[PowerPC] Materialize more constants with CR-field set in late peephole
[llvm-core.git] / lib / Target / PowerPC / PPCISelLowering.h
blob8bd864acec7de6caa60a7983c47d4ccae55149bd
1 //===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that PPC uses to lower LLVM code into a
11 // selection DAG.
13 //===----------------------------------------------------------------------===//
15 #ifndef LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
16 #define LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
18 #include "PPC.h"
19 #include "PPCInstrInfo.h"
20 #include "llvm/CodeGen/CallingConvLower.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineMemOperand.h"
23 #include "llvm/CodeGen/SelectionDAG.h"
24 #include "llvm/CodeGen/SelectionDAGNodes.h"
25 #include "llvm/CodeGen/TargetLowering.h"
26 #include "llvm/CodeGen/ValueTypes.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/CallingConv.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/InlineAsm.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/Support/MachineValueType.h"
34 #include <utility>
36 namespace llvm {
38 namespace PPCISD {
40 // When adding a NEW PPCISD node please add it to the correct position in
41 // the enum. The order of elements in this enum matters!
42 // Values that are added after this entry:
43 // STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE
44 // are considerd memory opcodes and are treated differently than entries
45 // that come before it. For example, ADD or MUL should be placed before
46 // the ISD::FIRST_TARGET_MEMORY_OPCODE while a LOAD or STORE should come
47 // after it.
48 enum NodeType : unsigned {
49 // Start the numbering where the builtin ops and target ops leave off.
50 FIRST_NUMBER = ISD::BUILTIN_OP_END,
52 /// FSEL - Traditional three-operand fsel node.
53 ///
54 FSEL,
56 /// FCFID - The FCFID instruction, taking an f64 operand and producing
57 /// and f64 value containing the FP representation of the integer that
58 /// was temporarily in the f64 operand.
59 FCFID,
61 /// Newer FCFID[US] integer-to-floating-point conversion instructions for
62 /// unsigned integers and single-precision outputs.
63 FCFIDU, FCFIDS, FCFIDUS,
65 /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
66 /// operand, producing an f64 value containing the integer representation
67 /// of that FP value.
68 FCTIDZ, FCTIWZ,
70 /// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for
71 /// unsigned integers with round toward zero.
72 FCTIDUZ, FCTIWUZ,
74 /// Floating-point-to-interger conversion instructions
75 FP_TO_UINT_IN_VSR, FP_TO_SINT_IN_VSR,
77 /// VEXTS, ByteWidth - takes an input in VSFRC and produces an output in
78 /// VSFRC that is sign-extended from ByteWidth to a 64-byte integer.
79 VEXTS,
81 /// SExtVElems, takes an input vector of a smaller type and sign
82 /// extends to an output vector of a larger type.
83 SExtVElems,
85 /// Reciprocal estimate instructions (unary FP ops).
86 FRE, FRSQRTE,
88 // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
89 // three v4f32 operands and producing a v4f32 result.
90 VMADDFP, VNMSUBFP,
92 /// VPERM - The PPC VPERM Instruction.
93 ///
94 VPERM,
96 /// XXSPLT - The PPC VSX splat instructions
97 ///
98 XXSPLT,
100 /// VECINSERT - The PPC vector insert instruction
102 VECINSERT,
104 /// XXREVERSE - The PPC VSX reverse instruction
106 XXREVERSE,
108 /// VECSHL - The PPC vector shift left instruction
110 VECSHL,
112 /// XXPERMDI - The PPC XXPERMDI instruction
114 XXPERMDI,
116 /// The CMPB instruction (takes two operands of i32 or i64).
117 CMPB,
119 /// Hi/Lo - These represent the high and low 16-bit parts of a global
120 /// address respectively. These nodes have two operands, the first of
121 /// which must be a TargetGlobalAddress, and the second of which must be a
122 /// Constant. Selected naively, these turn into 'lis G+C' and 'li G+C',
123 /// though these are usually folded into other nodes.
124 Hi, Lo,
126 /// The following two target-specific nodes are used for calls through
127 /// function pointers in the 64-bit SVR4 ABI.
129 /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
130 /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
131 /// compute an allocation on the stack.
132 DYNALLOC,
134 /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
135 /// compute an offset from native SP to the address of the most recent
136 /// dynamic alloca.
137 DYNAREAOFFSET,
139 /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
140 /// at function entry, used for PIC code.
141 GlobalBaseReg,
143 /// These nodes represent PPC shifts.
145 /// For scalar types, only the last `n + 1` bits of the shift amounts
146 /// are used, where n is log2(sizeof(element) * 8). See sld/slw, etc.
147 /// for exact behaviors.
149 /// For vector types, only the last n bits are used. See vsld.
150 SRL, SRA, SHL,
152 /// The combination of sra[wd]i and addze used to implemented signed
153 /// integer division by a power of 2. The first operand is the dividend,
154 /// and the second is the constant shift amount (representing the
155 /// divisor).
156 SRA_ADDZE,
158 /// CALL - A direct function call.
159 /// CALL_NOP is a call with the special NOP which follows 64-bit
160 /// SVR4 calls.
161 CALL, CALL_NOP,
163 /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
164 /// MTCTR instruction.
165 MTCTR,
167 /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
168 /// BCTRL instruction.
169 BCTRL,
171 /// CHAIN,FLAG = BCTRL(CHAIN, ADDR, INFLAG) - The combination of a bctrl
172 /// instruction and the TOC reload required on SVR4 PPC64.
