1 //===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the interfaces that PPC uses to lower LLVM code into a
13 //===----------------------------------------------------------------------===//
15 #ifndef LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
16 #define LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
19 #include "PPCInstrInfo.h"
20 #include "llvm/CodeGen/CallingConvLower.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineMemOperand.h"
23 #include "llvm/CodeGen/SelectionDAG.h"
24 #include "llvm/CodeGen/SelectionDAGNodes.h"
25 #include "llvm/CodeGen/TargetLowering.h"
26 #include "llvm/CodeGen/ValueTypes.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/CallingConv.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/InlineAsm.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/Support/MachineValueType.h"
40 // When adding a NEW PPCISD node please add it to the correct position in
41 // the enum. The order of elements in this enum matters!
42 // Values that are added after this entry:
43 // STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE
44 // are considerd memory opcodes and are treated differently than entries
45 // that come before it. For example, ADD or MUL should be placed before
46 // the ISD::FIRST_TARGET_MEMORY_OPCODE while a LOAD or STORE should come
48 enum NodeType
: unsigned {
49 // Start the numbering where the builtin ops and target ops leave off.
50 FIRST_NUMBER
= ISD::BUILTIN_OP_END
,
52 /// FSEL - Traditional three-operand fsel node.
56 /// FCFID - The FCFID instruction, taking an f64 operand and producing
57 /// and f64 value containing the FP representation of the integer that
58 /// was temporarily in the f64 operand.
61 /// Newer FCFID[US] integer-to-floating-point conversion instructions for
62 /// unsigned integers and single-precision outputs.
63 FCFIDU
, FCFIDS
, FCFIDUS
,
65 /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
66 /// operand, producing an f64 value containing the integer representation
70 /// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for
71 /// unsigned integers with round toward zero.
74 /// Floating-point-to-interger conversion instructions
75 FP_TO_UINT_IN_VSR
, FP_TO_SINT_IN_VSR
,
77 /// VEXTS, ByteWidth - takes an input in VSFRC and produces an output in
78 /// VSFRC that is sign-extended from ByteWidth to a 64-byte integer.
81 /// SExtVElems, takes an input vector of a smaller type and sign
82 /// extends to an output vector of a larger type.
85 /// Reciprocal estimate instructions (unary FP ops).
88 // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
89 // three v4f32 operands and producing a v4f32 result.
92 /// VPERM - The PPC VPERM Instruction.
96 /// XXSPLT - The PPC VSX splat instructions
100 /// VECINSERT - The PPC vector insert instruction
104 /// XXREVERSE - The PPC VSX reverse instruction
108 /// VECSHL - The PPC vector shift left instruction
112 /// XXPERMDI - The PPC XXPERMDI instruction
116 /// The CMPB instruction (takes two operands of i32 or i64).
119 /// Hi/Lo - These represent the high and low 16-bit parts of a global
120 /// address respectively. These nodes have two operands, the first of
121 /// which must be a TargetGlobalAddress, and the second of which must be a
122 /// Constant. Selected naively, these turn into 'lis G+C' and 'li G+C',
123 /// though these are usually folded into other nodes.
126 /// The following two target-specific nodes are used for calls through
127 /// function pointers in the 64-bit SVR4 ABI.
129 /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
130 /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
131 /// compute an allocation on the stack.
134 /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
135 /// compute an offset from native SP to the address of the most recent
139 /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
140 /// at function entry, used for PIC code.
143 /// These nodes represent PPC shifts.
145 /// For scalar types, only the last `n + 1` bits of the shift amounts
146 /// are used, where n is log2(sizeof(element) * 8). See sld/slw, etc.
147 /// for exact behaviors.
149 /// For vector types, only the last n bits are used. See vsld.
152 /// The combination of sra[wd]i and addze used to implemented signed
153 /// integer division by a power of 2. The first operand is the dividend,
154 /// and the second is the constant shift amount (representing the
158 /// CALL - A direct function call.
159 /// CALL_NOP is a call with the special NOP which follows 64-bit
163 /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
164 /// MTCTR instruction.
167 /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
168 /// BCTRL instruction.
171 /// CHAIN,FLAG = BCTRL(CHAIN, ADDR, INFLAG) - The combination of a bctrl
172 /// instruction and the TOC reload required on SVR4 PPC64.
175 /// Return with a flag operand, matched by 'blr'
178 /// R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction.
179 /// This copies the bits corresponding to the specified CRREG into the
180 /// resultant GPR. Bits corresponding to other CR regs are undefined.
183 /// Direct move from a VSX register to a GPR
186 /// Direct move from a GPR to a VSX register (algebraic)
189 /// Direct move from a GPR to a VSX register (zero)
192 /// Direct move of 2 consective GPR to a VSX register.
195 /// Extract a subvector from signed integer vector and convert to FP.
196 /// It is primarily used to convert a (widened) illegal integer vector
197 /// type to a legal floating point vector type.
198 /// For example v2i32 -> widened to v4i32 -> v2f64
201 /// Extract a subvector from unsigned integer vector and convert to FP.
202 /// As with SINT_VEC_TO_FP, used for converting illegal types.
205 // FIXME: Remove these once the ANDI glue bug is fixed:
206 /// i1 = ANDIo_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the
207 /// eq or gt bit of CR0 after executing andi. x, 1. This is used to
208 /// implement truncation of i32 or i64 to i1.
209 ANDIo_1_EQ_BIT
, ANDIo_1_GT_BIT
,
211 // READ_TIME_BASE - A read of the 64-bit time-base register on a 32-bit
212 // target (returns (Lo, Hi)). It takes a chain operand.
215 // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
218 // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
221 /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
222 /// instructions. For lack of better number, we use the opcode number
223 /// encoding for the OPC field to identify the compare. For example, 838
227 /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
228 /// altivec VCMP*o instructions. For lack of better number, we use the
229 /// opcode number encoding for the OPC field to identify the compare. For
230 /// example, 838 is VCMPGTSH.
