[LLVM][Alignment] Introduce Alignment In Attributes
[llvm-core.git] / lib / IR / Value.cpp
blobb3dcaee766c80e7f45e134fc3dd955db3a5f3086
1 //===-- Value.cpp - Implement the Value class -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Value, ValueHandle, and User classes.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/IR/Value.h"
14 #include "LLVMContextImpl.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/IR/Constant.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/DerivedUser.h"
23 #include "llvm/IR/GetElementPtrTypeIterator.h"
24 #include "llvm/IR/InstrTypes.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/IR/Statepoint.h"
30 #include "llvm/IR/ValueHandle.h"
31 #include "llvm/IR/ValueSymbolTable.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/ManagedStatic.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <algorithm>
38 using namespace llvm;
40 static cl::opt<unsigned> NonGlobalValueMaxNameSize(
41 "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
42 cl::desc("Maximum size for the name of non-global values."));
44 //===----------------------------------------------------------------------===//
45 // Value Class
46 //===----------------------------------------------------------------------===//
47 static inline Type *checkType(Type *Ty) {
48 assert(Ty && "Value defined with a null type: Error!");
49 return Ty;
52 Value::Value(Type *ty, unsigned scid)
53 : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid),
54 HasValueHandle(0), SubclassOptionalData(0), SubclassData(0),
55 NumUserOperands(0), IsUsedByMD(false), HasName(false) {
56 static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)");
57 // FIXME: Why isn't this in the subclass gunk??
58 // Note, we cannot call isa<CallInst> before the CallInst has been
59 // constructed.
60 if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke ||
61 SubclassID == Instruction::CallBr)
62 assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
63 "invalid CallInst type!");
64 else if (SubclassID != BasicBlockVal &&
65 (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal))
66 assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
67 "Cannot create non-first-class values except for constants!");
68 static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned),
69 "Value too big");
72 Value::~Value() {
73 // Notify all ValueHandles (if present) that this value is going away.
74 if (HasValueHandle)
75 ValueHandleBase::ValueIsDeleted(this);
76 if (isUsedByMetadata())
77 ValueAsMetadata::handleDeletion(this);
79 #ifndef NDEBUG // Only in -g mode...
80 // Check to make sure that there are no uses of this value that are still
81 // around when the value is destroyed. If there are, then we have a dangling
82 // reference and something is wrong. This code is here to print out where
83 // the value is still being referenced.
85 if (!use_empty()) {
86 dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n";
87 for (auto *U : users())
88 dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n";
90 #endif
91 assert(use_empty() && "Uses remain when a value is destroyed!");
93 // If this value is named, destroy the name. This should not be in a symtab
94 // at this point.
95 destroyValueName();
98 void Value::deleteValue() {
99 switch (getValueID()) {
100 #define HANDLE_VALUE(Name) \
101 case Value::Name##Val: \
102 delete static_cast<Name *>(this); \
103 break;
104 #define HANDLE_MEMORY_VALUE(Name) \
105 case Value::Name##Val: \
106 static_cast<DerivedUser *>(this)->DeleteValue( \
107 static_cast<DerivedUser *>(this)); \
108 break;
109 #define HANDLE_INSTRUCTION(Name) /* nothing */
110 #include "llvm/IR/Value.def"
112 #define HANDLE_INST(N, OPC, CLASS) \
113 case Value::InstructionVal + Instruction::OPC: \
114 delete static_cast<CLASS *>(this); \
115 break;
116 #define HANDLE_USER_INST(N, OPC, CLASS)
117 #include "llvm/IR/Instruction.def"
119 default:
120 llvm_unreachable("attempting to delete unknown value kind");
124 void Value::destroyValueName() {
125 ValueName *Name = getValueName();
126 if (Name)
127 Name->Destroy();
128 setValueName(nullptr);
131 bool Value::hasNUses(unsigned N) const {
132 return hasNItems(use_begin(), use_end(), N);
135 bool Value::hasNUsesOrMore(unsigned N) const {
136 return hasNItemsOrMore(use_begin(), use_end(), N);
139 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
140 // This can be computed either by scanning the instructions in BB, or by
141 // scanning the use list of this Value. Both lists can be very long, but
142 // usually one is quite short.
