[PowerPC] Materialize more constants with CR-field set in late peephole
[llvm-core.git] / lib / Target / AArch64 / AArch64FrameLowering.cpp
blob6dc5d19862a94c5ec2e8f9dcdb99b3d2db4016af
1 //===- AArch64FrameLowering.cpp - AArch64 Frame Lowering -------*- C++ -*-====//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the AArch64 implementation of TargetFrameLowering class.
12 // On AArch64, stack frames are structured as follows:
14 // The stack grows downward.
16 // All of the individual frame areas on the frame below are optional, i.e. it's
17 // possible to create a function so that the particular area isn't present
18 // in the frame.
20 // At function entry, the "frame" looks as follows:
22 // | | Higher address
23 // |-----------------------------------|
24 // | |
25 // | arguments passed on the stack |
26 // | |
27 // |-----------------------------------| <- sp
28 // | | Lower address
31 // After the prologue has run, the frame has the following general structure.
32 // Note that this doesn't depict the case where a red-zone is used. Also,
33 // technically the last frame area (VLAs) doesn't get created until in the
34 // main function body, after the prologue is run. However, it's depicted here
35 // for completeness.
37 // | | Higher address
38 // |-----------------------------------|
39 // | |
40 // | arguments passed on the stack |
41 // | |
42 // |-----------------------------------|
43 // | |
44 // | (Win64 only) varargs from reg |
45 // | |
46 // |-----------------------------------|
47 // | |
48 // | prev_fp, prev_lr |
49 // | (a.k.a. "frame record") |
50 // |-----------------------------------| <- fp(=x29)
51 // | |
52 // | other callee-saved registers |
53 // | |
54 // |-----------------------------------|
55 // |.empty.space.to.make.part.below....|
56 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at
57 // |.the.standard.16-byte.alignment....| compile time; if present)
58 // |-----------------------------------|
59 // | |
60 // | local variables of fixed size |
61 // | including spill slots |
62 // |-----------------------------------| <- bp(not defined by ABI,
63 // |.variable-sized.local.variables....| LLVM chooses X19)
64 // |.(VLAs)............................| (size of this area is unknown at
65 // |...................................| compile time)
66 // |-----------------------------------| <- sp
67 // | | Lower address
70 // To access the data in a frame, at-compile time, a constant offset must be
71 // computable from one of the pointers (fp, bp, sp) to access it. The size
72 // of the areas with a dotted background cannot be computed at compile-time
73 // if they are present, making it required to have all three of fp, bp and
74 // sp to be set up to be able to access all contents in the frame areas,
75 // assuming all of the frame areas are non-empty.
77 // For most functions, some of the frame areas are empty. For those functions,
78 // it may not be necessary to set up fp or bp:
79 // * A base pointer is definitely needed when there are both VLAs and local
80 // variables with more-than-default alignment requirements.
81 // * A frame pointer is definitely needed when there are local variables with
82 // more-than-default alignment requirements.
84 // In some cases when a base pointer is not strictly needed, it is generated
85 // anyway when offsets from the frame pointer to access local variables become
86 // so large that the offset can't be encoded in the immediate fields of loads
87 // or stores.
89 // FIXME: also explain the redzone concept.
90 // FIXME: also explain the concept of reserved call frames.
92 //===----------------------------------------------------------------------===//
94 #include "AArch64FrameLowering.h"
95 #include "AArch64InstrInfo.h"
96 #include "AArch64MachineFunctionInfo.h"
97 #include "AArch64RegisterInfo.h"
98 #include "AArch64Subtarget.h"
99 #include "AArch64TargetMachine.h"
100 #include "MCTargetDesc/AArch64AddressingModes.h"
101 #include "llvm/ADT/SmallVector.h"
102 #include "llvm/ADT/Statistic.h"
103 #include "llvm/CodeGen/LivePhysRegs.h"
104 #include "llvm/CodeGen/MachineBasicBlock.h"
105 #include "llvm/CodeGen/MachineFrameInfo.h"
106 #include "llvm/CodeGen/MachineFunction.h"
107 #include "llvm/CodeGen/MachineInstr.h"
108 #include "llvm/CodeGen/MachineInstrBuilder.h"
109 #include "llvm/CodeGen/MachineMemOperand.h"
110 #include "llvm/CodeGen/MachineModuleInfo.h"
111 #include "llvm/CodeGen/MachineOperand.h"
112 #include "llvm/CodeGen/MachineRegisterInfo.h"
113 #include "llvm/CodeGen/RegisterScavenging.h"
114 #include "llvm/CodeGen/TargetInstrInfo.h"
115 #include "llvm/CodeGen/TargetRegisterInfo.h"
116 #include "llvm/CodeGen/TargetSubtargetInfo.h"
117 #include "llvm/IR/Attributes.h"
118 #include "llvm/IR/CallingConv.h"
119 #include "llvm/IR/DataLayout.h"
120 #include "llvm/IR/DebugLoc.h"
121 #include "llvm/IR/Function.h"
122 #include "llvm/MC/MCDwarf.h"
123 #include "llvm/Support/CommandLine.h"
124 #include "llvm/Support/Debug.h"
125 #include "llvm/Support/ErrorHandling.h"
126 #include "llvm/Support/MathExtras.h"
127 #include "llvm/Support/raw_ostream.h"
128 #include "llvm/Target/TargetMachine.h"
129 #include "llvm/Target/TargetOptions.h"
130 #include <cassert>
131 #include <cstdint>
132 #include <iterator>
133 #include <vector>
135 using namespace llvm;
137 #define DEBUG_TYPE "frame-info"
139 static cl::opt<bool> EnableRedZone("aarch64-redzone",
140 cl::desc("enable use of redzone on AArch64"),
141 cl::init(false), cl::Hidden);
143 static cl::opt<bool>
144 ReverseCSRRestoreSeq("reverse-csr-restore-seq",
145 cl::desc("reverse the CSR restore sequence"),
146 cl::init(false), cl::Hidden);
148 STATISTIC(NumRedZoneFunctions, "Number of functions using red zone");
150 /// This is the biggest offset to the stack pointer we can encode in aarch64
151 /// instructions (without using a separate calculation and a temp register).
152 /// Note that the exception here are vector stores/loads which cannot encode any
153 /// displacements (see estimateRSStackSizeLimit(), isAArch64FrameOffsetLegal()).
154 static const unsigned DefaultSafeSPDisplacement = 255;
156 /// Look at each instruction that references stack frames and return the stack
157 /// size limit beyond which some of these instructions will require a scratch
158 /// register during their expansion later.
159 static unsigned estimateRSStackSizeLimit(MachineFunction &MF) {
160 // FIXME: For now, just conservatively guestimate based on unscaled indexing
161 // range. We'll end up allocating an unnecessary spill slot a lot, but
162 // realistically that's not a big deal at this stage of the game.
163 for (MachineBasicBlock &MBB : MF) {
164 for (MachineInstr &MI : MBB) {
165 if (MI.isDebugInstr() || MI.isPseudo() ||
166 MI.getOpcode() == AArch64::ADDXri ||
167 MI.getOpcode() == AArch64::ADDSXri)
168 continue;
170 for (const MachineOperand &MO : MI.operands()) {
171 if (!MO.isFI())
172 continue;
174 int Offset = 0;
175 if (isAArch64FrameOffsetLegal(MI, Offset, nullptr, nullptr, nullptr) ==
176 AArch64FrameOffsetCannotUpdate)
177 return 0;
181 return DefaultSafeSPDisplacement;
184 bool AArch64FrameLowering::canUseRedZone(const MachineFunction &MF) const {
185 if (!EnableRedZone)
186 return false;
187 // Don't use the red zone if the function explicitly asks us not to.
188 // This is typically used for kernel code.
189 if (MF.getFunction().hasFnAttribute(Attribute::NoRedZone))
190 return false;
192 const MachineFrameInfo &MFI = MF.getFrameInfo();
193 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
194 unsigned NumBytes = AFI->getLocalStackSize();
196 return !(MFI.hasCalls() || hasFP(MF) || NumBytes > 128);
199 /// hasFP - Return true if the specified function should have a dedicated frame
200 /// pointer register.
