[PowerPC] Materialize more constants with CR-field set in late peephole
[llvm-core.git] / lib / Target / AMDGPU / AMDGPUTargetTransformInfo.cpp
bloba68b8d03f06e210590c9228f9cb9e6d109b46a75
1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // \file
11 // This file implements a TargetTransformInfo analysis pass specific to the
12 // AMDGPU target machine. It uses the target's detailed information to provide
13 // more precise answers to certain TTI queries, while letting the target
14 // independent and default TTI implementations handle the rest.
16 //===----------------------------------------------------------------------===//
18 #include "AMDGPUTargetTransformInfo.h"
19 #include "AMDGPUSubtarget.h"
20 #include "Utils/AMDGPUBaseInfo.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/CodeGen/ISDOpcodes.h"
26 #include "llvm/CodeGen/ValueTypes.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/IR/PatternMatch.h"
39 #include "llvm/IR/Type.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/MC/SubtargetFeature.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/MachineValueType.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <limits>
52 #include <utility>
54 using namespace llvm;
56 #define DEBUG_TYPE "AMDGPUtti"
58 static cl::opt<unsigned> UnrollThresholdPrivate(
59 "amdgpu-unroll-threshold-private",
60 cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"),
61 cl::init(2500), cl::Hidden);
63 static cl::opt<unsigned> UnrollThresholdLocal(
64 "amdgpu-unroll-threshold-local",
65 cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"),
66 cl::init(1000), cl::Hidden);
68 static cl::opt<unsigned> UnrollThresholdIf(
69 "amdgpu-unroll-threshold-if",
70 cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"),
71 cl::init(150), cl::Hidden);
73 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond,
74 unsigned Depth = 0) {
75 const Instruction *I = dyn_cast<Instruction>(Cond);
76 if (!I)
77 return false;
79 for (const Value *V : I->operand_values()) {
80 if (!L->contains(I))
81 continue;
82 if (const PHINode *PHI = dyn_cast<PHINode>(V)) {
83 if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) {
84 return SubLoop->contains(PHI); }))
85 return true;
86 } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1))
87 return true;
89 return false;
92 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
93 TTI::UnrollingPreferences &UP) {
94 UP.Threshold = 300; // Twice the default.
95 UP.MaxCount = std::numeric_limits<unsigned>::max();
96 UP.Partial = true;
98 // TODO: Do we want runtime unrolling?
100 // Maximum alloca size than can fit registers. Reserve 16 registers.
101 const unsigned MaxAlloca = (256 - 16) * 4;
102 unsigned ThresholdPrivate = UnrollThresholdPrivate;
103 unsigned ThresholdLocal = UnrollThresholdLocal;
104 unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal);
105 const AMDGPUAS &ASST = AMDGPU::getAMDGPUAS(TargetTriple);
106 for (const BasicBlock *BB : L->getBlocks()) {
107 const DataLayout &DL = BB->getModule()->getDataLayout();
108 unsigned LocalGEPsSeen = 0;
110 if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) {
111 return SubLoop->contains(BB); }))
112 continue; // Block belongs to an inner loop.
114 for (const Instruction &I : *BB) {
115 // Unroll a loop which contains an "if" statement whose condition
116 // defined by a PHI belonging to the loop. This may help to eliminate
117 // if region and potentially even PHI itself, saving on both divergence
118 // and registers used for the PHI.
119 // Add a small bonus for each of such "if" statements.
120 if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) {
121 if (UP.Threshold < MaxBoost && Br->isConditional()) {
122 if (L->isLoopExiting(Br->getSuccessor(0)) ||
123 L->isLoopExiting(Br->getSuccessor(1)))
124 continue;
125 if (dependsOnLocalPhi(L, Br->getCondition())) {
126 UP.Threshold += UnrollThresholdIf;
127 LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold
128 << " for loop:\n"
129 << *L << " due to " << *Br << '\n');
130 if (UP.Threshold >= MaxBoost)
131 return;
134 continue;
137 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I);
138 if (!GEP)
139 continue;
141 unsigned AS = GEP->getAddressSpace();
142 unsigned Threshold = 0;
143 if (AS == ASST.PRIVATE_ADDRESS)
144 Threshold = ThresholdPrivate;
145 else if (AS == ASST.LOCAL_ADDRESS)
146 Threshold = ThresholdLocal;
147 else
148 continue;
150 if (UP.Threshold >= Threshold)
151 continue;
153 if (AS == ASST.PRIVATE_ADDRESS) {
154 const Value *Ptr = GEP->getPointerOperand();
155 const AllocaInst *Alloca =
156 dyn_cast<AllocaInst>(GetUnderlyingObject(Ptr, DL));
157 if (!Alloca || !Alloca->isStaticAlloca())
158 continue;
159 Type *Ty = Alloca->getAllocatedType();
160 unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0;
161 if (AllocaSize > MaxAlloca)
162 continue;
163 } else if (AS == ASST.LOCAL_ADDRESS) {
164 LocalGEPsSeen++;
165 // Inhibit unroll for local memory if we have seen addressing not to
166 // a variable, most likely we will be unable to combine it.