233 /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
234 /// corresponds to the COND_BRANCH pseudo instruction. CRRC is the
235 /// condition register to branch on, OPC is the branch opcode to use (e.g.
236 /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
237 /// an optional input flag argument.
240 /// CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based
244 /// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding
245 /// towards zero. Used only as part of the long double-to-int
246 /// conversion sequence.
249 /// F8RC = MFFS - This moves the FPSCR (not modeled) into the register.
252 /// TC_RETURN - A tail call return.
254 /// operand #1 callee (register or absolute)
255 /// operand #2 stack adjustment
256 /// operand #3 optional in flag
259 /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
263 /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by initial-exec TLS
267 /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by general dynamic and
268 /// local dynamic TLS on PPC32.
271 /// G8RC = ADDIS_GOT_TPREL_HA %x2, Symbol - Used by the initial-exec
272 /// TLS model, produces an ADDIS8 instruction that adds the GOT
273 /// base to sym\@got\@tprel\@ha.
276 /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
277 /// TLS model, produces a LD instruction with base register G8RReg
278 /// and offset sym\@got\@tprel\@l. This completes the addition that
279 /// finds the offset of "sym" relative to the thread pointer.
282 /// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS
283 /// model, produces an ADD instruction that adds the contents of
284 /// G8RReg to the thread pointer. Symbol contains a relocation
285 /// sym\@tls which is to be replaced by the thread pointer and
286 /// identifies to the linker that the instruction is part of a
290 /// G8RC = ADDIS_TLSGD_HA %x2, Symbol - For the general-dynamic TLS
291 /// model, produces an ADDIS8 instruction that adds the GOT base
292 /// register to sym\@got\@tlsgd\@ha.
295 /// %x3 = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
296 /// model, produces an ADDI8 instruction that adds G8RReg to
297 /// sym\@got\@tlsgd\@l and stores the result in X3. Hidden by
298 /// ADDIS_TLSGD_L_ADDR until after register assignment.
301 /// %x3 = GET_TLS_ADDR %x3, Symbol - For the general-dynamic TLS
302 /// model, produces a call to __tls_get_addr(sym\@tlsgd). Hidden by
303 /// ADDIS_TLSGD_L_ADDR until after register assignment.
306 /// G8RC = ADDI_TLSGD_L_ADDR G8RReg, Symbol, Symbol - Op that
307 /// combines ADDI_TLSGD_L and GET_TLS_ADDR until expansion following
308 /// register assignment.
311 /// G8RC = ADDIS_TLSLD_HA %x2, Symbol - For the local-dynamic TLS
312 /// model, produces an ADDIS8 instruction that adds the GOT base
313 /// register to sym\@got\@tlsld\@ha.
316 /// %x3 = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
317 /// model, produces an ADDI8 instruction that adds G8RReg to
318 /// sym\@got\@tlsld\@l and stores the result in X3. Hidden by
319 /// ADDIS_TLSLD_L_ADDR until after register assignment.
322 /// %x3 = GET_TLSLD_ADDR %x3, Symbol - For the local-dynamic TLS
323 /// model, produces a call to __tls_get_addr(sym\@tlsld). Hidden by
324 /// ADDIS_TLSLD_L_ADDR until after register assignment.
327 /// G8RC = ADDI_TLSLD_L_ADDR G8RReg, Symbol, Symbol - Op that
328 /// combines ADDI_TLSLD_L and GET_TLSLD_ADDR until expansion
329 /// following register assignment.
332 /// G8RC = ADDIS_DTPREL_HA %x3, Symbol - For the local-dynamic TLS
333 /// model, produces an ADDIS8 instruction that adds X3 to
337 /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
338 /// model, produces an ADDI8 instruction that adds G8RReg to
339 /// sym\@got\@dtprel\@l.
342 /// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded
343 /// during instruction selection to optimize a BUILD_VECTOR into
344 /// operations on splats. This is necessary to avoid losing these
345 /// optimizations due to constant folding.
348 /// CHAIN = SC CHAIN, Imm128 - System call. The 7-bit unsigned
349 /// operand identifies the operating system entry point.
352 /// CHAIN = CLRBHRB CHAIN - Clear branch history rolling buffer.
355 /// GPRC, CHAIN = MFBHRBE CHAIN, Entry, Dummy - Move from branch
356 /// history rolling buffer entry.
359 /// CHAIN = RFEBB CHAIN, State - Return from event-based branch.
362 /// VSRC, CHAIN = XXSWAPD CHAIN, VSRC - Occurs only for little
363 /// endian. Maps to an xxswapd instruction that corrects an lxvd2x
364 /// or stxvd2x instruction. The chain is necessary because the
365 /// sequence replaces a load and needs to provide the same number
369 /// An SDNode for swaps that are not associated with any loads/stores
370 /// and thereby have no chain.
373 /// QVFPERM = This corresponds to the QPX qvfperm instruction.
376 /// QVGPCI = This corresponds to the QPX qvgpci instruction.
379 /// QVALIGNI = This corresponds to the QPX qvaligni instruction.
382 /// QVESPLATI = This corresponds to the QPX qvesplati instruction.
385 /// QBFLT = Access the underlying QPX floating-point boolean
389 /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
390 /// byte-swapping store instruction. It byte-swaps the low "Type" bits of
391 /// the GPRC input, then stores it through Ptr. Type can be either i16 or
393 STBRX
= ISD::FIRST_TARGET_MEMORY_OPCODE
,
395 /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
396 /// byte-swapping load instruction. It loads "Type" bits, byte swaps it,
397 /// then puts it in the bottom bits of the GPRC. TYPE can be either i16
401 /// STFIWX - The STFIWX instruction. The first operand is an input token
402 /// chain, then an f64 value to store, then an address to store it to.