201 bool AArch64FrameLowering::hasFP(const MachineFunction &MF) const {
202 const MachineFrameInfo &MFI = MF.getFrameInfo();
203 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
204 // Retain behavior of always omitting the FP for leaf functions when possible.
205 if (MFI.hasCalls() && MF.getTarget().Options.DisableFramePointerElim(MF))
206 return true;
207 if (MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken() ||
208 MFI.hasStackMap() || MFI.hasPatchPoint() ||
209 RegInfo->needsStackRealignment(MF))
210 return true;
211 // With large callframes around we may need to use FP to access the scavenging
212 // emergency spillslot.
214 // Unfortunately some calls to hasFP() like machine verifier ->
215 // getReservedReg() -> hasFP in the middle of global isel are too early
216 // to know the max call frame size. Hopefully conservatively returning "true"
217 // in those cases is fine.
218 // DefaultSafeSPDisplacement is fine as we only emergency spill GP regs.
219 if (!MFI.isMaxCallFrameSizeComputed() ||
220 MFI.getMaxCallFrameSize() > DefaultSafeSPDisplacement)
221 return true;
223 return false;
226 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
227 /// not required, we reserve argument space for call sites in the function
228 /// immediately on entry to the current function. This eliminates the need for
229 /// add/sub sp brackets around call sites. Returns true if the call frame is
230 /// included as part of the stack frame.
231 bool
232 AArch64FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
233 return !MF.getFrameInfo().hasVarSizedObjects();
236 MachineBasicBlock::iterator AArch64FrameLowering::eliminateCallFramePseudoInstr(
237 MachineFunction &MF, MachineBasicBlock &MBB,
238 MachineBasicBlock::iterator I) const {
239 const AArch64InstrInfo *TII =
240 static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo());
241 DebugLoc DL = I->getDebugLoc();
242 unsigned Opc = I->getOpcode();
243 bool IsDestroy = Opc == TII->getCallFrameDestroyOpcode();
244 uint64_t CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0;
246 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
247 if (!TFI->hasReservedCallFrame(MF)) {
248 unsigned Align = getStackAlignment();
250 int64_t Amount = I->getOperand(0).getImm();
251 Amount = alignTo(Amount, Align);
252 if (!IsDestroy)
253 Amount = -Amount;
255 // N.b. if CalleePopAmount is valid but zero (i.e. callee would pop, but it
256 // doesn't have to pop anything), then the first operand will be zero too so
257 // this adjustment is a no-op.
258 if (CalleePopAmount == 0) {
259 // FIXME: in-function stack adjustment for calls is limited to 24-bits
260 // because there's no guaranteed temporary register available.
262 // ADD/SUB (immediate) has only LSL #0 and LSL #12 available.
263 // 1) For offset <= 12-bit, we use LSL #0
264 // 2) For 12-bit <= offset <= 24-bit, we use two instructions. One uses
265 // LSL #0, and the other uses LSL #12.
267 // Most call frames will be allocated at the start of a function so
268 // this is OK, but it is a limitation that needs dealing with.
269 assert(Amount > -0xffffff && Amount < 0xffffff && "call frame too large");
270 emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP, Amount, TII);
272 } else if (CalleePopAmount != 0) {
273 // If the calling convention demands that the callee pops arguments from the
274 // stack, we want to add it back if we have a reserved call frame.
275 assert(CalleePopAmount < 0xffffff && "call frame too large");
276 emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP, -CalleePopAmount,
277 TII);
279 return MBB.erase(I);
282 void AArch64FrameLowering::emitCalleeSavedFrameMoves(
283 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
284 MachineFunction &MF = *MBB.getParent();
285 MachineFrameInfo &MFI = MF.getFrameInfo();
286 const TargetSubtargetInfo &STI = MF.getSubtarget();
287 const MCRegisterInfo *MRI = STI.getRegisterInfo();
288 const TargetInstrInfo *TII = STI.getInstrInfo();
289 DebugLoc DL = MBB.findDebugLoc(MBBI);
291 // Add callee saved registers to move list.
292 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
293 if (CSI.empty())
294 return;
296 for (const auto &Info : CSI) {
297 unsigned Reg = Info.getReg();
298 int64_t Offset =
299 MFI.getObjectOffset(Info.getFrameIdx()) - getOffsetOfLocalArea();
300 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
301 unsigned CFIIndex = MF.addFrameInst(
302 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
303 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
304 .addCFIIndex(CFIIndex)
305 .setMIFlags(MachineInstr::FrameSetup);
309 // Find a scratch register that we can use at the start of the prologue to
310 // re-align the stack pointer. We avoid using callee-save registers since they
311 // may appear to be free when this is called from canUseAsPrologue (during
312 // shrink wrapping), but then no longer be free when this is called from
313 // emitPrologue.
315 // FIXME: This is a bit conservative, since in the above case we could use one
316 // of the callee-save registers as a scratch temp to re-align the stack pointer,
317 // but we would then have to make sure that we were in fact saving at least one
318 // callee-save register in the prologue, which is additional complexity that
319 // doesn't seem worth the benefit.
320 static unsigned findScratchNonCalleeSaveRegister(MachineBasicBlock *MBB) {
321 MachineFunction *MF = MBB->getParent();
323 // If MBB is an entry block, use X9 as the scratch register
324 if (&MF->front() == MBB)
325 return AArch64::X9;
327 const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>();
328 const AArch64RegisterInfo &TRI = *Subtarget.getRegisterInfo();
329 LivePhysRegs LiveRegs(TRI);
330 LiveRegs.addLiveIns(*MBB);
332 // Mark callee saved registers as used so we will not choose them.
333 const MCPhysReg *CSRegs = TRI.getCalleeSavedRegs(MF);
334 for (unsigned i = 0; CSRegs[i]; ++i)
335 LiveRegs.addReg(CSRegs[i]);
337 // Prefer X9 since it was historically used for the prologue scratch reg.
338 const MachineRegisterInfo &MRI = MF->getRegInfo();
339 if (LiveRegs.available(MRI, AArch64::X9))
340 return AArch64::X9;
342 for (unsigned Reg : AArch64::GPR64RegClass) {
343 if (LiveRegs.available(MRI, Reg))
344 return Reg;
346 return AArch64::NoRegister;
349 bool AArch64FrameLowering::canUseAsPrologue(
350 const MachineBasicBlock &MBB) const {
351 const MachineFunction *MF = MBB.getParent();
352 MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
353 const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>();
354 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
356 // Don't need a scratch register if we're not going to re-align the stack.
357 if (!RegInfo->needsStackRealignment(*MF))
358 return true;
359 // Otherwise, we can use any block as long as it has a scratch register
360 // available.
361 return findScratchNonCalleeSaveRegister(TmpMBB) != AArch64::NoRegister;
364 static bool windowsRequiresStackProbe(MachineFunction &MF,
365 unsigned StackSizeInBytes) {
366 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
367 if (!Subtarget.isTargetWindows())
368 return false;
369 const Function &F = MF.getFunction();
370 // TODO: When implementing stack protectors, take that into account
371 // for the probe threshold.
372 unsigned StackProbeSize = 4096;
373 if (F.hasFnAttribute("stack-probe-size"))
374 F.getFnAttribute("stack-probe-size")
375 .getValueAsString()
376 .getAsInteger(0, StackProbeSize);
377 return (StackSizeInBytes >= StackProbeSize) &&
378 !F.hasFnAttribute("no-stack-arg-probe");
381 bool AArch64FrameLowering::shouldCombineCSRLocalStackBump(
382 MachineFunction &MF, unsigned StackBumpBytes) const {
383 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
384 const MachineFrameInfo &MFI = MF.getFrameInfo();
385 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
386 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
388 if (AFI->getLocalStackSize() == 0)
389 return false;
391 // 512 is the maximum immediate for stp/ldp that will be used for
392 // callee-save save/restores
393 if (StackBumpBytes >= 512 || windowsRequiresStackProbe(MF, StackBumpBytes))
394 return false;
396 if (MFI.hasVarSizedObjects())
397 return false;
399 if (RegInfo->needsStackRealignment(MF))
400 return false;
402 // This isn't strictly necessary, but it simplifies things a bit since the
403 // current RedZone handling code assumes the SP is adjusted by the
404 // callee-save save/restore code.