173 BCTRL_LOAD_TOC,
175 /// Return with a flag operand, matched by 'blr'
176 RET_FLAG,
178 /// R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction.
179 /// This copies the bits corresponding to the specified CRREG into the
180 /// resultant GPR. Bits corresponding to other CR regs are undefined.
181 MFOCRF,
183 /// Direct move from a VSX register to a GPR
184 MFVSR,
186 /// Direct move from a GPR to a VSX register (algebraic)
187 MTVSRA,
189 /// Direct move from a GPR to a VSX register (zero)
190 MTVSRZ,
192 /// Direct move of 2 consective GPR to a VSX register.
193 BUILD_FP128,
195 /// Extract a subvector from signed integer vector and convert to FP.
196 /// It is primarily used to convert a (widened) illegal integer vector
197 /// type to a legal floating point vector type.
198 /// For example v2i32 -> widened to v4i32 -> v2f64
199 SINT_VEC_TO_FP,
201 /// Extract a subvector from unsigned integer vector and convert to FP.
202 /// As with SINT_VEC_TO_FP, used for converting illegal types.
203 UINT_VEC_TO_FP,
205 // FIXME: Remove these once the ANDI glue bug is fixed:
206 /// i1 = ANDIo_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the
207 /// eq or gt bit of CR0 after executing andi. x, 1. This is used to
208 /// implement truncation of i32 or i64 to i1.
209 ANDIo_1_EQ_BIT, ANDIo_1_GT_BIT,
211 // READ_TIME_BASE - A read of the 64-bit time-base register on a 32-bit
212 // target (returns (Lo, Hi)). It takes a chain operand.
213 READ_TIME_BASE,
215 // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
216 EH_SJLJ_SETJMP,
218 // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
219 EH_SJLJ_LONGJMP,
221 /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
222 /// instructions. For lack of better number, we use the opcode number
223 /// encoding for the OPC field to identify the compare. For example, 838
224 /// is VCMPGTSH.
225 VCMP,
227 /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
228 /// altivec VCMP*o instructions. For lack of better number, we use the
229 /// opcode number encoding for the OPC field to identify the compare. For
230 /// example, 838 is VCMPGTSH.
231 VCMPo,
233 /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
234 /// corresponds to the COND_BRANCH pseudo instruction. CRRC is the
235 /// condition register to branch on, OPC is the branch opcode to use (e.g.
236 /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
237 /// an optional input flag argument.
238 COND_BRANCH,
240 /// CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based
241 /// loops.
242 BDNZ, BDZ,
244 /// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding
245 /// towards zero. Used only as part of the long double-to-int
246 /// conversion sequence.
247 FADDRTZ,
249 /// F8RC = MFFS - This moves the FPSCR (not modeled) into the register.
250 MFFS,
252 /// TC_RETURN - A tail call return.
253 /// operand #0 chain
254 /// operand #1 callee (register or absolute)
255 /// operand #2 stack adjustment
256 /// operand #3 optional in flag
257 TC_RETURN,
259 /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
260 CR6SET,
261 CR6UNSET,
263 /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by initial-exec TLS
264 /// on PPC32.
265 PPC32_GOT,
267 /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by general dynamic and
268 /// local dynamic TLS on PPC32.
269 PPC32_PICGOT,
271 /// G8RC = ADDIS_GOT_TPREL_HA %x2, Symbol - Used by the initial-exec
272 /// TLS model, produces an ADDIS8 instruction that adds the GOT
273 /// base to sym\@got\@tprel\@ha.
274 ADDIS_GOT_TPREL_HA,
276 /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
277 /// TLS model, produces a LD instruction with base register G8RReg
278 /// and offset sym\@got\@tprel\@l. This completes the addition that
279 /// finds the offset of "sym" relative to the thread pointer.
280 LD_GOT_TPREL_L,
282 /// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS
283 /// model, produces an ADD instruction that adds the contents of
284 /// G8RReg to the thread pointer. Symbol contains a relocation
285 /// sym\@tls which is to be replaced by the thread pointer and
286 /// identifies to the linker that the instruction is part of a
287 /// TLS sequence.
288 ADD_TLS,
290 /// G8RC = ADDIS_TLSGD_HA %x2, Symbol - For the general-dynamic TLS
291 /// model, produces an ADDIS8 instruction that adds the GOT base
292 /// register to sym\@got\@tlsgd\@ha.
293 ADDIS_TLSGD_HA,
295 /// %x3 = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
296 /// model, produces an ADDI8 instruction that adds G8RReg to
297 /// sym\@got\@tlsgd\@l and stores the result in X3. Hidden by
298 /// ADDIS_TLSGD_L_ADDR until after register assignment.
299 ADDI_TLSGD_L,
301 /// %x3 = GET_TLS_ADDR %x3, Symbol - For the general-dynamic TLS
302 /// model, produces a call to __tls_get_addr(sym\@tlsgd). Hidden by
303 /// ADDIS_TLSGD_L_ADDR until after register assignment.
304 GET_TLS_ADDR,
306 /// G8RC = ADDI_TLSGD_L_ADDR G8RReg, Symbol, Symbol - Op that
307 /// combines ADDI_TLSGD_L and GET_TLS_ADDR until expansion following
308 /// register assignment.