167 // Do not unroll too deep inner loops for local memory to give a chance
168 // to unroll an outer loop for a more important reason.
169 if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 ||
170 (!isa<GlobalVariable>(GEP->getPointerOperand()) &&
171 !isa<Argument>(GEP->getPointerOperand())))
172 continue;
175 // Check if GEP depends on a value defined by this loop itself.
176 bool HasLoopDef = false;
177 for (const Value *Op : GEP->operands()) {
178 const Instruction *Inst = dyn_cast<Instruction>(Op);
179 if (!Inst || L->isLoopInvariant(Op))
180 continue;
182 if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) {
183 return SubLoop->contains(Inst); }))
184 continue;
185 HasLoopDef = true;
186 break;
188 if (!HasLoopDef)
189 continue;
191 // We want to do whatever we can to limit the number of alloca
192 // instructions that make it through to the code generator. allocas
193 // require us to use indirect addressing, which is slow and prone to
194 // compiler bugs. If this loop does an address calculation on an
195 // alloca ptr, then we want to use a higher than normal loop unroll
196 // threshold. This will give SROA a better chance to eliminate these
197 // allocas.
199 // We also want to have more unrolling for local memory to let ds
200 // instructions with different offsets combine.
202 // Don't use the maximum allowed value here as it will make some
203 // programs way too big.
204 UP.Threshold = Threshold;
205 LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold
206 << " for loop:\n"
207 << *L << " due to " << *GEP << '\n');
208 if (UP.Threshold >= MaxBoost)
209 return;
214 unsigned GCNTTIImpl::getHardwareNumberOfRegisters(bool Vec) const {
215 // The concept of vector registers doesn't really exist. Some packed vector
216 // operations operate on the normal 32-bit registers.
217 return 256;
220 unsigned GCNTTIImpl::getNumberOfRegisters(bool Vec) const {
221 // This is really the number of registers to fill when vectorizing /
222 // interleaving loops, so we lie to avoid trying to use all registers.
223 return getHardwareNumberOfRegisters(Vec) >> 3;
226 unsigned GCNTTIImpl::getRegisterBitWidth(bool Vector) const {
227 return 32;
230 unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const {
231 return 32;
234 unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize,
235 unsigned ChainSizeInBytes,
236 VectorType *VecTy) const {
237 unsigned VecRegBitWidth = VF * LoadSize;
238 if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32)
239 // TODO: Support element-size less than 32bit?
240 return 128 / LoadSize;
242 return VF;
245 unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize,
246 unsigned ChainSizeInBytes,
247 VectorType *VecTy) const {
248 unsigned VecRegBitWidth = VF * StoreSize;
249 if (VecRegBitWidth > 128)
250 return 128 / StoreSize;
252 return VF;
255 unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
256 AMDGPUAS AS = ST->getAMDGPUAS();
257 if (AddrSpace == AS.GLOBAL_ADDRESS ||
258 AddrSpace == AS.CONSTANT_ADDRESS ||
259 AddrSpace == AS.CONSTANT_ADDRESS_32BIT) {
260 return 512;
263 if (AddrSpace == AS.FLAT_ADDRESS ||
264 AddrSpace == AS.LOCAL_ADDRESS ||
265 AddrSpace == AS.REGION_ADDRESS)
266 return 128;
268 if (AddrSpace == AS.PRIVATE_ADDRESS)
269 return 8 * ST->getMaxPrivateElementSize();
271 llvm_unreachable("unhandled address space");
274 bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
275 unsigned Alignment,
276 unsigned AddrSpace) const {
277 // We allow vectorization of flat stores, even though we may need to decompose
278 // them later if they may access private memory. We don't have enough context
279 // here, and legalization can handle it.
280 if (AddrSpace == ST->getAMDGPUAS().PRIVATE_ADDRESS) {
281 return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) &&
282 ChainSizeInBytes <= ST->getMaxPrivateElementSize();
284 return true;
287 bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
288 unsigned Alignment,
289 unsigned AddrSpace) const {
290 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
293 bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
294 unsigned Alignment,
295 unsigned AddrSpace) const {
296 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
299 unsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF) {
300 // Disable unrolling if the loop is not vectorized.
