[LLVM][Alignment] Introduce Alignment In Attributes
[llvm-core.git] / lib / IR / SafepointIRVerifier.cpp
blob7f3dea5e6a6d2701b36c9f9c68bfb1e06ab5476e
1 //===-- SafepointIRVerifier.cpp - Verify gc.statepoint invariants ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Run a sanity check on the IR to ensure that Safepoints - if they've been
10 // inserted - were inserted correctly. In particular, look for use of
11 // non-relocated values after a safepoint. It's primary use is to check the
12 // correctness of safepoint insertion immediately after insertion, but it can
13 // also be used to verify that later transforms have not found a way to break
14 // safepoint semenatics.
16 // In its current form, this verify checks a property which is sufficient, but
17 // not neccessary for correctness. There are some cases where an unrelocated
18 // pointer can be used after the safepoint. Consider this example:
20 // a = ...
21 // b = ...
22 // (a',b') = safepoint(a,b)
23 // c = cmp eq a b
24 // br c, ..., ....
26 // Because it is valid to reorder 'c' above the safepoint, this is legal. In
27 // practice, this is a somewhat uncommon transform, but CodeGenPrep does create
28 // idioms like this. The verifier knows about these cases and avoids reporting
29 // false positives.
31 //===----------------------------------------------------------------------===//
33 #include "llvm/ADT/DenseSet.h"
34 #include "llvm/ADT/PostOrderIterator.h"
35 #include "llvm/ADT/SetOperations.h"
36 #include "llvm/ADT/SetVector.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/Intrinsics.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/Value.h"
45 #include "llvm/IR/SafepointIRVerifier.h"
46 #include "llvm/IR/Statepoint.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/raw_ostream.h"
51 #define DEBUG_TYPE "safepoint-ir-verifier"
53 using namespace llvm;
55 /// This option is used for writing test cases. Instead of crashing the program
56 /// when verification fails, report a message to the console (for FileCheck
57 /// usage) and continue execution as if nothing happened.
58 static cl::opt<bool> PrintOnly("safepoint-ir-verifier-print-only",
59 cl::init(false));
61 namespace {
63 /// This CFG Deadness finds dead blocks and edges. Algorithm starts with a set
64 /// of blocks unreachable from entry then propagates deadness using foldable
65 /// conditional branches without modifying CFG. So GVN does but it changes CFG
66 /// by splitting critical edges. In most cases passes rely on SimplifyCFG to
67 /// clean up dead blocks, but in some cases, like verification or loop passes
68 /// it's not possible.
69 class CFGDeadness {
70 const DominatorTree *DT = nullptr;
71 SetVector<const BasicBlock *> DeadBlocks;
72 SetVector<const Use *> DeadEdges; // Contains all dead edges from live blocks.
74 public:
75 /// Return the edge that coresponds to the predecessor.
76 static const Use& getEdge(const_pred_iterator &PredIt) {
77 auto &PU = PredIt.getUse();
78 return PU.getUser()->getOperandUse(PU.getOperandNo());
81 /// Return true if there is at least one live edge that corresponds to the
82 /// basic block InBB listed in the phi node.
83 bool hasLiveIncomingEdge(const PHINode *PN, const BasicBlock *InBB) const {
84 assert(!isDeadBlock(InBB) && "block must be live");
85 const BasicBlock* BB = PN->getParent();
86 bool Listed = false;
87 for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) {
88 if (InBB == *PredIt) {
89 if (!isDeadEdge(&getEdge(PredIt)))
90 return true;
91 Listed = true;
94 (void)Listed;
95 assert(Listed && "basic block is not found among incoming blocks");
96 return false;
100 bool isDeadBlock(const BasicBlock *BB) const {
101 return DeadBlocks.count(BB);
104 bool isDeadEdge(const Use *U) const {
105 assert(dyn_cast<Instruction>(U->getUser())->isTerminator() &&
106 "edge must be operand of terminator");
107 assert(cast_or_null<BasicBlock>(U->get()) &&
108 "edge must refer to basic block");
109 assert(!isDeadBlock(dyn_cast<Instruction>(U->getUser())->getParent()) &&
110 "isDeadEdge() must be applied to edge from live block");
111 return DeadEdges.count(U);
114 bool hasLiveIncomingEdges(const BasicBlock *BB) const {
115 // Check if all incoming edges are dead.
116 for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) {
117 auto &PU = PredIt.getUse();
118 const Use &U = PU.getUser()->getOperandUse(PU.getOperandNo());
119 if (!isDeadBlock(*PredIt) && !isDeadEdge(&U))
120 return true; // Found a live edge.