309 ADDI_TLSGD_L_ADDR,
311 /// G8RC = ADDIS_TLSLD_HA %x2, Symbol - For the local-dynamic TLS
312 /// model, produces an ADDIS8 instruction that adds the GOT base
313 /// register to sym\@got\@tlsld\@ha.
314 ADDIS_TLSLD_HA,
316 /// %x3 = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
317 /// model, produces an ADDI8 instruction that adds G8RReg to
318 /// sym\@got\@tlsld\@l and stores the result in X3. Hidden by
319 /// ADDIS_TLSLD_L_ADDR until after register assignment.
320 ADDI_TLSLD_L,
322 /// %x3 = GET_TLSLD_ADDR %x3, Symbol - For the local-dynamic TLS
323 /// model, produces a call to __tls_get_addr(sym\@tlsld). Hidden by
324 /// ADDIS_TLSLD_L_ADDR until after register assignment.
325 GET_TLSLD_ADDR,
327 /// G8RC = ADDI_TLSLD_L_ADDR G8RReg, Symbol, Symbol - Op that
328 /// combines ADDI_TLSLD_L and GET_TLSLD_ADDR until expansion
329 /// following register assignment.
330 ADDI_TLSLD_L_ADDR,
332 /// G8RC = ADDIS_DTPREL_HA %x3, Symbol - For the local-dynamic TLS
333 /// model, produces an ADDIS8 instruction that adds X3 to
334 /// sym\@dtprel\@ha.
335 ADDIS_DTPREL_HA,
337 /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
338 /// model, produces an ADDI8 instruction that adds G8RReg to
339 /// sym\@got\@dtprel\@l.
340 ADDI_DTPREL_L,
342 /// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded
343 /// during instruction selection to optimize a BUILD_VECTOR into
344 /// operations on splats. This is necessary to avoid losing these
345 /// optimizations due to constant folding.
346 VADD_SPLAT,
348 /// CHAIN = SC CHAIN, Imm128 - System call. The 7-bit unsigned
349 /// operand identifies the operating system entry point.
352 /// CHAIN = CLRBHRB CHAIN - Clear branch history rolling buffer.
353 CLRBHRB,
355 /// GPRC, CHAIN = MFBHRBE CHAIN, Entry, Dummy - Move from branch
356 /// history rolling buffer entry.
357 MFBHRBE,
359 /// CHAIN = RFEBB CHAIN, State - Return from event-based branch.
360 RFEBB,
362 /// VSRC, CHAIN = XXSWAPD CHAIN, VSRC - Occurs only for little
363 /// endian. Maps to an xxswapd instruction that corrects an lxvd2x
364 /// or stxvd2x instruction. The chain is necessary because the
365 /// sequence replaces a load and needs to provide the same number
366 /// of outputs.
367 XXSWAPD,
369 /// An SDNode for swaps that are not associated with any loads/stores
370 /// and thereby have no chain.
371 SWAP_NO_CHAIN,
373 /// QVFPERM = This corresponds to the QPX qvfperm instruction.
374 QVFPERM,
376 /// QVGPCI = This corresponds to the QPX qvgpci instruction.
377 QVGPCI,
379 /// QVALIGNI = This corresponds to the QPX qvaligni instruction.
380 QVALIGNI,
382 /// QVESPLATI = This corresponds to the QPX qvesplati instruction.
383 QVESPLATI,
385 /// QBFLT = Access the underlying QPX floating-point boolean
386 /// representation.
387 QBFLT,
389 /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
390 /// byte-swapping store instruction. It byte-swaps the low "Type" bits of
391 /// the GPRC input, then stores it through Ptr. Type can be either i16 or
392 /// i32.
393 STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE,
395 /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
396 /// byte-swapping load instruction. It loads "Type" bits, byte swaps it,
397 /// then puts it in the bottom bits of the GPRC. TYPE can be either i16
398 /// or i32.
399 LBRX,
401 /// STFIWX - The STFIWX instruction. The first operand is an input token
402 /// chain, then an f64 value to store, then an address to store it to.
403 STFIWX,
405 /// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point
406 /// load which sign-extends from a 32-bit integer value into the
407 /// destination 64-bit register.
408 LFIWAX,
410 /// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point
411 /// load which zero-extends from a 32-bit integer value into the
412 /// destination 64-bit register.
413 LFIWZX,
415 /// GPRC, CHAIN = LXSIZX, CHAIN, Ptr, ByteWidth - This is a load of an
416 /// integer smaller than 64 bits into a VSR. The integer is zero-extended.
417 /// This can be used for converting loaded integers to floating point.
418 LXSIZX,
420 /// STXSIX - The STXSI[bh]X instruction. The first operand is an input
421 /// chain, then an f64 value to store, then an address to store it to,
422 /// followed by a byte-width for the store.
423 STXSIX,
425 /// VSRC, CHAIN = LXVD2X_LE CHAIN, Ptr - Occurs only for little endian.
426 /// Maps directly to an lxvd2x instruction that will be followed by
427 /// an xxswapd.
428 LXVD2X,
430 /// CHAIN = STXVD2X CHAIN, VSRC, Ptr - Occurs only for little endian.
431 /// Maps directly to an stxvd2x instruction that will be preceded by
432 /// an xxswapd.
433 STXVD2X,
435 /// Store scalar integers from VSR.
436 ST_VSR_SCAL_INT,
438 /// QBRC, CHAIN = QVLFSb CHAIN, Ptr
439 /// The 4xf32 load used for v4i1 constants.
