1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Bitcode writer implementation.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Bitcode/BitcodeWriter.h"
14 #include "ValueEnumerator.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/Bitstream/BitCodes.h"
28 #include "llvm/Bitstream/BitstreamWriter.h"
29 #include "llvm/Bitcode/LLVMBitCodes.h"
30 #include "llvm/Config/llvm-config.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CallSite.h"
34 #include "llvm/IR/Comdat.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalIFunc.h"
43 #include "llvm/IR/GlobalObject.h"
44 #include "llvm/IR/GlobalValue.h"
45 #include "llvm/IR/GlobalVariable.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Instruction.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/ModuleSummaryIndex.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/UseListOrder.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/IR/ValueSymbolTable.h"
59 #include "llvm/MC/StringTableBuilder.h"
60 #include "llvm/Object/IRSymtab.h"
61 #include "llvm/Support/AtomicOrdering.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Endian.h"
65 #include "llvm/Support/Error.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/SHA1.h"
69 #include "llvm/Support/TargetRegistry.h"
70 #include "llvm/Support/raw_ostream.h"
84 static cl::opt
<unsigned>
85 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden
, cl::init(25),
86 cl::desc("Number of metadatas above which we emit an index "
87 "to enable lazy-loading"));
89 cl::opt
<bool> WriteRelBFToSummary(
90 "write-relbf-to-summary", cl::Hidden
, cl::init(false),
91 cl::desc("Write relative block frequency to function summary "));
93 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold
;
97 /// These are manifest constants used by the bitcode writer. They do not need to
98 /// be kept in sync with the reader, but need to be consistent within this file.
100 // VALUE_SYMTAB_BLOCK abbrev id's.
101 VST_ENTRY_8_ABBREV
= bitc::FIRST_APPLICATION_ABBREV
,
104 VST_BBENTRY_6_ABBREV
,
106 // CONSTANTS_BLOCK abbrev id's.
107 CONSTANTS_SETTYPE_ABBREV
= bitc::FIRST_APPLICATION_ABBREV
,
108 CONSTANTS_INTEGER_ABBREV
,
109 CONSTANTS_CE_CAST_Abbrev
,
110 CONSTANTS_NULL_Abbrev
,
112 // FUNCTION_BLOCK abbrev id's.
113 FUNCTION_INST_LOAD_ABBREV
= bitc::FIRST_APPLICATION_ABBREV
,
114 FUNCTION_INST_UNOP_ABBREV
,
115 FUNCTION_INST_UNOP_FLAGS_ABBREV
,
116 FUNCTION_INST_BINOP_ABBREV
,
117 FUNCTION_INST_BINOP_FLAGS_ABBREV
,
118 FUNCTION_INST_CAST_ABBREV
,
119 FUNCTION_INST_RET_VOID_ABBREV
,
120 FUNCTION_INST_RET_VAL_ABBREV
,
121 FUNCTION_INST_UNREACHABLE_ABBREV
,
122 FUNCTION_INST_GEP_ABBREV
,
125 /// Abstract class to manage the bitcode writing, subclassed for each bitcode
127 class BitcodeWriterBase
{
129 /// The stream created and owned by the client.
130 BitstreamWriter
&Stream
;
132 StringTableBuilder
&StrtabBuilder
;
135 /// Constructs a BitcodeWriterBase object that writes to the provided
137 BitcodeWriterBase(BitstreamWriter
&Stream
, StringTableBuilder
&StrtabBuilder
)
138 : Stream(Stream
), StrtabBuilder(StrtabBuilder
) {}
141 void writeBitcodeHeader();
142 void writeModuleVersion();
145 void BitcodeWriterBase::writeModuleVersion() {
146 // VERSION: [version#]
147 Stream
.EmitRecord(bitc::MODULE_CODE_VERSION
, ArrayRef
<uint64_t>{2});
150 /// Base class to manage the module bitcode writing, currently subclassed for
151 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter.
152 class ModuleBitcodeWriterBase
: public BitcodeWriterBase
{
154 /// The Module to write to bitcode.
157 /// Enumerates ids for all values in the module.
160 /// Optional per-module index to write for ThinLTO.
161 const ModuleSummaryIndex
*Index
;
163 /// Map that holds the correspondence between GUIDs in the summary index,
164 /// that came from indirect call profiles, and a value id generated by this
165 /// class to use in the VST and summary block records.
166 std::map
<GlobalValue::GUID
, unsigned> GUIDToValueIdMap
;
168 /// Tracks the last value id recorded in the GUIDToValueMap.
169 unsigned GlobalValueId
;
171 /// Saves the offset of the VSTOffset record that must eventually be
172 /// backpatched with the offset of the actual VST.
173 uint64_t VSTOffsetPlaceholder
= 0;
176 /// Constructs a ModuleBitcodeWriterBase object for the given Module,
177 /// writing to the provided \p Buffer.
178 ModuleBitcodeWriterBase(const Module
&M
, StringTableBuilder
&StrtabBuilder
,
179 BitstreamWriter
&Stream
,
180 bool ShouldPreserveUseListOrder
,
181 const ModuleSummaryIndex
*Index
)
182 : BitcodeWriterBase(Stream
, StrtabBuilder
), M(M
),
183 VE(M
, ShouldPreserveUseListOrder
), Index(Index
) {
184 // Assign ValueIds to any callee values in the index that came from
185 // indirect call profiles and were recorded as a GUID not a Value*
186 // (which would have been assigned an ID by the ValueEnumerator).
187 // The starting ValueId is just after the number of values in the
188 // ValueEnumerator, so that they can be emitted in the VST.
189 GlobalValueId
= VE
.getValues().size();
192 for (const auto &GUIDSummaryLists
: *Index
)
193 // Examine all summaries for this GUID.
194 for (auto &Summary
: GUIDSummaryLists
.second
.SummaryList
)
195 if (auto FS
= dyn_cast
<FunctionSummary
>(Summary
.get()))
196 // For each call in the function summary, see if the call
197 // is to a GUID (which means it is for an indirect call,
198 // otherwise we would have a Value for it). If so, synthesize
200 for (auto &CallEdge
: FS
->calls())
201 if (!CallEdge
.first
.haveGVs() || !CallEdge
.first
.getValue())
202 assignValueId(CallEdge
.first
.getGUID());
206 void writePerModuleGlobalValueSummary();
209 void writePerModuleFunctionSummaryRecord(SmallVector
<uint64_t, 64> &NameVals
,
210 GlobalValueSummary
*Summary
,
212 unsigned FSCallsAbbrev
,
213 unsigned FSCallsProfileAbbrev
,
215 void writeModuleLevelReferences(const GlobalVariable
&V
,
216 SmallVector
<uint64_t, 64> &NameVals
,
217 unsigned FSModRefsAbbrev
,
218 unsigned FSModVTableRefsAbbrev
);
220 void assignValueId(GlobalValue::GUID ValGUID
) {
221 GUIDToValueIdMap
[ValGUID
] = ++GlobalValueId
;
224 unsigned getValueId(GlobalValue::GUID ValGUID
) {
225 const auto &VMI
= GUIDToValueIdMap
.find(ValGUID
);
226 // Expect that any GUID value had a value Id assigned by an
227 // earlier call to assignValueId.
228 assert(VMI
!= GUIDToValueIdMap
.end() &&
229 "GUID does not have assigned value Id");
233 // Helper to get the valueId for the type of value recorded in VI.
234 unsigned getValueId(ValueInfo VI
) {
235 if (!VI
.haveGVs() || !VI
.getValue())
236 return getValueId(VI
.getGUID());
237 return VE
.getValueID(VI
.getValue());
240 std::map
<GlobalValue::GUID
, unsigned> &valueIds() { return GUIDToValueIdMap
; }
243 /// Class to manage the bitcode writing for a module.
244 class ModuleBitcodeWriter
: public ModuleBitcodeWriterBase
{
245 /// Pointer to the buffer allocated by caller for bitcode writing.
246 const SmallVectorImpl
<char> &Buffer
;
248 /// True if a module hash record should be written.
251 /// If non-null, when GenerateHash is true, the resulting hash is written
257 /// The start bit of the identification block.
258 uint64_t BitcodeStartBit
;
261 /// Constructs a ModuleBitcodeWriter object for the given Module,
262 /// writing to the provided \p Buffer.
263 ModuleBitcodeWriter(const Module
&M
, SmallVectorImpl
<char> &Buffer
,
264 StringTableBuilder
&StrtabBuilder
,
265 BitstreamWriter
&Stream
, bool ShouldPreserveUseListOrder
,
266 const ModuleSummaryIndex
*Index
, bool GenerateHash
,
267 ModuleHash
*ModHash
= nullptr)
268 : ModuleBitcodeWriterBase(M
, StrtabBuilder
, Stream
,
269 ShouldPreserveUseListOrder
, Index
),
270 Buffer(Buffer
), GenerateHash(GenerateHash
), ModHash(ModHash
),
271 BitcodeStartBit(Stream
.GetCurrentBitNo()) {}
273 /// Emit the current module to the bitstream.
277 uint64_t bitcodeStartBit() { return BitcodeStartBit
; }
279 size_t addToStrtab(StringRef Str
);
281 void writeAttributeGroupTable();
282 void writeAttributeTable();
283 void writeTypeTable();
285 void writeValueSymbolTableForwardDecl();
286 void writeModuleInfo();
287 void writeValueAsMetadata(const ValueAsMetadata
*MD
,
288 SmallVectorImpl
<uint64_t> &Record
);
289 void writeMDTuple(const MDTuple
*N
, SmallVectorImpl
<uint64_t> &Record
,
291 unsigned createDILocationAbbrev();
292 void writeDILocation(const DILocation
*N
, SmallVectorImpl
<uint64_t> &Record
,
294 unsigned createGenericDINodeAbbrev();
295 void writeGenericDINode(const GenericDINode
*N
,
296 SmallVectorImpl
<uint64_t> &Record
, unsigned &Abbrev
);
297 void writeDISubrange(const DISubrange
*N
, SmallVectorImpl
<uint64_t> &Record
,
299 void writeDIEnumerator(const DIEnumerator
*N
,
300 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
301 void writeDIBasicType(const DIBasicType
*N
, SmallVectorImpl
<uint64_t> &Record
,
303 void writeDIDerivedType(const DIDerivedType
*N
,
304 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
305 void writeDICompositeType(const DICompositeType
*N
,
306 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
307 void writeDISubroutineType(const DISubroutineType
*N
,
308 SmallVectorImpl
<uint64_t> &Record
,
310 void writeDIFile(const DIFile
*N
, SmallVectorImpl
<uint64_t> &Record
,
312 void writeDICompileUnit(const DICompileUnit
*N
,
313 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
314 void writeDISubprogram(const DISubprogram
*N
,
315 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
316 void writeDILexicalBlock(const DILexicalBlock
*N
,
317 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
318 void writeDILexicalBlockFile(const DILexicalBlockFile
*N
,
319 SmallVectorImpl
<uint64_t> &Record
,
321 void writeDICommonBlock(const DICommonBlock
*N
,
322 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
323 void writeDINamespace(const DINamespace
*N
, SmallVectorImpl
<uint64_t> &Record
,
325 void writeDIMacro(const DIMacro
*N
, SmallVectorImpl
<uint64_t> &Record
,
327 void writeDIMacroFile(const DIMacroFile
*N
, SmallVectorImpl
<uint64_t> &Record
,
329 void writeDIModule(const DIModule
*N
, SmallVectorImpl
<uint64_t> &Record
,
331 void writeDITemplateTypeParameter(const DITemplateTypeParameter
*N
,
332 SmallVectorImpl
<uint64_t> &Record
,
334 void writeDITemplateValueParameter(const DITemplateValueParameter
*N
,
335 SmallVectorImpl
<uint64_t> &Record
,
337 void writeDIGlobalVariable(const DIGlobalVariable
*N
,
338 SmallVectorImpl
<uint64_t> &Record
,
340 void writeDILocalVariable(const DILocalVariable
*N
,
341 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
342 void writeDILabel(const DILabel
*N
,
343 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
344 void writeDIExpression(const DIExpression
*N
,
345 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
346 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression
*N
,
347 SmallVectorImpl
<uint64_t> &Record
,
349 void writeDIObjCProperty(const DIObjCProperty
*N
,
350 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
351 void writeDIImportedEntity(const DIImportedEntity
*N
,
352 SmallVectorImpl
<uint64_t> &Record
,
354 unsigned createNamedMetadataAbbrev();
355 void writeNamedMetadata(SmallVectorImpl
<uint64_t> &Record
);
356 unsigned createMetadataStringsAbbrev();
357 void writeMetadataStrings(ArrayRef
<const Metadata
*> Strings
,
358 SmallVectorImpl
<uint64_t> &Record
);
359 void writeMetadataRecords(ArrayRef
<const Metadata
*> MDs
,
360 SmallVectorImpl
<uint64_t> &Record
,
361 std::vector
<unsigned> *MDAbbrevs
= nullptr,
362 std::vector
<uint64_t> *IndexPos
= nullptr);
363 void writeModuleMetadata();
364 void writeFunctionMetadata(const Function
&F
);
365 void writeFunctionMetadataAttachment(const Function
&F
);
366 void writeGlobalVariableMetadataAttachment(const GlobalVariable
&GV
);
367 void pushGlobalMetadataAttachment(SmallVectorImpl
<uint64_t> &Record
,
368 const GlobalObject
&GO
);
369 void writeModuleMetadataKinds();
370 void writeOperandBundleTags();
371 void writeSyncScopeNames();
372 void writeConstants(unsigned FirstVal
, unsigned LastVal
, bool isGlobal
);
373 void writeModuleConstants();
374 bool pushValueAndType(const Value
*V
, unsigned InstID
,
375 SmallVectorImpl
<unsigned> &Vals
);
376 void writeOperandBundles(ImmutableCallSite CS
, unsigned InstID
);
377 void pushValue(const Value
*V
, unsigned InstID
,
378 SmallVectorImpl
<unsigned> &Vals
);
379 void pushValueSigned(const Value
*V
, unsigned InstID
,
380 SmallVectorImpl
<uint64_t> &Vals
);
381 void writeInstruction(const Instruction
&I
, unsigned InstID
,
382 SmallVectorImpl
<unsigned> &Vals
);
383 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable
&VST
);
384 void writeGlobalValueSymbolTable(
385 DenseMap
<const Function
*, uint64_t> &FunctionToBitcodeIndex
);
386 void writeUseList(UseListOrder
&&Order
);
387 void writeUseListBlock(const Function
*F
);
389 writeFunction(const Function
&F
,
390 DenseMap
<const Function
*, uint64_t> &FunctionToBitcodeIndex
);
391 void writeBlockInfo();
392 void writeModuleHash(size_t BlockStartPos
);
394 unsigned getEncodedSyncScopeID(SyncScope::ID SSID
) {
395 return unsigned(SSID
);
399 /// Class to manage the bitcode writing for a combined index.
400 class IndexBitcodeWriter
: public BitcodeWriterBase
{
401 /// The combined index to write to bitcode.
402 const ModuleSummaryIndex
&Index
;
404 /// When writing a subset of the index for distributed backends, client
405 /// provides a map of modules to the corresponding GUIDs/summaries to write.
406 const std::map
<std::string
, GVSummaryMapTy
> *ModuleToSummariesForIndex
;
408 /// Map that holds the correspondence between the GUID used in the combined
409 /// index and a value id generated by this class to use in references.
410 std::map
<GlobalValue::GUID
, unsigned> GUIDToValueIdMap
;
412 /// Tracks the last value id recorded in the GUIDToValueMap.
413 unsigned GlobalValueId
= 0;
416 /// Constructs a IndexBitcodeWriter object for the given combined index,
417 /// writing to the provided \p Buffer. When writing a subset of the index
418 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
419 IndexBitcodeWriter(BitstreamWriter
&Stream
, StringTableBuilder
&StrtabBuilder
,
420 const ModuleSummaryIndex
&Index
,
421 const std::map
<std::string
, GVSummaryMapTy
>
422 *ModuleToSummariesForIndex
= nullptr)
423 : BitcodeWriterBase(Stream
, StrtabBuilder
), Index(Index
),
424 ModuleToSummariesForIndex(ModuleToSummariesForIndex
) {
425 // Assign unique value ids to all summaries to be written, for use
426 // in writing out the call graph edges. Save the mapping from GUID
427 // to the new global value id to use when writing those edges, which
428 // are currently saved in the index in terms of GUID.
429 forEachSummary([&](GVInfo I
, bool) {
430 GUIDToValueIdMap
[I
.first
] = ++GlobalValueId
;
434 /// The below iterator returns the GUID and associated summary.
435 using GVInfo
= std::pair
<GlobalValue::GUID
, GlobalValueSummary
*>;
437 /// Calls the callback for each value GUID and summary to be written to
438 /// bitcode. This hides the details of whether they are being pulled from the
439 /// entire index or just those in a provided ModuleToSummariesForIndex map.
440 template<typename Functor
>
441 void forEachSummary(Functor Callback
) {
442 if (ModuleToSummariesForIndex
) {
443 for (auto &M
: *ModuleToSummariesForIndex
)
444 for (auto &Summary
: M
.second
) {
445 Callback(Summary
, false);
446 // Ensure aliasee is handled, e.g. for assigning a valueId,
447 // even if we are not importing the aliasee directly (the
448 // imported alias will contain a copy of aliasee).
449 if (auto *AS
= dyn_cast
<AliasSummary
>(Summary
.getSecond()))
450 Callback({AS
->getAliaseeGUID(), &AS
->getAliasee()}, true);
453 for (auto &Summaries
: Index
)
454 for (auto &Summary
: Summaries
.second
.SummaryList
)
455 Callback({Summaries
.first
, Summary
.get()}, false);
459 /// Calls the callback for each entry in the modulePaths StringMap that
460 /// should be written to the module path string table. This hides the details
461 /// of whether they are being pulled from the entire index or just those in a
462 /// provided ModuleToSummariesForIndex map.
463 template <typename Functor
> void forEachModule(Functor Callback
) {
464 if (ModuleToSummariesForIndex
) {
465 for (const auto &M
: *ModuleToSummariesForIndex
) {
466 const auto &MPI
= Index
.modulePaths().find(M
.first
);
467 if (MPI
== Index
.modulePaths().end()) {
468 // This should only happen if the bitcode file was empty, in which
469 // case we shouldn't be importing (the ModuleToSummariesForIndex
470 // would only include the module we are writing and index for).
471 assert(ModuleToSummariesForIndex
->size() == 1);
477 for (const auto &MPSE
: Index
.modulePaths())
482 /// Main entry point for writing a combined index to bitcode.
486 void writeModStrings();
487 void writeCombinedGlobalValueSummary();
489 Optional
<unsigned> getValueId(GlobalValue::GUID ValGUID
) {
490 auto VMI
= GUIDToValueIdMap
.find(ValGUID
);
491 if (VMI
== GUIDToValueIdMap
.end())
496 std::map
<GlobalValue::GUID
, unsigned> &valueIds() { return GUIDToValueIdMap
; }
499 } // end anonymous namespace
501 static unsigned getEncodedCastOpcode(unsigned Opcode
) {
503 default: llvm_unreachable("Unknown cast instruction!");
504 case Instruction::Trunc
: return bitc::CAST_TRUNC
;
505 case Instruction::ZExt
: return bitc::CAST_ZEXT
;
506 case Instruction::SExt
: return bitc::CAST_SEXT
;
507 case Instruction::FPToUI
: return bitc::CAST_FPTOUI
;
508 case Instruction::FPToSI
: return bitc::CAST_FPTOSI
;
509 case Instruction::UIToFP
: return bitc::CAST_UITOFP
;
510 case Instruction::SIToFP
: return bitc::CAST_SITOFP
;
511 case Instruction::FPTrunc
: return bitc::CAST_FPTRUNC
;
512 case Instruction::FPExt
: return bitc::CAST_FPEXT
;
513 case Instruction::PtrToInt
: return bitc::CAST_PTRTOINT
;
514 case Instruction::IntToPtr
: return bitc::CAST_INTTOPTR
;
515 case Instruction::BitCast
: return bitc::CAST_BITCAST
;
516 case Instruction::AddrSpaceCast
: return bitc::CAST_ADDRSPACECAST
;
520 static unsigned getEncodedUnaryOpcode(unsigned Opcode
) {
522 default: llvm_unreachable("Unknown binary instruction!");
523 case Instruction::FNeg
: return bitc::UNOP_NEG
;
527 static unsigned getEncodedBinaryOpcode(unsigned Opcode
) {
529 default: llvm_unreachable("Unknown binary instruction!");
530 case Instruction::Add
:
531 case Instruction::FAdd
: return bitc::BINOP_ADD
;
532 case Instruction::Sub
:
533 case Instruction::FSub
: return bitc::BINOP_SUB
;
534 case Instruction::Mul
:
535 case Instruction::FMul
: return bitc::BINOP_MUL
;
536 case Instruction::UDiv
: return bitc::BINOP_UDIV
;
537 case Instruction::FDiv
:
538 case Instruction::SDiv
: return bitc::BINOP_SDIV
;
539 case Instruction::URem
: return bitc::BINOP_UREM
;
540 case Instruction::FRem
:
541 case Instruction::SRem
: return bitc::BINOP_SREM
;
542 case Instruction::Shl
: return bitc::BINOP_SHL
;
543 case Instruction::LShr
: return bitc::BINOP_LSHR
;
544 case Instruction::AShr
: return bitc::BINOP_ASHR
;
545 case Instruction::And
: return bitc::BINOP_AND
;
546 case Instruction::Or
: return bitc::BINOP_OR
;
547 case Instruction::Xor
: return bitc::BINOP_XOR
;
551 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op
) {
553 default: llvm_unreachable("Unknown RMW operation!");
554 case AtomicRMWInst::Xchg
: return bitc::RMW_XCHG
;
555 case AtomicRMWInst::Add
: return bitc::RMW_ADD
;
556 case AtomicRMWInst::Sub
: return bitc::RMW_SUB
;
557 case AtomicRMWInst::And
: return bitc::RMW_AND
;
558 case AtomicRMWInst::Nand
: return bitc::RMW_NAND
;
559 case AtomicRMWInst::Or
: return bitc::RMW_OR
;
560 case AtomicRMWInst::Xor
: return bitc::RMW_XOR
;
561 case AtomicRMWInst::Max
: return bitc::RMW_MAX
;
562 case AtomicRMWInst::Min
: return bitc::RMW_MIN
;
563 case AtomicRMWInst::UMax
: return bitc::RMW_UMAX
;
564 case AtomicRMWInst::UMin
: return bitc::RMW_UMIN
;
565 case AtomicRMWInst::FAdd
: return bitc::RMW_FADD
;
566 case AtomicRMWInst::FSub
: return bitc::RMW_FSUB
;
570 static unsigned getEncodedOrdering(AtomicOrdering Ordering
) {
572 case AtomicOrdering::NotAtomic
: return bitc::ORDERING_NOTATOMIC
;
573 case AtomicOrdering::Unordered
: return bitc::ORDERING_UNORDERED
;
574 case AtomicOrdering::Monotonic
: return bitc::ORDERING_MONOTONIC
;
575 case AtomicOrdering::Acquire
: return bitc::ORDERING_ACQUIRE
;
576 case AtomicOrdering::Release
: return bitc::ORDERING_RELEASE
;
577 case AtomicOrdering::AcquireRelease
: return bitc::ORDERING_ACQREL
;
578 case AtomicOrdering::SequentiallyConsistent
: return bitc::ORDERING_SEQCST
;
580 llvm_unreachable("Invalid ordering");
583 static void writeStringRecord(BitstreamWriter
&Stream
, unsigned Code
,
584 StringRef Str
, unsigned AbbrevToUse
) {
585 SmallVector
<unsigned, 64> Vals
;
587 // Code: [strchar x N]
588 for (unsigned i
= 0, e
= Str
.size(); i
!= e
; ++i
) {
589 if (AbbrevToUse
&& !BitCodeAbbrevOp::isChar6(Str
[i
]))
591 Vals
.push_back(Str
[i
]);
594 // Emit the finished record.