405 /// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point
406 /// load which sign-extends from a 32-bit integer value into the
407 /// destination 64-bit register.
410 /// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point
411 /// load which zero-extends from a 32-bit integer value into the
412 /// destination 64-bit register.
415 /// GPRC, CHAIN = LXSIZX, CHAIN, Ptr, ByteWidth - This is a load of an
416 /// integer smaller than 64 bits into a VSR. The integer is zero-extended.
417 /// This can be used for converting loaded integers to floating point.
420 /// STXSIX - The STXSI[bh]X instruction. The first operand is an input
421 /// chain, then an f64 value to store, then an address to store it to,
422 /// followed by a byte-width for the store.
425 /// VSRC, CHAIN = LXVD2X_LE CHAIN, Ptr - Occurs only for little endian.
426 /// Maps directly to an lxvd2x instruction that will be followed by
430 /// CHAIN = STXVD2X CHAIN, VSRC, Ptr - Occurs only for little endian.
431 /// Maps directly to an stxvd2x instruction that will be preceded by
435 /// Store scalar integers from VSR.
438 /// QBRC, CHAIN = QVLFSb CHAIN, Ptr
439 /// The 4xf32 load used for v4i1 constants.
442 /// ATOMIC_CMP_SWAP - the exact same as the target-independent nodes
443 /// except they ensure that the compare input is zero-extended for
444 /// sub-word versions because the atomic loads zero-extend.
445 ATOMIC_CMP_SWAP_8
, ATOMIC_CMP_SWAP_16
,
447 /// GPRC = TOC_ENTRY GA, TOC
448 /// Loads the entry for GA from the TOC, where the TOC base is given by
449 /// the last operand.
453 } // end namespace PPCISD
455 /// Define some predicates that are used for node matching.
458 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
459 /// VPKUHUM instruction.
460 bool isVPKUHUMShuffleMask(ShuffleVectorSDNode
*N
, unsigned ShuffleKind
,
463 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
464 /// VPKUWUM instruction.
465 bool isVPKUWUMShuffleMask(ShuffleVectorSDNode
*N
, unsigned ShuffleKind
,
468 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
469 /// VPKUDUM instruction.
470 bool isVPKUDUMShuffleMask(ShuffleVectorSDNode
*N
, unsigned ShuffleKind
,
473 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
474 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
475 bool isVMRGLShuffleMask(ShuffleVectorSDNode
*N
, unsigned UnitSize
,
476 unsigned ShuffleKind
, SelectionDAG
&DAG
);
478 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
479 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
480 bool isVMRGHShuffleMask(ShuffleVectorSDNode
*N
, unsigned UnitSize
,
481 unsigned ShuffleKind
, SelectionDAG
&DAG
);
483 /// isVMRGEOShuffleMask - Return true if this is a shuffle mask suitable for
484 /// a VMRGEW or VMRGOW instruction
485 bool isVMRGEOShuffleMask(ShuffleVectorSDNode
*N
, bool CheckEven
,
486 unsigned ShuffleKind
, SelectionDAG
&DAG
);
487 /// isXXSLDWIShuffleMask - Return true if this is a shuffle mask suitable
488 /// for a XXSLDWI instruction.
489 bool isXXSLDWIShuffleMask(ShuffleVectorSDNode
*N
, unsigned &ShiftElts
,
490 bool &Swap
, bool IsLE
);
492 /// isXXBRHShuffleMask - Return true if this is a shuffle mask suitable
493 /// for a XXBRH instruction.
494 bool isXXBRHShuffleMask(ShuffleVectorSDNode
*N
);
496 /// isXXBRWShuffleMask - Return true if this is a shuffle mask suitable
497 /// for a XXBRW instruction.
498 bool isXXBRWShuffleMask(ShuffleVectorSDNode
*N
);
500 /// isXXBRDShuffleMask - Return true if this is a shuffle mask suitable
501 /// for a XXBRD instruction.
502 bool isXXBRDShuffleMask(ShuffleVectorSDNode
*N
);
504 /// isXXBRQShuffleMask - Return true if this is a shuffle mask suitable
505 /// for a XXBRQ instruction.
506 bool isXXBRQShuffleMask(ShuffleVectorSDNode
*N
);
508 /// isXXPERMDIShuffleMask - Return true if this is a shuffle mask suitable
509 /// for a XXPERMDI instruction.
510 bool isXXPERMDIShuffleMask(ShuffleVectorSDNode
*N
, unsigned &ShiftElts
,
511 bool &Swap
, bool IsLE
);
513 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the
514 /// shift amount, otherwise return -1.
515 int isVSLDOIShuffleMask(SDNode
*N
, unsigned ShuffleKind
,
518 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
519 /// specifies a splat of a single element that is suitable for input to
520 /// VSPLTB/VSPLTH/VSPLTW.
521 bool isSplatShuffleMask(ShuffleVectorSDNode
*N
, unsigned EltSize
);
523 /// isXXINSERTWMask - Return true if this VECTOR_SHUFFLE can be handled by
524 /// the XXINSERTW instruction introduced in ISA 3.0. This is essentially any
525 /// shuffle of v4f32/v4i32 vectors that just inserts one element from one
526 /// vector into the other. This function will also set a couple of
527 /// output parameters for how much the source vector needs to be shifted and
528 /// what byte number needs to be specified for the instruction to put the
529 /// element in the desired location of the target vector.
530 bool isXXINSERTWMask(ShuffleVectorSDNode
*N
, unsigned &ShiftElts
,
531 unsigned &InsertAtByte
, bool &Swap
, bool IsLE
);
533 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
534 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
535 unsigned getVSPLTImmediate(SDNode
*N
, unsigned EltSize
, SelectionDAG
&DAG
);
537 /// get_VSPLTI_elt - If this is a build_vector of constants which can be
538 /// formed by using a vspltis[bhw] instruction of the specified element
539 /// size, return the constant being splatted. The ByteSize field indicates
540 /// the number of bytes of each element [124] -> [bhw].