122 return false;
125 void processFunction(const Function &F, const DominatorTree &DT) {
126 this->DT = &DT;
128 // Start with all blocks unreachable from entry.
129 for (const BasicBlock &BB : F)
130 if (!DT.isReachableFromEntry(&BB))
131 DeadBlocks.insert(&BB);
133 // Top-down walk of the dominator tree
134 ReversePostOrderTraversal<const Function *> RPOT(&F);
135 for (const BasicBlock *BB : RPOT) {
136 const Instruction *TI = BB->getTerminator();
137 assert(TI && "blocks must be well formed");
139 // For conditional branches, we can perform simple conditional propagation on
140 // the condition value itself.
141 const BranchInst *BI = dyn_cast<BranchInst>(TI);
142 if (!BI || !BI->isConditional() || !isa<Constant>(BI->getCondition()))
143 continue;
145 // If a branch has two identical successors, we cannot declare either dead.
146 if (BI->getSuccessor(0) == BI->getSuccessor(1))
147 continue;
149 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
150 if (!Cond)
151 continue;
153 addDeadEdge(BI->getOperandUse(Cond->getZExtValue() ? 1 : 2));
157 protected:
158 void addDeadBlock(const BasicBlock *BB) {
159 SmallVector<const BasicBlock *, 4> NewDead;
160 SmallSetVector<const BasicBlock *, 4> DF;
162 NewDead.push_back(BB);
163 while (!NewDead.empty()) {
164 const BasicBlock *D = NewDead.pop_back_val();
165 if (isDeadBlock(D))
166 continue;
168 // All blocks dominated by D are dead.
169 SmallVector<BasicBlock *, 8> Dom;
170 DT->getDescendants(const_cast<BasicBlock*>(D), Dom);
171 // Do not need to mark all in and out edges dead
172 // because BB is marked dead and this is enough
173 // to run further.
174 DeadBlocks.insert(Dom.begin(), Dom.end());
176 // Figure out the dominance-frontier(D).
177 for (BasicBlock *B : Dom)
178 for (BasicBlock *S : successors(B))
179 if (!isDeadBlock(S) && !hasLiveIncomingEdges(S))
180 NewDead.push_back(S);
184 void addDeadEdge(const Use &DeadEdge) {
185 if (!DeadEdges.insert(&DeadEdge))
186 return;
188 BasicBlock *BB = cast_or_null<BasicBlock>(DeadEdge.get());
189 if (hasLiveIncomingEdges(BB))
190 return;
192 addDeadBlock(BB);
195 } // namespace
197 static void Verify(const Function &F, const DominatorTree &DT,
198 const CFGDeadness &CD);
200 namespace llvm {
201 PreservedAnalyses SafepointIRVerifierPass::run(Function &F,
202 FunctionAnalysisManager &AM) {
203 const auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
204 CFGDeadness CD;
205 CD.processFunction(F, DT);
206 Verify(F, DT, CD);
207 return PreservedAnalyses::all();
211 namespace {
213 struct SafepointIRVerifier : public FunctionPass {
214 static char ID; // Pass identification, replacement for typeid
215 SafepointIRVerifier() : FunctionPass(ID) {
216 initializeSafepointIRVerifierPass(*PassRegistry::getPassRegistry());
219 bool runOnFunction(Function &F) override {
220 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
221 CFGDeadness CD;
222 CD.processFunction(F, DT);
223 Verify(F, DT, CD);
224 return false; // no modifications
227 void getAnalysisUsage(AnalysisUsage &AU) const override {
228 AU.addRequiredID(DominatorTreeWrapperPass::ID);
229 AU.setPreservesAll();
232 StringRef getPassName() const override { return "safepoint verifier"; }
234 } // namespace
236 void llvm::verifySafepointIR(Function &F) {
237 SafepointIRVerifier pass;
238 pass.runOnFunction(F);
241 char SafepointIRVerifier::ID = 0;
243 FunctionPass *llvm::createSafepointIRVerifierPass() {
244 return new SafepointIRVerifier();
247 INITIALIZE_PASS_BEGIN(SafepointIRVerifier, "verify-safepoint-ir",
248 "Safepoint IR Verifier", false, false)
249 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
250 INITIALIZE_PASS_END(SafepointIRVerifier, "verify-safepoint-ir",
251 "Safepoint IR Verifier", false, false)
253 static bool isGCPointerType(Type *T) {
254 if (auto *PT = dyn_cast<PointerType>(T))
255 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
256 // GC managed heap. We know that a pointer into this heap needs to be
257 // updated and that no other pointer does.
