[PowerPC] Fix for PR35688 - handle out-of-range values for r+r to r+i conversion
[llvm-core.git] / lib / CodeGen / TargetSchedule.cpp
blob86dbf1b2aeab524279d47b0c44fccfb216802690
1 //===- llvm/Target/TargetSchedule.cpp - Sched Machine Model ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a wrapper around MCSchedModel that allows the interface
11 // to benefit from information currently only available in TargetInstrInfo.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/CodeGen/TargetSchedule.h"
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/CodeGen/MachineInstr.h"
18 #include "llvm/CodeGen/MachineOperand.h"
19 #include "llvm/CodeGen/TargetInstrInfo.h"
20 #include "llvm/CodeGen/TargetRegisterInfo.h"
21 #include "llvm/CodeGen/TargetSubtargetInfo.h"
22 #include "llvm/MC/MCInstrDesc.h"
23 #include "llvm/MC/MCInstrItineraries.h"
24 #include "llvm/MC/MCSchedule.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <algorithm>
29 #include <cassert>
30 #include <cstdint>
32 using namespace llvm;
34 static cl::opt<bool> EnableSchedModel("schedmodel", cl::Hidden, cl::init(true),
35 cl::desc("Use TargetSchedModel for latency lookup"));
37 static cl::opt<bool> EnableSchedItins("scheditins", cl::Hidden, cl::init(true),
38 cl::desc("Use InstrItineraryData for latency lookup"));
40 bool TargetSchedModel::hasInstrSchedModel() const {
41 return EnableSchedModel && SchedModel.hasInstrSchedModel();
44 bool TargetSchedModel::hasInstrItineraries() const {
45 return EnableSchedItins && !InstrItins.isEmpty();
48 static unsigned gcd(unsigned Dividend, unsigned Divisor) {
49 // Dividend and Divisor will be naturally swapped as needed.
50 while (Divisor) {
51 unsigned Rem = Dividend % Divisor;
52 Dividend = Divisor;
53 Divisor = Rem;
55 return Dividend;
58 static unsigned lcm(unsigned A, unsigned B) {
59 unsigned LCM = (uint64_t(A) * B) / gcd(A, B);
60 assert((LCM >= A && LCM >= B) && "LCM overflow");
61 return LCM;
64 void TargetSchedModel::init(const MCSchedModel &sm,
65 const TargetSubtargetInfo *sti,
66 const TargetInstrInfo *tii) {
67 SchedModel = sm;
68 STI = sti;
69 TII = tii;
70 STI->initInstrItins(InstrItins);
72 unsigned NumRes = SchedModel.getNumProcResourceKinds();
73 ResourceFactors.resize(NumRes);
74 ResourceLCM = SchedModel.IssueWidth;
75 for (unsigned Idx = 0; Idx < NumRes; ++Idx) {
76 unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits;
77 if (NumUnits > 0)
78 ResourceLCM = lcm(ResourceLCM, NumUnits);
80 MicroOpFactor = ResourceLCM / SchedModel.IssueWidth;
81 for (unsigned Idx = 0; Idx < NumRes; ++Idx) {
82 unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits;
83 ResourceFactors[Idx] = NumUnits ? (ResourceLCM / NumUnits) : 0;
87 /// Returns true only if instruction is specified as single issue.
88 bool TargetSchedModel::mustBeginGroup(const MachineInstr *MI,
89 const MCSchedClassDesc *SC) const {
90 if (hasInstrSchedModel()) {
91 if (!SC)
92 SC = resolveSchedClass(MI);
93 if (SC->isValid())
94 return SC->BeginGroup;
96 return false;
99 bool TargetSchedModel::mustEndGroup(const MachineInstr *MI,
100 const MCSchedClassDesc *SC) const {
101 if (hasInstrSchedModel()) {
102 if (!SC)
103 SC = resolveSchedClass(MI);
104 if (SC->isValid())
105 return SC->EndGroup;
107 return false;
110 unsigned TargetSchedModel::getNumMicroOps(const MachineInstr *MI,
111 const MCSchedClassDesc *SC) const {
112 if (hasInstrItineraries()) {
113 int UOps = InstrItins.getNumMicroOps(MI->getDesc().getSchedClass());
114 return (UOps >= 0) ? UOps : TII->getNumMicroOps(&InstrItins, *MI);
116 if (hasInstrSchedModel()) {
117 if (!SC)
118 SC = resolveSchedClass(MI);
119 if (SC->isValid())
120 return SC->NumMicroOps;
122 return MI->isTransient() ? 0 : 1;
125 // The machine model may explicitly specify an invalid latency, which
126 // effectively means infinite latency. Since users of the TargetSchedule API
127 // don't know how to handle this, we convert it to a very large latency that is
128 // easy to distinguish when debugging the DAG but won't induce overflow.