405 if (canUseRedZone(MF))
406 return false;
408 return true;
411 // Convert callee-save register save/restore instruction to do stack pointer
412 // decrement/increment to allocate/deallocate the callee-save stack area by
413 // converting store/load to use pre/post increment version.
414 static MachineBasicBlock::iterator convertCalleeSaveRestoreToSPPrePostIncDec(
415 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
416 const DebugLoc &DL, const TargetInstrInfo *TII, int CSStackSizeInc) {
417 // Ignore instructions that do not operate on SP, i.e. shadow call stack
418 // instructions.
419 while (MBBI->getOpcode() == AArch64::STRXpost ||
420 MBBI->getOpcode() == AArch64::LDRXpre) {
421 assert(MBBI->getOperand(0).getReg() != AArch64::SP);
422 ++MBBI;
425 unsigned NewOpc;
426 bool NewIsUnscaled = false;
427 switch (MBBI->getOpcode()) {
428 default:
429 llvm_unreachable("Unexpected callee-save save/restore opcode!");
430 case AArch64::STPXi:
431 NewOpc = AArch64::STPXpre;
432 break;
433 case AArch64::STPDi:
434 NewOpc = AArch64::STPDpre;
435 break;
436 case AArch64::STRXui:
437 NewOpc = AArch64::STRXpre;
438 NewIsUnscaled = true;
439 break;
440 case AArch64::STRDui:
441 NewOpc = AArch64::STRDpre;
442 NewIsUnscaled = true;
443 break;
444 case AArch64::LDPXi:
445 NewOpc = AArch64::LDPXpost;
446 break;
447 case AArch64::LDPDi:
448 NewOpc = AArch64::LDPDpost;
449 break;
450 case AArch64::LDRXui:
451 NewOpc = AArch64::LDRXpost;
452 NewIsUnscaled = true;
453 break;
454 case AArch64::LDRDui:
455 NewOpc = AArch64::LDRDpost;
456 NewIsUnscaled = true;
457 break;
460 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc));
461 MIB.addReg(AArch64::SP, RegState::Define);
463 // Copy all operands other than the immediate offset.
464 unsigned OpndIdx = 0;
465 for (unsigned OpndEnd = MBBI->getNumOperands() - 1; OpndIdx < OpndEnd;
466 ++OpndIdx)
467 MIB.add(MBBI->getOperand(OpndIdx));
469 assert(MBBI->getOperand(OpndIdx).getImm() == 0 &&
470 "Unexpected immediate offset in first/last callee-save save/restore "
471 "instruction!");
472 assert(MBBI->getOperand(OpndIdx - 1).getReg() == AArch64::SP &&
473 "Unexpected base register in callee-save save/restore instruction!");
474 // Last operand is immediate offset that needs fixing.
475 assert(CSStackSizeInc % 8 == 0);
476 int64_t CSStackSizeIncImm = CSStackSizeInc;
477 if (!NewIsUnscaled)
478 CSStackSizeIncImm /= 8;
479 MIB.addImm(CSStackSizeIncImm);
481 MIB.setMIFlags(MBBI->getFlags());
482 MIB.setMemRefs(MBBI->memoperands_begin(), MBBI->memoperands_end());
484 return std::prev(MBB.erase(MBBI));
487 // Fixup callee-save register save/restore instructions to take into account
488 // combined SP bump by adding the local stack size to the stack offsets.
489 static void fixupCalleeSaveRestoreStackOffset(MachineInstr &MI,
490 unsigned LocalStackSize) {
491 unsigned Opc = MI.getOpcode();
493 // Ignore instructions that do not operate on SP, i.e. shadow call stack
494 // instructions.
495 if (Opc == AArch64::STRXpost || Opc == AArch64::LDRXpre) {
496 assert(MI.getOperand(0).getReg() != AArch64::SP);
497 return;
500 (void)Opc;
501 assert((Opc == AArch64::STPXi || Opc == AArch64::STPDi ||
502 Opc == AArch64::STRXui || Opc == AArch64::STRDui ||
503 Opc == AArch64::LDPXi || Opc == AArch64::LDPDi ||
504 Opc == AArch64::LDRXui || Opc == AArch64::LDRDui) &&
505 "Unexpected callee-save save/restore opcode!");
507 unsigned OffsetIdx = MI.getNumExplicitOperands() - 1;
508 assert(MI.getOperand(OffsetIdx - 1).getReg() == AArch64::SP &&
509 "Unexpected base register in callee-save save/restore instruction!");
510 // Last operand is immediate offset that needs fixing.
511 MachineOperand &OffsetOpnd = MI.getOperand(OffsetIdx);
512 // All generated opcodes have scaled offsets.
513 assert(LocalStackSize % 8 == 0);
514 OffsetOpnd.setImm(OffsetOpnd.getImm() + LocalStackSize / 8);
517 static void adaptForLdStOpt(MachineBasicBlock &MBB,
518 MachineBasicBlock::iterator FirstSPPopI,
519 MachineBasicBlock::iterator LastPopI) {
520 // Sometimes (when we restore in the same order as we save), we can end up
521 // with code like this:
523 // ldp x26, x25, [sp]
524 // ldp x24, x23, [sp, #16]
525 // ldp x22, x21, [sp, #32]
526 // ldp x20, x19, [sp, #48]
527 // add sp, sp, #64
529 // In this case, it is always better to put the first ldp at the end, so
530 // that the load-store optimizer can run and merge the ldp and the add into
531 // a post-index ldp.
532 // If we managed to grab the first pop instruction, move it to the end.
533 if (ReverseCSRRestoreSeq)
534 MBB.splice(FirstSPPopI, &MBB, LastPopI);
535 // We should end up with something like this now:
537 // ldp x24, x23, [sp, #16]
538 // ldp x22, x21, [sp, #32]
539 // ldp x20, x19, [sp, #48]
540 // ldp x26, x25, [sp]
541 // add sp, sp, #64
543 // and the load-store optimizer can merge the last two instructions into:
545 // ldp x26, x25, [sp], #64
549 void AArch64FrameLowering::emitPrologue(MachineFunction &MF,
550 MachineBasicBlock &MBB) const {
551 MachineBasicBlock::iterator MBBI = MBB.begin();
552 const MachineFrameInfo &MFI = MF.getFrameInfo();
553 const Function &F = MF.getFunction();
554 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
555 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
556 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
557 MachineModuleInfo &MMI = MF.getMMI();
558 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
559 bool needsFrameMoves = MMI.hasDebugInfo() || F.needsUnwindTableEntry();
560 bool HasFP = hasFP(MF);
562 // At this point, we're going to decide whether or not the function uses a
563 // redzone. In most cases, the function doesn't have a redzone so let's
564 // assume that's false and set it to true in the case that there's a redzone.
565 AFI->setHasRedZone(false);
567 // Debug location must be unknown since the first debug location is used
568 // to determine the end of the prologue.
569 DebugLoc DL;
571 // All calls are tail calls in GHC calling conv, and functions have no
572 // prologue/epilogue.
573 if (MF.getFunction().getCallingConv() == CallingConv::GHC)
574 return;
576 int NumBytes = (int)MFI.getStackSize();
577 if (!AFI->hasStackFrame() && !windowsRequiresStackProbe(MF, NumBytes)) {
578 assert(!HasFP && "unexpected function without stack frame but with FP");
580 // All of the stack allocation is for locals.
581 AFI->setLocalStackSize(NumBytes);
583 if (!NumBytes)
584 return;
585 // REDZONE: If the stack size is less than 128 bytes, we don't need
586 // to actually allocate.
587 if (canUseRedZone(MF)) {
588 AFI->setHasRedZone(true);
589 ++NumRedZoneFunctions;
590 } else {
591 emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP, -NumBytes, TII,
592 MachineInstr::FrameSetup);
594 // Label used to tie together the PROLOG_LABEL and the MachineMoves.
595 MCSymbol *FrameLabel = MMI.getContext().createTempSymbol();
596 // Encode the stack size of the leaf function.
