1 //===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass statically checks for common and easily-identified constructs
10 // which produce undefined or likely unintended behavior in LLVM IR.
12 // It is not a guarantee of correctness, in two ways. First, it isn't
13 // comprehensive. There are checks which could be done statically which are
14 // not yet implemented. Some of these are indicated by TODO comments, but
15 // those aren't comprehensive either. Second, many conditions cannot be
16 // checked statically. This pass does no dynamic instrumentation, so it
17 // can't check for all possible problems.
19 // Another limitation is that it assumes all code will be executed. A store
20 // through a null pointer in a basic block which is never reached is harmless,
21 // but this pass will warn about it anyway. This is the main reason why most
22 // of these checks live here instead of in the Verifier pass.
24 // Optimization passes may make conditions that this pass checks for more or
25 // less obvious. If an optimization pass appears to be introducing a warning,
26 // it may be that the optimization pass is merely exposing an existing
27 // condition in the code.
29 // This code may be run before instcombine. In many cases, instcombine checks
30 // for the same kinds of things and turns instructions with undefined behavior
31 // into unreachable (or equivalent). Because of this, this pass makes some
32 // effort to look through bitcasts and so on.
34 //===----------------------------------------------------------------------===//
36 #include "llvm/Analysis/Lint.h"
37 #include "llvm/ADT/APInt.h"
38 #include "llvm/ADT/ArrayRef.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/AliasAnalysis.h"
42 #include "llvm/Analysis/AssumptionCache.h"
43 #include "llvm/Analysis/ConstantFolding.h"
44 #include "llvm/Analysis/InstructionSimplify.h"
45 #include "llvm/Analysis/Loads.h"
46 #include "llvm/Analysis/MemoryLocation.h"
47 #include "llvm/Analysis/Passes.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/Analysis/ValueTracking.h"
50 #include "llvm/IR/Argument.h"
51 #include "llvm/IR/BasicBlock.h"
52 #include "llvm/IR/CallSite.h"
53 #include "llvm/IR/Constant.h"
54 #include "llvm/IR/Constants.h"
55 #include "llvm/IR/DataLayout.h"
56 #include "llvm/IR/DerivedTypes.h"
57 #include "llvm/IR/Dominators.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/GlobalVariable.h"
60 #include "llvm/IR/InstVisitor.h"
61 #include "llvm/IR/InstrTypes.h"
62 #include "llvm/IR/Instruction.h"
63 #include "llvm/IR/Instructions.h"
64 #include "llvm/IR/IntrinsicInst.h"
65 #include "llvm/IR/LegacyPassManager.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/Type.h"
68 #include "llvm/IR/Value.h"
69 #include "llvm/Pass.h"
70 #include "llvm/Support/Casting.h"
71 #include "llvm/Support/Debug.h"
72 #include "llvm/Support/KnownBits.h"
73 #include "llvm/Support/MathExtras.h"
74 #include "llvm/Support/raw_ostream.h"
84 static const unsigned Read
= 1;
85 static const unsigned Write
= 2;
86 static const unsigned Callee
= 4;
87 static const unsigned Branchee
= 8;
88 } // end namespace MemRef
90 class Lint
: public FunctionPass
, public InstVisitor
<Lint
> {
91 friend class InstVisitor
<Lint
>;
93 void visitFunction(Function
&F
);
95 void visitCallSite(CallSite CS
);
96 void visitMemoryReference(Instruction
&I
, Value
*Ptr
,
97 uint64_t Size
, unsigned Align
,
98 Type
*Ty
, unsigned Flags
);
99 void visitEHBeginCatch(IntrinsicInst
*II
);
100 void visitEHEndCatch(IntrinsicInst
*II
);
102 void visitCallInst(CallInst
&I
);
103 void visitInvokeInst(InvokeInst
&I
);
104 void visitReturnInst(ReturnInst
&I
);
105 void visitLoadInst(LoadInst
&I
);