595 Stream
.EmitRecord(Code
, Vals
, AbbrevToUse
);
598 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind
) {
600 case Attribute::Alignment
:
601 return bitc::ATTR_KIND_ALIGNMENT
;
602 case Attribute::AllocSize
:
603 return bitc::ATTR_KIND_ALLOC_SIZE
;
604 case Attribute::AlwaysInline
:
605 return bitc::ATTR_KIND_ALWAYS_INLINE
;
606 case Attribute::ArgMemOnly
:
607 return bitc::ATTR_KIND_ARGMEMONLY
;
608 case Attribute::Builtin
:
609 return bitc::ATTR_KIND_BUILTIN
;
610 case Attribute::ByVal
:
611 return bitc::ATTR_KIND_BY_VAL
;
612 case Attribute::Convergent
:
613 return bitc::ATTR_KIND_CONVERGENT
;
614 case Attribute::InAlloca
:
615 return bitc::ATTR_KIND_IN_ALLOCA
;
616 case Attribute::Cold
:
617 return bitc::ATTR_KIND_COLD
;
618 case Attribute::InaccessibleMemOnly
:
619 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY
;
620 case Attribute::InaccessibleMemOrArgMemOnly
:
621 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY
;
622 case Attribute::InlineHint
:
623 return bitc::ATTR_KIND_INLINE_HINT
;
624 case Attribute::InReg
:
625 return bitc::ATTR_KIND_IN_REG
;
626 case Attribute::JumpTable
:
627 return bitc::ATTR_KIND_JUMP_TABLE
;
628 case Attribute::MinSize
:
629 return bitc::ATTR_KIND_MIN_SIZE
;
630 case Attribute::Naked
:
631 return bitc::ATTR_KIND_NAKED
;
632 case Attribute::Nest
:
633 return bitc::ATTR_KIND_NEST
;
634 case Attribute::NoAlias
:
635 return bitc::ATTR_KIND_NO_ALIAS
;
636 case Attribute::NoBuiltin
:
637 return bitc::ATTR_KIND_NO_BUILTIN
;
638 case Attribute::NoCapture
:
639 return bitc::ATTR_KIND_NO_CAPTURE
;
640 case Attribute::NoDuplicate
:
641 return bitc::ATTR_KIND_NO_DUPLICATE
;
642 case Attribute::NoFree
:
643 return bitc::ATTR_KIND_NOFREE
;
644 case Attribute::NoImplicitFloat
:
645 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT
;
646 case Attribute::NoInline
:
647 return bitc::ATTR_KIND_NO_INLINE
;
648 case Attribute::NoRecurse
:
649 return bitc::ATTR_KIND_NO_RECURSE
;
650 case Attribute::NonLazyBind
:
651 return bitc::ATTR_KIND_NON_LAZY_BIND
;
652 case Attribute::NonNull
:
653 return bitc::ATTR_KIND_NON_NULL
;
654 case Attribute::Dereferenceable
:
655 return bitc::ATTR_KIND_DEREFERENCEABLE
;
656 case Attribute::DereferenceableOrNull
:
657 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL
;
658 case Attribute::NoRedZone
:
659 return bitc::ATTR_KIND_NO_RED_ZONE
;
660 case Attribute::NoReturn
:
661 return bitc::ATTR_KIND_NO_RETURN
;
662 case Attribute::NoSync
:
663 return bitc::ATTR_KIND_NOSYNC
;
664 case Attribute::NoCfCheck
:
665 return bitc::ATTR_KIND_NOCF_CHECK
;
666 case Attribute::NoUnwind
:
667 return bitc::ATTR_KIND_NO_UNWIND
;
668 case Attribute::OptForFuzzing
:
669 return bitc::ATTR_KIND_OPT_FOR_FUZZING
;
670 case Attribute::OptimizeForSize
:
671 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE
;
672 case Attribute::OptimizeNone
:
673 return bitc::ATTR_KIND_OPTIMIZE_NONE
;
674 case Attribute::ReadNone
:
675 return bitc::ATTR_KIND_READ_NONE
;
676 case Attribute::ReadOnly
:
677 return bitc::ATTR_KIND_READ_ONLY
;
678 case Attribute::Returned
:
679 return bitc::ATTR_KIND_RETURNED
;
680 case Attribute::ReturnsTwice
:
681 return bitc::ATTR_KIND_RETURNS_TWICE
;
682 case Attribute::SExt
:
683 return bitc::ATTR_KIND_S_EXT
;
684 case Attribute::Speculatable
:
685 return bitc::ATTR_KIND_SPECULATABLE
;
686 case Attribute::StackAlignment
:
687 return bitc::ATTR_KIND_STACK_ALIGNMENT
;
688 case Attribute::StackProtect
:
689 return bitc::ATTR_KIND_STACK_PROTECT
;
690 case Attribute::StackProtectReq
:
691 return bitc::ATTR_KIND_STACK_PROTECT_REQ
;
692 case Attribute::StackProtectStrong
:
693 return bitc::ATTR_KIND_STACK_PROTECT_STRONG
;
694 case Attribute::SafeStack
:
695 return bitc::ATTR_KIND_SAFESTACK
;
696 case Attribute::ShadowCallStack
:
697 return bitc::ATTR_KIND_SHADOWCALLSTACK
;
698 case Attribute::StrictFP
:
699 return bitc::ATTR_KIND_STRICT_FP
;
700 case Attribute::StructRet
:
701 return bitc::ATTR_KIND_STRUCT_RET
;
702 case Attribute::SanitizeAddress
:
703 return bitc::ATTR_KIND_SANITIZE_ADDRESS
;
704 case Attribute::SanitizeHWAddress
:
705 return bitc::ATTR_KIND_SANITIZE_HWADDRESS
;
706 case Attribute::SanitizeThread
:
707 return bitc::ATTR_KIND_SANITIZE_THREAD
;
708 case Attribute::SanitizeMemory
:
709 return bitc::ATTR_KIND_SANITIZE_MEMORY
;
710 case Attribute::SpeculativeLoadHardening
:
711 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING
;
712 case Attribute::SwiftError
:
713 return bitc::ATTR_KIND_SWIFT_ERROR
;
714 case Attribute::SwiftSelf
:
715 return bitc::ATTR_KIND_SWIFT_SELF
;
716 case Attribute::UWTable
:
717 return bitc::ATTR_KIND_UW_TABLE
;
718 case Attribute::WillReturn
:
719 return bitc::ATTR_KIND_WILLRETURN
;
720 case Attribute::WriteOnly
:
721 return bitc::ATTR_KIND_WRITEONLY
;
722 case Attribute::ZExt
:
723 return bitc::ATTR_KIND_Z_EXT
;
724 case Attribute::ImmArg
:
725 return bitc::ATTR_KIND_IMMARG
;
726 case Attribute::SanitizeMemTag
:
727 return bitc::ATTR_KIND_SANITIZE_MEMTAG
;
728 case Attribute::EndAttrKinds
:
729 llvm_unreachable("Can not encode end-attribute kinds marker.");
730 case Attribute::None
:
731 llvm_unreachable("Can not encode none-attribute.");
734 llvm_unreachable("Trying to encode unknown attribute");
737 void ModuleBitcodeWriter::writeAttributeGroupTable() {
738 const std::vector
<ValueEnumerator::IndexAndAttrSet
> &AttrGrps
=
739 VE
.getAttributeGroups();
740 if (AttrGrps
.empty()) return;
742 Stream
.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID
, 3);
744 SmallVector
<uint64_t, 64> Record
;
745 for (ValueEnumerator::IndexAndAttrSet Pair
: AttrGrps
) {
746 unsigned AttrListIndex
= Pair
.first
;
747 AttributeSet AS
= Pair
.second
;
748 Record
.push_back(VE
.getAttributeGroupID(Pair
));
749 Record
.push_back(AttrListIndex
);
751 for (Attribute Attr
: AS
) {
752 if (Attr
.isEnumAttribute()) {
754 Record
.push_back(getAttrKindEncoding(Attr
.getKindAsEnum()));
755 } else if (Attr
.isIntAttribute()) {
757 Record
.push_back(getAttrKindEncoding(Attr
.getKindAsEnum()));
758 Record
.push_back(Attr
.getValueAsInt());
759 } else if (Attr
.isStringAttribute()) {
760 StringRef Kind
= Attr
.getKindAsString();
761 StringRef Val
= Attr
.getValueAsString();
763 Record
.push_back(Val
.empty() ? 3 : 4);
764 Record
.append(Kind
.begin(), Kind
.end());
767 Record
.append(Val
.begin(), Val
.end());
771 assert(Attr
.isTypeAttribute());
772 Type
*Ty
= Attr
.getValueAsType();
773 Record
.push_back(Ty
? 6 : 5);
774 Record
.push_back(getAttrKindEncoding(Attr
.getKindAsEnum()));
776 Record
.push_back(VE
.getTypeID(Attr
.getValueAsType()));
780 Stream
.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY
, Record
);
787 void ModuleBitcodeWriter::writeAttributeTable() {
788 const std::vector
<AttributeList
> &Attrs
= VE
.getAttributeLists();
789 if (Attrs
.empty()) return;
791 Stream
.EnterSubblock(bitc::PARAMATTR_BLOCK_ID
, 3);
793 SmallVector
<uint64_t, 64> Record
;
794 for (unsigned i
= 0, e
= Attrs
.size(); i
!= e
; ++i
) {
795 AttributeList AL
= Attrs
[i
];
796 for (unsigned i
= AL
.index_begin(), e
= AL
.index_end(); i
!= e
; ++i
) {
797 AttributeSet AS
= AL
.getAttributes(i
);
798 if (AS
.hasAttributes())
799 Record
.push_back(VE
.getAttributeGroupID({i
, AS
}));
802 Stream
.EmitRecord(bitc::PARAMATTR_CODE_ENTRY
, Record
);
809 /// WriteTypeTable - Write out the type table for a module.
810 void ModuleBitcodeWriter::writeTypeTable() {
811 const ValueEnumerator::TypeList
&TypeList
= VE
.getTypes();
813 Stream
.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW
, 4 /*count from # abbrevs */);
814 SmallVector
<uint64_t, 64> TypeVals
;
816 uint64_t NumBits
= VE
.computeBitsRequiredForTypeIndicies();
818 // Abbrev for TYPE_CODE_POINTER.
819 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
820 Abbv
->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER
));
821 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, NumBits
));
822 Abbv
->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
823 unsigned PtrAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
825 // Abbrev for TYPE_CODE_FUNCTION.
826 Abbv
= std::make_shared
<BitCodeAbbrev
>();
827 Abbv
->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION
));
828 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1)); // isvararg
829 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
830 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, NumBits
));
831 unsigned FunctionAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
833 // Abbrev for TYPE_CODE_STRUCT_ANON.
834 Abbv
= std::make_shared
<BitCodeAbbrev
>();
835 Abbv
->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON
));
836 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1)); // ispacked
837 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
838 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, NumBits
));
839 unsigned StructAnonAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
841 // Abbrev for TYPE_CODE_STRUCT_NAME.
842 Abbv
= std::make_shared
<BitCodeAbbrev
>();
843 Abbv
->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME
));
844 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
845 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6
));
846 unsigned StructNameAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
848 // Abbrev for TYPE_CODE_STRUCT_NAMED.
849 Abbv
= std::make_shared
<BitCodeAbbrev
>();
850 Abbv
->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED
));
851 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1)); // ispacked
852 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
853 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, NumBits
));
854 unsigned StructNamedAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
856 // Abbrev for TYPE_CODE_ARRAY.
857 Abbv
= std::make_shared
<BitCodeAbbrev
>();
858 Abbv
->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY
));
859 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // size
860 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, NumBits
));
861 unsigned ArrayAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
863 // Emit an entry count so the reader can reserve space.
864 TypeVals
.push_back(TypeList
.size());
865 Stream
.EmitRecord(bitc::TYPE_CODE_NUMENTRY
, TypeVals
);
868 // Loop over all of the types, emitting each in turn.
869 for (unsigned i
= 0, e
= TypeList
.size(); i
!= e
; ++i
) {
870 Type
*T
= TypeList
[i
];
874 switch (T
->getTypeID()) {
875 case Type::VoidTyID
: Code
= bitc::TYPE_CODE_VOID
; break;
876 case Type::HalfTyID
: Code
= bitc::TYPE_CODE_HALF
; break;
877 case Type::FloatTyID
: Code
= bitc::TYPE_CODE_FLOAT
; break;
878 case Type::DoubleTyID
: Code
= bitc::TYPE_CODE_DOUBLE
; break;
879 case Type::X86_FP80TyID
: Code
= bitc::TYPE_CODE_X86_FP80
; break;
880 case Type::FP128TyID
: Code
= bitc::TYPE_CODE_FP128
; break;
881 case Type::PPC_FP128TyID
: Code
= bitc::TYPE_CODE_PPC_FP128
; break;
882 case Type::LabelTyID
: Code
= bitc::TYPE_CODE_LABEL
; break;
883 case Type::MetadataTyID
: Code
= bitc::TYPE_CODE_METADATA
; break;
884 case Type::X86_MMXTyID
: Code
= bitc::TYPE_CODE_X86_MMX
; break;
885 case Type::TokenTyID
: Code
= bitc::TYPE_CODE_TOKEN
; break;
886 case Type::IntegerTyID
:
888 Code
= bitc::TYPE_CODE_INTEGER
;
889 TypeVals
.push_back(cast
<IntegerType
>(T
)->getBitWidth());
891 case Type::PointerTyID
: {
892 PointerType
*PTy
= cast
<PointerType
>(T
);
893 // POINTER: [pointee type, address space]
894 Code
= bitc::TYPE_CODE_POINTER
;
895 TypeVals
.push_back(VE
.getTypeID(PTy
->getElementType()));
896 unsigned AddressSpace
= PTy
->getAddressSpace();
897 TypeVals
.push_back(AddressSpace
);
898 if (AddressSpace
== 0) AbbrevToUse
= PtrAbbrev
;
901 case Type::FunctionTyID
: {
902 FunctionType
*FT
= cast
<FunctionType
>(T
);
903 // FUNCTION: [isvararg, retty, paramty x N]
904 Code
= bitc::TYPE_CODE_FUNCTION
;
905 TypeVals
.push_back(FT
->isVarArg());
906 TypeVals
.push_back(VE
.getTypeID(FT
->getReturnType()));
907 for (unsigned i
= 0, e
= FT
->getNumParams(); i
!= e
; ++i
)
908 TypeVals
.push_back(VE
.getTypeID(FT
->getParamType(i
)));
909 AbbrevToUse
= FunctionAbbrev
;
912 case Type::StructTyID
: {
913 StructType
*ST
= cast
<StructType
>(T
);
914 // STRUCT: [ispacked, eltty x N]
915 TypeVals
.push_back(ST
->isPacked());
916 // Output all of the element types.
917 for (StructType::element_iterator I
= ST
->element_begin(),
918 E
= ST
->element_end(); I
!= E
; ++I
)
919 TypeVals
.push_back(VE
.getTypeID(*I
));
921 if (ST
->isLiteral()) {
922 Code
= bitc::TYPE_CODE_STRUCT_ANON
;
923 AbbrevToUse
= StructAnonAbbrev
;
925 if (ST
->isOpaque()) {
926 Code
= bitc::TYPE_CODE_OPAQUE
;
928 Code
= bitc::TYPE_CODE_STRUCT_NAMED
;
929 AbbrevToUse
= StructNamedAbbrev
;
932 // Emit the name if it is present.
933 if (!ST
->getName().empty())
934 writeStringRecord(Stream
, bitc::TYPE_CODE_STRUCT_NAME
, ST
->getName(),
939 case Type::ArrayTyID
: {
940 ArrayType
*AT
= cast
<ArrayType
>(T
);
941 // ARRAY: [numelts, eltty]
942 Code
= bitc::TYPE_CODE_ARRAY
;
943 TypeVals
.push_back(AT
->getNumElements());
944 TypeVals
.push_back(VE
.getTypeID(AT
->getElementType()));
945 AbbrevToUse
= ArrayAbbrev
;
948 case Type::VectorTyID
: {
949 VectorType
*VT
= cast
<VectorType
>(T
);
950 // VECTOR [numelts, eltty] or
951 // [numelts, eltty, scalable]
952 Code
= bitc::TYPE_CODE_VECTOR
;
953 TypeVals
.push_back(VT
->getNumElements());
954 TypeVals
.push_back(VE
.getTypeID(VT
->getElementType()));
955 if (VT
->isScalable())
956 TypeVals
.push_back(VT
->isScalable());
961 // Emit the finished record.
962 Stream
.EmitRecord(Code
, TypeVals
, AbbrevToUse
);
969 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage
) {
971 case GlobalValue::ExternalLinkage
:
973 case GlobalValue::WeakAnyLinkage
:
975 case GlobalValue::AppendingLinkage
:
977 case GlobalValue::InternalLinkage
:
979 case GlobalValue::LinkOnceAnyLinkage
:
981 case GlobalValue::ExternalWeakLinkage
:
983 case GlobalValue::CommonLinkage
:
985 case GlobalValue::PrivateLinkage
:
987 case GlobalValue::WeakODRLinkage
:
989 case GlobalValue::LinkOnceODRLinkage
:
991 case GlobalValue::AvailableExternallyLinkage
:
994 llvm_unreachable("Invalid linkage");
997 static unsigned getEncodedLinkage(const GlobalValue
&GV
) {
998 return getEncodedLinkage(GV
.getLinkage());
1001 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags
) {
1002 uint64_t RawFlags
= 0;
1003 RawFlags
|= Flags
.ReadNone
;
1004 RawFlags
|= (Flags
.ReadOnly
<< 1);
1005 RawFlags
|= (Flags
.NoRecurse
<< 2);
1006 RawFlags
|= (Flags
.ReturnDoesNotAlias
<< 3);
1007 RawFlags
|= (Flags
.NoInline
<< 4);
1011 // Decode the flags for GlobalValue in the summary
1012 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags
) {
1013 uint64_t RawFlags
= 0;
1015 RawFlags
|= Flags
.NotEligibleToImport
; // bool
1016 RawFlags
|= (Flags
.Live
<< 1);
1017 RawFlags
|= (Flags
.DSOLocal
<< 2);
1018 RawFlags
|= (Flags
.CanAutoHide
<< 3);
1020 // Linkage don't need to be remapped at that time for the summary. Any future
1021 // change to the getEncodedLinkage() function will need to be taken into
1022 // account here as well.
1023 RawFlags
= (RawFlags
<< 4) | Flags
.Linkage
; // 4 bits
1028 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags
) {
1029 uint64_t RawFlags
= Flags
.MaybeReadOnly
| (Flags
.MaybeWriteOnly
<< 1);
1033 static unsigned getEncodedVisibility(const GlobalValue
&GV
) {
1034 switch (GV
.getVisibility()) {
1035 case GlobalValue::DefaultVisibility
: return 0;
1036 case GlobalValue::HiddenVisibility
: return 1;
1037 case GlobalValue::ProtectedVisibility
: return 2;
1039 llvm_unreachable("Invalid visibility");
1042 static unsigned getEncodedDLLStorageClass(const GlobalValue
&GV
) {
1043 switch (GV
.getDLLStorageClass()) {
1044 case GlobalValue::DefaultStorageClass
: return 0;
1045 case GlobalValue::DLLImportStorageClass
: return 1;
1046 case GlobalValue::DLLExportStorageClass
: return 2;
1048 llvm_unreachable("Invalid DLL storage class");
1051 static unsigned getEncodedThreadLocalMode(const GlobalValue
&GV
) {
1052 switch (GV
.getThreadLocalMode()) {
1053 case GlobalVariable::NotThreadLocal
: return 0;
1054 case GlobalVariable::GeneralDynamicTLSModel
: return 1;
1055 case GlobalVariable::LocalDynamicTLSModel
: return 2;
1056 case GlobalVariable::InitialExecTLSModel
: return 3;
1057 case GlobalVariable::LocalExecTLSModel
: return 4;
1059 llvm_unreachable("Invalid TLS model");
1062 static unsigned getEncodedComdatSelectionKind(const Comdat
&C
) {
1063 switch (C
.getSelectionKind()) {
1065 return bitc::COMDAT_SELECTION_KIND_ANY
;
1066 case Comdat::ExactMatch
:
1067 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH
;
1068 case Comdat::Largest
:
1069 return bitc::COMDAT_SELECTION_KIND_LARGEST
;
1070 case Comdat::NoDuplicates
:
1071 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES
;
1072 case Comdat::SameSize
:
1073 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE
;
1075 llvm_unreachable("Invalid selection kind");
1078 static unsigned getEncodedUnnamedAddr(const GlobalValue
&GV
) {
1079 switch (GV
.getUnnamedAddr()) {
1080 case GlobalValue::UnnamedAddr::None
: return 0;
1081 case GlobalValue::UnnamedAddr::Local
: return 2;
1082 case GlobalValue::UnnamedAddr::Global
: return 1;
1084 llvm_unreachable("Invalid unnamed_addr");
1087 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str
) {
1090 return StrtabBuilder
.add(Str
);
1093 void ModuleBitcodeWriter::writeComdats() {
1094 SmallVector
<unsigned, 64> Vals
;
1095 for (const Comdat
*C
: VE
.getComdats()) {
1096 // COMDAT: [strtab offset, strtab size, selection_kind]
1097 Vals
.push_back(addToStrtab(C
->getName()));
1098 Vals
.push_back(C
->getName().size());
1099 Vals
.push_back(getEncodedComdatSelectionKind(*C
));
1100 Stream
.EmitRecord(bitc::MODULE_CODE_COMDAT
, Vals
, /*AbbrevToUse=*/0);
1105 /// Write a record that will eventually hold the word offset of the
1106 /// module-level VST. For now the offset is 0, which will be backpatched
1107 /// after the real VST is written. Saves the bit offset to backpatch.
1108 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
1109 // Write a placeholder value in for the offset of the real VST,
1110 // which is written after the function blocks so that it can include
1111 // the offset of each function. The placeholder offset will be
1112 // updated when the real VST is written.
1113 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
1114 Abbv
->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET
));
1115 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1116 // hold the real VST offset. Must use fixed instead of VBR as we don't
1117 // know how many VBR chunks to reserve ahead of time.
1118 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
1119 unsigned VSTOffsetAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
1121 // Emit the placeholder
1122 uint64_t Vals
[] = {bitc::MODULE_CODE_VSTOFFSET
, 0};
1123 Stream
.EmitRecordWithAbbrev(VSTOffsetAbbrev
, Vals
);
1125 // Compute and save the bit offset to the placeholder, which will be
1126 // patched when the real VST is written. We can simply subtract the 32-bit
1127 // fixed size from the current bit number to get the location to backpatch.
1128 VSTOffsetPlaceholder
= Stream
.GetCurrentBitNo() - 32;
1131 enum StringEncoding
{ SE_Char6
, SE_Fixed7
, SE_Fixed8
};
1133 /// Determine the encoding to use for the given string name and length.
1134 static StringEncoding
getStringEncoding(StringRef Str
) {
1135 bool isChar6
= true;
1136 for (char C
: Str
) {
1138 isChar6
= BitCodeAbbrevOp::isChar6(C
);
1139 if ((unsigned char)C
& 128)
1140 // don't bother scanning the rest.
1148 /// Emit top-level description of module, including target triple, inline asm,
1149 /// descriptors for global variables, and function prototype info.
1150 /// Returns the bit offset to backpatch with the location of the real VST.
1151 void ModuleBitcodeWriter::writeModuleInfo() {
1152 // Emit various pieces of data attached to a module.
1153 if (!M
.getTargetTriple().empty())
1154 writeStringRecord(Stream
, bitc::MODULE_CODE_TRIPLE
, M
.getTargetTriple(),
1156 const std::string
&DL
= M
.getDataLayoutStr();
1158 writeStringRecord(Stream
, bitc::MODULE_CODE_DATALAYOUT
, DL
, 0 /*TODO*/);
1159 if (!M
.getModuleInlineAsm().empty())
1160 writeStringRecord(Stream
, bitc::MODULE_CODE_ASM
, M
.getModuleInlineAsm(),
1163 // Emit information about sections and GC, computing how many there are. Also
1164 // compute the maximum alignment value.