597 unsigned CFIIndex = MF.addFrameInst(
598 MCCFIInstruction::createDefCfaOffset(FrameLabel, -NumBytes));
599 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
600 .addCFIIndex(CFIIndex)
601 .setMIFlags(MachineInstr::FrameSetup);
603 return;
606 bool IsWin64 =
607 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
608 unsigned FixedObject = IsWin64 ? alignTo(AFI->getVarArgsGPRSize(), 16) : 0;
610 auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject;
611 // All of the remaining stack allocations are for locals.
612 AFI->setLocalStackSize(NumBytes - PrologueSaveSize);
614 bool CombineSPBump = shouldCombineCSRLocalStackBump(MF, NumBytes);
615 if (CombineSPBump) {
616 emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP, -NumBytes, TII,
617 MachineInstr::FrameSetup);
618 NumBytes = 0;
619 } else if (PrologueSaveSize != 0) {
620 MBBI = convertCalleeSaveRestoreToSPPrePostIncDec(MBB, MBBI, DL, TII,
621 -PrologueSaveSize);
622 NumBytes -= PrologueSaveSize;
624 assert(NumBytes >= 0 && "Negative stack allocation size!?");
626 // Move past the saves of the callee-saved registers, fixing up the offsets
627 // and pre-inc if we decided to combine the callee-save and local stack
628 // pointer bump above.
629 MachineBasicBlock::iterator End = MBB.end();
630 while (MBBI != End && MBBI->getFlag(MachineInstr::FrameSetup)) {
631 if (CombineSPBump)
632 fixupCalleeSaveRestoreStackOffset(*MBBI, AFI->getLocalStackSize());
633 ++MBBI;
635 if (HasFP) {
636 // Only set up FP if we actually need to. Frame pointer is fp =
637 // sp - fixedobject - 16.
638 int FPOffset = AFI->getCalleeSavedStackSize() - 16;
639 if (CombineSPBump)
640 FPOffset += AFI->getLocalStackSize();
642 // Issue sub fp, sp, FPOffset or
643 // mov fp,sp when FPOffset is zero.
644 // Note: All stores of callee-saved registers are marked as "FrameSetup".
645 // This code marks the instruction(s) that set the FP also.
646 emitFrameOffset(MBB, MBBI, DL, AArch64::FP, AArch64::SP, FPOffset, TII,
647 MachineInstr::FrameSetup);
650 if (windowsRequiresStackProbe(MF, NumBytes)) {
651 uint32_t NumWords = NumBytes >> 4;
653 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVi64imm), AArch64::X15)
654 .addImm(NumWords)
655 .setMIFlags(MachineInstr::FrameSetup);
657 switch (MF.getTarget().getCodeModel()) {
658 case CodeModel::Small:
659 case CodeModel::Medium:
660 case CodeModel::Kernel:
661 BuildMI(MBB, MBBI, DL, TII->get(AArch64::BL))
662 .addExternalSymbol("__chkstk")
663 .addReg(AArch64::X15, RegState::Implicit)
664 .setMIFlags(MachineInstr::FrameSetup);
665 break;
666 case CodeModel::Large:
667 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVaddrEXT))
668 .addReg(AArch64::X16, RegState::Define)
669 .addExternalSymbol("__chkstk")
670 .addExternalSymbol("__chkstk")
671 .setMIFlags(MachineInstr::FrameSetup);
673 BuildMI(MBB, MBBI, DL, TII->get(AArch64::BLR))
674 .addReg(AArch64::X16, RegState::Kill)
675 .addReg(AArch64::X15, RegState::Implicit | RegState::Define)
676 .setMIFlags(MachineInstr::FrameSetup);
677 break;
680 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SUBXrx64), AArch64::SP)
681 .addReg(AArch64::SP, RegState::Kill)
682 .addReg(AArch64::X15, RegState::Kill)
683 .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 4))
684 .setMIFlags(MachineInstr::FrameSetup);
685 NumBytes = 0;
688 // Allocate space for the rest of the frame.
689 if (NumBytes) {
690 const bool NeedsRealignment = RegInfo->needsStackRealignment(MF);
691 unsigned scratchSPReg = AArch64::SP;
693 if (NeedsRealignment) {
694 scratchSPReg = findScratchNonCalleeSaveRegister(&MBB);
695 assert(scratchSPReg != AArch64::NoRegister);
698 // If we're a leaf function, try using the red zone.
699 if (!canUseRedZone(MF))
700 // FIXME: in the case of dynamic re-alignment, NumBytes doesn't have
701 // the correct value here, as NumBytes also includes padding bytes,
702 // which shouldn't be counted here.
703 emitFrameOffset(MBB, MBBI, DL, scratchSPReg, AArch64::SP, -NumBytes, TII,
704 MachineInstr::FrameSetup);
706 if (NeedsRealignment) {
707 const unsigned Alignment = MFI.getMaxAlignment();
708 const unsigned NrBitsToZero = countTrailingZeros(Alignment);
709 assert(NrBitsToZero > 1);
710 assert(scratchSPReg != AArch64::SP);
712 // SUB X9, SP, NumBytes
713 // -- X9 is temporary register, so shouldn't contain any live data here,
714 // -- free to use. This is already produced by emitFrameOffset above.
715 // AND SP, X9, 0b11111...0000
716 // The logical immediates have a non-trivial encoding. The following
717 // formula computes the encoded immediate with all ones but
718 // NrBitsToZero zero bits as least significant bits.
719 uint32_t andMaskEncoded = (1 << 12) // = N
720 | ((64 - NrBitsToZero) << 6) // immr
721 | ((64 - NrBitsToZero - 1) << 0); // imms
723 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ANDXri), AArch64::SP)
724 .addReg(scratchSPReg, RegState::Kill)
725 .addImm(andMaskEncoded);
726 AFI->setStackRealigned(true);
730 // If we need a base pointer, set it up here. It's whatever the value of the
731 // stack pointer is at this point. Any variable size objects will be allocated
732 // after this, so we can still use the base pointer to reference locals.
734 // FIXME: Clarify FrameSetup flags here.
735 // Note: Use emitFrameOffset() like above for FP if the FrameSetup flag is
736 // needed.
737 if (RegInfo->hasBasePointer(MF)) {
738 TII->copyPhysReg(MBB, MBBI, DL, RegInfo->getBaseRegister(), AArch64::SP,
739 false);
742 if (needsFrameMoves) {
743 const DataLayout &TD = MF.getDataLayout();
744 const int StackGrowth = -TD.getPointerSize(0);
745 unsigned FramePtr = RegInfo->getFrameRegister(MF);
746 // An example of the prologue:
748 // .globl __foo
749 // .align 2
750 // __foo:
751 // Ltmp0:
752 // .cfi_startproc
753 // .cfi_personality 155, ___gxx_personality_v0
754 // Leh_func_begin:
755 // .cfi_lsda 16, Lexception33
757 // stp xa,bx, [sp, -#offset]!
758 // ...
759 // stp x28, x27, [sp, #offset-32]
760 // stp fp, lr, [sp, #offset-16]
761 // add fp, sp, #offset - 16
762 // sub sp, sp, #1360
764 // The Stack:
765 // +-------------------------------------------+
766 // 10000 | ........ | ........ | ........ | ........ |
767 // 10004 | ........ | ........ | ........ | ........ |
768 // +-------------------------------------------+
769 // 10008 | ........ | ........ | ........ | ........ |
770 // 1000c | ........ | ........ | ........ | ........ |
771 // +===========================================+
772 // 10010 | X28 Register |
773 // 10014 | X28 Register |
774 // +-------------------------------------------+
775 // 10018 | X27 Register |
776 // 1001c | X27 Register |
777 // +===========================================+
778 // 10020 | Frame Pointer |
779 // 10024 | Frame Pointer |
780 // +-------------------------------------------+
781 // 10028 | Link Register |
782 // 1002c | Link Register |
783 // +===========================================+
784 // 10030 | ........ | ........ | ........ | ........ |
785 // 10034 | ........ | ........ | ........ | ........ |
786 // +-------------------------------------------+
787 // 10038 | ........ | ........ | ........ | ........ |
788 // 1003c | ........ | ........ | ........ | ........ |
789 // +-------------------------------------------+
791 // [sp] = 10030 :: >>initial value<<
792 // sp = 10020 :: stp fp, lr, [sp, #-16]!
793 // fp = sp == 10020 :: mov fp, sp
794 // [sp] == 10020 :: stp x28, x27, [sp, #-16]!
