416 WroteStrtab = true;
4419 void BitcodeWriter::copyStrtab(StringRef Strtab) {
4420 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
4421 WroteStrtab = true;
4424 void BitcodeWriter::writeModule(const Module &M,
4425 bool ShouldPreserveUseListOrder,
4426 const ModuleSummaryIndex *Index,
4427 bool GenerateHash, ModuleHash *ModHash) {
4428 assert(!WroteStrtab);
4430 // The Mods vector is used by irsymtab::build, which requires non-const
4431 // Modules in case it needs to materialize metadata. But the bitcode writer
4432 // requires that the module is materialized, so we can cast to non-const here,
4433 // after checking that it is in fact materialized.
4434 assert(M.isMaterialized());
4435 Mods.push_back(const_cast<Module *>(&M));
4437 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream,
4438 ShouldPreserveUseListOrder, Index,
4439 GenerateHash, ModHash);
4440 ModuleWriter.write();
4443 void BitcodeWriter::writeIndex(
4444 const ModuleSummaryIndex *Index,
4445 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4446 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index,
4447 ModuleToSummariesForIndex);
4448 IndexWriter.write();
4451 /// Write the specified module to the specified output stream.
4452 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out,
4453 bool ShouldPreserveUseListOrder,
4454 const ModuleSummaryIndex *Index,
4455 bool GenerateHash, ModuleHash *ModHash) {
4456 SmallVector<char, 0> Buffer;
4457 Buffer.reserve(256*1024);
4459 // If this is darwin or another generic macho target, reserve space for the
4460 // header.
4461 Triple TT(M.getTargetTriple());
4462 if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4463 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
4465 BitcodeWriter Writer(Buffer);
4466 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash,
4467 ModHash);
4468 Writer.writeSymtab();
4469 Writer.writeStrtab();
4471 if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4472 emitDarwinBCHeaderAndTrailer(Buffer, TT);
4474 // Write the generated bitstream to "Out".
4475 Out.write((char*)&Buffer.front(), Buffer.size());
4478 void IndexBitcodeWriter::write() {
4479 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4481 writeModuleVersion();
4483 // Write the module paths in the combined index.
4484 writeModStrings();
4486 // Write the summary combined index records.
4487 writeCombinedGlobalValueSummary();
4489 Stream.ExitBlock();
4492 // Write the specified module summary index to the given raw output stream,
4493 // where it will be written in a new bitcode block. This is used when
4494 // writing the combined index file for ThinLTO. When writing a subset of the
4495 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
4496 void llvm::WriteIndexToFile(
4497 const ModuleSummaryIndex &Index, raw_ostream &Out,
4498 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4499 SmallVector<char, 0> Buffer;
4500 Buffer.reserve(256 * 1024);
4502 BitcodeWriter Writer(Buffer);
4503 Writer.writeIndex(&Index, ModuleToSummariesForIndex);
4504 Writer.writeStrtab();
4506 Out.write((char *)&Buffer.front(), Buffer.size());
4509 namespace {
4511 /// Class to manage the bitcode writing for a thin link bitcode file.
4512 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase {
4513 /// ModHash is for use in ThinLTO incremental build, generated while writing
4514 /// the module bitcode file.
4515 const ModuleHash *ModHash;
4517 public:
4518 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder,
4519 BitstreamWriter &Stream,
4520 const ModuleSummaryIndex &Index,
4521 const ModuleHash &ModHash)
4522 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
4523 /*ShouldPreserveUseListOrder=*/false, &Index),
4524 ModHash(&ModHash) {}
4526 void write();
4528 private:
4529 void writeSimplifiedModuleInfo();
4532 } // end anonymous namespace
4534 // This function writes a simpilified module info for thin link bitcode file.
4535 // It only contains the source file name along with the name(the offset and
4536 // size in strtab) and linkage for global values. For the global value info
4537 // entry, in order to keep linkage at offset 5, there are three zeros used
4538 // as padding.