144 // Scan both lists simultaneously until one is exhausted. This limits the
145 // search to the shorter list.
146 BasicBlock::const_iterator BI = BB->begin(), BE = BB->end();
147 const_user_iterator UI = user_begin(), UE = user_end();
148 for (; BI != BE && UI != UE; ++BI, ++UI) {
149 // Scan basic block: Check if this Value is used by the instruction at BI.
150 if (is_contained(BI->operands(), this))
151 return true;
152 // Scan use list: Check if the use at UI is in BB.
153 const auto *User = dyn_cast<Instruction>(*UI);
154 if (User && User->getParent() == BB)
155 return true;
157 return false;
160 unsigned Value::getNumUses() const {
161 return (unsigned)std::distance(use_begin(), use_end());
164 static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
165 ST = nullptr;
166 if (Instruction *I = dyn_cast<Instruction>(V)) {
167 if (BasicBlock *P = I->getParent())
168 if (Function *PP = P->getParent())
169 ST = PP->getValueSymbolTable();
170 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
171 if (Function *P = BB->getParent())
172 ST = P->getValueSymbolTable();
173 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
174 if (Module *P = GV->getParent())
175 ST = &P->getValueSymbolTable();
176 } else if (Argument *A = dyn_cast<Argument>(V)) {
177 if (Function *P = A->getParent())
178 ST = P->getValueSymbolTable();
179 } else {
180 assert(isa<Constant>(V) && "Unknown value type!");
181 return true; // no name is setable for this.
183 return false;
186 ValueName *Value::getValueName() const {
187 if (!HasName) return nullptr;
189 LLVMContext &Ctx = getContext();
190 auto I = Ctx.pImpl->ValueNames.find(this);
191 assert(I != Ctx.pImpl->ValueNames.end() &&
192 "No name entry found!");
194 return I->second;
197 void Value::setValueName(ValueName *VN) {
198 LLVMContext &Ctx = getContext();
200 assert(HasName == Ctx.pImpl->ValueNames.count(this) &&
201 "HasName bit out of sync!");
203 if (!VN) {
204 if (HasName)
205 Ctx.pImpl->ValueNames.erase(this);
206 HasName = false;
207 return;
210 HasName = true;
211 Ctx.pImpl->ValueNames[this] = VN;
214 StringRef Value::getName() const {
215 // Make sure the empty string is still a C string. For historical reasons,
216 // some clients want to call .data() on the result and expect it to be null
217 // terminated.
218 if (!hasName())
219 return StringRef("", 0);
220 return getValueName()->getKey();
223 void Value::setNameImpl(const Twine &NewName) {
224 // Fast-path: LLVMContext can be set to strip out non-GlobalValue names
225 if (getContext().shouldDiscardValueNames() && !isa<GlobalValue>(this))
226 return;
228 // Fast path for common IRBuilder case of setName("") when there is no name.
229 if (NewName.isTriviallyEmpty() && !hasName())
230 return;
232 SmallString<256> NameData;
233 StringRef NameRef = NewName.toStringRef(NameData);
234 assert(NameRef.find_first_of(0) == StringRef::npos &&
235 "Null bytes are not allowed in names");
237 // Name isn't changing?
238 if (getName() == NameRef)
239 return;
241 // Cap the size of non-GlobalValue names.
242 if (NameRef.size() > NonGlobalValueMaxNameSize && !isa<GlobalValue>(this))
243 NameRef =
244 NameRef.substr(0, std::max(1u, (unsigned)NonGlobalValueMaxNameSize));
246 assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
248 // Get the symbol table to update for this object.
249 ValueSymbolTable *ST;
250 if (getSymTab(this, ST))
251 return; // Cannot set a name on this value (e.g. constant).
253 if (!ST) { // No symbol table to update? Just do the change.
254 if (NameRef.empty()) {
255 // Free the name for this value.