440 QVLFSb,
442 /// ATOMIC_CMP_SWAP - the exact same as the target-independent nodes
443 /// except they ensure that the compare input is zero-extended for
444 /// sub-word versions because the atomic loads zero-extend.
445 ATOMIC_CMP_SWAP_8, ATOMIC_CMP_SWAP_16,
447 /// GPRC = TOC_ENTRY GA, TOC
448 /// Loads the entry for GA from the TOC, where the TOC base is given by
449 /// the last operand.
450 TOC_ENTRY
453 } // end namespace PPCISD
455 /// Define some predicates that are used for node matching.
456 namespace PPC {
458 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
459 /// VPKUHUM instruction.
460 bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
461 SelectionDAG &DAG);
463 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
464 /// VPKUWUM instruction.
465 bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
466 SelectionDAG &DAG);
468 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
469 /// VPKUDUM instruction.
470 bool isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
471 SelectionDAG &DAG);
473 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
474 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
475 bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
476 unsigned ShuffleKind, SelectionDAG &DAG);
478 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
479 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
480 bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
481 unsigned ShuffleKind, SelectionDAG &DAG);
483 /// isVMRGEOShuffleMask - Return true if this is a shuffle mask suitable for
484 /// a VMRGEW or VMRGOW instruction
485 bool isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
486 unsigned ShuffleKind, SelectionDAG &DAG);
487 /// isXXSLDWIShuffleMask - Return true if this is a shuffle mask suitable
488 /// for a XXSLDWI instruction.
489 bool isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
490 bool &Swap, bool IsLE);
492 /// isXXBRHShuffleMask - Return true if this is a shuffle mask suitable
493 /// for a XXBRH instruction.
494 bool isXXBRHShuffleMask(ShuffleVectorSDNode *N);
496 /// isXXBRWShuffleMask - Return true if this is a shuffle mask suitable
497 /// for a XXBRW instruction.
498 bool isXXBRWShuffleMask(ShuffleVectorSDNode *N);
500 /// isXXBRDShuffleMask - Return true if this is a shuffle mask suitable
501 /// for a XXBRD instruction.
502 bool isXXBRDShuffleMask(ShuffleVectorSDNode *N);
504 /// isXXBRQShuffleMask - Return true if this is a shuffle mask suitable
505 /// for a XXBRQ instruction.
506 bool isXXBRQShuffleMask(ShuffleVectorSDNode *N);
508 /// isXXPERMDIShuffleMask - Return true if this is a shuffle mask suitable
509 /// for a XXPERMDI instruction.
510 bool isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
511 bool &Swap, bool IsLE);
513 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the
514 /// shift amount, otherwise return -1.
515 int isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
516 SelectionDAG &DAG);
518 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
519 /// specifies a splat of a single element that is suitable for input to
520 /// VSPLTB/VSPLTH/VSPLTW.
521 bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);
523 /// isXXINSERTWMask - Return true if this VECTOR_SHUFFLE can be handled by
524 /// the XXINSERTW instruction introduced in ISA 3.0. This is essentially any
525 /// shuffle of v4f32/v4i32 vectors that just inserts one element from one
526 /// vector into the other. This function will also set a couple of
527 /// output parameters for how much the source vector needs to be shifted and
528 /// what byte number needs to be specified for the instruction to put the
529 /// element in the desired location of the target vector.
530 bool isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
531 unsigned &InsertAtByte, bool &Swap, bool IsLE);
533 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
534 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
535 unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize, SelectionDAG &DAG);
537 /// get_VSPLTI_elt - If this is a build_vector of constants which can be
538 /// formed by using a vspltis[bhw] instruction of the specified element
539 /// size, return the constant being splatted. The ByteSize field indicates
540 /// the number of bytes of each element [124] -> [bhw].
541 SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
543 /// If this is a qvaligni shuffle mask, return the shift
544 /// amount, otherwise return -1.
545 int isQVALIGNIShuffleMask(SDNode *N);
547 } // end namespace PPC
549 class PPCTargetLowering : public TargetLowering {
550 const PPCSubtarget &Subtarget;
552 public:
553 explicit PPCTargetLowering(const PPCTargetMachine &TM,
554 const PPCSubtarget &STI);
556 /// getTargetNodeName() - This method returns the name of a target specific
557 /// DAG node.
558 const char *getTargetNodeName(unsigned Opcode) const override;
560 /// getPreferredVectorAction - The code we generate when vector types are
561 /// legalized by promoting the integer element type is often much worse
562 /// than code we generate if we widen the type for applicable vector types.
563 /// The issue with promoting is that the vector is scalaraized, individual
564 /// elements promoted and then the vector is rebuilt. So say we load a pair
565 /// of v4i8's and shuffle them. This will turn into a mess of 8 extending
566 /// loads, moves back into VSR's (or memory ops if we don't have moves) and
567 /// then the VPERM for the shuffle. All in all a very slow sequence.