541 SDValue
get_VSPLTI_elt(SDNode
*N
, unsigned ByteSize
, SelectionDAG
&DAG
);
543 /// If this is a qvaligni shuffle mask, return the shift
544 /// amount, otherwise return -1.
545 int isQVALIGNIShuffleMask(SDNode
*N
);
547 } // end namespace PPC
549 class PPCTargetLowering
: public TargetLowering
{
550 const PPCSubtarget
&Subtarget
;
553 explicit PPCTargetLowering(const PPCTargetMachine
&TM
,
554 const PPCSubtarget
&STI
);
556 /// getTargetNodeName() - This method returns the name of a target specific
558 const char *getTargetNodeName(unsigned Opcode
) const override
;
560 /// getPreferredVectorAction - The code we generate when vector types are
561 /// legalized by promoting the integer element type is often much worse
562 /// than code we generate if we widen the type for applicable vector types.
563 /// The issue with promoting is that the vector is scalaraized, individual
564 /// elements promoted and then the vector is rebuilt. So say we load a pair
565 /// of v4i8's and shuffle them. This will turn into a mess of 8 extending
566 /// loads, moves back into VSR's (or memory ops if we don't have moves) and
567 /// then the VPERM for the shuffle. All in all a very slow sequence.
568 TargetLoweringBase::LegalizeTypeAction
getPreferredVectorAction(EVT VT
)
570 if (VT
.getScalarSizeInBits() % 8 == 0)
571 return TypeWidenVector
;
572 return TargetLoweringBase::getPreferredVectorAction(VT
);
575 bool useSoftFloat() const override
;
577 MVT
getScalarShiftAmountTy(const DataLayout
&, EVT
) const override
{
581 bool isCheapToSpeculateCttz() const override
{
585 bool isCheapToSpeculateCtlz() const override
{
589 bool isCtlzFast() const override
{
593 bool hasAndNotCompare(SDValue
) const override
{
597 bool convertSetCCLogicToBitwiseLogic(EVT VT
) const override
{
598 return VT
.isScalarInteger();
601 bool supportSplitCSR(MachineFunction
*MF
) const override
{
603 MF
->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS
&&
604 MF
->getFunction().hasFnAttribute(Attribute::NoUnwind
);
607 void initializeSplitCSR(MachineBasicBlock
*Entry
) const override
;
609 void insertCopiesSplitCSR(
610 MachineBasicBlock
*Entry
,
611 const SmallVectorImpl
<MachineBasicBlock
*> &Exits
) const override
;
613 /// getSetCCResultType - Return the ISD::SETCC ValueType
614 EVT
getSetCCResultType(const DataLayout
&DL
, LLVMContext
&Context
,
615 EVT VT
) const override
;
617 /// Return true if target always beneficiates from combining into FMA for a
618 /// given value type. This must typically return false on targets where FMA
619 /// takes more cycles to execute than FADD.
620 bool enableAggressiveFMAFusion(EVT VT
) const override
;
622 /// getPreIndexedAddressParts - returns true by value, base pointer and
623 /// offset pointer and addressing mode by reference if the node's address
624 /// can be legally represented as pre-indexed load / store address.
625 bool getPreIndexedAddressParts(SDNode
*N
, SDValue
&Base
,
627 ISD::MemIndexedMode
&AM
,
628 SelectionDAG
&DAG
) const override
;
630 /// SelectAddressRegReg - Given the specified addressed, check to see if it
631 /// can be represented as an indexed [r+r] operation. Returns false if it
632 /// can be more efficiently represented with [r+imm].
633 bool SelectAddressRegReg(SDValue N
, SDValue
&Base
, SDValue
&Index
,
634 SelectionDAG
&DAG
) const;
636 /// SelectAddressRegImm - Returns true if the address N can be represented
637 /// by a base register plus a signed 16-bit displacement [r+imm], and if it
638 /// is not better represented as reg+reg. If Aligned is true, only accept
639 /// displacements suitable for STD and friends, i.e. multiples of 4.
640 bool SelectAddressRegImm(SDValue N
, SDValue
&Disp
, SDValue
&Base
,
641 SelectionDAG
&DAG
, unsigned Alignment
) const;
643 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
644 /// represented as an indexed [r+r] operation.
645 bool SelectAddressRegRegOnly(SDValue N
, SDValue
&Base
, SDValue
&Index
,
646 SelectionDAG
&DAG
) const;
648 Sched::Preference
getSchedulingPreference(SDNode
*N
) const override
;
650 /// LowerOperation - Provide custom lowering hooks for some operations.
652 SDValue
LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const override
;
654 /// ReplaceNodeResults - Replace the results of node with an illegal result
655 /// type with new values built out of custom code.