256 destroyValueName();
257 return;
260 // NOTE: Could optimize for the case the name is shrinking to not deallocate
261 // then reallocated.
262 destroyValueName();
264 // Create the new name.
265 setValueName(ValueName::Create(NameRef));
266 getValueName()->setValue(this);
267 return;
270 // NOTE: Could optimize for the case the name is shrinking to not deallocate
271 // then reallocated.
272 if (hasName()) {
273 // Remove old name.
274 ST->removeValueName(getValueName());
275 destroyValueName();
277 if (NameRef.empty())
278 return;
281 // Name is changing to something new.
282 setValueName(ST->createValueName(NameRef, this));
285 void Value::setName(const Twine &NewName) {
286 setNameImpl(NewName);
287 if (Function *F = dyn_cast<Function>(this))
288 F->recalculateIntrinsicID();
291 void Value::takeName(Value *V) {
292 ValueSymbolTable *ST = nullptr;
293 // If this value has a name, drop it.
294 if (hasName()) {
295 // Get the symtab this is in.
296 if (getSymTab(this, ST)) {
297 // We can't set a name on this value, but we need to clear V's name if
298 // it has one.
299 if (V->hasName()) V->setName("");
300 return; // Cannot set a name on this value (e.g. constant).
303 // Remove old name.
304 if (ST)
305 ST->removeValueName(getValueName());
306 destroyValueName();
309 // Now we know that this has no name.
311 // If V has no name either, we're done.
312 if (!V->hasName()) return;
314 // Get this's symtab if we didn't before.
315 if (!ST) {
316 if (getSymTab(this, ST)) {
317 // Clear V's name.
318 V->setName("");
319 return; // Cannot set a name on this value (e.g. constant).
323 // Get V's ST, this should always succed, because V has a name.
324 ValueSymbolTable *VST;
325 bool Failure = getSymTab(V, VST);
326 assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
328 // If these values are both in the same symtab, we can do this very fast.
329 // This works even if both values have no symtab yet.
330 if (ST == VST) {
331 // Take the name!
332 setValueName(V->getValueName());
333 V->setValueName(nullptr);
334 getValueName()->setValue(this);
335 return;
338 // Otherwise, things are slightly more complex. Remove V's name from VST and
339 // then reinsert it into ST.
341 if (VST)
342 VST->removeValueName(V->getValueName());
343 setValueName(V->getValueName());
344 V->setValueName(nullptr);
345 getValueName()->setValue(this);
347 if (ST)
348 ST->reinsertValue(this);
351 void Value::assertModuleIsMaterializedImpl() const {
352 #ifndef NDEBUG
353 const GlobalValue *GV = dyn_cast<GlobalValue>(this);
354 if (!GV)
355 return;
356 const Module *M = GV->getParent();
357 if (!M)
358 return;
359 assert(M->isMaterialized());
360 #endif
363 #ifndef NDEBUG
364 static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr,
365 Constant *C) {
366 if (!Cache.insert(Expr).second)
367 return false;
369 for (auto &O : Expr->operands()) {
370 if (O == C)
371 return true;
372 auto *CE = dyn_cast<ConstantExpr>(O);
373 if (!CE)
374 continue;
375 if (contains(Cache, CE, C))
376 return true;
378 return false;
381 static bool contains(Value *Expr, Value *V) {
382 if (Expr == V)
383 return true;
385 auto *C = dyn_cast<Constant>(V);
386 if (!C)
387 return false;
389 auto *CE = dyn_cast<ConstantExpr>(Expr);
390 if (!CE)
391 return false;
393 SmallPtrSet<ConstantExpr *, 4> Cache;
394 return contains(Cache, CE, C);
396 #endif // NDEBUG
398 void Value::doRAUW(Value *New, ReplaceMetadataUses ReplaceMetaUses) {
399 assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
400 assert(!contains(New, this) &&
401 "this->replaceAllUsesWith(expr(this)) is NOT valid!");
402 assert(New->getType() == getType() &&
403 "replaceAllUses of value with new value of different type!");
405 // Notify all ValueHandles (if present) that this value is going away.