106 void visitStoreInst(StoreInst
&I
);
107 void visitXor(BinaryOperator
&I
);
108 void visitSub(BinaryOperator
&I
);
109 void visitLShr(BinaryOperator
&I
);
110 void visitAShr(BinaryOperator
&I
);
111 void visitShl(BinaryOperator
&I
);
112 void visitSDiv(BinaryOperator
&I
);
113 void visitUDiv(BinaryOperator
&I
);
114 void visitSRem(BinaryOperator
&I
);
115 void visitURem(BinaryOperator
&I
);
116 void visitAllocaInst(AllocaInst
&I
);
117 void visitVAArgInst(VAArgInst
&I
);
118 void visitIndirectBrInst(IndirectBrInst
&I
);
119 void visitExtractElementInst(ExtractElementInst
&I
);
120 void visitInsertElementInst(InsertElementInst
&I
);
121 void visitUnreachableInst(UnreachableInst
&I
);
123 Value
*findValue(Value
*V
, bool OffsetOk
) const;
124 Value
*findValueImpl(Value
*V
, bool OffsetOk
,
125 SmallPtrSetImpl
<Value
*> &Visited
) const;
129 const DataLayout
*DL
;
133 TargetLibraryInfo
*TLI
;
135 std::string Messages
;
136 raw_string_ostream MessagesStr
;
138 static char ID
; // Pass identification, replacement for typeid
139 Lint() : FunctionPass(ID
), MessagesStr(Messages
) {
140 initializeLintPass(*PassRegistry::getPassRegistry());
143 bool runOnFunction(Function
&F
) override
;
145 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
146 AU
.setPreservesAll();
147 AU
.addRequired
<AAResultsWrapperPass
>();
148 AU
.addRequired
<AssumptionCacheTracker
>();
149 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
150 AU
.addRequired
<DominatorTreeWrapperPass
>();
152 void print(raw_ostream
&O
, const Module
*M
) const override
{}
154 void WriteValues(ArrayRef
<const Value
*> Vs
) {
155 for (const Value
*V
: Vs
) {
158 if (isa
<Instruction
>(V
)) {
159 MessagesStr
<< *V
<< '\n';
161 V
->printAsOperand(MessagesStr
, true, Mod
);
167 /// A check failed, so printout out the condition and the message.
169 /// This provides a nice place to put a breakpoint if you want to see why
170 /// something is not correct.
171 void CheckFailed(const Twine
&Message
) { MessagesStr
<< Message
<< '\n'; }
173 /// A check failed (with values to print).
175 /// This calls the Message-only version so that the above is easier to set
177 template <typename T1
, typename
... Ts
>
178 void CheckFailed(const Twine
&Message
, const T1
&V1
, const Ts
&...Vs
) {
179 CheckFailed(Message
);
180 WriteValues({V1
, Vs
...});
183 } // end anonymous namespace
186 INITIALIZE_PASS_BEGIN(Lint
, "lint", "Statically lint-checks LLVM IR",
188 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
189 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
190 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
191 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
192 INITIALIZE_PASS_END(Lint
, "lint", "Statically lint-checks LLVM IR",
195 // Assert - We know that cond should be true, if not print an error message.
196 #define Assert(C, ...) \
197 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
199 // Lint::run - This is the main Analysis entry point for a
202 bool Lint::runOnFunction(Function
&F
) {
204 DL
= &F
.getParent()->getDataLayout();
205 AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
206 AC
= &getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(F
);
207 DT
= &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
208 TLI
= &getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI();
210 dbgs() << MessagesStr
.str();
215 void Lint::visitFunction(Function
&F
) {
216 // This isn't undefined behavior, it's just a little unusual, and it's a
217 // fairly common mistake to neglect to name a function.
218 Assert(F
.hasName() || F
.hasLocalLinkage(),
219 "Unusual: Unnamed function with non-local linkage", &F
);
221 // TODO: Check for irreducible control flow.