258 return (1 == PT->getAddressSpace());
259 return false;
262 static bool containsGCPtrType(Type *Ty) {
263 if (isGCPointerType(Ty))
264 return true;
265 if (VectorType *VT = dyn_cast<VectorType>(Ty))
266 return isGCPointerType(VT->getScalarType());
267 if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
268 return containsGCPtrType(AT->getElementType());
269 if (StructType *ST = dyn_cast<StructType>(Ty))
270 return llvm::any_of(ST->elements(), containsGCPtrType);
271 return false;
274 // Debugging aid -- prints a [Begin, End) range of values.
275 template<typename IteratorTy>
276 static void PrintValueSet(raw_ostream &OS, IteratorTy Begin, IteratorTy End) {
277 OS << "[ ";
278 while (Begin != End) {
279 OS << **Begin << " ";
280 ++Begin;
282 OS << "]";
285 /// The verifier algorithm is phrased in terms of availability. The set of
286 /// values "available" at a given point in the control flow graph is the set of
287 /// correctly relocated value at that point, and is a subset of the set of
288 /// definitions dominating that point.
290 using AvailableValueSet = DenseSet<const Value *>;
292 /// State we compute and track per basic block.
293 struct BasicBlockState {
294 // Set of values available coming in, before the phi nodes
295 AvailableValueSet AvailableIn;
297 // Set of values available going out
298 AvailableValueSet AvailableOut;
300 // AvailableOut minus AvailableIn.
301 // All elements are Instructions
302 AvailableValueSet Contribution;
304 // True if this block contains a safepoint and thus AvailableIn does not
305 // contribute to AvailableOut.
306 bool Cleared = false;
309 /// A given derived pointer can have multiple base pointers through phi/selects.
310 /// This type indicates when the base pointer is exclusively constant
311 /// (ExclusivelySomeConstant), and if that constant is proven to be exclusively
312 /// null, we record that as ExclusivelyNull. In all other cases, the BaseType is
313 /// NonConstant.
314 enum BaseType {
315 NonConstant = 1, // Base pointers is not exclusively constant.
316 ExclusivelyNull,
317 ExclusivelySomeConstant // Base pointers for a given derived pointer is from a
318 // set of constants, but they are not exclusively
319 // null.
322 /// Return the baseType for Val which states whether Val is exclusively
323 /// derived from constant/null, or not exclusively derived from constant.
324 /// Val is exclusively derived off a constant base when all operands of phi and
325 /// selects are derived off a constant base.
326 static enum BaseType getBaseType(const Value *Val) {
328 SmallVector<const Value *, 32> Worklist;
329 DenseSet<const Value *> Visited;
330 bool isExclusivelyDerivedFromNull = true;
331 Worklist.push_back(Val);
332 // Strip through all the bitcasts and geps to get base pointer. Also check for
333 // the exclusive value when there can be multiple base pointers (through phis
334 // or selects).
335 while(!Worklist.empty()) {
336 const Value *V = Worklist.pop_back_val();
337 if (!Visited.insert(V).second)
338 continue;
340 if (const auto *CI = dyn_cast<CastInst>(V)) {
341 Worklist.push_back(CI->stripPointerCasts());
342 continue;
344 if (const auto *GEP = dyn_cast<GetElementPtrInst>(V)) {
345 Worklist.push_back(GEP->getPointerOperand());
346 continue;
348 // Push all the incoming values of phi node into the worklist for
349 // processing.
350 if (const auto *PN = dyn_cast<PHINode>(V)) {
351 for (Value *InV: PN->incoming_values())
352 Worklist.push_back(InV);
353 continue;
355 if (const auto *SI = dyn_cast<SelectInst>(V)) {
356 // Push in the true and false values
357 Worklist.push_back(SI->getTrueValue());
358 Worklist.push_back(SI->getFalseValue());
359 continue;
361 if (isa<Constant>(V)) {
362 // We found at least one base pointer which is non-null, so this derived
363 // pointer is not exclusively derived from null.
364 if (V != Constant::getNullValue(V->getType()))
365 isExclusivelyDerivedFromNull = false;
366 // Continue processing the remaining values to make sure it's exclusively
367 // constant.
368 continue;
370 // At this point, we know that the base pointer is not exclusively
371 // constant.
372 return BaseType::NonConstant;
374 // Now, we know that the base pointer is exclusively constant, but we need to
375 // differentiate between exclusive null constant and non-null constant.