301 // TODO: Enable this again.
302 if (VF == 1)
303 return 1;
305 return 8;
308 bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
309 MemIntrinsicInfo &Info) const {
310 switch (Inst->getIntrinsicID()) {
311 case Intrinsic::amdgcn_atomic_inc:
312 case Intrinsic::amdgcn_atomic_dec:
313 case Intrinsic::amdgcn_ds_fadd:
314 case Intrinsic::amdgcn_ds_fmin:
315 case Intrinsic::amdgcn_ds_fmax: {
316 auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2));
317 auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4));
318 if (!Ordering || !Volatile)
319 return false; // Invalid.
321 unsigned OrderingVal = Ordering->getZExtValue();
322 if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent))
323 return false;
325 Info.PtrVal = Inst->getArgOperand(0);
326 Info.Ordering = static_cast<AtomicOrdering>(OrderingVal);
327 Info.ReadMem = true;
328 Info.WriteMem = true;
329 Info.IsVolatile = !Volatile->isNullValue();
330 return true;
332 default:
333 return false;
337 int GCNTTIImpl::getArithmeticInstrCost(
338 unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info,
339 TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo,
340 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args ) {
341 EVT OrigTy = TLI->getValueType(DL, Ty);
342 if (!OrigTy.isSimple()) {
343 return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
344 Opd1PropInfo, Opd2PropInfo);
347 // Legalize the type.
348 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
349 int ISD = TLI->InstructionOpcodeToISD(Opcode);
351 // Because we don't have any legal vector operations, but the legal types, we
352 // need to account for split vectors.
353 unsigned NElts = LT.second.isVector() ?
354 LT.second.getVectorNumElements() : 1;
356 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
358 switch (ISD) {
359 case ISD::SHL:
360 case ISD::SRL:
361 case ISD::SRA:
362 if (SLT == MVT::i64)
363 return get64BitInstrCost() * LT.first * NElts;
365 // i32
366 return getFullRateInstrCost() * LT.first * NElts;
367 case ISD::ADD:
368 case ISD::SUB:
369 case ISD::AND:
370 case ISD::OR:
371 case ISD::XOR:
372 if (SLT == MVT::i64){
373 // and, or and xor are typically split into 2 VALU instructions.
374 return 2 * getFullRateInstrCost() * LT.first * NElts;
377 return LT.first * NElts * getFullRateInstrCost();
378 case ISD::MUL: {
379 const int QuarterRateCost = getQuarterRateInstrCost();
380 if (SLT == MVT::i64) {
381 const int FullRateCost = getFullRateInstrCost();
382 return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts;
385 // i32
386 return QuarterRateCost * NElts * LT.first;
388 case ISD::FADD:
389 case ISD::FSUB:
390 case ISD::FMUL:
391 if (SLT == MVT::f64)
392 return LT.first * NElts * get64BitInstrCost();
394 if (SLT == MVT::f32 || SLT == MVT::f16)
395 return LT.first * NElts * getFullRateInstrCost();
396 break;
397 case ISD::FDIV:
398 case ISD::FREM:
399 // FIXME: frem should be handled separately. The fdiv in it is most of it,
400 // but the current lowering is also not entirely correct.
401 if (SLT == MVT::f64) {
402 int Cost = 4 * get64BitInstrCost() + 7 * getQuarterRateInstrCost();
403 // Add cost of workaround.
404 if (ST->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS)
405 Cost += 3 * getFullRateInstrCost();
407 return LT.first * Cost * NElts;
410 if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) {
411 // TODO: This is more complicated, unsafe flags etc.
412 if ((SLT == MVT::f32 && !ST->hasFP32Denormals()) ||
413 (SLT == MVT::f16 && ST->has16BitInsts())) {
414 return LT.first * getQuarterRateInstrCost() * NElts;
418 if (SLT == MVT::f16 && ST->has16BitInsts()) {
419 // 2 x v_cvt_f32_f16
420 // f32 rcp
421 // f32 fmul
422 // v_cvt_f16_f32
423 // f16 div_fixup
424 int Cost = 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost();
425 return LT.first * Cost * NElts;
428 if (SLT == MVT::f32 || SLT == MVT::f16) {
429 int Cost = 7 * getFullRateInstrCost() + 1 * getQuarterRateInstrCost();
431 if (!ST->hasFP32Denormals()) {
432 // FP mode switches.