1165 std::map
<std::string
, unsigned> SectionMap
;
1166 std::map
<std::string
, unsigned> GCMap
;
1167 unsigned MaxAlignment
= 0;
1168 unsigned MaxGlobalType
= 0;
1169 for (const GlobalValue
&GV
: M
.globals()) {
1170 MaxAlignment
= std::max(MaxAlignment
, GV
.getAlignment());
1171 MaxGlobalType
= std::max(MaxGlobalType
, VE
.getTypeID(GV
.getValueType()));
1172 if (GV
.hasSection()) {
1173 // Give section names unique ID's.
1174 unsigned &Entry
= SectionMap
[GV
.getSection()];
1176 writeStringRecord(Stream
, bitc::MODULE_CODE_SECTIONNAME
, GV
.getSection(),
1178 Entry
= SectionMap
.size();
1182 for (const Function
&F
: M
) {
1183 MaxAlignment
= std::max(MaxAlignment
, F
.getAlignment());
1184 if (F
.hasSection()) {
1185 // Give section names unique ID's.
1186 unsigned &Entry
= SectionMap
[F
.getSection()];
1188 writeStringRecord(Stream
, bitc::MODULE_CODE_SECTIONNAME
, F
.getSection(),
1190 Entry
= SectionMap
.size();
1194 // Same for GC names.
1195 unsigned &Entry
= GCMap
[F
.getGC()];
1197 writeStringRecord(Stream
, bitc::MODULE_CODE_GCNAME
, F
.getGC(),
1199 Entry
= GCMap
.size();
1204 // Emit abbrev for globals, now that we know # sections and max alignment.
1205 unsigned SimpleGVarAbbrev
= 0;
1206 if (!M
.global_empty()) {
1207 // Add an abbrev for common globals with no visibility or thread localness.
1208 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
1209 Abbv
->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR
));
1210 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
1211 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
1212 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
,
1213 Log2_32_Ceil(MaxGlobalType
+1)));
1214 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // AddrSpace << 2
1215 //| explicitType << 1
1217 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // Initializer.
1218 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 5)); // Linkage.
1219 if (MaxAlignment
== 0) // Alignment.
1220 Abbv
->Add(BitCodeAbbrevOp(0));
1222 unsigned MaxEncAlignment
= Log2_32(MaxAlignment
)+1;
1223 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
,
1224 Log2_32_Ceil(MaxEncAlignment
+1)));
1226 if (SectionMap
.empty()) // Section.
1227 Abbv
->Add(BitCodeAbbrevOp(0));
1229 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
,
1230 Log2_32_Ceil(SectionMap
.size()+1)));
1231 // Don't bother emitting vis + thread local.
1232 SimpleGVarAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
1235 SmallVector
<unsigned, 64> Vals
;
1236 // Emit the module's source file name.
1238 StringEncoding Bits
= getStringEncoding(M
.getSourceFileName());
1239 BitCodeAbbrevOp AbbrevOpToUse
= BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 8);
1240 if (Bits
== SE_Char6
)
1241 AbbrevOpToUse
= BitCodeAbbrevOp(BitCodeAbbrevOp::Char6
);
1242 else if (Bits
== SE_Fixed7
)
1243 AbbrevOpToUse
= BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 7);
1245 // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1246 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
1247 Abbv
->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME
));
1248 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
1249 Abbv
->Add(AbbrevOpToUse
);
1250 unsigned FilenameAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
1252 for (const auto P
: M
.getSourceFileName())
1253 Vals
.push_back((unsigned char)P
);
1255 // Emit the finished record.
1256 Stream
.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME
, Vals
, FilenameAbbrev
);
1260 // Emit the global variable information.
1261 for (const GlobalVariable
&GV
: M
.globals()) {
1262 unsigned AbbrevToUse
= 0;
1264 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
1265 // linkage, alignment, section, visibility, threadlocal,
1266 // unnamed_addr, externally_initialized, dllstorageclass,
1267 // comdat, attributes, DSO_Local]
1268 Vals
.push_back(addToStrtab(GV
.getName()));
1269 Vals
.push_back(GV
.getName().size());
1270 Vals
.push_back(VE
.getTypeID(GV
.getValueType()));
1271 Vals
.push_back(GV
.getType()->getAddressSpace() << 2 | 2 | GV
.isConstant());
1272 Vals
.push_back(GV
.isDeclaration() ? 0 :
1273 (VE
.getValueID(GV
.getInitializer()) + 1));
1274 Vals
.push_back(getEncodedLinkage(GV
));
1275 Vals
.push_back(Log2_32(GV
.getAlignment())+1);
1276 Vals
.push_back(GV
.hasSection() ? SectionMap
[GV
.getSection()] : 0);
1277 if (GV
.isThreadLocal() ||
1278 GV
.getVisibility() != GlobalValue::DefaultVisibility
||
1279 GV
.getUnnamedAddr() != GlobalValue::UnnamedAddr::None
||
1280 GV
.isExternallyInitialized() ||
1281 GV
.getDLLStorageClass() != GlobalValue::DefaultStorageClass
||
1283 GV
.hasAttributes() ||
1285 GV
.hasPartition()) {
1286 Vals
.push_back(getEncodedVisibility(GV
));
1287 Vals
.push_back(getEncodedThreadLocalMode(GV
));
1288 Vals
.push_back(getEncodedUnnamedAddr(GV
));
1289 Vals
.push_back(GV
.isExternallyInitialized());
1290 Vals
.push_back(getEncodedDLLStorageClass(GV
));
1291 Vals
.push_back(GV
.hasComdat() ? VE
.getComdatID(GV
.getComdat()) : 0);
1293 auto AL
= GV
.getAttributesAsList(AttributeList::FunctionIndex
);
1294 Vals
.push_back(VE
.getAttributeListID(AL
));
1296 Vals
.push_back(GV
.isDSOLocal());
1297 Vals
.push_back(addToStrtab(GV
.getPartition()));
1298 Vals
.push_back(GV
.getPartition().size());
1300 AbbrevToUse
= SimpleGVarAbbrev
;
1303 Stream
.EmitRecord(bitc::MODULE_CODE_GLOBALVAR
, Vals
, AbbrevToUse
);
1307 // Emit the function proto information.
1308 for (const Function
&F
: M
) {
1309 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto,
1310 // linkage, paramattrs, alignment, section, visibility, gc,
1311 // unnamed_addr, prologuedata, dllstorageclass, comdat,
1312 // prefixdata, personalityfn, DSO_Local, addrspace]
1313 Vals
.push_back(addToStrtab(F
.getName()));
1314 Vals
.push_back(F
.getName().size());
1315 Vals
.push_back(VE
.getTypeID(F
.getFunctionType()));
1316 Vals
.push_back(F
.getCallingConv());
1317 Vals
.push_back(F
.isDeclaration());
1318 Vals
.push_back(getEncodedLinkage(F
));
1319 Vals
.push_back(VE
.getAttributeListID(F
.getAttributes()));
1320 Vals
.push_back(Log2_32(F
.getAlignment())+1);
1321 Vals
.push_back(F
.hasSection() ? SectionMap
[F
.getSection()] : 0);
1322 Vals
.push_back(getEncodedVisibility(F
));
1323 Vals
.push_back(F
.hasGC() ? GCMap
[F
.getGC()] : 0);
1324 Vals
.push_back(getEncodedUnnamedAddr(F
));
1325 Vals
.push_back(F
.hasPrologueData() ? (VE
.getValueID(F
.getPrologueData()) + 1)
1327 Vals
.push_back(getEncodedDLLStorageClass(F
));
1328 Vals
.push_back(F
.hasComdat() ? VE
.getComdatID(F
.getComdat()) : 0);
1329 Vals
.push_back(F
.hasPrefixData() ? (VE
.getValueID(F
.getPrefixData()) + 1)
1332 F
.hasPersonalityFn() ? (VE
.getValueID(F
.getPersonalityFn()) + 1) : 0);
1334 Vals
.push_back(F
.isDSOLocal());
1335 Vals
.push_back(F
.getAddressSpace());
1336 Vals
.push_back(addToStrtab(F
.getPartition()));
1337 Vals
.push_back(F
.getPartition().size());
1339 unsigned AbbrevToUse
= 0;
1340 Stream
.EmitRecord(bitc::MODULE_CODE_FUNCTION
, Vals
, AbbrevToUse
);
1344 // Emit the alias information.
1345 for (const GlobalAlias
&A
: M
.aliases()) {
1346 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
1347 // visibility, dllstorageclass, threadlocal, unnamed_addr,
1349 Vals
.push_back(addToStrtab(A
.getName()));
1350 Vals
.push_back(A
.getName().size());
1351 Vals
.push_back(VE
.getTypeID(A
.getValueType()));
1352 Vals
.push_back(A
.getType()->getAddressSpace());
1353 Vals
.push_back(VE
.getValueID(A
.getAliasee()));
1354 Vals
.push_back(getEncodedLinkage(A
));
1355 Vals
.push_back(getEncodedVisibility(A
));
1356 Vals
.push_back(getEncodedDLLStorageClass(A
));
1357 Vals
.push_back(getEncodedThreadLocalMode(A
));
1358 Vals
.push_back(getEncodedUnnamedAddr(A
));
1359 Vals
.push_back(A
.isDSOLocal());
1360 Vals
.push_back(addToStrtab(A
.getPartition()));
1361 Vals
.push_back(A
.getPartition().size());
1363 unsigned AbbrevToUse
= 0;
1364 Stream
.EmitRecord(bitc::MODULE_CODE_ALIAS
, Vals
, AbbrevToUse
);
1368 // Emit the ifunc information.
1369 for (const GlobalIFunc
&I
: M
.ifuncs()) {
1370 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
1371 // val#, linkage, visibility, DSO_Local]
1372 Vals
.push_back(addToStrtab(I
.getName()));
1373 Vals
.push_back(I
.getName().size());
1374 Vals
.push_back(VE
.getTypeID(I
.getValueType()));
1375 Vals
.push_back(I
.getType()->getAddressSpace());
1376 Vals
.push_back(VE
.getValueID(I
.getResolver()));
1377 Vals
.push_back(getEncodedLinkage(I
));
1378 Vals
.push_back(getEncodedVisibility(I
));
1379 Vals
.push_back(I
.isDSOLocal());
1380 Vals
.push_back(addToStrtab(I
.getPartition()));
1381 Vals
.push_back(I
.getPartition().size());
1382 Stream
.EmitRecord(bitc::MODULE_CODE_IFUNC
, Vals
);
1386 writeValueSymbolTableForwardDecl();
1389 static uint64_t getOptimizationFlags(const Value
*V
) {
1392 if (const auto *OBO
= dyn_cast
<OverflowingBinaryOperator
>(V
)) {
1393 if (OBO
->hasNoSignedWrap())
1394 Flags
|= 1 << bitc::OBO_NO_SIGNED_WRAP
;
1395 if (OBO
->hasNoUnsignedWrap())
1396 Flags
|= 1 << bitc::OBO_NO_UNSIGNED_WRAP
;
1397 } else if (const auto *PEO
= dyn_cast
<PossiblyExactOperator
>(V
)) {
1399 Flags
|= 1 << bitc::PEO_EXACT
;
1400 } else if (const auto *FPMO
= dyn_cast
<FPMathOperator
>(V
)) {
1401 if (FPMO
->hasAllowReassoc())
1402 Flags
|= bitc::AllowReassoc
;
1403 if (FPMO
->hasNoNaNs())
1404 Flags
|= bitc::NoNaNs
;
1405 if (FPMO
->hasNoInfs())
1406 Flags
|= bitc::NoInfs
;
1407 if (FPMO
->hasNoSignedZeros())
1408 Flags
|= bitc::NoSignedZeros
;
1409 if (FPMO
->hasAllowReciprocal())
1410 Flags
|= bitc::AllowReciprocal
;
1411 if (FPMO
->hasAllowContract())
1412 Flags
|= bitc::AllowContract
;
1413 if (FPMO
->hasApproxFunc())
1414 Flags
|= bitc::ApproxFunc
;
1420 void ModuleBitcodeWriter::writeValueAsMetadata(
1421 const ValueAsMetadata
*MD
, SmallVectorImpl
<uint64_t> &Record
) {
1422 // Mimic an MDNode with a value as one operand.
1423 Value
*V
= MD
->getValue();
1424 Record
.push_back(VE
.getTypeID(V
->getType()));
1425 Record
.push_back(VE
.getValueID(V
));
1426 Stream
.EmitRecord(bitc::METADATA_VALUE
, Record
, 0);
1430 void ModuleBitcodeWriter::writeMDTuple(const MDTuple
*N
,
1431 SmallVectorImpl
<uint64_t> &Record
,
1433 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
1434 Metadata
*MD
= N
->getOperand(i
);
1435 assert(!(MD
&& isa
<LocalAsMetadata
>(MD
)) &&
1436 "Unexpected function-local metadata");
1437 Record
.push_back(VE
.getMetadataOrNullID(MD
));
1439 Stream
.EmitRecord(N
->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1440 : bitc::METADATA_NODE
,
1445 unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1446 // Assume the column is usually under 128, and always output the inlined-at
1447 // location (it's never more expensive than building an array size 1).
1448 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
1449 Abbv
->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION
));
1450 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1));
1451 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
1452 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
1453 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
1454 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
1455 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1));
1456 return Stream
.EmitAbbrev(std::move(Abbv
));
1459 void ModuleBitcodeWriter::writeDILocation(const DILocation
*N
,
1460 SmallVectorImpl
<uint64_t> &Record
,
1463 Abbrev
= createDILocationAbbrev();
1465 Record
.push_back(N
->isDistinct());
1466 Record
.push_back(N
->getLine());
1467 Record
.push_back(N
->getColumn());
1468 Record
.push_back(VE
.getMetadataID(N
->getScope()));
1469 Record
.push_back(VE
.getMetadataOrNullID(N
->getInlinedAt()));
1470 Record
.push_back(N
->isImplicitCode());
1472 Stream
.EmitRecord(bitc::METADATA_LOCATION
, Record
, Abbrev
);
1476 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1477 // Assume the column is usually under 128, and always output the inlined-at
1478 // location (it's never more expensive than building an array size 1).
1479 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
1480 Abbv
->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG
));
1481 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1));
1482 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
1483 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1));
1484 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
1485 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
1486 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
1487 return Stream
.EmitAbbrev(std::move(Abbv
));
1490 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode
*N
,
1491 SmallVectorImpl
<uint64_t> &Record
,
1494 Abbrev
= createGenericDINodeAbbrev();
1496 Record
.push_back(N
->isDistinct());
1497 Record
.push_back(N
->getTag());
1498 Record
.push_back(0); // Per-tag version field; unused for now.
1500 for (auto &I
: N
->operands())
1501 Record
.push_back(VE
.getMetadataOrNullID(I
));
1503 Stream
.EmitRecord(bitc::METADATA_GENERIC_DEBUG
, Record
, Abbrev
);
1507 static uint64_t rotateSign(int64_t I
) {
1509 return I
< 0 ? ~(U
<< 1) : U
<< 1;
1512 void ModuleBitcodeWriter::writeDISubrange(const DISubrange
*N
,
1513 SmallVectorImpl
<uint64_t> &Record
,
1515 const uint64_t Version
= 1 << 1;
1516 Record
.push_back((uint64_t)N
->isDistinct() | Version
);
1517 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawCountNode()));
1518 Record
.push_back(rotateSign(N
->getLowerBound()));
1520 Stream
.EmitRecord(bitc::METADATA_SUBRANGE
, Record
, Abbrev
);
1524 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator
*N
,
1525 SmallVectorImpl
<uint64_t> &Record
,
1527 Record
.push_back((N
->isUnsigned() << 1) | N
->isDistinct());
1528 Record
.push_back(rotateSign(N
->getValue()));
1529 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1531 Stream
.EmitRecord(bitc::METADATA_ENUMERATOR
, Record
, Abbrev
);
1535 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType
*N
,
1536 SmallVectorImpl
<uint64_t> &Record
,
1538 Record
.push_back(N
->isDistinct());
1539 Record
.push_back(N
->getTag());
1540 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1541 Record
.push_back(N
->getSizeInBits());
1542 Record
.push_back(N
->getAlignInBits());
1543 Record
.push_back(N
->getEncoding());
1544 Record
.push_back(N
->getFlags());
1546 Stream
.EmitRecord(bitc::METADATA_BASIC_TYPE
, Record
, Abbrev
);
1550 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType
*N
,
1551 SmallVectorImpl
<uint64_t> &Record
,
1553 Record
.push_back(N
->isDistinct());
1554 Record
.push_back(N
->getTag());
1555 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1556 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
1557 Record
.push_back(N
->getLine());
1558 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
1559 Record
.push_back(VE
.getMetadataOrNullID(N
->getBaseType()));
1560 Record
.push_back(N
->getSizeInBits());
1561 Record
.push_back(N
->getAlignInBits());
1562 Record
.push_back(N
->getOffsetInBits());
1563 Record
.push_back(N
->getFlags());
1564 Record
.push_back(VE
.getMetadataOrNullID(N
->getExtraData()));
1566 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
1567 // that there is no DWARF address space associated with DIDerivedType.
1568 if (const auto &DWARFAddressSpace
= N
->getDWARFAddressSpace())
1569 Record
.push_back(*DWARFAddressSpace
+ 1);
1571 Record
.push_back(0);
1573 Stream
.EmitRecord(bitc::METADATA_DERIVED_TYPE
, Record
, Abbrev
);
1577 void ModuleBitcodeWriter::writeDICompositeType(
1578 const DICompositeType
*N
, SmallVectorImpl
<uint64_t> &Record
,
1580 const unsigned IsNotUsedInOldTypeRef
= 0x2;
1581 Record
.push_back(IsNotUsedInOldTypeRef
| (unsigned)N
->isDistinct());
1582 Record
.push_back(N
->getTag());
1583 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1584 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
1585 Record
.push_back(N
->getLine());
1586 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
1587 Record
.push_back(VE
.getMetadataOrNullID(N
->getBaseType()));
1588 Record
.push_back(N
->getSizeInBits());
1589 Record
.push_back(N
->getAlignInBits());
1590 Record
.push_back(N
->getOffsetInBits());
1591 Record
.push_back(N
->getFlags());
1592 Record
.push_back(VE
.getMetadataOrNullID(N
->getElements().get()));
1593 Record
.push_back(N
->getRuntimeLang());
1594 Record
.push_back(VE
.getMetadataOrNullID(N
->getVTableHolder()));
1595 Record
.push_back(VE
.getMetadataOrNullID(N
->getTemplateParams().get()));
1596 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawIdentifier()));
1597 Record
.push_back(VE
.getMetadataOrNullID(N
->getDiscriminator()));
1599 Stream
.EmitRecord(bitc::METADATA_COMPOSITE_TYPE
, Record
, Abbrev
);
1603 void ModuleBitcodeWriter::writeDISubroutineType(
1604 const DISubroutineType
*N
, SmallVectorImpl
<uint64_t> &Record
,
1606 const unsigned HasNoOldTypeRefs
= 0x2;
1607 Record
.push_back(HasNoOldTypeRefs
| (unsigned)N
->isDistinct());
1608 Record
.push_back(N
->getFlags());
1609 Record
.push_back(VE
.getMetadataOrNullID(N
->getTypeArray().get()));
1610 Record
.push_back(N
->getCC());
1612 Stream
.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE
, Record
, Abbrev
);
1616 void ModuleBitcodeWriter::writeDIFile(const DIFile
*N
,
1617 SmallVectorImpl
<uint64_t> &Record
,
1619 Record
.push_back(N
->isDistinct());
1620 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawFilename()));
1621 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawDirectory()));
1622 if (N
->getRawChecksum()) {
1623 Record
.push_back(N
->getRawChecksum()->Kind
);
1624 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawChecksum()->Value
));
1626 // Maintain backwards compatibility with the old internal representation of
1627 // CSK_None in ChecksumKind by writing nulls here when Checksum is None.