657 void ReplaceNodeResults(SDNode
*N
, SmallVectorImpl
<SDValue
>&Results
,
658 SelectionDAG
&DAG
) const override
;
660 SDValue
expandVSXLoadForLE(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
661 SDValue
expandVSXStoreForLE(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
663 SDValue
PerformDAGCombine(SDNode
*N
, DAGCombinerInfo
&DCI
) const override
;
665 SDValue
BuildSDIVPow2(SDNode
*N
, const APInt
&Divisor
, SelectionDAG
&DAG
,
666 std::vector
<SDNode
*> *Created
) const override
;
668 unsigned getRegisterByName(const char* RegName
, EVT VT
,
669 SelectionDAG
&DAG
) const override
;
671 void computeKnownBitsForTargetNode(const SDValue Op
,
673 const APInt
&DemandedElts
,
674 const SelectionDAG
&DAG
,
675 unsigned Depth
= 0) const override
;
677 unsigned getPrefLoopAlignment(MachineLoop
*ML
) const override
;
679 bool shouldInsertFencesForAtomic(const Instruction
*I
) const override
{
683 Instruction
*emitLeadingFence(IRBuilder
<> &Builder
, Instruction
*Inst
,
684 AtomicOrdering Ord
) const override
;
685 Instruction
*emitTrailingFence(IRBuilder
<> &Builder
, Instruction
*Inst
,
686 AtomicOrdering Ord
) const override
;
689 EmitInstrWithCustomInserter(MachineInstr
&MI
,
690 MachineBasicBlock
*MBB
) const override
;
691 MachineBasicBlock
*EmitAtomicBinary(MachineInstr
&MI
,
692 MachineBasicBlock
*MBB
,
695 unsigned CmpOpcode
= 0,
696 unsigned CmpPred
= 0) const;
697 MachineBasicBlock
*EmitPartwordAtomicBinary(MachineInstr
&MI
,
698 MachineBasicBlock
*MBB
,
701 unsigned CmpOpcode
= 0,
702 unsigned CmpPred
= 0) const;
704 MachineBasicBlock
*emitEHSjLjSetJmp(MachineInstr
&MI
,
705 MachineBasicBlock
*MBB
) const;
707 MachineBasicBlock
*emitEHSjLjLongJmp(MachineInstr
&MI
,
708 MachineBasicBlock
*MBB
) const;
710 ConstraintType
getConstraintType(StringRef Constraint
) const override
;
712 /// Examine constraint string and operand type and determine a weight value.
713 /// The operand object must already have been set up with the operand type.
714 ConstraintWeight
getSingleConstraintMatchWeight(
715 AsmOperandInfo
&info
, const char *constraint
) const override
;
717 std::pair
<unsigned, const TargetRegisterClass
*>
718 getRegForInlineAsmConstraint(const TargetRegisterInfo
*TRI
,
719 StringRef Constraint
, MVT VT
) const override
;
721 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
722 /// function arguments in the caller parameter area. This is the actual
723 /// alignment, not its logarithm.
724 unsigned getByValTypeAlignment(Type
*Ty
,
725 const DataLayout
&DL
) const override
;
727 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
728 /// vector. If it is invalid, don't add anything to Ops.
729 void LowerAsmOperandForConstraint(SDValue Op
,
730 std::string
&Constraint
,
731 std::vector
<SDValue
> &Ops
,
732 SelectionDAG
&DAG
) const override
;
735 getInlineAsmMemConstraint(StringRef ConstraintCode
) const override
{
736 if (ConstraintCode
== "es")
737 return InlineAsm::Constraint_es
;
738 else if (ConstraintCode
== "o")
739 return InlineAsm::Constraint_o
;
740 else if (ConstraintCode
== "Q")
741 return InlineAsm::Constraint_Q
;
742 else if (ConstraintCode
== "Z")
743 return InlineAsm::Constraint_Z
;
744 else if (ConstraintCode
== "Zy")
745 return InlineAsm::Constraint_Zy
;
746 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode
);
749 /// isLegalAddressingMode - Return true if the addressing mode represented
750 /// by AM is legal for this target, for a load/store of the specified type.
751 bool isLegalAddressingMode(const DataLayout
&DL
, const AddrMode
&AM
,
752 Type
*Ty
, unsigned AS
,
753 Instruction
*I
= nullptr) const override
;
755 /// isLegalICmpImmediate - Return true if the specified immediate is legal
756 /// icmp immediate, that is the target has icmp instructions which can
757 /// compare a register against the immediate without having to materialize
758 /// the immediate into a register.
759 bool isLegalICmpImmediate(int64_t Imm
) const override
;
761 /// isLegalAddImmediate - Return true if the specified immediate is legal
762 /// add immediate, that is the target has add instructions which can
763 /// add a register and the immediate without having to materialize
764 /// the immediate into a register.
765 bool isLegalAddImmediate(int64_t Imm
) const override
;
767 /// isTruncateFree - Return true if it's free to truncate a value of
768 /// type Ty1 to type Ty2. e.g. On PPC it's free to truncate a i64 value in
769 /// register X1 to i32 by referencing its sub-register R1.
770 bool isTruncateFree(Type
*Ty1
, Type
*Ty2
) const override
;
771 bool isTruncateFree(EVT VT1
, EVT VT2
) const override
;
773 bool isZExtFree(SDValue Val
, EVT VT2
) const override
;
775 bool isFPExtFree(EVT DestVT
, EVT SrcVT
) const override
;
777 /// Returns true if it is beneficial to convert a load of a constant
778 /// to just the constant itself.
779 bool shouldConvertConstantLoadToIntImm(const APInt
&Imm
,
780 Type
*Ty
) const override
;
782 bool convertSelectOfConstantsToMath(EVT VT
) const override
{
786 bool isOffsetFoldingLegal(const GlobalAddressSDNode
*GA
) const override
;
788 bool getTgtMemIntrinsic(IntrinsicInfo
&Info
,
791 unsigned Intrinsic
) const override
;
793 /// getOptimalMemOpType - Returns the target specific optimal type for load
794 /// and store operations as a result of memset, memcpy, and memmove
795 /// lowering. If DstAlign is zero that means it's safe to destination
796 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
797 /// means there isn't a need to check it against alignment requirement,
798 /// probably because the source does not need to be loaded. If 'IsMemset' is
799 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
800 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
801 /// source is constant so it does not need to be loaded.
802 /// It returns EVT::Other if the type should be determined using generic
803 /// target-independent logic.
805 getOptimalMemOpType(uint64_t Size
, unsigned DstAlign
, unsigned SrcAlign
,
806 bool IsMemset
, bool ZeroMemset
, bool MemcpyStrSrc
,
807 MachineFunction
&MF
) const override
;
809 /// Is unaligned memory access allowed for the given type, and is it fast
810 /// relative to software emulation.