406 if (HasValueHandle)
407 ValueHandleBase::ValueIsRAUWd(this, New);
408 if (ReplaceMetaUses == ReplaceMetadataUses::Yes && isUsedByMetadata())
409 ValueAsMetadata::handleRAUW(this, New);
411 while (!materialized_use_empty()) {
412 Use &U = *UseList;
413 // Must handle Constants specially, we cannot call replaceUsesOfWith on a
414 // constant because they are uniqued.
415 if (auto *C = dyn_cast<Constant>(U.getUser())) {
416 if (!isa<GlobalValue>(C)) {
417 C->handleOperandChange(this, New);
418 continue;
422 U.set(New);
425 if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
426 BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
429 void Value::replaceAllUsesWith(Value *New) {
430 doRAUW(New, ReplaceMetadataUses::Yes);
433 void Value::replaceNonMetadataUsesWith(Value *New) {
434 doRAUW(New, ReplaceMetadataUses::No);
437 // Like replaceAllUsesWith except it does not handle constants or basic blocks.
438 // This routine leaves uses within BB.
439 void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) {
440 assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!");
441 assert(!contains(New, this) &&
442 "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!");
443 assert(New->getType() == getType() &&
444 "replaceUses of value with new value of different type!");
445 assert(BB && "Basic block that may contain a use of 'New' must be defined\n");
447 replaceUsesWithIf(New, [BB](Use &U) {
448 auto *I = dyn_cast<Instruction>(U.getUser());
449 // Don't replace if it's an instruction in the BB basic block.
450 return !I || I->getParent() != BB;
454 namespace {
455 // Various metrics for how much to strip off of pointers.
456 enum PointerStripKind {
457 PSK_ZeroIndices,
458 PSK_ZeroIndicesAndAliases,
459 PSK_ZeroIndicesAndAliasesSameRepresentation,
460 PSK_ZeroIndicesAndAliasesAndInvariantGroups,
461 PSK_InBoundsConstantIndices,
462 PSK_InBounds
465 template <PointerStripKind StripKind>
466 static const Value *stripPointerCastsAndOffsets(const Value *V) {
467 if (!V->getType()->isPointerTy())
468 return V;
470 // Even though we don't look through PHI nodes, we could be called on an
471 // instruction in an unreachable block, which may be on a cycle.
472 SmallPtrSet<const Value *, 4> Visited;
474 Visited.insert(V);
475 do {
476 if (auto *GEP = dyn_cast<GEPOperator>(V)) {
477 switch (StripKind) {
478 case PSK_ZeroIndicesAndAliases:
479 case PSK_ZeroIndicesAndAliasesSameRepresentation:
480 case PSK_ZeroIndicesAndAliasesAndInvariantGroups:
481 case PSK_ZeroIndices:
482 if (!GEP->hasAllZeroIndices())
483 return V;
484 break;
485 case PSK_InBoundsConstantIndices:
486 if (!GEP->hasAllConstantIndices())
487 return V;
488 LLVM_FALLTHROUGH;
489 case PSK_InBounds:
490 if (!GEP->isInBounds())
491 return V;
492 break;
494 V = GEP->getPointerOperand();
495 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
496 V = cast<Operator>(V)->getOperand(0);
497 } else if (StripKind != PSK_ZeroIndicesAndAliasesSameRepresentation &&
498 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
499 // TODO: If we know an address space cast will not change the
500 // representation we could look through it here as well.
501 V = cast<Operator>(V)->getOperand(0);
502 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
503 if (StripKind == PSK_ZeroIndices || GA->isInterposable())
504 return V;
505 V = GA->getAliasee();
506 } else {
507 if (const auto *Call = dyn_cast<CallBase>(V)) {
508 if (const Value *RV = Call->getReturnedArgOperand()) {
509 V = RV;
510 continue;
512 // The result of launder.invariant.group must alias it's argument,
513 // but it can't be marked with returned attribute, that's why it needs
514 // special case.