795 // sp == 10010 :: >>final value<<
797 // The frame pointer (w29) points to address 10020. If we use an offset of
798 // '16' from 'w29', we get the CFI offsets of -8 for w30, -16 for w29, -24
799 // for w27, and -32 for w28:
801 // Ltmp1:
802 // .cfi_def_cfa w29, 16
803 // Ltmp2:
804 // .cfi_offset w30, -8
805 // Ltmp3:
806 // .cfi_offset w29, -16
807 // Ltmp4:
808 // .cfi_offset w27, -24
809 // Ltmp5:
810 // .cfi_offset w28, -32
812 if (HasFP) {
813 // Define the current CFA rule to use the provided FP.
814 unsigned Reg = RegInfo->getDwarfRegNum(FramePtr, true);
815 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfa(
816 nullptr, Reg, 2 * StackGrowth - FixedObject));
817 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
818 .addCFIIndex(CFIIndex)
819 .setMIFlags(MachineInstr::FrameSetup);
820 } else {
821 // Encode the stack size of the leaf function.
822 unsigned CFIIndex = MF.addFrameInst(
823 MCCFIInstruction::createDefCfaOffset(nullptr, -MFI.getStackSize()));
824 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
825 .addCFIIndex(CFIIndex)
826 .setMIFlags(MachineInstr::FrameSetup);
829 // Now emit the moves for whatever callee saved regs we have (including FP,
830 // LR if those are saved).
831 emitCalleeSavedFrameMoves(MBB, MBBI);
835 void AArch64FrameLowering::emitEpilogue(MachineFunction &MF,
836 MachineBasicBlock &MBB) const {
837 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
838 MachineFrameInfo &MFI = MF.getFrameInfo();
839 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
840 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
841 DebugLoc DL;
842 bool IsTailCallReturn = false;
843 if (MBB.end() != MBBI) {
844 DL = MBBI->getDebugLoc();
845 unsigned RetOpcode = MBBI->getOpcode();
846 IsTailCallReturn = RetOpcode == AArch64::TCRETURNdi ||
847 RetOpcode == AArch64::TCRETURNri;
849 int NumBytes = MFI.getStackSize();
850 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
852 // All calls are tail calls in GHC calling conv, and functions have no
853 // prologue/epilogue.
854 if (MF.getFunction().getCallingConv() == CallingConv::GHC)
855 return;
857 // Initial and residual are named for consistency with the prologue. Note that
858 // in the epilogue, the residual adjustment is executed first.
859 uint64_t ArgumentPopSize = 0;
860 if (IsTailCallReturn) {
861 MachineOperand &StackAdjust = MBBI->getOperand(1);
863 // For a tail-call in a callee-pops-arguments environment, some or all of
864 // the stack may actually be in use for the call's arguments, this is
865 // calculated during LowerCall and consumed here...
866 ArgumentPopSize = StackAdjust.getImm();
867 } else {
868 // ... otherwise the amount to pop is *all* of the argument space,
869 // conveniently stored in the MachineFunctionInfo by
870 // LowerFormalArguments. This will, of course, be zero for the C calling
871 // convention.
872 ArgumentPopSize = AFI->getArgumentStackToRestore();
875 // The stack frame should be like below,
877 // ---------------------- ---
878 // | | |
879 // | BytesInStackArgArea| CalleeArgStackSize
880 // | (NumReusableBytes) | (of tail call)
881 // | | ---
882 // | | |
883 // ---------------------| --- |
884 // | | | |
885 // | CalleeSavedReg | | |
886 // | (CalleeSavedStackSize)| | |
887 // | | | |
888 // ---------------------| | NumBytes
889 // | | StackSize (StackAdjustUp)
890 // | LocalStackSize | | |
891 // | (covering callee | | |
892 // | args) | | |
893 // | | | |
894 // ---------------------- --- ---
896 // So NumBytes = StackSize + BytesInStackArgArea - CalleeArgStackSize
897 // = StackSize + ArgumentPopSize
899 // AArch64TargetLowering::LowerCall figures out ArgumentPopSize and keeps
900 // it as the 2nd argument of AArch64ISD::TC_RETURN.
902 bool IsWin64 =
903 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
904 unsigned FixedObject = IsWin64 ? alignTo(AFI->getVarArgsGPRSize(), 16) : 0;
906 uint64_t AfterCSRPopSize = ArgumentPopSize;
907 auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject;
908 bool CombineSPBump = shouldCombineCSRLocalStackBump(MF, NumBytes);
909 // Assume we can't combine the last pop with the sp restore.
911 if (!CombineSPBump && PrologueSaveSize != 0) {
912 MachineBasicBlock::iterator Pop = std::prev(MBB.getFirstTerminator());
913 // Converting the last ldp to a post-index ldp is valid only if the last
914 // ldp's offset is 0.
915 const MachineOperand &OffsetOp = Pop->getOperand(Pop->getNumOperands() - 1);
916 // If the offset is 0, convert it to a post-index ldp.
917 if (OffsetOp.getImm() == 0) {
918 convertCalleeSaveRestoreToSPPrePostIncDec(MBB, Pop, DL, TII,
919 PrologueSaveSize);
920 } else {
921 // If not, make sure to emit an add after the last ldp.
922 // We're doing this by transfering the size to be restored from the
923 // adjustment *before* the CSR pops to the adjustment *after* the CSR
924 // pops.
925 AfterCSRPopSize += PrologueSaveSize;
929 // Move past the restores of the callee-saved registers.
930 // If we plan on combining the sp bump of the local stack size and the callee
931 // save stack size, we might need to adjust the CSR save and restore offsets.
932 MachineBasicBlock::iterator LastPopI = MBB.getFirstTerminator();
933 MachineBasicBlock::iterator Begin = MBB.begin();
934 while (LastPopI != Begin) {
935 --LastPopI;
936 if (!LastPopI->getFlag(MachineInstr::FrameDestroy)) {
937 ++LastPopI;
938 break;
939 } else if (CombineSPBump)
940 fixupCalleeSaveRestoreStackOffset(*LastPopI, AFI->getLocalStackSize());
943 // If there is a single SP update, insert it before the ret and we're done.
944 if (CombineSPBump) {
945 emitFrameOffset(MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP,
946 NumBytes + AfterCSRPopSize, TII,
947 MachineInstr::FrameDestroy);
948 return;
951 NumBytes -= PrologueSaveSize;
952 assert(NumBytes >= 0 && "Negative stack allocation size!?");
954 if (!hasFP(MF)) {
955 bool RedZone = canUseRedZone(MF);
956 // If this was a redzone leaf function, we don't need to restore the
957 // stack pointer (but we may need to pop stack args for fastcc).
958 if (RedZone && AfterCSRPopSize == 0)
959 return;
961 bool NoCalleeSaveRestore = PrologueSaveSize == 0;
962 int StackRestoreBytes = RedZone ? 0 : NumBytes;
963 if (NoCalleeSaveRestore)
964 StackRestoreBytes += AfterCSRPopSize;
966 // If we were able to combine the local stack pop with the argument pop,
967 // then we're done.
968 bool Done = NoCalleeSaveRestore || AfterCSRPopSize == 0;
970 // If we're done after this, make sure to help the load store optimizer.
971 if (Done)
972 adaptForLdStOpt(MBB, MBB.getFirstTerminator(), LastPopI);
974 emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
975 StackRestoreBytes, TII, MachineInstr::FrameDestroy);
976 if (Done)
977 return;
979 NumBytes = 0;
982 // Restore the original stack pointer.
983 // FIXME: Rather than doing the math here, we should instead just use
984 // non-post-indexed loads for the restores if we aren't actually going to
985 // be able to save any instructions.
986 if (MFI.hasVarSizedObjects() || AFI->isStackRealigned())
987 emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::FP,
988 -AFI->getCalleeSavedStackSize() + 16, TII,
989 MachineInstr::FrameDestroy);
990 else if (NumBytes)
991 emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP, NumBytes, TII,
992 MachineInstr::FrameDestroy);
994 // This must be placed after the callee-save restore code because that code
995 // assumes the SP is at the same location as it was after the callee-save save
996 // code in the prologue.