1628 Record
.push_back(0);
1629 Record
.push_back(VE
.getMetadataOrNullID(nullptr));
1631 auto Source
= N
->getRawSource();
1633 Record
.push_back(VE
.getMetadataOrNullID(*Source
));
1635 Stream
.EmitRecord(bitc::METADATA_FILE
, Record
, Abbrev
);
1639 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit
*N
,
1640 SmallVectorImpl
<uint64_t> &Record
,
1642 assert(N
->isDistinct() && "Expected distinct compile units");
1643 Record
.push_back(/* IsDistinct */ true);
1644 Record
.push_back(N
->getSourceLanguage());
1645 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
1646 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawProducer()));
1647 Record
.push_back(N
->isOptimized());
1648 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawFlags()));
1649 Record
.push_back(N
->getRuntimeVersion());
1650 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawSplitDebugFilename()));
1651 Record
.push_back(N
->getEmissionKind());
1652 Record
.push_back(VE
.getMetadataOrNullID(N
->getEnumTypes().get()));
1653 Record
.push_back(VE
.getMetadataOrNullID(N
->getRetainedTypes().get()));
1654 Record
.push_back(/* subprograms */ 0);
1655 Record
.push_back(VE
.getMetadataOrNullID(N
->getGlobalVariables().get()));
1656 Record
.push_back(VE
.getMetadataOrNullID(N
->getImportedEntities().get()));
1657 Record
.push_back(N
->getDWOId());
1658 Record
.push_back(VE
.getMetadataOrNullID(N
->getMacros().get()));
1659 Record
.push_back(N
->getSplitDebugInlining());
1660 Record
.push_back(N
->getDebugInfoForProfiling());
1661 Record
.push_back((unsigned)N
->getNameTableKind());
1663 Stream
.EmitRecord(bitc::METADATA_COMPILE_UNIT
, Record
, Abbrev
);
1667 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram
*N
,
1668 SmallVectorImpl
<uint64_t> &Record
,
1670 const uint64_t HasUnitFlag
= 1 << 1;
1671 const uint64_t HasSPFlagsFlag
= 1 << 2;
1672 Record
.push_back(uint64_t(N
->isDistinct()) | HasUnitFlag
| HasSPFlagsFlag
);
1673 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
1674 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1675 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawLinkageName()));
1676 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
1677 Record
.push_back(N
->getLine());
1678 Record
.push_back(VE
.getMetadataOrNullID(N
->getType()));
1679 Record
.push_back(N
->getScopeLine());
1680 Record
.push_back(VE
.getMetadataOrNullID(N
->getContainingType()));
1681 Record
.push_back(N
->getSPFlags());
1682 Record
.push_back(N
->getVirtualIndex());
1683 Record
.push_back(N
->getFlags());
1684 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawUnit()));
1685 Record
.push_back(VE
.getMetadataOrNullID(N
->getTemplateParams().get()));
1686 Record
.push_back(VE
.getMetadataOrNullID(N
->getDeclaration()));
1687 Record
.push_back(VE
.getMetadataOrNullID(N
->getRetainedNodes().get()));
1688 Record
.push_back(N
->getThisAdjustment());
1689 Record
.push_back(VE
.getMetadataOrNullID(N
->getThrownTypes().get()));
1691 Stream
.EmitRecord(bitc::METADATA_SUBPROGRAM
, Record
, Abbrev
);
1695 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock
*N
,
1696 SmallVectorImpl
<uint64_t> &Record
,
1698 Record
.push_back(N
->isDistinct());
1699 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
1700 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
1701 Record
.push_back(N
->getLine());
1702 Record
.push_back(N
->getColumn());
1704 Stream
.EmitRecord(bitc::METADATA_LEXICAL_BLOCK
, Record
, Abbrev
);
1708 void ModuleBitcodeWriter::writeDILexicalBlockFile(
1709 const DILexicalBlockFile
*N
, SmallVectorImpl
<uint64_t> &Record
,
1711 Record
.push_back(N
->isDistinct());
1712 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
1713 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
1714 Record
.push_back(N
->getDiscriminator());
1716 Stream
.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE
, Record
, Abbrev
);
1720 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock
*N
,
1721 SmallVectorImpl
<uint64_t> &Record
,
1723 Record
.push_back(N
->isDistinct());
1724 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
1725 Record
.push_back(VE
.getMetadataOrNullID(N
->getDecl()));
1726 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1727 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
1728 Record
.push_back(N
->getLineNo());
1730 Stream
.EmitRecord(bitc::METADATA_COMMON_BLOCK
, Record
, Abbrev
);
1734 void ModuleBitcodeWriter::writeDINamespace(const DINamespace
*N
,
1735 SmallVectorImpl
<uint64_t> &Record
,
1737 Record
.push_back(N
->isDistinct() | N
->getExportSymbols() << 1);
1738 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
1739 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1741 Stream
.EmitRecord(bitc::METADATA_NAMESPACE
, Record
, Abbrev
);
1745 void ModuleBitcodeWriter::writeDIMacro(const DIMacro
*N
,
1746 SmallVectorImpl
<uint64_t> &Record
,
1748 Record
.push_back(N
->isDistinct());
1749 Record
.push_back(N
->getMacinfoType());
1750 Record
.push_back(N
->getLine());
1751 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1752 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawValue()));
1754 Stream
.EmitRecord(bitc::METADATA_MACRO
, Record
, Abbrev
);
1758 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile
*N
,
1759 SmallVectorImpl
<uint64_t> &Record
,
1761 Record
.push_back(N
->isDistinct());
1762 Record
.push_back(N
->getMacinfoType());
1763 Record
.push_back(N
->getLine());
1764 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
1765 Record
.push_back(VE
.getMetadataOrNullID(N
->getElements().get()));
1767 Stream
.EmitRecord(bitc::METADATA_MACRO_FILE
, Record
, Abbrev
);
1771 void ModuleBitcodeWriter::writeDIModule(const DIModule
*N
,
1772 SmallVectorImpl
<uint64_t> &Record
,
1774 Record
.push_back(N
->isDistinct());
1775 for (auto &I
: N
->operands())
1776 Record
.push_back(VE
.getMetadataOrNullID(I
));
1778 Stream
.EmitRecord(bitc::METADATA_MODULE
, Record
, Abbrev
);
1782 void ModuleBitcodeWriter::writeDITemplateTypeParameter(
1783 const DITemplateTypeParameter
*N
, SmallVectorImpl
<uint64_t> &Record
,
1785 Record
.push_back(N
->isDistinct());
1786 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1787 Record
.push_back(VE
.getMetadataOrNullID(N
->getType()));
1789 Stream
.EmitRecord(bitc::METADATA_TEMPLATE_TYPE
, Record
, Abbrev
);
1793 void ModuleBitcodeWriter::writeDITemplateValueParameter(
1794 const DITemplateValueParameter
*N
, SmallVectorImpl
<uint64_t> &Record
,
1796 Record
.push_back(N
->isDistinct());
1797 Record
.push_back(N
->getTag());
1798 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1799 Record
.push_back(VE
.getMetadataOrNullID(N
->getType()));
1800 Record
.push_back(VE
.getMetadataOrNullID(N
->getValue()));
1802 Stream
.EmitRecord(bitc::METADATA_TEMPLATE_VALUE
, Record
, Abbrev
);
1806 void ModuleBitcodeWriter::writeDIGlobalVariable(
1807 const DIGlobalVariable
*N
, SmallVectorImpl
<uint64_t> &Record
,
1809 const uint64_t Version
= 2 << 1;
1810 Record
.push_back((uint64_t)N
->isDistinct() | Version
);
1811 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
1812 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1813 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawLinkageName()));
1814 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
1815 Record
.push_back(N
->getLine());
1816 Record
.push_back(VE
.getMetadataOrNullID(N
->getType()));
1817 Record
.push_back(N
->isLocalToUnit());
1818 Record
.push_back(N
->isDefinition());
1819 Record
.push_back(VE
.getMetadataOrNullID(N
->getStaticDataMemberDeclaration()));
1820 Record
.push_back(VE
.getMetadataOrNullID(N
->getTemplateParams()));
1821 Record
.push_back(N
->getAlignInBits());
1823 Stream
.EmitRecord(bitc::METADATA_GLOBAL_VAR
, Record
, Abbrev
);
1827 void ModuleBitcodeWriter::writeDILocalVariable(
1828 const DILocalVariable
*N
, SmallVectorImpl
<uint64_t> &Record
,
1830 // In order to support all possible bitcode formats in BitcodeReader we need
1831 // to distinguish the following cases:
1832 // 1) Record has no artificial tag (Record[1]),
1833 // has no obsolete inlinedAt field (Record[9]).
1834 // In this case Record size will be 8, HasAlignment flag is false.
1835 // 2) Record has artificial tag (Record[1]),
1836 // has no obsolete inlignedAt field (Record[9]).
1837 // In this case Record size will be 9, HasAlignment flag is false.
1838 // 3) Record has both artificial tag (Record[1]) and
1839 // obsolete inlignedAt field (Record[9]).
1840 // In this case Record size will be 10, HasAlignment flag is false.
1841 // 4) Record has neither artificial tag, nor inlignedAt field, but
1842 // HasAlignment flag is true and Record[8] contains alignment value.
1843 const uint64_t HasAlignmentFlag
= 1 << 1;
1844 Record
.push_back((uint64_t)N
->isDistinct() | HasAlignmentFlag
);
1845 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
1846 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1847 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
1848 Record
.push_back(N
->getLine());
1849 Record
.push_back(VE
.getMetadataOrNullID(N
->getType()));
1850 Record
.push_back(N
->getArg());
1851 Record
.push_back(N
->getFlags());
1852 Record
.push_back(N
->getAlignInBits());
1854 Stream
.EmitRecord(bitc::METADATA_LOCAL_VAR
, Record
, Abbrev
);
1858 void ModuleBitcodeWriter::writeDILabel(
1859 const DILabel
*N
, SmallVectorImpl
<uint64_t> &Record
,
1861 Record
.push_back((uint64_t)N
->isDistinct());
1862 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
1863 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1864 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
1865 Record
.push_back(N
->getLine());
1867 Stream
.EmitRecord(bitc::METADATA_LABEL
, Record
, Abbrev
);
1871 void ModuleBitcodeWriter::writeDIExpression(const DIExpression
*N
,
1872 SmallVectorImpl
<uint64_t> &Record
,
1874 Record
.reserve(N
->getElements().size() + 1);
1875 const uint64_t Version
= 3 << 1;
1876 Record
.push_back((uint64_t)N
->isDistinct() | Version
);
1877 Record
.append(N
->elements_begin(), N
->elements_end());
1879 Stream
.EmitRecord(bitc::METADATA_EXPRESSION
, Record
, Abbrev
);
1883 void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
1884 const DIGlobalVariableExpression
*N
, SmallVectorImpl
<uint64_t> &Record
,
1886 Record
.push_back(N
->isDistinct());
1887 Record
.push_back(VE
.getMetadataOrNullID(N
->getVariable()));
1888 Record
.push_back(VE
.getMetadataOrNullID(N
->getExpression()));
1890 Stream
.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR
, Record
, Abbrev
);
1894 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty
*N
,
1895 SmallVectorImpl
<uint64_t> &Record
,
1897 Record
.push_back(N
->isDistinct());
1898 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1899 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
1900 Record
.push_back(N
->getLine());
1901 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawSetterName()));
1902 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawGetterName()));
1903 Record
.push_back(N
->getAttributes());
1904 Record
.push_back(VE
.getMetadataOrNullID(N
->getType()));
1906 Stream
.EmitRecord(bitc::METADATA_OBJC_PROPERTY
, Record
, Abbrev
);
1910 void ModuleBitcodeWriter::writeDIImportedEntity(
1911 const DIImportedEntity
*N
, SmallVectorImpl
<uint64_t> &Record
,
1913 Record
.push_back(N
->isDistinct());
1914 Record
.push_back(N
->getTag());
1915 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
1916 Record
.push_back(VE
.getMetadataOrNullID(N
->getEntity()));
1917 Record
.push_back(N
->getLine());
1918 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1919 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawFile()));
1921 Stream
.EmitRecord(bitc::METADATA_IMPORTED_ENTITY
, Record
, Abbrev
);
1925 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
1926 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
1927 Abbv
->Add(BitCodeAbbrevOp(bitc::METADATA_NAME
));
1928 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
1929 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 8));
1930 return Stream
.EmitAbbrev(std::move(Abbv
));
1933 void ModuleBitcodeWriter::writeNamedMetadata(
1934 SmallVectorImpl
<uint64_t> &Record
) {
1935 if (M
.named_metadata_empty())
1938 unsigned Abbrev
= createNamedMetadataAbbrev();
1939 for (const NamedMDNode
&NMD
: M
.named_metadata()) {
1941 StringRef Str
= NMD
.getName();
1942 Record
.append(Str
.bytes_begin(), Str
.bytes_end());
1943 Stream
.EmitRecord(bitc::METADATA_NAME
, Record
, Abbrev
);
1946 // Write named metadata operands.
1947 for (const MDNode
*N
: NMD
.operands())
1948 Record
.push_back(VE
.getMetadataID(N
));
1949 Stream
.EmitRecord(bitc::METADATA_NAMED_NODE
, Record
, 0);
1954 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
1955 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
1956 Abbv
->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS
));
1957 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // # of strings
1958 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // offset to chars
1959 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob
));
1960 return Stream
.EmitAbbrev(std::move(Abbv
));
1963 /// Write out a record for MDString.
1965 /// All the metadata strings in a metadata block are emitted in a single
1966 /// record. The sizes and strings themselves are shoved into a blob.
1967 void ModuleBitcodeWriter::writeMetadataStrings(
1968 ArrayRef
<const Metadata
*> Strings
, SmallVectorImpl
<uint64_t> &Record
) {
1969 if (Strings
.empty())
1972 // Start the record with the number of strings.
1973 Record
.push_back(bitc::METADATA_STRINGS
);
1974 Record
.push_back(Strings
.size());
1976 // Emit the sizes of the strings in the blob.
1977 SmallString
<256> Blob
;
1979 BitstreamWriter
W(Blob
);
1980 for (const Metadata
*MD
: Strings
)
1981 W
.EmitVBR(cast
<MDString
>(MD
)->getLength(), 6);
1985 // Add the offset to the strings to the record.
1986 Record
.push_back(Blob
.size());
1988 // Add the strings to the blob.
1989 for (const Metadata
*MD
: Strings
)
1990 Blob
.append(cast
<MDString
>(MD
)->getString());
1992 // Emit the final record.
1993 Stream
.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record
, Blob
);
1997 // Generates an enum to use as an index in the Abbrev array of Metadata record.
1998 enum MetadataAbbrev
: unsigned {
1999 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
2000 #include "llvm/IR/Metadata.def"
2004 void ModuleBitcodeWriter::writeMetadataRecords(
2005 ArrayRef
<const Metadata
*> MDs
, SmallVectorImpl
<uint64_t> &Record
,
2006 std::vector
<unsigned> *MDAbbrevs
, std::vector
<uint64_t> *IndexPos
) {
2010 // Initialize MDNode abbreviations.
2011 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
2012 #include "llvm/IR/Metadata.def"
2014 for (const Metadata
*MD
: MDs
) {
2016 IndexPos
->push_back(Stream
.GetCurrentBitNo());
2017 if (const MDNode
*N
= dyn_cast
<MDNode
>(MD
)) {
2018 assert(N
->isResolved() && "Expected forward references to be resolved");
2020 switch (N
->getMetadataID()) {
2022 llvm_unreachable("Invalid MDNode subclass");
2023 #define HANDLE_MDNODE_LEAF(CLASS) \
2024 case Metadata::CLASS##Kind: \
2026 write##CLASS(cast<CLASS>(N), Record, \
2027 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \
2029 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \
2031 #include "llvm/IR/Metadata.def"
2034 writeValueAsMetadata(cast
<ValueAsMetadata
>(MD
), Record
);
2038 void ModuleBitcodeWriter::writeModuleMetadata() {
2039 if (!VE
.hasMDs() && M
.named_metadata_empty())
2042 Stream
.EnterSubblock(bitc::METADATA_BLOCK_ID
, 4);
2043 SmallVector
<uint64_t, 64> Record
;
2045 // Emit all abbrevs upfront, so that the reader can jump in the middle of the
2046 // block and load any metadata.
2047 std::vector
<unsigned> MDAbbrevs
;
2049 MDAbbrevs
.resize(MetadataAbbrev::LastPlusOne
);
2050 MDAbbrevs
[MetadataAbbrev::DILocationAbbrevID
] = createDILocationAbbrev();
2051 MDAbbrevs
[MetadataAbbrev::GenericDINodeAbbrevID
] =
2052 createGenericDINodeAbbrev();
2054 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
2055 Abbv
->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET
));
2056 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
2057 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
2058 unsigned OffsetAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
2060 Abbv
= std::make_shared
<BitCodeAbbrev
>();
2061 Abbv
->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX
));
2062 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
2063 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
2064 unsigned IndexAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
2066 // Emit MDStrings together upfront.
2067 writeMetadataStrings(VE
.getMDStrings(), Record
);
2069 // We only emit an index for the metadata record if we have more than a given
2070 // (naive) threshold of metadatas, otherwise it is not worth it.
2071 if (VE
.getNonMDStrings().size() > IndexThreshold
) {
2072 // Write a placeholder value in for the offset of the metadata index,
2073 // which is written after the records, so that it can include
2074 // the offset of each entry. The placeholder offset will be
2075 // updated after all records are emitted.
2076 uint64_t Vals
[] = {0, 0};
2077 Stream
.EmitRecord(bitc::METADATA_INDEX_OFFSET
, Vals
, OffsetAbbrev
);
2080 // Compute and save the bit offset to the current position, which will be
2081 // patched when we emit the index later. We can simply subtract the 64-bit
2082 // fixed size from the current bit number to get the location to backpatch.
2083 uint64_t IndexOffsetRecordBitPos
= Stream
.GetCurrentBitNo();
2085 // This index will contain the bitpos for each individual record.
2086 std::vector
<uint64_t> IndexPos
;
2087 IndexPos
.reserve(VE
.getNonMDStrings().size());
2089 // Write all the records
2090 writeMetadataRecords(VE
.getNonMDStrings(), Record
, &MDAbbrevs
, &IndexPos
);
2092 if (VE
.getNonMDStrings().size() > IndexThreshold
) {
2093 // Now that we have emitted all the records we will emit the index. But
2095 // backpatch the forward reference so that the reader can skip the records
2097 Stream
.BackpatchWord64(IndexOffsetRecordBitPos
- 64,
2098 Stream
.GetCurrentBitNo() - IndexOffsetRecordBitPos
);
2100 // Delta encode the index.
2101 uint64_t PreviousValue
= IndexOffsetRecordBitPos
;
2102 for (auto &Elt
: IndexPos
) {
2103 auto EltDelta
= Elt
- PreviousValue
;
2104 PreviousValue
= Elt
;
2107 // Emit the index record.
2108 Stream
.EmitRecord(bitc::METADATA_INDEX
, IndexPos
, IndexAbbrev
);
2112 // Write the named metadata now.
2113 writeNamedMetadata(Record
);
2115 auto AddDeclAttachedMetadata
= [&](const GlobalObject
&GO
) {
2116 SmallVector
<uint64_t, 4> Record
;
2117 Record
.push_back(VE
.getValueID(&GO
));
2118 pushGlobalMetadataAttachment(Record
, GO
);
2119 Stream
.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT
, Record
);
2121 for (const Function
&F
: M
)
2122 if (F
.isDeclaration() && F
.hasMetadata())
2123 AddDeclAttachedMetadata(F
);
2124 // FIXME: Only store metadata for declarations here, and move data for global
2125 // variable definitions to a separate block (PR28134).
2126 for (const GlobalVariable
&GV
: M
.globals())
2127 if (GV
.hasMetadata())
2128 AddDeclAttachedMetadata(GV
);
2133 void ModuleBitcodeWriter::writeFunctionMetadata(const Function
&F
) {
2137 Stream
.EnterSubblock(bitc::METADATA_BLOCK_ID
, 3);
2138 SmallVector
<uint64_t, 64> Record
;
2139 writeMetadataStrings(VE
.getMDStrings(), Record
);
2140 writeMetadataRecords(VE
.getNonMDStrings(), Record
);
2144 void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
2145 SmallVectorImpl
<uint64_t> &Record
, const GlobalObject
&GO
) {
2146 // [n x [id, mdnode]]
2147 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> MDs
;
2148 GO
.getAllMetadata(MDs
);
2149 for (const auto &I
: MDs
) {
2150 Record
.push_back(I
.first
);
2151 Record
.push_back(VE
.getMetadataID(I
.second
));
2155 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function
&F
) {
2156 Stream
.EnterSubblock(bitc::METADATA_ATTACHMENT_ID
, 3);
2158 SmallVector
<uint64_t, 64> Record
;
2160 if (F
.hasMetadata()) {
2161 pushGlobalMetadataAttachment(Record
, F
);
2162 Stream
.EmitRecord(bitc::METADATA_ATTACHMENT
, Record
, 0);
2166 // Write metadata attachments
2167 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
2168 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> MDs
;
2169 for (const BasicBlock
&BB
: F
)
2170 for (const Instruction
&I
: BB
) {
2172 I
.getAllMetadataOtherThanDebugLoc(MDs
);
2174 // If no metadata, ignore instruction.
2175 if (MDs
.empty()) continue;
2177 Record
.push_back(VE
.getInstructionID(&I
));
2179 for (unsigned i
= 0, e
= MDs
.size(); i
!= e
; ++i
) {
2180 Record
.push_back(MDs
[i
].first
);
2181 Record
.push_back(VE
.getMetadataID(MDs
[i
].second
));
2183 Stream
.EmitRecord(bitc::METADATA_ATTACHMENT
, Record
, 0);
2190 void ModuleBitcodeWriter::writeModuleMetadataKinds() {
2191 SmallVector
<uint64_t, 64> Record
;
2193 // Write metadata kinds
2194 // METADATA_KIND - [n x [id, name]]
2195 SmallVector
<StringRef
, 8> Names
;
2196 M
.getMDKindNames(Names
);
2198 if (Names
.empty()) return;
2200 Stream
.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID
, 3);
2202 for (unsigned MDKindID
= 0, e
= Names
.size(); MDKindID
!= e
; ++MDKindID
) {
2203 Record
.push_back(MDKindID
);
2204 StringRef KName
= Names
[MDKindID
];
2205 Record
.append(KName
.begin(), KName
.end());
2207 Stream
.EmitRecord(bitc::METADATA_KIND
, Record
, 0);
2214 void ModuleBitcodeWriter::writeOperandBundleTags() {
2215 // Write metadata kinds
2217 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
2219 // OPERAND_BUNDLE_TAG - [strchr x N]
2221 SmallVector
<StringRef
, 8> Tags
;
2222 M
.getOperandBundleTags(Tags
);
2227 Stream
.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID
, 3);
2229 SmallVector
<uint64_t, 64> Record
;
2231 for (auto Tag
: Tags
) {
2232 Record
.append(Tag
.begin(), Tag
.end());
2234 Stream
.EmitRecord(bitc::OPERAND_BUNDLE_TAG
, Record
, 0);
2241 void ModuleBitcodeWriter::writeSyncScopeNames() {
2242 SmallVector
<StringRef
, 8> SSNs
;
2243 M
.getContext().getSyncScopeNames(SSNs
);
2247 Stream
.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID
, 2);
2249 SmallVector
<uint64_t, 64> Record
;
2250 for (auto SSN
: SSNs
) {
2251 Record
.append(SSN
.begin(), SSN
.end());
2252 Stream
.EmitRecord(bitc::SYNC_SCOPE_NAME
, Record
, 0);
2259 static void emitSignedInt64(SmallVectorImpl
<uint64_t> &Vals
, uint64_t V
) {
2260 if ((int64_t)V
>= 0)
2261 Vals
.push_back(V
<< 1);
2263 Vals
.push_back((-V
<< 1) | 1);
2266 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal
, unsigned LastVal
,
2268 if (FirstVal
== LastVal
) return;
2270 Stream
.EnterSubblock(bitc::CONSTANTS_BLOCK_ID
, 4);
2272 unsigned AggregateAbbrev
= 0;
2273 unsigned String8Abbrev
= 0;
2274 unsigned CString7Abbrev
= 0;
2275 unsigned CString6Abbrev
= 0;
2276 // If this is a constant pool for the module, emit module-specific abbrevs.
2278 // Abbrev for CST_CODE_AGGREGATE.
2279 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
2280 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE
));
2281 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
2282 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, Log2_32_Ceil(LastVal
+1)));
2283 AggregateAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
2285 // Abbrev for CST_CODE_STRING.
2286 Abbv
= std::make_shared
<BitCodeAbbrev
>();
2287 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING
));
2288 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
2289 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 8));
2290 String8Abbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
2291 // Abbrev for CST_CODE_CSTRING.
2292 Abbv
= std::make_shared
<BitCodeAbbrev
>();
2293 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING
));
2294 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
2295 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 7));
2296 CString7Abbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
2297 // Abbrev for CST_CODE_CSTRING.
2298 Abbv
= std::make_shared
<BitCodeAbbrev
>();
2299 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING
));
2300 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
2301 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6
));
2302 CString6Abbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
2305 SmallVector
<uint64_t, 64> Record
;
2307 const ValueEnumerator::ValueList
&Vals
= VE
.getValues();
2308 Type
*LastTy
= nullptr;
2309 for (unsigned i
= FirstVal
; i
!= LastVal
; ++i
) {
2310 const Value
*V
= Vals
[i
].first
;
2311 // If we need to switch types, do so now.
2312 if (V
->getType() != LastTy
) {
2313 LastTy
= V
->getType();
2314 Record
.push_back(VE
.getTypeID(LastTy
));
2315 Stream
.EmitRecord(bitc::CST_CODE_SETTYPE
, Record
,
2316 CONSTANTS_SETTYPE_ABBREV
);
2320 if (const InlineAsm
*IA
= dyn_cast
<InlineAsm
>(V
)) {
2321 Record
.push_back(unsigned(IA
->hasSideEffects()) |
2322 unsigned(IA
->isAlignStack()) << 1 |
2323 unsigned(IA
->getDialect()&1) << 2);
2325 // Add the asm string.
2326 const std::string
&AsmStr
= IA
->getAsmString();
2327 Record
.push_back(AsmStr
.size());
2328 Record
.append(AsmStr
.begin(), AsmStr
.end());
2330 // Add the constraint string.
2331 const std::string
&ConstraintStr
= IA
->getConstraintString();
2332 Record
.push_back(ConstraintStr
.size());
2333 Record
.append(ConstraintStr
.begin(), ConstraintStr
.end());
2334 Stream
.EmitRecord(bitc::CST_CODE_INLINEASM
, Record
);
2338 const Constant
*C
= cast
<Constant
>(V
);
2339 unsigned Code
= -1U;
2340 unsigned AbbrevToUse
= 0;
2341 if (C
->isNullValue()) {
2342 Code
= bitc::CST_CODE_NULL
;
2343 } else if (isa
<UndefValue
>(C
)) {
2344 Code
= bitc::CST_CODE_UNDEF
;
2345 } else if (const ConstantInt
*IV
= dyn_cast
<ConstantInt
>(C
)) {
2346 if (IV
->getBitWidth() <= 64) {
2347 uint64_t V
= IV
->getSExtValue();
2348 emitSignedInt64(Record
, V
);
2349 Code
= bitc::CST_CODE_INTEGER
;
2350 AbbrevToUse
= CONSTANTS_INTEGER_ABBREV
;
2351 } else { // Wide integers, > 64 bits in size.
2352 // We have an arbitrary precision integer value to write whose
2353 // bit width is > 64. However, in canonical unsigned integer
2354 // format it is likely that the high bits are going to be zero.