515 if (StripKind == PSK_ZeroIndicesAndAliasesAndInvariantGroups &&
516 (Call->getIntrinsicID() == Intrinsic::launder_invariant_group ||
517 Call->getIntrinsicID() == Intrinsic::strip_invariant_group)) {
518 V = Call->getArgOperand(0);
519 continue;
522 return V;
524 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
525 } while (Visited.insert(V).second);
527 return V;
529 } // end anonymous namespace
531 const Value *Value::stripPointerCasts() const {
532 return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this);
535 const Value *Value::stripPointerCastsSameRepresentation() const {
536 return stripPointerCastsAndOffsets<
537 PSK_ZeroIndicesAndAliasesSameRepresentation>(this);
540 const Value *Value::stripPointerCastsNoFollowAliases() const {
541 return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this);
544 const Value *Value::stripInBoundsConstantOffsets() const {
545 return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this);
548 const Value *Value::stripPointerCastsAndInvariantGroups() const {
549 return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliasesAndInvariantGroups>(
550 this);
553 const Value *
554 Value::stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset,
555 bool AllowNonInbounds) const {
556 if (!getType()->isPtrOrPtrVectorTy())
557 return this;
559 unsigned BitWidth = Offset.getBitWidth();
560 assert(BitWidth == DL.getIndexTypeSizeInBits(getType()) &&
561 "The offset bit width does not match the DL specification.");
563 // Even though we don't look through PHI nodes, we could be called on an
564 // instruction in an unreachable block, which may be on a cycle.
565 SmallPtrSet<const Value *, 4> Visited;
566 Visited.insert(this);
567 const Value *V = this;
568 do {
569 if (auto *GEP = dyn_cast<GEPOperator>(V)) {
570 // If in-bounds was requested, we do not strip non-in-bounds GEPs.
571 if (!AllowNonInbounds && !GEP->isInBounds())
572 return V;
574 // If one of the values we have visited is an addrspacecast, then
575 // the pointer type of this GEP may be different from the type
576 // of the Ptr parameter which was passed to this function. This
577 // means when we construct GEPOffset, we need to use the size
578 // of GEP's pointer type rather than the size of the original
579 // pointer type.
580 APInt GEPOffset(DL.getIndexTypeSizeInBits(V->getType()), 0);
581 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
582 return V;
584 // Stop traversal if the pointer offset wouldn't fit in the bit-width
585 // provided by the Offset argument. This can happen due to AddrSpaceCast
586 // stripping.
587 if (GEPOffset.getMinSignedBits() > BitWidth)
588 return V;
590 Offset += GEPOffset.sextOrTrunc(BitWidth);
591 V = GEP->getPointerOperand();
592 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
593 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
594 V = cast<Operator>(V)->getOperand(0);
595 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
596 if (!GA->isInterposable())
597 V = GA->getAliasee();
598 } else if (const auto *Call = dyn_cast<CallBase>(V)) {
599 if (const Value *RV = Call->getReturnedArgOperand())
600 V = RV;
602 assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!");
603 } while (Visited.insert(V).second);
605 return V;
608 const Value *Value::stripInBoundsOffsets() const {
609 return stripPointerCastsAndOffsets<PSK_InBounds>(this);
612 uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL,
613 bool &CanBeNull) const {
614 assert(getType()->isPointerTy() && "must be pointer");
616 uint64_t DerefBytes = 0;
617 CanBeNull = false;
618 if (const Argument *A = dyn_cast<Argument>(this)) {
619 DerefBytes = A->getDereferenceableBytes();
620 if (DerefBytes == 0 && (A->hasByValAttr() || A->hasStructRetAttr())) {
621 Type *PT = cast<PointerType>(A->getType())->getElementType();
622 if (PT->isSized())
623 DerefBytes = DL.getTypeStoreSize(PT);
625 if (DerefBytes == 0) {
626 DerefBytes = A->getDereferenceableOrNullBytes();
627 CanBeNull = true;
629 } else if (const auto *Call = dyn_cast<CallBase>(this)) {
630 DerefBytes = Call->getDereferenceableBytes(AttributeList::ReturnIndex);
631 if (DerefBytes == 0) {