224 void Lint::visitCallSite(CallSite CS
) {
225 Instruction
&I
= *CS
.getInstruction();
226 Value
*Callee
= CS
.getCalledValue();
228 visitMemoryReference(I
, Callee
, MemoryLocation::UnknownSize
, 0, nullptr,
231 if (Function
*F
= dyn_cast
<Function
>(findValue(Callee
,
232 /*OffsetOk=*/false))) {
233 Assert(CS
.getCallingConv() == F
->getCallingConv(),
234 "Undefined behavior: Caller and callee calling convention differ",
237 FunctionType
*FT
= F
->getFunctionType();
238 unsigned NumActualArgs
= CS
.arg_size();
240 Assert(FT
->isVarArg() ? FT
->getNumParams() <= NumActualArgs
241 : FT
->getNumParams() == NumActualArgs
,
242 "Undefined behavior: Call argument count mismatches callee "
246 Assert(FT
->getReturnType() == I
.getType(),
247 "Undefined behavior: Call return type mismatches "
248 "callee return type",
251 // Check argument types (in case the callee was casted) and attributes.
252 // TODO: Verify that caller and callee attributes are compatible.
253 Function::arg_iterator PI
= F
->arg_begin(), PE
= F
->arg_end();
254 CallSite::arg_iterator AI
= CS
.arg_begin(), AE
= CS
.arg_end();
255 for (; AI
!= AE
; ++AI
) {
258 Argument
*Formal
= &*PI
++;
259 Assert(Formal
->getType() == Actual
->getType(),
260 "Undefined behavior: Call argument type mismatches "
261 "callee parameter type",
264 // Check that noalias arguments don't alias other arguments. This is
265 // not fully precise because we don't know the sizes of the dereferenced
267 if (Formal
->hasNoAliasAttr() && Actual
->getType()->isPointerTy()) {
268 AttributeList PAL
= CS
.getAttributes();
270 for (CallSite::arg_iterator BI
= CS
.arg_begin(); BI
!= AE
;
272 // Skip ByVal arguments since they will be memcpy'd to the callee's
273 // stack so we're not really passing the pointer anyway.
274 if (PAL
.hasParamAttribute(ArgNo
, Attribute::ByVal
))
276 // If both arguments are readonly, they have no dependence.
277 if (Formal
->onlyReadsMemory() && CS
.onlyReadsMemory(ArgNo
))
279 if (AI
!= BI
&& (*BI
)->getType()->isPointerTy()) {
280 AliasResult Result
= AA
->alias(*AI
, *BI
);
281 Assert(Result
!= MustAlias
&& Result
!= PartialAlias
,
282 "Unusual: noalias argument aliases another argument", &I
);
287 // Check that an sret argument points to valid memory.
288 if (Formal
->hasStructRetAttr() && Actual
->getType()->isPointerTy()) {
290 cast
<PointerType
>(Formal
->getType())->getElementType();
291 visitMemoryReference(I
, Actual
, DL
->getTypeStoreSize(Ty
),
292 DL
->getABITypeAlignment(Ty
), Ty
,
293 MemRef::Read
| MemRef::Write
);
300 const CallInst
*CI
= cast
<CallInst
>(CS
.getInstruction());
301 if (CI
->isTailCall()) {
302 const AttributeList
&PAL
= CI
->getAttributes();
304 for (Value
*Arg
: CS
.args()) {
305 // Skip ByVal arguments since they will be memcpy'd to the callee's
307 if (PAL
.hasParamAttribute(ArgNo
++, Attribute::ByVal
))
309 Value
*Obj
= findValue(Arg
, /*OffsetOk=*/true);
310 Assert(!isa
<AllocaInst
>(Obj
),
311 "Undefined behavior: Call with \"tail\" keyword references "
319 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(&I
))
320 switch (II
->getIntrinsicID()) {
323 // TODO: Check more intrinsics
325 case Intrinsic::memcpy
: {
326 MemCpyInst
*MCI
= cast
<MemCpyInst
>(&I
);
327 // TODO: If the size is known, use it.