997 if (AfterCSRPopSize) {
998 // Find an insertion point for the first ldp so that it goes before the
999 // shadow call stack epilog instruction. This ensures that the restore of
1000 // lr from x18 is placed after the restore from sp.
1001 auto FirstSPPopI = MBB.getFirstTerminator();
1002 while (FirstSPPopI != Begin) {
1003 auto Prev = std::prev(FirstSPPopI);
1004 if (Prev->getOpcode() != AArch64::LDRXpre ||
1005 Prev->getOperand(0).getReg() == AArch64::SP)
1006 break;
1007 FirstSPPopI = Prev;
1010 adaptForLdStOpt(MBB, FirstSPPopI, LastPopI);
1012 emitFrameOffset(MBB, FirstSPPopI, DL, AArch64::SP, AArch64::SP,
1013 AfterCSRPopSize, TII, MachineInstr::FrameDestroy);
1017 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for
1018 /// debug info. It's the same as what we use for resolving the code-gen
1019 /// references for now. FIXME: This can go wrong when references are
1020 /// SP-relative and simple call frames aren't used.
1021 int AArch64FrameLowering::getFrameIndexReference(const MachineFunction &MF,
1022 int FI,
1023 unsigned &FrameReg) const {
1024 return resolveFrameIndexReference(MF, FI, FrameReg);
1027 int AArch64FrameLowering::resolveFrameIndexReference(const MachineFunction &MF,
1028 int FI, unsigned &FrameReg,
1029 bool PreferFP) const {
1030 const MachineFrameInfo &MFI = MF.getFrameInfo();
1031 const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>(
1032 MF.getSubtarget().getRegisterInfo());
1033 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1034 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1035 bool IsWin64 =
1036 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
1037 unsigned FixedObject = IsWin64 ? alignTo(AFI->getVarArgsGPRSize(), 16) : 0;
1038 int FPOffset = MFI.getObjectOffset(FI) + FixedObject + 16;
1039 int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize();
1040 bool isFixed = MFI.isFixedObjectIndex(FI);
1041 bool isCSR = !isFixed && MFI.getObjectOffset(FI) >=
1042 -((int)AFI->getCalleeSavedStackSize());
1044 // Use frame pointer to reference fixed objects. Use it for locals if
1045 // there are VLAs or a dynamically realigned SP (and thus the SP isn't
1046 // reliable as a base). Make sure useFPForScavengingIndex() does the
1047 // right thing for the emergency spill slot.
1048 bool UseFP = false;
1049 if (AFI->hasStackFrame()) {
1050 // Note: Keeping the following as multiple 'if' statements rather than
1051 // merging to a single expression for readability.
1053 // Argument access should always use the FP.
1054 if (isFixed) {
1055 UseFP = hasFP(MF);
1056 } else if (isCSR && RegInfo->needsStackRealignment(MF)) {
1057 // References to the CSR area must use FP if we're re-aligning the stack
1058 // since the dynamically-sized alignment padding is between the SP/BP and
1059 // the CSR area.
1060 assert(hasFP(MF) && "Re-aligned stack must have frame pointer");
1061 UseFP = true;
1062 } else if (hasFP(MF) && !RegInfo->needsStackRealignment(MF)) {
1063 // If the FPOffset is negative, we have to keep in mind that the
1064 // available offset range for negative offsets is smaller than for
1065 // positive ones. If an offset is
1066 // available via the FP and the SP, use whichever is closest.
1067 bool FPOffsetFits = FPOffset >= -256;
1068 PreferFP |= Offset > -FPOffset;
1070 if (MFI.hasVarSizedObjects()) {
1071 // If we have variable sized objects, we can use either FP or BP, as the
1072 // SP offset is unknown. We can use the base pointer if we have one and
1073 // FP is not preferred. If not, we're stuck with using FP.
1074 bool CanUseBP = RegInfo->hasBasePointer(MF);
1075 if (FPOffsetFits && CanUseBP) // Both are ok. Pick the best.
1076 UseFP = PreferFP;
1077 else if (!CanUseBP) // Can't use BP. Forced to use FP.
1078 UseFP = true;
1079 // else we can use BP and FP, but the offset from FP won't fit.
1080 // That will make us scavenge registers which we can probably avoid by
1081 // using BP. If it won't fit for BP either, we'll scavenge anyway.
1082 } else if (FPOffset >= 0) {
1083 // Use SP or FP, whichever gives us the best chance of the offset
1084 // being in range for direct access. If the FPOffset is positive,
1085 // that'll always be best, as the SP will be even further away.
1086 UseFP = true;
1087 } else {
1088 // We have the choice between FP and (SP or BP).
1089 if (FPOffsetFits && PreferFP) // If FP is the best fit, use it.
1090 UseFP = true;
1095 assert(((isFixed || isCSR) || !RegInfo->needsStackRealignment(MF) || !UseFP) &&
1096 "In the presence of dynamic stack pointer realignment, "
1097 "non-argument/CSR objects cannot be accessed through the frame pointer");
1099 if (UseFP) {
1100 FrameReg = RegInfo->getFrameRegister(MF);
1101 return FPOffset;
1104 // Use the base pointer if we have one.
1105 if (RegInfo->hasBasePointer(MF))
1106 FrameReg = RegInfo->getBaseRegister();
1107 else {
1108 assert(!MFI.hasVarSizedObjects() &&
1109 "Can't use SP when we have var sized objects.");
1110 FrameReg = AArch64::SP;
1111 // If we're using the red zone for this function, the SP won't actually
1112 // be adjusted, so the offsets will be negative. They're also all
1113 // within range of the signed 9-bit immediate instructions.
1114 if (canUseRedZone(MF))
1115 Offset -= AFI->getLocalStackSize();
1118 return Offset;
1121 static unsigned getPrologueDeath(MachineFunction &MF, unsigned Reg) {
1122 // Do not set a kill flag on values that are also marked as live-in. This
1123 // happens with the @llvm-returnaddress intrinsic and with arguments passed in
1124 // callee saved registers.
1125 // Omitting the kill flags is conservatively correct even if the live-in
1126 // is not used after all.
1127 bool IsLiveIn = MF.getRegInfo().isLiveIn(Reg);
1128 return getKillRegState(!IsLiveIn);
1131 static bool produceCompactUnwindFrame(MachineFunction &MF) {
1132 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1133 AttributeList Attrs = MF.getFunction().getAttributes();
1134 return Subtarget.isTargetMachO() &&
1135 !(Subtarget.getTargetLowering()->supportSwiftError() &&
1136 Attrs.hasAttrSomewhere(Attribute::SwiftError));
1139 namespace {
1141 struct RegPairInfo {
1142 unsigned Reg1 = AArch64::NoRegister;
1143 unsigned Reg2 = AArch64::NoRegister;
1144 int FrameIdx;
1145 int Offset;
1146 bool IsGPR;
1148 RegPairInfo() = default;
1150 bool isPaired() const { return Reg2 != AArch64::NoRegister; }
1153 } // end anonymous namespace
1155 static void computeCalleeSaveRegisterPairs(
1156 MachineFunction &MF, const std::vector<CalleeSavedInfo> &CSI,
1157 const TargetRegisterInfo *TRI, SmallVectorImpl<RegPairInfo> &RegPairs,
1158 bool &NeedShadowCallStackProlog) {
1160 if (CSI.empty())
1161 return;
1163 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1164 MachineFrameInfo &MFI = MF.getFrameInfo();
1165 CallingConv::ID CC = MF.getFunction().getCallingConv();
1166 unsigned Count = CSI.size();
1167 (void)CC;
1168 // MachO's compact unwind format relies on all registers being stored in
1169 // pairs.
1170 assert((!produceCompactUnwindFrame(MF) ||
1171 CC == CallingConv::PreserveMost ||
1172 (Count & 1) == 0) &&
1173 "Odd number of callee-saved regs to spill!");
1174 int Offset = AFI->getCalleeSavedStackSize();
1176 for (unsigned i = 0; i < Count; ++i) {
1177 RegPairInfo RPI;
1178 RPI.Reg1 = CSI[i].getReg();
1180 assert(AArch64::GPR64RegClass.contains(RPI.Reg1) ||
1181 AArch64::FPR64RegClass.contains(RPI.Reg1));
1182 RPI.IsGPR = AArch64::GPR64RegClass.contains(RPI.Reg1);
1184 // Add the next reg to the pair if it is in the same register class.