2355 // So, we only write the number of active words.
2356 unsigned NWords
= IV
->getValue().getActiveWords();
2357 const uint64_t *RawWords
= IV
->getValue().getRawData();
2358 for (unsigned i
= 0; i
!= NWords
; ++i
) {
2359 emitSignedInt64(Record
, RawWords
[i
]);
2361 Code
= bitc::CST_CODE_WIDE_INTEGER
;
2363 } else if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(C
)) {
2364 Code
= bitc::CST_CODE_FLOAT
;
2365 Type
*Ty
= CFP
->getType();
2366 if (Ty
->isHalfTy() || Ty
->isFloatTy() || Ty
->isDoubleTy()) {
2367 Record
.push_back(CFP
->getValueAPF().bitcastToAPInt().getZExtValue());
2368 } else if (Ty
->isX86_FP80Ty()) {
2369 // api needed to prevent premature destruction
2370 // bits are not in the same order as a normal i80 APInt, compensate.
2371 APInt api
= CFP
->getValueAPF().bitcastToAPInt();
2372 const uint64_t *p
= api
.getRawData();
2373 Record
.push_back((p
[1] << 48) | (p
[0] >> 16));
2374 Record
.push_back(p
[0] & 0xffffLL
);
2375 } else if (Ty
->isFP128Ty() || Ty
->isPPC_FP128Ty()) {
2376 APInt api
= CFP
->getValueAPF().bitcastToAPInt();
2377 const uint64_t *p
= api
.getRawData();
2378 Record
.push_back(p
[0]);
2379 Record
.push_back(p
[1]);
2381 assert(0 && "Unknown FP type!");
2383 } else if (isa
<ConstantDataSequential
>(C
) &&
2384 cast
<ConstantDataSequential
>(C
)->isString()) {
2385 const ConstantDataSequential
*Str
= cast
<ConstantDataSequential
>(C
);
2386 // Emit constant strings specially.
2387 unsigned NumElts
= Str
->getNumElements();
2388 // If this is a null-terminated string, use the denser CSTRING encoding.
2389 if (Str
->isCString()) {
2390 Code
= bitc::CST_CODE_CSTRING
;
2391 --NumElts
; // Don't encode the null, which isn't allowed by char6.
2393 Code
= bitc::CST_CODE_STRING
;
2394 AbbrevToUse
= String8Abbrev
;
2396 bool isCStr7
= Code
== bitc::CST_CODE_CSTRING
;
2397 bool isCStrChar6
= Code
== bitc::CST_CODE_CSTRING
;
2398 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
2399 unsigned char V
= Str
->getElementAsInteger(i
);
2400 Record
.push_back(V
);
2401 isCStr7
&= (V
& 128) == 0;
2403 isCStrChar6
= BitCodeAbbrevOp::isChar6(V
);
2407 AbbrevToUse
= CString6Abbrev
;
2409 AbbrevToUse
= CString7Abbrev
;
2410 } else if (const ConstantDataSequential
*CDS
=
2411 dyn_cast
<ConstantDataSequential
>(C
)) {
2412 Code
= bitc::CST_CODE_DATA
;
2413 Type
*EltTy
= CDS
->getType()->getElementType();
2414 if (isa
<IntegerType
>(EltTy
)) {
2415 for (unsigned i
= 0, e
= CDS
->getNumElements(); i
!= e
; ++i
)
2416 Record
.push_back(CDS
->getElementAsInteger(i
));
2418 for (unsigned i
= 0, e
= CDS
->getNumElements(); i
!= e
; ++i
)
2420 CDS
->getElementAsAPFloat(i
).bitcastToAPInt().getLimitedValue());
2422 } else if (isa
<ConstantAggregate
>(C
)) {
2423 Code
= bitc::CST_CODE_AGGREGATE
;
2424 for (const Value
*Op
: C
->operands())
2425 Record
.push_back(VE
.getValueID(Op
));
2426 AbbrevToUse
= AggregateAbbrev
;
2427 } else if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
)) {
2428 switch (CE
->getOpcode()) {
2430 if (Instruction::isCast(CE
->getOpcode())) {
2431 Code
= bitc::CST_CODE_CE_CAST
;
2432 Record
.push_back(getEncodedCastOpcode(CE
->getOpcode()));
2433 Record
.push_back(VE
.getTypeID(C
->getOperand(0)->getType()));
2434 Record
.push_back(VE
.getValueID(C
->getOperand(0)));
2435 AbbrevToUse
= CONSTANTS_CE_CAST_Abbrev
;
2437 assert(CE
->getNumOperands() == 2 && "Unknown constant expr!");
2438 Code
= bitc::CST_CODE_CE_BINOP
;
2439 Record
.push_back(getEncodedBinaryOpcode(CE
->getOpcode()));
2440 Record
.push_back(VE
.getValueID(C
->getOperand(0)));
2441 Record
.push_back(VE
.getValueID(C
->getOperand(1)));
2442 uint64_t Flags
= getOptimizationFlags(CE
);
2444 Record
.push_back(Flags
);
2447 case Instruction::FNeg
: {
2448 assert(CE
->getNumOperands() == 1 && "Unknown constant expr!");
2449 Code
= bitc::CST_CODE_CE_UNOP
;
2450 Record
.push_back(getEncodedUnaryOpcode(CE
->getOpcode()));
2451 Record
.push_back(VE
.getValueID(C
->getOperand(0)));
2452 uint64_t Flags
= getOptimizationFlags(CE
);
2454 Record
.push_back(Flags
);
2457 case Instruction::GetElementPtr
: {
2458 Code
= bitc::CST_CODE_CE_GEP
;
2459 const auto *GO
= cast
<GEPOperator
>(C
);
2460 Record
.push_back(VE
.getTypeID(GO
->getSourceElementType()));
2461 if (Optional
<unsigned> Idx
= GO
->getInRangeIndex()) {
2462 Code
= bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX
;
2463 Record
.push_back((*Idx
<< 1) | GO
->isInBounds());
2464 } else if (GO
->isInBounds())
2465 Code
= bitc::CST_CODE_CE_INBOUNDS_GEP
;
2466 for (unsigned i
= 0, e
= CE
->getNumOperands(); i
!= e
; ++i
) {
2467 Record
.push_back(VE
.getTypeID(C
->getOperand(i
)->getType()));
2468 Record
.push_back(VE
.getValueID(C
->getOperand(i
)));
2472 case Instruction::Select
:
2473 Code
= bitc::CST_CODE_CE_SELECT
;
2474 Record
.push_back(VE
.getValueID(C
->getOperand(0)));
2475 Record
.push_back(VE
.getValueID(C
->getOperand(1)));
2476 Record
.push_back(VE
.getValueID(C
->getOperand(2)));
2478 case Instruction::ExtractElement
:
2479 Code
= bitc::CST_CODE_CE_EXTRACTELT
;
2480 Record
.push_back(VE
.getTypeID(C
->getOperand(0)->getType()));
2481 Record
.push_back(VE
.getValueID(C
->getOperand(0)));
2482 Record
.push_back(VE
.getTypeID(C
->getOperand(1)->getType()));
2483 Record
.push_back(VE
.getValueID(C
->getOperand(1)));
2485 case Instruction::InsertElement
:
2486 Code
= bitc::CST_CODE_CE_INSERTELT
;
2487 Record
.push_back(VE
.getValueID(C
->getOperand(0)));
2488 Record
.push_back(VE
.getValueID(C
->getOperand(1)));
2489 Record
.push_back(VE
.getTypeID(C
->getOperand(2)->getType()));
2490 Record
.push_back(VE
.getValueID(C
->getOperand(2)));
2492 case Instruction::ShuffleVector
:
2493 // If the return type and argument types are the same, this is a
2494 // standard shufflevector instruction. If the types are different,
2495 // then the shuffle is widening or truncating the input vectors, and
2496 // the argument type must also be encoded.
2497 if (C
->getType() == C
->getOperand(0)->getType()) {
2498 Code
= bitc::CST_CODE_CE_SHUFFLEVEC
;
2500 Code
= bitc::CST_CODE_CE_SHUFVEC_EX
;
2501 Record
.push_back(VE
.getTypeID(C
->getOperand(0)->getType()));
2503 Record
.push_back(VE
.getValueID(C
->getOperand(0)));
2504 Record
.push_back(VE
.getValueID(C
->getOperand(1)));
2505 Record
.push_back(VE
.getValueID(C
->getOperand(2)));
2507 case Instruction::ICmp
:
2508 case Instruction::FCmp
:
2509 Code
= bitc::CST_CODE_CE_CMP
;
2510 Record
.push_back(VE
.getTypeID(C
->getOperand(0)->getType()));
2511 Record
.push_back(VE
.getValueID(C
->getOperand(0)));
2512 Record
.push_back(VE
.getValueID(C
->getOperand(1)));
2513 Record
.push_back(CE
->getPredicate());
2516 } else if (const BlockAddress
*BA
= dyn_cast
<BlockAddress
>(C
)) {
2517 Code
= bitc::CST_CODE_BLOCKADDRESS
;
2518 Record
.push_back(VE
.getTypeID(BA
->getFunction()->getType()));
2519 Record
.push_back(VE
.getValueID(BA
->getFunction()));
2520 Record
.push_back(VE
.getGlobalBasicBlockID(BA
->getBasicBlock()));
2525 llvm_unreachable("Unknown constant!");
2527 Stream
.EmitRecord(Code
, Record
, AbbrevToUse
);
2534 void ModuleBitcodeWriter::writeModuleConstants() {
2535 const ValueEnumerator::ValueList
&Vals
= VE
.getValues();
2537 // Find the first constant to emit, which is the first non-globalvalue value.
2538 // We know globalvalues have been emitted by WriteModuleInfo.
2539 for (unsigned i
= 0, e
= Vals
.size(); i
!= e
; ++i
) {
2540 if (!isa
<GlobalValue
>(Vals
[i
].first
)) {
2541 writeConstants(i
, Vals
.size(), true);
2547 /// pushValueAndType - The file has to encode both the value and type id for
2548 /// many values, because we need to know what type to create for forward
2549 /// references. However, most operands are not forward references, so this type
2550 /// field is not needed.
2552 /// This function adds V's value ID to Vals. If the value ID is higher than the
2553 /// instruction ID, then it is a forward reference, and it also includes the
2554 /// type ID. The value ID that is written is encoded relative to the InstID.
2555 bool ModuleBitcodeWriter::pushValueAndType(const Value
*V
, unsigned InstID
,
2556 SmallVectorImpl
<unsigned> &Vals
) {
2557 unsigned ValID
= VE
.getValueID(V
);
2558 // Make encoding relative to the InstID.
2559 Vals
.push_back(InstID
- ValID
);
2560 if (ValID
>= InstID
) {
2561 Vals
.push_back(VE
.getTypeID(V
->getType()));
2567 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS
,
2569 SmallVector
<unsigned, 64> Record
;
2570 LLVMContext
&C
= CS
.getInstruction()->getContext();
2572 for (unsigned i
= 0, e
= CS
.getNumOperandBundles(); i
!= e
; ++i
) {
2573 const auto &Bundle
= CS
.getOperandBundleAt(i
);
2574 Record
.push_back(C
.getOperandBundleTagID(Bundle
.getTagName()));
2576 for (auto &Input
: Bundle
.Inputs
)
2577 pushValueAndType(Input
, InstID
, Record
);
2579 Stream
.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE
, Record
);
2584 /// pushValue - Like pushValueAndType, but where the type of the value is
2585 /// omitted (perhaps it was already encoded in an earlier operand).
2586 void ModuleBitcodeWriter::pushValue(const Value
*V
, unsigned InstID
,
2587 SmallVectorImpl
<unsigned> &Vals
) {
2588 unsigned ValID
= VE
.getValueID(V
);
2589 Vals
.push_back(InstID
- ValID
);
2592 void ModuleBitcodeWriter::pushValueSigned(const Value
*V
, unsigned InstID
,
2593 SmallVectorImpl
<uint64_t> &Vals
) {
2594 unsigned ValID
= VE
.getValueID(V
);
2595 int64_t diff
= ((int32_t)InstID
- (int32_t)ValID
);
2596 emitSignedInt64(Vals
, diff
);
2599 /// WriteInstruction - Emit an instruction to the specified stream.
2600 void ModuleBitcodeWriter::writeInstruction(const Instruction
&I
,
2602 SmallVectorImpl
<unsigned> &Vals
) {
2604 unsigned AbbrevToUse
= 0;
2605 VE
.setInstructionID(&I
);
2606 switch (I
.getOpcode()) {
2608 if (Instruction::isCast(I
.getOpcode())) {
2609 Code
= bitc::FUNC_CODE_INST_CAST
;
2610 if (!pushValueAndType(I
.getOperand(0), InstID
, Vals
))
2611 AbbrevToUse
= FUNCTION_INST_CAST_ABBREV
;
2612 Vals
.push_back(VE
.getTypeID(I
.getType()));
2613 Vals
.push_back(getEncodedCastOpcode(I
.getOpcode()));
2615 assert(isa
<BinaryOperator
>(I
) && "Unknown instruction!");
2616 Code
= bitc::FUNC_CODE_INST_BINOP
;
2617 if (!pushValueAndType(I
.getOperand(0), InstID
, Vals
))
2618 AbbrevToUse
= FUNCTION_INST_BINOP_ABBREV
;
2619 pushValue(I
.getOperand(1), InstID
, Vals
);
2620 Vals
.push_back(getEncodedBinaryOpcode(I
.getOpcode()));
2621 uint64_t Flags
= getOptimizationFlags(&I
);
2623 if (AbbrevToUse
== FUNCTION_INST_BINOP_ABBREV
)
2624 AbbrevToUse
= FUNCTION_INST_BINOP_FLAGS_ABBREV
;
2625 Vals
.push_back(Flags
);
2629 case Instruction::FNeg
: {
2630 Code
= bitc::FUNC_CODE_INST_UNOP
;
2631 if (!pushValueAndType(I
.getOperand(0), InstID
, Vals
))
2632 AbbrevToUse
= FUNCTION_INST_UNOP_ABBREV
;
2633 Vals
.push_back(getEncodedUnaryOpcode(I
.getOpcode()));
2634 uint64_t Flags
= getOptimizationFlags(&I
);
2636 if (AbbrevToUse
== FUNCTION_INST_UNOP_ABBREV
)
2637 AbbrevToUse
= FUNCTION_INST_UNOP_FLAGS_ABBREV
;
2638 Vals
.push_back(Flags
);
2642 case Instruction::GetElementPtr
: {
2643 Code
= bitc::FUNC_CODE_INST_GEP
;
2644 AbbrevToUse
= FUNCTION_INST_GEP_ABBREV
;
2645 auto &GEPInst
= cast
<GetElementPtrInst
>(I
);
2646 Vals
.push_back(GEPInst
.isInBounds());
2647 Vals
.push_back(VE
.getTypeID(GEPInst
.getSourceElementType()));
2648 for (unsigned i
= 0, e
= I
.getNumOperands(); i
!= e
; ++i
)
2649 pushValueAndType(I
.getOperand(i
), InstID
, Vals
);
2652 case Instruction::ExtractValue
: {
2653 Code
= bitc::FUNC_CODE_INST_EXTRACTVAL
;
2654 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
2655 const ExtractValueInst
*EVI
= cast
<ExtractValueInst
>(&I
);
2656 Vals
.append(EVI
->idx_begin(), EVI
->idx_end());
2659 case Instruction::InsertValue
: {
2660 Code
= bitc::FUNC_CODE_INST_INSERTVAL
;
2661 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
2662 pushValueAndType(I
.getOperand(1), InstID
, Vals
);
2663 const InsertValueInst
*IVI
= cast
<InsertValueInst
>(&I
);
2664 Vals
.append(IVI
->idx_begin(), IVI
->idx_end());
2667 case Instruction::Select
: {
2668 Code
= bitc::FUNC_CODE_INST_VSELECT
;
2669 pushValueAndType(I
.getOperand(1), InstID
, Vals
);
2670 pushValue(I
.getOperand(2), InstID
, Vals
);
2671 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
2672 uint64_t Flags
= getOptimizationFlags(&I
);
2674 Vals
.push_back(Flags
);
2677 case Instruction::ExtractElement
:
2678 Code
= bitc::FUNC_CODE_INST_EXTRACTELT
;
2679 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
2680 pushValueAndType(I
.getOperand(1), InstID
, Vals
);
2682 case Instruction::InsertElement
:
2683 Code
= bitc::FUNC_CODE_INST_INSERTELT
;
2684 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
2685 pushValue(I
.getOperand(1), InstID
, Vals
);
2686 pushValueAndType(I
.getOperand(2), InstID
, Vals
);
2688 case Instruction::ShuffleVector
:
2689 Code
= bitc::FUNC_CODE_INST_SHUFFLEVEC
;
2690 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
2691 pushValue(I
.getOperand(1), InstID
, Vals
);
2692 pushValue(I
.getOperand(2), InstID
, Vals
);
2694 case Instruction::ICmp
:
2695 case Instruction::FCmp
: {
2696 // compare returning Int1Ty or vector of Int1Ty
2697 Code
= bitc::FUNC_CODE_INST_CMP2
;
2698 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
2699 pushValue(I
.getOperand(1), InstID
, Vals
);
2700 Vals
.push_back(cast
<CmpInst
>(I
).getPredicate());
2701 uint64_t Flags
= getOptimizationFlags(&I
);
2703 Vals
.push_back(Flags
);
2707 case Instruction::Ret
:
2709 Code
= bitc::FUNC_CODE_INST_RET
;
2710 unsigned NumOperands
= I
.getNumOperands();
2711 if (NumOperands
== 0)
2712 AbbrevToUse
= FUNCTION_INST_RET_VOID_ABBREV
;
2713 else if (NumOperands
== 1) {
2714 if (!pushValueAndType(I
.getOperand(0), InstID
, Vals
))
2715 AbbrevToUse
= FUNCTION_INST_RET_VAL_ABBREV
;
2717 for (unsigned i
= 0, e
= NumOperands
; i
!= e
; ++i
)
2718 pushValueAndType(I
.getOperand(i
), InstID
, Vals
);
2722 case Instruction::Br
:
2724 Code
= bitc::FUNC_CODE_INST_BR
;
2725 const BranchInst
&II
= cast
<BranchInst
>(I
);
2726 Vals
.push_back(VE
.getValueID(II
.getSuccessor(0)));
2727 if (II
.isConditional()) {
2728 Vals
.push_back(VE
.getValueID(II
.getSuccessor(1)));
2729 pushValue(II
.getCondition(), InstID
, Vals
);
2733 case Instruction::Switch
:
2735 Code
= bitc::FUNC_CODE_INST_SWITCH
;
2736 const SwitchInst
&SI
= cast
<SwitchInst
>(I
);
2737 Vals
.push_back(VE
.getTypeID(SI
.getCondition()->getType()));
2738 pushValue(SI
.getCondition(), InstID
, Vals
);
2739 Vals
.push_back(VE
.getValueID(SI
.getDefaultDest()));
2740 for (auto Case
: SI
.cases()) {
2741 Vals
.push_back(VE
.getValueID(Case
.getCaseValue()));
2742 Vals
.push_back(VE
.getValueID(Case
.getCaseSuccessor()));
2746 case Instruction::IndirectBr
:
2747 Code
= bitc::FUNC_CODE_INST_INDIRECTBR
;
2748 Vals
.push_back(VE
.getTypeID(I
.getOperand(0)->getType()));
2749 // Encode the address operand as relative, but not the basic blocks.
2750 pushValue(I
.getOperand(0), InstID
, Vals
);
2751 for (unsigned i
= 1, e
= I
.getNumOperands(); i
!= e
; ++i
)
2752 Vals
.push_back(VE
.getValueID(I
.getOperand(i
)));
2755 case Instruction::Invoke
: {
2756 const InvokeInst
*II
= cast
<InvokeInst
>(&I
);
2757 const Value
*Callee
= II
->getCalledValue();
2758 FunctionType
*FTy
= II
->getFunctionType();
2760 if (II
->hasOperandBundles())
2761 writeOperandBundles(II
, InstID
);
2763 Code
= bitc::FUNC_CODE_INST_INVOKE
;
2765 Vals
.push_back(VE
.getAttributeListID(II
->getAttributes()));
2766 Vals
.push_back(II
->getCallingConv() | 1 << 13);
2767 Vals
.push_back(VE
.getValueID(II
->getNormalDest()));
2768 Vals
.push_back(VE
.getValueID(II
->getUnwindDest()));
2769 Vals
.push_back(VE
.getTypeID(FTy
));
2770 pushValueAndType(Callee
, InstID
, Vals
);
2772 // Emit value #'s for the fixed parameters.
2773 for (unsigned i
= 0, e
= FTy
->getNumParams(); i
!= e
; ++i
)
2774 pushValue(I
.getOperand(i
), InstID
, Vals
); // fixed param.
2776 // Emit type/value pairs for varargs params.
2777 if (FTy
->isVarArg()) {
2778 for (unsigned i
= FTy
->getNumParams(), e
= II
->getNumArgOperands();
2780 pushValueAndType(I
.getOperand(i
), InstID
, Vals
); // vararg
2784 case Instruction::Resume
:
2785 Code
= bitc::FUNC_CODE_INST_RESUME
;
2786 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
2788 case Instruction::CleanupRet
: {
2789 Code
= bitc::FUNC_CODE_INST_CLEANUPRET
;
2790 const auto &CRI
= cast
<CleanupReturnInst
>(I
);
2791 pushValue(CRI
.getCleanupPad(), InstID
, Vals
);
2792 if (CRI
.hasUnwindDest())
2793 Vals
.push_back(VE
.getValueID(CRI
.getUnwindDest()));
2796 case Instruction::CatchRet
: {
2797 Code
= bitc::FUNC_CODE_INST_CATCHRET
;
2798 const auto &CRI
= cast
<CatchReturnInst
>(I
);
2799 pushValue(CRI
.getCatchPad(), InstID
, Vals
);
2800 Vals
.push_back(VE
.getValueID(CRI
.getSuccessor()));
2803 case Instruction::CleanupPad
:
2804 case Instruction::CatchPad
: {
2805 const auto &FuncletPad
= cast
<FuncletPadInst
>(I
);
2806 Code
= isa
<CatchPadInst
>(FuncletPad
) ? bitc::FUNC_CODE_INST_CATCHPAD
2807 : bitc::FUNC_CODE_INST_CLEANUPPAD
;
2808 pushValue(FuncletPad
.getParentPad(), InstID
, Vals
);
2810 unsigned NumArgOperands
= FuncletPad
.getNumArgOperands();
2811 Vals
.push_back(NumArgOperands
);
2812 for (unsigned Op
= 0; Op
!= NumArgOperands
; ++Op
)
2813 pushValueAndType(FuncletPad
.getArgOperand(Op
), InstID
, Vals
);
2816 case Instruction::CatchSwitch
: {
2817 Code
= bitc::FUNC_CODE_INST_CATCHSWITCH
;
2818 const auto &CatchSwitch
= cast
<CatchSwitchInst
>(I
);
2820 pushValue(CatchSwitch
.getParentPad(), InstID
, Vals
);
2822 unsigned NumHandlers
= CatchSwitch
.getNumHandlers();
2823 Vals
.push_back(NumHandlers
);
2824 for (const BasicBlock
*CatchPadBB
: CatchSwitch
.handlers())
2825 Vals
.push_back(VE
.getValueID(CatchPadBB
));
2827 if (CatchSwitch
.hasUnwindDest())
2828 Vals
.push_back(VE
.getValueID(CatchSwitch
.getUnwindDest()));
2831 case Instruction::CallBr
: {
2832 const CallBrInst
*CBI
= cast
<CallBrInst
>(&I
);
2833 const Value
*Callee
= CBI
->getCalledValue();
2834 FunctionType
*FTy
= CBI
->getFunctionType();
2836 if (CBI
->hasOperandBundles())
2837 writeOperandBundles(CBI
, InstID
);
2839 Code
= bitc::FUNC_CODE_INST_CALLBR
;
2841 Vals
.push_back(VE
.getAttributeListID(CBI
->getAttributes()));
2843 Vals
.push_back(CBI
->getCallingConv() << bitc::CALL_CCONV
|
2844 1 << bitc::CALL_EXPLICIT_TYPE
);
2846 Vals
.push_back(VE
.getValueID(CBI
->getDefaultDest()));
2847 Vals
.push_back(CBI
->getNumIndirectDests());
2848 for (unsigned i
= 0, e
= CBI
->getNumIndirectDests(); i
!= e
; ++i
)
2849 Vals
.push_back(VE
.getValueID(CBI
->getIndirectDest(i
)));
2851 Vals
.push_back(VE
.getTypeID(FTy
));
2852 pushValueAndType(Callee
, InstID
, Vals
);
2854 // Emit value #'s for the fixed parameters.