328 visitMemoryReference(I
, MCI
->getDest(), MemoryLocation::UnknownSize
,
329 MCI
->getDestAlignment(), nullptr, MemRef::Write
);
330 visitMemoryReference(I
, MCI
->getSource(), MemoryLocation::UnknownSize
,
331 MCI
->getSourceAlignment(), nullptr, MemRef::Read
);
333 // Check that the memcpy arguments don't overlap. The AliasAnalysis API
334 // isn't expressive enough for what we really want to do. Known partial
335 // overlap is not distinguished from the case where nothing is known.
336 auto Size
= LocationSize::unknown();
337 if (const ConstantInt
*Len
=
338 dyn_cast
<ConstantInt
>(findValue(MCI
->getLength(),
339 /*OffsetOk=*/false)))
340 if (Len
->getValue().isIntN(32))
341 Size
= LocationSize::precise(Len
->getValue().getZExtValue());
342 Assert(AA
->alias(MCI
->getSource(), Size
, MCI
->getDest(), Size
) !=
344 "Undefined behavior: memcpy source and destination overlap", &I
);
347 case Intrinsic::memmove
: {
348 MemMoveInst
*MMI
= cast
<MemMoveInst
>(&I
);
349 // TODO: If the size is known, use it.
350 visitMemoryReference(I
, MMI
->getDest(), MemoryLocation::UnknownSize
,
351 MMI
->getDestAlignment(), nullptr, MemRef::Write
);
352 visitMemoryReference(I
, MMI
->getSource(), MemoryLocation::UnknownSize
,
353 MMI
->getSourceAlignment(), nullptr, MemRef::Read
);
356 case Intrinsic::memset
: {
357 MemSetInst
*MSI
= cast
<MemSetInst
>(&I
);
358 // TODO: If the size is known, use it.
359 visitMemoryReference(I
, MSI
->getDest(), MemoryLocation::UnknownSize
,
360 MSI
->getDestAlignment(), nullptr, MemRef::Write
);
364 case Intrinsic::vastart
:
365 Assert(I
.getParent()->getParent()->isVarArg(),
366 "Undefined behavior: va_start called in a non-varargs function",
369 visitMemoryReference(I
, CS
.getArgument(0), MemoryLocation::UnknownSize
, 0,
370 nullptr, MemRef::Read
| MemRef::Write
);
372 case Intrinsic::vacopy
:
373 visitMemoryReference(I
, CS
.getArgument(0), MemoryLocation::UnknownSize
, 0,
374 nullptr, MemRef::Write
);
375 visitMemoryReference(I
, CS
.getArgument(1), MemoryLocation::UnknownSize
, 0,
376 nullptr, MemRef::Read
);
378 case Intrinsic::vaend
:
379 visitMemoryReference(I
, CS
.getArgument(0), MemoryLocation::UnknownSize
, 0,
380 nullptr, MemRef::Read
| MemRef::Write
);
383 case Intrinsic::stackrestore
:
384 // Stackrestore doesn't read or write memory, but it sets the
385 // stack pointer, which the compiler may read from or write to
386 // at any time, so check it for both readability and writeability.
387 visitMemoryReference(I
, CS
.getArgument(0), MemoryLocation::UnknownSize
, 0,
388 nullptr, MemRef::Read
| MemRef::Write
);
393 void Lint::visitCallInst(CallInst
&I
) {
394 return visitCallSite(&I
);
397 void Lint::visitInvokeInst(InvokeInst
&I
) {
398 return visitCallSite(&I
);
401 void Lint::visitReturnInst(ReturnInst
&I
) {
402 Function
*F
= I
.getParent()->getParent();
403 Assert(!F
->doesNotReturn(),
404 "Unusual: Return statement in function with noreturn attribute", &I
);
406 if (Value
*V
= I
.getReturnValue()) {
407 Value
*Obj
= findValue(V
, /*OffsetOk=*/true);
408 Assert(!isa
<AllocaInst
>(Obj
), "Unusual: Returning alloca value", &I
);
412 // TODO: Check that the reference is in bounds.