129 static unsigned capLatency(int Cycles) {
130 return Cycles >= 0 ? Cycles : 1000;
133 /// Return the MCSchedClassDesc for this instruction. Some SchedClasses require
134 /// evaluation of predicates that depend on instruction operands or flags.
135 const MCSchedClassDesc *TargetSchedModel::
136 resolveSchedClass(const MachineInstr *MI) const {
137 // Get the definition's scheduling class descriptor from this machine model.
138 unsigned SchedClass = MI->getDesc().getSchedClass();
139 const MCSchedClassDesc *SCDesc = SchedModel.getSchedClassDesc(SchedClass);
140 if (!SCDesc->isValid())
141 return SCDesc;
143 #ifndef NDEBUG
144 unsigned NIter = 0;
145 #endif
146 while (SCDesc->isVariant()) {
147 assert(++NIter < 6 && "Variants are nested deeper than the magic number");
149 SchedClass = STI->resolveSchedClass(SchedClass, MI, this);
150 SCDesc = SchedModel.getSchedClassDesc(SchedClass);
152 return SCDesc;
155 /// Find the def index of this operand. This index maps to the machine model and
156 /// is independent of use operands. Def operands may be reordered with uses or
157 /// merged with uses without affecting the def index (e.g. before/after
158 /// regalloc). However, an instruction's def operands must never be reordered
159 /// with respect to each other.
160 static unsigned findDefIdx(const MachineInstr *MI, unsigned DefOperIdx) {
161 unsigned DefIdx = 0;
162 for (unsigned i = 0; i != DefOperIdx; ++i) {
163 const MachineOperand &MO = MI->getOperand(i);
164 if (MO.isReg() && MO.isDef())
165 ++DefIdx;
167 return DefIdx;
170 /// Find the use index of this operand. This is independent of the instruction's
171 /// def operands.
173 /// Note that uses are not determined by the operand's isUse property, which
174 /// is simply the inverse of isDef. Here we consider any readsReg operand to be
175 /// a "use". The machine model allows an operand to be both a Def and Use.
176 static unsigned findUseIdx(const MachineInstr *MI, unsigned UseOperIdx) {
177 unsigned UseIdx = 0;
178 for (unsigned i = 0; i != UseOperIdx; ++i) {
179 const MachineOperand &MO = MI->getOperand(i);
180 if (MO.isReg() && MO.readsReg() && !MO.isDef())
181 ++UseIdx;
183 return UseIdx;
186 // Top-level API for clients that know the operand indices.
187 unsigned TargetSchedModel::computeOperandLatency(
188 const MachineInstr *DefMI, unsigned DefOperIdx,
189 const MachineInstr *UseMI, unsigned UseOperIdx) const {
191 if (!hasInstrSchedModel() && !hasInstrItineraries())
192 return TII->defaultDefLatency(SchedModel, *DefMI);
194 if (hasInstrItineraries()) {
195 int OperLatency = 0;
196 if (UseMI) {
197 OperLatency = TII->getOperandLatency(&InstrItins, *DefMI, DefOperIdx,
198 *UseMI, UseOperIdx);
200 else {
201 unsigned DefClass = DefMI->getDesc().getSchedClass();
202 OperLatency = InstrItins.getOperandCycle(DefClass, DefOperIdx);
204 if (OperLatency >= 0)
205 return OperLatency;
207 // No operand latency was found.
208 unsigned InstrLatency = TII->getInstrLatency(&InstrItins, *DefMI);
210 // Expected latency is the max of the stage latency and itinerary props.
211 // Rather than directly querying InstrItins stage latency, we call a TII
212 // hook to allow subtargets to specialize latency. This hook is only
213 // applicable to the InstrItins model. InstrSchedModel should model all
214 // special cases without TII hooks.