2855 for (unsigned i
= 0, e
= FTy
->getNumParams(); i
!= e
; ++i
)
2856 pushValue(I
.getOperand(i
), InstID
, Vals
); // fixed param.
2858 // Emit type/value pairs for varargs params.
2859 if (FTy
->isVarArg()) {
2860 for (unsigned i
= FTy
->getNumParams(), e
= CBI
->getNumArgOperands();
2862 pushValueAndType(I
.getOperand(i
), InstID
, Vals
); // vararg
2866 case Instruction::Unreachable
:
2867 Code
= bitc::FUNC_CODE_INST_UNREACHABLE
;
2868 AbbrevToUse
= FUNCTION_INST_UNREACHABLE_ABBREV
;
2871 case Instruction::PHI
: {
2872 const PHINode
&PN
= cast
<PHINode
>(I
);
2873 Code
= bitc::FUNC_CODE_INST_PHI
;
2874 // With the newer instruction encoding, forward references could give
2875 // negative valued IDs. This is most common for PHIs, so we use
2877 SmallVector
<uint64_t, 128> Vals64
;
2878 Vals64
.push_back(VE
.getTypeID(PN
.getType()));
2879 for (unsigned i
= 0, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
) {
2880 pushValueSigned(PN
.getIncomingValue(i
), InstID
, Vals64
);
2881 Vals64
.push_back(VE
.getValueID(PN
.getIncomingBlock(i
)));
2883 // Emit a Vals64 vector and exit.
2884 Stream
.EmitRecord(Code
, Vals64
, AbbrevToUse
);
2889 case Instruction::LandingPad
: {
2890 const LandingPadInst
&LP
= cast
<LandingPadInst
>(I
);
2891 Code
= bitc::FUNC_CODE_INST_LANDINGPAD
;
2892 Vals
.push_back(VE
.getTypeID(LP
.getType()));
2893 Vals
.push_back(LP
.isCleanup());
2894 Vals
.push_back(LP
.getNumClauses());
2895 for (unsigned I
= 0, E
= LP
.getNumClauses(); I
!= E
; ++I
) {
2897 Vals
.push_back(LandingPadInst::Catch
);
2899 Vals
.push_back(LandingPadInst::Filter
);
2900 pushValueAndType(LP
.getClause(I
), InstID
, Vals
);
2905 case Instruction::Alloca
: {
2906 Code
= bitc::FUNC_CODE_INST_ALLOCA
;
2907 const AllocaInst
&AI
= cast
<AllocaInst
>(I
);
2908 Vals
.push_back(VE
.getTypeID(AI
.getAllocatedType()));
2909 Vals
.push_back(VE
.getTypeID(I
.getOperand(0)->getType()));
2910 Vals
.push_back(VE
.getValueID(I
.getOperand(0))); // size.
2911 unsigned AlignRecord
= Log2_32(AI
.getAlignment()) + 1;
2912 assert(Log2_32(Value::MaximumAlignment
) + 1 < 1 << 5 &&
2913 "not enough bits for maximum alignment");
2914 assert(AlignRecord
< 1 << 5 && "alignment greater than 1 << 64");
2915 AlignRecord
|= AI
.isUsedWithInAlloca() << 5;
2916 AlignRecord
|= 1 << 6;
2917 AlignRecord
|= AI
.isSwiftError() << 7;
2918 Vals
.push_back(AlignRecord
);
2922 case Instruction::Load
:
2923 if (cast
<LoadInst
>(I
).isAtomic()) {
2924 Code
= bitc::FUNC_CODE_INST_LOADATOMIC
;
2925 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
2927 Code
= bitc::FUNC_CODE_INST_LOAD
;
2928 if (!pushValueAndType(I
.getOperand(0), InstID
, Vals
)) // ptr
2929 AbbrevToUse
= FUNCTION_INST_LOAD_ABBREV
;
2931 Vals
.push_back(VE
.getTypeID(I
.getType()));
2932 Vals
.push_back(Log2_32(cast
<LoadInst
>(I
).getAlignment())+1);
2933 Vals
.push_back(cast
<LoadInst
>(I
).isVolatile());
2934 if (cast
<LoadInst
>(I
).isAtomic()) {
2935 Vals
.push_back(getEncodedOrdering(cast
<LoadInst
>(I
).getOrdering()));
2936 Vals
.push_back(getEncodedSyncScopeID(cast
<LoadInst
>(I
).getSyncScopeID()));
2939 case Instruction::Store
:
2940 if (cast
<StoreInst
>(I
).isAtomic())
2941 Code
= bitc::FUNC_CODE_INST_STOREATOMIC
;
2943 Code
= bitc::FUNC_CODE_INST_STORE
;
2944 pushValueAndType(I
.getOperand(1), InstID
, Vals
); // ptrty + ptr
2945 pushValueAndType(I
.getOperand(0), InstID
, Vals
); // valty + val
2946 Vals
.push_back(Log2_32(cast
<StoreInst
>(I
).getAlignment())+1);
2947 Vals
.push_back(cast
<StoreInst
>(I
).isVolatile());
2948 if (cast
<StoreInst
>(I
).isAtomic()) {
2949 Vals
.push_back(getEncodedOrdering(cast
<StoreInst
>(I
).getOrdering()));
2951 getEncodedSyncScopeID(cast
<StoreInst
>(I
).getSyncScopeID()));
2954 case Instruction::AtomicCmpXchg
:
2955 Code
= bitc::FUNC_CODE_INST_CMPXCHG
;
2956 pushValueAndType(I
.getOperand(0), InstID
, Vals
); // ptrty + ptr
2957 pushValueAndType(I
.getOperand(1), InstID
, Vals
); // cmp.
2958 pushValue(I
.getOperand(2), InstID
, Vals
); // newval.
2959 Vals
.push_back(cast
<AtomicCmpXchgInst
>(I
).isVolatile());
2961 getEncodedOrdering(cast
<AtomicCmpXchgInst
>(I
).getSuccessOrdering()));
2963 getEncodedSyncScopeID(cast
<AtomicCmpXchgInst
>(I
).getSyncScopeID()));
2965 getEncodedOrdering(cast
<AtomicCmpXchgInst
>(I
).getFailureOrdering()));
2966 Vals
.push_back(cast
<AtomicCmpXchgInst
>(I
).isWeak());
2968 case Instruction::AtomicRMW
:
2969 Code
= bitc::FUNC_CODE_INST_ATOMICRMW
;
2970 pushValueAndType(I
.getOperand(0), InstID
, Vals
); // ptrty + ptr
2971 pushValue(I
.getOperand(1), InstID
, Vals
); // val.
2973 getEncodedRMWOperation(cast
<AtomicRMWInst
>(I
).getOperation()));
2974 Vals
.push_back(cast
<AtomicRMWInst
>(I
).isVolatile());
2975 Vals
.push_back(getEncodedOrdering(cast
<AtomicRMWInst
>(I
).getOrdering()));
2977 getEncodedSyncScopeID(cast
<AtomicRMWInst
>(I
).getSyncScopeID()));
2979 case Instruction::Fence
:
2980 Code
= bitc::FUNC_CODE_INST_FENCE
;
2981 Vals
.push_back(getEncodedOrdering(cast
<FenceInst
>(I
).getOrdering()));
2982 Vals
.push_back(getEncodedSyncScopeID(cast
<FenceInst
>(I
).getSyncScopeID()));
2984 case Instruction::Call
: {
2985 const CallInst
&CI
= cast
<CallInst
>(I
);
2986 FunctionType
*FTy
= CI
.getFunctionType();
2988 if (CI
.hasOperandBundles())
2989 writeOperandBundles(&CI
, InstID
);
2991 Code
= bitc::FUNC_CODE_INST_CALL
;
2993 Vals
.push_back(VE
.getAttributeListID(CI
.getAttributes()));
2995 unsigned Flags
= getOptimizationFlags(&I
);
2996 Vals
.push_back(CI
.getCallingConv() << bitc::CALL_CCONV
|
2997 unsigned(CI
.isTailCall()) << bitc::CALL_TAIL
|
2998 unsigned(CI
.isMustTailCall()) << bitc::CALL_MUSTTAIL
|
2999 1 << bitc::CALL_EXPLICIT_TYPE
|
3000 unsigned(CI
.isNoTailCall()) << bitc::CALL_NOTAIL
|
3001 unsigned(Flags
!= 0) << bitc::CALL_FMF
);
3003 Vals
.push_back(Flags
);
3005 Vals
.push_back(VE
.getTypeID(FTy
));
3006 pushValueAndType(CI
.getCalledValue(), InstID
, Vals
); // Callee
3008 // Emit value #'s for the fixed parameters.
3009 for (unsigned i
= 0, e
= FTy
->getNumParams(); i
!= e
; ++i
) {
3010 // Check for labels (can happen with asm labels).
3011 if (FTy
->getParamType(i
)->isLabelTy())
3012 Vals
.push_back(VE
.getValueID(CI
.getArgOperand(i
)));
3014 pushValue(CI
.getArgOperand(i
), InstID
, Vals
); // fixed param.
3017 // Emit type/value pairs for varargs params.
3018 if (FTy
->isVarArg()) {
3019 for (unsigned i
= FTy
->getNumParams(), e
= CI
.getNumArgOperands();
3021 pushValueAndType(CI
.getArgOperand(i
), InstID
, Vals
); // varargs
3025 case Instruction::VAArg
:
3026 Code
= bitc::FUNC_CODE_INST_VAARG
;
3027 Vals
.push_back(VE
.getTypeID(I
.getOperand(0)->getType())); // valistty
3028 pushValue(I
.getOperand(0), InstID
, Vals
); // valist.
3029 Vals
.push_back(VE
.getTypeID(I
.getType())); // restype.
3033 Stream
.EmitRecord(Code
, Vals
, AbbrevToUse
);
3037 /// Write a GlobalValue VST to the module. The purpose of this data structure is
3038 /// to allow clients to efficiently find the function body.
3039 void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
3040 DenseMap
<const Function
*, uint64_t> &FunctionToBitcodeIndex
) {
3041 // Get the offset of the VST we are writing, and backpatch it into
3042 // the VST forward declaration record.
3043 uint64_t VSTOffset
= Stream
.GetCurrentBitNo();
3044 // The BitcodeStartBit was the stream offset of the identification block.
3045 VSTOffset
-= bitcodeStartBit();
3046 assert((VSTOffset
& 31) == 0 && "VST block not 32-bit aligned");
3047 // Note that we add 1 here because the offset is relative to one word
3048 // before the start of the identification block, which was historically
3049 // always the start of the regular bitcode header.
3050 Stream
.BackpatchWord(VSTOffsetPlaceholder
, VSTOffset
/ 32 + 1);
3052 Stream
.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID
, 4);
3054 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3055 Abbv
->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY
));
3056 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // value id
3057 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // funcoffset
3058 unsigned FnEntryAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
3060 for (const Function
&F
: M
) {
3063 if (F
.isDeclaration())
3066 Record
[0] = VE
.getValueID(&F
);
3068 // Save the word offset of the function (from the start of the
3069 // actual bitcode written to the stream).
3070 uint64_t BitcodeIndex
= FunctionToBitcodeIndex
[&F
] - bitcodeStartBit();
3071 assert((BitcodeIndex
& 31) == 0 && "function block not 32-bit aligned");
3072 // Note that we add 1 here because the offset is relative to one word
3073 // before the start of the identification block, which was historically
3074 // always the start of the regular bitcode header.
3075 Record
[1] = BitcodeIndex
/ 32 + 1;
3077 Stream
.EmitRecord(bitc::VST_CODE_FNENTRY
, Record
, FnEntryAbbrev
);
3083 /// Emit names for arguments, instructions and basic blocks in a function.
3084 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
3085 const ValueSymbolTable
&VST
) {
3089 Stream
.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID
, 4);
3091 // FIXME: Set up the abbrev, we know how many values there are!
3092 // FIXME: We know if the type names can use 7-bit ascii.
3093 SmallVector
<uint64_t, 64> NameVals
;
3095 for (const ValueName
&Name
: VST
) {
3096 // Figure out the encoding to use for the name.
3097 StringEncoding Bits
= getStringEncoding(Name
.getKey());
3099 unsigned AbbrevToUse
= VST_ENTRY_8_ABBREV
;
3100 NameVals
.push_back(VE
.getValueID(Name
.getValue()));
3102 // VST_CODE_ENTRY: [valueid, namechar x N]
3103 // VST_CODE_BBENTRY: [bbid, namechar x N]
3105 if (isa
<BasicBlock
>(Name
.getValue())) {
3106 Code
= bitc::VST_CODE_BBENTRY
;
3107 if (Bits
== SE_Char6
)
3108 AbbrevToUse
= VST_BBENTRY_6_ABBREV
;
3110 Code
= bitc::VST_CODE_ENTRY
;
3111 if (Bits
== SE_Char6
)
3112 AbbrevToUse
= VST_ENTRY_6_ABBREV
;
3113 else if (Bits
== SE_Fixed7
)
3114 AbbrevToUse
= VST_ENTRY_7_ABBREV
;
3117 for (const auto P
: Name
.getKey())
3118 NameVals
.push_back((unsigned char)P
);
3120 // Emit the finished record.
3121 Stream
.EmitRecord(Code
, NameVals
, AbbrevToUse
);
3128 void ModuleBitcodeWriter::writeUseList(UseListOrder
&&Order
) {
3129 assert(Order
.Shuffle
.size() >= 2 && "Shuffle too small");
3131 if (isa
<BasicBlock
>(Order
.V
))
3132 Code
= bitc::USELIST_CODE_BB
;
3134 Code
= bitc::USELIST_CODE_DEFAULT
;
3136 SmallVector
<uint64_t, 64> Record(Order
.Shuffle
.begin(), Order
.Shuffle
.end());
3137 Record
.push_back(VE
.getValueID(Order
.V
));
3138 Stream
.EmitRecord(Code
, Record
);
3141 void ModuleBitcodeWriter::writeUseListBlock(const Function
*F
) {
3142 assert(VE
.shouldPreserveUseListOrder() &&
3143 "Expected to be preserving use-list order");
3145 auto hasMore
= [&]() {
3146 return !VE
.UseListOrders
.empty() && VE
.UseListOrders
.back().F
== F
;
3152 Stream
.EnterSubblock(bitc::USELIST_BLOCK_ID
, 3);
3154 writeUseList(std::move(VE
.UseListOrders
.back()));
3155 VE
.UseListOrders
.pop_back();
3160 /// Emit a function body to the module stream.
3161 void ModuleBitcodeWriter::writeFunction(
3163 DenseMap
<const Function
*, uint64_t> &FunctionToBitcodeIndex
) {
3164 // Save the bitcode index of the start of this function block for recording
3166 FunctionToBitcodeIndex
[&F
] = Stream
.GetCurrentBitNo();
3168 Stream
.EnterSubblock(bitc::FUNCTION_BLOCK_ID
, 4);
3169 VE
.incorporateFunction(F
);
3171 SmallVector
<unsigned, 64> Vals
;
3173 // Emit the number of basic blocks, so the reader can create them ahead of
3175 Vals
.push_back(VE
.getBasicBlocks().size());
3176 Stream
.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS
, Vals
);
3179 // If there are function-local constants, emit them now.
3180 unsigned CstStart
, CstEnd
;
3181 VE
.getFunctionConstantRange(CstStart
, CstEnd
);
3182 writeConstants(CstStart
, CstEnd
, false);
3184 // If there is function-local metadata, emit it now.
3185 writeFunctionMetadata(F
);
3187 // Keep a running idea of what the instruction ID is.
3188 unsigned InstID
= CstEnd
;
3190 bool NeedsMetadataAttachment
= F
.hasMetadata();
3192 DILocation
*LastDL
= nullptr;
3193 // Finally, emit all the instructions, in order.
3194 for (Function::const_iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
)
3195 for (BasicBlock::const_iterator I
= BB
->begin(), E
= BB
->end();
3197 writeInstruction(*I
, InstID
, Vals
);
3199 if (!I
->getType()->isVoidTy())
3202 // If the instruction has metadata, write a metadata attachment later.
3203 NeedsMetadataAttachment
|= I
->hasMetadataOtherThanDebugLoc();
3205 // If the instruction has a debug location, emit it.
3206 DILocation
*DL
= I
->getDebugLoc();
3211 // Just repeat the same debug loc as last time.
3212 Stream
.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN
, Vals
);
3216 Vals
.push_back(DL
->getLine());
3217 Vals
.push_back(DL
->getColumn());
3218 Vals
.push_back(VE
.getMetadataOrNullID(DL
->getScope()));
3219 Vals
.push_back(VE
.getMetadataOrNullID(DL
->getInlinedAt()));
3220 Vals
.push_back(DL
->isImplicitCode());
3221 Stream
.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC
, Vals
);
3227 // Emit names for all the instructions etc.
3228 if (auto *Symtab
= F
.getValueSymbolTable())
3229 writeFunctionLevelValueSymbolTable(*Symtab
);
3231 if (NeedsMetadataAttachment
)
3232 writeFunctionMetadataAttachment(F
);
3233 if (VE
.shouldPreserveUseListOrder())
3234 writeUseListBlock(&F
);
3239 // Emit blockinfo, which defines the standard abbreviations etc.
3240 void ModuleBitcodeWriter::writeBlockInfo() {
3241 // We only want to emit block info records for blocks that have multiple
3242 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
3243 // Other blocks can define their abbrevs inline.
3244 Stream
.EnterBlockInfoBlock();
3246 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
3247 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3248 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 3));
3249 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
3250 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
3251 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 8));
3252 if (Stream
.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID
, Abbv
) !=
3254 llvm_unreachable("Unexpected abbrev ordering!");
3257 { // 7-bit fixed width VST_CODE_ENTRY strings.
3258 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3259 Abbv
->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY
));
3260 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
3261 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
3262 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 7));
3263 if (Stream
.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID
, Abbv
) !=
3265 llvm_unreachable("Unexpected abbrev ordering!");
3267 { // 6-bit char6 VST_CODE_ENTRY strings.
3268 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3269 Abbv
->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY
));
3270 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
3271 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
3272 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6
));
3273 if (Stream
.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID
, Abbv
) !=
3275 llvm_unreachable("Unexpected abbrev ordering!");
3277 { // 6-bit char6 VST_CODE_BBENTRY strings.
3278 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3279 Abbv
->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY
));
3280 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
3281 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
3282 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6
));
3283 if (Stream
.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID
, Abbv
) !=
3284 VST_BBENTRY_6_ABBREV
)
3285 llvm_unreachable("Unexpected abbrev ordering!");
3288 { // SETTYPE abbrev for CONSTANTS_BLOCK.
3289 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3290 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE
));
3291 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
,
3292 VE
.computeBitsRequiredForTypeIndicies()));
3293 if (Stream
.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID
, Abbv
) !=
3294 CONSTANTS_SETTYPE_ABBREV
)
3295 llvm_unreachable("Unexpected abbrev ordering!");
3298 { // INTEGER abbrev for CONSTANTS_BLOCK.
3299 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3300 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER
));
3301 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
3302 if (Stream
.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID
, Abbv
) !=
3303 CONSTANTS_INTEGER_ABBREV
)
3304 llvm_unreachable("Unexpected abbrev ordering!");
3307 { // CE_CAST abbrev for CONSTANTS_BLOCK.
3308 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3309 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST
));
3310 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 4)); // cast opc
3311 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, // typeid
3312 VE
.computeBitsRequiredForTypeIndicies()));
3313 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // value id
3315 if (Stream
.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID
, Abbv
) !=
3316 CONSTANTS_CE_CAST_Abbrev
)
3317 llvm_unreachable("Unexpected abbrev ordering!");
3319 { // NULL abbrev for CONSTANTS_BLOCK.
3320 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3321 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL
));
3322 if (Stream
.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID
, Abbv
) !=
3323 CONSTANTS_NULL_Abbrev
)
3324 llvm_unreachable("Unexpected abbrev ordering!");
3327 // FIXME: This should only use space for first class types!
3329 { // INST_LOAD abbrev for FUNCTION_BLOCK.
3330 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3331 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD
));
3332 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // Ptr
3333 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, // dest ty
3334 VE
.computeBitsRequiredForTypeIndicies()));
3335 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // Align
3336 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1)); // volatile
3337 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, Abbv
) !=
3338 FUNCTION_INST_LOAD_ABBREV
)
3339 llvm_unreachable("Unexpected abbrev ordering!");
3341 { // INST_UNOP abbrev for FUNCTION_BLOCK.
3342 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3343 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP
));
3344 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // LHS
3345 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 4)); // opc
3346 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, Abbv
) !=
3347 FUNCTION_INST_UNOP_ABBREV
)
3348 llvm_unreachable("Unexpected abbrev ordering!");
3350 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK.
3351 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3352 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP
));
3353 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // LHS
3354 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 4)); // opc
3355 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 8)); // flags
3356 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, Abbv
) !=
3357 FUNCTION_INST_UNOP_FLAGS_ABBREV
)
3358 llvm_unreachable("Unexpected abbrev ordering!");
3360 { // INST_BINOP abbrev for FUNCTION_BLOCK.
3361 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3362 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP
));
3363 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // LHS
3364 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // RHS
3365 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 4)); // opc
3366 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, Abbv
) !=
3367 FUNCTION_INST_BINOP_ABBREV
)
3368 llvm_unreachable("Unexpected abbrev ordering!");
3370 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3371 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3372 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP
));
3373 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // LHS
3374 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // RHS
3375 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 4)); // opc
3376 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 8)); // flags
3377 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, Abbv
) !=
3378 FUNCTION_INST_BINOP_FLAGS_ABBREV
)
3379 llvm_unreachable("Unexpected abbrev ordering!");
3381 { // INST_CAST abbrev for FUNCTION_BLOCK.
3382 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3383 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST
));
3384 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // OpVal
3385 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, // dest ty
3386 VE
.computeBitsRequiredForTypeIndicies()));
3387 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 4)); // opc
3388 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, Abbv
) !=
3389 FUNCTION_INST_CAST_ABBREV
)
3390 llvm_unreachable("Unexpected abbrev ordering!");
3393 { // INST_RET abbrev for FUNCTION_BLOCK.
3394 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3395 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET
));
3396 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, Abbv
) !=
3397 FUNCTION_INST_RET_VOID_ABBREV
)
3398 llvm_unreachable("Unexpected abbrev ordering!");
3400 { // INST_RET abbrev for FUNCTION_BLOCK.
3401 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3402 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET
));
3403 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // ValID
3404 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, Abbv
) !=
3405 FUNCTION_INST_RET_VAL_ABBREV
)
3406 llvm_unreachable("Unexpected abbrev ordering!");
3408 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3409 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3410 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE
));
3411 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, Abbv
) !=
3412 FUNCTION_INST_UNREACHABLE_ABBREV
)
3413 llvm_unreachable("Unexpected abbrev ordering!");
3416 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3417 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP
));
3418 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1));
3419 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, // dest ty
3420 Log2_32_Ceil(VE
.getTypes().size() + 1)));
3421 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
3422 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
3423 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, Abbv
) !=
3424 FUNCTION_INST_GEP_ABBREV
)
3425 llvm_unreachable("Unexpected abbrev ordering!");
3431 /// Write the module path strings, currently only used when generating
3432 /// a combined index file.