811 bool allowsMisalignedMemoryAccesses(EVT VT
,
814 bool *Fast
= nullptr) const override
;
816 /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
817 /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
818 /// expanded to FMAs when this method returns true, otherwise fmuladd is
819 /// expanded to fmul + fadd.
820 bool isFMAFasterThanFMulAndFAdd(EVT VT
) const override
;
822 const MCPhysReg
*getScratchRegisters(CallingConv::ID CC
) const override
;
824 // Should we expand the build vector with shuffles?
826 shouldExpandBuildVectorWithShuffles(EVT VT
,
827 unsigned DefinedValues
) const override
;
829 /// createFastISel - This method returns a target-specific FastISel object,
830 /// or null if the target does not support "fast" instruction selection.
831 FastISel
*createFastISel(FunctionLoweringInfo
&FuncInfo
,
832 const TargetLibraryInfo
*LibInfo
) const override
;
834 /// Returns true if an argument of type Ty needs to be passed in a
835 /// contiguous block of registers in calling convention CallConv.
836 bool functionArgumentNeedsConsecutiveRegisters(
837 Type
*Ty
, CallingConv::ID CallConv
, bool isVarArg
) const override
{
838 // We support any array type as "consecutive" block in the parameter
839 // save area. The element type defines the alignment requirement and
840 // whether the argument should go in GPRs, FPRs, or VRs if available.
842 // Note that clang uses this capability both to implement the ELFv2
843 // homogeneous float/vector aggregate ABI, and to avoid having to use
844 // "byval" when passing aggregates that might fully fit in registers.
845 return Ty
->isArrayTy();
848 /// If a physical register, this returns the register that receives the
849 /// exception address on entry to an EH pad.
851 getExceptionPointerRegister(const Constant
*PersonalityFn
) const override
;
853 /// If a physical register, this returns the register that receives the
854 /// exception typeid on entry to a landing pad.
856 getExceptionSelectorRegister(const Constant
*PersonalityFn
) const override
;
858 /// Override to support customized stack guard loading.
859 bool useLoadStackGuardNode() const override
;
860 void insertSSPDeclarations(Module
&M
) const override
;
862 bool isFPImmLegal(const APFloat
&Imm
, EVT VT
) const override
;
864 unsigned getJumpTableEncoding() const override
;
865 bool isJumpTableRelative() const override
;
866 SDValue
getPICJumpTableRelocBase(SDValue Table
,
867 SelectionDAG
&DAG
) const override
;
868 const MCExpr
*getPICJumpTableRelocBaseExpr(const MachineFunction
*MF
,
870 MCContext
&Ctx
) const override
;
873 struct ReuseLoadInfo
{
877 MachinePointerInfo MPI
;
878 bool IsDereferenceable
= false;
879 bool IsInvariant
= false;
880 unsigned Alignment
= 0;
882 const MDNode
*Ranges
= nullptr;
884 ReuseLoadInfo() = default;
886 MachineMemOperand::Flags
MMOFlags() const {
887 MachineMemOperand::Flags F
= MachineMemOperand::MONone
;
888 if (IsDereferenceable
)
889 F
|= MachineMemOperand::MODereferenceable
;
891 F
|= MachineMemOperand::MOInvariant
;
896 bool isNoopAddrSpaceCast(unsigned SrcAS
, unsigned DestAS
) const override
{
897 // Addrspacecasts are always noops.
901 bool canReuseLoadAddress(SDValue Op
, EVT MemVT
, ReuseLoadInfo
&RLI
,
903 ISD::LoadExtType ET
= ISD::NON_EXTLOAD
) const;
904 void spliceIntoChain(SDValue ResChain
, SDValue NewResChain
,
905 SelectionDAG
&DAG
) const;
907 void LowerFP_TO_INTForReuse(SDValue Op
, ReuseLoadInfo
&RLI
,
908 SelectionDAG
&DAG
, const SDLoc
&dl
) const;
909 SDValue
LowerFP_TO_INTDirectMove(SDValue Op
, SelectionDAG
&DAG
,
910 const SDLoc
&dl
) const;
912 bool directMoveIsProfitable(const SDValue
&Op
) const;
913 SDValue
LowerINT_TO_FPDirectMove(SDValue Op
, SelectionDAG
&DAG
,
914 const SDLoc
&dl
) const;
916 SDValue
getFramePointerFrameIndex(SelectionDAG
& DAG
) const;
917 SDValue
getReturnAddrFrameIndex(SelectionDAG
& DAG
) const;
920 IsEligibleForTailCallOptimization(SDValue Callee
,
921 CallingConv::ID CalleeCC
,
923 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
924 SelectionDAG
& DAG
) const;
927 IsEligibleForTailCallOptimization_64SVR4(
929 CallingConv::ID CalleeCC
,
930 ImmutableCallSite CS
,
932 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
933 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
934 SelectionDAG
& DAG
) const;
936 SDValue
EmitTailCallLoadFPAndRetAddr(SelectionDAG
&DAG
, int SPDiff
,
937 SDValue Chain
, SDValue
&LROpOut
,
939 const SDLoc
&dl
) const;
941 SDValue
LowerRETURNADDR(SDValue Op
, SelectionDAG
&DAG
) const;
942 SDValue
LowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
) const;
943 SDValue
LowerConstantPool(SDValue Op
, SelectionDAG
&DAG
) const;
944 SDValue
LowerBlockAddress(SDValue Op
, SelectionDAG
&DAG
) const;
945 SDValue
LowerGlobalTLSAddress(SDValue Op
, SelectionDAG
&DAG
) const;
946 SDValue
LowerGlobalAddress(SDValue Op
, SelectionDAG
&DAG
) const;
947 SDValue
LowerJumpTable(SDValue Op
, SelectionDAG
&DAG
) const;
948 SDValue
LowerSETCC(SDValue Op