413 // TODO: Check readnone/readonly function attributes.
414 void Lint::visitMemoryReference(Instruction
&I
,
415 Value
*Ptr
, uint64_t Size
, unsigned Align
,
416 Type
*Ty
, unsigned Flags
) {
417 // If no memory is being referenced, it doesn't matter if the pointer
422 Value
*UnderlyingObject
= findValue(Ptr
, /*OffsetOk=*/true);
423 Assert(!isa
<ConstantPointerNull
>(UnderlyingObject
),
424 "Undefined behavior: Null pointer dereference", &I
);
425 Assert(!isa
<UndefValue
>(UnderlyingObject
),
426 "Undefined behavior: Undef pointer dereference", &I
);
427 Assert(!isa
<ConstantInt
>(UnderlyingObject
) ||
428 !cast
<ConstantInt
>(UnderlyingObject
)->isMinusOne(),
429 "Unusual: All-ones pointer dereference", &I
);
430 Assert(!isa
<ConstantInt
>(UnderlyingObject
) ||
431 !cast
<ConstantInt
>(UnderlyingObject
)->isOne(),
432 "Unusual: Address one pointer dereference", &I
);
434 if (Flags
& MemRef::Write
) {
435 if (const GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(UnderlyingObject
))
436 Assert(!GV
->isConstant(), "Undefined behavior: Write to read-only memory",
438 Assert(!isa
<Function
>(UnderlyingObject
) &&
439 !isa
<BlockAddress
>(UnderlyingObject
),
440 "Undefined behavior: Write to text section", &I
);
442 if (Flags
& MemRef::Read
) {
443 Assert(!isa
<Function
>(UnderlyingObject
), "Unusual: Load from function body",
445 Assert(!isa
<BlockAddress
>(UnderlyingObject
),
446 "Undefined behavior: Load from block address", &I
);
448 if (Flags
& MemRef::Callee
) {
449 Assert(!isa
<BlockAddress
>(UnderlyingObject
),
450 "Undefined behavior: Call to block address", &I
);
452 if (Flags
& MemRef::Branchee
) {
453 Assert(!isa
<Constant
>(UnderlyingObject
) ||
454 isa
<BlockAddress
>(UnderlyingObject
),
455 "Undefined behavior: Branch to non-blockaddress", &I
);
458 // Check for buffer overflows and misalignment.
459 // Only handles memory references that read/write something simple like an
460 // alloca instruction or a global variable.
462 if (Value
*Base
= GetPointerBaseWithConstantOffset(Ptr
, Offset
, *DL
)) {
463 // OK, so the access is to a constant offset from Ptr. Check that Ptr is
464 // something we can handle and if so extract the size of this base object
465 // along with its alignment.
466 uint64_t BaseSize
= MemoryLocation::UnknownSize
;
467 unsigned BaseAlign
= 0;
469 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(Base
)) {
470 Type
*ATy
= AI
->getAllocatedType();
471 if (!AI
->isArrayAllocation() && ATy
->isSized())
472 BaseSize
= DL
->getTypeAllocSize(ATy
);
473 BaseAlign
= AI
->getAlignment();
474 if (BaseAlign
== 0 && ATy
->isSized())
475 BaseAlign
= DL
->getABITypeAlignment(ATy
);
476 } else if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(Base
)) {
477 // If the global may be defined differently in another compilation unit
478 // then don't warn about funky memory accesses.