3433 void IndexBitcodeWriter::writeModStrings() {
3434 Stream
.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID
, 3);
3436 // TODO: See which abbrev sizes we actually need to emit
3438 // 8-bit fixed-width MST_ENTRY strings.
3439 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3440 Abbv
->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY
));
3441 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
3442 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
3443 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 8));
3444 unsigned Abbrev8Bit
= Stream
.EmitAbbrev(std::move(Abbv
));
3446 // 7-bit fixed width MST_ENTRY strings.
3447 Abbv
= std::make_shared
<BitCodeAbbrev
>();
3448 Abbv
->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY
));
3449 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
3450 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
3451 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 7));
3452 unsigned Abbrev7Bit
= Stream
.EmitAbbrev(std::move(Abbv
));
3454 // 6-bit char6 MST_ENTRY strings.
3455 Abbv
= std::make_shared
<BitCodeAbbrev
>();
3456 Abbv
->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY
));
3457 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
3458 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
3459 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6
));
3460 unsigned Abbrev6Bit
= Stream
.EmitAbbrev(std::move(Abbv
));
3462 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3463 Abbv
= std::make_shared
<BitCodeAbbrev
>();
3464 Abbv
->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH
));
3465 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
3466 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
3467 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
3468 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
3469 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
3470 unsigned AbbrevHash
= Stream
.EmitAbbrev(std::move(Abbv
));
3472 SmallVector
<unsigned, 64> Vals
;
3474 [&](const StringMapEntry
<std::pair
<uint64_t, ModuleHash
>> &MPSE
) {
3475 StringRef Key
= MPSE
.getKey();
3476 const auto &Value
= MPSE
.getValue();
3477 StringEncoding Bits
= getStringEncoding(Key
);
3478 unsigned AbbrevToUse
= Abbrev8Bit
;
3479 if (Bits
== SE_Char6
)
3480 AbbrevToUse
= Abbrev6Bit
;
3481 else if (Bits
== SE_Fixed7
)
3482 AbbrevToUse
= Abbrev7Bit
;
3484 Vals
.push_back(Value
.first
);
3485 Vals
.append(Key
.begin(), Key
.end());
3487 // Emit the finished record.
3488 Stream
.EmitRecord(bitc::MST_CODE_ENTRY
, Vals
, AbbrevToUse
);
3490 // Emit an optional hash for the module now
3491 const auto &Hash
= Value
.second
;
3492 if (llvm::any_of(Hash
, [](uint32_t H
) { return H
; })) {
3493 Vals
.assign(Hash
.begin(), Hash
.end());
3494 // Emit the hash record.
3495 Stream
.EmitRecord(bitc::MST_CODE_HASH
, Vals
, AbbrevHash
);
3503 /// Write the function type metadata related records that need to appear before
3504 /// a function summary entry (whether per-module or combined).
3505 static void writeFunctionTypeMetadataRecords(BitstreamWriter
&Stream
,
3506 FunctionSummary
*FS
) {
3507 if (!FS
->type_tests().empty())
3508 Stream
.EmitRecord(bitc::FS_TYPE_TESTS
, FS
->type_tests());
3510 SmallVector
<uint64_t, 64> Record
;
3512 auto WriteVFuncIdVec
= [&](uint64_t Ty
,
3513 ArrayRef
<FunctionSummary::VFuncId
> VFs
) {
3517 for (auto &VF
: VFs
) {
3518 Record
.push_back(VF
.GUID
);
3519 Record
.push_back(VF
.Offset
);
3521 Stream
.EmitRecord(Ty
, Record
);
3524 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS
,
3525 FS
->type_test_assume_vcalls());
3526 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS
,
3527 FS
->type_checked_load_vcalls());
3529 auto WriteConstVCallVec
= [&](uint64_t Ty
,
3530 ArrayRef
<FunctionSummary::ConstVCall
> VCs
) {
3531 for (auto &VC
: VCs
) {
3533 Record
.push_back(VC
.VFunc
.GUID
);
3534 Record
.push_back(VC
.VFunc
.Offset
);
3535 Record
.insert(Record
.end(), VC
.Args
.begin(), VC
.Args
.end());
3536 Stream
.EmitRecord(Ty
, Record
);
3540 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL
,
3541 FS
->type_test_assume_const_vcalls());
3542 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL
,
3543 FS
->type_checked_load_const_vcalls());
3546 /// Collect type IDs from type tests used by function.
3548 getReferencedTypeIds(FunctionSummary
*FS
,
3549 std::set
<GlobalValue::GUID
> &ReferencedTypeIds
) {
3550 if (!FS
->type_tests().empty())
3551 for (auto &TT
: FS
->type_tests())
3552 ReferencedTypeIds
.insert(TT
);
3554 auto GetReferencedTypesFromVFuncIdVec
=
3555 [&](ArrayRef
<FunctionSummary::VFuncId
> VFs
) {
3556 for (auto &VF
: VFs
)
3557 ReferencedTypeIds
.insert(VF
.GUID
);
3560 GetReferencedTypesFromVFuncIdVec(FS
->type_test_assume_vcalls());
3561 GetReferencedTypesFromVFuncIdVec(FS
->type_checked_load_vcalls());
3563 auto GetReferencedTypesFromConstVCallVec
=
3564 [&](ArrayRef
<FunctionSummary::ConstVCall
> VCs
) {
3565 for (auto &VC
: VCs
)
3566 ReferencedTypeIds
.insert(VC
.VFunc
.GUID
);
3569 GetReferencedTypesFromConstVCallVec(FS
->type_test_assume_const_vcalls());
3570 GetReferencedTypesFromConstVCallVec(FS
->type_checked_load_const_vcalls());
3573 static void writeWholeProgramDevirtResolutionByArg(
3574 SmallVector
<uint64_t, 64> &NameVals
, const std::vector
<uint64_t> &args
,
3575 const WholeProgramDevirtResolution::ByArg
&ByArg
) {
3576 NameVals
.push_back(args
.size());
3577 NameVals
.insert(NameVals
.end(), args
.begin(), args
.end());
3579 NameVals
.push_back(ByArg
.TheKind
);
3580 NameVals
.push_back(ByArg
.Info
);
3581 NameVals
.push_back(ByArg
.Byte
);
3582 NameVals
.push_back(ByArg
.Bit
);
3585 static void writeWholeProgramDevirtResolution(
3586 SmallVector
<uint64_t, 64> &NameVals
, StringTableBuilder
&StrtabBuilder
,
3587 uint64_t Id
, const WholeProgramDevirtResolution
&Wpd
) {
3588 NameVals
.push_back(Id
);
3590 NameVals
.push_back(Wpd
.TheKind
);
3591 NameVals
.push_back(StrtabBuilder
.add(Wpd
.SingleImplName
));
3592 NameVals
.push_back(Wpd
.SingleImplName
.size());
3594 NameVals
.push_back(Wpd
.ResByArg
.size());
3595 for (auto &A
: Wpd
.ResByArg
)
3596 writeWholeProgramDevirtResolutionByArg(NameVals
, A
.first
, A
.second
);
3599 static void writeTypeIdSummaryRecord(SmallVector
<uint64_t, 64> &NameVals
,
3600 StringTableBuilder
&StrtabBuilder
,
3601 const std::string
&Id
,
3602 const TypeIdSummary
&Summary
) {
3603 NameVals
.push_back(StrtabBuilder
.add(Id
));
3604 NameVals
.push_back(Id
.size());
3606 NameVals
.push_back(Summary
.TTRes
.TheKind
);
3607 NameVals
.push_back(Summary
.TTRes
.SizeM1BitWidth
);
3608 NameVals
.push_back(Summary
.TTRes
.AlignLog2
);
3609 NameVals
.push_back(Summary
.TTRes
.SizeM1
);
3610 NameVals
.push_back(Summary
.TTRes
.BitMask
);
3611 NameVals
.push_back(Summary
.TTRes
.InlineBits
);
3613 for (auto &W
: Summary
.WPDRes
)
3614 writeWholeProgramDevirtResolution(NameVals
, StrtabBuilder
, W
.first
,
3618 static void writeTypeIdCompatibleVtableSummaryRecord(
3619 SmallVector
<uint64_t, 64> &NameVals
, StringTableBuilder
&StrtabBuilder
,
3620 const std::string
&Id
, const TypeIdCompatibleVtableInfo
&Summary
,
3621 ValueEnumerator
&VE
) {
3622 NameVals
.push_back(StrtabBuilder
.add(Id
));
3623 NameVals
.push_back(Id
.size());
3625 for (auto &P
: Summary
) {
3626 NameVals
.push_back(P
.AddressPointOffset
);
3627 NameVals
.push_back(VE
.getValueID(P
.VTableVI
.getValue()));
3631 // Helper to emit a single function summary record.
3632 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
3633 SmallVector
<uint64_t, 64> &NameVals
, GlobalValueSummary
*Summary
,
3634 unsigned ValueID
, unsigned FSCallsAbbrev
, unsigned FSCallsProfileAbbrev
,
3635 const Function
&F
) {
3636 NameVals
.push_back(ValueID
);
3638 FunctionSummary
*FS
= cast
<FunctionSummary
>(Summary
);
3639 writeFunctionTypeMetadataRecords(Stream
, FS
);
3641 auto SpecialRefCnts
= FS
->specialRefCounts();
3642 NameVals
.push_back(getEncodedGVSummaryFlags(FS
->flags()));
3643 NameVals
.push_back(FS
->instCount());
3644 NameVals
.push_back(getEncodedFFlags(FS
->fflags()));
3645 NameVals
.push_back(FS
->refs().size());
3646 NameVals
.push_back(SpecialRefCnts
.first
); // rorefcnt
3647 NameVals
.push_back(SpecialRefCnts
.second
); // worefcnt
3649 for (auto &RI
: FS
->refs())
3650 NameVals
.push_back(VE
.getValueID(RI
.getValue()));
3652 bool HasProfileData
=
3653 F
.hasProfileData() || ForceSummaryEdgesCold
!= FunctionSummary::FSHT_None
;
3654 for (auto &ECI
: FS
->calls()) {
3655 NameVals
.push_back(getValueId(ECI
.first
));
3657 NameVals
.push_back(static_cast<uint8_t>(ECI
.second
.Hotness
));
3658 else if (WriteRelBFToSummary
)
3659 NameVals
.push_back(ECI
.second
.RelBlockFreq
);
3662 unsigned FSAbbrev
= (HasProfileData
? FSCallsProfileAbbrev
: FSCallsAbbrev
);
3664 (HasProfileData
? bitc::FS_PERMODULE_PROFILE
3665 : (WriteRelBFToSummary
? bitc::FS_PERMODULE_RELBF
3666 : bitc::FS_PERMODULE
));
3668 // Emit the finished record.
3669 Stream
.EmitRecord(Code
, NameVals
, FSAbbrev
);
3673 // Collect the global value references in the given variable's initializer,
3674 // and emit them in a summary record.
3675 void ModuleBitcodeWriterBase::writeModuleLevelReferences(
3676 const GlobalVariable
&V
, SmallVector
<uint64_t, 64> &NameVals
,
3677 unsigned FSModRefsAbbrev
, unsigned FSModVTableRefsAbbrev
) {
3678 auto VI
= Index
->getValueInfo(V
.getGUID());
3679 if (!VI
|| VI
.getSummaryList().empty()) {
3680 // Only declarations should not have a summary (a declaration might however
3681 // have a summary if the def was in module level asm).
3682 assert(V
.isDeclaration());
3685 auto *Summary
= VI
.getSummaryList()[0].get();
3686 NameVals
.push_back(VE
.getValueID(&V
));
3687 GlobalVarSummary
*VS
= cast
<GlobalVarSummary
>(Summary
);
3688 NameVals
.push_back(getEncodedGVSummaryFlags(VS
->flags()));
3689 NameVals
.push_back(getEncodedGVarFlags(VS
->varflags()));
3691 auto VTableFuncs
= VS
->vTableFuncs();
3692 if (!VTableFuncs
.empty())
3693 NameVals
.push_back(VS
->refs().size());
3695 unsigned SizeBeforeRefs
= NameVals
.size();
3696 for (auto &RI
: VS
->refs())
3697 NameVals
.push_back(VE
.getValueID(RI
.getValue()));
3698 // Sort the refs for determinism output, the vector returned by FS->refs() has
3699 // been initialized from a DenseSet.
3700 llvm::sort(NameVals
.begin() + SizeBeforeRefs
, NameVals
.end());
3702 if (VTableFuncs
.empty())
3703 Stream
.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS
, NameVals
,
3706 // VTableFuncs pairs should already be sorted by offset.
3707 for (auto &P
: VTableFuncs
) {
3708 NameVals
.push_back(VE
.getValueID(P
.FuncVI
.getValue()));
3709 NameVals
.push_back(P
.VTableOffset
);
3712 Stream
.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS
, NameVals
,
3713 FSModVTableRefsAbbrev
);
3718 // Current version for the summary.
3719 // This is bumped whenever we introduce changes in the way some record are
3720 // interpreted, like flags for instance.
3721 static const uint64_t INDEX_VERSION
= 7;
3723 /// Emit the per-module summary section alongside the rest of
3724 /// the module's bitcode.
3725 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
3726 // By default we compile with ThinLTO if the module has a summary, but the
3727 // client can request full LTO with a module flag.
3728 bool IsThinLTO
= true;
3730 mdconst::extract_or_null
<ConstantInt
>(M
.getModuleFlag("ThinLTO")))
3731 IsThinLTO
= MD
->getZExtValue();
3732 Stream
.EnterSubblock(IsThinLTO
? bitc::GLOBALVAL_SUMMARY_BLOCK_ID
3733 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID
,
3736 Stream
.EmitRecord(bitc::FS_VERSION
, ArrayRef
<uint64_t>{INDEX_VERSION
});
3738 // Write the index flags.
3740 // Bits 1-3 are set only in the combined index, skip them.
3741 if (Index
->enableSplitLTOUnit())
3743 Stream
.EmitRecord(bitc::FS_FLAGS
, ArrayRef
<uint64_t>{Flags
});
3745 if (Index
->begin() == Index
->end()) {
3750 for (const auto &GVI
: valueIds()) {
3751 Stream
.EmitRecord(bitc::FS_VALUE_GUID
,
3752 ArrayRef
<uint64_t>{GVI
.second
, GVI
.first
});
3755 // Abbrev for FS_PERMODULE_PROFILE.
3756 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3757 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE
));
3758 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // valueid
3759 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // flags
3760 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // instcount
3761 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // fflags
3762 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // numrefs
3763 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // rorefcnt
3764 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // worefcnt
3765 // numrefs x valueid, n x (valueid, hotness)
3766 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
3767 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
3768 unsigned FSCallsProfileAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
3770 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF.
3771 Abbv
= std::make_shared
<BitCodeAbbrev
>();
3772 if (WriteRelBFToSummary
)
3773 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF
));
3775 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE
));
3776 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // valueid
3777 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // flags
3778 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // instcount
3779 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // fflags
3780 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // numrefs
3781 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // rorefcnt
3782 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // worefcnt
3783 // numrefs x valueid, n x (valueid [, rel_block_freq])
3784 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
3785 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
3786 unsigned FSCallsAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
3788 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
3789 Abbv
= std::make_shared
<BitCodeAbbrev
>();
3790 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS
));
3791 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // valueid
3792 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // flags
3793 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
)); // valueids
3794 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
3795 unsigned FSModRefsAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
3797 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS.
3798 Abbv
= std::make_shared
<BitCodeAbbrev
>();
3799 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS
));
3800 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // valueid
3801 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // flags
3802 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // numrefs
3803 // numrefs x valueid, n x (valueid , offset)
3804 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
3805 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
3806 unsigned FSModVTableRefsAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
3808 // Abbrev for FS_ALIAS.
3809 Abbv
= std::make_shared
<BitCodeAbbrev
>();
3810 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_ALIAS
));
3811 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // valueid
3812 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // flags
3813 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // valueid
3814 unsigned FSAliasAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
3816 // Abbrev for FS_TYPE_ID_METADATA
3817 Abbv
= std::make_shared
<BitCodeAbbrev
>();
3818 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA
));
3819 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // typeid strtab index
3820 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // typeid length
3821 // n x (valueid , offset)
3822 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
3823 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
3824 unsigned TypeIdCompatibleVtableAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
3826 SmallVector
<uint64_t, 64> NameVals
;
3827 // Iterate over the list of functions instead of the Index to
3828 // ensure the ordering is stable.
3829 for (const Function
&F
: M
) {
3830 // Summary emission does not support anonymous functions, they have to
3831 // renamed using the anonymous function renaming pass.
3833 report_fatal_error("Unexpected anonymous function when writing summary");
3835 ValueInfo VI
= Index
->getValueInfo(F
.getGUID());
3836 if (!VI
|| VI
.getSummaryList().empty()) {
3837 // Only declarations should not have a summary (a declaration might
3838 // however have a summary if the def was in module level asm).
3839 assert(F
.isDeclaration());
3842 auto *Summary
= VI
.getSummaryList()[0].get();
3843 writePerModuleFunctionSummaryRecord(NameVals
, Summary
, VE
.getValueID(&F
),
3844 FSCallsAbbrev
, FSCallsProfileAbbrev
, F
);
3847 // Capture references from GlobalVariable initializers, which are outside
3848 // of a function scope.
3849 for (const GlobalVariable
&G
: M
.globals())
3850 writeModuleLevelReferences(G
, NameVals
, FSModRefsAbbrev
,
3851 FSModVTableRefsAbbrev
);
3853 for (const GlobalAlias
&A
: M
.aliases()) {
3854 auto *Aliasee
= A
.getBaseObject();
3855 if (!Aliasee
->hasName())
3856 // Nameless function don't have an entry in the summary, skip it.
3858 auto AliasId
= VE
.getValueID(&A
);
3859 auto AliaseeId
= VE
.getValueID(Aliasee
);
3860 NameVals
.push_back(AliasId
);
3861 auto *Summary
= Index
->getGlobalValueSummary(A
);
3862 AliasSummary
*AS
= cast
<AliasSummary
>(Summary
);
3863 NameVals
.push_back(getEncodedGVSummaryFlags(AS
->flags()));
3864 NameVals
.push_back(AliaseeId
);
3865 Stream
.EmitRecord(bitc::FS_ALIAS
, NameVals
, FSAliasAbbrev
);
3869 for (auto &S
: Index
->typeIdCompatibleVtableMap()) {
3870 writeTypeIdCompatibleVtableSummaryRecord(NameVals
, StrtabBuilder
, S
.first
,
3872 Stream
.EmitRecord(bitc::FS_TYPE_ID_METADATA
, NameVals
,
3873 TypeIdCompatibleVtableAbbrev
);
3880 /// Emit the combined summary section into the combined index file.
3881 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
3882 Stream
.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID
, 3);
3883 Stream
.EmitRecord(bitc::FS_VERSION
, ArrayRef
<uint64_t>{INDEX_VERSION
});
3885 // Write the index flags.
3887 if (Index
.withGlobalValueDeadStripping())
3889 if (Index
.skipModuleByDistributedBackend())
3891 if (Index
.hasSyntheticEntryCounts())
3893 if (Index
.enableSplitLTOUnit())
3895 if (Index
.partiallySplitLTOUnits())
3897 Stream
.EmitRecord(bitc::FS_FLAGS
, ArrayRef
<uint64_t>{Flags
});
3899 for (const auto &GVI
: valueIds()) {
3900 Stream
.EmitRecord(bitc::FS_VALUE_GUID
,
3901 ArrayRef
<uint64_t>{GVI
.second
, GVI
.first
});
3904 // Abbrev for FS_COMBINED.
3905 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3906 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_COMBINED
));
3907 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // valueid
3908 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // modid
3909 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // flags
3910 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // instcount
3911 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // fflags
3912 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // entrycount
3913 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // numrefs
3914 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // rorefcnt
3915 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // worefcnt
3916 // numrefs x valueid, n x (valueid)
3917 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
3918 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
3919 unsigned FSCallsAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
3921 // Abbrev for FS_COMBINED_PROFILE.
3922 Abbv
= std::make_shared
<BitCodeAbbrev
>();
3923 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE
));
3924 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // valueid
3925 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // modid
3926 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // flags
3927 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // instcount
3928 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // fflags
3929 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // entrycount
3930 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // numrefs
3931 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // rorefcnt
3932 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // worefcnt
3933 // numrefs x valueid, n x (valueid, hotness)
3934 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
3935 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
3936 unsigned FSCallsProfileAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
3938 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
3939 Abbv
= std::make_shared
<BitCodeAbbrev
>();
3940 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS
));
3941 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // valueid
3942 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // modid
3943 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // flags
3944 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
)); // valueids
3945 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
3946 unsigned FSModRefsAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
3948 // Abbrev for FS_COMBINED_ALIAS.
3949 Abbv
= std::make_shared
<BitCodeAbbrev
>();
3950 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS
));
3951 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // valueid
3952 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // modid
3953 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // flags
3954 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // valueid
3955 unsigned FSAliasAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
3957 // The aliases are emitted as a post-pass, and will point to the value
3958 // id of the aliasee. Save them in a vector for post-processing.
3959 SmallVector
<AliasSummary
*, 64> Aliases
;
3961 // Save the value id for each summary for alias emission.
3962 DenseMap
<const GlobalValueSummary
*, unsigned> SummaryToValueIdMap
;
3964 SmallVector
<uint64_t, 64> NameVals
;
3966 // Set that will be populated during call to writeFunctionTypeMetadataRecords
3967 // with the type ids referenced by this index file.
3968 std::set
<GlobalValue::GUID
> ReferencedTypeIds
;
3970 // For local linkage, we also emit the original name separately
3971 // immediately after the record.
3972 auto MaybeEmitOriginalName
= [&](GlobalValueSummary
&S
) {
3973 if (!GlobalValue::isLocalLinkage(S
.linkage()))
3975 NameVals
.push_back(S
.getOriginalName());
3976 Stream
.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME
, NameVals
);
3980 std::set
<GlobalValue::GUID
> DefOrUseGUIDs
;
3981 forEachSummary([&](GVInfo I
, bool IsAliasee
) {
3982 GlobalValueSummary
*S
= I
.second
;
3984 DefOrUseGUIDs
.insert(I
.first
);
3985 for (const ValueInfo
&VI
: S
->refs())
3986 DefOrUseGUIDs
.insert(VI
.getGUID());
3988 auto ValueId
= getValueId(I
.first
);
3990 SummaryToValueIdMap
[S
] = *ValueId
;
3992 // If this is invoked for an aliasee, we want to record the above
3993 // mapping, but then not emit a summary entry (if the aliasee is
3994 // to be imported, we will invoke this separately with IsAliasee=false).
3998 if (auto *AS
= dyn_cast
<AliasSummary
>(S
)) {
3999 // Will process aliases as a post-pass because the reader wants all
4000 // global to be loaded first.
4001 Aliases
.push_back(AS
);
4005 if (auto *VS
= dyn_cast
<GlobalVarSummary
>(S
)) {
4006 NameVals
.push_back(*ValueId
);
4007 NameVals
.push_back(Index
.getModuleId(VS
->modulePath()));
4008 NameVals
.push_back(getEncodedGVSummaryFlags(VS
->flags()));
4009 NameVals
.push_back(getEncodedGVarFlags(VS
->varflags()));
4010 for (auto &RI
: VS
->refs()) {
4011 auto RefValueId
= getValueId(RI
.getGUID());
4014 NameVals
.push_back(*RefValueId
);
4017 // Emit the finished record.