568 TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(EVT VT)
569 const override {
570 if (VT.getScalarSizeInBits() % 8 == 0)
571 return TypeWidenVector;
572 return TargetLoweringBase::getPreferredVectorAction(VT);
575 bool useSoftFloat() const override;
577 MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override {
578 return MVT::i32;
581 bool isCheapToSpeculateCttz() const override {
582 return true;
585 bool isCheapToSpeculateCtlz() const override {
586 return true;
589 bool isCtlzFast() const override {
590 return true;
593 bool hasAndNotCompare(SDValue) const override {
594 return true;
597 bool convertSetCCLogicToBitwiseLogic(EVT VT) const override {
598 return VT.isScalarInteger();
601 bool supportSplitCSR(MachineFunction *MF) const override {
602 return
603 MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS &&
604 MF->getFunction().hasFnAttribute(Attribute::NoUnwind);
607 void initializeSplitCSR(MachineBasicBlock *Entry) const override;
609 void insertCopiesSplitCSR(
610 MachineBasicBlock *Entry,
611 const SmallVectorImpl<MachineBasicBlock *> &Exits) const override;
613 /// getSetCCResultType - Return the ISD::SETCC ValueType
614 EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
615 EVT VT) const override;
617 /// Return true if target always beneficiates from combining into FMA for a
618 /// given value type. This must typically return false on targets where FMA
619 /// takes more cycles to execute than FADD.
620 bool enableAggressiveFMAFusion(EVT VT) const override;
622 /// getPreIndexedAddressParts - returns true by value, base pointer and
623 /// offset pointer and addressing mode by reference if the node's address
624 /// can be legally represented as pre-indexed load / store address.
625 bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
626 SDValue &Offset,
627 ISD::MemIndexedMode &AM,
628 SelectionDAG &DAG) const override;
630 /// SelectAddressRegReg - Given the specified addressed, check to see if it
631 /// can be represented as an indexed [r+r] operation. Returns false if it
632 /// can be more efficiently represented with [r+imm].
633 bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
634 SelectionDAG &DAG) const;
636 /// SelectAddressRegImm - Returns true if the address N can be represented
637 /// by a base register plus a signed 16-bit displacement [r+imm], and if it
638 /// is not better represented as reg+reg. If Aligned is true, only accept
639 /// displacements suitable for STD and friends, i.e. multiples of 4.
640 bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
641 SelectionDAG &DAG, unsigned Alignment) const;
643 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
644 /// represented as an indexed [r+r] operation.
645 bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
646 SelectionDAG &DAG) const;
648 Sched::Preference getSchedulingPreference(SDNode *N) const override;
650 /// LowerOperation - Provide custom lowering hooks for some operations.
652 SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
654 /// ReplaceNodeResults - Replace the results of node with an illegal result
655 /// type with new values built out of custom code.
657 void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
658 SelectionDAG &DAG) const override;
660 SDValue expandVSXLoadForLE(SDNode *N, DAGCombinerInfo &DCI) const;
661 SDValue expandVSXStoreForLE(SDNode *N, DAGCombinerInfo &DCI) const;
663 SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
665 SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
666 std::vector<SDNode *> *Created) const override;
668 unsigned getRegisterByName(const char* RegName, EVT VT,
669 SelectionDAG &DAG) const override;
671 void computeKnownBitsForTargetNode(const SDValue Op,
672 KnownBits &Known,
673 const APInt &DemandedElts,
674 const SelectionDAG &DAG,
675 unsigned Depth = 0) const override;
677 unsigned getPrefLoopAlignment(MachineLoop *ML) const override;
679 bool shouldInsertFencesForAtomic(const Instruction *I) const override {
680 return true;
683 Instruction *emitLeadingFence(IRBuilder<> &Builder, Instruction *Inst,
684 AtomicOrdering Ord) const override;
685 Instruction *emitTrailingFence(IRBuilder<> &Builder, Instruction *Inst,
686 AtomicOrdering Ord) const override;
688 MachineBasicBlock *
689 EmitInstrWithCustomInserter(MachineInstr &MI,
690 MachineBasicBlock *MBB) const override;
691 MachineBasicBlock *EmitAtomicBinary(MachineInstr &MI,
692 MachineBasicBlock *MBB,
693 unsigned AtomicSize,
694 unsigned BinOpcode,
695 unsigned CmpOpcode = 0,
696 unsigned CmpPred = 0) const;
697 MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr &MI,
698 MachineBasicBlock *MBB,
699 bool is8bit,
700 unsigned Opcode,
701 unsigned CmpOpcode = 0,
702 unsigned CmpPred = 0) const;
704 MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr &MI,
705 MachineBasicBlock *MBB) const;
707 MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr &MI,
708 MachineBasicBlock *MBB) const;
710 ConstraintType getConstraintType(StringRef Constraint) const override;
712 /// Examine constraint string and operand type and determine a weight value.
713 /// The operand object must already have been set up with the operand type.
714 ConstraintWeight getSingleConstraintMatchWeight(
715 AsmOperandInfo &info, const char *constraint) const override;
717 std::pair<unsigned, const TargetRegisterClass *>
718 getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
719 StringRef Constraint, MVT VT) const override;
721 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
722 /// function arguments in the caller parameter area. This is the actual
723 /// alignment, not its logarithm.
724 unsigned getByValTypeAlignment(Type *Ty,
725 const DataLayout &DL) const override;
727 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
728 /// vector. If it is invalid, don't add anything to Ops.