215 InstrLatency =
216 std::max(InstrLatency, TII->defaultDefLatency(SchedModel, *DefMI));
217 return InstrLatency;
219 // hasInstrSchedModel()
220 const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI);
221 unsigned DefIdx = findDefIdx(DefMI, DefOperIdx);
222 if (DefIdx < SCDesc->NumWriteLatencyEntries) {
223 // Lookup the definition's write latency in SubtargetInfo.
224 const MCWriteLatencyEntry *WLEntry =
225 STI->getWriteLatencyEntry(SCDesc, DefIdx);
226 unsigned WriteID = WLEntry->WriteResourceID;
227 unsigned Latency = capLatency(WLEntry->Cycles);
228 if (!UseMI)
229 return Latency;
231 // Lookup the use's latency adjustment in SubtargetInfo.
232 const MCSchedClassDesc *UseDesc = resolveSchedClass(UseMI);
233 if (UseDesc->NumReadAdvanceEntries == 0)
234 return Latency;
235 unsigned UseIdx = findUseIdx(UseMI, UseOperIdx);
236 int Advance = STI->getReadAdvanceCycles(UseDesc, UseIdx, WriteID);
237 if (Advance > 0 && (unsigned)Advance > Latency) // unsigned wrap
238 return 0;
239 return Latency - Advance;
241 // If DefIdx does not exist in the model (e.g. implicit defs), then return
242 // unit latency (defaultDefLatency may be too conservative).
243 #ifndef NDEBUG
244 if (SCDesc->isValid() && !DefMI->getOperand(DefOperIdx).isImplicit()
245 && !DefMI->getDesc().OpInfo[DefOperIdx].isOptionalDef()
246 && SchedModel.isComplete()) {
247 errs() << "DefIdx " << DefIdx << " exceeds machine model writes for "
248 << *DefMI << " (Try with MCSchedModel.CompleteModel set to false)";
249 llvm_unreachable("incomplete machine model");
251 #endif
252 // FIXME: Automatically giving all implicit defs defaultDefLatency is
253 // undesirable. We should only do it for defs that are known to the MC
254 // desc like flags. Truly implicit defs should get 1 cycle latency.
255 return DefMI->isTransient() ? 0 : TII->defaultDefLatency(SchedModel, *DefMI);
258 unsigned
259 TargetSchedModel::computeInstrLatency(const MCSchedClassDesc &SCDesc) const {
260 unsigned Latency = 0;
261 for (unsigned DefIdx = 0, DefEnd = SCDesc.NumWriteLatencyEntries;
262 DefIdx != DefEnd; ++DefIdx) {
263 // Lookup the definition's write latency in SubtargetInfo.
264 const MCWriteLatencyEntry *WLEntry =
265 STI->getWriteLatencyEntry(&SCDesc, DefIdx);
266 Latency = std::max(Latency, capLatency(WLEntry->Cycles));
268 return Latency;
271 unsigned TargetSchedModel::computeInstrLatency(unsigned Opcode) const {
272 assert(hasInstrSchedModel() && "Only call this function with a SchedModel");
274 unsigned SCIdx = TII->get(Opcode).getSchedClass();
275 const MCSchedClassDesc *SCDesc = SchedModel.getSchedClassDesc(SCIdx);
277 if (SCDesc->isValid() && !SCDesc->isVariant())
278 return computeInstrLatency(*SCDesc);
280 if (SCDesc->isValid()) {
281 assert (!SCDesc->isVariant() && "No MI sched latency: SCDesc->isVariant()");
282 return computeInstrLatency(*SCDesc);
284 return 0;
287 unsigned
288 TargetSchedModel::computeInstrLatency(const MachineInstr *MI,
289 bool UseDefaultDefLatency) const {
290 // For the itinerary model, fall back to the old subtarget hook.
291 // Allow subtargets to compute Bundle latencies outside the machine model.
292 if (hasInstrItineraries() || MI->isBundle() ||
293 (!hasInstrSchedModel() && !UseDefaultDefLatency))
294 return TII->getInstrLatency(&InstrItins, *MI);
296 if (hasInstrSchedModel()) {
297 const MCSchedClassDesc *SCDesc = resolveSchedClass(MI);
298 if (SCDesc->isValid())
299 return computeInstrLatency(*SCDesc);
301 return TII->defaultDefLatency(SchedModel, *MI);
304 unsigned TargetSchedModel::
305 computeOutputLatency(const MachineInstr *DefMI, unsigned DefOperIdx,
306 const MachineInstr *DepMI) const {
307 if (!SchedModel.isOutOfOrder())
308 return 1;
310 // Out-of-order processor can dispatch WAW dependencies in the same cycle.