1185 if (i + 1 < Count) {
1186 unsigned NextReg = CSI[i + 1].getReg();
1187 if ((RPI.IsGPR && AArch64::GPR64RegClass.contains(NextReg)) ||
1188 (!RPI.IsGPR && AArch64::FPR64RegClass.contains(NextReg)))
1189 RPI.Reg2 = NextReg;
1192 // If either of the registers to be saved is the lr register, it means that
1193 // we also need to save lr in the shadow call stack.
1194 if ((RPI.Reg1 == AArch64::LR || RPI.Reg2 == AArch64::LR) &&
1195 MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack)) {
1196 if (!MF.getSubtarget<AArch64Subtarget>().isX18Reserved())
1197 report_fatal_error("Must reserve x18 to use shadow call stack");
1198 NeedShadowCallStackProlog = true;
1201 // GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI
1202 // list to come in sorted by frame index so that we can issue the store
1203 // pair instructions directly. Assert if we see anything otherwise.
1205 // The order of the registers in the list is controlled by
1206 // getCalleeSavedRegs(), so they will always be in-order, as well.
1207 assert((!RPI.isPaired() ||
1208 (CSI[i].getFrameIdx() + 1 == CSI[i + 1].getFrameIdx())) &&
1209 "Out of order callee saved regs!");
1211 // MachO's compact unwind format relies on all registers being stored in
1212 // adjacent register pairs.
1213 assert((!produceCompactUnwindFrame(MF) ||
1214 CC == CallingConv::PreserveMost ||
1215 (RPI.isPaired() &&
1216 ((RPI.Reg1 == AArch64::LR && RPI.Reg2 == AArch64::FP) ||
1217 RPI.Reg1 + 1 == RPI.Reg2))) &&
1218 "Callee-save registers not saved as adjacent register pair!");
1220 RPI.FrameIdx = CSI[i].getFrameIdx();
1222 if (Count * 8 != AFI->getCalleeSavedStackSize() && !RPI.isPaired()) {
1223 // Round up size of non-pair to pair size if we need to pad the
1224 // callee-save area to ensure 16-byte alignment.
1225 Offset -= 16;
1226 assert(MFI.getObjectAlignment(RPI.FrameIdx) <= 16);
1227 MFI.setObjectAlignment(RPI.FrameIdx, 16);
1228 AFI->setCalleeSaveStackHasFreeSpace(true);
1229 } else
1230 Offset -= RPI.isPaired() ? 16 : 8;
1231 assert(Offset % 8 == 0);
1232 RPI.Offset = Offset / 8;
1233 assert((RPI.Offset >= -64 && RPI.Offset <= 63) &&
1234 "Offset out of bounds for LDP/STP immediate");
1236 RegPairs.push_back(RPI);
1237 if (RPI.isPaired())
1238 ++i;
1242 bool AArch64FrameLowering::spillCalleeSavedRegisters(
1243 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
1244 const std::vector<CalleeSavedInfo> &CSI,
1245 const TargetRegisterInfo *TRI) const {
1246 MachineFunction &MF = *MBB.getParent();
1247 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1248 DebugLoc DL;
1249 SmallVector<RegPairInfo, 8> RegPairs;
1251 bool NeedShadowCallStackProlog = false;
1252 computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs,
1253 NeedShadowCallStackProlog);
1254 const MachineRegisterInfo &MRI = MF.getRegInfo();
1256 if (NeedShadowCallStackProlog) {
1257 // Shadow call stack prolog: str x30, [x18], #8
1258 BuildMI(MBB, MI, DL, TII.get(AArch64::STRXpost))
1259 .addReg(AArch64::X18, RegState::Define)
1260 .addReg(AArch64::LR)
1261 .addReg(AArch64::X18)
1262 .addImm(8)
1263 .setMIFlag(MachineInstr::FrameSetup);
1265 // This instruction also makes x18 live-in to the entry block.
1266 MBB.addLiveIn(AArch64::X18);
1269 for (auto RPII = RegPairs.rbegin(), RPIE = RegPairs.rend(); RPII != RPIE;
1270 ++RPII) {
1271 RegPairInfo RPI = *RPII;
1272 unsigned Reg1 = RPI.Reg1;
1273 unsigned Reg2 = RPI.Reg2;
1274 unsigned StrOpc;
1276 // Issue sequence of spills for cs regs. The first spill may be converted
1277 // to a pre-decrement store later by emitPrologue if the callee-save stack
1278 // area allocation can't be combined with the local stack area allocation.
1279 // For example:
1280 // stp x22, x21, [sp, #0] // addImm(+0)
1281 // stp x20, x19, [sp, #16] // addImm(+2)
1282 // stp fp, lr, [sp, #32] // addImm(+4)
1283 // Rationale: This sequence saves uop updates compared to a sequence of
1284 // pre-increment spills like stp xi,xj,[sp,#-16]!
1285 // Note: Similar rationale and sequence for restores in epilog.
1286 if (RPI.IsGPR)
1287 StrOpc = RPI.isPaired() ? AArch64::STPXi : AArch64::STRXui;
1288 else
1289 StrOpc = RPI.isPaired() ? AArch64::STPDi : AArch64::STRDui;
1290 LLVM_DEBUG(dbgs() << "CSR spill: (" << printReg(Reg1, TRI);
1291 if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI);
1292 dbgs() << ") -> fi#(" << RPI.FrameIdx;
1293 if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1;
1294 dbgs() << ")\n");
1296 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc));
1297 if (!MRI.isReserved(Reg1))
1298 MBB.addLiveIn(Reg1);
1299 if (RPI.isPaired()) {
1300 if (!MRI.isReserved(Reg2))
1301 MBB.addLiveIn(Reg2);
1302 MIB.addReg(Reg2, getPrologueDeath(MF, Reg2));
1303 MIB.addMemOperand(MF.getMachineMemOperand(
1304 MachinePointerInfo::getFixedStack(MF, RPI.FrameIdx + 1),
1305 MachineMemOperand::MOStore, 8, 8));
1307 MIB.addReg(Reg1, getPrologueDeath(MF, Reg1))
1308 .addReg(AArch64::SP)
1309 .addImm(RPI.Offset) // [sp, #offset*8], where factor*8 is implicit
1310 .setMIFlag(MachineInstr::FrameSetup);
1311 MIB.addMemOperand(MF.getMachineMemOperand(
1312 MachinePointerInfo::getFixedStack(MF, RPI.FrameIdx),
1313 MachineMemOperand::MOStore, 8, 8));
1315 return true;
1318 bool AArch64FrameLowering::restoreCalleeSavedRegisters(
1319 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
1320 std::vector<CalleeSavedInfo> &CSI,
1321 const TargetRegisterInfo *TRI) const {
1322 MachineFunction &MF = *MBB.getParent();
1323 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1324 DebugLoc DL;
1325 SmallVector<RegPairInfo, 8> RegPairs;
1327 if (MI != MBB.end())
1328 DL = MI->getDebugLoc();
1330 bool NeedShadowCallStackProlog = false;
1331 computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs,
1332 NeedShadowCallStackProlog);
1334 auto EmitMI = [&](const RegPairInfo &RPI) {
1335 unsigned Reg1 = RPI.Reg1;
1336 unsigned Reg2 = RPI.Reg2;
1338 // Issue sequence of restores for cs regs. The last restore may be converted
1339 // to a post-increment load later by emitEpilogue if the callee-save stack
1340 // area allocation can't be combined with the local stack area allocation.