729 void LowerAsmOperandForConstraint(SDValue Op,
730 std::string &Constraint,
731 std::vector<SDValue> &Ops,
732 SelectionDAG &DAG) const override;
734 unsigned
735 getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
736 if (ConstraintCode == "es")
737 return InlineAsm::Constraint_es;
738 else if (ConstraintCode == "o")
739 return InlineAsm::Constraint_o;
740 else if (ConstraintCode == "Q")
741 return InlineAsm::Constraint_Q;
742 else if (ConstraintCode == "Z")
743 return InlineAsm::Constraint_Z;
744 else if (ConstraintCode == "Zy")
745 return InlineAsm::Constraint_Zy;
746 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
749 /// isLegalAddressingMode - Return true if the addressing mode represented
750 /// by AM is legal for this target, for a load/store of the specified type.
751 bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
752 Type *Ty, unsigned AS,
753 Instruction *I = nullptr) const override;
755 /// isLegalICmpImmediate - Return true if the specified immediate is legal
756 /// icmp immediate, that is the target has icmp instructions which can
757 /// compare a register against the immediate without having to materialize
758 /// the immediate into a register.
759 bool isLegalICmpImmediate(int64_t Imm) const override;
761 /// isLegalAddImmediate - Return true if the specified immediate is legal
762 /// add immediate, that is the target has add instructions which can
763 /// add a register and the immediate without having to materialize
764 /// the immediate into a register.
765 bool isLegalAddImmediate(int64_t Imm) const override;
767 /// isTruncateFree - Return true if it's free to truncate a value of
768 /// type Ty1 to type Ty2. e.g. On PPC it's free to truncate a i64 value in
769 /// register X1 to i32 by referencing its sub-register R1.
770 bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
771 bool isTruncateFree(EVT VT1, EVT VT2) const override;
773 bool isZExtFree(SDValue Val, EVT VT2) const override;
775 bool isFPExtFree(EVT DestVT, EVT SrcVT) const override;
777 /// Returns true if it is beneficial to convert a load of a constant
778 /// to just the constant itself.
779 bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
780 Type *Ty) const override;
782 bool convertSelectOfConstantsToMath(EVT VT) const override {
783 return true;
786 bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;
788 bool getTgtMemIntrinsic(IntrinsicInfo &Info,
789 const CallInst &I,
790 MachineFunction &MF,
791 unsigned Intrinsic) const override;
793 /// getOptimalMemOpType - Returns the target specific optimal type for load
794 /// and store operations as a result of memset, memcpy, and memmove
795 /// lowering. If DstAlign is zero that means it's safe to destination
796 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
797 /// means there isn't a need to check it against alignment requirement,
798 /// probably because the source does not need to be loaded. If 'IsMemset' is
799 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
800 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
801 /// source is constant so it does not need to be loaded.
802 /// It returns EVT::Other if the type should be determined using generic
803 /// target-independent logic.
805 getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
806 bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
807 MachineFunction &MF) const override;
809 /// Is unaligned memory access allowed for the given type, and is it fast
810 /// relative to software emulation.
811 bool allowsMisalignedMemoryAccesses(EVT VT,
812 unsigned AddrSpace,
813 unsigned Align = 1,
814 bool *Fast = nullptr) const override;
816 /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
817 /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
818 /// expanded to FMAs when this method returns true, otherwise fmuladd is
819 /// expanded to fmul + fadd.
820 bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;
822 const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
824 // Should we expand the build vector with shuffles?
825 bool
826 shouldExpandBuildVectorWithShuffles(EVT VT,
827 unsigned DefinedValues) const override;
829 /// createFastISel - This method returns a target-specific FastISel object,
830 /// or null if the target does not support "fast" instruction selection.
831 FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
832 const TargetLibraryInfo *LibInfo) const override;
834 /// Returns true if an argument of type Ty needs to be passed in a
835 /// contiguous block of registers in calling convention CallConv.
836 bool functionArgumentNeedsConsecutiveRegisters(
837 Type *Ty, CallingConv::ID CallConv, bool isVarArg) const override {
838 // We support any array type as "consecutive" block in the parameter
839 // save area. The element type defines the alignment requirement and
840 // whether the argument should go in GPRs, FPRs, or VRs if available.
842 // Note that clang uses this capability both to implement the ELFv2
843 // homogeneous float/vector aggregate ABI, and to avoid having to use
844 // "byval" when passing aggregates that might fully fit in registers.
845 return Ty->isArrayTy();
848 /// If a physical register, this returns the register that receives the
849 /// exception address on entry to an EH pad.
850 unsigned
851 getExceptionPointerRegister(const Constant *PersonalityFn) const override;
853 /// If a physical register, this returns the register that receives the
854 /// exception typeid on entry to a landing pad.
855 unsigned
856 getExceptionSelectorRegister(const Constant *PersonalityFn) const override;
858 /// Override to support customized stack guard loading.
859 bool useLoadStackGuardNode() const override;
860 void insertSSPDeclarations(Module &M) const override;
862 bool isFPImmLegal(const APFloat &Imm, EVT VT) const override;
864 unsigned getJumpTableEncoding() const override;
865 bool isJumpTableRelative() const override;
866 SDValue getPICJumpTableRelocBase(SDValue Table,
867 SelectionDAG &DAG) const override;
868 const MCExpr *getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
869 unsigned JTI,
870 MCContext &Ctx) const override;
872 private:
873 struct ReuseLoadInfo {
874 SDValue Ptr;
875 SDValue Chain;
876 SDValue ResChain;
877 MachinePointerInfo MPI;
878 bool IsDereferenceable = false;
879 bool IsInvariant = false;
880 unsigned Alignment = 0;
881 AAMDNodes AAInfo;
882 const MDNode *Ranges = nullptr;
884 ReuseLoadInfo() = default;
886 MachineMemOperand::Flags MMOFlags() const {
887 MachineMemOperand::Flags F = MachineMemOperand::MONone;
888 if (IsDereferenceable)
889 F |= MachineMemOperand::MODereferenceable;
890 if (IsInvariant)
891 F |= MachineMemOperand::MOInvariant;
892 return F;
896 bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const override {
897 // Addrspacecasts are always noops.