479 if (GV
->hasDefinitiveInitializer()) {
480 Type
*GTy
= GV
->getValueType();
482 BaseSize
= DL
->getTypeAllocSize(GTy
);
483 BaseAlign
= GV
->getAlignment();
484 if (BaseAlign
== 0 && GTy
->isSized())
485 BaseAlign
= DL
->getABITypeAlignment(GTy
);
489 // Accesses from before the start or after the end of the object are not
491 Assert(Size
== MemoryLocation::UnknownSize
||
492 BaseSize
== MemoryLocation::UnknownSize
||
493 (Offset
>= 0 && Offset
+ Size
<= BaseSize
),
494 "Undefined behavior: Buffer overflow", &I
);
496 // Accesses that say that the memory is more aligned than it is are not
498 if (Align
== 0 && Ty
&& Ty
->isSized())
499 Align
= DL
->getABITypeAlignment(Ty
);
500 Assert(!BaseAlign
|| Align
<= MinAlign(BaseAlign
, Offset
),
501 "Undefined behavior: Memory reference address is misaligned", &I
);
505 void Lint::visitLoadInst(LoadInst
&I
) {
506 visitMemoryReference(I
, I
.getPointerOperand(),
507 DL
->getTypeStoreSize(I
.getType()), I
.getAlignment(),
508 I
.getType(), MemRef::Read
);
511 void Lint::visitStoreInst(StoreInst
&I
) {
512 visitMemoryReference(I
, I
.getPointerOperand(),
513 DL
->getTypeStoreSize(I
.getOperand(0)->getType()),
515 I
.getOperand(0)->getType(), MemRef::Write
);
518 void Lint::visitXor(BinaryOperator
&I
) {
519 Assert(!isa
<UndefValue
>(I
.getOperand(0)) || !isa
<UndefValue
>(I
.getOperand(1)),
520 "Undefined result: xor(undef, undef)", &I
);
523 void Lint::visitSub(BinaryOperator
&I
) {
524 Assert(!isa
<UndefValue
>(I
.getOperand(0)) || !isa
<UndefValue
>(I
.getOperand(1)),
525 "Undefined result: sub(undef, undef)", &I
);
528 void Lint::visitLShr(BinaryOperator
&I
) {
529 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(findValue(I
.getOperand(1),
530 /*OffsetOk=*/false)))
531 Assert(CI
->getValue().ult(cast
<IntegerType
>(I
.getType())->getBitWidth()),
532 "Undefined result: Shift count out of range", &I
);
535 void Lint::visitAShr(BinaryOperator
&I
) {
536 if (ConstantInt
*CI
=
537 dyn_cast
<ConstantInt
>(findValue(I
.getOperand(1), /*OffsetOk=*/false)))
538 Assert(CI
->getValue().ult(cast
<IntegerType
>(I
.getType())->getBitWidth()),
539 "Undefined result: Shift count out of range", &I
);
542 void Lint::visitShl(BinaryOperator
&I
) {
543 if (ConstantInt
*CI
=
544 dyn_cast
<ConstantInt
>(findValue(I
.getOperand(1), /*OffsetOk=*/false)))
545 Assert(CI
->getValue().ult(cast
<IntegerType
>(I
.getType())->getBitWidth()),
546 "Undefined result: Shift count out of range", &I
);
549 static bool isZero(Value
*V
, const DataLayout
&DL
, DominatorTree
*DT
,
550 AssumptionCache
*AC
) {
551 // Assume undef could be zero.