376 return isExclusivelyDerivedFromNull ? BaseType::ExclusivelyNull
377 : BaseType::ExclusivelySomeConstant;
380 static bool isNotExclusivelyConstantDerived(const Value *V) {
381 return getBaseType(V) == BaseType::NonConstant;
384 namespace {
385 class InstructionVerifier;
387 /// Builds BasicBlockState for each BB of the function.
388 /// It can traverse function for verification and provides all required
389 /// information.
391 /// GC pointer may be in one of three states: relocated, unrelocated and
392 /// poisoned.
393 /// Relocated pointer may be used without any restrictions.
394 /// Unrelocated pointer cannot be dereferenced, passed as argument to any call
395 /// or returned. Unrelocated pointer may be safely compared against another
396 /// unrelocated pointer or against a pointer exclusively derived from null.
397 /// Poisoned pointers are produced when we somehow derive pointer from relocated
398 /// and unrelocated pointers (e.g. phi, select). This pointers may be safely
399 /// used in a very limited number of situations. Currently the only way to use
400 /// it is comparison against constant exclusively derived from null. All
401 /// limitations arise due to their undefined state: this pointers should be
402 /// treated as relocated and unrelocated simultaneously.
403 /// Rules of deriving:
404 /// R + U = P - that's where the poisoned pointers come from
405 /// P + X = P
406 /// U + U = U
407 /// R + R = R
408 /// X + C = X
409 /// Where "+" - any operation that somehow derive pointer, U - unrelocated,
410 /// R - relocated and P - poisoned, C - constant, X - U or R or P or C or
411 /// nothing (in case when "+" is unary operation).
412 /// Deriving of pointers by itself is always safe.
413 /// NOTE: when we are making decision on the status of instruction's result:
414 /// a) for phi we need to check status of each input *at the end of
415 /// corresponding predecessor BB*.
416 /// b) for other instructions we need to check status of each input *at the
417 /// current point*.
419 /// FIXME: This works fairly well except one case
420 /// bb1:
421 /// p = *some GC-ptr def*
422 /// p1 = gep p, offset
423 /// / |
424 /// / |
425 /// bb2: |
426 /// safepoint |
427 /// \ |
428 /// \ |
429 /// bb3:
430 /// p2 = phi [p, bb2] [p1, bb1]
431 /// p3 = phi [p, bb2] [p, bb1]
432 /// here p and p1 is unrelocated
433 /// p2 and p3 is poisoned (though they shouldn't be)
435 /// This leads to some weird results:
436 /// cmp eq p, p2 - illegal instruction (false-positive)
437 /// cmp eq p1, p2 - illegal instruction (false-positive)
438 /// cmp eq p, p3 - illegal instruction (false-positive)
439 /// cmp eq p, p1 - ok
440 /// To fix this we need to introduce conception of generations and be able to
441 /// check if two values belong to one generation or not. This way p2 will be
442 /// considered to be unrelocated and no false alarm will happen.
443 class GCPtrTracker {
444 const Function &F;
445 const CFGDeadness &CD;
446 SpecificBumpPtrAllocator<BasicBlockState> BSAllocator;
447 DenseMap<const BasicBlock *, BasicBlockState *> BlockMap;
448 // This set contains defs of unrelocated pointers that are proved to be legal
449 // and don't need verification.
450 DenseSet<const Instruction *> ValidUnrelocatedDefs;
451 // This set contains poisoned defs. They can be safely ignored during
452 // verification too.
453 DenseSet<const Value *> PoisonedDefs;
455 public:
456 GCPtrTracker(const Function &F, const DominatorTree &DT,
457 const CFGDeadness &CD);
459 bool hasLiveIncomingEdge(const PHINode *PN, const BasicBlock *InBB) const {
460 return CD.hasLiveIncomingEdge(PN, InBB);
463 BasicBlockState *getBasicBlockState(const BasicBlock *BB);
464 const BasicBlockState *getBasicBlockState(const BasicBlock *BB) const;
466 bool isValuePoisoned(const Value *V) const { return PoisonedDefs.count(V); }
468 /// Traverse each BB of the function and call
469 /// InstructionVerifier::verifyInstruction for each possibly invalid
470 /// instruction.
471 /// It destructively modifies GCPtrTracker so it's passed via rvalue reference
472 /// in order to prohibit further usages of GCPtrTracker as it'll be in
473 /// inconsistent state.
474 static void verifyFunction(GCPtrTracker &&Tracker,
475 InstructionVerifier &Verifier);
477 /// Returns true for reachable and live blocks.