433 Cost += 2 * getFullRateInstrCost();
436 return LT.first * NElts * Cost;
438 break;
439 default:
440 break;
443 return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
444 Opd1PropInfo, Opd2PropInfo);
447 unsigned GCNTTIImpl::getCFInstrCost(unsigned Opcode) {
448 // XXX - For some reason this isn't called for switch.
449 switch (Opcode) {
450 case Instruction::Br:
451 case Instruction::Ret:
452 return 10;
453 default:
454 return BaseT::getCFInstrCost(Opcode);
458 int GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, Type *Ty,
459 bool IsPairwise) {
460 EVT OrigTy = TLI->getValueType(DL, Ty);
462 // Computes cost on targets that have packed math instructions(which support
463 // 16-bit types only).
464 if (IsPairwise ||
465 !ST->hasVOP3PInsts() ||
466 OrigTy.getScalarSizeInBits() != 16)
467 return BaseT::getArithmeticReductionCost(Opcode, Ty, IsPairwise);
469 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
470 return LT.first * getFullRateInstrCost();
473 int GCNTTIImpl::getMinMaxReductionCost(Type *Ty, Type *CondTy,
474 bool IsPairwise,
475 bool IsUnsigned) {
476 EVT OrigTy = TLI->getValueType(DL, Ty);
478 // Computes cost on targets that have packed math instructions(which support
479 // 16-bit types only).
480 if (IsPairwise ||
481 !ST->hasVOP3PInsts() ||
482 OrigTy.getScalarSizeInBits() != 16)
483 return BaseT::getMinMaxReductionCost(Ty, CondTy, IsPairwise, IsUnsigned);
485 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
486 return LT.first * getHalfRateInstrCost();
489 int GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
490 unsigned Index) {
491 switch (Opcode) {
492 case Instruction::ExtractElement:
493 case Instruction::InsertElement: {
494 unsigned EltSize
495 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
496 if (EltSize < 32) {
497 if (EltSize == 16 && Index == 0 && ST->has16BitInsts())
498 return 0;
499 return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
502 // Extracts are just reads of a subregister, so are free. Inserts are
503 // considered free because we don't want to have any cost for scalarizing
504 // operations, and we don't have to copy into a different register class.
506 // Dynamic indexing isn't free and is best avoided.
507 return Index == ~0u ? 2 : 0;
509 default:
510 return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
516 static bool isArgPassedInSGPR(const Argument *A) {
517 const Function *F = A->getParent();
519 // Arguments to compute shaders are never a source of divergence.
520 CallingConv::ID CC = F->getCallingConv();
521 switch (CC) {
522 case CallingConv::AMDGPU_KERNEL:
523 case CallingConv::SPIR_KERNEL:
524 return true;
525 case CallingConv::AMDGPU_VS:
526 case CallingConv::AMDGPU_LS:
527 case CallingConv::AMDGPU_HS:
528 case CallingConv::AMDGPU_ES:
529 case CallingConv::AMDGPU_GS:
530 case CallingConv::AMDGPU_PS:
531 case CallingConv::AMDGPU_CS:
532 // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
533 // Everything else is in VGPRs.
534 return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) ||
535 F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal);
536 default:
537 // TODO: Should calls support inreg for SGPR inputs?
538 return false;
542 /// \returns true if the result of the value could potentially be
543 /// different across workitems in a wavefront.
544 bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const {
545 if (const Argument *A = dyn_cast<Argument>(V))
546 return !isArgPassedInSGPR(A);
548 // Loads from the private address space are divergent, because threads
549 // can execute the load instruction with the same inputs and get different
550 // results.
552 // All other loads are not divergent, because if threads issue loads with the
553 // same arguments, they will always get the same result.
554 if (const LoadInst *Load = dyn_cast<LoadInst>(V))
555 return Load->getPointerAddressSpace() == ST->getAMDGPUAS().PRIVATE_ADDRESS;
557 // Atomics are divergent because they are executed sequentially: when an
558 // atomic operation refers to the same address in each thread, then each
559 // thread after the first sees the value written by the previous thread as
560 // original value.
561 if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V))
562 return true;
564 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V))
565 return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID());
567 // Assume all function calls are a source of divergence.
568 if (isa<CallInst>(V) || isa<InvokeInst>(V))
569 return true;
571 return false;
574 bool GCNTTIImpl::isAlwaysUniform(const Value *V) const {
575 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) {
576 switch (Intrinsic->getIntrinsicID()) {
577 default:
578 return false;
579 case Intrinsic::amdgcn_readfirstlane:
580 case Intrinsic::amdgcn_readlane:
581 return true;
584 return false;
587 unsigned GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
588 Type *SubTp) {
589 if (ST->hasVOP3PInsts()) {
590 VectorType *VT = cast<VectorType>(Tp);
591 if (VT->getNumElements() == 2 &&
592 DL.getTypeSizeInBits(VT->getElementType()) == 16) {
593 // With op_sel VOP3P instructions freely can access the low half or high
594 // half of a register, so any swizzle is free.