, SelectionDAG
&DAG
) const;
949 SDValue
LowerINIT_TRAMPOLINE(SDValue Op
, SelectionDAG
&DAG
) const;
950 SDValue
LowerADJUST_TRAMPOLINE(SDValue Op
, SelectionDAG
&DAG
) const;
951 SDValue
LowerVASTART(SDValue Op
, SelectionDAG
&DAG
) const;
952 SDValue
LowerVAARG(SDValue Op
, SelectionDAG
&DAG
) const;
953 SDValue
LowerVACOPY(SDValue Op
, SelectionDAG
&DAG
) const;
954 SDValue
LowerSTACKRESTORE(SDValue Op
, SelectionDAG
&DAG
) const;
955 SDValue
LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op
, SelectionDAG
&DAG
) const;
956 SDValue
LowerDYNAMIC_STACKALLOC(SDValue Op
, SelectionDAG
&DAG
) const;
957 SDValue
LowerEH_DWARF_CFA(SDValue Op
, SelectionDAG
&DAG
) const;
958 SDValue
LowerLOAD(SDValue Op
, SelectionDAG
&DAG
) const;
959 SDValue
LowerSTORE(SDValue Op
, SelectionDAG
&DAG
) const;
960 SDValue
LowerTRUNCATE(SDValue Op
, SelectionDAG
&DAG
) const;
961 SDValue
LowerSELECT_CC(SDValue Op
, SelectionDAG
&DAG
) const;
962 SDValue
LowerFP_TO_INT(SDValue Op
, SelectionDAG
&DAG
,
963 const SDLoc
&dl
) const;
964 SDValue
LowerINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) const;
965 SDValue
LowerFLT_ROUNDS_(SDValue Op
, SelectionDAG
&DAG
) const;
966 SDValue
LowerSHL_PARTS(SDValue Op
, SelectionDAG
&DAG
) const;
967 SDValue
LowerSRL_PARTS(SDValue Op
, SelectionDAG
&DAG
) const;
968 SDValue
LowerSRA_PARTS(SDValue Op
, SelectionDAG
&DAG
) const;
969 SDValue
LowerBUILD_VECTOR(SDValue Op
, SelectionDAG
&DAG
) const;
970 SDValue
LowerVECTOR_SHUFFLE(SDValue Op
, SelectionDAG
&DAG
) const;
971 SDValue
LowerINSERT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
) const;
972 SDValue
LowerEXTRACT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
) const;
973 SDValue
LowerINTRINSIC_WO_CHAIN(SDValue Op
, SelectionDAG
&DAG
) const;
974 SDValue
LowerINTRINSIC_VOID(SDValue Op
, SelectionDAG
&DAG
) const;
975 SDValue
LowerREM(SDValue Op
, SelectionDAG
&DAG
) const;
976 SDValue
LowerBSWAP(SDValue Op
, SelectionDAG
&DAG
) const;
977 SDValue
LowerATOMIC_CMP_SWAP(SDValue Op
, SelectionDAG
&DAG
) const;
978 SDValue
LowerSCALAR_TO_VECTOR(SDValue Op
, SelectionDAG
&DAG
) const;
979 SDValue
LowerSIGN_EXTEND_INREG(SDValue Op
, SelectionDAG
&DAG
) const;
980 SDValue
LowerMUL(SDValue Op
, SelectionDAG
&DAG
) const;
982 SDValue
LowerVectorLoad(SDValue Op
, SelectionDAG
&DAG
) const;
983 SDValue
LowerVectorStore(SDValue Op
, SelectionDAG
&DAG
) const;
985 SDValue
LowerCallResult(SDValue Chain
, SDValue InFlag
,
986 CallingConv::ID CallConv
, bool isVarArg
,
987 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
988 const SDLoc
&dl
, SelectionDAG
&DAG
,
989 SmallVectorImpl
<SDValue
> &InVals
) const;
990 SDValue
FinishCall(CallingConv::ID CallConv
, const SDLoc
&dl
,
991 bool isTailCall
, bool isVarArg
, bool isPatchPoint
,
992 bool hasNest
, SelectionDAG
&DAG
,
993 SmallVector
<std::pair
<unsigned, SDValue
>, 8> &RegsToPass
,
994 SDValue InFlag
, SDValue Chain
, SDValue CallSeqStart
,
995 SDValue
&Callee
, int SPDiff
, unsigned NumBytes
,
996 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
997 SmallVectorImpl
<SDValue
> &InVals
,
998 ImmutableCallSite CS
) const;
1001 LowerFormalArguments(SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
1002 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1003 const SDLoc
&dl
, SelectionDAG
&DAG
,
1004 SmallVectorImpl
<SDValue
> &InVals
) const override
;
1006 SDValue
LowerCall(TargetLowering::CallLoweringInfo
&CLI
,
1007 SmallVectorImpl
<SDValue
> &InVals
) const override
;
1009 bool CanLowerReturn(CallingConv::ID CallConv
, MachineFunction
&MF
,
1011 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1012 LLVMContext
&Context
) const override
;
1014 SDValue
LowerReturn(SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
1015 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1016 const SmallVectorImpl
<SDValue
> &OutVals
,
1017 const SDLoc
&dl
, SelectionDAG
&DAG
) const override
;
1019 SDValue
extendArgForPPC64(ISD::ArgFlagsTy Flags
, EVT ObjectVT
,
1020 SelectionDAG
&DAG
, SDValue ArgVal
,
1021 const SDLoc
&dl
) const;
1023 SDValue
LowerFormalArguments_Darwin(
1024 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
1025 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
1026 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const;
1027 SDValue
LowerFormalArguments_64SVR4(
1028 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
1029 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
1030 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const;
1031 SDValue
LowerFormalArguments_32SVR4(
1032 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
1033 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
1034 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const;
1036 SDValue
createMemcpyOutsideCallSeq(SDValue Arg
, SDValue PtrOff
,
1037 SDValue CallSeqStart
,
1038 ISD::ArgFlagsTy Flags
, SelectionDAG
&DAG
,
1039 const SDLoc
&dl
) const;
1041 SDValue
LowerCall_Darwin(SDValue Chain
, SDValue Callee