478 bool isMapped(const BasicBlock *BB) const {
479 return BlockMap.find(BB) != BlockMap.end();
482 private:
483 /// Returns true if the instruction may be safely skipped during verification.
484 bool instructionMayBeSkipped(const Instruction *I) const;
486 /// Iterates over all BBs from BlockMap and recalculates AvailableIn/Out for
487 /// each of them until it converges.
488 void recalculateBBsStates();
490 /// Remove from Contribution all defs that legally produce unrelocated
491 /// pointers and saves them to ValidUnrelocatedDefs.
492 /// Though Contribution should belong to BBS it is passed separately with
493 /// different const-modifier in order to emphasize (and guarantee) that only
494 /// Contribution will be changed.
495 /// Returns true if Contribution was changed otherwise false.
496 bool removeValidUnrelocatedDefs(const BasicBlock *BB,
497 const BasicBlockState *BBS,
498 AvailableValueSet &Contribution);
500 /// Gather all the definitions dominating the start of BB into Result. This is
501 /// simply the defs introduced by every dominating basic block and the
502 /// function arguments.
503 void gatherDominatingDefs(const BasicBlock *BB, AvailableValueSet &Result,
504 const DominatorTree &DT);
506 /// Compute the AvailableOut set for BB, based on the BasicBlockState BBS,
507 /// which is the BasicBlockState for BB.
508 /// ContributionChanged is set when the verifier runs for the first time
509 /// (in this case Contribution was changed from 'empty' to its initial state)
510 /// or when Contribution of this BB was changed since last computation.
511 static void transferBlock(const BasicBlock *BB, BasicBlockState &BBS,
512 bool ContributionChanged);
514 /// Model the effect of an instruction on the set of available values.
515 static void transferInstruction(const Instruction &I, bool &Cleared,
516 AvailableValueSet &Available);
519 /// It is a visitor for GCPtrTracker::verifyFunction. It decides if the
520 /// instruction (which uses heap reference) is legal or not, given our safepoint
521 /// semantics.
522 class InstructionVerifier {
523 bool AnyInvalidUses = false;
525 public:
526 void verifyInstruction(const GCPtrTracker *Tracker, const Instruction &I,
527 const AvailableValueSet &AvailableSet);
529 bool hasAnyInvalidUses() const { return AnyInvalidUses; }
531 private:
532 void reportInvalidUse(const Value &V, const Instruction &I);
534 } // end anonymous namespace
536 GCPtrTracker::GCPtrTracker(const Function &F, const DominatorTree &DT,
537 const CFGDeadness &CD) : F(F), CD(CD) {
538 // Calculate Contribution of each live BB.
539 // Allocate BB states for live blocks.
540 for (const BasicBlock &BB : F)
541 if (!CD.isDeadBlock(&BB)) {
542 BasicBlockState *BBS = new (BSAllocator.Allocate()) BasicBlockState;
543 for (const auto &I : BB)
544 transferInstruction(I, BBS->Cleared, BBS->Contribution);
545 BlockMap[&BB] = BBS;
548 // Initialize AvailableIn/Out sets of each BB using only information about
549 // dominating BBs.
550 for (auto &BBI : BlockMap) {
551 gatherDominatingDefs(BBI.first, BBI.second->AvailableIn, DT);
552 transferBlock(BBI.first, *BBI.second, true);
555 // Simulate the flow of defs through the CFG and recalculate AvailableIn/Out
556 // sets of each BB until it converges. If any def is proved to be an
557 // unrelocated pointer, it will be removed from all BBSs.
558 recalculateBBsStates();
561 BasicBlockState *GCPtrTracker::getBasicBlockState(const BasicBlock *BB) {
562 auto it = BlockMap.find(BB);
563 return it != BlockMap.end() ? it->second : nullptr;
566 const BasicBlockState *GCPtrTracker::getBasicBlockState(
567 const BasicBlock *BB) const {
568 return const_cast<GCPtrTracker *>(this)->getBasicBlockState(BB);
571 bool GCPtrTracker::instructionMayBeSkipped(const Instruction *I) const {
572 // Poisoned defs are skipped since they are always safe by itself by
573 // definition (for details see comment to this class).
574 return ValidUnrelocatedDefs.count(I) || PoisonedDefs.count(I);
577 void GCPtrTracker::verifyFunction(GCPtrTracker &&Tracker,
578 InstructionVerifier &Verifier) {
579 // We need RPO here to a) report always the first error b) report errors in
580 // same order from run to run.