4018 Stream
.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS
, NameVals
,
4021 MaybeEmitOriginalName(*S
);
4025 auto *FS
= cast
<FunctionSummary
>(S
);
4026 writeFunctionTypeMetadataRecords(Stream
, FS
);
4027 getReferencedTypeIds(FS
, ReferencedTypeIds
);
4029 NameVals
.push_back(*ValueId
);
4030 NameVals
.push_back(Index
.getModuleId(FS
->modulePath()));
4031 NameVals
.push_back(getEncodedGVSummaryFlags(FS
->flags()));
4032 NameVals
.push_back(FS
->instCount());
4033 NameVals
.push_back(getEncodedFFlags(FS
->fflags()));
4034 NameVals
.push_back(FS
->entryCount());
4037 NameVals
.push_back(0); // numrefs
4038 NameVals
.push_back(0); // rorefcnt
4039 NameVals
.push_back(0); // worefcnt
4041 unsigned Count
= 0, RORefCnt
= 0, WORefCnt
= 0;
4042 for (auto &RI
: FS
->refs()) {
4043 auto RefValueId
= getValueId(RI
.getGUID());
4046 NameVals
.push_back(*RefValueId
);
4047 if (RI
.isReadOnly())
4049 else if (RI
.isWriteOnly())
4053 NameVals
[6] = Count
;
4054 NameVals
[7] = RORefCnt
;
4055 NameVals
[8] = WORefCnt
;
4057 bool HasProfileData
= false;
4058 for (auto &EI
: FS
->calls()) {
4060 EI
.second
.getHotness() != CalleeInfo::HotnessType::Unknown
;
4065 for (auto &EI
: FS
->calls()) {
4066 // If this GUID doesn't have a value id, it doesn't have a function
4067 // summary and we don't need to record any calls to it.
4068 GlobalValue::GUID GUID
= EI
.first
.getGUID();
4069 auto CallValueId
= getValueId(GUID
);
4071 // For SamplePGO, the indirect call targets for local functions will
4072 // have its original name annotated in profile. We try to find the
4073 // corresponding PGOFuncName as the GUID.
4074 GUID
= Index
.getGUIDFromOriginalID(GUID
);
4077 CallValueId
= getValueId(GUID
);
4080 // The mapping from OriginalId to GUID may return a GUID
4081 // that corresponds to a static variable. Filter it out here.
4082 // This can happen when
4083 // 1) There is a call to a library function which does not have
4085 // 2) There is a static variable with the OriginalGUID identical
4086 // to the GUID of the library function in 1);
4087 // When this happens, the logic for SamplePGO kicks in and
4088 // the static variable in 2) will be found, which needs to be
4090 auto *GVSum
= Index
.getGlobalValueSummary(GUID
, false);
4092 GVSum
->getSummaryKind() == GlobalValueSummary::GlobalVarKind
)
4095 NameVals
.push_back(*CallValueId
);
4097 NameVals
.push_back(static_cast<uint8_t>(EI
.second
.Hotness
));
4100 unsigned FSAbbrev
= (HasProfileData
? FSCallsProfileAbbrev
: FSCallsAbbrev
);
4102 (HasProfileData
? bitc::FS_COMBINED_PROFILE
: bitc::FS_COMBINED
);
4104 // Emit the finished record.
4105 Stream
.EmitRecord(Code
, NameVals
, FSAbbrev
);
4107 MaybeEmitOriginalName(*S
);
4110 for (auto *AS
: Aliases
) {
4111 auto AliasValueId
= SummaryToValueIdMap
[AS
];
4112 assert(AliasValueId
);
4113 NameVals
.push_back(AliasValueId
);
4114 NameVals
.push_back(Index
.getModuleId(AS
->modulePath()));
4115 NameVals
.push_back(getEncodedGVSummaryFlags(AS
->flags()));
4116 auto AliaseeValueId
= SummaryToValueIdMap
[&AS
->getAliasee()];
4117 assert(AliaseeValueId
);
4118 NameVals
.push_back(AliaseeValueId
);
4120 // Emit the finished record.
4121 Stream
.EmitRecord(bitc::FS_COMBINED_ALIAS
, NameVals
, FSAliasAbbrev
);
4123 MaybeEmitOriginalName(*AS
);
4125 if (auto *FS
= dyn_cast
<FunctionSummary
>(&AS
->getAliasee()))
4126 getReferencedTypeIds(FS
, ReferencedTypeIds
);
4129 if (!Index
.cfiFunctionDefs().empty()) {
4130 for (auto &S
: Index
.cfiFunctionDefs()) {
4131 if (DefOrUseGUIDs
.count(
4132 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S
)))) {
4133 NameVals
.push_back(StrtabBuilder
.add(S
));
4134 NameVals
.push_back(S
.size());
4137 if (!NameVals
.empty()) {
4138 Stream
.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS
, NameVals
);
4143 if (!Index
.cfiFunctionDecls().empty()) {
4144 for (auto &S
: Index
.cfiFunctionDecls()) {
4145 if (DefOrUseGUIDs
.count(
4146 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S
)))) {
4147 NameVals
.push_back(StrtabBuilder
.add(S
));
4148 NameVals
.push_back(S
.size());
4151 if (!NameVals
.empty()) {
4152 Stream
.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS
, NameVals
);
4157 // Walk the GUIDs that were referenced, and write the
4158 // corresponding type id records.
4159 for (auto &T
: ReferencedTypeIds
) {
4160 auto TidIter
= Index
.typeIds().equal_range(T
);
4161 for (auto It
= TidIter
.first
; It
!= TidIter
.second
; ++It
) {
4162 writeTypeIdSummaryRecord(NameVals
, StrtabBuilder
, It
->second
.first
,
4164 Stream
.EmitRecord(bitc::FS_TYPE_ID
, NameVals
);
4172 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
4173 /// current llvm version, and a record for the epoch number.
4174 static void writeIdentificationBlock(BitstreamWriter
&Stream
) {
4175 Stream
.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID
, 5);
4177 // Write the "user readable" string identifying the bitcode producer
4178 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
4179 Abbv
->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING
));
4180 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
4181 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6
));
4182 auto StringAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
4183 writeStringRecord(Stream
, bitc::IDENTIFICATION_CODE_STRING
,
4184 "LLVM" LLVM_VERSION_STRING
, StringAbbrev
);
4186 // Write the epoch version
4187 Abbv
= std::make_shared
<BitCodeAbbrev
>();
4188 Abbv
->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH
));
4189 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
4190 auto EpochAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
4191 SmallVector
<unsigned, 1> Vals
= {bitc::BITCODE_CURRENT_EPOCH
};
4192 Stream
.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH
, Vals
, EpochAbbrev
);
4196 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos
) {
4197 // Emit the module's hash.
4198 // MODULE_CODE_HASH: [5*i32]
4201 Hasher
.update(ArrayRef
<uint8_t>((const uint8_t *)&(Buffer
)[BlockStartPos
],
4202 Buffer
.size() - BlockStartPos
));
4203 StringRef Hash
= Hasher
.result();
4204 for (int Pos
= 0; Pos
< 20; Pos
+= 4) {
4205 Vals
[Pos
/ 4] = support::endian::read32be(Hash
.data() + Pos
);
4208 // Emit the finished record.
4209 Stream
.EmitRecord(bitc::MODULE_CODE_HASH
, Vals
);
4212 // Save the written hash value.
4213 llvm::copy(Vals
, std::begin(*ModHash
));
4217 void ModuleBitcodeWriter::write() {
4218 writeIdentificationBlock(Stream
);
4220 Stream
.EnterSubblock(bitc::MODULE_BLOCK_ID
, 3);
4221 size_t BlockStartPos
= Buffer
.size();
4223 writeModuleVersion();
4225 // Emit blockinfo, which defines the standard abbreviations etc.
4228 // Emit information describing all of the types in the module.
4231 // Emit information about attribute groups.
4232 writeAttributeGroupTable();
4234 // Emit information about parameter attributes.
4235 writeAttributeTable();
4239 // Emit top-level description of module, including target triple, inline asm,
4240 // descriptors for global variables, and function prototype info.
4244 writeModuleConstants();
4246 // Emit metadata kind names.
4247 writeModuleMetadataKinds();
4250 writeModuleMetadata();
4252 // Emit module-level use-lists.
4253 if (VE
.shouldPreserveUseListOrder())
4254 writeUseListBlock(nullptr);
4256 writeOperandBundleTags();
4257 writeSyncScopeNames();
4259 // Emit function bodies.
4260 DenseMap
<const Function
*, uint64_t> FunctionToBitcodeIndex
;
4261 for (Module::const_iterator F
= M
.begin(), E
= M
.end(); F
!= E
; ++F
)
4262 if (!F
->isDeclaration())
4263 writeFunction(*F
, FunctionToBitcodeIndex
);
4265 // Need to write after the above call to WriteFunction which populates
4266 // the summary information in the index.
4268 writePerModuleGlobalValueSummary();
4270 writeGlobalValueSymbolTable(FunctionToBitcodeIndex
);
4272 writeModuleHash(BlockStartPos
);
4277 static void writeInt32ToBuffer(uint32_t Value
, SmallVectorImpl
<char> &Buffer
,
4278 uint32_t &Position
) {
4279 support::endian::write32le(&Buffer
[Position
], Value
);
4283 /// If generating a bc file on darwin, we have to emit a
4284 /// header and trailer to make it compatible with the system archiver. To do
4285 /// this we emit the following header, and then emit a trailer that pads the
4286 /// file out to be a multiple of 16 bytes.
4288 /// struct bc_header {
4289 /// uint32_t Magic; // 0x0B17C0DE
4290 /// uint32_t Version; // Version, currently always 0.
4291 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
4292 /// uint32_t BitcodeSize; // Size of traditional bitcode file.
4293 /// uint32_t CPUType; // CPU specifier.
4294 /// ... potentially more later ...
4296 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl
<char> &Buffer
,
4298 unsigned CPUType
= ~0U;
4300 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
4301 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
4302 // number from /usr/include/mach/machine.h. It is ok to reproduce the
4303 // specific constants here because they are implicitly part of the Darwin ABI.
4305 DARWIN_CPU_ARCH_ABI64
= 0x01000000,
4306 DARWIN_CPU_TYPE_X86
= 7,
4307 DARWIN_CPU_TYPE_ARM
= 12,
4308 DARWIN_CPU_TYPE_POWERPC
= 18
4311 Triple::ArchType Arch
= TT
.getArch();
4312 if (Arch
== Triple::x86_64
)
4313 CPUType
= DARWIN_CPU_TYPE_X86
| DARWIN_CPU_ARCH_ABI64
;
4314 else if (Arch
== Triple::x86
)
4315 CPUType
= DARWIN_CPU_TYPE_X86
;
4316 else if (Arch
== Triple::ppc
)
4317 CPUType
= DARWIN_CPU_TYPE_POWERPC
;
4318 else if (Arch
== Triple::ppc64
)
4319 CPUType
= DARWIN_CPU_TYPE_POWERPC
| DARWIN_CPU_ARCH_ABI64
;
4320 else if (Arch
== Triple::arm
|| Arch
== Triple::thumb
)
4321 CPUType
= DARWIN_CPU_TYPE_ARM
;
4323 // Traditional Bitcode starts after header.
4324 assert(Buffer
.size() >= BWH_HeaderSize
&&
4325 "Expected header size to be reserved");
4326 unsigned BCOffset
= BWH_HeaderSize
;
4327 unsigned BCSize
= Buffer
.size() - BWH_HeaderSize
;
4329 // Write the magic and version.
4330 unsigned Position
= 0;
4331 writeInt32ToBuffer(0x0B17C0DE, Buffer
, Position
);
4332 writeInt32ToBuffer(0, Buffer
, Position
); // Version.
4333 writeInt32ToBuffer(BCOffset
, Buffer
, Position
);
4334 writeInt32ToBuffer(BCSize
, Buffer
, Position
);
4335 writeInt32ToBuffer(CPUType
, Buffer
, Position
);
4337 // If the file is not a multiple of 16 bytes, insert dummy padding.
4338 while (Buffer
.size() & 15)
4339 Buffer
.push_back(0);
4342 /// Helper to write the header common to all bitcode files.
4343 static void writeBitcodeHeader(BitstreamWriter
&Stream
) {
4344 // Emit the file header.
4345 Stream
.Emit((unsigned)'B', 8);
4346 Stream
.Emit((unsigned)'C', 8);
4347 Stream
.Emit(0x0, 4);
4348 Stream
.Emit(0xC, 4);
4349 Stream
.Emit(0xE, 4);
4350 Stream
.Emit(0xD, 4);
4353 BitcodeWriter::BitcodeWriter(SmallVectorImpl
<char> &Buffer
)
4354 : Buffer(Buffer
), Stream(new BitstreamWriter(Buffer
)) {
4355 writeBitcodeHeader(*Stream
);
4358 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab
); }
4360 void BitcodeWriter::writeBlob(unsigned Block
, unsigned Record
, StringRef Blob
) {
4361 Stream
->EnterSubblock(Block
, 3);
4363 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
4364 Abbv
->Add(BitCodeAbbrevOp(Record
));
4365 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob
));
4366 auto AbbrevNo
= Stream
->EmitAbbrev(std::move(Abbv
));
4368 Stream
->EmitRecordWithBlob(AbbrevNo
, ArrayRef
<uint64_t>{Record
}, Blob
);
4370 Stream
->ExitBlock();
4373 void BitcodeWriter::writeSymtab() {
4374 assert(!WroteStrtab
&& !WroteSymtab
);
4376 // If any module has module-level inline asm, we will require a registered asm
4377 // parser for the target so that we can create an accurate symbol table for
4379 for (Module
*M
: Mods
) {
4380 if (M
->getModuleInlineAsm().empty())
4384 const Triple
TT(M
->getTargetTriple());
4385 const Target
*T
= TargetRegistry::lookupTarget(TT
.str(), Err
);
4386 if (!T
|| !T
->hasMCAsmParser())
4391 SmallVector
<char, 0> Symtab
;
4392 // The irsymtab::build function may be unable to create a symbol table if the
4393 // module is malformed (e.g. it contains an invalid alias). Writing a symbol
4394 // table is not required for correctness, but we still want to be able to
4395 // write malformed modules to bitcode files, so swallow the error.
4396 if (Error E
= irsymtab::build(Mods
, Symtab
, StrtabBuilder
, Alloc
)) {
4397 consumeError(std::move(E
));
4401 writeBlob(bitc::SYMTAB_BLOCK_ID
, bitc::SYMTAB_BLOB
,
4402 {Symtab
.data(), Symtab
.size()});
4405 void BitcodeWriter::writeStrtab() {
4406 assert(!WroteStrtab
);
4408 std::vector
<char> Strtab
;
4409 StrtabBuilder
.finalizeInOrder();
4410 Strtab
.resize(StrtabBuilder
.getSize());
4411 StrtabBuilder
.write((uint8_t *)Strtab
.data());
4413 writeBlob(bitc::STRTAB_BLOCK_ID
, bitc::STRTAB_BLOB
,
4414 {Strtab
.data(), Strtab
.size()});
4419 void BitcodeWriter::copyStrtab(StringRef Strtab
) {
4420 writeBlob(bitc::STRTAB_BLOCK_ID
, bitc::STRTAB_BLOB
, Strtab
);
4424 void BitcodeWriter::writeModule(const Module
&M
,
4425 bool ShouldPreserveUseListOrder
,
4426 const ModuleSummaryIndex
*Index
,
4427 bool GenerateHash
, ModuleHash
*ModHash
) {
4428 assert(!WroteStrtab
);
4430 // The Mods vector is used by irsymtab::build, which requires non-const
4431 // Modules in case it needs to materialize metadata. But the bitcode writer
4432 // requires that the module is materialized, so we can cast to non-const here,
4433 // after checking that it is in fact materialized.
4434 assert(M
.isMaterialized());
4435 Mods
.push_back(const_cast<Module
*>(&M
));
4437 ModuleBitcodeWriter
ModuleWriter(M
, Buffer
, StrtabBuilder
, *Stream
,
4438 ShouldPreserveUseListOrder
, Index
,
4439 GenerateHash
, ModHash
);
4440 ModuleWriter
.write();
4443 void BitcodeWriter::writeIndex(
4444 const ModuleSummaryIndex
*Index
,
4445 const std::map
<std::string
, GVSummaryMapTy
> *ModuleToSummariesForIndex
) {
4446 IndexBitcodeWriter
IndexWriter(*Stream
, StrtabBuilder
, *Index
,
4447 ModuleToSummariesForIndex
);
4448 IndexWriter
.write();
4451 /// Write the specified module to the specified output stream.
4452 void llvm::WriteBitcodeToFile(const Module
&M
, raw_ostream
&Out
,
4453 bool ShouldPreserveUseListOrder
,
4454 const ModuleSummaryIndex
*Index
,
4455 bool GenerateHash
, ModuleHash
*ModHash
) {
4456 SmallVector
<char, 0> Buffer
;
4457 Buffer
.reserve(256*1024);
4459 // If this is darwin or another generic macho target, reserve space for the
4461 Triple
TT(M
.getTargetTriple());
4462 if (TT
.isOSDarwin() || TT
.isOSBinFormatMachO())
4463 Buffer
.insert(Buffer
.begin(), BWH_HeaderSize
, 0);
4465 BitcodeWriter
Writer(Buffer
);
4466 Writer
.writeModule(M
, ShouldPreserveUseListOrder
, Index
, GenerateHash
,
4468 Writer
.writeSymtab();
4469 Writer
.writeStrtab();
4471 if (TT
.isOSDarwin() || TT
.isOSBinFormatMachO())
4472 emitDarwinBCHeaderAndTrailer(Buffer
, TT
);
4474 // Write the generated bitstream to "Out".
4475 Out
.write((char*)&Buffer
.front(), Buffer
.size());
4478 void IndexBitcodeWriter::write() {
4479 Stream
.EnterSubblock(bitc::MODULE_BLOCK_ID
, 3);
4481 writeModuleVersion();
4483 // Write the module paths in the combined index.
4486 // Write the summary combined index records.
4487 writeCombinedGlobalValueSummary();
4492 // Write the specified module summary index to the given raw output stream,
4493 // where it will be written in a new bitcode block. This is used when
4494 // writing the combined index file for ThinLTO. When writing a subset of the
4495 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
4496 void llvm::WriteIndexToFile(
4497 const ModuleSummaryIndex
&Index
, raw_ostream
&Out
,
4498 const std::map
<std::string
, GVSummaryMapTy
> *ModuleToSummariesForIndex
) {
4499 SmallVector
<char, 0> Buffer
;
4500 Buffer
.reserve(256 * 1024);
4502 BitcodeWriter
Writer(Buffer
);
4503 Writer
.writeIndex(&Index
, ModuleToSummariesForIndex
);
4504 Writer
.writeStrtab();
4506 Out
.write((char *)&Buffer
.front(), Buffer
.size());
4511 /// Class to manage the bitcode writing for a thin link bitcode file.
4512 class ThinLinkBitcodeWriter
: public ModuleBitcodeWriterBase
{
4513 /// ModHash is for use in ThinLTO incremental build, generated while writing
4514 /// the module bitcode file.
4515 const ModuleHash
*ModHash
;
4518 ThinLinkBitcodeWriter(const Module
&M
, StringTableBuilder
&StrtabBuilder
,
4519 BitstreamWriter
&Stream
,
4520 const ModuleSummaryIndex
&Index
,
4521 const ModuleHash
&ModHash
)
4522 : ModuleBitcodeWriterBase(M
, StrtabBuilder
, Stream
,
4523 /*ShouldPreserveUseListOrder=*/false, &Index
),
4524 ModHash(&ModHash
) {}
4529 void writeSimplifiedModuleInfo();
4532 } // end anonymous namespace
4534 // This function writes a simpilified module info for thin link bitcode file.
4535 // It only contains the source file name along with the name(the offset and
4536 // size in strtab) and linkage for global values. For the global value info
4537 // entry, in order to keep linkage at offset 5, there are three zeros used
4539 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() {
4540 SmallVector
<unsigned, 64> Vals
;
4541 // Emit the module's source file name.
4543 StringEncoding Bits
= getStringEncoding(M
.getSourceFileName());
4544 BitCodeAbbrevOp AbbrevOpToUse
= BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 8);
4545 if (Bits
== SE_Char6
)
4546 AbbrevOpToUse
= BitCodeAbbrevOp(BitCodeAbbrevOp::Char6
);
4547 else if (Bits
== SE_Fixed7
)
4548 AbbrevOpToUse
= BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 7);
4550 // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4551 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
4552 Abbv
->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME
));
4553 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
4554 Abbv
->Add(AbbrevOpToUse
);
4555 unsigned FilenameAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
4557 for (const auto P
: M
.getSourceFileName())
4558 Vals
.push_back((unsigned char)P
);
4560 Stream
.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME
, Vals
, FilenameAbbrev
);
4564 // Emit the global variable information.
4565 for (const GlobalVariable
&GV
: M
.globals()) {
4566 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage]
4567 Vals
.push_back(StrtabBuilder
.add(GV
.getName()));
4568 Vals
.push_back(GV
.getName().size());
4572 Vals
.push_back(getEncodedLinkage(GV
));
4574 Stream
.EmitRecord(bitc::MODULE_CODE_GLOBALVAR
, Vals
);
4578 // Emit the function proto information.
4579 for (const Function
&F
: M
) {
4580 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage]
4581 Vals
.push_back(StrtabBuilder
.add(F
.getName()));
4582 Vals
.push_back(F
.getName().size());
4586 Vals
.push_back(getEncodedLinkage(F
));
4588 Stream
.EmitRecord(bitc::MODULE_CODE_FUNCTION
, Vals
);
4592 // Emit the alias information.
4593 for (const GlobalAlias
&A
: M
.aliases()) {
4594 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage]
4595 Vals
.push_back(StrtabBuilder
.add(A
.getName()));
4596 Vals
.push_back(A
.getName().size());
4600 Vals
.push_back(getEncodedLinkage(A
));
4602 Stream
.EmitRecord(bitc::MODULE_CODE_ALIAS
, Vals
);
4606 // Emit the ifunc information.
4607 for (const GlobalIFunc
&I
: M
.ifuncs()) {
4608 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage]
4609 Vals
.push_back(StrtabBuilder
.add(I
.getName()));
4610 Vals
.push_back(I
.getName().size());
4614 Vals
.push_back(getEncodedLinkage(I
));
4616 Stream
.EmitRecord(bitc::MODULE_CODE_IFUNC
, Vals
);
4621 void ThinLinkBitcodeWriter::write() {
4622 Stream
.EnterSubblock(bitc::MODULE_BLOCK_ID
, 3);
4624 writeModuleVersion();
4626 writeSimplifiedModuleInfo();
4628 writePerModuleGlobalValueSummary();
4630 // Write module hash.
4631 Stream
.EmitRecord(bitc::MODULE_CODE_HASH
, ArrayRef
<uint32_t>(*ModHash
));
4636 void BitcodeWriter::writeThinLinkBitcode(const Module
&M
,
4637 const ModuleSummaryIndex
&Index
,
4638 const ModuleHash
&ModHash
) {
4639 assert(!WroteStrtab
);
4641 // The Mods vector is used by irsymtab::build, which requires non-const
4642 // Modules in case it needs to materialize metadata. But the bitcode writer
4643 // requires that the module is materialized, so we can cast to non-const here,
4644 // after checking that it is in fact materialized.
4645 assert(M
.isMaterialized());
4646 Mods
.push_back(const_cast<Module
*>(&M
));
4648 ThinLinkBitcodeWriter
ThinLinkWriter(M
, StrtabBuilder
, *Stream
, Index
,
4650 ThinLinkWriter
.write();
4653 // Write the specified thin link bitcode file to the given raw output stream,
4654 // where it will be written in a new bitcode block. This is used when
4655 // writing the per-module index file for ThinLTO.
4656 void llvm::WriteThinLinkBitcodeToFile(const Module
&M
, raw_ostream
&Out
,
4657 const ModuleSummaryIndex
&Index
,
4658 const ModuleHash
&ModHash
) {
4659 SmallVector
<char, 0> Buffer
;
4660 Buffer
.reserve(256 * 1024);
4662 BitcodeWriter
Writer(Buffer
);
4663 Writer
.writeThinLinkBitcode(M
, Index
, ModHash
);
4664 Writer
.writeSymtab();
4665 Writer
.writeStrtab();
4667 Out
.write((char *)&Buffer
.front(), Buffer
.size());