,
1042 CallingConv::ID CallConv
, bool isVarArg
,
1043 bool isTailCall
, bool isPatchPoint
,
1044 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1045 const SmallVectorImpl
<SDValue
> &OutVals
,
1046 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1047 const SDLoc
&dl
, SelectionDAG
&DAG
,
1048 SmallVectorImpl
<SDValue
> &InVals
,
1049 ImmutableCallSite CS
) const;
1050 SDValue
LowerCall_64SVR4(SDValue Chain
, SDValue Callee
,
1051 CallingConv::ID CallConv
, bool isVarArg
,
1052 bool isTailCall
, bool isPatchPoint
,
1053 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1054 const SmallVectorImpl
<SDValue
> &OutVals
,
1055 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1056 const SDLoc
&dl
, SelectionDAG
&DAG
,
1057 SmallVectorImpl
<SDValue
> &InVals
,
1058 ImmutableCallSite CS
) const;
1059 SDValue
LowerCall_32SVR4(SDValue Chain
, SDValue Callee
,
1060 CallingConv::ID CallConv
, bool isVarArg
,
1061 bool isTailCall
, bool isPatchPoint
,
1062 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1063 const SmallVectorImpl
<SDValue
> &OutVals
,
1064 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1065 const SDLoc
&dl
, SelectionDAG
&DAG
,
1066 SmallVectorImpl
<SDValue
> &InVals
,
1067 ImmutableCallSite CS
) const;
1069 SDValue
lowerEH_SJLJ_SETJMP(SDValue Op
, SelectionDAG
&DAG
) const;
1070 SDValue
lowerEH_SJLJ_LONGJMP(SDValue Op
, SelectionDAG
&DAG
) const;
1071 SDValue
LowerBITCAST(SDValue Op
, SelectionDAG
&DAG
) const;
1073 SDValue
DAGCombineExtBoolTrunc(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1074 SDValue
DAGCombineBuildVector(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1075 SDValue
DAGCombineTruncBoolExt(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1076 SDValue
combineStoreFPToInt(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1077 SDValue
combineFPToIntToFP(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1078 SDValue
combineSHL(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1079 SDValue
combineSRA(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1080 SDValue
combineSRL(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1082 /// ConvertSETCCToSubtract - looks at SETCC that compares ints. It replaces
1083 /// SETCC with integer subtraction when (1) there is a legal way of doing it
1084 /// (2) keeping the result of comparison in GPR has performance benefit.
1085 SDValue
ConvertSETCCToSubtract(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1087 SDValue
getSqrtEstimate(SDValue Operand
, SelectionDAG
&DAG
, int Enabled
,
1088 int &RefinementSteps
, bool &UseOneConstNR
,
1089 bool Reciprocal
) const override
;
1090 SDValue
getRecipEstimate(SDValue Operand
, SelectionDAG
&DAG
, int Enabled
,
1091 int &RefinementSteps
) const override
;
1092 unsigned combineRepeatedFPDivisors() const override
;
1094 CCAssignFn
*useFastISelCCs(unsigned Flag
) const;
1097 combineElementTruncationToVectorTruncation(SDNode
*N
,
1098 DAGCombinerInfo
&DCI
) const;
1100 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be
1101 /// handled by the VINSERTH instruction introduced in ISA 3.0. This is
1102 /// essentially any shuffle of v8i16 vectors that just inserts one element
1103 /// from one vector into the other.
1104 SDValue
lowerToVINSERTH(ShuffleVectorSDNode
*N
, SelectionDAG
&DAG
) const;
1106 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be
1107 /// handled by the VINSERTB instruction introduced in ISA 3.0. This is
1108 /// essentially v16i8 vector version of VINSERTH.
1109 SDValue
lowerToVINSERTB(ShuffleVectorSDNode
*N
, SelectionDAG
&DAG
) const;
1111 // Return whether the call instruction can potentially be optimized to a
1112 // tail call. This will cause the optimizers to attempt to move, or
1113 // duplicate return instructions to help enable tail call optimizations.
1114 bool mayBeEmittedAsTailCall(const CallInst
*CI
) const override
;
1115 bool isMaskAndCmp0FoldingBeneficial(const Instruction
&AndI
) const override
;
1116 }; // end class PPCTargetLowering
1120 FastISel
*createFastISel(FunctionLoweringInfo
&FuncInfo
,
1121 const TargetLibraryInfo
*LibInfo
);
1123 } // end namespace PPC
1125 bool CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo
, MVT
&ValVT
, MVT
&LocVT
,
1126 CCValAssign::LocInfo
&LocInfo
,
1127 ISD::ArgFlagsTy
&ArgFlags
,
1130 bool CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo
, MVT
&ValVT
,
1132 CCValAssign::LocInfo
&LocInfo
,
1133 ISD::ArgFlagsTy
&ArgFlags
,
1137 CC_PPC32_SVR4_Custom_SkipLastArgRegsPPCF128(unsigned &ValNo
, MVT
&ValVT
,
1139 CCValAssign::LocInfo
&LocInfo
,
1140 ISD::ArgFlagsTy
&ArgFlags
,
1143 bool CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo
, MVT
&ValVT
,
1145 CCValAssign::LocInfo
&LocInfo
,
1146 ISD::ArgFlagsTy
&ArgFlags
,
1149 bool isIntS16Immediate(SDNode
*N
, int16_t &Imm
);
1150 bool isIntS16Immediate(SDValue Op
, int16_t &Imm
);
1152 } // end namespace llvm
1154 #endif // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H