552 if (isa
<UndefValue
>(V
))
555 VectorType
*VecTy
= dyn_cast
<VectorType
>(V
->getType());
557 KnownBits Known
= computeKnownBits(V
, DL
, 0, AC
, dyn_cast
<Instruction
>(V
), DT
);
558 return Known
.isZero();
561 // Per-component check doesn't work with zeroinitializer
562 Constant
*C
= dyn_cast
<Constant
>(V
);
566 if (C
->isZeroValue())
569 // For a vector, KnownZero will only be true if all values are zero, so check
570 // this per component
571 for (unsigned I
= 0, N
= VecTy
->getNumElements(); I
!= N
; ++I
) {
572 Constant
*Elem
= C
->getAggregateElement(I
);
573 if (isa
<UndefValue
>(Elem
))
576 KnownBits Known
= computeKnownBits(Elem
, DL
);
584 void Lint::visitSDiv(BinaryOperator
&I
) {
585 Assert(!isZero(I
.getOperand(1), I
.getModule()->getDataLayout(), DT
, AC
),
586 "Undefined behavior: Division by zero", &I
);
589 void Lint::visitUDiv(BinaryOperator
&I
) {
590 Assert(!isZero(I
.getOperand(1), I
.getModule()->getDataLayout(), DT
, AC
),
591 "Undefined behavior: Division by zero", &I
);
594 void Lint::visitSRem(BinaryOperator
&I
) {
595 Assert(!isZero(I
.getOperand(1), I
.getModule()->getDataLayout(), DT
, AC
),
596 "Undefined behavior: Division by zero", &I
);
599 void Lint::visitURem(BinaryOperator
&I
) {
600 Assert(!isZero(I
.getOperand(1), I
.getModule()->getDataLayout(), DT
, AC
),
601 "Undefined behavior: Division by zero", &I
);
604 void Lint::visitAllocaInst(AllocaInst
&I
) {
605 if (isa
<ConstantInt
>(I
.getArraySize()))
606 // This isn't undefined behavior, it's just an obvious pessimization.
607 Assert(&I
.getParent()->getParent()->getEntryBlock() == I
.getParent(),
608 "Pessimization: Static alloca outside of entry block", &I
);
610 // TODO: Check for an unusual size (MSB set?)
613 void Lint::visitVAArgInst(VAArgInst
&I
) {
614 visitMemoryReference(I
, I
.getOperand(0), MemoryLocation::UnknownSize
, 0,
615 nullptr, MemRef::Read
| MemRef::Write
);
618 void Lint::visitIndirectBrInst(IndirectBrInst
&I
) {
619 visitMemoryReference(I
, I
.getAddress(), MemoryLocation::UnknownSize
, 0,
620 nullptr, MemRef::Branchee
);
622 Assert(I
.getNumDestinations() != 0,
623 "Undefined behavior: indirectbr with no destinations", &I
);
626 void Lint::visitExtractElementInst(ExtractElementInst
&I
) {
627 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(findValue(I
.getIndexOperand(),
628 /*OffsetOk=*/false)))
629 Assert(CI
->getValue().ult(I
.getVectorOperandType()->getNumElements()),
630 "Undefined result: extractelement index out of range", &I
);
633 void Lint::visitInsertElementInst(InsertElementInst
&I
) {
634 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(findValue(I
.getOperand(2),
635 /*OffsetOk=*/false)))
636 Assert(CI
->getValue().ult(I
.getType()->getNumElements()),
637 "Undefined result: insertelement index out of range", &I
);
640 void Lint::visitUnreachableInst(UnreachableInst
&I
) {
641 // This isn't undefined behavior, it's merely suspicious.
642 Assert(&I
== &I
.getParent()->front() ||
643 std::prev(I
.getIterator())->mayHaveSideEffects(),
644 "Unusual: unreachable immediately preceded by instruction without "
649 /// findValue - Look through bitcasts and simple memory reference patterns
650 /// to identify an equivalent, but more informative, value. If OffsetOk
651 /// is true, look through getelementptrs with non-zero offsets too.
653 /// Most analysis passes don't require this logic, because instcombine
654 /// will simplify most of these kinds of things away. But it's a goal of
655 /// this Lint pass to be useful even on non-optimized IR.
656 Value
*Lint::findValue(Value
*V
, bool OffsetOk
) const {
657 SmallPtrSet
<Value
*, 4> Visited
;
658 return findValueImpl(V
, OffsetOk
, Visited
);
661 /// findValueImpl - Implementation helper for findValue.
662 Value
*Lint::findValueImpl(Value
*V
, bool OffsetOk
,
663 SmallPtrSetImpl
<Value
*> &Visited
) const {
664 // Detect self-referential values.