1341 // For example:
1342 // ldp fp, lr, [sp, #32] // addImm(+4)
1343 // ldp x20, x19, [sp, #16] // addImm(+2)
1344 // ldp x22, x21, [sp, #0] // addImm(+0)
1345 // Note: see comment in spillCalleeSavedRegisters()
1346 unsigned LdrOpc;
1347 if (RPI.IsGPR)
1348 LdrOpc = RPI.isPaired() ? AArch64::LDPXi : AArch64::LDRXui;
1349 else
1350 LdrOpc = RPI.isPaired() ? AArch64::LDPDi : AArch64::LDRDui;
1351 LLVM_DEBUG(dbgs() << "CSR restore: (" << printReg(Reg1, TRI);
1352 if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI);
1353 dbgs() << ") -> fi#(" << RPI.FrameIdx;
1354 if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1;
1355 dbgs() << ")\n");
1357 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdrOpc));
1358 if (RPI.isPaired()) {
1359 MIB.addReg(Reg2, getDefRegState(true));
1360 MIB.addMemOperand(MF.getMachineMemOperand(
1361 MachinePointerInfo::getFixedStack(MF, RPI.FrameIdx + 1),
1362 MachineMemOperand::MOLoad, 8, 8));
1364 MIB.addReg(Reg1, getDefRegState(true))
1365 .addReg(AArch64::SP)
1366 .addImm(RPI.Offset) // [sp, #offset*8] where the factor*8 is implicit
1367 .setMIFlag(MachineInstr::FrameDestroy);
1368 MIB.addMemOperand(MF.getMachineMemOperand(
1369 MachinePointerInfo::getFixedStack(MF, RPI.FrameIdx),
1370 MachineMemOperand::MOLoad, 8, 8));
1373 if (ReverseCSRRestoreSeq)
1374 for (const RegPairInfo &RPI : reverse(RegPairs))
1375 EmitMI(RPI);
1376 else
1377 for (const RegPairInfo &RPI : RegPairs)
1378 EmitMI(RPI);
1380 if (NeedShadowCallStackProlog) {
1381 // Shadow call stack epilog: ldr x30, [x18, #-8]!
1382 BuildMI(MBB, MI, DL, TII.get(AArch64::LDRXpre))
1383 .addReg(AArch64::X18, RegState::Define)
1384 .addReg(AArch64::LR, RegState::Define)
1385 .addReg(AArch64::X18)
1386 .addImm(-8)
1387 .setMIFlag(MachineInstr::FrameDestroy);
1390 return true;
1393 void AArch64FrameLowering::determineCalleeSaves(MachineFunction &MF,
1394 BitVector &SavedRegs,
1395 RegScavenger *RS) const {
1396 // All calls are tail calls in GHC calling conv, and functions have no
1397 // prologue/epilogue.
1398 if (MF.getFunction().getCallingConv() == CallingConv::GHC)
1399 return;
1401 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
1402 const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>(
1403 MF.getSubtarget().getRegisterInfo());
1404 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1405 unsigned UnspilledCSGPR = AArch64::NoRegister;
1406 unsigned UnspilledCSGPRPaired = AArch64::NoRegister;
1408 MachineFrameInfo &MFI = MF.getFrameInfo();
1409 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
1411 unsigned BasePointerReg = RegInfo->hasBasePointer(MF)
1412 ? RegInfo->getBaseRegister()
1413 : (unsigned)AArch64::NoRegister;
1415 unsigned SpillEstimate = SavedRegs.count();
1416 for (unsigned i = 0; CSRegs[i]; ++i) {
1417 unsigned Reg = CSRegs[i];
1418 unsigned PairedReg = CSRegs[i ^ 1];
1419 if (Reg == BasePointerReg)
1420 SpillEstimate++;
1421 if (produceCompactUnwindFrame(MF) && !SavedRegs.test(PairedReg))
1422 SpillEstimate++;
1424 SpillEstimate += 2; // Conservatively include FP+LR in the estimate
1425 unsigned StackEstimate = MFI.estimateStackSize(MF) + 8 * SpillEstimate;
1427 // The frame record needs to be created by saving the appropriate registers
1428 if (hasFP(MF) || windowsRequiresStackProbe(MF, StackEstimate)) {
1429 SavedRegs.set(AArch64::FP);
1430 SavedRegs.set(AArch64::LR);
1433 unsigned ExtraCSSpill = 0;
1434 // Figure out which callee-saved registers to save/restore.
1435 for (unsigned i = 0; CSRegs[i]; ++i) {
1436 const unsigned Reg = CSRegs[i];
1438 // Add the base pointer register to SavedRegs if it is callee-save.
1439 if (Reg == BasePointerReg)
1440 SavedRegs.set(Reg);
1442 bool RegUsed = SavedRegs.test(Reg);
1443 unsigned PairedReg = CSRegs[i ^ 1];
1444 if (!RegUsed) {
1445 if (AArch64::GPR64RegClass.contains(Reg) &&
1446 !RegInfo->isReservedReg(MF, Reg)) {
1447 UnspilledCSGPR = Reg;
1448 UnspilledCSGPRPaired = PairedReg;
1450 continue;
1453 // MachO's compact unwind format relies on all registers being stored in
1454 // pairs.
1455 // FIXME: the usual format is actually better if unwinding isn't needed.
1456 if (produceCompactUnwindFrame(MF) && !SavedRegs.test(PairedReg)) {
1457 SavedRegs.set(PairedReg);
1458 if (AArch64::GPR64RegClass.contains(PairedReg) &&
1459 !RegInfo->isReservedReg(MF, PairedReg))
1460 ExtraCSSpill = PairedReg;
1464 LLVM_DEBUG(dbgs() << "*** determineCalleeSaves\nUsed CSRs:";
1465 for (unsigned Reg
1466 : SavedRegs.set_bits()) dbgs()
1467 << ' ' << printReg(Reg, RegInfo);
1468 dbgs() << "\n";);
1470 // If any callee-saved registers are used, the frame cannot be eliminated.
1471 unsigned NumRegsSpilled = SavedRegs.count();
1472 bool CanEliminateFrame = NumRegsSpilled == 0;
1474 // The CSR spill slots have not been allocated yet, so estimateStackSize
1475 // won't include them.
1476 unsigned CFSize = MFI.estimateStackSize(MF) + 8 * NumRegsSpilled;
1477 LLVM_DEBUG(dbgs() << "Estimated stack frame size: " << CFSize << " bytes.\n");
1478 unsigned EstimatedStackSizeLimit = estimateRSStackSizeLimit(MF);
1479 bool BigStack = (CFSize > EstimatedStackSizeLimit);
1480 if (BigStack || !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF))
1481 AFI->setHasStackFrame(true);
1483 // Estimate if we might need to scavenge a register at some point in order
1484 // to materialize a stack offset. If so, either spill one additional
1485 // callee-saved register or reserve a special spill slot to facilitate
1486 // register scavenging. If we already spilled an extra callee-saved register
1487 // above to keep the number of spills even, we don't need to do anything else
1488 // here.
1489 if (BigStack) {
1490 if (!ExtraCSSpill && UnspilledCSGPR != AArch64::NoRegister) {
1491 LLVM_DEBUG(dbgs() << "Spilling " << printReg(UnspilledCSGPR, RegInfo)
1492 << " to get a scratch register.\n");
1493 SavedRegs.set(UnspilledCSGPR);
1494 // MachO's compact unwind format relies on all registers being stored in
1495 // pairs, so if we need to spill one extra for BigStack, then we need to
1496 // store the pair.
1497 if (produceCompactUnwindFrame(MF))
1498 SavedRegs.set(UnspilledCSGPRPaired);
1499 ExtraCSSpill = UnspilledCSGPRPaired;
1500 NumRegsSpilled = SavedRegs.count();
1503 // If we didn't find an extra callee-saved register to spill, create
1504 // an emergency spill slot.
1505 if (!ExtraCSSpill || MF.getRegInfo().isPhysRegUsed(ExtraCSSpill)) {
1506 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1507 const TargetRegisterClass &RC = AArch64::GPR64RegClass;
1508 unsigned Size = TRI->getSpillSize(RC);
1509 unsigned Align = TRI->getSpillAlignment(RC);
1510 int FI = MFI.CreateStackObject(Size, Align, false);
1511 RS->addScavengingFrameIndex(FI);
1512 LLVM_DEBUG(dbgs() << "No available CS registers, allocated fi#" << FI
1513 << " as the emergency spill slot.\n");
1517 // Round up to register pair alignment to avoid additional SP adjustment
1518 // instructions.
1519 AFI->setCalleeSavedStackSize(alignTo(8 * NumRegsSpilled, 16));
1522 bool AArch64FrameLowering::enableStackSlotScavenging(
1523 const MachineFunction &MF) const {
1524 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1525 return AFI->hasCalleeSaveStackFreeSpace();