632 DerefBytes =
633 Call->getDereferenceableOrNullBytes(AttributeList::ReturnIndex);
634 CanBeNull = true;
636 } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) {
637 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) {
638 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
639 DerefBytes = CI->getLimitedValue();
641 if (DerefBytes == 0) {
642 if (MDNode *MD =
643 LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
644 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
645 DerefBytes = CI->getLimitedValue();
647 CanBeNull = true;
649 } else if (auto *IP = dyn_cast<IntToPtrInst>(this)) {
650 if (MDNode *MD = IP->getMetadata(LLVMContext::MD_dereferenceable)) {
651 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
652 DerefBytes = CI->getLimitedValue();
654 if (DerefBytes == 0) {
655 if (MDNode *MD =
656 IP->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
657 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
658 DerefBytes = CI->getLimitedValue();
660 CanBeNull = true;
662 } else if (auto *AI = dyn_cast<AllocaInst>(this)) {
663 if (!AI->isArrayAllocation()) {
664 DerefBytes = DL.getTypeStoreSize(AI->getAllocatedType());
665 CanBeNull = false;
667 } else if (auto *GV = dyn_cast<GlobalVariable>(this)) {
668 if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) {
669 // TODO: Don't outright reject hasExternalWeakLinkage but set the
670 // CanBeNull flag.
671 DerefBytes = DL.getTypeStoreSize(GV->getValueType());
672 CanBeNull = false;
675 return DerefBytes;
678 unsigned Value::getPointerAlignment(const DataLayout &DL) const {
679 assert(getType()->isPointerTy() && "must be pointer");
681 unsigned Align = 0;
682 if (auto *GO = dyn_cast<GlobalObject>(this)) {
683 if (isa<Function>(GO)) {
684 MaybeAlign FunctionPtrAlign = DL.getFunctionPtrAlign();
685 unsigned Align = FunctionPtrAlign ? FunctionPtrAlign->value() : 0;
686 switch (DL.getFunctionPtrAlignType()) {
687 case DataLayout::FunctionPtrAlignType::Independent:
688 return Align;
689 case DataLayout::FunctionPtrAlignType::MultipleOfFunctionAlign:
690 return std::max(Align, GO->getAlignment());
693 Align = GO->getAlignment();
694 if (Align == 0) {
695 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
696 Type *ObjectType = GVar->getValueType();
697 if (ObjectType->isSized()) {
698 // If the object is defined in the current Module, we'll be giving
699 // it the preferred alignment. Otherwise, we have to assume that it
700 // may only have the minimum ABI alignment.
701 if (GVar->isStrongDefinitionForLinker())
702 Align = DL.getPreferredAlignment(GVar);
703 else
704 Align = DL.getABITypeAlignment(ObjectType);
708 } else if (const Argument *A = dyn_cast<Argument>(this)) {
709 Align = A->getParamAlignment();
711 if (!Align && A->hasStructRetAttr()) {
712 // An sret parameter has at least the ABI alignment of the return type.
713 Type *EltTy = cast<PointerType>(A->getType())->getElementType();
714 if (EltTy->isSized())
715 Align = DL.getABITypeAlignment(EltTy);
717 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) {
718 Align = AI->getAlignment();
719 if (Align == 0) {
720 Type *AllocatedType = AI->getAllocatedType();
721 if (AllocatedType->isSized())
722 Align = DL.getPrefTypeAlignment(AllocatedType);
724 } else if (const auto *Call = dyn_cast<CallBase>(this)) {
725 Align = Call->getRetAlignment();
726 if (Align == 0 && Call->getCalledFunction())
727 Align = Call->getCalledFunction()->getAttributes().getRetAlignment();
728 } else if (const LoadInst *LI = dyn_cast<LoadInst>(this))
729 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) {
730 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
731 Align = CI->getLimitedValue();
734 return Align;
737 const Value *Value::DoPHITranslation(const BasicBlock *CurBB,
738 const BasicBlock *PredBB) const {
739 auto *PN = dyn_cast<PHINode>(this);
740 if (PN && PN->getParent() == CurBB)
741 return PN->getIncomingValueForBlock(PredBB);
742 return this;
745 LLVMContext &Value::getContext() const { return VTy->getContext(); }
747 void Value::reverseUseList() {
748 if (!UseList || !UseList->Next)
749 // No need to reverse 0 or 1 uses.