665 if (!Visited
.insert(V
).second
)
666 return UndefValue::get(V
->getType());
668 // TODO: Look through sext or zext cast, when the result is known to
669 // be interpreted as signed or unsigned, respectively.
670 // TODO: Look through eliminable cast pairs.
671 // TODO: Look through calls with unique return values.
672 // TODO: Look through vector insert/extract/shuffle.
673 V
= OffsetOk
? GetUnderlyingObject(V
, *DL
) : V
->stripPointerCasts();
674 if (LoadInst
*L
= dyn_cast
<LoadInst
>(V
)) {
675 BasicBlock::iterator BBI
= L
->getIterator();
676 BasicBlock
*BB
= L
->getParent();
677 SmallPtrSet
<BasicBlock
*, 4> VisitedBlocks
;
679 if (!VisitedBlocks
.insert(BB
).second
)
682 FindAvailableLoadedValue(L
, BB
, BBI
, DefMaxInstsToScan
, AA
))
683 return findValueImpl(U
, OffsetOk
, Visited
);
684 if (BBI
!= BB
->begin()) break;
685 BB
= BB
->getUniquePredecessor();
689 } else if (PHINode
*PN
= dyn_cast
<PHINode
>(V
)) {
690 if (Value
*W
= PN
->hasConstantValue())
692 return findValueImpl(W
, OffsetOk
, Visited
);
693 } else if (CastInst
*CI
= dyn_cast
<CastInst
>(V
)) {
694 if (CI
->isNoopCast(*DL
))
695 return findValueImpl(CI
->getOperand(0), OffsetOk
, Visited
);
696 } else if (ExtractValueInst
*Ex
= dyn_cast
<ExtractValueInst
>(V
)) {
697 if (Value
*W
= FindInsertedValue(Ex
->getAggregateOperand(),
700 return findValueImpl(W
, OffsetOk
, Visited
);
701 } else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
)) {
702 // Same as above, but for ConstantExpr instead of Instruction.
703 if (Instruction::isCast(CE
->getOpcode())) {
704 if (CastInst::isNoopCast(Instruction::CastOps(CE
->getOpcode()),
705 CE
->getOperand(0)->getType(), CE
->getType(),
707 return findValueImpl(CE
->getOperand(0), OffsetOk
, Visited
);
708 } else if (CE
->getOpcode() == Instruction::ExtractValue
) {
709 ArrayRef
<unsigned> Indices
= CE
->getIndices();
710 if (Value
*W
= FindInsertedValue(CE
->getOperand(0), Indices
))
712 return findValueImpl(W
, OffsetOk
, Visited
);
716 // As a last resort, try SimplifyInstruction or constant folding.
717 if (Instruction
*Inst
= dyn_cast
<Instruction
>(V
)) {
718 if (Value
*W
= SimplifyInstruction(Inst
, {*DL
, TLI
, DT
, AC
}))
719 return findValueImpl(W
, OffsetOk
, Visited
);
720 } else if (auto *C
= dyn_cast
<Constant
>(V
)) {
721 if (Value
*W
= ConstantFoldConstant(C
, *DL
, TLI
))
723 return findValueImpl(W
, OffsetOk
, Visited
);
729 //===----------------------------------------------------------------------===//
730 // Implement the public interfaces to this file...
731 //===----------------------------------------------------------------------===//
733 FunctionPass
*llvm::createLintPass() {
737 /// lintFunction - Check a function for errors, printing messages on stderr.
739 void llvm::lintFunction(const Function
&f
) {
740 Function
&F
= const_cast<Function
&>(f
);
741 assert(!F
.isDeclaration() && "Cannot lint external functions");
743 legacy::FunctionPassManager
FPM(F
.getParent());
744 Lint
*V
= new Lint();
749 /// lintModule - Check a module for errors, printing messages on stderr.
751 void llvm::lintModule(const Module
&M
) {
752 legacy::PassManager PM
;
753 Lint
*V
= new Lint();
755 PM
.run(const_cast<Module
&>(M
));