581 ReversePostOrderTraversal<const Function *> RPOT(&Tracker.F);
582 for (const BasicBlock *BB : RPOT) {
583 BasicBlockState *BBS = Tracker.getBasicBlockState(BB);
584 if (!BBS)
585 continue;
587 // We destructively modify AvailableIn as we traverse the block instruction
588 // by instruction.
589 AvailableValueSet &AvailableSet = BBS->AvailableIn;
590 for (const Instruction &I : *BB) {
591 if (Tracker.instructionMayBeSkipped(&I))
592 continue; // This instruction shouldn't be added to AvailableSet.
594 Verifier.verifyInstruction(&Tracker, I, AvailableSet);
596 // Model the effect of current instruction on AvailableSet to keep the set
597 // relevant at each point of BB.
598 bool Cleared = false;
599 transferInstruction(I, Cleared, AvailableSet);
600 (void)Cleared;
605 void GCPtrTracker::recalculateBBsStates() {
606 SetVector<const BasicBlock *> Worklist;
607 // TODO: This order is suboptimal, it's better to replace it with priority
608 // queue where priority is RPO number of BB.
609 for (auto &BBI : BlockMap)
610 Worklist.insert(BBI.first);
612 // This loop iterates the AvailableIn/Out sets until it converges.
613 // The AvailableIn and AvailableOut sets decrease as we iterate.
614 while (!Worklist.empty()) {
615 const BasicBlock *BB = Worklist.pop_back_val();
616 BasicBlockState *BBS = getBasicBlockState(BB);
617 if (!BBS)
618 continue; // Ignore dead successors.
620 size_t OldInCount = BBS->AvailableIn.size();
621 for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) {
622 const BasicBlock *PBB = *PredIt;
623 BasicBlockState *PBBS = getBasicBlockState(PBB);
624 if (PBBS && !CD.isDeadEdge(&CFGDeadness::getEdge(PredIt)))
625 set_intersect(BBS->AvailableIn, PBBS->AvailableOut);
628 assert(OldInCount >= BBS->AvailableIn.size() && "invariant!");
630 bool InputsChanged = OldInCount != BBS->AvailableIn.size();
631 bool ContributionChanged =
632 removeValidUnrelocatedDefs(BB, BBS, BBS->Contribution);
633 if (!InputsChanged && !ContributionChanged)
634 continue;
636 size_t OldOutCount = BBS->AvailableOut.size();
637 transferBlock(BB, *BBS, ContributionChanged);
638 if (OldOutCount != BBS->AvailableOut.size()) {
639 assert(OldOutCount > BBS->AvailableOut.size() && "invariant!");
640 Worklist.insert(succ_begin(BB), succ_end(BB));
645 bool GCPtrTracker::removeValidUnrelocatedDefs(const BasicBlock *BB,
646 const BasicBlockState *BBS,
647 AvailableValueSet &Contribution) {
648 assert(&BBS->Contribution == &Contribution &&
649 "Passed Contribution should be from the passed BasicBlockState!");
650 AvailableValueSet AvailableSet = BBS->AvailableIn;
651 bool ContributionChanged = false;
652 // For explanation why instructions are processed this way see
653 // "Rules of deriving" in the comment to this class.
654 for (const Instruction &I : *BB) {
655 bool ValidUnrelocatedPointerDef = false;
656 bool PoisonedPointerDef = false;
657 // TODO: `select` instructions should be handled here too.
658 if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
659 if (containsGCPtrType(PN->getType())) {
660 // If both is true, output is poisoned.
661 bool HasRelocatedInputs = false;
662 bool HasUnrelocatedInputs = false;
663 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
664 const BasicBlock *InBB = PN->getIncomingBlock(i);
665 if (!isMapped(InBB) ||
666 !CD.hasLiveIncomingEdge(PN, InBB))
667 continue; // Skip dead block or dead edge.
669 const Value *InValue = PN->getIncomingValue(i);
671 if (isNotExclusivelyConstantDerived(InValue)) {
672 if (isValuePoisoned(InValue)) {
673 // If any of inputs is poisoned, output is always poisoned too.
674 HasRelocatedInputs = true;
675 HasUnrelocatedInputs = true;
676 break;
678 if (BlockMap[InBB]->AvailableOut.count(InValue))
679 HasRelocatedInputs = true;
680 else
681 HasUnrelocatedInputs = true;
684 if (HasUnrelocatedInputs) {
685 if (HasRelocatedInputs)
686 PoisonedPointerDef = true;
687 else
688 ValidUnrelocatedPointerDef = true;
691 } else if ((isa<GetElementPtrInst>(I) || isa<BitCastInst>(I)) &&
692 containsGCPtrType(I.getType())) {
693 // GEP/bitcast of unrelocated pointer is legal by itself but this def
694 // shouldn't appear in any AvailableSet.