4539 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() {
4540 SmallVector<unsigned, 64> Vals;
4541 // Emit the module's source file name.
4543 StringEncoding Bits = getStringEncoding(M.getSourceFileName());
4544 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
4545 if (Bits == SE_Char6)
4546 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
4547 else if (Bits == SE_Fixed7)
4548 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
4550 // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4551 auto Abbv = std::make_shared<BitCodeAbbrev>();
4552 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
4553 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4554 Abbv->Add(AbbrevOpToUse);
4555 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4557 for (const auto P : M.getSourceFileName())
4558 Vals.push_back((unsigned char)P);
4560 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
4561 Vals.clear();
4564 // Emit the global variable information.
4565 for (const GlobalVariable &GV : M.globals()) {
4566 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage]
4567 Vals.push_back(StrtabBuilder.add(GV.getName()));
4568 Vals.push_back(GV.getName().size());
4569 Vals.push_back(0);
4570 Vals.push_back(0);
4571 Vals.push_back(0);
4572 Vals.push_back(getEncodedLinkage(GV));
4574 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals);
4575 Vals.clear();
4578 // Emit the function proto information.
4579 for (const Function &F : M) {
4580 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage]
4581 Vals.push_back(StrtabBuilder.add(F.getName()));
4582 Vals.push_back(F.getName().size());
4583 Vals.push_back(0);
4584 Vals.push_back(0);
4585 Vals.push_back(0);
4586 Vals.push_back(getEncodedLinkage(F));
4588 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals);
4589 Vals.clear();
4592 // Emit the alias information.
4593 for (const GlobalAlias &A : M.aliases()) {
4594 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage]
4595 Vals.push_back(StrtabBuilder.add(A.getName()));
4596 Vals.push_back(A.getName().size());
4597 Vals.push_back(0);
4598 Vals.push_back(0);
4599 Vals.push_back(0);
4600 Vals.push_back(getEncodedLinkage(A));
4602 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals);
4603 Vals.clear();
4606 // Emit the ifunc information.
4607 for (const GlobalIFunc &I : M.ifuncs()) {
4608 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage]
4609 Vals.push_back(StrtabBuilder.add(I.getName()));
4610 Vals.push_back(I.getName().size());
4611 Vals.push_back(0);
4612 Vals.push_back(0);
4613 Vals.push_back(0);
4614 Vals.push_back(getEncodedLinkage(I));
4616 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
4617 Vals.clear();
4621 void ThinLinkBitcodeWriter::write() {
4622 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4624 writeModuleVersion();
4626 writeSimplifiedModuleInfo();
4628 writePerModuleGlobalValueSummary();
4630 // Write module hash.
4631 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash));
4633 Stream.ExitBlock();
4636 void BitcodeWriter::writeThinLinkBitcode(const Module &M,
4637 const ModuleSummaryIndex &Index,
4638 const ModuleHash &ModHash) {
4639 assert(!WroteStrtab);
4641 // The Mods vector is used by irsymtab::build, which requires non-const
4642 // Modules in case it needs to materialize metadata. But the bitcode writer
4643 // requires that the module is materialized, so we can cast to non-const here,
4644 // after checking that it is in fact materialized.
4645 assert(M.isMaterialized());
4646 Mods.push_back(const_cast<Module *>(&M));
4648 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index,
4649 ModHash);
4650 ThinLinkWriter.write();
4653 // Write the specified thin link bitcode file to the given raw output stream,
4654 // where it will be written in a new bitcode block. This is used when
4655 // writing the per-module index file for ThinLTO.
4656 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out,
4657 const ModuleSummaryIndex &Index,
4658 const ModuleHash &ModHash) {
4659 SmallVector<char, 0> Buffer;
4660 Buffer.reserve(256 * 1024);
4662 BitcodeWriter Writer(Buffer);
4663 Writer.writeThinLinkBitcode(M, Index, ModHash);
4664 Writer.writeSymtab();
4665 Writer.writeStrtab();
4667 Out.write((char *)&Buffer.front(), Buffer.size());