596 switch (Kind) {
597 case TTI::SK_Broadcast:
598 case TTI::SK_Reverse:
599 case TTI::SK_PermuteSingleSrc:
600 return 0;
601 default:
602 break;
607 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
610 bool GCNTTIImpl::areInlineCompatible(const Function *Caller,
611 const Function *Callee) const {
612 const TargetMachine &TM = getTLI()->getTargetMachine();
613 const FeatureBitset &CallerBits =
614 TM.getSubtargetImpl(*Caller)->getFeatureBits();
615 const FeatureBitset &CalleeBits =
616 TM.getSubtargetImpl(*Callee)->getFeatureBits();
618 FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
619 FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
620 return ((RealCallerBits & RealCalleeBits) == RealCalleeBits);
623 void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
624 TTI::UnrollingPreferences &UP) {
625 CommonTTI.getUnrollingPreferences(L, SE, UP);
628 unsigned R600TTIImpl::getHardwareNumberOfRegisters(bool Vec) const {
629 return 4 * 128; // XXX - 4 channels. Should these count as vector instead?
632 unsigned R600TTIImpl::getNumberOfRegisters(bool Vec) const {
633 return getHardwareNumberOfRegisters(Vec);
636 unsigned R600TTIImpl::getRegisterBitWidth(bool Vector) const {
637 return 32;
640 unsigned R600TTIImpl::getMinVectorRegisterBitWidth() const {
641 return 32;
644 unsigned R600TTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
645 AMDGPUAS AS = ST->getAMDGPUAS();
646 if (AddrSpace == AS.GLOBAL_ADDRESS ||
647 AddrSpace == AS.CONSTANT_ADDRESS)
648 return 128;
649 if (AddrSpace == AS.LOCAL_ADDRESS ||
650 AddrSpace == AS.REGION_ADDRESS)
651 return 64;
652 if (AddrSpace == AS.PRIVATE_ADDRESS)
653 return 32;
655 if ((AddrSpace == AS.PARAM_D_ADDRESS ||
656 AddrSpace == AS.PARAM_I_ADDRESS ||
657 (AddrSpace >= AS.CONSTANT_BUFFER_0 &&
658 AddrSpace <= AS.CONSTANT_BUFFER_15)))
659 return 128;
660 llvm_unreachable("unhandled address space");
663 bool R600TTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
664 unsigned Alignment,
665 unsigned AddrSpace) const {
666 // We allow vectorization of flat stores, even though we may need to decompose
667 // them later if they may access private memory. We don't have enough context
668 // here, and legalization can handle it.
669 if (AddrSpace == ST->getAMDGPUAS().PRIVATE_ADDRESS)
670 return false;
671 return true;
674 bool R600TTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
675 unsigned Alignment,
676 unsigned AddrSpace) const {
677 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
680 bool R600TTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
681 unsigned Alignment,
682 unsigned AddrSpace) const {
683 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
686 unsigned R600TTIImpl::getMaxInterleaveFactor(unsigned VF) {
687 // Disable unrolling if the loop is not vectorized.
688 // TODO: Enable this again.
689 if (VF == 1)
690 return 1;
692 return 8;
695 unsigned R600TTIImpl::getCFInstrCost(unsigned Opcode) {
696 // XXX - For some reason this isn't called for switch.
697 switch (Opcode) {
698 case Instruction::Br:
699 case Instruction::Ret:
700 return 10;
701 default:
702 return BaseT::getCFInstrCost(Opcode);
706 int R600TTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
707 unsigned Index) {
708 switch (Opcode) {
709 case Instruction::ExtractElement:
710 case Instruction::InsertElement: {
711 unsigned EltSize
712 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
713 if (EltSize < 32) {
714 return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
717 // Extracts are just reads of a subregister, so are free. Inserts are
718 // considered free because we don't want to have any cost for scalarizing
719 // operations, and we don't have to copy into a different register class.
721 // Dynamic indexing isn't free and is best avoided.
722 return Index == ~0u ? 2 : 0;
724 default:
725 return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
729 void R600TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
730 TTI::UnrollingPreferences &UP) {
731 CommonTTI.getUnrollingPreferences(L, SE, UP);