695 for (const Value *V : I.operands())
696 if (containsGCPtrType(V->getType()) &&
697 isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V)) {
698 if (isValuePoisoned(V))
699 PoisonedPointerDef = true;
700 else
701 ValidUnrelocatedPointerDef = true;
702 break;
705 assert(!(ValidUnrelocatedPointerDef && PoisonedPointerDef) &&
706 "Value cannot be both unrelocated and poisoned!");
707 if (ValidUnrelocatedPointerDef) {
708 // Remove def of unrelocated pointer from Contribution of this BB and
709 // trigger update of all its successors.
710 Contribution.erase(&I);
711 PoisonedDefs.erase(&I);
712 ValidUnrelocatedDefs.insert(&I);
713 LLVM_DEBUG(dbgs() << "Removing urelocated " << I
714 << " from Contribution of " << BB->getName() << "\n");
715 ContributionChanged = true;
716 } else if (PoisonedPointerDef) {
717 // Mark pointer as poisoned, remove its def from Contribution and trigger
718 // update of all successors.
719 Contribution.erase(&I);
720 PoisonedDefs.insert(&I);
721 LLVM_DEBUG(dbgs() << "Removing poisoned " << I << " from Contribution of "
722 << BB->getName() << "\n");
723 ContributionChanged = true;
724 } else {
725 bool Cleared = false;
726 transferInstruction(I, Cleared, AvailableSet);
727 (void)Cleared;
730 return ContributionChanged;
733 void GCPtrTracker::gatherDominatingDefs(const BasicBlock *BB,
734 AvailableValueSet &Result,
735 const DominatorTree &DT) {
736 DomTreeNode *DTN = DT[const_cast<BasicBlock *>(BB)];
738 assert(DTN && "Unreachable blocks are ignored");
739 while (DTN->getIDom()) {
740 DTN = DTN->getIDom();
741 auto BBS = getBasicBlockState(DTN->getBlock());
742 assert(BBS && "immediate dominator cannot be dead for a live block");
743 const auto &Defs = BBS->Contribution;
744 Result.insert(Defs.begin(), Defs.end());
745 // If this block is 'Cleared', then nothing LiveIn to this block can be
746 // available after this block completes. Note: This turns out to be
747 // really important for reducing memory consuption of the initial available
748 // sets and thus peak memory usage by this verifier.
749 if (BBS->Cleared)
750 return;
753 for (const Argument &A : BB->getParent()->args())
754 if (containsGCPtrType(A.getType()))
755 Result.insert(&A);
758 void GCPtrTracker::transferBlock(const BasicBlock *BB, BasicBlockState &BBS,
759 bool ContributionChanged) {
760 const AvailableValueSet &AvailableIn = BBS.AvailableIn;
761 AvailableValueSet &AvailableOut = BBS.AvailableOut;
763 if (BBS.Cleared) {
764 // AvailableOut will change only when Contribution changed.
765 if (ContributionChanged)
766 AvailableOut = BBS.Contribution;
767 } else {
768 // Otherwise, we need to reduce the AvailableOut set by things which are no
769 // longer in our AvailableIn
770 AvailableValueSet Temp = BBS.Contribution;
771 set_union(Temp, AvailableIn);
772 AvailableOut = std::move(Temp);
775 LLVM_DEBUG(dbgs() << "Transfered block " << BB->getName() << " from ";
776 PrintValueSet(dbgs(), AvailableIn.begin(), AvailableIn.end());
777 dbgs() << " to ";
778 PrintValueSet(dbgs(), AvailableOut.begin(), AvailableOut.end());
779 dbgs() << "\n";);
782 void GCPtrTracker::transferInstruction(const Instruction &I, bool &Cleared,
783 AvailableValueSet &Available) {
784 if (isStatepoint(I)) {
785 Cleared = true;
786 Available.clear();
787 } else if (containsGCPtrType(I.getType()))
788 Available.insert(&I);
791 void InstructionVerifier::verifyInstruction(
792 const GCPtrTracker *Tracker, const Instruction &I,
793 const AvailableValueSet &AvailableSet) {
794 if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
795 if (containsGCPtrType(PN->getType()))
796 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
797 const BasicBlock *InBB = PN->getIncomingBlock(i);
798 const BasicBlockState *InBBS = Tracker->getBasicBlockState(InBB);
799 if (!InBBS ||
800 !Tracker->hasLiveIncomingEdge(PN, InBB))
801 continue; // Skip dead block or dead edge.