750 return;
752 Use *Head = UseList;
753 Use *Current = UseList->Next;
754 Head->Next = nullptr;
755 while (Current) {
756 Use *Next = Current->Next;
757 Current->Next = Head;
758 Head->setPrev(&Current->Next);
759 Head = Current;
760 Current = Next;
762 UseList = Head;
763 Head->setPrev(&UseList);
766 bool Value::isSwiftError() const {
767 auto *Arg = dyn_cast<Argument>(this);
768 if (Arg)
769 return Arg->hasSwiftErrorAttr();
770 auto *Alloca = dyn_cast<AllocaInst>(this);
771 if (!Alloca)
772 return false;
773 return Alloca->isSwiftError();
776 //===----------------------------------------------------------------------===//
777 // ValueHandleBase Class
778 //===----------------------------------------------------------------------===//
780 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
781 assert(List && "Handle list is null?");
783 // Splice ourselves into the list.
784 Next = *List;
785 *List = this;
786 setPrevPtr(List);
787 if (Next) {
788 Next->setPrevPtr(&Next);
789 assert(getValPtr() == Next->getValPtr() && "Added to wrong list?");
793 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
794 assert(List && "Must insert after existing node");
796 Next = List->Next;
797 setPrevPtr(&List->Next);
798 List->Next = this;
799 if (Next)
800 Next->setPrevPtr(&Next);
803 void ValueHandleBase::AddToUseList() {
804 assert(getValPtr() && "Null pointer doesn't have a use list!");
806 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
808 if (getValPtr()->HasValueHandle) {
809 // If this value already has a ValueHandle, then it must be in the
810 // ValueHandles map already.
811 ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()];
812 assert(Entry && "Value doesn't have any handles?");
813 AddToExistingUseList(&Entry);
814 return;
817 // Ok, it doesn't have any handles yet, so we must insert it into the
818 // DenseMap. However, doing this insertion could cause the DenseMap to
819 // reallocate itself, which would invalidate all of the PrevP pointers that
820 // point into the old table. Handle this by checking for reallocation and
821 // updating the stale pointers only if needed.
822 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
823 const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
825 ValueHandleBase *&Entry = Handles[getValPtr()];
826 assert(!Entry && "Value really did already have handles?");
827 AddToExistingUseList(&Entry);
828 getValPtr()->HasValueHandle = true;
830 // If reallocation didn't happen or if this was the first insertion, don't
831 // walk the table.
832 if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
833 Handles.size() == 1) {
834 return;
837 // Okay, reallocation did happen. Fix the Prev Pointers.
838 for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
839 E = Handles.end(); I != E; ++I) {
840 assert(I->second && I->first == I->second->getValPtr() &&
841 "List invariant broken!");
842 I->second->setPrevPtr(&I->second);
846 void ValueHandleBase::RemoveFromUseList() {
847 assert(getValPtr() && getValPtr()->HasValueHandle &&
848 "Pointer doesn't have a use list!");
850 // Unlink this from its use list.
851 ValueHandleBase **PrevPtr = getPrevPtr();
852 assert(*PrevPtr == this && "List invariant broken");
854 *PrevPtr = Next;
855 if (Next) {
856 assert(Next->getPrevPtr() == &Next && "List invariant broken");
857 Next->setPrevPtr(PrevPtr);
858 return;
861 // If the Next pointer was null, then it is possible that this was the last
862 // ValueHandle watching VP. If so, delete its entry from the ValueHandles
863 // map.