312 // Treat predication as a data dependency for out-of-order cpus. In-order
313 // cpus do not need to treat predicated writes specially.
315 // TODO: The following hack exists because predication passes do not
316 // correctly append imp-use operands, and readsReg() strangely returns false
317 // for predicated defs.
318 unsigned Reg = DefMI->getOperand(DefOperIdx).getReg();
319 const MachineFunction &MF = *DefMI->getMF();
320 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
321 if (!DepMI->readsRegister(Reg, TRI) && TII->isPredicated(*DepMI))
322 return computeInstrLatency(DefMI);
324 // If we have a per operand scheduling model, check if this def is writing
325 // an unbuffered resource. If so, it treated like an in-order cpu.
326 if (hasInstrSchedModel()) {
327 const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI);
328 if (SCDesc->isValid()) {
329 for (const MCWriteProcResEntry *PRI = STI->getWriteProcResBegin(SCDesc),
330 *PRE = STI->getWriteProcResEnd(SCDesc); PRI != PRE; ++PRI) {
331 if (!SchedModel.getProcResource(PRI->ProcResourceIdx)->BufferSize)
332 return 1;
336 return 0;
339 static Optional<double>
340 getRThroughputFromItineraries(unsigned schedClass,
341 const InstrItineraryData *IID){
342 Optional<double> Throughput;
344 for (const InstrStage *IS = IID->beginStage(schedClass),
345 *E = IID->endStage(schedClass);
346 IS != E; ++IS) {
347 if (IS->getCycles()) {
348 double Temp = countPopulation(IS->getUnits()) * 1.0 / IS->getCycles();
349 Throughput = Throughput.hasValue()
350 ? std::min(Throughput.getValue(), Temp)
351 : Temp;
354 if (Throughput.hasValue())
355 // We need reciprocal throughput that's why we return such value.
356 return 1 / Throughput.getValue();
357 return Throughput;
360 static Optional<double>
361 getRThroughputFromInstrSchedModel(const MCSchedClassDesc *SCDesc,
362 const TargetSubtargetInfo *STI,
363 const MCSchedModel &SchedModel) {
364 Optional<double> Throughput;
366 for (const MCWriteProcResEntry *WPR = STI->getWriteProcResBegin(SCDesc),
367 *WEnd = STI->getWriteProcResEnd(SCDesc);
368 WPR != WEnd; ++WPR) {
369 if (WPR->Cycles) {
370 unsigned NumUnits =
371 SchedModel.getProcResource(WPR->ProcResourceIdx)->NumUnits;
372 double Temp = NumUnits * 1.0 / WPR->Cycles;
373 Throughput = Throughput.hasValue()
374 ? std::min(Throughput.getValue(), Temp)
375 : Temp;
378 if (Throughput.hasValue())
379 // We need reciprocal throughput that's why we return such value.
380 return 1 / Throughput.getValue();
381 return Throughput;
384 Optional<double>
385 TargetSchedModel::computeInstrRThroughput(const MachineInstr *MI) const {
386 if (hasInstrItineraries())
387 return getRThroughputFromItineraries(MI->getDesc().getSchedClass(),
388 getInstrItineraries());
389 if (hasInstrSchedModel())
390 return getRThroughputFromInstrSchedModel(resolveSchedClass(MI), STI,
391 SchedModel);
392 return Optional<double>();
395 Optional<double>
396 TargetSchedModel::computeInstrRThroughput(unsigned Opcode) const {
397 unsigned SchedClass = TII->get(Opcode).getSchedClass();
398 if (hasInstrItineraries())
399 return getRThroughputFromItineraries(SchedClass, getInstrItineraries());
400 if (hasInstrSchedModel()) {
401 const MCSchedClassDesc *SCDesc = SchedModel.getSchedClassDesc(SchedClass);
402 if (SCDesc->isValid() && !SCDesc->isVariant())
403 return getRThroughputFromInstrSchedModel(SCDesc, STI, SchedModel);
405 return Optional<double>();