803 const Value *InValue = PN->getIncomingValue(i);
805 if (isNotExclusivelyConstantDerived(InValue) &&
806 !InBBS->AvailableOut.count(InValue))
807 reportInvalidUse(*InValue, *PN);
809 } else if (isa<CmpInst>(I) &&
810 containsGCPtrType(I.getOperand(0)->getType())) {
811 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
812 enum BaseType baseTyLHS = getBaseType(LHS),
813 baseTyRHS = getBaseType(RHS);
815 // Returns true if LHS and RHS are unrelocated pointers and they are
816 // valid unrelocated uses.
817 auto hasValidUnrelocatedUse = [&AvailableSet, Tracker, baseTyLHS, baseTyRHS,
818 &LHS, &RHS] () {
819 // A cmp instruction has valid unrelocated pointer operands only if
820 // both operands are unrelocated pointers.
821 // In the comparison between two pointers, if one is an unrelocated
822 // use, the other *should be* an unrelocated use, for this
823 // instruction to contain valid unrelocated uses. This unrelocated
824 // use can be a null constant as well, or another unrelocated
825 // pointer.
826 if (AvailableSet.count(LHS) || AvailableSet.count(RHS))
827 return false;
828 // Constant pointers (that are not exclusively null) may have
829 // meaning in different VMs, so we cannot reorder the compare
830 // against constant pointers before the safepoint. In other words,
831 // comparison of an unrelocated use against a non-null constant
832 // maybe invalid.
833 if ((baseTyLHS == BaseType::ExclusivelySomeConstant &&
834 baseTyRHS == BaseType::NonConstant) ||
835 (baseTyLHS == BaseType::NonConstant &&
836 baseTyRHS == BaseType::ExclusivelySomeConstant))
837 return false;
839 // If one of pointers is poisoned and other is not exclusively derived
840 // from null it is an invalid expression: it produces poisoned result
841 // and unless we want to track all defs (not only gc pointers) the only
842 // option is to prohibit such instructions.
843 if ((Tracker->isValuePoisoned(LHS) && baseTyRHS != ExclusivelyNull) ||
844 (Tracker->isValuePoisoned(RHS) && baseTyLHS != ExclusivelyNull))
845 return false;
847 // All other cases are valid cases enumerated below:
848 // 1. Comparison between an exclusively derived null pointer and a
849 // constant base pointer.
850 // 2. Comparison between an exclusively derived null pointer and a
851 // non-constant unrelocated base pointer.
852 // 3. Comparison between 2 unrelocated pointers.
853 // 4. Comparison between a pointer exclusively derived from null and a
854 // non-constant poisoned pointer.
855 return true;
857 if (!hasValidUnrelocatedUse()) {
858 // Print out all non-constant derived pointers that are unrelocated
859 // uses, which are invalid.
860 if (baseTyLHS == BaseType::NonConstant && !AvailableSet.count(LHS))
861 reportInvalidUse(*LHS, I);
862 if (baseTyRHS == BaseType::NonConstant && !AvailableSet.count(RHS))
863 reportInvalidUse(*RHS, I);
865 } else {
866 for (const Value *V : I.operands())
867 if (containsGCPtrType(V->getType()) &&
868 isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V))
869 reportInvalidUse(*V, I);
873 void InstructionVerifier::reportInvalidUse(const Value &V,
874 const Instruction &I) {
875 errs() << "Illegal use of unrelocated value found!\n";
876 errs() << "Def: " << V << "\n";
877 errs() << "Use: " << I << "\n";
878 if (!PrintOnly)
879 abort();
880 AnyInvalidUses = true;
883 static void Verify(const Function &F, const DominatorTree &DT,
884 const CFGDeadness &CD) {
885 LLVM_DEBUG(dbgs() << "Verifying gc pointers in function: " << F.getName()
886 << "\n");
887 if (PrintOnly)
888 dbgs() << "Verifying gc pointers in function: " << F.getName() << "\n";
890 GCPtrTracker Tracker(F, DT, CD);
892 // We now have all the information we need to decide if the use of a heap
893 // reference is legal or not, given our safepoint semantics.
895 InstructionVerifier Verifier;
896 GCPtrTracker::verifyFunction(std::move(Tracker), Verifier);
898 if (PrintOnly && !Verifier.hasAnyInvalidUses()) {
899 dbgs() << "No illegal uses found by SafepointIRVerifier in: " << F.getName()
900 << "\n";