864 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
865 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
866 if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
867 Handles.erase(getValPtr());
868 getValPtr()->HasValueHandle = false;
872 void ValueHandleBase::ValueIsDeleted(Value *V) {
873 assert(V->HasValueHandle && "Should only be called if ValueHandles present");
875 // Get the linked list base, which is guaranteed to exist since the
876 // HasValueHandle flag is set.
877 LLVMContextImpl *pImpl = V->getContext().pImpl;
878 ValueHandleBase *Entry = pImpl->ValueHandles[V];
879 assert(Entry && "Value bit set but no entries exist");
881 // We use a local ValueHandleBase as an iterator so that ValueHandles can add
882 // and remove themselves from the list without breaking our iteration. This
883 // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
884 // Note that we deliberately do not the support the case when dropping a value
885 // handle results in a new value handle being permanently added to the list
886 // (as might occur in theory for CallbackVH's): the new value handle will not
887 // be processed and the checking code will mete out righteous punishment if
888 // the handle is still present once we have finished processing all the other
889 // value handles (it is fine to momentarily add then remove a value handle).
890 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
891 Iterator.RemoveFromUseList();
892 Iterator.AddToExistingUseListAfter(Entry);
893 assert(Entry->Next == &Iterator && "Loop invariant broken.");
895 switch (Entry->getKind()) {
896 case Assert:
897 break;
898 case Weak:
899 case WeakTracking:
900 // WeakTracking and Weak just go to null, which unlinks them
901 // from the list.
902 Entry->operator=(nullptr);
903 break;
904 case Callback:
905 // Forward to the subclass's implementation.
906 static_cast<CallbackVH*>(Entry)->deleted();
907 break;
911 // All callbacks, weak references, and assertingVHs should be dropped by now.
912 if (V->HasValueHandle) {
913 #ifndef NDEBUG // Only in +Asserts mode...
914 dbgs() << "While deleting: " << *V->getType() << " %" << V->getName()
915 << "\n";
916 if (pImpl->ValueHandles[V]->getKind() == Assert)
917 llvm_unreachable("An asserting value handle still pointed to this"
918 " value!");
920 #endif
921 llvm_unreachable("All references to V were not removed?");
925 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
926 assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
927 assert(Old != New && "Changing value into itself!");
928 assert(Old->getType() == New->getType() &&
929 "replaceAllUses of value with new value of different type!");
931 // Get the linked list base, which is guaranteed to exist since the
932 // HasValueHandle flag is set.
933 LLVMContextImpl *pImpl = Old->getContext().pImpl;
934 ValueHandleBase *Entry = pImpl->ValueHandles[Old];
936 assert(Entry && "Value bit set but no entries exist");
938 // We use a local ValueHandleBase as an iterator so that
939 // ValueHandles can add and remove themselves from the list without
940 // breaking our iteration. This is not really an AssertingVH; we
941 // just have to give ValueHandleBase some kind.
942 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
943 Iterator.RemoveFromUseList();
944 Iterator.AddToExistingUseListAfter(Entry);
945 assert(Entry->Next == &Iterator && "Loop invariant broken.");
947 switch (Entry->getKind()) {
948 case Assert:
949 case Weak:
950 // Asserting and Weak handles do not follow RAUW implicitly.
951 break;
952 case WeakTracking:
953 // Weak goes to the new value, which will unlink it from Old's list.
954 Entry->operator=(New);
955 break;
956 case Callback:
957 // Forward to the subclass's implementation.
958 static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
959 break;
963 #ifndef NDEBUG
964 // If any new weak value handles were added while processing the
965 // list, then complain about it now.
966 if (Old->HasValueHandle)
967 for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
968 switch (Entry->getKind()) {
969 case WeakTracking:
970 dbgs() << "After RAUW from " << *Old->getType() << " %"
971 << Old->getName() << " to " << *New->getType() << " %"
972 << New->getName() << "\n";
973 llvm_unreachable(
974 "A weak tracking value handle still pointed to the old value!\n");
975 default:
976 break;
978 #endif
981 // Pin the vtable to this file.
982 void CallbackVH::anchor() {}