898 return true;
901 bool canReuseLoadAddress(SDValue Op, EVT MemVT, ReuseLoadInfo &RLI,
902 SelectionDAG &DAG,
903 ISD::LoadExtType ET = ISD::NON_EXTLOAD) const;
904 void spliceIntoChain(SDValue ResChain, SDValue NewResChain,
905 SelectionDAG &DAG) const;
907 void LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
908 SelectionDAG &DAG, const SDLoc &dl) const;
909 SDValue LowerFP_TO_INTDirectMove(SDValue Op, SelectionDAG &DAG,
910 const SDLoc &dl) const;
912 bool directMoveIsProfitable(const SDValue &Op) const;
913 SDValue LowerINT_TO_FPDirectMove(SDValue Op, SelectionDAG &DAG,
914 const SDLoc &dl) const;
916 SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
917 SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
919 bool
920 IsEligibleForTailCallOptimization(SDValue Callee,
921 CallingConv::ID CalleeCC,
922 bool isVarArg,
923 const SmallVectorImpl<ISD::InputArg> &Ins,
924 SelectionDAG& DAG) const;
926 bool
927 IsEligibleForTailCallOptimization_64SVR4(
928 SDValue Callee,
929 CallingConv::ID CalleeCC,
930 ImmutableCallSite CS,
931 bool isVarArg,
932 const SmallVectorImpl<ISD::OutputArg> &Outs,
933 const SmallVectorImpl<ISD::InputArg> &Ins,
934 SelectionDAG& DAG) const;
936 SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG &DAG, int SPDiff,
937 SDValue Chain, SDValue &LROpOut,
938 SDValue &FPOpOut,
939 const SDLoc &dl) const;
941 SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
942 SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
943 SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
944 SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
945 SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
946 SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
947 SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
948 SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
949 SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
950 SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
951 SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
952 SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
953 SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
954 SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const;
955 SDValue LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG) const;
956 SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
957 SDValue LowerEH_DWARF_CFA(SDValue Op, SelectionDAG &DAG) const;
958 SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const;
959 SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const;
960 SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
961 SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
962 SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
963 const SDLoc &dl) const;
964 SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
965 SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
966 SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const;
967 SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const;
968 SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const;
969 SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
970 SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
971 SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
972 SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
973 SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
974 SDValue LowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG) const;
975 SDValue LowerREM(SDValue Op, SelectionDAG &DAG) const;
976 SDValue LowerBSWAP(SDValue Op, SelectionDAG &DAG) const;
977 SDValue LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
978 SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
979 SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const;
980 SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
982 SDValue LowerVectorLoad(SDValue Op, SelectionDAG &DAG) const;
983 SDValue LowerVectorStore(SDValue Op, SelectionDAG &DAG) const;
985 SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
986 CallingConv::ID CallConv, bool isVarArg,
987 const SmallVectorImpl<ISD::InputArg> &Ins,
988 const SDLoc &dl, SelectionDAG &DAG,
989 SmallVectorImpl<SDValue> &InVals) const;
990 SDValue FinishCall(CallingConv::ID CallConv, const SDLoc &dl,
991 bool isTailCall, bool isVarArg, bool isPatchPoint,
992 bool hasNest, SelectionDAG &DAG,
993 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
994 SDValue InFlag, SDValue Chain, SDValue CallSeqStart,
995 SDValue &Callee, int SPDiff, unsigned NumBytes,
996 const SmallVectorImpl<ISD::InputArg> &Ins,
997 SmallVectorImpl<SDValue> &InVals,
998 ImmutableCallSite CS) const;
1000 SDValue
1001 LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1002 const SmallVectorImpl<ISD::InputArg> &Ins,
1003 const SDLoc &dl, SelectionDAG &DAG,
1004 SmallVectorImpl<SDValue> &InVals) const override;
1006 SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI,
1007 SmallVectorImpl<SDValue> &InVals) const override;
1009 bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
1010 bool isVarArg,
1011 const SmallVectorImpl<ISD::OutputArg> &Outs,
1012 LLVMContext &Context) const override;
1014 SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1015 const SmallVectorImpl<ISD::OutputArg> &Outs,
1016 const SmallVectorImpl<SDValue> &OutVals,
1017 const SDLoc &dl, SelectionDAG &DAG) const override;
1019 SDValue extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
1020 SelectionDAG &DAG, SDValue ArgVal,
1021 const SDLoc &dl) const;
1023 SDValue LowerFormalArguments_Darwin(
1024 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1025 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1026 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
1027 SDValue LowerFormalArguments_64SVR4(
1028 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1029 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1030 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
1031 SDValue LowerFormalArguments_32SVR4(
1032 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1033 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1034 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
1036 SDValue createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
1037 SDValue CallSeqStart,
1038 ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1039 const SDLoc &dl) const;
1041 SDValue LowerCall_Darwin(SDValue Chain, SDValue Callee,
1042 CallingConv::ID CallConv, bool isVarArg,
1043 bool isTailCall, bool isPatchPoint,
1044 const SmallVectorImpl<ISD::OutputArg> &Outs,
1045 const SmallVectorImpl<SDValue> &OutVals,
1046 const SmallVectorImpl<ISD::InputArg> &Ins,
1047 const SDLoc &dl, SelectionDAG &DAG,
1048 SmallVectorImpl<SDValue> &InVals,
1049 ImmutableCallSite CS) const;
1050 SDValue LowerCall_64SVR4(SDValue Chain, SDValue Callee,
1051 CallingConv::ID CallConv, bool isVarArg,
1052 bool isTailCall, bool isPatchPoint,
1053 const SmallVectorImpl<ISD::OutputArg> &Outs,
1054 const SmallVectorImpl<SDValue> &OutVals,
1055 const SmallVectorImpl<ISD::InputArg> &Ins,
1056 const SDLoc &dl, SelectionDAG &DAG,
1057 SmallVectorImpl<SDValue> &InVals,
1058 ImmutableCallSite CS) const;
1059 SDValue LowerCall_32SVR4(SDValue Chain, SDValue Callee,
1060 CallingConv::ID CallConv, bool isVarArg,
1061 bool isTailCall, bool isPatchPoint,
1062 const SmallVectorImpl<ISD::OutputArg> &Outs,
1063 const SmallVectorImpl<SDValue> &OutVals,
1064 const SmallVectorImpl<ISD::InputArg> &Ins,
1065 const SDLoc &dl, SelectionDAG &DAG,
1066 SmallVectorImpl<SDValue> &InVals,
1067 ImmutableCallSite CS) const;
1069 SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
1070 SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
1071 SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) const;
1073 SDValue DAGCombineExtBoolTrunc(SDNode *N, DAGCombinerInfo &DCI) const;
1074 SDValue DAGCombineBuildVector(SDNode *N, DAGCombinerInfo &DCI) const;
1075 SDValue DAGCombineTruncBoolExt(SDNode *N, DAGCombinerInfo &DCI) const;
1076 SDValue combineStoreFPToInt(SDNode *N, DAGCombinerInfo &DCI) const;
1077 SDValue combineFPToIntToFP(SDNode *N, DAGCombinerInfo &DCI) const;
1078 SDValue combineSHL(SDNode *N, DAGCombinerInfo &DCI) const;
1079 SDValue combineSRA(SDNode *N, DAGCombinerInfo &DCI) const;
1080 SDValue combineSRL(SDNode *N, DAGCombinerInfo &DCI) const;
1082 /// ConvertSETCCToSubtract - looks at SETCC that compares ints. It replaces
1083 /// SETCC with integer subtraction when (1) there is a legal way of doing it
1084 /// (2) keeping the result of comparison in GPR has performance benefit.
1085 SDValue ConvertSETCCToSubtract(SDNode *N, DAGCombinerInfo &DCI) const;
1087 SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
1088 int &RefinementSteps, bool &UseOneConstNR,
1089 bool Reciprocal) const override;
1090 SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
1091 int &RefinementSteps) const override;
1092 unsigned combineRepeatedFPDivisors() const override;
1094 CCAssignFn *useFastISelCCs(unsigned Flag) const;
1096 SDValue
1097 combineElementTruncationToVectorTruncation(SDNode *N,
1098 DAGCombinerInfo &DCI) const;
1100 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be
1101 /// handled by the VINSERTH instruction introduced in ISA 3.0. This is
1102 /// essentially any shuffle of v8i16 vectors that just inserts one element
1103 /// from one vector into the other.
1104 SDValue lowerToVINSERTH(ShuffleVectorSDNode *N, SelectionDAG &DAG) const;
1106 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be
1107 /// handled by the VINSERTB instruction introduced in ISA 3.0. This is
1108 /// essentially v16i8 vector version of VINSERTH.
1109 SDValue lowerToVINSERTB(ShuffleVectorSDNode *N, SelectionDAG &DAG) const;
1111 // Return whether the call instruction can potentially be optimized to a
1112 // tail call. This will cause the optimizers to attempt to move, or
1113 // duplicate return instructions to help enable tail call optimizations.
1114 bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
1115 bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override;
1116 }; // end class PPCTargetLowering
1118 namespace PPC {
1120 FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
1121 const TargetLibraryInfo *LibInfo);
1123 } // end namespace PPC
1125 bool CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
1126 CCValAssign::LocInfo &LocInfo,
1127 ISD::ArgFlagsTy &ArgFlags,
1128 CCState &State);
1130 bool CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
1131 MVT &LocVT,
1132 CCValAssign::LocInfo &LocInfo,
1133 ISD::ArgFlagsTy &ArgFlags,
1134 CCState &State);
1136 bool
1137 CC_PPC32_SVR4_Custom_SkipLastArgRegsPPCF128(unsigned &ValNo, MVT &ValVT,
1138 MVT &LocVT,
1139 CCValAssign::LocInfo &LocInfo,
1140 ISD::ArgFlagsTy &ArgFlags,
1141 CCState &State);
1143 bool CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
1144 MVT &LocVT,
1145 CCValAssign::LocInfo &LocInfo,
1146 ISD::ArgFlagsTy &ArgFlags,
1147 CCState &State);
1149 bool isIntS16Immediate(SDNode *N, int16_t &Imm);
1150 bool isIntS16Immediate(SDValue Op, int16_t &Imm);
1152 } // end namespace llvm
1154 #endif // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H